1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2005 SGI, Christoph Lameter 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2, or (at 11 * your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/errno.h> 24 #include <linux/init.h> 25 #include <linux/kernel.h> 26 #include <linux/export.h> 27 #include <linux/radix-tree.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/kmemleak.h> 31 #include <linux/notifier.h> 32 #include <linux/cpu.h> 33 #include <linux/string.h> 34 #include <linux/bitops.h> 35 #include <linux/rcupdate.h> 36 #include <linux/hardirq.h> /* in_interrupt() */ 37 38 39 /* 40 * The height_to_maxindex array needs to be one deeper than the maximum 41 * path as height 0 holds only 1 entry. 42 */ 43 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly; 44 45 /* 46 * Radix tree node cache. 47 */ 48 static struct kmem_cache *radix_tree_node_cachep; 49 50 /* 51 * The radix tree is variable-height, so an insert operation not only has 52 * to build the branch to its corresponding item, it also has to build the 53 * branch to existing items if the size has to be increased (by 54 * radix_tree_extend). 55 * 56 * The worst case is a zero height tree with just a single item at index 0, 57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches 58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. 59 * Hence: 60 */ 61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) 62 63 /* 64 * Per-cpu pool of preloaded nodes 65 */ 66 struct radix_tree_preload { 67 int nr; 68 struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE]; 69 }; 70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; 71 72 static inline void *ptr_to_indirect(void *ptr) 73 { 74 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR); 75 } 76 77 static inline void *indirect_to_ptr(void *ptr) 78 { 79 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR); 80 } 81 82 static inline gfp_t root_gfp_mask(struct radix_tree_root *root) 83 { 84 return root->gfp_mask & __GFP_BITS_MASK; 85 } 86 87 static inline void tag_set(struct radix_tree_node *node, unsigned int tag, 88 int offset) 89 { 90 __set_bit(offset, node->tags[tag]); 91 } 92 93 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, 94 int offset) 95 { 96 __clear_bit(offset, node->tags[tag]); 97 } 98 99 static inline int tag_get(struct radix_tree_node *node, unsigned int tag, 100 int offset) 101 { 102 return test_bit(offset, node->tags[tag]); 103 } 104 105 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) 106 { 107 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); 108 } 109 110 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag) 111 { 112 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); 113 } 114 115 static inline void root_tag_clear_all(struct radix_tree_root *root) 116 { 117 root->gfp_mask &= __GFP_BITS_MASK; 118 } 119 120 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) 121 { 122 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); 123 } 124 125 /* 126 * Returns 1 if any slot in the node has this tag set. 127 * Otherwise returns 0. 128 */ 129 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) 130 { 131 int idx; 132 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { 133 if (node->tags[tag][idx]) 134 return 1; 135 } 136 return 0; 137 } 138 139 /** 140 * radix_tree_find_next_bit - find the next set bit in a memory region 141 * 142 * @addr: The address to base the search on 143 * @size: The bitmap size in bits 144 * @offset: The bitnumber to start searching at 145 * 146 * Unrollable variant of find_next_bit() for constant size arrays. 147 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. 148 * Returns next bit offset, or size if nothing found. 149 */ 150 static __always_inline unsigned long 151 radix_tree_find_next_bit(const unsigned long *addr, 152 unsigned long size, unsigned long offset) 153 { 154 if (!__builtin_constant_p(size)) 155 return find_next_bit(addr, size, offset); 156 157 if (offset < size) { 158 unsigned long tmp; 159 160 addr += offset / BITS_PER_LONG; 161 tmp = *addr >> (offset % BITS_PER_LONG); 162 if (tmp) 163 return __ffs(tmp) + offset; 164 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); 165 while (offset < size) { 166 tmp = *++addr; 167 if (tmp) 168 return __ffs(tmp) + offset; 169 offset += BITS_PER_LONG; 170 } 171 } 172 return size; 173 } 174 175 /* 176 * This assumes that the caller has performed appropriate preallocation, and 177 * that the caller has pinned this thread of control to the current CPU. 178 */ 179 static struct radix_tree_node * 180 radix_tree_node_alloc(struct radix_tree_root *root) 181 { 182 struct radix_tree_node *ret = NULL; 183 gfp_t gfp_mask = root_gfp_mask(root); 184 185 /* 186 * Preload code isn't irq safe and it doesn't make sence to use 187 * preloading in the interrupt anyway as all the allocations have to 188 * be atomic. So just do normal allocation when in interrupt. 189 */ 190 if (!(gfp_mask & __GFP_WAIT) && !in_interrupt()) { 191 struct radix_tree_preload *rtp; 192 193 /* 194 * Provided the caller has preloaded here, we will always 195 * succeed in getting a node here (and never reach 196 * kmem_cache_alloc) 197 */ 198 rtp = this_cpu_ptr(&radix_tree_preloads); 199 if (rtp->nr) { 200 ret = rtp->nodes[rtp->nr - 1]; 201 rtp->nodes[rtp->nr - 1] = NULL; 202 rtp->nr--; 203 } 204 /* 205 * Update the allocation stack trace as this is more useful 206 * for debugging. 