xref: /openbmc/linux/lib/radix-tree.c (revision 22246614)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter <clameter@sgi.com>
5  * Copyright (C) 2006 Nick Piggin
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2, or (at
10  * your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/radix-tree.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/gfp.h>
32 #include <linux/string.h>
33 #include <linux/bitops.h>
34 #include <linux/rcupdate.h>
35 
36 
37 #ifdef __KERNEL__
38 #define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
39 #else
40 #define RADIX_TREE_MAP_SHIFT	3	/* For more stressful testing */
41 #endif
42 
43 #define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
44 #define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
45 
46 #define RADIX_TREE_TAG_LONGS	\
47 	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
48 
49 struct radix_tree_node {
50 	unsigned int	height;		/* Height from the bottom */
51 	unsigned int	count;
52 	struct rcu_head	rcu_head;
53 	void		*slots[RADIX_TREE_MAP_SIZE];
54 	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
55 };
56 
57 struct radix_tree_path {
58 	struct radix_tree_node *node;
59 	int offset;
60 };
61 
62 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
63 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
64 					  RADIX_TREE_MAP_SHIFT))
65 
66 /*
67  * The height_to_maxindex array needs to be one deeper than the maximum
68  * path as height 0 holds only 1 entry.
69  */
70 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
71 
72 /*
73  * Radix tree node cache.
74  */
75 static struct kmem_cache *radix_tree_node_cachep;
76 
77 /*
78  * Per-cpu pool of preloaded nodes
79  */
80 struct radix_tree_preload {
81 	int nr;
82 	struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
83 };
84 DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
85 
86 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
87 {
88 	return root->gfp_mask & __GFP_BITS_MASK;
89 }
90 
91 /*
92  * This assumes that the caller has performed appropriate preallocation, and
93  * that the caller has pinned this thread of control to the current CPU.
94  */
95 static struct radix_tree_node *
96 radix_tree_node_alloc(struct radix_tree_root *root)
97 {
98 	struct radix_tree_node *ret = NULL;
99 	gfp_t gfp_mask = root_gfp_mask(root);
100 
101 	if (!(gfp_mask & __GFP_WAIT)) {
102 		struct radix_tree_preload *rtp;
103 
104 		/*
105 		 * Provided the caller has preloaded here, we will always
106 		 * succeed in getting a node here (and never reach
107 		 * kmem_cache_alloc)
108 		 */
109 		rtp = &__get_cpu_var(radix_tree_preloads);
110 		if (rtp->nr) {
111 			ret = rtp->nodes[rtp->nr - 1];
112 			rtp->nodes[rtp->nr - 1] = NULL;
113 			rtp->nr--;
114 		}
115 	}
116 	if (ret == NULL)
117 		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
118 
119 	BUG_ON(radix_tree_is_indirect_ptr(ret));
120 	return ret;
121 }
122 
123 static void radix_tree_node_rcu_free(struct rcu_head *head)
124 {
125 	struct radix_tree_node *node =
126 			container_of(head, struct radix_tree_node, rcu_head);
127 	kmem_cache_free(radix_tree_node_cachep, node);
128 }
129 
130 static inline void
131 radix_tree_node_free(struct radix_tree_node *node)
132 {
133 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
134 }
135 
136 /*
137  * Load up this CPU's radix_tree_node buffer with sufficient objects to
138  * ensure that the addition of a single element in the tree cannot fail.  On
139  * success, return zero, with preemption disabled.  On error, return -ENOMEM
140  * with preemption not disabled.
