xref: /openbmc/linux/lib/radix-tree.c (revision 1c2dd16a)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  * Copyright (C) 2016 Intel, Matthew Wilcox
8  * Copyright (C) 2016 Intel, Ross Zwisler
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/cpu.h>
28 #include <linux/errno.h>
29 #include <linux/export.h>
30 #include <linux/idr.h>
31 #include <linux/init.h>
32 #include <linux/kernel.h>
33 #include <linux/kmemleak.h>
34 #include <linux/percpu.h>
35 #include <linux/preempt.h>		/* in_interrupt() */
36 #include <linux/radix-tree.h>
37 #include <linux/rcupdate.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40 
41 
42 /* Number of nodes in fully populated tree of given height */
43 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44 
45 /*
46  * Radix tree node cache.
47  */
48 static struct kmem_cache *radix_tree_node_cachep;
49 
50 /*
51  * The radix tree is variable-height, so an insert operation not only has
52  * to build the branch to its corresponding item, it also has to build the
53  * branch to existing items if the size has to be increased (by
54  * radix_tree_extend).
55  *
56  * The worst case is a zero height tree with just a single item at index 0,
57  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59  * Hence:
60  */
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62 
63 /*
64  * The IDR does not have to be as high as the radix tree since it uses
65  * signed integers, not unsigned longs.
66  */
67 #define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
68 #define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
69 						RADIX_TREE_MAP_SHIFT))
70 #define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
71 
72 /*
73  * The IDA is even shorter since it uses a bitmap at the last level.
74  */
75 #define IDA_INDEX_BITS		(8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
76 #define IDA_MAX_PATH		(DIV_ROUND_UP(IDA_INDEX_BITS, \
77 						RADIX_TREE_MAP_SHIFT))
78 #define IDA_PRELOAD_SIZE	(IDA_MAX_PATH * 2 - 1)
79 
80 /*
81  * Per-cpu pool of preloaded nodes
82  */
83 struct radix_tree_preload {
84 	unsigned nr;
85 	/* nodes->parent points to next preallocated node */
86 	struct radix_tree_node *nodes;
87 };
88 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
89 
90 static inline struct radix_tree_node *entry_to_node(void *ptr)
91 {
92 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
93 }
94 
95 static inline void *node_to_entry(void *ptr)
96 {
97 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
98 }
99 
100 #define RADIX_TREE_RETRY	node_to_entry(NULL)
101 
102 #ifdef CONFIG_RADIX_TREE_MULTIORDER
103 /* Sibling slots point directly to another slot in the same node */
104 static inline
105 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
106 {
107 	void __rcu **ptr = node;
108 	return (parent->slots <= ptr) &&
109 			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
110 }
111 #else
112 static inline
113 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
114 {
115 	return false;
116 }
117 #endif
118 
119 static inline unsigned long
120 get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
121 {
122 	return slot - parent->slots;
123 }
124 
125 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
126 			struct radix_tree_node **nodep, unsigned long index)
127 {
128 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
129 	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
130 
131 #ifdef CONFIG_RADIX_TREE_MULTIORDER
132 	if (radix_tree_is_internal_node(entry)) {
133 		if (is_sibling_entry(parent, entry)) {
134 			void __rcu **sibentry;
135 			sibentry = (void __rcu **) entry_to_node(entry);
136 			offset = get_slot_offset(parent, sibentry);
137 			entry = rcu_dereference_raw(*sibentry);
138 		}
139 	}
140 #endif
141 
142 	*nodep = (void *)entry;
143 	return offset;
144 }
145 
146 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
147 {
148 	return root->gfp_mask & __GFP_BITS_MASK;
149 }
150 
151 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
152 		int offset)
153 {
154 	__set_bit(offset, node->tags[tag]);
155 }
156 
157 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
158 		int offset)
159 {
160 	__clear_bit(offset, node->tags[tag]);
161 }
162 
163 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
164 		int offset)
165 {
166 	return test_bit(offset, node->tags[tag]);
167 }
168 
169 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
170 {
171 	root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
172 }
173 
174 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
175 {
176 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
177 }
178 
179 static inline void root_tag_clear_all(struct radix_tree_root *root)
180 {
181 	root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
182 }
183 
184 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
185 {
186 	return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
187 }
188 
189 static inline unsigned root_tags_get(const struct radix_tree_root *root)
190 {
191 	return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
192 }
193 
194 static inline bool is_idr(const struct radix_tree_root *root)
195 {
196 	return !!(root->gfp_mask & ROOT_IS_IDR);
197 }
198 
199 /*
200  * Returns 1 if any slot in the node has this tag set.
201  * Otherwise returns 0.
202  */
203 static inline int any_tag_set(const struct radix_tree_node *node,
204 							unsigned int tag)
205 {
206 	unsigned idx;
207 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
208 		if (node->tags[tag][idx])
209 			return 1;
210 	}
211 	return 0;
212 }
213 
214 static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
215 {
216 	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
217 }
218 
219 /**
220  * radix_tree_find_next_bit - find the next set bit in a memory region
221  *
222  * @addr: The address to base the search on
223  * @size: The bitmap size in bits
224  * @offset: The bitnumber to start searching at
225  *
226  * Unrollable variant of find_next_bit() for constant size arrays.
227  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
228  * Returns next bit offset, or size if nothing found.
229  */
230 static __always_inline unsigned long
231 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
232 			 unsigned long offset)
233 {
234 	const unsigned long *addr = node->tags[tag];
235 
236 	if (offset < RADIX_TREE_MAP_SIZE) {
237 		unsigned long tmp;
238 
239 		addr += offset / BITS_PER_LONG;
240 		tmp = *addr >> (offset % BITS_PER_LONG);
241 		if (tmp)
242 			return __ffs(tmp) + offset;
243 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
244 		while (offset < RADIX_TREE_MAP_SIZE) {
245 			tmp = *++addr;
246 			if (tmp)
247 				return __ffs(tmp) + offset;
248 			offset += BITS_PER_LONG;
249 		}
250 	}
251 	return RADIX_TREE_MAP_SIZE;
252 }
253 
254 static unsigned int iter_offset(const struct radix_tree_iter *iter)
255 {
256 	return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
257 }
258 
259 /*
260  * The maximum index which can be stored in a radix tree
261  */
262 static inline unsigned long shift_maxindex(unsigned int shift)
263 {
264 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
265 }
266 
267 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
268 {
269 	return shift_maxindex(node->shift);
270 }
271 
272 static unsigned long next_index(unsigned long index,
273 				const struct radix_tree_node *node,
274 				unsigned long offset)
275 {
276 	return (index & ~node_maxindex(node)) + (offset << node->shift);
277 }
278 
279 #ifndef __KERNEL__
280 static void dump_node(struct radix_tree_node *node, unsigned long index)
281 {
282 	unsigned long i;
283 
284 	pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
285 		node, node->offset, index, index | node_maxindex(node),
286 		node->parent,
287 		node->tags[0][0], node->tags[1][0], node->tags[2][0],
288 		node->shift, node->count, node->exceptional);
289 
290 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
291 		unsigned long first = index | (i << node->shift);
292 		unsigned long last = first | ((1UL << node->shift) - 1);
293 		void *entry = node->slots[i];
294 		if (!entry)
295 			continue;
296 		if (entry == RADIX_TREE_RETRY) {
297 			pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
298 					i, first, last, node);
299 		} else if (!radix_tree_is_internal_node(entry)) {
300 			pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
301 					entry, i, first, last, node);
302 		} else if (is_sibling_entry(node, entry)) {
303 			pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
304 					entry, i, first, last, node,
305 					*(void **)entry_to_node(entry));
306 		} else {
307 			dump_node(entry_to_node(entry), first);
308 		}
309 	}
310 }
311 
312 /* For debug */
313 static void radix_tree_dump(struct radix_tree_root *root)
314 {
315 	pr_debug("radix root: %p rnode %p tags %x\n",
316 			root, root->rnode,
317 			root->gfp_mask >> ROOT_TAG_SHIFT);
318 	if (!radix_tree_is_internal_node(root->rnode))
319 		return;
320 	dump_node(entry_to_node(root->rnode), 0);
321 }
322 
323 static void dump_ida_node(void *entry, unsigned long index)
324 {
325 	unsigned long i;
326 
327 	if (!entry)
328 		return;
329 
330 	if (radix_tree_is_internal_node(entry)) {
331 		struct radix_tree_node *node = entry_to_node(entry);
332 
333 		pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
334 			node, node->offset, index * IDA_BITMAP_BITS,
335 			((index | node_maxindex(node)) + 1) *
336 				IDA_BITMAP_BITS - 1,
337 			node->parent, node->tags[0][0], node->shift,
338 			node->count);
339 		for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
340 			dump_ida_node(node->slots[i],
341 					index | (i << node->shift));
342 	} else if (radix_tree_exceptional_entry(entry)) {
343 		pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
344 				entry, (int)(index & RADIX_TREE_MAP_MASK),
345 				index * IDA_BITMAP_BITS,
346 				index * IDA_BITMAP_BITS + BITS_PER_LONG -
347 					RADIX_TREE_EXCEPTIONAL_SHIFT,
348 				(unsigned long)entry >>
349 					RADIX_TREE_EXCEPTIONAL_SHIFT);
350 	} else {
351 		struct ida_bitmap *bitmap = entry;
352 
353 		pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
354 				(int)(index & RADIX_TREE_MAP_MASK),
355 				index * IDA_BITMAP_BITS,
356 				(index + 1) * IDA_BITMAP_BITS - 1);
357 		for (i = 0; i < IDA_BITMAP_LONGS; i++)
358 			pr_cont(" %lx", bitmap->bitmap[i]);
359 		pr_cont("\n");
360 	}
361 }
362 
363 static void ida_dump(struct ida *ida)
364 {
365 	struct radix_tree_root *root = &ida->ida_rt;
366 	pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
367 				root->gfp_mask >> ROOT_TAG_SHIFT);
368 	dump_ida_node(root->rnode, 0);
369 }
370 #endif
371 
372 /*
373  * This assumes that the caller has performed appropriate preallocation, and
374  * that the caller has pinned this thread of control to the current CPU.
