xref: /openbmc/linux/lib/radix-tree.c (revision 11788d9b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2001 Momchil Velikov
4  * Portions Copyright (C) 2001 Christoph Hellwig
5  * Copyright (C) 2005 SGI, Christoph Lameter
6  * Copyright (C) 2006 Nick Piggin
7  * Copyright (C) 2012 Konstantin Khlebnikov
8  * Copyright (C) 2016 Intel, Matthew Wilcox
9  * Copyright (C) 2016 Intel, Ross Zwisler
10  */
11 
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/cpu.h>
16 #include <linux/errno.h>
17 #include <linux/export.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/percpu.h>
23 #include <linux/local_lock.h>
24 #include <linux/preempt.h>		/* in_interrupt() */
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/xarray.h>
30 
31 /*
32  * Radix tree node cache.
33  */
34 struct kmem_cache *radix_tree_node_cachep;
35 
36 /*
37  * The radix tree is variable-height, so an insert operation not only has
38  * to build the branch to its corresponding item, it also has to build the
39  * branch to existing items if the size has to be increased (by
40  * radix_tree_extend).
41  *
42  * The worst case is a zero height tree with just a single item at index 0,
43  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
44  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
45  * Hence:
46  */
47 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
48 
49 /*
50  * The IDR does not have to be as high as the radix tree since it uses
51  * signed integers, not unsigned longs.
52  */
53 #define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
54 #define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
55 						RADIX_TREE_MAP_SHIFT))
56 #define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
57 
58 /*
59  * Per-cpu pool of preloaded nodes
60  */
61 DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
62 	.lock = INIT_LOCAL_LOCK(lock),
63 };
64 EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);
65 
66 static inline struct radix_tree_node *entry_to_node(void *ptr)
67 {
68 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
69 }
70 
71 static inline void *node_to_entry(void *ptr)
72 {
73 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
74 }
75 
76 #define RADIX_TREE_RETRY	XA_RETRY_ENTRY
77 
78 static inline unsigned long
79 get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
80 {
81 	return parent ? slot - parent->slots : 0;
82 }
83 
84 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
85 			struct radix_tree_node **nodep, unsigned long index)
86 {
87 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
88 	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
89 
90 	*nodep = (void *)entry;
91 	return offset;
92 }
93 
94 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
95 {
96 	return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
97 }
98 
99 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
100 		int offset)
101 {
102 	__set_bit(offset, node->tags[tag]);
103 }
104 
105 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
106 		int offset)
107 {
108 	__clear_bit(offset, node->tags[tag]);
109 }
110 
111 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
112 		int offset)
113 {
114 	return test_bit(offset, node->tags[tag]);
115 }
116 
117 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
118 {
119 	root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
120 }
121 
122 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
123 {
124 	root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
125 }
126 
127 static inline void root_tag_clear_all(struct radix_tree_root *root)
128 {
129 	root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
130 }
131 
132 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
133 {
134 	return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
135 }
136 
137 static inline unsigned root_tags_get(const struct radix_tree_root *root)
138 {
139 	return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
140 }
141 
142 static inline bool is_idr(const struct radix_tree_root *root)
143 {
144 	return !!(root->xa_flags & ROOT_IS_IDR);
145 }
146 
147 /*
148  * Returns 1 if any slot in the node has this tag set.
149  * Otherwise returns 0.
150  */
151 static inline int any_tag_set(const struct radix_tree_node *node,
152 							unsigned int tag)
153 {
154 	unsigned idx;
155 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
156 		if (node->tags[tag][idx])
157 			return 1;
158 	}
159 	return 0;
160 }
161 
162 static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
163 {
164 	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
165 }
166 
167 /**
168  * radix_tree_find_next_bit - find the next set bit in a memory region
169  *
170  * @addr: The address to base the search on
171  * @size: The bitmap size in bits
172  * @offset: The bitnumber to start searching at
173  *
174  * Unrollable variant of find_next_bit() for constant size arrays.
175  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
176  * Returns next bit offset, or size if nothing found.
177  */
178 static __always_inline unsigned long
179 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
180 			 unsigned long offset)
181 {
182 	const unsigned long *addr = node->tags[tag];
183 
184 	if (offset < RADIX_TREE_MAP_SIZE) {
185 		unsigned long tmp;
186 
187 		addr += offset / BITS_PER_LONG;
188 		tmp = *addr >> (offset % BITS_PER_LONG);
189 		if (tmp)
190 			return __ffs(tmp) + offset;
191 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
192 		while (offset < RADIX_TREE_MAP_SIZE) {
193 			tmp = *++addr;
194 			if (tmp)
195 				return __ffs(tmp) + offset;
196 			offset += BITS_PER_LONG;
197 		}
198 	}
199 	return RADIX_TREE_MAP_SIZE;
200 }
201 
202 static unsigned int iter_offset(const struct radix_tree_iter *iter)
203 {
204 	return iter->index & RADIX_TREE_MAP_MASK;
205 }
206 
207 /*
208  * The maximum index which can be stored in a radix tree
209  */
210 static inline unsigned long shift_maxindex(unsigned int shift)
211 {
212 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
213 }
214 
215 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
216 {
217 	return shift_maxindex(node->shift);
218 }
219 
220 static unsigned long next_index(unsigned long index,
221 				const struct radix_tree_node *node,
222 				unsigned long offset)
223 {
224 	return (index & ~node_maxindex(node)) + (offset << node->shift);
225 }
226 
227 /*
228  * This assumes that the caller has performed appropriate preallocation, and
229  * that the caller has pinned this thread of control to the current CPU.
230  */
231 static struct radix_tree_node *
232 radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
233 			struct radix_tree_root *root,
234 			unsigned int shift, unsigned int offset,
235 			unsigned int count, unsigned int nr_values)
236 {
237 	struct radix_tree_node *ret = NULL;
238 
239 	/*
240 	 * Preload code isn't irq safe and it doesn't make sense to use
241 	 * preloading during an interrupt anyway as all the allocations have
242 	 * to be atomic. So just do normal allocation when in interrupt.
243 	 */
244 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
245 		struct radix_tree_preload *rtp;
246 
247 		/*
248 		 * Even if the caller has preloaded, try to allocate from the
249 		 * cache first for the new node to get accounted to the memory
250 		 * cgroup.