141  */
142 int radix_tree_preload(gfp_t gfp_mask)
143 {
144 	struct radix_tree_preload *rtp;
145 	struct radix_tree_node *node;
146 	int ret = -ENOMEM;
147 
148 	preempt_disable();
149 	rtp = &__get_cpu_var(radix_tree_preloads);
150 	while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
151 		preempt_enable();
152 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
153 		if (node == NULL)
154 			goto out;
155 		preempt_disable();
156 		rtp = &__get_cpu_var(radix_tree_preloads);
157 		if (rtp->nr < ARRAY_SIZE(rtp->nodes))
158 			rtp->nodes[rtp->nr++] = node;
159 		else
160 			kmem_cache_free(radix_tree_node_cachep, node);
161 	}
162 	ret = 0;
163 out:
164 	return ret;
165 }
166 EXPORT_SYMBOL(radix_tree_preload);
167 
168 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
169 		int offset)
170 {
171 	__set_bit(offset, node->tags[tag]);
172 }
173 
174 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
175 		int offset)
176 {
177 	__clear_bit(offset, node->tags[tag]);
178 }
179 
180 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
181 		int offset)
182 {
183 	return test_bit(offset, node->tags[tag]);
184 }
185 
186 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
187 {
188 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
189 }
190 
191 
192 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
193 {
194 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
195 }
196 
197 static inline void root_tag_clear_all(struct radix_tree_root *root)
198 {
199 	root->gfp_mask &= __GFP_BITS_MASK;
200 }
201 
202 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
203 {
204 	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
205 }
206 
207 /*
208  * Returns 1 if any slot in the node has this tag set.
209  * Otherwise returns 0.
210  */
211 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
212 {
213 	int idx;
214 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
215 		if (node->tags[tag][idx])
216 			return 1;
217 	}
218 	return 0;
219 }
220 
221 /*
222  *	Return the maximum key which can be store into a
223  *	radix tree with height HEIGHT.
224  */
225 static inline unsigned long radix_tree_maxindex(unsigned int height)
226 {
227 	return height_to_maxindex[height];
228 }
229 
230 /*
231  *	Extend a radix tree so it can store key @index.
232  */
233 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
234 {
235 	struct radix_tree_node *node;
236 	unsigned int height;
237 	int tag;
238 
239 	/* Figure out what the height should be.  */
240 	height = root->height + 1;
241 	while (index > radix_tree_maxindex(height))
242 		height++;
243 
244 	if (root->rnode == NULL) {
245 		root->height = height;
246 		goto out;
247 	}
248 
249 	do {
250 		unsigned int newheight;
251 		if (!(node = radix_tree_node_alloc(root)))
252 			return -ENOMEM;
253 
254 		/* Increase the height.  */
255 		node->slots[0] = radix_tree_indirect_to_ptr(root->rnode);
256 
257 		/* Propagate the aggregated tag info into the new root */
258 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
259 			if (root_tag_get(root, tag))
260 				tag_set(node, tag, 0);
261 		}
262 
263 		newheight = root->height+1;
264 		node->height = newheight;
265 		node->count = 1;
266 		node = radix_tree_ptr_to_indirect(node);
267 		rcu_assign_pointer(root->rnode, node);
268 		root->height = newheight;
269 	} while (height > root->height);
270 out:
271 	return 0;
272 }
273 
274 /**
275  *	radix_tree_insert    -    insert into a radix tree
276  *	@root:		radix tree root
277  *	@index:		index key
278  *	@item:		item to insert
279  *
280  *	Insert an item into the radix tree at position @index.