375  */
376 static struct radix_tree_node *
377 radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
378 			struct radix_tree_root *root,
379 			unsigned int shift, unsigned int offset,
380 			unsigned int count, unsigned int exceptional)
381 {
382 	struct radix_tree_node *ret = NULL;
383 
384 	/*
385 	 * Preload code isn't irq safe and it doesn't make sense to use
386 	 * preloading during an interrupt anyway as all the allocations have
387 	 * to be atomic. So just do normal allocation when in interrupt.
388 	 */
389 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
390 		struct radix_tree_preload *rtp;
391 
392 		/*
393 		 * Even if the caller has preloaded, try to allocate from the
394 		 * cache first for the new node to get accounted to the memory
395 		 * cgroup.
396 		 */
397 		ret = kmem_cache_alloc(radix_tree_node_cachep,
398 				       gfp_mask | __GFP_NOWARN);
399 		if (ret)
400 			goto out;
401 
402 		/*
403 		 * Provided the caller has preloaded here, we will always
404 		 * succeed in getting a node here (and never reach
405 		 * kmem_cache_alloc)
406 		 */
407 		rtp = this_cpu_ptr(&radix_tree_preloads);
408 		if (rtp->nr) {
409 			ret = rtp->nodes;
410 			rtp->nodes = ret->parent;
411 			rtp->nr--;
412 		}
413 		/*
414 		 * Update the allocation stack trace as this is more useful
415 		 * for debugging.
416 		 */
417 		kmemleak_update_trace(ret);
418 		goto out;
419 	}
420 	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
421 out:
422 	BUG_ON(radix_tree_is_internal_node(ret));
423 	if (ret) {
424 		ret->shift = shift;
425 		ret->offset = offset;
426 		ret->count = count;
427 		ret->exceptional = exceptional;
428 		ret->parent = parent;
429 		ret->root = root;
430 	}
431 	return ret;
432 }
433 
434 static void radix_tree_node_rcu_free(struct rcu_head *head)
435 {
436 	struct radix_tree_node *node =
437 			container_of(head, struct radix_tree_node, rcu_head);
438 
439 	/*
440 	 * Must only free zeroed nodes into the slab.  We can be left with
441 	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
442 	 * and tags here.
443 	 */
444 	memset(node->slots, 0, sizeof(node->slots));
445 	memset(node->tags, 0, sizeof(node->tags));
446 	INIT_LIST_HEAD(&node->private_list);
447 
448 	kmem_cache_free(radix_tree_node_cachep, node);
449 }
450 
451 static inline void
452 radix_tree_node_free(struct radix_tree_node *node)
453 {
454 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
455 }
456 
457 /*
458  * Load up this CPU's radix_tree_node buffer with sufficient objects to
459  * ensure that the addition of a single element in the tree cannot fail.  On
460  * success, return zero, with preemption disabled.  On error, return -ENOMEM
461  * with preemption not disabled.
462  *
463  * To make use of this facility, the radix tree must be initialised without
464  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
465  */
466 static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
467 {
468 	struct radix_tree_preload *rtp;
469 	struct radix_tree_node *node;
470 	int ret = -ENOMEM;
471 
472 	/*
473 	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
474 	 * they should never be accounted to any particular memory cgroup.
475 	 */
476 	gfp_mask &= ~__GFP_ACCOUNT;
477 
478 	preempt_disable();
479 	rtp = this_cpu_ptr(&radix_tree_preloads);
480 	while (rtp->nr < nr) {
481 		preempt_enable();
482 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
483 		if (node == NULL)
484 			goto out;
485 		preempt_disable();
486 		rtp = this_cpu_ptr(&radix_tree_preloads);
487 		if (rtp->nr < nr) {
488 			node->parent = rtp->nodes;
489 			rtp->nodes = node;
490 			rtp->nr++;
491 		} else {
492 			kmem_cache_free(radix_tree_node_cachep, node);
493 		}
494 	}
495 	ret = 0;
496 out:
497 	return ret;
498 }
499 
500 /*
501  * Load up this CPU's radix_tree_node buffer with sufficient objects to
502  * ensure that the addition of a single element in the tree cannot fail.  On
503  * success, return zero, with preemption disabled.  On error, return -ENOMEM
504  * with preemption not disabled.
505  *
506  * To make use of this facility, the radix tree must be initialised without
507  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
508  */
509 int radix_tree_preload(gfp_t gfp_mask)
510 {
511 	/* Warn on non-sensical use... */
512 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
513 	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
514 }
515 EXPORT_SYMBOL(radix_tree_preload);
516 
517 /*
518  * The same as above function, except we don't guarantee preloading happens.
519  * We do it, if we decide it helps. On success, return zero with preemption
520  * disabled. On error, return -ENOMEM with preemption not disabled.
521  */
522 int radix_tree_maybe_preload(gfp_t gfp_mask)
523 {
524 	if (gfpflags_allow_blocking(gfp_mask))
525 		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
526 	/* Preloading doesn't help anything with this gfp mask, skip it */
527 	preempt_disable();
528 	return 0;
529 }
530 EXPORT_SYMBOL(radix_tree_maybe_preload);
531 
532 #ifdef CONFIG_RADIX_TREE_MULTIORDER
533 /*
534  * Preload with enough objects to ensure that we can split a single entry
535  * of order @old_order into many entries of size @new_order
536  */
537 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
538 							gfp_t gfp_mask)
539 {
540 	unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
541 	unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
542 				(new_order / RADIX_TREE_MAP_SHIFT);
543 	unsigned nr = 0;
544 
545 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
546 	BUG_ON(new_order >= old_order);
547 
548 	while (layers--)
549 		nr = nr * RADIX_TREE_MAP_SIZE + 1;
550 	return __radix_tree_preload(gfp_mask, top * nr);
551 }
552 #endif
553 
554 /*
555  * The same as function above, but preload number of nodes required to insert
556  * (1 << order) continuous naturally-aligned elements.
557  */
558 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
559 {
560 	unsigned long nr_subtrees;
561 	int nr_nodes, subtree_height;
562 
563 	/* Preloading doesn't help anything with this gfp mask, skip it */
564 	if (!gfpflags_allow_blocking(gfp_mask)) {
565 		preempt_disable();
566 		return 0;
567 	}
568 
569 	/*
570 	 * Calculate number and height of fully populated subtrees it takes to
571 	 * store (1 << order) elements.
572 	 */
573 	nr_subtrees = 1 << order;
574 	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
575 			subtree_height++)
576 		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
577 
578 	/*
579 	 * The worst case is zero height tree with a single item at index 0 and
580 	 * then inserting items starting at ULONG_MAX - (1 << order).
581 	 *
582 	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
583 	 * 0-index item.
584 	 */
585 	nr_nodes = RADIX_TREE_MAX_PATH;
586 
587 	/* Plus branch to fully populated subtrees. */
588 	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
589 
590 	/* Root node is shared. */
591 	nr_nodes--;
592 
593 	/* Plus nodes required to build subtrees. */
594 	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
595 
596 	return __radix_tree_preload(gfp_mask, nr_nodes);
597 }
598 
599 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
600 		struct radix_tree_node **nodep, unsigned long *maxindex)
601 {
602 	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
603 
604 	*nodep = node;
605 
606 	if (likely(radix_tree_is_internal_node(node))) {
607 		node = entry_to_node(node);
608 		*maxindex = node_maxindex(node);
609 		return node->shift + RADIX_TREE_MAP_SHIFT;
610 	}
611 
612 	*maxindex = 0;
613 	return 0;
614 }
615 
616 /*
617  *	Extend a radix tree so it can store key @index.