207 */ 208 kmemleak_update_trace(ret); 209 } 210 if (ret == NULL) 211 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 212 213 BUG_ON(radix_tree_is_indirect_ptr(ret)); 214 return ret; 215 } 216 217 static void radix_tree_node_rcu_free(struct rcu_head *head) 218 { 219 struct radix_tree_node *node = 220 container_of(head, struct radix_tree_node, rcu_head); 221 int i; 222 223 /* 224 * must only free zeroed nodes into the slab. radix_tree_shrink 225 * can leave us with a non-NULL entry in the first slot, so clear 226 * that here to make sure. 227 */ 228 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++) 229 tag_clear(node, i, 0); 230 231 node->slots[0] = NULL; 232 node->count = 0; 233 234 kmem_cache_free(radix_tree_node_cachep, node); 235 } 236 237 static inline void 238 radix_tree_node_free(struct radix_tree_node *node) 239 { 240 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 241 } 242 243 /* 244 * Load up this CPU's radix_tree_node buffer with sufficient objects to 245 * ensure that the addition of a single element in the tree cannot fail. On 246 * success, return zero, with preemption disabled. On error, return -ENOMEM 247 * with preemption not disabled. 248 * 249 * To make use of this facility, the radix tree must be initialised without 250 * __GFP_WAIT being passed to INIT_RADIX_TREE(). 251 */ 252 static int __radix_tree_preload(gfp_t gfp_mask) 253 { 254 struct radix_tree_preload *rtp; 255 struct radix_tree_node *node; 256 int ret = -ENOMEM; 257 258 preempt_disable(); 259 rtp = this_cpu_ptr(&radix_tree_preloads); 260 while (rtp->nr < ARRAY_SIZE(rtp->nodes)) { 261 preempt_enable(); 262 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 263 if (node == NULL) 264 goto out; 265 preempt_disable(); 266 rtp = this_cpu_ptr(&radix_tree_preloads); 267 if (rtp->nr < ARRAY_SIZE(rtp->nodes)) 268 rtp->nodes[rtp->nr++] = node; 269 else 270 kmem_cache_free(radix_tree_node_cachep, node); 271 } 272 ret = 0; 273 out: 274 return ret; 275 } 276 277 /* 278 * Load up this CPU's radix_tree_node buffer with sufficient objects to 279 * ensure that the addition of a single element in the tree cannot fail. On 280 * success, return zero, with preemption disabled. On error, return -ENOMEM 281 * with preemption not disabled. 282 * 283 * To make use of this facility, the radix tree must be initialised without 284 * __GFP_WAIT being passed to INIT_RADIX_TREE(). 285 */ 286 int radix_tree_preload(gfp_t gfp_mask) 287 { 288 /* Warn on non-sensical use... */ 289 WARN_ON_ONCE(!(gfp_mask & __GFP_WAIT)); 290 return __radix_tree_preload(gfp_mask); 291 } 292 EXPORT_SYMBOL(radix_tree_preload); 293 294 /* 295 * The same as above function, except we don't guarantee preloading happens. 296 * We do it, if we decide it helps. On success, return zero with preemption 297 * disabled. On error, return -ENOMEM with preemption not disabled. 298 */ 299 int radix_tree_maybe_preload(gfp_t gfp_mask) 300 { 301 if (gfp_mask & __GFP_WAIT) 302 return __radix_tree_preload(gfp_mask); 303 /* Preloading doesn't help anything with this gfp mask, skip it */ 304 preempt_disable(); 305 return 0; 306 } 307 EXPORT_SYMBOL(radix_tree_maybe_preload); 308 309 /* 310 * Return the maximum key which can be store into a 311 * radix tree with height HEIGHT. 312 */ 313 static inline unsigned long radix_tree_maxindex(unsigned int height) 314 { 315 return height_to_maxindex[height]; 316 } 317 318 /* 319 * Extend a radix tree so it can store key @index. 320 */ 321 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index) 322 { 323 struct radix_tree_node *node; 324 struct radix_tree_node *slot; 325 unsigned int height; 326 int tag; 327 328 /* Figure out what the height should be. */ 329 height = root->height + 1; 330 while (index > radix_tree_maxindex(height)) 331 height++; 332 333 if (root->rnode == NULL) { 334 root->height = height; 335 goto out; 336 } 337 338 do { 339 unsigned int newheight; 340 if (!(node = radix_tree_node_alloc(root))) 341 return -ENOMEM; 342 343 /* Propagate the aggregated tag info into the new root */ 344 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 345 if (root_tag_get(root, tag)) 346 tag_set(node, tag, 0); 347 } 348 349 /* Increase the height. */ 350 newheight = root->height+1; 351 BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK); 352 node->path = newheight; 353 node->count = 1; 354 node->parent = NULL; 355 slot = root->rnode; 356 if (newheight > 1) { 357 slot = indirect_to_ptr(slot); 358 slot->parent = node; 359 } 360 node->slots[0] = slot; 361 node = ptr_to_indirect(node); 362 rcu_assign_pointer(root->rnode, node); 363 root->height = newheight; 364 } while (height > root->height); 365 out: 366 return 0; 367 } 368 369 /** 370 * __radix_tree_create - create a slot in a radix tree 371 * @root: radix tree root 372 * @index: index key 373 * @nodep: returns node 374 * @slotp: returns slot 375 * 376 * Create, if necessary, and return the node and slot for an item 377 * at position @index in the radix tree @root. 378 * 379 * Until there is more than one item in the tree, no nodes are 380 * allocated and @root->rnode is used as a direct slot instead of 381 * pointing to a node, in which case *@nodep will be NULL. 382 * 383 * Returns -ENOMEM, or 0 for success. 