281  */
282 int radix_tree_insert(struct radix_tree_root *root,
283 			unsigned long index, void *item)
284 {
285 	struct radix_tree_node *node = NULL, *slot;
286 	unsigned int height, shift;
287 	int offset;
288 	int error;
289 
290 	BUG_ON(radix_tree_is_indirect_ptr(item));
291 
292 	/* Make sure the tree is high enough.  */
293 	if (index > radix_tree_maxindex(root->height)) {
294 		error = radix_tree_extend(root, index);
295 		if (error)
296 			return error;
297 	}
298 
299 	slot = radix_tree_indirect_to_ptr(root->rnode);
300 
301 	height = root->height;
302 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
303 
304 	offset = 0;			/* uninitialised var warning */
305 	while (height > 0) {
306 		if (slot == NULL) {
307 			/* Have to add a child node.  */
308 			if (!(slot = radix_tree_node_alloc(root)))
309 				return -ENOMEM;
310 			slot->height = height;
311 			if (node) {
312 				rcu_assign_pointer(node->slots[offset], slot);
313 				node->count++;
314 			} else
315 				rcu_assign_pointer(root->rnode,
316 					radix_tree_ptr_to_indirect(slot));
317 		}
318 
319 		/* Go a level down */
320 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
321 		node = slot;
322 		slot = node->slots[offset];
323 		shift -= RADIX_TREE_MAP_SHIFT;
324 		height--;
325 	}
326 
327 	if (slot != NULL)
328 		return -EEXIST;
329 
330 	if (node) {
331 		node->count++;
332 		rcu_assign_pointer(node->slots[offset], item);
333 		BUG_ON(tag_get(node, 0, offset));
334 		BUG_ON(tag_get(node, 1, offset));
335 	} else {
336 		rcu_assign_pointer(root->rnode, item);
337 		BUG_ON(root_tag_get(root, 0));
338 		BUG_ON(root_tag_get(root, 1));
339 	}
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(radix_tree_insert);
344 
345 /**
346  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
347  *	@root:		radix tree root
348  *	@index:		index key
349  *
350  *	Returns:  the slot corresponding to the position @index in the
351  *	radix tree @root. This is useful for update-if-exists operations.
352  *
353  *	This function cannot be called under rcu_read_lock, it must be
354  *	excluded from writers, as must the returned slot for subsequent
355  *	use by radix_tree_deref_slot() and radix_tree_replace slot.
356  *	Caller must hold tree write locked across slot lookup and
357  *	replace.
358  */
359 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
360 {
361 	unsigned int height, shift;
362 	struct radix_tree_node *node, **slot;
363 
364 	node = root->rnode;
365 	if (node == NULL)
366 		return NULL;
367 
368 	if (!radix_tree_is_indirect_ptr(node)) {
369 		if (index > 0)
370 			return NULL;
371 		return (void **)&root->rnode;
372 	}
373 	node = radix_tree_indirect_to_ptr(node);
374 
375 	height = node->height;
376 	if (index > radix_tree_maxindex(height))
377 		return NULL;
378 
379 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
380 
381 	do {
382 		slot = (struct radix_tree_node **)
383 			(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
384 		node = *slot;
385 		if (node == NULL)
386 			return NULL;
387 
388 		shift -= RADIX_TREE_MAP_SHIFT;
389 		height--;
390 	} while (height > 0);
391 
392 	return (void **)slot;
393 }
394 EXPORT_SYMBOL(radix_tree_lookup_slot);
395 
396 /**
397  *	radix_tree_lookup    -    perform lookup operation on a radix tree
398  *	@root:		radix tree root
399  *	@index:		index key
400  *
401  *	Lookup the item at the position @index in the radix tree @root.
402  *
403  *	This function can be called under rcu_read_lock, however the caller
404  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
405  *	them safely). No RCU barriers are required to access or modify the
406  *	returned item, however.
407  */
408 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
409 {
410 	unsigned int height, shift;
411 	struct radix_tree_node *node, **slot;
412 
413 	node = rcu_dereference(root->rnode);
414 	if (node == NULL)
415 		return NULL;
416 
417 	if (!radix_tree_is_indirect_ptr(node)) {
418 		if (index > 0)
419 			return NULL;
420 		return node;
421 	}
422 	node = radix_tree_indirect_to_ptr(node);
423 
424 	height = node->height;
425 	if (index > radix_tree_maxindex(height))
426 		return NULL;
427 
428 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
429 
430 	do {
431 		slot = (struct radix_tree_node **)
432 			(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
433 		node = rcu_dereference(*slot);
434 		if (node == NULL)
435 			return NULL;
436 
437 		shift -= RADIX_TREE_MAP_SHIFT;
438 		height--;
439 	} while (height > 0);
440 
441 	return node;
442 }
443 EXPORT_SYMBOL(radix_tree_lookup);
444 
445 /**
446  *	radix_tree_tag_set - set a tag on a radix tree node
447  *	@root:		radix tree root
448  *	@index:		index key
449  *	@tag: 		tag index
450  *
451  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
452  *	corresponding to @index in the radix tree.  From
453  *	the root all the way down to the leaf node.
