1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2005 SGI, Christoph Lameter 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2, or (at 11 * your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/errno.h> 24 #include <linux/init.h> 25 #include <linux/kernel.h> 26 #include <linux/export.h> 27 #include <linux/radix-tree.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/kmemleak.h> 31 #include <linux/notifier.h> 32 #include <linux/cpu.h> 33 #include <linux/string.h> 34 #include <linux/bitops.h> 35 #include <linux/rcupdate.h> 36 #include <linux/preempt.h> /* in_interrupt() */ 37 38 39 /* 40 * The height_to_maxindex array needs to be one deeper than the maximum 41 * path as height 0 holds only 1 entry. 42 */ 43 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly; 44 45 /* 46 * Radix tree node cache. 47 */ 48 static struct kmem_cache *radix_tree_node_cachep; 49 50 /* 51 * The radix tree is variable-height, so an insert operation not only has 52 * to build the branch to its corresponding item, it also has to build the 53 * branch to existing items if the size has to be increased (by 54 * radix_tree_extend). 55 * 56 * The worst case is a zero height tree with just a single item at index 0, 57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches 58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. 59 * Hence: 60 */ 61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) 62 63 /* 64 * Per-cpu pool of preloaded nodes 65 */ 66 struct radix_tree_preload { 67 int nr; 68 /* nodes->private_data points to next preallocated node */ 69 struct radix_tree_node *nodes; 70 }; 71 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; 72 73 static inline void *ptr_to_indirect(void *ptr) 74 { 75 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR); 76 } 77 78 static inline void *indirect_to_ptr(void *ptr) 79 { 80 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR); 81 } 82 83 static inline gfp_t root_gfp_mask(struct radix_tree_root *root) 84 { 85 return root->gfp_mask & __GFP_BITS_MASK; 86 } 87 88 static inline void tag_set(struct radix_tree_node *node, unsigned int tag, 89 int offset) 90 { 91 __set_bit(offset, node->tags[tag]); 92 } 93 94 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, 95 int offset) 96 { 97 __clear_bit(offset, node->tags[tag]); 98 } 99 100 static inline int tag_get(struct radix_tree_node *node, unsigned int tag, 101 int offset) 102 { 103 return test_bit(offset, node->tags[tag]); 104 } 105 106 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) 107 { 108 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); 109 } 110 111 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag) 112 { 113 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); 114 } 115 116 static inline void root_tag_clear_all(struct radix_tree_root *root) 117 { 118 root->gfp_mask &= __GFP_BITS_MASK; 119 } 120 121 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) 122 { 123 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); 124 } 125 126 /* 127 * Returns 1 if any slot in the node has this tag set. 128 * Otherwise returns 0. 129 */ 130 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) 131 { 132 int idx; 133 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { 134 if (node->tags[tag][idx]) 135 return 1; 136 } 137 return 0; 138 } 139 140 /** 141 * radix_tree_find_next_bit - find the next set bit in a memory region 142 * 143 * @addr: The address to base the search on 144 * @size: The bitmap size in bits 145 * @offset: The bitnumber to start searching at 146 * 147 * Unrollable variant of find_next_bit() for constant size arrays. 148 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. 149 * Returns next bit offset, or size if nothing found. 150 */ 151 static __always_inline unsigned long 152 radix_tree_find_next_bit(const unsigned long *addr, 153 unsigned long size, unsigned long offset) 154 { 155 if (!