384 */ 385 int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 386 struct radix_tree_node **nodep, void ***slotp) 387 { 388 struct radix_tree_node *node = NULL, *slot; 389 unsigned int height, shift, offset; 390 int error; 391 392 /* Make sure the tree is high enough. */ 393 if (index > radix_tree_maxindex(root->height)) { 394 error = radix_tree_extend(root, index); 395 if (error) 396 return error; 397 } 398 399 slot = indirect_to_ptr(root->rnode); 400 401 height = root->height; 402 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 403 404 offset = 0; /* uninitialised var warning */ 405 while (height > 0) { 406 if (slot == NULL) { 407 /* Have to add a child node. */ 408 if (!(slot = radix_tree_node_alloc(root))) 409 return -ENOMEM; 410 slot->path = height; 411 slot->parent = node; 412 if (node) { 413 rcu_assign_pointer(node->slots[offset], slot); 414 node->count++; 415 slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT; 416 } else 417 rcu_assign_pointer(root->rnode, ptr_to_indirect(slot)); 418 } 419 420 /* Go a level down */ 421 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 422 node = slot; 423 slot = node->slots[offset]; 424 shift -= RADIX_TREE_MAP_SHIFT; 425 height--; 426 } 427 428 if (nodep) 429 *nodep = node; 430 if (slotp) 431 *slotp = node ? node->slots + offset : (void **)&root->rnode; 432 return 0; 433 } 434 435 /** 436 * radix_tree_insert - insert into a radix tree 437 * @root: radix tree root 438 * @index: index key 439 * @item: item to insert 440 * 441 * Insert an item into the radix tree at position @index. 442 */ 443 int radix_tree_insert(struct radix_tree_root *root, 444 unsigned long index, void *item) 445 { 446 struct radix_tree_node *node; 447 void **slot; 448 int error; 449 450 BUG_ON(radix_tree_is_indirect_ptr(item)); 451 452 error = __radix_tree_create(root, index, &node, &slot); 453 if (error) 454 return error; 455 if (*slot != NULL) 456 return -EEXIST; 457 rcu_assign_pointer(*slot, item); 458 459 if (node) { 460 node->count++; 461 BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK)); 462 BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK)); 463 } else { 464 BUG_ON(root_tag_get(root, 0)); 465 BUG_ON(root_tag_get(root, 1)); 466 } 467 468 return 0; 469 } 470 EXPORT_SYMBOL(radix_tree_insert); 471 472 /** 473 * __radix_tree_lookup - lookup an item in a radix tree 474 * @root: radix tree root 475 * @index: index key 476 * @nodep: returns node 477 * @slotp: returns slot 478 * 479 * Lookup and return the item at position @index in the radix 480 * tree @root. 481 * 482 * Until there is more than one item in the tree, no nodes are 483 * allocated and @root->rnode is used as a direct slot instead of 484 * pointing to a node, in which case *@nodep will be NULL. 485 */ 486 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 487 struct radix_tree_node **nodep, void ***slotp) 488 { 489 struct radix_tree_node *node, *parent; 490 unsigned int height, shift; 491 void **slot; 492 493 node = rcu_dereference_raw(root->rnode); 494 if (node == NULL) 495 return NULL; 496 497 if (!radix_tree_is_indirect_ptr(node)) { 498 if (index > 0) 499 return NULL; 500 501 if (nodep) 502 *nodep = NULL; 503 if (slotp) 504 *slotp = (void **)&root->rnode; 505 return node; 506 } 507 node = indirect_to_ptr(node); 508 509 height = node->path & RADIX_TREE_HEIGHT_MASK; 510 if (index > radix_tree_maxindex(height)) 511 return NULL; 512 513 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 514 515 do { 516 parent = node; 517 slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK); 518 node = rcu_dereference_raw(*slot); 519 if (node == NULL) 520 return NULL; 521 522 shift -= RADIX_TREE_MAP_SHIFT; 523 height--; 524 } while (height > 0); 525 526 if (nodep) 527 *nodep = parent; 528 if (slotp) 529 *slotp = slot; 530 return node; 531 } 532 533 /** 534 * radix_tree_lookup_slot - lookup a slot in a radix tree 535 * @root: radix tree root 536 * @index: index key 537 * 538 * Returns: the slot corresponding to the position @index in the 539 * radix tree @root. This is useful for update-if-exists operations. 540 * 541 * This function can be called under rcu_read_lock iff the slot is not 542 * modified by radix_tree_replace_slot, otherwise it must be called 543 * exclusive from other writers. Any dereference of the slot must be done 544 * using radix_tree_deref_slot. 545 */ 546 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) 547 { 548 void **slot; 549 550 if (!__radix_tree_lookup(root, index, NULL, &slot)) 551 return NULL; 552 return slot; 553 } 554 EXPORT_SYMBOL(radix_tree_lookup_slot); 555 556 /** 557 * radix_tree_lookup - perform lookup operation on a radix tree 558 * @root: radix tree root 559 * @index: index key 560 * 561 * Lookup the item at the position @index in the radix tree @root. 562 * 563 * This function can be called under rcu_read_lock, however the caller 564 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free 565 * them safely). No RCU barriers are required to access or modify the 566 * returned item, however. 