454  *
455  *	Returns the address of the tagged item.   Setting a tag on a not-present
456  *	item is a bug.
457  */
458 void *radix_tree_tag_set(struct radix_tree_root *root,
459 			unsigned long index, unsigned int tag)
460 {
461 	unsigned int height, shift;
462 	struct radix_tree_node *slot;
463 
464 	height = root->height;
465 	BUG_ON(index > radix_tree_maxindex(height));
466 
467 	slot = radix_tree_indirect_to_ptr(root->rnode);
468 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
469 
470 	while (height > 0) {
471 		int offset;
472 
473 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
474 		if (!tag_get(slot, tag, offset))
475 			tag_set(slot, tag, offset);
476 		slot = slot->slots[offset];
477 		BUG_ON(slot == NULL);
478 		shift -= RADIX_TREE_MAP_SHIFT;
479 		height--;
480 	}
481 
482 	/* set the root's tag bit */
483 	if (slot && !root_tag_get(root, tag))
484 		root_tag_set(root, tag);
485 
486 	return slot;
487 }
488 EXPORT_SYMBOL(radix_tree_tag_set);
489 
490 /**
491  *	radix_tree_tag_clear - clear a tag on a radix tree node
492  *	@root:		radix tree root
493  *	@index:		index key
494  *	@tag: 		tag index
495  *
496  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
497  *	corresponding to @index in the radix tree.  If
498  *	this causes the leaf node to have no tags set then clear the tag in the
499  *	next-to-leaf node, etc.
500  *
501  *	Returns the address of the tagged item on success, else NULL.  ie:
502  *	has the same return value and semantics as radix_tree_lookup().
503  */
504 void *radix_tree_tag_clear(struct radix_tree_root *root,
505 			unsigned long index, unsigned int tag)
506 {
507 	/*
508 	 * The radix tree path needs to be one longer than the maximum path
509 	 * since the "list" is null terminated.
510 	 */
511 	struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
512 	struct radix_tree_node *slot = NULL;
513 	unsigned int height, shift;
514 
515 	height = root->height;
516 	if (index > radix_tree_maxindex(height))
517 		goto out;
518 
519 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
520 	pathp->node = NULL;
521 	slot = radix_tree_indirect_to_ptr(root->rnode);
522 
523 	while (height > 0) {
524 		int offset;
525 
526 		if (slot == NULL)
527 			goto out;
528 
529 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
530 		pathp[1].offset = offset;
531 		pathp[1].node = slot;
532 		slot = slot->slots[offset];
533 		pathp++;
534 		shift -= RADIX_TREE_MAP_SHIFT;
535 		height--;
536 	}
537 
538 	if (slot == NULL)
539 		goto out;
540 
541 	while (pathp->node) {
542 		if (!tag_get(pathp->node, tag, pathp->offset))
543 			goto out;
544 		tag_clear(pathp->node, tag, pathp->offset);
545 		if (any_tag_set(pathp->node, tag))
546 			goto out;
547 		pathp--;
548 	}
549 
550 	/* clear the root's tag bit */
551 	if (root_tag_get(root, tag))
552 		root_tag_clear(root, tag);
553 
554 out:
555 	return slot;
556 }
557 EXPORT_SYMBOL(radix_tree_tag_clear);
558 
559 #ifndef __KERNEL__	/* Only the test harness uses this at present */
560 /**
561  * radix_tree_tag_get - get a tag on a radix tree node
562  * @root:		radix tree root
563  * @index:		index key
564  * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
565  *
566  * Return values:
567  *
568  *  0: tag not present or not set
569  *  1: tag set
570  */
571 int radix_tree_tag_get(struct radix_tree_root *root,
572 			unsigned long index, unsigned int tag)
573 {
574 	unsigned int height, shift;
575 	struct radix_tree_node *node;
576 	int saw_unset_tag = 0;
577 
578 	/* check the root's tag bit */
579 	if (!root_tag_get(root, tag))
580 		return 0;
581 
582 	node = rcu_dereference(root->rnode);
583 	if (node == NULL)
584 		return 0;
585 
586 	if (!radix_tree_is_indirect_ptr(node))
587 		return (index == 0);
588 	node = radix_tree_indirect_to_ptr(node);
589 
590 	height = node->height;
591 	if (index > radix_tree_maxindex(height))
592 		return 0;
593 
594 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
595 
596 	for ( ; ; ) {
597 		int offset;
598 
599 		if (node == NULL)
600 			return 0;
601 
602 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
603 
604 		/*
605 		 * This is just a debug check.  Later, we can bale as soon as
606 		 * we see an unset tag.