251 		 */
252 		ret = kmem_cache_alloc(radix_tree_node_cachep,
253 				       gfp_mask | __GFP_NOWARN);
254 		if (ret)
255 			goto out;
256 
257 		/*
258 		 * Provided the caller has preloaded here, we will always
259 		 * succeed in getting a node here (and never reach
260 		 * kmem_cache_alloc)
261 		 */
262 		rtp = this_cpu_ptr(&radix_tree_preloads);
263 		if (rtp->nr) {
264 			ret = rtp->nodes;
265 			rtp->nodes = ret->parent;
266 			rtp->nr--;
267 		}
268 		/*
269 		 * Update the allocation stack trace as this is more useful
270 		 * for debugging.
271 		 */
272 		kmemleak_update_trace(ret);
273 		goto out;
274 	}
275 	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
276 out:
277 	BUG_ON(radix_tree_is_internal_node(ret));
278 	if (ret) {
279 		ret->shift = shift;
280 		ret->offset = offset;
281 		ret->count = count;
282 		ret->nr_values = nr_values;
283 		ret->parent = parent;
284 		ret->array = root;
285 	}
286 	return ret;
287 }
288 
289 void radix_tree_node_rcu_free(struct rcu_head *head)
290 {
291 	struct radix_tree_node *node =
292 			container_of(head, struct radix_tree_node, rcu_head);
293 
294 	/*
295 	 * Must only free zeroed nodes into the slab.  We can be left with
296 	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
297 	 * and tags here.
298 	 */
299 	memset(node->slots, 0, sizeof(node->slots));
300 	memset(node->tags, 0, sizeof(node->tags));
301 	INIT_LIST_HEAD(&node->private_list);
302 
303 	kmem_cache_free(radix_tree_node_cachep, node);
304 }
305 
306 static inline void
307 radix_tree_node_free(struct radix_tree_node *node)
308 {
309 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
310 }
311 
312 /*
313  * Load up this CPU's radix_tree_node buffer with sufficient objects to
314  * ensure that the addition of a single element in the tree cannot fail.  On
315  * success, return zero, with preemption disabled.  On error, return -ENOMEM
316  * with preemption not disabled.
317  *
318  * To make use of this facility, the radix tree must be initialised without
319  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
320  */
321 static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
322 {
323 	struct radix_tree_preload *rtp;
324 	struct radix_tree_node *node;
325 	int ret = -ENOMEM;
326 
327 	/*
328 	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
329 	 * they should never be accounted to any particular memory cgroup.
330 	 */
331 	gfp_mask &= ~__GFP_ACCOUNT;
332 
333 	local_lock(&radix_tree_preloads.lock);
334 	rtp = this_cpu_ptr(&radix_tree_preloads);
335 	while (rtp->nr < nr) {
336 		local_unlock(&radix_tree_preloads.lock);
337 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
338 		if (node == NULL)
339 			goto out;
340 		local_lock(&radix_tree_preloads.lock);
341 		rtp = this_cpu_ptr(&radix_tree_preloads);
342 		if (rtp->nr < nr) {
343 			node->parent = rtp->nodes;
344 			rtp->nodes = node;
345 			rtp->nr++;
346 		} else {
347 			kmem_cache_free(radix_tree_node_cachep, node);
348 		}
349 	}
350 	ret = 0;
351 out:
352 	return ret;
353 }
354 
355 /*
356  * Load up this CPU's radix_tree_node buffer with sufficient objects to
357  * ensure that the addition of a single element in the tree cannot fail.  On
358  * success, return zero, with preemption disabled.  On error, return -ENOMEM
359  * with preemption not disabled.
360  *
361  * To make use of this facility, the radix tree must be initialised without
362  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
363  */
364 int radix_tree_preload(gfp_t gfp_mask)
365 {
366 	/* Warn on non-sensical use... */
367 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
368 	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
369 }
370 EXPORT_SYMBOL(radix_tree_preload);
371 
372 /*
373  * The same as above function, except we don't guarantee preloading happens.
374  * We do it, if we decide it helps. On success, return zero with preemption
375  * disabled. On error, return -ENOMEM with preemption not disabled.
376  */
377 int radix_tree_maybe_preload(gfp_t gfp_mask)
378 {
379 	if (gfpflags_allow_blocking(gfp_mask))
380 		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
381 	/* Preloading doesn't help anything with this gfp mask, skip it */
382 	local_lock(&radix_tree_preloads.lock);
383 	return 0;
384 }
385 EXPORT_SYMBOL(radix_tree_maybe_preload);
386 
387 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
388 		struct radix_tree_node **nodep, unsigned long *maxindex)
389 {
390 	struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
391 
392 	*nodep = node;
393 
394 	if (likely(radix_tree_is_internal_node(node))) {
395 		node = entry_to_node(node);
396 		*maxindex = node_maxindex(node);
397 		return node->shift + RADIX_TREE_MAP_SHIFT;
398 	}
399 
400 	*maxindex = 0;
401 	return 0;
402 }
403 
404 /*
405  *	Extend a radix tree so it can store key @index.
406  */
407 static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
408 				unsigned long index, unsigned int shift)
409 {
410 	void *entry;
411 	unsigned int maxshift;
412 	int tag;
413 
414 	/* Figure out what the shift should be.  */
415 	maxshift = shift;
416 	while (index > shift_maxindex(maxshift))
417 		maxshift += RADIX_TREE_MAP_SHIFT;
418 
419 	entry = rcu_dereference_raw(root->xa_head);
420 	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
421 		goto out;
422 
423 	do {
424 		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
425 							root, shift, 0, 1, 0);
426 		if (!node)
427 			return -ENOMEM;
428 
429 		if (is_idr(root)) {
430 			all_tag_set(node, IDR_FREE);
431 			if (!root_tag_get(root, IDR_FREE)) {
432 				tag_clear(node, IDR_FREE, 0);
433 				root_tag_set(root, IDR_FREE);
434 			}
435 		} else {
436 			/* Propagate the aggregated tag info to the new child */
437 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
438 				if (root_tag_get(root, tag))
439 					tag_set(node, tag, 0);
440 			}
441 		}
442 
443 		BUG_ON(shift > BITS_PER_LONG);
444 		if (radix_tree_is_internal_node(entry)) {
445 			entry_to_node(entry)->parent = node;
446 		} else if (xa_is_value(entry)) {
447 			/* Moving a value entry root->xa_head to a node */
448 			node->nr_values = 1;
449 		}
450 		/*
451 		 * entry was already in the radix tree, so we do not need
452 		 * rcu_assign_pointer here
453 		 */
454 		node->slots[0] = (void __rcu *)entry;
455 		entry = node_to_entry(node);
456 		rcu_assign_pointer(root->xa_head, entry);
457 		shift += RADIX_TREE_MAP_SHIFT;
458 	} while (shift <= maxshift);
459 out:
460 	return maxshift + RADIX_TREE_MAP_SHIFT;
461 }
462 
463 /**
464  *	radix_tree_shrink    -    shrink radix tree to minimum height
465  *	@root		radix tree root
466  */
467 static inline bool radix_tree_shrink(struct radix_tree_root *root)
468 {
469 	bool shrunk = false;
470 
471 	for (;;) {
472 		struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
473 		struct radix_tree_node *child;
474 
475 		if (!radix_tree_is_internal_node(node))
476 			break;
477 		node = entry_to_node(node);
478 
479 		/*
480 		 * The candidate node has more than one child, or its child
481 		 * is not at the leftmost slot, we cannot shrink.