618  */
619 static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
620 				unsigned long index, unsigned int shift)
621 {
622 	void *entry;
623 	unsigned int maxshift;
624 	int tag;
625 
626 	/* Figure out what the shift should be.  */
627 	maxshift = shift;
628 	while (index > shift_maxindex(maxshift))
629 		maxshift += RADIX_TREE_MAP_SHIFT;
630 
631 	entry = rcu_dereference_raw(root->rnode);
632 	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
633 		goto out;
634 
635 	do {
636 		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
637 							root, shift, 0, 1, 0);
638 		if (!node)
639 			return -ENOMEM;
640 
641 		if (is_idr(root)) {
642 			all_tag_set(node, IDR_FREE);
643 			if (!root_tag_get(root, IDR_FREE)) {
644 				tag_clear(node, IDR_FREE, 0);
645 				root_tag_set(root, IDR_FREE);
646 			}
647 		} else {
648 			/* Propagate the aggregated tag info to the new child */
649 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
650 				if (root_tag_get(root, tag))
651 					tag_set(node, tag, 0);
652 			}
653 		}
654 
655 		BUG_ON(shift > BITS_PER_LONG);
656 		if (radix_tree_is_internal_node(entry)) {
657 			entry_to_node(entry)->parent = node;
658 		} else if (radix_tree_exceptional_entry(entry)) {
659 			/* Moving an exceptional root->rnode to a node */
660 			node->exceptional = 1;
661 		}
662 		/*
663 		 * entry was already in the radix tree, so we do not need
664 		 * rcu_assign_pointer here
665 		 */
666 		node->slots[0] = (void __rcu *)entry;
667 		entry = node_to_entry(node);
668 		rcu_assign_pointer(root->rnode, entry);
669 		shift += RADIX_TREE_MAP_SHIFT;
670 	} while (shift <= maxshift);
671 out:
672 	return maxshift + RADIX_TREE_MAP_SHIFT;
673 }
674 
675 /**
676  *	radix_tree_shrink    -    shrink radix tree to minimum height
677  *	@root		radix tree root
678  */
679 static inline bool radix_tree_shrink(struct radix_tree_root *root,
680 				     radix_tree_update_node_t update_node,
681 				     void *private)
682 {
683 	bool shrunk = false;
684 
685 	for (;;) {
686 		struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
687 		struct radix_tree_node *child;
688 
689 		if (!radix_tree_is_internal_node(node))
690 			break;
691 		node = entry_to_node(node);
692 
693 		/*
694 		 * The candidate node has more than one child, or its child
695 		 * is not at the leftmost slot, or the child is a multiorder
696 		 * entry, we cannot shrink.
697 		 */
698 		if (node->count != 1)
699 			break;
700 		child = rcu_dereference_raw(node->slots[0]);
701 		if (!child)
702 			break;
703 		if (!radix_tree_is_internal_node(child) && node->shift)
704 			break;
705 
706 		if (radix_tree_is_internal_node(child))
707 			entry_to_node(child)->parent = NULL;
708 
709 		/*
710 		 * We don't need rcu_assign_pointer(), since we are simply
711 		 * moving the node from one part of the tree to another: if it
712 		 * was safe to dereference the old pointer to it
713 		 * (node->slots[0]), it will be safe to dereference the new
714 		 * one (root->rnode) as far as dependent read barriers go.
715 		 */
716 		root->rnode = (void __rcu *)child;
717 		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
718 			root_tag_clear(root, IDR_FREE);
719 
720 		/*
721 		 * We have a dilemma here. The node's slot[0] must not be
722 		 * NULLed in case there are concurrent lookups expecting to
723 		 * find the item. However if this was a bottom-level node,
724 		 * then it may be subject to the slot pointer being visible
725 		 * to callers dereferencing it. If item corresponding to
726 		 * slot[0] is subsequently deleted, these callers would expect
727 		 * their slot to become empty sooner or later.
728 		 *
729 		 * For example, lockless pagecache will look up a slot, deref
730 		 * the page pointer, and if the page has 0 refcount it means it
731 		 * was concurrently deleted from pagecache so try the deref
732 		 * again. Fortunately there is already a requirement for logic
733 		 * to retry the entire slot lookup -- the indirect pointer
734 		 * problem (replacing direct root node with an indirect pointer
735 		 * also results in a stale slot). So tag the slot as indirect
736 		 * to force callers to retry.
737 		 */
738 		node->count = 0;
739 		if (!radix_tree_is_internal_node(child)) {
740 			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
741 			if (update_node)
742 				update_node(node, private);
743 		}
744 
745 		WARN_ON_ONCE(!list_empty(&node->private_list));
746 		radix_tree_node_free(node);
747 		shrunk = true;
748 	}
749 
750 	return shrunk;
751 }
752 
753 static bool delete_node(struct radix_tree_root *root,
754 			struct radix_tree_node *node,
755 			radix_tree_update_node_t update_node, void *private)
756 {
757 	bool deleted = false;
758 
759 	do {
760 		struct radix_tree_node *parent;
761 
762 		if (node->count) {
763 			if (node_to_entry(node) ==
764 					rcu_dereference_raw(root->rnode))
765 				deleted |= radix_tree_shrink(root, update_node,
766 								private);
767 			return deleted;
768 		}
769 
770 		parent = node->parent;
771 		if (parent) {
772 			parent->slots[node->offset] = NULL;
773 			parent->count--;
774 		} else {
775 			/*
776 			 * Shouldn't the tags already have all been cleared
777 			 * by the caller?
778 			 */
779 			if (!is_idr(root))
780 				root_tag_clear_all(root);
781 			root->rnode = NULL;
782 		}
783 
784 		WARN_ON_ONCE(!list_empty(&node->private_list));
785 		radix_tree_node_free(node);
786 		deleted = true;
787 
788 		node = parent;
789 	} while (node);
790 
791 	return deleted;
792 }
793 
794 /**
795  *	__radix_tree_create	-	create a slot in a radix tree
796  *	@root:		radix tree root
797  *	@index:		index key
798  *	@order:		index occupies 2^order aligned slots
799  *	@nodep:		returns node
800  *	@slotp:		returns slot
801  *
802  *	Create, if necessary, and return the node and slot for an item
803  *	at position @index in the radix tree @root.
804  *
805  *	Until there is more than one item in the tree, no nodes are
806  *	allocated and @root->rnode is used as a direct slot instead of
807  *	pointing to a node, in which case *@nodep will be NULL.
808  *
809  *	Returns -ENOMEM, or 0 for success.
810  */
811 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
812 			unsigned order, struct radix_tree_node **nodep,
813 			void __rcu ***slotp)
814 {
815 	struct radix_tree_node *node = NULL, *child;
816 	void __rcu **slot = (void __rcu **)&root->rnode;
817 	unsigned long maxindex;
818 	unsigned int shift, offset = 0;
819 	unsigned long max = index | ((1UL << order) - 1);
820 	gfp_t gfp = root_gfp_mask(root);
821 
822 	shift = radix_tree_load_root(root, &child, &maxindex);
823 
824 	/* Make sure the tree is high enough.  */
825 	if (order > 0 && max == ((1UL << order) - 1))
826 		max++;
827 	if (max > maxindex) {
828 		int error = radix_tree_extend(root, gfp, max, shift);
829 		if (error < 0)
830 			return error;
831 		shift = error;
832 		child = rcu_dereference_raw(root->rnode);
833 	}
834 
835 	while (shift > order) {
836 		shift -= RADIX_TREE_MAP_SHIFT;
837 		if (child == NULL) {
838 			/* Have to add a child node.  */
839 			child = radix_tree_node_alloc(gfp, node, root, shift,
840 							offset, 0, 0);
841 			if (!child)
842 				return -ENOMEM;
843 			rcu_assign_pointer(*slot, node_to_entry(child));
844 			if (node)
845 				node->count++;
846 		} else if (!radix_tree_is_internal_node(child))
847 			break;
848 
849 		/* Go a level down */
850 		node = entry_to_node(child);
851 		offset = radix_tree_descend(node, &child, index);
852 		slot = &node->slots[offset];
853 	}
854 
855 	if (nodep)
856 		*nodep = node;
857 	if (slotp)
858 		*slotp = slot;
859 	return 0;
860 }
861 
862 /*
863  * Free any nodes below this node.  The tree is presumed to not need
864  * shrinking, and any user data in the tree is presumed to not need a
865  * destructor called on it.  If we need to add a destructor, we can
866  * add that functionality later.  Note that we may not clear tags or
867  * slots from the tree as an RCU walker may still have a pointer into
868  * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
869  * but we'll still have to clear those in rcu_free.