607 		 */
608 		if (!tag_get(node, tag, offset))
609 			saw_unset_tag = 1;
610 		if (height == 1) {
611 			int ret = tag_get(node, tag, offset);
612 
613 			BUG_ON(ret && saw_unset_tag);
614 			return !!ret;
615 		}
616 		node = rcu_dereference(node->slots[offset]);
617 		shift -= RADIX_TREE_MAP_SHIFT;
618 		height--;
619 	}
620 }
621 EXPORT_SYMBOL(radix_tree_tag_get);
622 #endif
623 
624 /**
625  *	radix_tree_next_hole    -    find the next hole (not-present entry)
626  *	@root:		tree root
627  *	@index:		index key
628  *	@max_scan:	maximum range to search
629  *
630  *	Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
631  *	indexed hole.
632  *
633  *	Returns: the index of the hole if found, otherwise returns an index
634  *	outside of the set specified (in which case 'return - index >= max_scan'
635  *	will be true).
636  *
637  *	radix_tree_next_hole may be called under rcu_read_lock. However, like
638  *	radix_tree_gang_lookup, this will not atomically search a snapshot of the
639  *	tree at a single point in time. For example, if a hole is created at index
640  *	5, then subsequently a hole is created at index 10, radix_tree_next_hole
641  *	covering both indexes may return 10 if called under rcu_read_lock.
642  */
643 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
644 				unsigned long index, unsigned long max_scan)
645 {
646 	unsigned long i;
647 
648 	for (i = 0; i < max_scan; i++) {
649 		if (!radix_tree_lookup(root, index))
650 			break;
651 		index++;
652 		if (index == 0)
653 			break;
654 	}
655 
656 	return index;
657 }
658 EXPORT_SYMBOL(radix_tree_next_hole);
659 
660 static unsigned int
661 __lookup(struct radix_tree_node *slot, void **results, unsigned long index,
662 	unsigned int max_items, unsigned long *next_index)
663 {
664 	unsigned int nr_found = 0;
665 	unsigned int shift, height;
666 	unsigned long i;
667 
668 	height = slot->height;
669 	if (height == 0)
670 		goto out;
671 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
672 
673 	for ( ; height > 1; height--) {
674 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
675 		for (;;) {
676 			if (slot->slots[i] != NULL)
677 				break;
678 			index &= ~((1UL << shift) - 1);
679 			index += 1UL << shift;
680 			if (index == 0)
681 				goto out;	/* 32-bit wraparound */
682 			i++;
683 			if (i == RADIX_TREE_MAP_SIZE)
684 				goto out;
685 		}
686 
687 		shift -= RADIX_TREE_MAP_SHIFT;
688 		slot = rcu_dereference(slot->slots[i]);
689 		if (slot == NULL)
690 			goto out;
691 	}
692 
693 	/* Bottom level: grab some items */
694 	for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
695 		struct radix_tree_node *node;
696 		index++;
697 		node = slot->slots[i];
698 		if (node) {
699 			results[nr_found++] = rcu_dereference(node);
700 			if (nr_found == max_items)
701 				goto out;
702 		}
703 	}
704 out:
705 	*next_index = index;
706 	return nr_found;
707 }
708 
709 /**
710  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
711  *	@root:		radix tree root
712  *	@results:	where the results of the lookup are placed
713  *	@first_index:	start the lookup from this key
714  *	@max_items:	place up to this many items at *results
715  *
716  *	Performs an index-ascending scan of the tree for present items.  Places
717  *	them at *@results and returns the number of items which were placed at
718  *	*@results.