482 		 */
483 		if (node->count != 1)
484 			break;
485 		child = rcu_dereference_raw(node->slots[0]);
486 		if (!child)
487 			break;
488 
489 		/*
490 		 * For an IDR, we must not shrink entry 0 into the root in
491 		 * case somebody calls idr_replace() with a pointer that
492 		 * appears to be an internal entry
493 		 */
494 		if (!node->shift && is_idr(root))
495 			break;
496 
497 		if (radix_tree_is_internal_node(child))
498 			entry_to_node(child)->parent = NULL;
499 
500 		/*
501 		 * We don't need rcu_assign_pointer(), since we are simply
502 		 * moving the node from one part of the tree to another: if it
503 		 * was safe to dereference the old pointer to it
504 		 * (node->slots[0]), it will be safe to dereference the new
505 		 * one (root->xa_head) as far as dependent read barriers go.
506 		 */
507 		root->xa_head = (void __rcu *)child;
508 		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
509 			root_tag_clear(root, IDR_FREE);
510 
511 		/*
512 		 * We have a dilemma here. The node's slot[0] must not be
513 		 * NULLed in case there are concurrent lookups expecting to
514 		 * find the item. However if this was a bottom-level node,
515 		 * then it may be subject to the slot pointer being visible
516 		 * to callers dereferencing it. If item corresponding to
517 		 * slot[0] is subsequently deleted, these callers would expect
518 		 * their slot to become empty sooner or later.
519 		 *
520 		 * For example, lockless pagecache will look up a slot, deref
521 		 * the page pointer, and if the page has 0 refcount it means it
522 		 * was concurrently deleted from pagecache so try the deref
523 		 * again. Fortunately there is already a requirement for logic
524 		 * to retry the entire slot lookup -- the indirect pointer
525 		 * problem (replacing direct root node with an indirect pointer
526 		 * also results in a stale slot). So tag the slot as indirect
527 		 * to force callers to retry.
528 		 */
529 		node->count = 0;
530 		if (!radix_tree_is_internal_node(child)) {
531 			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
532 		}
533 
534 		WARN_ON_ONCE(!list_empty(&node->private_list));
535 		radix_tree_node_free(node);
536 		shrunk = true;
537 	}
538 
539 	return shrunk;
540 }
541 
542 static bool delete_node(struct radix_tree_root *root,
543 			struct radix_tree_node *node)
544 {
545 	bool deleted = false;
546 
547 	do {
548 		struct radix_tree_node *parent;
549 
550 		if (node->count) {
551 			if (node_to_entry(node) ==
552 					rcu_dereference_raw(root->xa_head))
553 				deleted |= radix_tree_shrink(root);
554 			return deleted;
555 		}
556 
557 		parent = node->parent;
558 		if (parent) {
559 			parent->slots[node->offset] = NULL;
560 			parent->count--;
561 		} else {
562 			/*
563 			 * Shouldn't the tags already have all been cleared
564 			 * by the caller?
565 			 */
566 			if (!is_idr(root))
567 				root_tag_clear_all(root);
568 			root->xa_head = NULL;
569 		}
570 
571 		WARN_ON_ONCE(!list_empty(&node->private_list));
572 		radix_tree_node_free(node);
573 		deleted = true;
574 
575 		node = parent;
576 	} while (node);
577 
578 	return deleted;
579 }
580 
581 /**
582  *	__radix_tree_create	-	create a slot in a radix tree
583  *	@root:		radix tree root
584  *	@index:		index key
585  *	@nodep:		returns node
586  *	@slotp:		returns slot
587  *
588  *	Create, if necessary, and return the node and slot for an item
589  *	at position @index in the radix tree @root.
590  *
591  *	Until there is more than one item in the tree, no nodes are
592  *	allocated and @root->xa_head is used as a direct slot instead of
593  *	pointing to a node, in which case *@nodep will be NULL.
594  *
595  *	Returns -ENOMEM, or 0 for success.
596  */
597 static int __radix_tree_create(struct radix_tree_root *root,
598 		unsigned long index, struct radix_tree_node **nodep,
599 		void __rcu ***slotp)
600 {
601 	struct radix_tree_node *node = NULL, *child;
602 	void __rcu **slot = (void __rcu **)&root->xa_head;
603 	unsigned long maxindex;
604 	unsigned int shift, offset = 0;
605 	unsigned long max = index;
606 	gfp_t gfp = root_gfp_mask(root);
607 
608 	shift = radix_tree_load_root(root, &child, &maxindex);
609 
610 	/* Make sure the tree is high enough.  */
611 	if (max > maxindex) {
612 		int error = radix_tree_extend(root, gfp, max, shift);
613 		if (error < 0)
614 			return error;
615 		shift = error;
616 		child = rcu_dereference_raw(root->xa_head);
617 	}
618 
619 	while (shift > 0) {
620 		shift -= RADIX_TREE_MAP_SHIFT;
621 		if (child == NULL) {
622 			/* Have to add a child node.  */
623 			child = radix_tree_node_alloc(gfp, node, root, shift,
624 							offset, 0, 0);
625 			if (!child)
626 				return -ENOMEM;
627 			rcu_assign_pointer(*slot, node_to_entry(child));
628 			if (node)
629 				node->count++;
630 		} else if (!radix_tree_is_internal_node(child))
631 			break;
632 
633 		/* Go a level down */
634 		node = entry_to_node(child);
635 		offset = radix_tree_descend(node, &child, index);
636 		slot = &node->slots[offset];
637 	}
638 
639 	if (nodep)
640 		*nodep = node;
641 	if (slotp)
642 		*slotp = slot;
643 	return 0;
644 }
645 
646 /*
647  * Free any nodes below this node.  The tree is presumed to not need
648  * shrinking, and any user data in the tree is presumed to not need a
649  * destructor called on it.  If we need to add a destructor, we can
650  * add that functionality later.  Note that we may not clear tags or
651  * slots from the tree as an RCU walker may still have a pointer into
652  * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
653  * but we'll still have to clear those in rcu_free.