870  */
871 static void radix_tree_free_nodes(struct radix_tree_node *node)
872 {
873 	unsigned offset = 0;
874 	struct radix_tree_node *child = entry_to_node(node);
875 
876 	for (;;) {
877 		void *entry = rcu_dereference_raw(child->slots[offset]);
878 		if (radix_tree_is_internal_node(entry) &&
879 					!is_sibling_entry(child, entry)) {
880 			child = entry_to_node(entry);
881 			offset = 0;
882 			continue;
883 		}
884 		offset++;
885 		while (offset == RADIX_TREE_MAP_SIZE) {
886 			struct radix_tree_node *old = child;
887 			offset = child->offset + 1;
888 			child = child->parent;
889 			WARN_ON_ONCE(!list_empty(&old->private_list));
890 			radix_tree_node_free(old);
891 			if (old == entry_to_node(node))
892 				return;
893 		}
894 	}
895 }
896 
897 #ifdef CONFIG_RADIX_TREE_MULTIORDER
898 static inline int insert_entries(struct radix_tree_node *node,
899 		void __rcu **slot, void *item, unsigned order, bool replace)
900 {
901 	struct radix_tree_node *child;
902 	unsigned i, n, tag, offset, tags = 0;
903 
904 	if (node) {
905 		if (order > node->shift)
906 			n = 1 << (order - node->shift);
907 		else
908 			n = 1;
909 		offset = get_slot_offset(node, slot);
910 	} else {
911 		n = 1;
912 		offset = 0;
913 	}
914 
915 	if (n > 1) {
916 		offset = offset & ~(n - 1);
917 		slot = &node->slots[offset];
918 	}
919 	child = node_to_entry(slot);
920 
921 	for (i = 0; i < n; i++) {
922 		if (slot[i]) {
923 			if (replace) {
924 				node->count--;
925 				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
926 					if (tag_get(node, tag, offset + i))
927 						tags |= 1 << tag;
928 			} else
929 				return -EEXIST;
930 		}
931 	}
932 
933 	for (i = 0; i < n; i++) {
934 		struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
935 		if (i) {
936 			rcu_assign_pointer(slot[i], child);
937 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
938 				if (tags & (1 << tag))
939 					tag_clear(node, tag, offset + i);
940 		} else {
941 			rcu_assign_pointer(slot[i], item);
942 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
943 				if (tags & (1 << tag))
944 					tag_set(node, tag, offset);
945 		}
946 		if (radix_tree_is_internal_node(old) &&
947 					!is_sibling_entry(node, old) &&
948 					(old != RADIX_TREE_RETRY))
949 			radix_tree_free_nodes(old);
950 		if (radix_tree_exceptional_entry(old))
951 			node->exceptional--;
952 	}
953 	if (node) {
954 		node->count += n;
955 		if (radix_tree_exceptional_entry(item))
956 			node->exceptional += n;
957 	}
958 	return n;
959 }
960 #else
961 static inline int insert_entries(struct radix_tree_node *node,
962 		void __rcu **slot, void *item, unsigned order, bool replace)
963 {
964 	if (*slot)
965 		return -EEXIST;
966 	rcu_assign_pointer(*slot, item);
967 	if (node) {
968 		node->count++;
969 		if (radix_tree_exceptional_entry(item))
970 			node->exceptional++;
971 	}
972 	return 1;
973 }
974 #endif
975 
976 /**
977  *	__radix_tree_insert    -    insert into a radix tree
978  *	@root:		radix tree root
979  *	@index:		index key
980  *	@order:		key covers the 2^order indices around index
981  *	@item:		item to insert
982  *
983  *	Insert an item into the radix tree at position @index.
984  */
985 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
986 			unsigned order, void *item)
987 {
988 	struct radix_tree_node *node;
989 	void __rcu **slot;
990 	int error;
991 
992 	BUG_ON(radix_tree_is_internal_node(item));
993 
994 	error = __radix_tree_create(root, index, order, &node, &slot);
995 	if (error)
996 		return error;
997 
998 	error = insert_entries(node, slot, item, order, false);
999 	if (error < 0)
1000 		return error;
1001 
1002 	if (node) {
1003 		unsigned offset = get_slot_offset(node, slot);
1004 		BUG_ON(tag_get(node, 0, offset));
1005 		BUG_ON(tag_get(node, 1, offset));
1006 		BUG_ON(tag_get(node, 2, offset));
1007 	} else {
1008 		BUG_ON(root_tags_get(root));
1009 	}
1010 
1011 	return 0;
1012 }
1013 EXPORT_SYMBOL(__radix_tree_insert);
1014 
1015 /**
1016  *	__radix_tree_lookup	-	lookup an item in a radix tree
1017  *	@root:		radix tree root
1018  *	@index:		index key
1019  *	@nodep:		returns node
1020  *	@slotp:		returns slot
1021  *
1022  *	Lookup and return the item at position @index in the radix
1023  *	tree @root.
1024  *
1025  *	Until there is more than one item in the tree, no nodes are
1026  *	allocated and @root->rnode is used as a direct slot instead of
1027  *	pointing to a node, in which case *@nodep will be NULL.
1028  */
1029 void *__radix_tree_lookup(const struct radix_tree_root *root,
1030 			  unsigned long index, struct radix_tree_node **nodep,
1031 			  void __rcu ***slotp)
1032 {
1033 	struct radix_tree_node *node, *parent;
1034 	unsigned long maxindex;
1035 	void __rcu **slot;
1036 
1037  restart:
1038 	parent = NULL;
1039 	slot = (void __rcu **)&root->rnode;
1040 	radix_tree_load_root(root, &node, &maxindex);
1041 	if (index > maxindex)
1042 		return NULL;
1043 
1044 	while (radix_tree_is_internal_node(node)) {
1045 		unsigned offset;
1046 
1047 		if (node == RADIX_TREE_RETRY)
1048 			goto restart;
1049 		parent = entry_to_node(node);
1050 		offset = radix_tree_descend(parent, &node, index);
1051 		slot = parent->slots + offset;
1052 	}
1053 
1054 	if (nodep)
1055 		*nodep = parent;
1056 	if (slotp)
1057 		*slotp = slot;
1058 	return node;
1059 }
1060 
1061 /**
1062  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
1063  *	@root:		radix tree root
1064  *	@index:		index key
1065  *
1066  *	Returns:  the slot corresponding to the position @index in the
1067  *	radix tree @root. This is useful for update-if-exists operations.
1068  *
1069  *	This function can be called under rcu_read_lock iff the slot is not
1070  *	modified by radix_tree_replace_slot, otherwise it must be called
1071  *	exclusive from other writers. Any dereference of the slot must be done
1072  *	using radix_tree_deref_slot.
1073  */
1074 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
1075 				unsigned long index)
1076 {
1077 	void __rcu **slot;
1078 
1079 	if (!__radix_tree_lookup(root, index, NULL, &slot))
1080 		return NULL;
1081 	return slot;
1082 }
1083 EXPORT_SYMBOL(radix_tree_lookup_slot);
1084 
1085 /**
1086  *	radix_tree_lookup    -    perform lookup operation on a radix tree
1087  *	@root:		radix tree root
1088  *	@index:		index key
1089  *
1090  *	Lookup the item at the position @index in the radix tree @root.
1091  *
1092  *	This function can be called under rcu_read_lock, however the caller
1093  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1094  *	them safely). No RCU barriers are required to access or modify the
1095  *	returned item, however.
1096  */
1097 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
1098 {
1099 	return __radix_tree_lookup(root, index, NULL, NULL);
1100 }
1101 EXPORT_SYMBOL(radix_tree_lookup);
1102 
1103 static inline void replace_sibling_entries(struct radix_tree_node *node,
1104 				void __rcu **slot, int count, int exceptional)
1105 {
1106 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1107 	void *ptr = node_to_entry(slot);
1108 	unsigned offset = get_slot_offset(node, slot) + 1;
1109 
1110 	while (offset < RADIX_TREE_MAP_SIZE) {
1111 		if (rcu_dereference_raw(node->slots[offset]) != ptr)
1112 			break;
1113 		if (count < 0) {
1114 			node->slots[offset] = NULL;
1115 			node->count--;
1116 		}
1117 		node->exceptional += exceptional;
1118 		offset++;
1119 	}
1120 #endif
1121 }
1122 
1123 static void replace_slot(void __rcu **slot, void *item,
1124 		struct radix_tree_node *node, int count, int exceptional)
1125 {
1126 	if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
1127 		return;
1128 
1129 	if (node && (count || exceptional)) {
1130 		node->count += count;
1131 		node->exceptional += exceptional;
1132 		replace_sibling_entries(node, slot, count, exceptional);
1133 	}
1134 
1135 	rcu_assign_pointer(*slot, item);
1136 }
1137 
1138 static bool node_tag_get(const struct radix_tree_root *root,
1139 				const struct radix_tree_node *node,
1140 				unsigned int tag, unsigned int offset)
1141 {
1142 	if (node)
1143 		return tag_get(node, tag, offset);
1144 	return root_tag_get(root, tag);
1145 }
1146 
1147 /*
1148  * IDR users want to be able to store NULL in the tree, so if the slot isn't
1149  * free, don't adjust the count, even if it's transitioning between NULL and
1150  * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
1151  * have empty bits, but it only stores NULL in slots when they're being
1152  * deleted.
1153  */
1154 static int calculate_count(struct radix_tree_root *root,
1155 				struct radix_tree_node *node, void __rcu **slot,
1156 				void *item, void *old)
1157 {
1158 	if (is_idr(root)) {
1159 		unsigned offset = get_slot_offset(node, slot);
1160 		bool free = node_tag_get(root, node, IDR_FREE, offset);
1161 		if (!free)
1162 			return 0;
1163 		if (!old)
1164 			return 1;
1165 	}
1166 	return !!item - !!old;
1167 }
1168 
1169 /**
1170  * __radix_tree_replace		- replace item in a slot
1171  * @root:		radix tree root
1172  * @node:		pointer to tree node
1173  * @slot:		pointer to slot in @node
1174  * @item:		new item to store in the slot.
1175  * @update_node:	callback for changing leaf nodes
1176  * @private:		private data to pass to @update_node
1177  *
1178  * For use with __radix_tree_lookup().  Caller must hold tree write locked
1179  * across slot lookup and replacement.
1180  */
1181 void __radix_tree_replace(struct radix_tree_root *root,
1182 			  struct radix_tree_node *node,
1183 			  void __rcu **slot, void *item,
1184 			  radix_tree_update_node_t update_node, void *private)
1185 {
1186 	void *old = rcu_dereference_raw(*slot);
1187 	int exceptional = !!radix_tree_exceptional_entry(item) -
1188 				!!radix_tree_exceptional_entry(old);
1189 	int count = calculate_count(root, node, slot, item, old);
1190 
1191 	/*
1192 	 * This function supports replacing exceptional entries and
1193 	 * deleting entries, but that needs accounting against the
1194 	 * node unless the slot is root->rnode.