719  *
720  *	The implementation is naive.
721  *
722  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
723  *	rcu_read_lock. In this case, rather than the returned results being
724  *	an atomic snapshot of the tree at a single point in time, the semantics
725  *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
726  *	have been issued in individual locks, and results stored in 'results'.
727  */
728 unsigned int
729 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
730 			unsigned long first_index, unsigned int max_items)
731 {
732 	unsigned long max_index;
733 	struct radix_tree_node *node;
734 	unsigned long cur_index = first_index;
735 	unsigned int ret;
736 
737 	node = rcu_dereference(root->rnode);
738 	if (!node)
739 		return 0;
740 
741 	if (!radix_tree_is_indirect_ptr(node)) {
742 		if (first_index > 0)
743 			return 0;
744 		results[0] = node;
745 		return 1;
746 	}
747 	node = radix_tree_indirect_to_ptr(node);
748 
749 	max_index = radix_tree_maxindex(node->height);
750 
751 	ret = 0;
752 	while (ret < max_items) {
753 		unsigned int nr_found;
754 		unsigned long next_index;	/* Index of next search */
755 
756 		if (cur_index > max_index)
757 			break;
758 		nr_found = __lookup(node, results + ret, cur_index,
759 					max_items - ret, &next_index);
760 		ret += nr_found;
761 		if (next_index == 0)
762 			break;
763 		cur_index = next_index;
764 	}
765 
766 	return ret;
767 }
768 EXPORT_SYMBOL(radix_tree_gang_lookup);
769 
770 /*
771  * FIXME: the two tag_get()s here should use find_next_bit() instead of
772  * open-coding the search.
773  */
774 static unsigned int
775 __lookup_tag(struct radix_tree_node *slot, void **results, unsigned long index,
776 	unsigned int max_items, unsigned long *next_index, unsigned int tag)
777 {
778 	unsigned int nr_found = 0;
779 	unsigned int shift, height;
780 
781 	height = slot->height;
782 	if (height == 0)
783 		goto out;
784 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
785 
786 	while (height > 0) {
787 		unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
788 
789 		for (;;) {
790 			if (tag_get(slot, tag, i))
791 				break;
792 			index &= ~((1UL << shift) - 1);
793 			index += 1UL << shift;
794 			if (index == 0)
795 				goto out;	/* 32-bit wraparound */
796 			i++;
797 			if (i == RADIX_TREE_MAP_SIZE)
798 				goto out;
799 		}
800 		height--;
801 		if (height == 0) {	/* Bottom level: grab some items */
802 			unsigned long j = index & RADIX_TREE_MAP_MASK;
803 
804 			for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
805 				struct radix_tree_node *node;
806 				index++;
807 				if (!tag_get(slot, tag, j))
808 					continue;
809 				node = slot->slots[j];
810 				/*
811 				 * Even though the tag was found set, we need to
812 				 * recheck that we have a non-NULL node, because
813 				 * if this lookup is lockless, it may have been
814 				 * subsequently deleted.
815 				 *
816 				 * Similar care must be taken in any place that
817 				 * lookup ->slots[x] without a lock (ie. can't
818 				 * rely on its value remaining the same).
819 				 */
820 				if (node) {
821 					node = rcu_dereference(node);
822 					results[nr_found++] = node;
823 					if (nr_found == max_items)
824 						goto out;
825 				}
826 			}
827 		}
828 		shift -= RADIX_TREE_MAP_SHIFT;
829 		slot = rcu_dereference(slot->slots[i]);
830 		if (slot == NULL)
831 			break;
832 	}
833 out:
834 	*next_index = index;
835 	return nr_found;
836 }
837 
838 /**
839  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
840  *	                             based on a tag
841  *	@root:		radix tree root
842  *	@results:	where the results of the lookup are placed
843  *	@first_index:	start the lookup from this key
844  *	@max_items:	place up to this many items at *results
845  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
846  *
847  *	Performs an index-ascending scan of the tree for present items which
848  *	have the tag indexed by @tag set.  Places the items at *@results and
849  *	returns the number of items which were placed at *@results.