654  */
655 static void radix_tree_free_nodes(struct radix_tree_node *node)
656 {
657 	unsigned offset = 0;
658 	struct radix_tree_node *child = entry_to_node(node);
659 
660 	for (;;) {
661 		void *entry = rcu_dereference_raw(child->slots[offset]);
662 		if (xa_is_node(entry) && child->shift) {
663 			child = entry_to_node(entry);
664 			offset = 0;
665 			continue;
666 		}
667 		offset++;
668 		while (offset == RADIX_TREE_MAP_SIZE) {
669 			struct radix_tree_node *old = child;
670 			offset = child->offset + 1;
671 			child = child->parent;
672 			WARN_ON_ONCE(!list_empty(&old->private_list));
673 			radix_tree_node_free(old);
674 			if (old == entry_to_node(node))
675 				return;
676 		}
677 	}
678 }
679 
680 static inline int insert_entries(struct radix_tree_node *node,
681 		void __rcu **slot, void *item, bool replace)
682 {
683 	if (*slot)
684 		return -EEXIST;
685 	rcu_assign_pointer(*slot, item);
686 	if (node) {
687 		node->count++;
688 		if (xa_is_value(item))
689 			node->nr_values++;
690 	}
691 	return 1;
692 }
693 
694 /**
695  *	__radix_tree_insert    -    insert into a radix tree
696  *	@root:		radix tree root
697  *	@index:		index key
698  *	@item:		item to insert
699  *
700  *	Insert an item into the radix tree at position @index.
701  */
702 int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
703 			void *item)
704 {
705 	struct radix_tree_node *node;
706 	void __rcu **slot;
707 	int error;
708 
709 	BUG_ON(radix_tree_is_internal_node(item));
710 
711 	error = __radix_tree_create(root, index, &node, &slot);
712 	if (error)
713 		return error;
714 
715 	error = insert_entries(node, slot, item, false);
716 	if (error < 0)
717 		return error;
718 
719 	if (node) {
720 		unsigned offset = get_slot_offset(node, slot);
721 		BUG_ON(tag_get(node, 0, offset));
722 		BUG_ON(tag_get(node, 1, offset));
723 		BUG_ON(tag_get(node, 2, offset));
724 	} else {
725 		BUG_ON(root_tags_get(root));
726 	}
727 
728 	return 0;
729 }
730 EXPORT_SYMBOL(radix_tree_insert);
731 
732 /**
733  *	__radix_tree_lookup	-	lookup an item in a radix tree
734  *	@root:		radix tree root
735  *	@index:		index key
736  *	@nodep:		returns node
737  *	@slotp:		returns slot
738  *
739  *	Lookup and return the item at position @index in the radix
740  *	tree @root.
741  *
742  *	Until there is more than one item in the tree, no nodes are
743  *	allocated and @root->xa_head is used as a direct slot instead of
744  *	pointing to a node, in which case *@nodep will be NULL.
745  */
746 void *__radix_tree_lookup(const struct radix_tree_root *root,
747 			  unsigned long index, struct radix_tree_node **nodep,
748 			  void __rcu ***slotp)
749 {
750 	struct radix_tree_node *node, *parent;
751 	unsigned long maxindex;
752 	void __rcu **slot;
753 
754  restart:
755 	parent = NULL;
756 	slot = (void __rcu **)&root->xa_head;
757 	radix_tree_load_root(root, &node, &maxindex);
758 	if (index > maxindex)
759 		return NULL;
760 
761 	while (radix_tree_is_internal_node(node)) {
762 		unsigned offset;
763 
764 		parent = entry_to_node(node);
765 		offset = radix_tree_descend(parent, &node, index);
766 		slot = parent->slots + offset;
767 		if (node == RADIX_TREE_RETRY)
768 			goto restart;
769 		if (parent->shift == 0)
770 			break;
771 	}
772 
773 	if (nodep)
774 		*nodep = parent;
775 	if (slotp)
776 		*slotp = slot;
777 	return node;
778 }
779 
780 /**
781  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
782  *	@root:		radix tree root
783  *	@index:		index key
784  *
785  *	Returns:  the slot corresponding to the position @index in the
786  *	radix tree @root. This is useful for update-if-exists operations.
787  *
788  *	This function can be called under rcu_read_lock iff the slot is not
789  *	modified by radix_tree_replace_slot, otherwise it must be called
790  *	exclusive from other writers. Any dereference of the slot must be done
791  *	using radix_tree_deref_slot.
792  */
793 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
794 				unsigned long index)
795 {
796 	void __rcu **slot;
797 
798 	if (!__radix_tree_lookup(root, index, NULL, &slot))
799 		return NULL;
800 	return slot;
801 }
802 EXPORT_SYMBOL(radix_tree_lookup_slot);
803 
804 /**
805  *	radix_tree_lookup    -    perform lookup operation on a radix tree
806  *	@root:		radix tree root
807  *	@index:		index key
808  *
809  *	Lookup the item at the position @index in the radix tree @root.
810  *
811  *	This function can be called under rcu_read_lock, however the caller
812  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
813  *	them safely). No RCU barriers are required to access or modify the
814  *	returned item, however.
815  */
816 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
817 {
818 	return __radix_tree_lookup(root, index, NULL, NULL);
819 }
820 EXPORT_SYMBOL(radix_tree_lookup);
821 
822 static void replace_slot(void __rcu **slot, void *item,
823 		struct radix_tree_node *node, int count, int values)
824 {
825 	if (node && (count || values)) {
826 		node->count += count;
827 		node->nr_values += values;
828 	}
829 
830 	rcu_assign_pointer(*slot, item);
831 }
832 
833 static bool node_tag_get(const struct radix_tree_root *root,
834 				const struct radix_tree_node *node,
835 				unsigned int tag, unsigned int offset)
836 {
837 	if (node)
838 		return tag_get(node, tag, offset);
839 	return root_tag_get(root, tag);
840 }
841 
842 /*
843  * IDR users want to be able to store NULL in the tree, so if the slot isn't
844  * free, don't adjust the count, even if it's transitioning between NULL and
845  * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
846  * have empty bits, but it only stores NULL in slots when they're being
847  * deleted.