1195 	 */
1196 	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
1197 			(count || exceptional));
1198 	replace_slot(slot, item, node, count, exceptional);
1199 
1200 	if (!node)
1201 		return;
1202 
1203 	if (update_node)
1204 		update_node(node, private);
1205 
1206 	delete_node(root, node, update_node, private);
1207 }
1208 
1209 /**
1210  * radix_tree_replace_slot	- replace item in a slot
1211  * @root:	radix tree root
1212  * @slot:	pointer to slot
1213  * @item:	new item to store in the slot.
1214  *
1215  * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1216  * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1217  * across slot lookup and replacement.
1218  *
1219  * NOTE: This cannot be used to switch between non-entries (empty slots),
1220  * regular entries, and exceptional entries, as that requires accounting
1221  * inside the radix tree node. When switching from one type of entry or
1222  * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1223  * radix_tree_iter_replace().
1224  */
1225 void radix_tree_replace_slot(struct radix_tree_root *root,
1226 			     void __rcu **slot, void *item)
1227 {
1228 	__radix_tree_replace(root, NULL, slot, item, NULL, NULL);
1229 }
1230 EXPORT_SYMBOL(radix_tree_replace_slot);
1231 
1232 /**
1233  * radix_tree_iter_replace - replace item in a slot
1234  * @root:	radix tree root
1235  * @slot:	pointer to slot
1236  * @item:	new item to store in the slot.
1237  *
1238  * For use with radix_tree_split() and radix_tree_for_each_slot().
1239  * Caller must hold tree write locked across split and replacement.
1240  */
1241 void radix_tree_iter_replace(struct radix_tree_root *root,
1242 				const struct radix_tree_iter *iter,
1243 				void __rcu **slot, void *item)
1244 {
1245 	__radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1246 }
1247 
1248 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1249 /**
1250  * radix_tree_join - replace multiple entries with one multiorder entry
1251  * @root: radix tree root
1252  * @index: an index inside the new entry
1253  * @order: order of the new entry
1254  * @item: new entry
1255  *
1256  * Call this function to replace several entries with one larger entry.
1257  * The existing entries are presumed to not need freeing as a result of
1258  * this call.
1259  *
1260  * The replacement entry will have all the tags set on it that were set
1261  * on any of the entries it is replacing.
1262  */
1263 int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1264 			unsigned order, void *item)
1265 {
1266 	struct radix_tree_node *node;
1267 	void __rcu **slot;
1268 	int error;
1269 
1270 	BUG_ON(radix_tree_is_internal_node(item));
1271 
1272 	error = __radix_tree_create(root, index, order, &node, &slot);
1273 	if (!error)
1274 		error = insert_entries(node, slot, item, order, true);
1275 	if (error > 0)
1276 		error = 0;
1277 
1278 	return error;
1279 }
1280 
1281 /**
1282  * radix_tree_split - Split an entry into smaller entries
1283  * @root: radix tree root
1284  * @index: An index within the large entry
1285  * @order: Order of new entries
1286  *
1287  * Call this function as the first step in replacing a multiorder entry
1288  * with several entries of lower order.  After this function returns,
1289  * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1290  * and call radix_tree_iter_replace() to set up each new entry.
1291  *
1292  * The tags from this entry are replicated to all the new entries.
1293  *
1294  * The radix tree should be locked against modification during the entire
1295  * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1296  * should prompt RCU walkers to restart the lookup from the root.
1297  */
1298 int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1299 				unsigned order)
1300 {
1301 	struct radix_tree_node *parent, *node, *child;
1302 	void __rcu **slot;
1303 	unsigned int offset, end;
1304 	unsigned n, tag, tags = 0;
1305 	gfp_t gfp = root_gfp_mask(root);
1306 
1307 	if (!__radix_tree_lookup(root, index, &parent, &slot))
1308 		return -ENOENT;
1309 	if (!parent)
1310 		return -ENOENT;
1311 
1312 	offset = get_slot_offset(parent, slot);
1313 
1314 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1315 		if (tag_get(parent, tag, offset))
1316 			tags |= 1 << tag;
1317 
1318 	for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1319 		if (!is_sibling_entry(parent,
1320 				rcu_dereference_raw(parent->slots[end])))
1321 			break;
1322 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1323 			if (tags & (1 << tag))
1324 				tag_set(parent, tag, end);
1325 		/* rcu_assign_pointer ensures tags are set before RETRY */
1326 		rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1327 	}
1328 	rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1329 	parent->exceptional -= (end - offset);
1330 
1331 	if (order == parent->shift)
1332 		return 0;
1333 	if (order > parent->shift) {
1334 		while (offset < end)
1335 			offset += insert_entries(parent, &parent->slots[offset],
1336 					RADIX_TREE_RETRY, order, true);
1337 		return 0;
1338 	}
1339 
1340 	node = parent;
1341 
1342 	for (;;) {
1343 		if (node->shift > order) {
1344 			child = radix_tree_node_alloc(gfp, node, root,
1345 					node->shift - RADIX_TREE_MAP_SHIFT,
1346 					offset, 0, 0);
1347 			if (!child)
1348 				goto nomem;
1349 			if (node != parent) {
1350 				node->count++;
1351 				rcu_assign_pointer(node->slots[offset],
1352 							node_to_entry(child));
1353 				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1354 					if (tags & (1 << tag))
1355 						tag_set(node, tag, offset);
1356 			}
1357 
1358 			node = child;
1359 			offset = 0;
1360 			continue;
1361 		}
1362 
1363 		n = insert_entries(node, &node->slots[offset],
1364 					RADIX_TREE_RETRY, order, false);
1365 		BUG_ON(n > RADIX_TREE_MAP_SIZE);
1366 
1367 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1368 			if (tags & (1 << tag))
1369 				tag_set(node, tag, offset);
1370 		offset += n;
1371 
1372 		while (offset == RADIX_TREE_MAP_SIZE) {
1373 			if (node == parent)
1374 				break;
1375 			offset = node->offset;
1376 			child = node;
1377 			node = node->parent;
1378 			rcu_assign_pointer(node->slots[offset],
1379 						node_to_entry(child));
1380 			offset++;
1381 		}
1382 		if ((node == parent) && (offset == end))
1383 			return 0;
1384 	}
1385 
1386  nomem:
1387 	/* Shouldn't happen; did user forget to preload? */
1388 	/* TODO: free all the allocated nodes */
1389 	WARN_ON(1);
1390 	return -ENOMEM;
1391 }
1392 #endif
1393 
1394 static void node_tag_set(struct radix_tree_root *root,
1395 				struct radix_tree_node *node,
1396 				unsigned int tag, unsigned int offset)
1397 {
1398 	while (node) {
1399 		if (tag_get(node, tag, offset))
1400 			return;
1401 		tag_set(node, tag, offset);
1402 		offset = node->offset;
1403 		node = node->parent;
1404 	}
1405 
1406 	if (!root_tag_get(root, tag))
1407 		root_tag_set(root, tag);
1408 }
1409 
1410 /**
1411  *	radix_tree_tag_set - set a tag on a radix tree node
1412  *	@root:		radix tree root
1413  *	@index:		index key
1414  *	@tag:		tag index
1415  *
1416  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1417  *	corresponding to @index in the radix tree.  From
1418  *	the root all the way down to the leaf node.
1419  *
1420  *	Returns the address of the tagged item.  Setting a tag on a not-present
1421  *	item is a bug.
1422  */
1423 void *radix_tree_tag_set(struct radix_tree_root *root,
1424 			unsigned long index, unsigned int tag)
1425 {
1426 	struct radix_tree_node *node, *parent;
1427 	unsigned long maxindex;
1428 
1429 	radix_tree_load_root(root, &node, &maxindex);
1430 	BUG_ON(index > maxindex);
1431 
1432 	while (radix_tree_is_internal_node(node)) {
1433 		unsigned offset;
1434 
1435 		parent = entry_to_node(node);
1436 		offset = radix_tree_descend(parent, &node, index);
1437 		BUG_ON(!node);
1438 
1439 		if (!tag_get(parent, tag, offset))
1440 			tag_set(parent, tag, offset);
1441 	}
1442 
1443 	/* set the root's tag bit */
1444 	if (!root_tag_get(root, tag))
1445 		root_tag_set(root, tag);
1446 
1447 	return node;
1448 }
1449 EXPORT_SYMBOL(radix_tree_tag_set);
1450 
1451 /**
1452  * radix_tree_iter_tag_set - set a tag on the current iterator entry
1453  * @root:	radix tree root
1454  * @iter:	iterator state
1455  * @tag:	tag to set
1456  */
1457 void radix_tree_iter_tag_set(struct radix_tree_root *root,
1458 			const struct radix_tree_iter *iter, unsigned int tag)
1459 {
1460 	node_tag_set(root, iter->node, tag, iter_offset(iter));
1461 }
1462 
1463 static void node_tag_clear(struct radix_tree_root *root,
1464 				struct radix_tree_node *node,
1465 				unsigned int tag, unsigned int offset)
1466 {
1467 	while (node) {
1468 		if (!tag_get(node, tag, offset))
1469 			return;
1470 		tag_clear(node, tag, offset);
1471 		if (any_tag_set(node, tag))
1472 			return;
1473 
1474 		offset = node->offset;
1475 		node = node->parent;
1476 	}
1477 
1478 	/* clear the root's tag bit */
1479 	if (root_tag_get(root, tag))
1480 		root_tag_clear(root, tag);
1481 }
1482 
1483 /**
1484  *	radix_tree_tag_clear - clear a tag on a radix tree node
1485  *	@root:		radix tree root
1486  *	@index:		index key
1487  *	@tag:		tag index
1488  *
1489  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1490  *	corresponding to @index in the radix tree.  If this causes
1491  *	the leaf node to have no tags set then clear the tag in the
1492  *	next-to-leaf node, etc.