850  */
851 unsigned int
852 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
853 		unsigned long first_index, unsigned int max_items,
854 		unsigned int tag)
855 {
856 	struct radix_tree_node *node;
857 	unsigned long max_index;
858 	unsigned long cur_index = first_index;
859 	unsigned int ret;
860 
861 	/* check the root's tag bit */
862 	if (!root_tag_get(root, tag))
863 		return 0;
864 
865 	node = rcu_dereference(root->rnode);
866 	if (!node)
867 		return 0;
868 
869 	if (!radix_tree_is_indirect_ptr(node)) {
870 		if (first_index > 0)
871 			return 0;
872 		results[0] = node;
873 		return 1;
874 	}
875 	node = radix_tree_indirect_to_ptr(node);
876 
877 	max_index = radix_tree_maxindex(node->height);
878 
879 	ret = 0;
880 	while (ret < max_items) {
881 		unsigned int nr_found;
882 		unsigned long next_index;	/* Index of next search */
883 
884 		if (cur_index > max_index)
885 			break;
886 		nr_found = __lookup_tag(node, results + ret, cur_index,
887 					max_items - ret, &next_index, tag);
888 		ret += nr_found;
889 		if (next_index == 0)
890 			break;
891 		cur_index = next_index;
892 	}
893 
894 	return ret;
895 }
896 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
897 
898 /**
899  *	radix_tree_shrink    -    shrink height of a radix tree to minimal
900  *	@root		radix tree root
901  */
902 static inline void radix_tree_shrink(struct radix_tree_root *root)
903 {
904 	/* try to shrink tree height */
905 	while (root->height > 0) {
906 		struct radix_tree_node *to_free = root->rnode;
907 		void *newptr;
908 
909 		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
910 		to_free = radix_tree_indirect_to_ptr(to_free);
911 
912 		/*
913 		 * The candidate node has more than one child, or its child
914 		 * is not at the leftmost slot, we cannot shrink.
915 		 */
916 		if (to_free->count != 1)
917 			break;
918 		if (!to_free->slots[0])
919 			break;
920 
921 		/*
922 		 * We don't need rcu_assign_pointer(), since we are simply
923 		 * moving the node from one part of the tree to another. If
924 		 * it was safe to dereference the old pointer to it
925 		 * (to_free->slots[0]), it will be safe to dereference the new
926 		 * one (root->rnode).
927 		 */
928 		newptr = to_free->slots[0];
929 		if (root->height > 1)
930 			newptr = radix_tree_ptr_to_indirect(newptr);
931 		root->rnode = newptr;
932 		root->height--;
933 		/* must only free zeroed nodes into the slab */
934 		tag_clear(to_free, 0, 0);
935 		tag_clear(to_free, 1, 0);
936 		to_free->slots[0] = NULL;
937 		to_free->count = 0;
938 		radix_tree_node_free(to_free);
939 	}
940 }
941 
942 /**
943  *	radix_tree_delete    -    delete an item from a radix tree
944  *	@root:		radix tree root
945  *	@index:		index key
946  *
947  *	Remove the item at @index from the radix tree rooted at @root.
948  *
949  *	Returns the address of the deleted item, or NULL if it was not present.
950  */
951 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
952 {
953 	/*
954 	 * The radix tree path needs to be one longer than the maximum path
955 	 * since the "list" is null terminated.