848  */
849 static int calculate_count(struct radix_tree_root *root,
850 				struct radix_tree_node *node, void __rcu **slot,
851 				void *item, void *old)
852 {
853 	if (is_idr(root)) {
854 		unsigned offset = get_slot_offset(node, slot);
855 		bool free = node_tag_get(root, node, IDR_FREE, offset);
856 		if (!free)
857 			return 0;
858 		if (!old)
859 			return 1;
860 	}
861 	return !!item - !!old;
862 }
863 
864 /**
865  * __radix_tree_replace		- replace item in a slot
866  * @root:		radix tree root
867  * @node:		pointer to tree node
868  * @slot:		pointer to slot in @node
869  * @item:		new item to store in the slot.
870  *
871  * For use with __radix_tree_lookup().  Caller must hold tree write locked
872  * across slot lookup and replacement.
873  */
874 void __radix_tree_replace(struct radix_tree_root *root,
875 			  struct radix_tree_node *node,
876 			  void __rcu **slot, void *item)
877 {
878 	void *old = rcu_dereference_raw(*slot);
879 	int values = !!xa_is_value(item) - !!xa_is_value(old);
880 	int count = calculate_count(root, node, slot, item, old);
881 
882 	/*
883 	 * This function supports replacing value entries and
884 	 * deleting entries, but that needs accounting against the
885 	 * node unless the slot is root->xa_head.
886 	 */
887 	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
888 			(count || values));
889 	replace_slot(slot, item, node, count, values);
890 
891 	if (!node)
892 		return;
893 
894 	delete_node(root, node);
895 }
896 
897 /**
898  * radix_tree_replace_slot	- replace item in a slot
899  * @root:	radix tree root
900  * @slot:	pointer to slot
901  * @item:	new item to store in the slot.
902  *
903  * For use with radix_tree_lookup_slot() and
904  * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
905  * across slot lookup and replacement.
906  *
907  * NOTE: This cannot be used to switch between non-entries (empty slots),
908  * regular entries, and value entries, as that requires accounting
909  * inside the radix tree node. When switching from one type of entry or
910  * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
911  * radix_tree_iter_replace().
912  */
913 void radix_tree_replace_slot(struct radix_tree_root *root,
914 			     void __rcu **slot, void *item)
915 {
916 	__radix_tree_replace(root, NULL, slot, item);
917 }
918 EXPORT_SYMBOL(radix_tree_replace_slot);
919 
920 /**
921  * radix_tree_iter_replace - replace item in a slot
922  * @root:	radix tree root
923  * @slot:	pointer to slot
924  * @item:	new item to store in the slot.
925  *
926  * For use with radix_tree_for_each_slot().
927  * Caller must hold tree write locked.
928  */
929 void radix_tree_iter_replace(struct radix_tree_root *root,
930 				const struct radix_tree_iter *iter,
931 				void __rcu **slot, void *item)
932 {
933 	__radix_tree_replace(root, iter->node, slot, item);
934 }
935 
936 static void node_tag_set(struct radix_tree_root *root,
937 				struct radix_tree_node *node,
938 				unsigned int tag, unsigned int offset)
939 {
940 	while (node) {
941 		if (tag_get(node, tag, offset))
942 			return;
943 		tag_set(node, tag, offset);
944 		offset = node->offset;
945 		node = node->parent;
946 	}
947 
948 	if (!root_tag_get(root, tag))
949 		root_tag_set(root, tag);
950 }
951 
952 /**
953  *	radix_tree_tag_set - set a tag on a radix tree node
954  *	@root:		radix tree root
955  *	@index:		index key
956  *	@tag:		tag index
957  *
958  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
959  *	corresponding to @index in the radix tree.  From
960  *	the root all the way down to the leaf node.
961  *
962  *	Returns the address of the tagged item.  Setting a tag on a not-present
963  *	item is a bug.
964  */
965 void *radix_tree_tag_set(struct radix_tree_root *root,
966 			unsigned long index, unsigned int tag)
967 {
968 	struct radix_tree_node *node, *parent;
969 	unsigned long maxindex;
970 
971 	radix_tree_load_root(root, &node, &maxindex);
972 	BUG_ON(index > maxindex);
973 
974 	while (radix_tree_is_internal_node(node)) {
975 		unsigned offset;
976 
977 		parent = entry_to_node(node);
978 		offset = radix_tree_descend(parent, &node, index);
979 		BUG_ON(!node);
980 
981 		if (!tag_get(parent, tag, offset))
982 			tag_set(parent, tag, offset);
983 	}
984 
985 	/* set the root's tag bit */
986 	if (!root_tag_get(root, tag))
987 		root_tag_set(root, tag);
988 
989 	return node;
990 }
991 EXPORT_SYMBOL(radix_tree_tag_set);
992 
993 static void node_tag_clear(struct radix_tree_root *root,
994 				struct radix_tree_node *node,
995 				unsigned int tag, unsigned int offset)
996 {
997 	while (node) {
998 		if (!tag_get(node, tag, offset))
999 			return;
1000 		tag_clear(node, tag, offset);
1001 		if (any_tag_set(node, tag))
1002 			return;
1003 
1004 		offset = node->offset;
1005 		node = node->parent;
1006 	}
1007 
1008 	/* clear the root's tag bit */
1009 	if (root_tag_get(root, tag))
1010 		root_tag_clear(root, tag);
1011 }
1012 
1013 /**
1014  *	radix_tree_tag_clear - clear a tag on a radix tree node
1015  *	@root:		radix tree root
1016  *	@index:		index key
1017  *	@tag:		tag index
1018  *
1019  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1020  *	corresponding to @index in the radix tree.  If this causes
1021  *	the leaf node to have no tags set then clear the tag in the
1022  *	next-to-leaf node, etc.
1023  *
1024  *	Returns the address of the tagged item on success, else NULL.  ie:
1025  *	has the same return value and semantics as radix_tree_lookup().