__builtin_constant_p(size)) 156 return find_next_bit(addr, size, offset); 157 158 if (offset < size) { 159 unsigned long tmp; 160 161 addr += offset / BITS_PER_LONG; 162 tmp = *addr >> (offset % BITS_PER_LONG); 163 if (tmp) 164 return __ffs(tmp) + offset; 165 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); 166 while (offset < size) { 167 tmp = *++addr; 168 if (tmp) 169 return __ffs(tmp) + offset; 170 offset += BITS_PER_LONG; 171 } 172 } 173 return size; 174 } 175 176 /* 177 * This assumes that the caller has performed appropriate preallocation, and 178 * that the caller has pinned this thread of control to the current CPU. 179 */ 180 static struct radix_tree_node * 181 radix_tree_node_alloc(struct radix_tree_root *root) 182 { 183 struct radix_tree_node *ret = NULL; 184 gfp_t gfp_mask = root_gfp_mask(root); 185 186 /* 187 * Preload code isn't irq safe and it doesn't make sence to use 188 * preloading in the interrupt anyway as all the allocations have to 189 * be atomic. So just do normal allocation when in interrupt. 190 */ 191 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { 192 struct radix_tree_preload *rtp; 193 194 /* 195 * Provided the caller has preloaded here, we will always 196 * succeed in getting a node here (and never reach 197 * kmem_cache_alloc) 198 */ 199 rtp = this_cpu_ptr(&radix_tree_preloads); 200 if (rtp->nr) { 201 ret = rtp->nodes; 202 rtp->nodes = ret->private_data; 203 ret->private_data = NULL; 204 rtp->nr--; 205 } 206 /* 207 * Update the allocation stack trace as this is more useful 208 * for debugging. 209 */ 210 kmemleak_update_trace(ret); 211 } 212 if (ret == NULL) 213 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 214 215 BUG_ON(radix_tree_is_indirect_ptr(ret)); 216 return ret; 217 } 218 219 static void radix_tree_node_rcu_free(struct rcu_head *head) 220 { 221 struct radix_tree_node *node = 222 container_of(head, struct radix_tree_node, rcu_head); 223 int i; 224 225 /* 226 * must only free zeroed nodes into the slab. radix_tree_shrink 227 * can leave us with a non-NULL entry in the first slot, so clear 228 * that here to make sure. 229 */ 230 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++) 231 tag_clear(node, i, 0); 232 233 node->slots[0] = NULL; 234 node->count = 0; 235 236 kmem_cache_free(radix_tree_node_cachep, node); 237 } 238 239 static inline void 240 radix_tree_node_free(struct radix_tree_node *node) 241 { 242 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 243 } 244 245 /* 246 * Load up this CPU's radix_tree_node buffer with sufficient objects to 247 * ensure that the addition of a single element in the tree cannot fail. On 248 * success, return zero, with preemption disabled. On error, return -ENOMEM 249 * with preemption not disabled. 250 * 251 * To make use of this facility, the radix tree must be initialised without 252 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 253 */ 254 static int __radix_tree_preload(gfp_t gfp_mask) 255 { 256 struct radix_tree_preload *rtp; 257 struct radix_tree_node *node; 258 int ret = -ENOMEM; 259 260 preempt_disable(); 261 rtp = this_cpu_ptr(&radix_tree_preloads); 262 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) { 263 preempt_enable(); 264 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 265 if (node == NULL) 266 goto out; 267 preempt_disable(); 268 rtp = this_cpu_ptr(&radix_tree_preloads); 269 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) { 270 node->private_data = rtp->nodes; 271 rtp->nodes = node; 272 rtp->nr++; 273 } else { 274 kmem_cache_free(radix_tree_node_cachep, node); 275 } 276 } 277 ret = 0; 278 out: 279 return ret; 280 } 281 282 /* 283 * Load up this CPU's radix_tree_node buffer with sufficient objects to 284 * ensure that the addition of a single element in the tree cannot fail. On 285 * success, return zero, with preemption disabled. On error, return -ENOMEM 286 * with preemption not disabled. 