567 */ 568 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) 569 { 570 return __radix_tree_lookup(root, index, NULL, NULL); 571 } 572 EXPORT_SYMBOL(radix_tree_lookup); 573 574 /** 575 * radix_tree_tag_set - set a tag on a radix tree node 576 * @root: radix tree root 577 * @index: index key 578 * @tag: tag index 579 * 580 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) 581 * corresponding to @index in the radix tree. From 582 * the root all the way down to the leaf node. 583 * 584 * Returns the address of the tagged item. Setting a tag on a not-present 585 * item is a bug. 586 */ 587 void *radix_tree_tag_set(struct radix_tree_root *root, 588 unsigned long index, unsigned int tag) 589 { 590 unsigned int height, shift; 591 struct radix_tree_node *slot; 592 593 height = root->height; 594 BUG_ON(index > radix_tree_maxindex(height)); 595 596 slot = indirect_to_ptr(root->rnode); 597 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 598 599 while (height > 0) { 600 int offset; 601 602 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 603 if (!tag_get(slot, tag, offset)) 604 tag_set(slot, tag, offset); 605 slot = slot->slots[offset]; 606 BUG_ON(slot == NULL); 607 shift -= RADIX_TREE_MAP_SHIFT; 608 height--; 609 } 610 611 /* set the root's tag bit */ 612 if (slot && !root_tag_get(root, tag)) 613 root_tag_set(root, tag); 614 615 return slot; 616 } 617 EXPORT_SYMBOL(radix_tree_tag_set); 618 619 /** 620 * radix_tree_tag_clear - clear a tag on a radix tree node 621 * @root: radix tree root 622 * @index: index key 623 * @tag: tag index 624 * 625 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) 626 * corresponding to @index in the radix tree. If 627 * this causes the leaf node to have no tags set then clear the tag in the 628 * next-to-leaf node, etc. 629 * 630 * Returns the address of the tagged item on success, else NULL. ie: 631 * has the same return value and semantics as radix_tree_lookup(). 632 */ 633 void *radix_tree_tag_clear(struct radix_tree_root *root, 634 unsigned long index, unsigned int tag) 635 { 636 struct radix_tree_node *node = NULL; 637 struct radix_tree_node *slot = NULL; 638 unsigned int height, shift; 639 int uninitialized_var(offset); 640 641 height = root->height; 642 if (index > radix_tree_maxindex(height)) 643 goto out; 644 645 shift = height * RADIX_TREE_MAP_SHIFT; 646 slot = indirect_to_ptr(root->rnode); 647 648 while (shift) { 649 if (slot == NULL) 650 goto out; 651 652 shift -= RADIX_TREE_MAP_SHIFT; 653 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 654 node = slot; 655 slot = slot->slots[offset]; 656 } 657 658 if (slot == NULL) 659 goto out; 660 661 while (node) { 662 if (!tag_get(node, tag, offset)) 663 goto out; 664 tag_clear(node, tag, offset); 665 if (any_tag_set(node, tag)) 666 goto out; 667 668 index >>= RADIX_TREE_MAP_SHIFT; 669 offset = index & RADIX_TREE_MAP_MASK; 670 node = node->parent; 671 } 672 673 /* clear the root's tag bit */ 674 if (root_tag_get(root, tag)) 675 root_tag_clear(root, tag); 676 677 out: 678 return slot; 679 } 680 EXPORT_SYMBOL(radix_tree_tag_clear); 681 682 /** 683 * radix_tree_tag_get - get a tag on a radix tree node 684 * @root: radix tree root 685 * @index: index key 686 * @tag: tag index (< RADIX_TREE_MAX_TAGS) 687 * 688 * Return values: 689 * 690 * 0: tag not present or not set 691 * 1: tag set 692 * 693 * Note that the return value of this function may not be relied on, even if 694 * the RCU lock is held, unless tag modification and node deletion are excluded 695 * from concurrency. 696 */ 697 int radix_tree_tag_get(struct radix_tree_root *root, 698 unsigned long index, unsigned int tag) 699 { 700 unsigned int height, shift; 701 struct radix_tree_node *node; 702 703 /* check the root's tag bit */ 704 if (!root_tag_get(root, tag)) 705 return 0; 706 707 node = rcu_dereference_raw(root->rnode); 708 if (node == NULL) 709 return 0; 710 711 if (!radix_tree_is_indirect_ptr(node)) 712 return (index == 0); 713 node = indirect_to_ptr(node); 714 715 height = node->path & RADIX_TREE_HEIGHT_MASK; 716 if (index > radix_tree_maxindex(height)) 717 return 0; 718 719 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 720 721 for ( ; ; ) { 722 int offset; 723 724 if (node == NULL) 725 return 0; 726 727 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 728 if (!tag_get(node, tag, offset)) 729 return 0; 730 if (height == 1) 731 return 1; 732 node = rcu_dereference_raw(node->slots[offset]); 733 shift -= RADIX_TREE_MAP_SHIFT; 734 height--; 735 } 736 } 737 EXPORT_SYMBOL(radix_tree_tag_get); 738 739 /** 740 * radix_tree_next_chunk - find next chunk of slots for iteration 741 * 742 * @root: radix tree root 743 * @iter: iterator state 744 * @flags: RADIX_TREE_ITER_* flags and tag index 745 * Returns: pointer to chunk first slot, or NULL if iteration is over 746 */ 747 void **radix_tree_next_chunk(struct radix_tree_root *root, 748 struct radix_tree_iter *iter, unsigned flags) 749 { 750 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK; 751 struct radix_tree_node *rnode, *node; 752 unsigned long index, offset, height; 753 754 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) 755 return NULL; 756 757 /* 758 * Catch next_index overflow after ~0UL. iter->index never overflows 759 * during iterating; it can be zero only at the beginning. 760 * And we cannot overflow iter->next_index in a single step, 761 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. 762 * 763 * This condition also used by radix_tree_next_slot() to stop 764 * contiguous iterating, and forbid swithing to the next chunk. 