1493  *
1494  *	Returns the address of the tagged item on success, else NULL.  ie:
1495  *	has the same return value and semantics as radix_tree_lookup().
1496  */
1497 void *radix_tree_tag_clear(struct radix_tree_root *root,
1498 			unsigned long index, unsigned int tag)
1499 {
1500 	struct radix_tree_node *node, *parent;
1501 	unsigned long maxindex;
1502 	int uninitialized_var(offset);
1503 
1504 	radix_tree_load_root(root, &node, &maxindex);
1505 	if (index > maxindex)
1506 		return NULL;
1507 
1508 	parent = NULL;
1509 
1510 	while (radix_tree_is_internal_node(node)) {
1511 		parent = entry_to_node(node);
1512 		offset = radix_tree_descend(parent, &node, index);
1513 	}
1514 
1515 	if (node)
1516 		node_tag_clear(root, parent, tag, offset);
1517 
1518 	return node;
1519 }
1520 EXPORT_SYMBOL(radix_tree_tag_clear);
1521 
1522 /**
1523   * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1524   * @root: radix tree root
1525   * @iter: iterator state
1526   * @tag: tag to clear
1527   */
1528 void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1529 			const struct radix_tree_iter *iter, unsigned int tag)
1530 {
1531 	node_tag_clear(root, iter->node, tag, iter_offset(iter));
1532 }
1533 
1534 /**
1535  * radix_tree_tag_get - get a tag on a radix tree node
1536  * @root:		radix tree root
1537  * @index:		index key
1538  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1539  *
1540  * Return values:
1541  *
1542  *  0: tag not present or not set
1543  *  1: tag set
1544  *
1545  * Note that the return value of this function may not be relied on, even if
1546  * the RCU lock is held, unless tag modification and node deletion are excluded
1547  * from concurrency.
1548  */
1549 int radix_tree_tag_get(const struct radix_tree_root *root,
1550 			unsigned long index, unsigned int tag)
1551 {
1552 	struct radix_tree_node *node, *parent;
1553 	unsigned long maxindex;
1554 
1555 	if (!root_tag_get(root, tag))
1556 		return 0;
1557 
1558 	radix_tree_load_root(root, &node, &maxindex);
1559 	if (index > maxindex)
1560 		return 0;
1561 
1562 	while (radix_tree_is_internal_node(node)) {
1563 		unsigned offset;
1564 
1565 		parent = entry_to_node(node);
1566 		offset = radix_tree_descend(parent, &node, index);
1567 
1568 		if (!tag_get(parent, tag, offset))
1569 			return 0;
1570 		if (node == RADIX_TREE_RETRY)
1571 			break;
1572 	}
1573 
1574 	return 1;
1575 }
1576 EXPORT_SYMBOL(radix_tree_tag_get);
1577 
1578 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1579 					unsigned int shift)
1580 {
1581 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1582 	iter->shift = shift;
1583 #endif
1584 }
1585 
1586 /* Construct iter->tags bit-mask from node->tags[tag] array */
1587 static void set_iter_tags(struct radix_tree_iter *iter,
1588 				struct radix_tree_node *node, unsigned offset,
1589 				unsigned tag)
1590 {
1591 	unsigned tag_long = offset / BITS_PER_LONG;
1592 	unsigned tag_bit  = offset % BITS_PER_LONG;
1593 
1594 	if (!node) {
1595 		iter->tags = 1;
1596 		return;
1597 	}
1598 
1599 	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1600 
1601 	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1602 	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1603 		/* Pick tags from next element */
1604 		if (tag_bit)
1605 			iter->tags |= node->tags[tag][tag_long + 1] <<
1606 						(BITS_PER_LONG - tag_bit);
1607 		/* Clip chunk size, here only BITS_PER_LONG tags */
1608 		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1609 	}
1610 }
1611 
1612 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1613 static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1614 			void __rcu **slot, struct radix_tree_iter *iter)
1615 {
1616 	void *sib = node_to_entry(slot - 1);
1617 
1618 	while (iter->index < iter->next_index) {
1619 		*nodep = rcu_dereference_raw(*slot);
1620 		if (*nodep && *nodep != sib)
1621 			return slot;
1622 		slot++;
1623 		iter->index = __radix_tree_iter_add(iter, 1);
1624 		iter->tags >>= 1;
1625 	}
1626 
1627 	*nodep = NULL;
1628 	return NULL;
1629 }
1630 
1631 void __rcu **__radix_tree_next_slot(void __rcu **slot,
1632 				struct radix_tree_iter *iter, unsigned flags)
1633 {
1634 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1635 	struct radix_tree_node *node = rcu_dereference_raw(*slot);
1636 
1637 	slot = skip_siblings(&node, slot, iter);
1638 
1639 	while (radix_tree_is_internal_node(node)) {
1640 		unsigned offset;
1641 		unsigned long next_index;
1642 
1643 		if (node == RADIX_TREE_RETRY)
1644 			return slot;
1645 		node = entry_to_node(node);
1646 		iter->node = node;
1647 		iter->shift = node->shift;
1648 
1649 		if (flags & RADIX_TREE_ITER_TAGGED) {
1650 			offset = radix_tree_find_next_bit(node, tag, 0);
1651 			if (offset == RADIX_TREE_MAP_SIZE)
1652 				return NULL;
1653 			slot = &node->slots[offset];
1654 			iter->index = __radix_tree_iter_add(iter, offset);
1655 			set_iter_tags(iter, node, offset, tag);
1656 			node = rcu_dereference_raw(*slot);
1657 		} else {
1658 			offset = 0;
1659 			slot = &node->slots[0];
1660 			for (;;) {
1661 				node = rcu_dereference_raw(*slot);
1662 				if (node)
1663 					break;
1664 				slot++;
1665 				offset++;
1666 				if (offset == RADIX_TREE_MAP_SIZE)
1667 					return NULL;
1668 			}
1669 			iter->index = __radix_tree_iter_add(iter, offset);
1670 		}
1671 		if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1672 			goto none;
1673 		next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1674 		if (next_index < iter->next_index)
1675 			iter->next_index = next_index;
1676 	}
1677 
1678 	return slot;
1679  none:
1680 	iter->next_index = 0;
1681 	return NULL;
1682 }
1683 EXPORT_SYMBOL(__radix_tree_next_slot);
1684 #else
1685 static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1686 			void __rcu **slot, struct radix_tree_iter *iter)
1687 {
1688 	return slot;
1689 }
1690 #endif
1691 
1692 void __rcu **radix_tree_iter_resume(void __rcu **slot,
1693 					struct radix_tree_iter *iter)
1694 {
1695 	struct radix_tree_node *node;
1696 
1697 	slot++;
1698 	iter->index = __radix_tree_iter_add(iter, 1);
1699 	skip_siblings(&node, slot, iter);
1700 	iter->next_index = iter->index;
1701 	iter->tags = 0;
1702 	return NULL;
1703 }
1704 EXPORT_SYMBOL(radix_tree_iter_resume);
1705 
1706 /**
1707  * radix_tree_next_chunk - find next chunk of slots for iteration
1708  *
1709  * @root:	radix tree root
1710  * @iter:	iterator state
1711  * @flags:	RADIX_TREE_ITER_* flags and tag index
1712  * Returns:	pointer to chunk first slot, or NULL if iteration is over
1713  */
1714 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1715 			     struct radix_tree_iter *iter, unsigned flags)
1716 {
1717 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1718 	struct radix_tree_node *node, *child;
1719 	unsigned long index, offset, maxindex;
1720 
1721 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1722 		return NULL;
1723 
1724 	/*
1725 	 * Catch next_index overflow after ~0UL. iter->index never overflows
1726 	 * during iterating; it can be zero only at the beginning.
1727 	 * And we cannot overflow iter->next_index in a single step,
1728 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1729 	 *
1730 	 * This condition also used by radix_tree_next_slot() to stop
1731 	 * contiguous iterating, and forbid switching to the next chunk.