1026  */
1027 void *radix_tree_tag_clear(struct radix_tree_root *root,
1028 			unsigned long index, unsigned int tag)
1029 {
1030 	struct radix_tree_node *node, *parent;
1031 	unsigned long maxindex;
1032 	int offset;
1033 
1034 	radix_tree_load_root(root, &node, &maxindex);
1035 	if (index > maxindex)
1036 		return NULL;
1037 
1038 	parent = NULL;
1039 
1040 	while (radix_tree_is_internal_node(node)) {
1041 		parent = entry_to_node(node);
1042 		offset = radix_tree_descend(parent, &node, index);
1043 	}
1044 
1045 	if (node)
1046 		node_tag_clear(root, parent, tag, offset);
1047 
1048 	return node;
1049 }
1050 EXPORT_SYMBOL(radix_tree_tag_clear);
1051 
1052 /**
1053   * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1054   * @root: radix tree root
1055   * @iter: iterator state
1056   * @tag: tag to clear
1057   */
1058 void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1059 			const struct radix_tree_iter *iter, unsigned int tag)
1060 {
1061 	node_tag_clear(root, iter->node, tag, iter_offset(iter));
1062 }
1063 
1064 /**
1065  * radix_tree_tag_get - get a tag on a radix tree node
1066  * @root:		radix tree root
1067  * @index:		index key
1068  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1069  *
1070  * Return values:
1071  *
1072  *  0: tag not present or not set
1073  *  1: tag set
1074  *
1075  * Note that the return value of this function may not be relied on, even if
1076  * the RCU lock is held, unless tag modification and node deletion are excluded
1077  * from concurrency.
1078  */
1079 int radix_tree_tag_get(const struct radix_tree_root *root,
1080 			unsigned long index, unsigned int tag)
1081 {
1082 	struct radix_tree_node *node, *parent;
1083 	unsigned long maxindex;
1084 
1085 	if (!root_tag_get(root, tag))
1086 		return 0;
1087 
1088 	radix_tree_load_root(root, &node, &maxindex);
1089 	if (index > maxindex)
1090 		return 0;
1091 
1092 	while (radix_tree_is_internal_node(node)) {
1093 		unsigned offset;
1094 
1095 		parent = entry_to_node(node);
1096 		offset = radix_tree_descend(parent, &node, index);
1097 
1098 		if (!tag_get(parent, tag, offset))
1099 			return 0;
1100 		if (node == RADIX_TREE_RETRY)
1101 			break;
1102 	}
1103 
1104 	return 1;
1105 }
1106 EXPORT_SYMBOL(radix_tree_tag_get);
1107 
1108 /* Construct iter->tags bit-mask from node->tags[tag] array */
1109 static void set_iter_tags(struct radix_tree_iter *iter,
1110 				struct radix_tree_node *node, unsigned offset,
1111 				unsigned tag)
1112 {
1113 	unsigned tag_long = offset / BITS_PER_LONG;
1114 	unsigned tag_bit  = offset % BITS_PER_LONG;
1115 
1116 	if (!node) {
1117 		iter->tags = 1;
1118 		return;
1119 	}
1120 
1121 	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1122 
1123 	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1124 	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1125 		/* Pick tags from next element */
1126 		if (tag_bit)
1127 			iter->tags |= node->tags[tag][tag_long + 1] <<
1128 						(BITS_PER_LONG - tag_bit);
1129 		/* Clip chunk size, here only BITS_PER_LONG tags */
1130 		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1131 	}
1132 }
1133 
1134 void __rcu **radix_tree_iter_resume(void __rcu **slot,
1135 					struct radix_tree_iter *iter)
1136 {
1137 	slot++;
1138 	iter->index = __radix_tree_iter_add(iter, 1);
1139 	iter->next_index = iter->index;
1140 	iter->tags = 0;
1141 	return NULL;
1142 }
1143 EXPORT_SYMBOL(radix_tree_iter_resume);
1144 
1145 /**
1146  * radix_tree_next_chunk - find next chunk of slots for iteration
1147  *
1148  * @root:	radix tree root
1149  * @iter:	iterator state
1150  * @flags:	RADIX_TREE_ITER_* flags and tag index
1151  * Returns:	pointer to chunk first slot, or NULL if iteration is over
1152  */
1153 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1154 			     struct radix_tree_iter *iter, unsigned flags)
1155 {
1156 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1157 	struct radix_tree_node *node, *child;
1158 	unsigned long index, offset, maxindex;
1159 
1160 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1161 		return NULL;
1162 
1163 	/*
1164 	 * Catch next_index overflow after ~0UL. iter->index never overflows
1165 	 * during iterating; it can be zero only at the beginning.
1166 	 * And we cannot overflow iter->next_index in a single step,
1167 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1168 	 *
1169 	 * This condition also used by radix_tree_next_slot() to stop
1170 	 * contiguous iterating, and forbid switching to the next chunk.
1171 	 */
1172 	index = iter->next_index;
1173 	if (!index && iter->index)
1174 		return NULL;
1175 
1176  restart:
1177 	radix_tree_load_root(root, &child, &maxindex);
1178 	if (index > maxindex)
1179 		return NULL;
1180 	if (!child)
1181 		return NULL;
1182 
1183 	if (!radix_tree_is_internal_node(child)) {
1184 		/* Single-slot tree */
1185 		iter->index = index;
1186 		iter->next_index = maxindex + 1;
1187 		iter->tags = 1;
1188 		iter->node = NULL;
1189 		return (void __rcu **)&root->xa_head;
1190 	}
1191 
1192 	do {
1193 		node = entry_to_node(child);
1194 		offset = radix_tree_descend(node, &child, index);
1195 
1196 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1197 				!tag_get(node, tag, offset) : !child) {
1198 			/* Hole detected */
1199 			if (flags & RADIX_TREE_ITER_CONTIG)
1200 				return NULL;
1201 
1202 			if (flags & RADIX_TREE_ITER_TAGGED)
1203 				offset = radix_tree_find_next_bit(node, tag,
1204 						offset + 1);
1205 			else
1206 				while (++offset	< RADIX_TREE_MAP_SIZE) {
1207 					void *slot = rcu_dereference_raw(
1208 							node->slots[offset]);
1209 					if (slot)
1210 						break;
1211 				}
1212 			index &= ~node_maxindex(node);
1213 			index += offset << node->shift;
1214 			/* Overflow after ~0UL */
1215 			if (!index)
1216 				return NULL;
1217 			if (offset == RADIX_TREE_MAP_SIZE)
1218 				goto restart;
1219 			child = rcu_dereference_raw(node->slots[offset]);
1220 		}
1221 
1222 		if (!child)
1223 			goto restart;
1224 		if (child == RADIX_TREE_RETRY)
1225 			break;
1226 	} while (node->shift && radix_tree_is_internal_node(child));
1227 
1228 	/* Update the iterator state */
1229 	iter->index = (index &~ node_maxindex(node)) | offset;
1230 	iter->next_index = (index | node_maxindex(node)) + 1;
1231 	iter->node = node;
1232 
1233 	if (flags & RADIX_TREE_ITER_TAGGED)
1234 		set_iter_tags(iter, node, offset, tag);
1235 
1236 	return node->slots + offset;
1237 }
1238 EXPORT_SYMBOL(radix_tree_next_chunk);
1239 
1240 /**
1241  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1242  *	@root:		radix tree root
1243  *	@results:	where the results of the lookup are placed
1244  *	@first_index:	start the lookup from this key
1245  *	@max_items:	place up to this many items at *results
1246  *
1247  *	Performs an index-ascending scan of the tree for present items.  Places
1248  *	them at *@results and returns the number of items which were placed at
1249  *	*@results.