765 */ 766 index = iter->next_index; 767 if (!index && iter->index) 768 return NULL; 769 770 rnode = rcu_dereference_raw(root->rnode); 771 if (radix_tree_is_indirect_ptr(rnode)) { 772 rnode = indirect_to_ptr(rnode); 773 } else if (rnode && !index) { 774 /* Single-slot tree */ 775 iter->index = 0; 776 iter->next_index = 1; 777 iter->tags = 1; 778 return (void **)&root->rnode; 779 } else 780 return NULL; 781 782 restart: 783 height = rnode->path & RADIX_TREE_HEIGHT_MASK; 784 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 785 offset = index >> shift; 786 787 /* Index outside of the tree */ 788 if (offset >= RADIX_TREE_MAP_SIZE) 789 return NULL; 790 791 node = rnode; 792 while (1) { 793 if ((flags & RADIX_TREE_ITER_TAGGED) ? 794 !test_bit(offset, node->tags[tag]) : 795 !node->slots[offset]) { 796 /* Hole detected */ 797 if (flags & RADIX_TREE_ITER_CONTIG) 798 return NULL; 799 800 if (flags & RADIX_TREE_ITER_TAGGED) 801 offset = radix_tree_find_next_bit( 802 node->tags[tag], 803 RADIX_TREE_MAP_SIZE, 804 offset + 1); 805 else 806 while (++offset < RADIX_TREE_MAP_SIZE) { 807 if (node->slots[offset]) 808 break; 809 } 810 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1); 811 index += offset << shift; 812 /* Overflow after ~0UL */ 813 if (!index) 814 return NULL; 815 if (offset == RADIX_TREE_MAP_SIZE) 816 goto restart; 817 } 818 819 /* This is leaf-node */ 820 if (!shift) 821 break; 822 823 node = rcu_dereference_raw(node->slots[offset]); 824 if (node == NULL) 825 goto restart; 826 shift -= RADIX_TREE_MAP_SHIFT; 827 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 828 } 829 830 /* Update the iterator state */ 831 iter->index = index; 832 iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1; 833 834 /* Construct iter->tags bit-mask from node->tags[tag] array */ 835 if (flags & RADIX_TREE_ITER_TAGGED) { 836 unsigned tag_long, tag_bit; 837 838 tag_long = offset / BITS_PER_LONG; 839 tag_bit = offset % BITS_PER_LONG; 840 iter->tags = node->tags[tag][tag_long] >> tag_bit; 841 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ 842 if (tag_long < RADIX_TREE_TAG_LONGS - 1) { 843 /* Pick tags from next element */ 844 if (tag_bit) 845 iter->tags |= node->tags[tag][tag_long + 1] << 846 (BITS_PER_LONG - tag_bit); 847 /* Clip chunk size, here only BITS_PER_LONG tags */ 848 iter->next_index = index + BITS_PER_LONG; 849 } 850 } 851 852 return node->slots + offset; 853 } 854 EXPORT_SYMBOL(radix_tree_next_chunk); 855 856 /** 857 * radix_tree_range_tag_if_tagged - for each item in given range set given 858 * tag if item has another tag set 859 * @root: radix tree root 860 * @first_indexp: pointer to a starting index of a range to scan 861 * @last_index: last index of a range to scan 862 * @nr_to_tag: maximum number items to tag 863 * @iftag: tag index to test 864 * @settag: tag index to set if tested tag is set 865 * 866 * This function scans range of radix tree from first_index to last_index 867 * (inclusive). For each item in the range if iftag is set, the function sets 868 * also settag. The function stops either after tagging nr_to_tag items or 869 * after reaching last_index. 870 * 871 * The tags must be set from the leaf level only and propagated back up the 872 * path to the root. We must do this so that we resolve the full path before 873 * setting any tags on intermediate nodes. If we set tags as we descend, then 874 * we can get to the leaf node and find that the index that has the iftag 875 * set is outside the range we are scanning. This reults in dangling tags and 876 * can lead to problems with later tag operations (e.g. livelocks on lookups). 877 * 878 * The function returns number of leaves where the tag was set and sets 879 * *first_indexp to the first unscanned index. 880 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must 881 * be prepared to handle that. 882 */ 883 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, 884 unsigned long *first_indexp, unsigned long last_index, 885 unsigned long nr_to_tag, 886 unsigned int iftag, unsigned int settag) 887 { 888 unsigned int height = root->height; 889 struct radix_tree_node *node = NULL; 890 struct radix_tree_node *slot; 891 unsigned int shift; 892 unsigned long tagged = 0; 893 unsigned long index = *first_indexp; 894 895 last_index = min(last_index, radix_tree_maxindex(height)); 896 if (index > last_index) 897 return 0; 898 if (!nr_to_tag) 899 return 0; 900 if (!root_tag_get(root, iftag)) { 901 *first_indexp = last_index + 1; 902 return 0; 903 } 904 if (height == 0) { 905 *first_indexp = last_index + 1; 906 root_tag_set(root, settag); 907 return 1; 908 } 909 910 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 911 slot = indirect_to_ptr(root->rnode); 912 913 for (;;) { 914 unsigned long upindex; 915 int offset; 916 917 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 918 if (!slot->slots[offset]) 919 goto next; 920 if (!tag_get(slot, iftag, offset)) 921 goto next; 922 if (shift) { 923 /* Go down one level */ 924 shift -= RADIX_TREE_MAP_SHIFT; 925 node = slot; 926 slot = slot->slots[offset]; 927 continue; 928 } 929 930 /* tag the leaf */ 931 tagged++; 932 tag_set(slot, settag, offset); 933 934 /* walk back up the path tagging interior nodes */ 935 upindex = index; 936 while (node) { 937 upindex >>= RADIX_TREE_MAP_SHIFT; 938 offset = upindex & RADIX_TREE_MAP_MASK; 939 940 /* stop if we find a node with the tag already set */ 941 if (tag_get(node, settag, offset)) 942 break; 943 tag_set(node, settag, offset); 944 node = node->parent; 945 } 946 947 /* 948 * Small optimization: now clear that node pointer. 