287 * 288 * To make use of this facility, the radix tree must be initialised without 289 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 290 */ 291 int radix_tree_preload(gfp_t gfp_mask) 292 { 293 /* Warn on non-sensical use... */ 294 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); 295 return __radix_tree_preload(gfp_mask); 296 } 297 EXPORT_SYMBOL(radix_tree_preload); 298 299 /* 300 * The same as above function, except we don't guarantee preloading happens. 301 * We do it, if we decide it helps. On success, return zero with preemption 302 * disabled. On error, return -ENOMEM with preemption not disabled. 303 */ 304 int radix_tree_maybe_preload(gfp_t gfp_mask) 305 { 306 if (gfpflags_allow_blocking(gfp_mask)) 307 return __radix_tree_preload(gfp_mask); 308 /* Preloading doesn't help anything with this gfp mask, skip it */ 309 preempt_disable(); 310 return 0; 311 } 312 EXPORT_SYMBOL(radix_tree_maybe_preload); 313 314 /* 315 * Return the maximum key which can be store into a 316 * radix tree with height HEIGHT. 317 */ 318 static inline unsigned long radix_tree_maxindex(unsigned int height) 319 { 320 return height_to_maxindex[height]; 321 } 322 323 /* 324 * Extend a radix tree so it can store key @index. 325 */ 326 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index) 327 { 328 struct radix_tree_node *node; 329 struct radix_tree_node *slot; 330 unsigned int height; 331 int tag; 332 333 /* Figure out what the height should be. */ 334 height = root->height + 1; 335 while (index > radix_tree_maxindex(height)) 336 height++; 337 338 if (root->rnode == NULL) { 339 root->height = height; 340 goto out; 341 } 342 343 do { 344 unsigned int newheight; 345 if (!(node = radix_tree_node_alloc(root))) 346 return -ENOMEM; 347 348 /* Propagate the aggregated tag info into the new root */ 349 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 350 if (root_tag_get(root, tag)) 351 tag_set(node, tag, 0); 352 } 353 354 /* Increase the height. */ 355 newheight = root->height+1; 356 BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK); 357 node->path = newheight; 358 node->count = 1; 359 node->parent = NULL; 360 slot = root->rnode; 361 if (newheight > 1) { 362 slot = indirect_to_ptr(slot); 363 slot->parent = node; 364 } 365 node->slots[0] = slot; 366 node = ptr_to_indirect(node); 367 rcu_assign_pointer(root->rnode, node); 368 root->height = newheight; 369 } while (height > root->height); 370 out: 371 return 0; 372 } 373 374 /** 375 * __radix_tree_create - create a slot in a radix tree 376 * @root: radix tree root 377 * @index: index key 378 * @nodep: returns node 379 * @slotp: returns slot 380 * 381 * Create, if necessary, and return the node and slot for an item 382 * at position @index in the radix tree @root. 383 * 384 * Until there is more than one item in the tree, no nodes are 385 * allocated and @root->rnode is used as a direct slot instead of 386 * pointing to a node, in which case *@nodep will be NULL. 387 * 388 * Returns -ENOMEM, or 0 for success. 389 */ 390 int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 391 struct radix_tree_node **nodep, void ***slotp) 392 { 393 struct radix_tree_node *node = NULL, *slot; 394 unsigned int height, shift, offset; 395 int error; 396 397 /* Make sure the tree is high enough. */ 398 if (index > radix_tree_maxindex(root->height)) { 399 error = radix_tree_extend(root, index); 400 if (error) 401 return error; 402 } 403 404 slot = indirect_to_ptr(root->rnode); 405 406 height = root->height; 407 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 408 409 offset = 0; /* uninitialised var warning */ 410 while (height > 0) { 411 if (slot == NULL) { 412 /* Have to add a child node. */ 413 if (!