1250  *
1251  *	The implementation is naive.
1252  *
1253  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1254  *	rcu_read_lock. In this case, rather than the returned results being
1255  *	an atomic snapshot of the tree at a single point in time, the
1256  *	semantics of an RCU protected gang lookup are as though multiple
1257  *	radix_tree_lookups have been issued in individual locks, and results
1258  *	stored in 'results'.
1259  */
1260 unsigned int
1261 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1262 			unsigned long first_index, unsigned int max_items)
1263 {
1264 	struct radix_tree_iter iter;
1265 	void __rcu **slot;
1266 	unsigned int ret = 0;
1267 
1268 	if (unlikely(!max_items))
1269 		return 0;
1270 
1271 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1272 		results[ret] = rcu_dereference_raw(*slot);
1273 		if (!results[ret])
1274 			continue;
1275 		if (radix_tree_is_internal_node(results[ret])) {
1276 			slot = radix_tree_iter_retry(&iter);
1277 			continue;
1278 		}
1279 		if (++ret == max_items)
1280 			break;
1281 	}
1282 
1283 	return ret;
1284 }
1285 EXPORT_SYMBOL(radix_tree_gang_lookup);
1286 
1287 /**
1288  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1289  *	                             based on a tag
1290  *	@root:		radix tree root
1291  *	@results:	where the results of the lookup are placed
1292  *	@first_index:	start the lookup from this key
1293  *	@max_items:	place up to this many items at *results
1294  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1295  *
1296  *	Performs an index-ascending scan of the tree for present items which
1297  *	have the tag indexed by @tag set.  Places the items at *@results and
1298  *	returns the number of items which were placed at *@results.
1299  */
1300 unsigned int
1301 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1302 		unsigned long first_index, unsigned int max_items,
1303 		unsigned int tag)
1304 {
1305 	struct radix_tree_iter iter;
1306 	void __rcu **slot;
1307 	unsigned int ret = 0;
1308 
1309 	if (unlikely(!max_items))
1310 		return 0;
1311 
1312 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1313 		results[ret] = rcu_dereference_raw(*slot);
1314 		if (!results[ret])
1315 			continue;
1316 		if (radix_tree_is_internal_node(results[ret])) {
1317 			slot = radix_tree_iter_retry(&iter);
1318 			continue;
1319 		}
1320 		if (++ret == max_items)
1321 			break;
1322 	}
1323 
1324 	return ret;
1325 }
1326 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1327 
1328 /**
1329  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1330  *					  radix tree based on a tag
1331  *	@root:		radix tree root
1332  *	@results:	where the results of the lookup are placed
1333  *	@first_index:	start the lookup from this key
1334  *	@max_items:	place up to this many items at *results
1335  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1336  *
1337  *	Performs an index-ascending scan of the tree for present items which
1338  *	have the tag indexed by @tag set.  Places the slots at *@results and
1339  *	returns the number of slots which were placed at *@results.
1340  */
1341 unsigned int
1342 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1343 		void __rcu ***results, unsigned long first_index,
1344 		unsigned int max_items, unsigned int tag)
1345 {
1346 	struct radix_tree_iter iter;
1347 	void __rcu **slot;
1348 	unsigned int ret = 0;
1349 
1350 	if (unlikely(!max_items))
1351 		return 0;
1352 
1353 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1354 		results[ret] = slot;
1355 		if (++ret == max_items)
1356 			break;
1357 	}
1358 
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1362 
1363 static bool __radix_tree_delete(struct radix_tree_root *root,
1364 				struct radix_tree_node *node, void __rcu **slot)
1365 {
1366 	void *old = rcu_dereference_raw(*slot);
1367 	int values = xa_is_value(old) ? -1 : 0;
1368 	unsigned offset = get_slot_offset(node, slot);
1369 	int tag;
1370 
1371 	if (is_idr(root))
1372 		node_tag_set(root, node, IDR_FREE, offset);
1373 	else
1374 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1375 			node_tag_clear(root, node, tag, offset);
1376 
1377 	replace_slot(slot, NULL, node, -1, values);
1378 	return node && delete_node(root, node);
1379 }
1380 
1381 /**
1382  * radix_tree_iter_delete - delete the entry at this iterator position
1383  * @root: radix tree root
1384  * @iter: iterator state
1385  * @slot: pointer to slot
1386  *
1387  * Delete the entry at the position currently pointed to by the iterator.
1388  * This may result in the current node being freed; if it is, the iterator
1389  * is advanced so that it will not reference the freed memory.  This
1390  * function may be called without any locking if there are no other threads
1391  * which can access this tree.
1392  */
1393 void radix_tree_iter_delete(struct radix_tree_root *root,
1394 				struct radix_tree_iter *iter, void __rcu **slot)
1395 {
1396 	if (__radix_tree_delete(root, iter->node, slot))
1397 		iter->index = iter->next_index;
1398 }
1399 EXPORT_SYMBOL(radix_tree_iter_delete);
1400 
1401 /**
1402  * radix_tree_delete_item - delete an item from a radix tree
1403  * @root: radix tree root
1404  * @index: index key
1405  * @item: expected item
1406  *
1407  * Remove @item at @index from the radix tree rooted at @root.
1408  *
1409  * Return: the deleted entry, or %NULL if it was not present
1410  * or the entry at the given @index was not @item.