949 * Since all of this slot's ancestors now have the tag set 950 * from setting it above, we have no further need to walk 951 * back up the tree setting tags, until we update slot to 952 * point to another radix_tree_node. 953 */ 954 node = NULL; 955 956 next: 957 /* Go to next item at level determined by 'shift' */ 958 index = ((index >> shift) + 1) << shift; 959 /* Overflow can happen when last_index is ~0UL... */ 960 if (index > last_index || !index) 961 break; 962 if (tagged >= nr_to_tag) 963 break; 964 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) { 965 /* 966 * We've fully scanned this node. Go up. Because 967 * last_index is guaranteed to be in the tree, what 968 * we do below cannot wander astray. 969 */ 970 slot = slot->parent; 971 shift += RADIX_TREE_MAP_SHIFT; 972 } 973 } 974 /* 975 * We need not to tag the root tag if there is no tag which is set with 976 * settag within the range from *first_indexp to last_index. 977 */ 978 if (tagged > 0) 979 root_tag_set(root, settag); 980 *first_indexp = index; 981 982 return tagged; 983 } 984 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged); 985 986 /** 987 * radix_tree_gang_lookup - perform multiple lookup on a radix tree 988 * @root: radix tree root 989 * @results: where the results of the lookup are placed 990 * @first_index: start the lookup from this key 991 * @max_items: place up to this many items at *results 992 * 993 * Performs an index-ascending scan of the tree for present items. Places 994 * them at *@results and returns the number of items which were placed at 995 * *@results. 996 * 997 * The implementation is naive. 998 * 999 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under 1000 * rcu_read_lock. In this case, rather than the returned results being 1001 * an atomic snapshot of the tree at a single point in time, the semantics 1002 * of an RCU protected gang lookup are as though multiple radix_tree_lookups 1003 * have been issued in individual locks, and results stored in 'results'. 1004 */ 1005 unsigned int 1006 radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 1007 unsigned long first_index, unsigned int max_items) 1008 { 1009 struct radix_tree_iter iter; 1010 void **slot; 1011 unsigned int ret = 0; 1012 1013 if (unlikely(!max_items)) 1014 return 0; 1015 1016 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1017 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot)); 1018 if (!results[ret]) 1019 continue; 1020 if (++ret == max_items) 1021 break; 1022 } 1023 1024 return ret; 1025 } 1026 EXPORT_SYMBOL(radix_tree_gang_lookup); 1027 1028 /** 1029 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree 1030 * @root: radix tree root 1031 * @results: where the results of the lookup are placed 1032 * @indices: where their indices should be placed (but usually NULL) 1033 * @first_index: start the lookup from this key 1034 * @max_items: place up to this many items at *results 1035 * 1036 * Performs an index-ascending scan of the tree for present items. Places 1037 * their slots at *@results and returns the number of items which were 1038 * placed at *@results. 1039 * 1040 * The implementation is naive. 1041 * 1042 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must 1043 * be dereferenced with radix_tree_deref_slot, and if using only RCU 1044 * protection, radix_tree_deref_slot may fail requiring a retry. 1045 */ 1046 unsigned int 1047 radix_tree_gang_lookup_slot(struct radix_tree_root *root, 1048 void ***results, unsigned long *indices, 1049 unsigned long first_index, unsigned int max_items) 1050 { 1051 struct radix_tree_iter iter; 1052 void **slot; 1053 unsigned int ret = 0; 1054 1055 if (unlikely(!max_items)) 1056 return 0; 1057 1058 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1059 results[ret] = slot; 1060 if (indices) 1061 indices[ret] = iter.index; 1062 if (++ret == max_items) 1063 break; 1064 } 1065 1066 return ret; 1067 } 1068 EXPORT_SYMBOL(radix_tree_gang_lookup_slot); 1069 1070 /** 1071 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree 1072 * based on a tag 1073 * @root: radix tree root 1074 * @results: where the results of the lookup are placed 1075 * @first_index: start the lookup from this key 1076 * @max_items: place up to this many items at *results 1077 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1078 * 1079 * Performs an index-ascending scan of the tree for present items which 1080 * have the tag indexed by @tag set. Places the items at *@results and 1081 * returns the number of items which were placed at *@results. 1082 */ 1083 unsigned int 1084 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 1085 unsigned long first_index, unsigned int max_items, 1086 unsigned int tag) 1087 { 1088 struct radix_tree_iter iter; 1089 void **slot; 1090 unsigned int ret = 0; 1091 1092 if (unlikely(!max_items)) 1093 return 0; 1094 1095 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1096 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot)); 1097 if (!results[ret]) 1098 continue; 1099 if (++ret == max_items) 1100 break; 1101 } 1102 1103 return ret; 1104 } 1105 EXPORT_SYMBOL(radix_tree_gang_lookup_tag); 1106 1107 /** 1108 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a 1109 * radix tree based on a tag 1110 * @root: radix tree root 1111 * @results: where the results of the lookup are placed 1112 * @first_index: start the lookup from this key 1113 * @max_items: place up to this many items at *results 1114 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1115 * 1116 * Performs an index-ascending scan of the tree for present items which 1117 * have the tag indexed by @tag set. Places the slots at *@results and 1118 * returns the number of slots which were placed at *@results. 