(slot = radix_tree_node_alloc(root))) 414 return -ENOMEM; 415 slot->path = height; 416 slot->parent = node; 417 if (node) { 418 rcu_assign_pointer(node->slots[offset], slot); 419 node->count++; 420 slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT; 421 } else 422 rcu_assign_pointer(root->rnode, ptr_to_indirect(slot)); 423 } 424 425 /* Go a level down */ 426 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 427 node = slot; 428 slot = node->slots[offset]; 429 shift -= RADIX_TREE_MAP_SHIFT; 430 height--; 431 } 432 433 if (nodep) 434 *nodep = node; 435 if (slotp) 436 *slotp = node ? node->slots + offset : (void **)&root->rnode; 437 return 0; 438 } 439 440 /** 441 * radix_tree_insert - insert into a radix tree 442 * @root: radix tree root 443 * @index: index key 444 * @item: item to insert 445 * 446 * Insert an item into the radix tree at position @index. 447 */ 448 int radix_tree_insert(struct radix_tree_root *root, 449 unsigned long index, void *item) 450 { 451 struct radix_tree_node *node; 452 void **slot; 453 int error; 454 455 BUG_ON(radix_tree_is_indirect_ptr(item)); 456 457 error = __radix_tree_create(root, index, &node, &slot); 458 if (error) 459 return error; 460 if (*slot != NULL) 461 return -EEXIST; 462 rcu_assign_pointer(*slot, item); 463 464 if (node) { 465 node->count++; 466 BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK)); 467 BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK)); 468 } else { 469 BUG_ON(root_tag_get(root, 0)); 470 BUG_ON(root_tag_get(root, 1)); 471 } 472 473 return 0; 474 } 475 EXPORT_SYMBOL(radix_tree_insert); 476 477 /** 478 * __radix_tree_lookup - lookup an item in a radix tree 479 * @root: radix tree root 480 * @index: index key 481 * @nodep: returns node 482 * @slotp: returns slot 483 * 484 * Lookup and return the item at position @index in the radix 485 * tree @root. 486 * 487 * Until there is more than one item in the tree, no nodes are 488 * allocated and @root->rnode is used as a direct slot instead of 489 * pointing to a node, in which case *@nodep will be NULL. 490 */ 491 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 492 struct radix_tree_node **nodep, void ***slotp) 493 { 494 struct radix_tree_node *node, *parent; 495 unsigned int height, shift; 496 void **slot; 497 498 node = rcu_dereference_raw(root->rnode); 499 if (node == NULL) 500 return NULL; 501 502 if (!radix_tree_is_indirect_ptr(node)) { 503 if (index > 0) 504 return NULL; 505 506 if (nodep) 507 *nodep = NULL; 508 if (slotp) 509 *slotp = (void **)&root->rnode; 510 return node; 511 } 512 node = indirect_to_ptr(node); 513 514 height = node->path & RADIX_TREE_HEIGHT_MASK; 515 if (index > radix_tree_maxindex(height)) 516 return NULL; 517 518 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 519 520 do { 521 parent = node; 522 slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK); 523 node = rcu_dereference_raw(*slot); 524 if (node == NULL) 525 return NULL; 526 527 shift -= RADIX_TREE_MAP_SHIFT; 528 height--; 529 } while (height > 0); 530 531 if (nodep) 532 *nodep = parent; 533 if (slotp) 534 *slotp = slot; 535 return node; 536 } 537 538 /** 539 * radix_tree_lookup_slot - lookup a slot in a radix tree 540 * @root: radix tree root 541 * @index: index key 542 * 543 * Returns: the slot corresponding to the position @index in the 544 * radix tree @root. This is useful for update-if-exists operations. 545 * 546 * This function can be called under rcu_read_lock iff the slot is not 547 * modified by radix_tree_replace_slot, otherwise it must be called 548 * exclusive from other writers. Any dereference of the slot must be done 549 * using radix_tree_deref_slot. 550 */ 551 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) 552 { 553 void **slot; 554 555 if (!__radix_tree_lookup(root, index, NULL, &slot)) 556 return NULL; 557 return slot; 558 } 559 EXPORT_SYMBOL(radix_tree_lookup_slot); 560 561 /** 562 * radix_tree_lookup - perform lookup operation on a radix tree 563 * @root: radix tree root 564 * @index: index key 565 * 566 * Lookup the item at the position @index in the radix tree @root. 567 * 568 * This function can be called under rcu_read_lock, however the caller 569 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free 570 * them safely). No RCU barriers are required to access or modify the 571 * returned item, however. 