1732 	 */
1733 	index = iter->next_index;
1734 	if (!index && iter->index)
1735 		return NULL;
1736 
1737  restart:
1738 	radix_tree_load_root(root, &child, &maxindex);
1739 	if (index > maxindex)
1740 		return NULL;
1741 	if (!child)
1742 		return NULL;
1743 
1744 	if (!radix_tree_is_internal_node(child)) {
1745 		/* Single-slot tree */
1746 		iter->index = index;
1747 		iter->next_index = maxindex + 1;
1748 		iter->tags = 1;
1749 		iter->node = NULL;
1750 		__set_iter_shift(iter, 0);
1751 		return (void __rcu **)&root->rnode;
1752 	}
1753 
1754 	do {
1755 		node = entry_to_node(child);
1756 		offset = radix_tree_descend(node, &child, index);
1757 
1758 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1759 				!tag_get(node, tag, offset) : !child) {
1760 			/* Hole detected */
1761 			if (flags & RADIX_TREE_ITER_CONTIG)
1762 				return NULL;
1763 
1764 			if (flags & RADIX_TREE_ITER_TAGGED)
1765 				offset = radix_tree_find_next_bit(node, tag,
1766 						offset + 1);
1767 			else
1768 				while (++offset	< RADIX_TREE_MAP_SIZE) {
1769 					void *slot = rcu_dereference_raw(
1770 							node->slots[offset]);
1771 					if (is_sibling_entry(node, slot))
1772 						continue;
1773 					if (slot)
1774 						break;
1775 				}
1776 			index &= ~node_maxindex(node);
1777 			index += offset << node->shift;
1778 			/* Overflow after ~0UL */
1779 			if (!index)
1780 				return NULL;
1781 			if (offset == RADIX_TREE_MAP_SIZE)
1782 				goto restart;
1783 			child = rcu_dereference_raw(node->slots[offset]);
1784 		}
1785 
1786 		if (!child)
1787 			goto restart;
1788 		if (child == RADIX_TREE_RETRY)
1789 			break;
1790 	} while (radix_tree_is_internal_node(child));
1791 
1792 	/* Update the iterator state */
1793 	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1794 	iter->next_index = (index | node_maxindex(node)) + 1;
1795 	iter->node = node;
1796 	__set_iter_shift(iter, node->shift);
1797 
1798 	if (flags & RADIX_TREE_ITER_TAGGED)
1799 		set_iter_tags(iter, node, offset, tag);
1800 
1801 	return node->slots + offset;
1802 }
1803 EXPORT_SYMBOL(radix_tree_next_chunk);
1804 
1805 /**
1806  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1807  *	@root:		radix tree root
1808  *	@results:	where the results of the lookup are placed
1809  *	@first_index:	start the lookup from this key
1810  *	@max_items:	place up to this many items at *results
1811  *
1812  *	Performs an index-ascending scan of the tree for present items.  Places
1813  *	them at *@results and returns the number of items which were placed at
1814  *	*@results.
1815  *
1816  *	The implementation is naive.
1817  *
1818  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1819  *	rcu_read_lock. In this case, rather than the returned results being
1820  *	an atomic snapshot of the tree at a single point in time, the
1821  *	semantics of an RCU protected gang lookup are as though multiple
1822  *	radix_tree_lookups have been issued in individual locks, and results
1823  *	stored in 'results'.
1824  */
1825 unsigned int
1826 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1827 			unsigned long first_index, unsigned int max_items)
1828 {
1829 	struct radix_tree_iter iter;
1830 	void __rcu **slot;
1831 	unsigned int ret = 0;
1832 
1833 	if (unlikely(!max_items))
1834 		return 0;
1835 
1836 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1837 		results[ret] = rcu_dereference_raw(*slot);
1838 		if (!results[ret])
1839 			continue;
1840 		if (radix_tree_is_internal_node(results[ret])) {
1841 			slot = radix_tree_iter_retry(&iter);
1842 			continue;
1843 		}
1844 		if (++ret == max_items)
1845 			break;
1846 	}
1847 
1848 	return ret;
1849 }
1850 EXPORT_SYMBOL(radix_tree_gang_lookup);
1851 
1852 /**
1853  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1854  *	@root:		radix tree root
1855  *	@results:	where the results of the lookup are placed
1856  *	@indices:	where their indices should be placed (but usually NULL)
1857  *	@first_index:	start the lookup from this key
1858  *	@max_items:	place up to this many items at *results
1859  *
1860  *	Performs an index-ascending scan of the tree for present items.  Places
1861  *	their slots at *@results and returns the number of items which were
1862  *	placed at *@results.
1863  *
1864  *	The implementation is naive.
1865  *
1866  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1867  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1868  *	protection, radix_tree_deref_slot may fail requiring a retry.
1869  */
1870 unsigned int
1871 radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
1872 			void __rcu ***results, unsigned long *indices,
1873 			unsigned long first_index, unsigned int max_items)
1874 {
1875 	struct radix_tree_iter iter;
1876 	void __rcu **slot;
1877 	unsigned int ret = 0;
1878 
1879 	if (unlikely(!max_items))
1880 		return 0;
1881 
1882 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1883 		results[ret] = slot;
1884 		if (indices)
1885 			indices[ret] = iter.index;
1886 		if (++ret == max_items)
1887 			break;
1888 	}
1889 
1890 	return ret;
1891 }
1892 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1893 
1894 /**
1895  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1896  *	                             based on a tag
1897  *	@root:		radix tree root
1898  *	@results:	where the results of the lookup are placed
1899  *	@first_index:	start the lookup from this key
1900  *	@max_items:	place up to this many items at *results
1901  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1902  *
1903  *	Performs an index-ascending scan of the tree for present items which
1904  *	have the tag indexed by @tag set.  Places the items at *@results and
1905  *	returns the number of items which were placed at *@results.
1906  */
1907 unsigned int
1908 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1909 		unsigned long first_index, unsigned int max_items,
1910 		unsigned int tag)
1911 {
1912 	struct radix_tree_iter iter;
1913 	void __rcu **slot;
1914 	unsigned int ret = 0;
1915 
1916 	if (unlikely(!max_items))
1917 		return 0;
1918 
1919 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1920 		results[ret] = rcu_dereference_raw(*slot);
1921 		if (!results[ret])
1922 			continue;
1923 		if (radix_tree_is_internal_node(results[ret])) {
1924 			slot = radix_tree_iter_retry(&iter);
1925 			continue;
1926 		}
1927 		if (++ret == max_items)
1928 			break;
1929 	}
1930 
1931 	return ret;
1932 }
1933 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1934 
1935 /**
1936  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1937  *					  radix tree based on a tag
1938  *	@root:		radix tree root
1939  *	@results:	where the results of the lookup are placed
1940  *	@first_index:	start the lookup from this key
1941  *	@max_items:	place up to this many items at *results
1942  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1943  *
1944  *	Performs an index-ascending scan of the tree for present items which
1945  *	have the tag indexed by @tag set.  Places the slots at *@results and
1946  *	returns the number of slots which were placed at *@results.
1947  */
1948 unsigned int
1949 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1950 		void __rcu ***results, unsigned long first_index,
1951 		unsigned int max_items, unsigned int tag)
1952 {
1953 	struct radix_tree_iter iter;
1954 	void __rcu **slot;
1955 	unsigned int ret = 0;
1956 
1957 	if (unlikely(!max_items))
1958 		return 0;
1959 
1960 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1961 		results[ret] = slot;
1962 		if (++ret == max_items)
1963 			break;
1964 	}
1965 
1966 	return ret;
1967 }
1968 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1969 
1970 /**
1971  *	__radix_tree_delete_node    -    try to free node after clearing a slot
1972  *	@root:		radix tree root
1973  *	@node:		node containing @index
1974  *	@update_node:	callback for changing leaf nodes
1975  *	@private:	private data to pass to @update_node
1976  *
1977  *	After clearing the slot at @index in @node from radix tree
1978  *	rooted at @root, call this function to attempt freeing the
1979  *	node and shrinking the tree.
1980  */
1981 void __radix_tree_delete_node(struct radix_tree_root *root,
1982 			      struct radix_tree_node *node,
1983 			      radix_tree_update_node_t update_node,
1984 			      void *private)
1985 {
1986 	delete_node(root, node, update_node, private);
1987 }
1988 
1989 static bool __radix_tree_delete(struct radix_tree_root *root,
1990 				struct radix_tree_node *node, void __rcu **slot)
1991 {
1992 	void *old = rcu_dereference_raw(*slot);
1993 	int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
1994 	unsigned offset = get_slot_offset(node, slot);
1995 	int tag;
1996 
1997 	if (is_idr(root))
1998 		node_tag_set(root, node, IDR_FREE, offset);
1999 	else
2000 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2001 			node_tag_clear(root, node, tag, offset);
2002 
2003 	replace_slot(slot, NULL, node, -1, exceptional);
2004 	return node && delete_node(root, node, NULL, NULL);
2005 }
2006 
2007 /**
2008  * radix_tree_iter_delete - delete the entry at this iterator position
2009  * @root: radix tree root
2010  * @iter: iterator state
2011  * @slot: pointer to slot
2012  *
2013  * Delete the entry at the position currently pointed to by the iterator.
2014  * This may result in the current node being freed; if it is, the iterator
2015  * is advanced so that it will not reference the freed memory.  This
2016  * function may be called without any locking if there are no other threads
2017  * which can access this tree.
2018  */
2019 void radix_tree_iter_delete(struct radix_tree_root *root,
2020 				struct radix_tree_iter *iter, void __rcu **slot)
2021 {
2022 	if (__radix_tree_delete(root, iter->node, slot))
2023 		iter->index = iter->next_index;
2024 }
2025 
2026 /**
2027  * radix_tree_delete_item - delete an item from a radix tree
2028  * @root: radix tree root
2029  * @index: index key
2030  * @item: expected item
2031  *
2032  * Remove @item at @index from the radix tree rooted at @root.