1119 */ 1120 unsigned int 1121 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 1122 unsigned long first_index, unsigned int max_items, 1123 unsigned int tag) 1124 { 1125 struct radix_tree_iter iter; 1126 void **slot; 1127 unsigned int ret = 0; 1128 1129 if (unlikely(!max_items)) 1130 return 0; 1131 1132 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1133 results[ret] = slot; 1134 if (++ret == max_items) 1135 break; 1136 } 1137 1138 return ret; 1139 } 1140 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); 1141 1142 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP) 1143 #include <linux/sched.h> /* for cond_resched() */ 1144 1145 /* 1146 * This linear search is at present only useful to shmem_unuse_inode(). 1147 */ 1148 static unsigned long __locate(struct radix_tree_node *slot, void *item, 1149 unsigned long index, unsigned long *found_index) 1150 { 1151 unsigned int shift, height; 1152 unsigned long i; 1153 1154 height = slot->path & RADIX_TREE_HEIGHT_MASK; 1155 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 1156 1157 for ( ; height > 1; height--) { 1158 i = (index >> shift) & RADIX_TREE_MAP_MASK; 1159 for (;;) { 1160 if (slot->slots[i] != NULL) 1161 break; 1162 index &= ~((1UL << shift) - 1); 1163 index += 1UL << shift; 1164 if (index == 0) 1165 goto out; /* 32-bit wraparound */ 1166 i++; 1167 if (i == RADIX_TREE_MAP_SIZE) 1168 goto out; 1169 } 1170 1171 shift -= RADIX_TREE_MAP_SHIFT; 1172 slot = rcu_dereference_raw(slot->slots[i]); 1173 if (slot == NULL) 1174 goto out; 1175 } 1176 1177 /* Bottom level: check items */ 1178 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { 1179 if (slot->slots[i] == item) { 1180 *found_index = index + i; 1181 index = 0; 1182 goto out; 1183 } 1184 } 1185 index += RADIX_TREE_MAP_SIZE; 1186 out: 1187 return index; 1188 } 1189 1190 /** 1191 * radix_tree_locate_item - search through radix tree for item 1192 * @root: radix tree root 1193 * @item: item to be found 1194 * 1195 * Returns index where item was found, or -1 if not found. 1196 * Caller must hold no lock (since this time-consuming function needs 1197 * to be preemptible), and must check afterwards if item is still there. 1198 */ 1199 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1200 { 1201 struct radix_tree_node *node; 1202 unsigned long max_index; 1203 unsigned long cur_index = 0; 1204 unsigned long found_index = -1; 1205 1206 do { 1207 rcu_read_lock(); 1208 node = rcu_dereference_raw(root->rnode); 1209 if (!radix_tree_is_indirect_ptr(node)) { 1210 rcu_read_unlock(); 1211 if (node == item) 1212 found_index = 0; 1213 break; 1214 } 1215 1216 node = indirect_to_ptr(node); 1217 max_index = radix_tree_maxindex(node->path & 1218 RADIX_TREE_HEIGHT_MASK); 1219 if (cur_index > max_index) { 1220 rcu_read_unlock(); 1221 break; 1222 } 1223 1224 cur_index = __locate(node, item, cur_index, &found_index); 1225 rcu_read_unlock(); 1226 cond_resched(); 1227 } while (cur_index != 0 && cur_index <= max_index); 1228 1229 return found_index; 1230 } 1231 #else 1232 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1233 { 1234 return -1; 1235 } 1236 #endif /* CONFIG_SHMEM && CONFIG_SWAP */ 1237 1238 /** 1239 * radix_tree_shrink - shrink height of a radix tree to minimal 1240 * @root radix tree root 1241 */ 1242 static inline void radix_tree_shrink(struct radix_tree_root *root) 1243 { 1244 /* try to shrink tree height */ 1245 while (root->height > 0) { 1246 struct radix_tree_node *to_free = root->rnode; 1247 struct radix_tree_node *slot; 1248 1249 BUG_ON(!radix_tree_is_indirect_ptr(to_free)); 1250 to_free = indirect_to_ptr(to_free); 1251 1252 /* 1253 * The candidate node has more than one child, or its child 1254 * is not at the leftmost slot, we cannot shrink. 1255 */ 1256 if (to_free->count != 1) 1257 break; 1258 if (!to_free->slots[0]) 1259 break; 1260 1261 /* 1262 * We don't need rcu_assign_pointer(), since we are simply 1263 * moving the node from one part of the tree to another: if it 1264 * was safe to dereference the old pointer to it 1265 * (to_free->slots[0]), it will be safe to dereference the new 1266 * one (root->rnode) as far as dependent read barriers go. 1267 */ 1268 slot = to_free->slots[0]; 1269 if (root->height > 1) { 1270 slot->parent = NULL; 1271 slot = ptr_to_indirect(slot); 1272 } 1273 root->rnode = slot; 1274 root->height--; 1275 1276 /* 1277 * We have a dilemma here. The node's slot[0] must not be 1278 * NULLed in case there are concurrent lookups expecting to 1279 * find the item. However if this was a bottom-level node, 1280 * then it may be subject to the slot pointer being visible 1281 * to callers dereferencing it. If item corresponding to 1282 * slot[0] is subsequently deleted, these callers would expect 1283 * their slot to become empty sooner or later. 1284 * 1285 * For example, lockless pagecache will look up a slot, deref 1286 * the page pointer, and if the page is 0 refcount it means it 1287 * was concurrently deleted from pagecache so try the deref 1288 * again. Fortunately there is already a requirement for logic 1289 * to retry the entire slot lookup -- the indirect pointer 1290 * problem (replacing direct root node with an indirect pointer 1291 * also results in a stale slot). So tag the slot as indirect 1292 * to force callers to retry. 