572 */ 573 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) 574 { 575 return __radix_tree_lookup(root, index, NULL, NULL); 576 } 577 EXPORT_SYMBOL(radix_tree_lookup); 578 579 /** 580 * radix_tree_tag_set - set a tag on a radix tree node 581 * @root: radix tree root 582 * @index: index key 583 * @tag: tag index 584 * 585 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) 586 * corresponding to @index in the radix tree. From 587 * the root all the way down to the leaf node. 588 * 589 * Returns the address of the tagged item. Setting a tag on a not-present 590 * item is a bug. 591 */ 592 void *radix_tree_tag_set(struct radix_tree_root *root, 593 unsigned long index, unsigned int tag) 594 { 595 unsigned int height, shift; 596 struct radix_tree_node *slot; 597 598 height = root->height; 599 BUG_ON(index > radix_tree_maxindex(height)); 600 601 slot = indirect_to_ptr(root->rnode); 602 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 603 604 while (height > 0) { 605 int offset; 606 607 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 608 if (!tag_get(slot, tag, offset)) 609 tag_set(slot, tag, offset); 610 slot = slot->slots[offset]; 611 BUG_ON(slot == NULL); 612 shift -= RADIX_TREE_MAP_SHIFT; 613 height--; 614 } 615 616 /* set the root's tag bit */ 617 if (slot && !root_tag_get(root, tag)) 618 root_tag_set(root, tag); 619 620 return slot; 621 } 622 EXPORT_SYMBOL(radix_tree_tag_set); 623 624 /** 625 * radix_tree_tag_clear - clear a tag on a radix tree node 626 * @root: radix tree root 627 * @index: index key 628 * @tag: tag index 629 * 630 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) 631 * corresponding to @index in the radix tree. If 632 * this causes the leaf node to have no tags set then clear the tag in the 633 * next-to-leaf node, etc. 634 * 635 * Returns the address of the tagged item on success, else NULL. ie: 636 * has the same return value and semantics as radix_tree_lookup(). 637 */ 638 void *radix_tree_tag_clear(struct radix_tree_root *root, 639 unsigned long index, unsigned int tag) 640 { 641 struct radix_tree_node *node = NULL; 642 struct radix_tree_node *slot = NULL; 643 unsigned int height, shift; 644 int uninitialized_var(offset); 645 646 height = root->height; 647 if (index > radix_tree_maxindex(height)) 648 goto out; 649 650 shift = height * RADIX_TREE_MAP_SHIFT; 651 slot = indirect_to_ptr(root->rnode); 652 653 while (shift) { 654 if (slot == NULL) 655 goto out; 656 657 shift -= RADIX_TREE_MAP_SHIFT; 658 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 659 node = slot; 660 slot = slot->slots[offset]; 661 } 662 663 if (slot == NULL) 664 goto out; 665 666 while (node) { 667 if (!tag_get(node, tag, offset)) 668 goto out; 669 tag_clear(node, tag, offset); 670 if (any_tag_set(node, tag)) 671 goto out; 672 673 index >>= RADIX_TREE_MAP_SHIFT; 674 offset = index & RADIX_TREE_MAP_MASK; 675 node = node->parent; 676 } 677 678 /* clear the root's tag bit */ 679 if (root_tag_get(root, tag)) 680 root_tag_clear(root, tag); 681 682 out: 683 return slot; 684 } 685 EXPORT_SYMBOL(radix_tree_tag_clear); 686 687 /** 688 * radix_tree_tag_get - get a tag on a radix tree node 689 * @root: radix tree root 690 * @index: index key 691 * @tag: tag index (< RADIX_TREE_MAX_TAGS) 692 * 693 * Return values: 694 * 695 * 0: tag not present or not set 696 * 1: tag set 697 * 698 * Note that the return value of this function may not be relied on, even if 699 * the RCU lock is held, unless tag modification and node deletion are excluded 700 * from concurrency. 