1411  */
1412 void *radix_tree_delete_item(struct radix_tree_root *root,
1413 			     unsigned long index, void *item)
1414 {
1415 	struct radix_tree_node *node = NULL;
1416 	void __rcu **slot = NULL;
1417 	void *entry;
1418 
1419 	entry = __radix_tree_lookup(root, index, &node, &slot);
1420 	if (!slot)
1421 		return NULL;
1422 	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1423 						get_slot_offset(node, slot))))
1424 		return NULL;
1425 
1426 	if (item && entry != item)
1427 		return NULL;
1428 
1429 	__radix_tree_delete(root, node, slot);
1430 
1431 	return entry;
1432 }
1433 EXPORT_SYMBOL(radix_tree_delete_item);
1434 
1435 /**
1436  * radix_tree_delete - delete an entry from a radix tree
1437  * @root: radix tree root
1438  * @index: index key
1439  *
1440  * Remove the entry at @index from the radix tree rooted at @root.
1441  *
1442  * Return: The deleted entry, or %NULL if it was not present.
1443  */
1444 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1445 {
1446 	return radix_tree_delete_item(root, index, NULL);
1447 }
1448 EXPORT_SYMBOL(radix_tree_delete);
1449 
1450 /**
1451  *	radix_tree_tagged - test whether any items in the tree are tagged
1452  *	@root:		radix tree root
1453  *	@tag:		tag to test
1454  */
1455 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1456 {
1457 	return root_tag_get(root, tag);
1458 }
1459 EXPORT_SYMBOL(radix_tree_tagged);
1460 
1461 /**
1462  * idr_preload - preload for idr_alloc()
1463  * @gfp_mask: allocation mask to use for preloading
1464  *
1465  * Preallocate memory to use for the next call to idr_alloc().  This function
1466  * returns with preemption disabled.  It will be enabled by idr_preload_end().
1467  */
1468 void idr_preload(gfp_t gfp_mask)
1469 {
1470 	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1471 		local_lock(&radix_tree_preloads.lock);
1472 }
1473 EXPORT_SYMBOL(idr_preload);
1474 
1475 void __rcu **idr_get_free(struct radix_tree_root *root,
1476 			      struct radix_tree_iter *iter, gfp_t gfp,
1477 			      unsigned long max)
1478 {
1479 	struct radix_tree_node *node = NULL, *child;
1480 	void __rcu **slot = (void __rcu **)&root->xa_head;
1481 	unsigned long maxindex, start = iter->next_index;
1482 	unsigned int shift, offset = 0;
1483 
1484  grow:
1485 	shift = radix_tree_load_root(root, &child, &maxindex);
1486 	if (!radix_tree_tagged(root, IDR_FREE))
1487 		start = max(start, maxindex + 1);
1488 	if (start > max)
1489 		return ERR_PTR(-ENOSPC);
1490 
1491 	if (start > maxindex) {
1492 		int error = radix_tree_extend(root, gfp, start, shift);
1493 		if (error < 0)
1494 			return ERR_PTR(error);
1495 		shift = error;
1496 		child = rcu_dereference_raw(root->xa_head);
1497 	}
1498 	if (start == 0 && shift == 0)
1499 		shift = RADIX_TREE_MAP_SHIFT;
1500 
1501 	while (shift) {
1502 		shift -= RADIX_TREE_MAP_SHIFT;
1503 		if (child == NULL) {
1504 			/* Have to add a child node.  */
1505 			child = radix_tree_node_alloc(gfp, node, root, shift,
1506 							offset, 0, 0);
1507 			if (!child)
1508 				return ERR_PTR(-ENOMEM);
1509 			all_tag_set(child, IDR_FREE);
1510 			rcu_assign_pointer(*slot, node_to_entry(child));
1511 			if (node)
1512 				node->count++;
1513 		} else if (!radix_tree_is_internal_node(child))
1514 			break;
1515 
1516 		node = entry_to_node(child);
1517 		offset = radix_tree_descend(node, &child, start);
1518 		if (!tag_get(node, IDR_FREE, offset)) {
1519 			offset = radix_tree_find_next_bit(node, IDR_FREE,
1520 							offset + 1);
1521 			start = next_index(start, node, offset);
1522 			if (start > max || start == 0)
1523 				return ERR_PTR(-ENOSPC);
1524 			while (offset == RADIX_TREE_MAP_SIZE) {
1525 				offset = node->offset + 1;
1526 				node = node->parent;
1527 				if (!node)
1528 					goto grow;
1529 				shift = node->shift;
1530 			}
1531 			child = rcu_dereference_raw(node->slots[offset]);
1532 		}
1533 		slot = &node->slots[offset];
1534 	}
1535 
1536 	iter->index = start;
1537 	if (node)
1538 		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1539 	else
1540 		iter->next_index = 1;
1541 	iter->node = node;
1542 	set_iter_tags(iter, node, offset, IDR_FREE);
1543 
1544 	return slot;
1545 }
1546 
1547 /**
1548  * idr_destroy - release all internal memory from an IDR
1549  * @idr: idr handle
1550  *
1551  * After this function is called, the IDR is empty, and may be reused or
1552  * the data structure containing it may be freed.
1553  *
1554  * A typical clean-up sequence for objects stored in an idr tree will use
1555  * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1556  * free the memory used to keep track of those objects.
1557  */
1558 void idr_destroy(struct idr *idr)
1559 {
1560 	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1561 	if (radix_tree_is_internal_node(node))
1562 		radix_tree_free_nodes(node);
1563 	idr->idr_rt.xa_head = NULL;
1564 	root_tag_set(&idr->idr_rt, IDR_FREE);
1565 }
1566 EXPORT_SYMBOL(idr_destroy);
1567 
1568 static void
1569 radix_tree_node_ctor(void *arg)
1570 {
1571 	struct radix_tree_node *node = arg;
1572 
1573 	memset(node, 0, sizeof(*node));
1574 	INIT_LIST_HEAD(&node->private_list);
1575 }
1576 
1577 static int radix_tree_cpu_dead(unsigned int cpu)
1578 {
1579 	struct radix_tree_preload *rtp;
1580 	struct radix_tree_node *node;
1581 
1582 	/* Free per-cpu pool of preloaded nodes */
1583 	rtp = &per_cpu(radix_tree_preloads, cpu);
1584 	while (rtp->nr) {
1585 		node = rtp->nodes;
1586 		rtp->nodes = node->parent;
1587 		kmem_cache_free(radix_tree_node_cachep, node);
1588 		rtp->nr--;
1589 	}
1590 	return 0;
1591 }
1592 
1593 void __init radix_tree_init(void)
1594 {
1595 	int ret;
1596 
1597 	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1598 	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1599 	BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1600 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1601 			sizeof(struct radix_tree_node), 0,
1602 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1603 			radix_tree_node_ctor);
1604 	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1605 					NULL, radix_tree_cpu_dead);
1606 	WARN_ON(ret < 0);
1607 }
1608