1293 */ 1294 if (root->height == 0) 1295 *((unsigned long *)&to_free->slots[0]) |= 1296 RADIX_TREE_INDIRECT_PTR; 1297 1298 radix_tree_node_free(to_free); 1299 } 1300 } 1301 1302 /** 1303 * __radix_tree_delete_node - try to free node after clearing a slot 1304 * @root: radix tree root 1305 * @node: node containing @index 1306 * 1307 * After clearing the slot at @index in @node from radix tree 1308 * rooted at @root, call this function to attempt freeing the 1309 * node and shrinking the tree. 1310 * 1311 * Returns %true if @node was freed, %false otherwise. 1312 */ 1313 bool __radix_tree_delete_node(struct radix_tree_root *root, 1314 struct radix_tree_node *node) 1315 { 1316 bool deleted = false; 1317 1318 do { 1319 struct radix_tree_node *parent; 1320 1321 if (node->count) { 1322 if (node == indirect_to_ptr(root->rnode)) { 1323 radix_tree_shrink(root); 1324 if (root->height == 0) 1325 deleted = true; 1326 } 1327 return deleted; 1328 } 1329 1330 parent = node->parent; 1331 if (parent) { 1332 unsigned int offset; 1333 1334 offset = node->path >> RADIX_TREE_HEIGHT_SHIFT; 1335 parent->slots[offset] = NULL; 1336 parent->count--; 1337 } else { 1338 root_tag_clear_all(root); 1339 root->height = 0; 1340 root->rnode = NULL; 1341 } 1342 1343 radix_tree_node_free(node); 1344 deleted = true; 1345 1346 node = parent; 1347 } while (node); 1348 1349 return deleted; 1350 } 1351 1352 /** 1353 * radix_tree_delete_item - delete an item from a radix tree 1354 * @root: radix tree root 1355 * @index: index key 1356 * @item: expected item 1357 * 1358 * Remove @item at @index from the radix tree rooted at @root. 1359 * 1360 * Returns the address of the deleted item, or NULL if it was not present 1361 * or the entry at the given @index was not @item. 1362 */ 1363 void *radix_tree_delete_item(struct radix_tree_root *root, 1364 unsigned long index, void *item) 1365 { 1366 struct radix_tree_node *node; 1367 unsigned int offset; 1368 void **slot; 1369 void *entry; 1370 int tag; 1371 1372 entry = __radix_tree_lookup(root, index, &node, &slot); 1373 if (!entry) 1374 return NULL; 1375 1376 if (item && entry != item) 1377 return NULL; 1378 1379 if (!node) { 1380 root_tag_clear_all(root); 1381 root->rnode = NULL; 1382 return entry; 1383 } 1384 1385 offset = index & RADIX_TREE_MAP_MASK; 1386 1387 /* 1388 * Clear all tags associated with the item to be deleted. 1389 * This way of doing it would be inefficient, but seldom is any set. 1390 */ 1391 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 1392 if (tag_get(node, tag, offset)) 1393 radix_tree_tag_clear(root, index, tag); 1394 } 1395 1396 node->slots[offset] = NULL; 1397 node->count--; 1398 1399 __radix_tree_delete_node(root, node); 1400 1401 return entry; 1402 } 1403 EXPORT_SYMBOL(radix_tree_delete_item); 1404 1405 /** 1406 * radix_tree_delete - delete an item from a radix tree 1407 * @root: radix tree root 1408 * @index: index key 1409 * 1410 * Remove the item at @index from the radix tree rooted at @root. 1411 * 1412 * Returns the address of the deleted item, or NULL if it was not present. 1413 */ 1414 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) 1415 { 1416 return radix_tree_delete_item(root, index, NULL); 1417 } 1418 EXPORT_SYMBOL(radix_tree_delete); 1419 1420 /** 1421 * radix_tree_tagged - test whether any items in the tree are tagged 1422 * @root: radix tree root 1423 * @tag: tag to test 1424 */ 1425 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) 1426 { 1427 return root_tag_get(root, tag); 1428 } 1429 EXPORT_SYMBOL(radix_tree_tagged); 1430 1431 static void 1432 radix_tree_node_ctor(void *arg) 1433 { 1434 struct radix_tree_node *node = arg; 1435 1436 memset(node, 0, sizeof(*node)); 1437 INIT_LIST_HEAD(&node->private_list); 1438 } 1439 1440 static __init unsigned long __maxindex(unsigned int height) 1441 { 1442 unsigned int width = height * RADIX_TREE_MAP_SHIFT; 1443 int shift = RADIX_TREE_INDEX_BITS - width; 1444 1445 if (shift < 0) 1446 return ~0UL; 1447 if (shift >= BITS_PER_LONG) 1448 return 0UL; 1449 return ~0UL >> shift; 1450 } 1451 1452 static __init void radix_tree_init_maxindex(void) 1453 { 1454 unsigned int i; 1455 1456 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) 1457 height_to_maxindex[i] = __maxindex(i); 1458 } 1459 1460 static int radix_tree_callback(struct notifier_block *nfb, 1461 unsigned long action, 1462 void *hcpu) 1463 { 1464 int cpu = (long)hcpu; 1465 struct radix_tree_preload *rtp; 1466 1467 /* Free per-cpu pool of perloaded nodes */ 1468 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1469 rtp = &per_cpu(radix_tree_preloads, cpu); 1470 while (rtp->nr) { 1471 kmem_cache_free(radix_tree_node_cachep, 1472 rtp->nodes[rtp->nr-1]); 1473 rtp->nodes[rtp->nr-1] = NULL; 1474 rtp->nr--; 1475 } 1476 } 1477 return NOTIFY_OK; 1478 } 1479 1480 void __init radix_tree_init(void) 1481 { 1482 radix_tree_node_cachep = kmem_cache_create("radix_tree_node", 1483 sizeof(struct radix_tree_node), 0, 1484 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, 1485 radix_tree_node_ctor); 1486 radix_tree_init_maxindex(); 1487 hotcpu_notifier(radix_tree_callback, 0); 1488 } 1489