701 */ 702 int radix_tree_tag_get(struct radix_tree_root *root, 703 unsigned long index, unsigned int tag) 704 { 705 unsigned int height, shift; 706 struct radix_tree_node *node; 707 708 /* check the root's tag bit */ 709 if (!root_tag_get(root, tag)) 710 return 0; 711 712 node = rcu_dereference_raw(root->rnode); 713 if (node == NULL) 714 return 0; 715 716 if (!radix_tree_is_indirect_ptr(node)) 717 return (index == 0); 718 node = indirect_to_ptr(node); 719 720 height = node->path & RADIX_TREE_HEIGHT_MASK; 721 if (index > radix_tree_maxindex(height)) 722 return 0; 723 724 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 725 726 for ( ; ; ) { 727 int offset; 728 729 if (node == NULL) 730 return 0; 731 732 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 733 if (!tag_get(node, tag, offset)) 734 return 0; 735 if (height == 1) 736 return 1; 737 node = rcu_dereference_raw(node->slots[offset]); 738 shift -= RADIX_TREE_MAP_SHIFT; 739 height--; 740 } 741 } 742 EXPORT_SYMBOL(radix_tree_tag_get); 743 744 /** 745 * radix_tree_next_chunk - find next chunk of slots for iteration 746 * 747 * @root: radix tree root 748 * @iter: iterator state 749 * @flags: RADIX_TREE_ITER_* flags and tag index 750 * Returns: pointer to chunk first slot, or NULL if iteration is over 751 */ 752 void **radix_tree_next_chunk(struct radix_tree_root *root, 753 struct radix_tree_iter *iter, unsigned flags) 754 { 755 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK; 756 struct radix_tree_node *rnode, *node; 757 unsigned long index, offset, height; 758 759 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) 760 return NULL; 761 762 /* 763 * Catch next_index overflow after ~0UL. iter->index never overflows 764 * during iterating; it can be zero only at the beginning. 765 * And we cannot overflow iter->next_index in a single step, 766 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. 767 * 768 * This condition also used by radix_tree_next_slot() to stop 769 * contiguous iterating, and forbid swithing to the next chunk. 770 */ 771 index = iter->next_index; 772 if (!index && iter->index) 773 return NULL; 774 775 rnode = rcu_dereference_raw(root->rnode); 776 if (radix_tree_is_indirect_ptr(rnode)) { 777 rnode = indirect_to_ptr(rnode); 778 } else if (rnode && !index) { 779 /* Single-slot tree */ 780 iter->index = 0; 781 iter->next_index = 1; 782 iter->tags = 1; 783 return (void **)&root->rnode; 784 } else 785 return NULL; 786 787 restart: 788 height = rnode->path & RADIX_TREE_HEIGHT_MASK; 789 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 790 offset = index >> shift; 791 792 /* Index outside of the tree */ 793 if (offset >= RADIX_TREE_MAP_SIZE) 794 return NULL; 795 796 node = rnode; 797 while (1) { 798 if ((flags & RADIX_TREE_ITER_TAGGED) ? 799 !test_bit(offset, node->tags[tag]) : 800 !node->slots[offset]) { 801 /* Hole detected */ 802 if (flags & RADIX_TREE_ITER_CONTIG) 803 return NULL; 804 805 if (flags & RADIX_TREE_ITER_TAGGED) 806 offset = radix_tree_find_next_bit( 807 node->tags[tag], 808 RADIX_TREE_MAP_SIZE, 809 offset + 1); 810 else 811 while (++offset < RADIX_TREE_MAP_SIZE) { 812 if (node->slots[offset]) 813 break; 814 } 815 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1); 816 index += offset << shift; 817 /* Overflow after ~0UL */ 818 if (!index) 819 return NULL; 820 if (offset == RADIX_TREE_MAP_SIZE) 821 goto restart; 822 } 823 824 /* This is leaf-node */ 825 if (!shift) 826 break; 827 828 node = rcu_dereference_raw(node->slots[offset]); 829 if (node == NULL) 830 goto restart; 831 shift -= RADIX_TREE_MAP_SHIFT; 832 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 833 } 834 835 /* Update the iterator state */ 836 iter->index = index; 837 iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1; 838 839 /* Construct iter->tags bit-mask from node->tags[tag] array */ 840 if (flags & RADIX_TREE_ITER_TAGGED) { 841 unsigned tag_long, tag_bit; 842 843 tag_long = offset / BITS_PER_LONG; 844 tag_bit = offset % BITS_PER_LONG; 845 iter->tags = node->tags[tag][tag_long] >> tag_bit; 846 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ 847 if (tag_long < RADIX_TREE_TAG_LONGS - 1) { 848 /* Pick tags from next element */ 849 if (tag_bit) 850 iter->tags |= node->tags[tag][tag_long + 1] << 851 (BITS_PER_LONG - tag_bit); 852 /* Clip chunk size, here only BITS_PER_LONG tags */ 853 iter->next_index = index + BITS_PER_LONG; 854 } 855 } 856 857 return node->slots + offset; 858 } 859 EXPORT_SYMBOL(radix_tree_next_chunk); 860 861 /** 862 * radix_tree_range_tag_if_tagged - for each item in given range set given 863 * tag if item has another tag set 864 * @root: radix tree root 865 * @first_indexp: pointer to a starting index of a range to scan 866 * @last_index: last index of a range to scan 867 * @nr_to_tag: maximum number items to tag 868 * @iftag: tag index to test 869 * @settag: tag index to set if tested tag is set 870 * 871 * This function scans range of radix tree from first_index to last_index 872 * (inclusive). For each item in the range if iftag is set, the function sets 873 * also settag. The function stops either after tagging nr_to_tag items or 874 * after reaching last_index. 875 * 876 * The tags must be set from the leaf level only and propagated back up the 877 * path to the root. We must do this so that we resolve the full path before 878 * setting any tags on intermediate nodes. If we set tags as we descend, then 879 * we can get to the leaf node and find that the index that has the iftag 880 * set is outside the range we are scanning. This reults in dangling tags and 881 * can lead to problems with later tag operations (e.g. livelocks on lookups). 882 * 883 * The function returns number of leaves where the tag was set and sets 884 * *first_indexp to the first unscanned index. 885 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must 886 * be prepared to handle that. 887 */ 888 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, 889 unsigned long *first_indexp, unsigned long last_index, 890 unsigned long nr_to_tag, 891 unsigned int iftag, unsigned int settag) 892 { 893 unsigned int height = root->height; 894 struct radix_tree_node *node = NULL; 895 struct radix_tree_node *slot; 896 unsigned int shift; 897 unsigned long tagged = 0; 898 unsigned long index = *first_indexp; 899 900 last_index = min(last_index, radix_tree_maxindex(height)); 901 if (index > last_index) 902 return 0; 903 if (!nr_to_tag) 904 return 0; 905 if (!root_tag_get(root, iftag)) { 906 *first_indexp = last_index + 1; 907 return 0; 908 } 909 if (height == 0) { 910 *first_indexp = last_index + 1; 911 root_tag_set(root, settag); 912 return 1; 913 } 914 915 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 916 slot = indirect_to_ptr(root->rnode); 917 918 for (;;) { 919 unsigned long upindex; 920 int offset; 921 922 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 923 if (!slot->slots[offset]) 924 goto next; 925 if (!tag_get(slot, iftag, offset)) 926 goto next; 927 if (shift) { 928 /* Go down one level */ 929 shift -= RADIX_TREE_MAP_SHIFT; 930 node = slot; 931 slot = slot->slots[offset]; 932 continue; 933 } 934 935 /* tag the leaf */ 936 tagged++; 937 tag_set(slot, settag, offset); 938 939 /* walk back up the path tagging interior nodes */ 940 upindex = index; 941 while (node) { 942 upindex >>= RADIX_TREE_MAP_SHIFT; 943 offset = upindex & RADIX_TREE_MAP_MASK; 944 945 /* stop if we find a node with the tag already set */ 946 if (tag_get(node, settag, offset)) 947 break; 948 tag_set(node, settag, offset); 949 node = node->parent; 950 } 951 952 /* 953 * Small optimization: now clear that node pointer. 954 * Since all of this slot's ancestors now have the tag set 955 * from setting it above, we have no further need to walk 956 * back up the tree setting tags, until we update slot to 957 * point to another radix_tree_node. 958 */ 959 node = NULL; 960 961 next: 962 /* Go to next item at level determined by 'shift' */ 963 index = ((index >> shift) + 1) << shift; 964 /* Overflow can happen when last_index is ~0UL... */ 965 if (index > last_index || !index) 966 break; 967 if (tagged >= nr_to_tag) 968 break; 969 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) { 970 /* 971 * We've fully scanned this node. Go up. Because 972 * last_index is guaranteed to be in the tree, what 973 * we do below cannot wander astray. 