956 	 */
957 	struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
958 	struct radix_tree_node *slot = NULL;
959 	struct radix_tree_node *to_free;
960 	unsigned int height, shift;
961 	int tag;
962 	int offset;
963 
964 	height = root->height;
965 	if (index > radix_tree_maxindex(height))
966 		goto out;
967 
968 	slot = root->rnode;
969 	if (height == 0) {
970 		root_tag_clear_all(root);
971 		root->rnode = NULL;
972 		goto out;
973 	}
974 	slot = radix_tree_indirect_to_ptr(slot);
975 
976 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
977 	pathp->node = NULL;
978 
979 	do {
980 		if (slot == NULL)
981 			goto out;
982 
983 		pathp++;
984 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
985 		pathp->offset = offset;
986 		pathp->node = slot;
987 		slot = slot->slots[offset];
988 		shift -= RADIX_TREE_MAP_SHIFT;
989 		height--;
990 	} while (height > 0);
991 
992 	if (slot == NULL)
993 		goto out;
994 
995 	/*
996 	 * Clear all tags associated with the just-deleted item
997 	 */
998 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
999 		if (tag_get(pathp->node, tag, pathp->offset))
1000 			radix_tree_tag_clear(root, index, tag);
1001 	}
1002 
1003 	to_free = NULL;
1004 	/* Now free the nodes we do not need anymore */
1005 	while (pathp->node) {
1006 		pathp->node->slots[pathp->offset] = NULL;
1007 		pathp->node->count--;
1008 		/*
1009 		 * Queue the node for deferred freeing after the
1010 		 * last reference to it disappears (set NULL, above).
1011 		 */
1012 		if (to_free)
1013 			radix_tree_node_free(to_free);
1014 
1015 		if (pathp->node->count) {
1016 			if (pathp->node ==
1017 					radix_tree_indirect_to_ptr(root->rnode))
1018 				radix_tree_shrink(root);
1019 			goto out;
1020 		}
1021 
1022 		/* Node with zero slots in use so free it */
1023 		to_free = pathp->node;
1024 		pathp--;
1025 
1026 	}
1027 	root_tag_clear_all(root);
1028 	root->height = 0;
1029 	root->rnode = NULL;
1030 	if (to_free)
1031 		radix_tree_node_free(to_free);
1032 
1033 out:
1034 	return slot;
1035 }
1036 EXPORT_SYMBOL(radix_tree_delete);
1037 
1038 /**
1039  *	radix_tree_tagged - test whether any items in the tree are tagged
1040  *	@root:		radix tree root
1041  *	@tag:		tag to test
1042  */
1043 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1044 {
1045 	return root_tag_get(root, tag);
1046 }
1047 EXPORT_SYMBOL(radix_tree_tagged);
1048 
1049 static void
1050 radix_tree_node_ctor(struct kmem_cache *cachep, void *node)
1051 {
1052 	memset(node, 0, sizeof(struct radix_tree_node));
1053 }
1054 
1055 static __init unsigned long __maxindex(unsigned int height)
1056 {
1057 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1058 	int shift = RADIX_TREE_INDEX_BITS - width;
1059 
1060 	if (shift < 0)
1061 		return ~0UL;
1062 	if (shift >= BITS_PER_LONG)
1063 		return 0UL;
1064 	return ~0UL >> shift;
1065 }
1066 
1067 static __init void radix_tree_init_maxindex(void)
1068 {
1069 	unsigned int i;
1070 
1071 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1072 		height_to_maxindex[i] = __maxindex(i);
1073 }
1074 
1075 static int radix_tree_callback(struct notifier_block *nfb,
1076                             unsigned long action,
1077                             void *hcpu)
1078 {
1079        int cpu = (long)hcpu;
1080        struct radix_tree_preload *rtp;
1081 
1082        /* Free per-cpu pool of perloaded nodes */
1083        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1084                rtp = &per_cpu(radix_tree_preloads, cpu);
1085                while (rtp->nr) {
1086                        kmem_cache_free(radix_tree_node_cachep,
1087                                        rtp->nodes[rtp->nr-1]);
1088                        rtp->nodes[rtp->nr-1] = NULL;
1089                        rtp->nr--;
1090                }
1091        }
1092        return NOTIFY_OK;
1093 }
1094 
1095 void __init radix_tree_init(void)
1096 {
1097 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1098 			sizeof(struct radix_tree_node), 0,
1099 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1100 			radix_tree_node_ctor);
1101 	radix_tree_init_maxindex();
1102 	hotcpu_notifier(radix_tree_callback, 0);
1103 }
1104