2033  *
2034  * Return: the deleted entry, or %NULL if it was not present
2035  * or the entry at the given @index was not @item.
2036  */
2037 void *radix_tree_delete_item(struct radix_tree_root *root,
2038 			     unsigned long index, void *item)
2039 {
2040 	struct radix_tree_node *node = NULL;
2041 	void __rcu **slot;
2042 	void *entry;
2043 
2044 	entry = __radix_tree_lookup(root, index, &node, &slot);
2045 	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
2046 						get_slot_offset(node, slot))))
2047 		return NULL;
2048 
2049 	if (item && entry != item)
2050 		return NULL;
2051 
2052 	__radix_tree_delete(root, node, slot);
2053 
2054 	return entry;
2055 }
2056 EXPORT_SYMBOL(radix_tree_delete_item);
2057 
2058 /**
2059  * radix_tree_delete - delete an entry from a radix tree
2060  * @root: radix tree root
2061  * @index: index key
2062  *
2063  * Remove the entry at @index from the radix tree rooted at @root.
2064  *
2065  * Return: The deleted entry, or %NULL if it was not present.
2066  */
2067 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
2068 {
2069 	return radix_tree_delete_item(root, index, NULL);
2070 }
2071 EXPORT_SYMBOL(radix_tree_delete);
2072 
2073 void radix_tree_clear_tags(struct radix_tree_root *root,
2074 			   struct radix_tree_node *node,
2075 			   void __rcu **slot)
2076 {
2077 	if (node) {
2078 		unsigned int tag, offset = get_slot_offset(node, slot);
2079 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2080 			node_tag_clear(root, node, tag, offset);
2081 	} else {
2082 		root_tag_clear_all(root);
2083 	}
2084 }
2085 
2086 /**
2087  *	radix_tree_tagged - test whether any items in the tree are tagged
2088  *	@root:		radix tree root
2089  *	@tag:		tag to test
2090  */
2091 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
2092 {
2093 	return root_tag_get(root, tag);
2094 }
2095 EXPORT_SYMBOL(radix_tree_tagged);
2096 
2097 /**
2098  * idr_preload - preload for idr_alloc()
2099  * @gfp_mask: allocation mask to use for preloading
2100  *
2101  * Preallocate memory to use for the next call to idr_alloc().  This function
2102  * returns with preemption disabled.  It will be enabled by idr_preload_end().
2103  */
2104 void idr_preload(gfp_t gfp_mask)
2105 {
2106 	__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE);
2107 }
2108 EXPORT_SYMBOL(idr_preload);
2109 
2110 /**
2111  * ida_pre_get - reserve resources for ida allocation
2112  * @ida: ida handle
2113  * @gfp: memory allocation flags
2114  *
2115  * This function should be called before calling ida_get_new_above().  If it
2116  * is unable to allocate memory, it will return %0.  On success, it returns %1.
2117  */
2118 int ida_pre_get(struct ida *ida, gfp_t gfp)
2119 {
2120 	__radix_tree_preload(gfp, IDA_PRELOAD_SIZE);
2121 	/*
2122 	 * The IDA API has no preload_end() equivalent.  Instead,
2123 	 * ida_get_new() can return -EAGAIN, prompting the caller
2124 	 * to return to the ida_pre_get() step.
2125 	 */
2126 	preempt_enable();
2127 
2128 	if (!this_cpu_read(ida_bitmap)) {
2129 		struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp);
2130 		if (!bitmap)
2131 			return 0;
2132 		if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
2133 			kfree(bitmap);
2134 	}
2135 
2136 	return 1;
2137 }
2138 EXPORT_SYMBOL(ida_pre_get);
2139 
2140 void __rcu **idr_get_free(struct radix_tree_root *root,
2141 			struct radix_tree_iter *iter, gfp_t gfp, int end)
2142 {
2143 	struct radix_tree_node *node = NULL, *child;
2144 	void __rcu **slot = (void __rcu **)&root->rnode;
2145 	unsigned long maxindex, start = iter->next_index;
2146 	unsigned long max = end > 0 ? end - 1 : INT_MAX;
2147 	unsigned int shift, offset = 0;
2148 
2149  grow:
2150 	shift = radix_tree_load_root(root, &child, &maxindex);
2151 	if (!radix_tree_tagged(root, IDR_FREE))
2152 		start = max(start, maxindex + 1);
2153 	if (start > max)
2154 		return ERR_PTR(-ENOSPC);
2155 
2156 	if (start > maxindex) {
2157 		int error = radix_tree_extend(root, gfp, start, shift);
2158 		if (error < 0)
2159 			return ERR_PTR(error);
2160 		shift = error;
2161 		child = rcu_dereference_raw(root->rnode);
2162 	}
2163 
2164 	while (shift) {
2165 		shift -= RADIX_TREE_MAP_SHIFT;
2166 		if (child == NULL) {
2167 			/* Have to add a child node.  */
2168 			child = radix_tree_node_alloc(gfp, node, root, shift,
2169 							offset, 0, 0);
2170 			if (!child)
2171 				return ERR_PTR(-ENOMEM);
2172 			all_tag_set(child, IDR_FREE);
2173 			rcu_assign_pointer(*slot, node_to_entry(child));
2174 			if (node)
2175 				node->count++;
2176 		} else if (!radix_tree_is_internal_node(child))
2177 			break;
2178 
2179 		node = entry_to_node(child);
2180 		offset = radix_tree_descend(node, &child, start);
2181 		if (!tag_get(node, IDR_FREE, offset)) {
2182 			offset = radix_tree_find_next_bit(node, IDR_FREE,
2183 							offset + 1);
2184 			start = next_index(start, node, offset);
2185 			if (start > max)
2186 				return ERR_PTR(-ENOSPC);
2187 			while (offset == RADIX_TREE_MAP_SIZE) {
2188 				offset = node->offset + 1;
2189 				node = node->parent;
2190 				if (!node)
2191 					goto grow;
2192 				shift = node->shift;
2193 			}
2194 			child = rcu_dereference_raw(node->slots[offset]);
2195 		}
2196 		slot = &node->slots[offset];
2197 	}
2198 
2199 	iter->index = start;
2200 	if (node)
2201 		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2202 	else
2203 		iter->next_index = 1;
2204 	iter->node = node;
2205 	__set_iter_shift(iter, shift);
2206 	set_iter_tags(iter, node, offset, IDR_FREE);
2207 
2208 	return slot;
2209 }
2210 
2211 /**
2212  * idr_destroy - release all internal memory from an IDR
2213  * @idr: idr handle
2214  *
2215  * After this function is called, the IDR is empty, and may be reused or
2216  * the data structure containing it may be freed.
2217  *
2218  * A typical clean-up sequence for objects stored in an idr tree will use
2219  * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2220  * free the memory used to keep track of those objects.
2221  */
2222 void idr_destroy(struct idr *idr)
2223 {
2224 	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
2225 	if (radix_tree_is_internal_node(node))
2226 		radix_tree_free_nodes(node);
2227 	idr->idr_rt.rnode = NULL;
2228 	root_tag_set(&idr->idr_rt, IDR_FREE);
2229 }
2230 EXPORT_SYMBOL(idr_destroy);
2231 
2232 static void
2233 radix_tree_node_ctor(void *arg)
2234 {
2235 	struct radix_tree_node *node = arg;
2236 
2237 	memset(node, 0, sizeof(*node));
2238 	INIT_LIST_HEAD(&node->private_list);
2239 }
2240 
2241 static __init unsigned long __maxindex(unsigned int height)
2242 {
2243 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2244 	int shift = RADIX_TREE_INDEX_BITS - width;
2245 
2246 	if (shift < 0)
2247 		return ~0UL;
2248 	if (shift >= BITS_PER_LONG)
2249 		return 0UL;
2250 	return ~0UL >> shift;
2251 }
2252 
2253 static __init void radix_tree_init_maxnodes(void)
2254 {
2255 	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2256 	unsigned int i, j;
2257 
2258 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2259 		height_to_maxindex[i] = __maxindex(i);
2260 	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2261 		for (j = i; j > 0; j--)
2262 			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2263 	}
2264 }
2265 
2266 static int radix_tree_cpu_dead(unsigned int cpu)
2267 {
2268 	struct radix_tree_preload *rtp;
2269 	struct radix_tree_node *node;
2270 
2271 	/* Free per-cpu pool of preloaded nodes */
2272 	rtp = &per_cpu(radix_tree_preloads, cpu);
2273 	while (rtp->nr) {
2274 		node = rtp->nodes;
2275 		rtp->nodes = node->parent;
2276 		kmem_cache_free(radix_tree_node_cachep, node);
2277 		rtp->nr--;
2278 	}
2279 	kfree(per_cpu(ida_bitmap, cpu));
2280 	per_cpu(ida_bitmap, cpu) = NULL;
2281 	return 0;
2282 }
2283 
2284 void __init radix_tree_init(void)
2285 {
2286 	int ret;
2287 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2288 			sizeof(struct radix_tree_node), 0,
2289 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2290 			radix_tree_node_ctor);
2291 	radix_tree_init_maxnodes();
2292 	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2293 					NULL, radix_tree_cpu_dead);
2294 	WARN_ON(ret < 0);
2295 }
2296