974 */ 975 slot = slot->parent; 976 shift += RADIX_TREE_MAP_SHIFT; 977 } 978 } 979 /* 980 * We need not to tag the root tag if there is no tag which is set with 981 * settag within the range from *first_indexp to last_index. 982 */ 983 if (tagged > 0) 984 root_tag_set(root, settag); 985 *first_indexp = index; 986 987 return tagged; 988 } 989 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged); 990 991 /** 992 * radix_tree_gang_lookup - perform multiple lookup on a radix tree 993 * @root: radix tree root 994 * @results: where the results of the lookup are placed 995 * @first_index: start the lookup from this key 996 * @max_items: place up to this many items at *results 997 * 998 * Performs an index-ascending scan of the tree for present items. Places 999 * them at *@results and returns the number of items which were placed at 1000 * *@results. 1001 * 1002 * The implementation is naive. 1003 * 1004 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under 1005 * rcu_read_lock. In this case, rather than the returned results being 1006 * an atomic snapshot of the tree at a single point in time, the semantics 1007 * of an RCU protected gang lookup are as though multiple radix_tree_lookups 1008 * have been issued in individual locks, and results stored in 'results'. 1009 */ 1010 unsigned int 1011 radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 1012 unsigned long first_index, unsigned int max_items) 1013 { 1014 struct radix_tree_iter iter; 1015 void **slot; 1016 unsigned int ret = 0; 1017 1018 if (unlikely(!max_items)) 1019 return 0; 1020 1021 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1022 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot)); 1023 if (!results[ret]) 1024 continue; 1025 if (++ret == max_items) 1026 break; 1027 } 1028 1029 return ret; 1030 } 1031 EXPORT_SYMBOL(radix_tree_gang_lookup); 1032 1033 /** 1034 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree 1035 * @root: radix tree root 1036 * @results: where the results of the lookup are placed 1037 * @indices: where their indices should be placed (but usually NULL) 1038 * @first_index: start the lookup from this key 1039 * @max_items: place up to this many items at *results 1040 * 1041 * Performs an index-ascending scan of the tree for present items. Places 1042 * their slots at *@results and returns the number of items which were 1043 * placed at *@results. 1044 * 1045 * The implementation is naive. 1046 * 1047 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must 1048 * be dereferenced with radix_tree_deref_slot, and if using only RCU 1049 * protection, radix_tree_deref_slot may fail requiring a retry. 1050 */ 1051 unsigned int 1052 radix_tree_gang_lookup_slot(struct radix_tree_root *root, 1053 void ***results, unsigned long *indices, 1054 unsigned long first_index, unsigned int max_items) 1055 { 1056 struct radix_tree_iter iter; 1057 void **slot; 1058 unsigned int ret = 0; 1059 1060 if (unlikely(!max_items)) 1061 return 0; 1062 1063 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1064 results[ret] = slot; 1065 if (indices) 1066 indices[ret] = iter.index; 1067 if (++ret == max_items) 1068 break; 1069 } 1070 1071 return ret; 1072 } 1073 EXPORT_SYMBOL(radix_tree_gang_lookup_slot); 1074 1075 /** 1076 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree 1077 * based on a tag 1078 * @root: radix tree root 1079 * @results: where the results of the lookup are placed 1080 * @first_index: start the lookup from this key 1081 * @max_items: place up to this many items at *results 1082 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1083 * 1084 * Performs an index-ascending scan of the tree for present items which 1085 * have the tag indexed by @tag set. Places the items at *@results and 1086 * returns the number of items which were placed at *@results. 1087 */ 1088 unsigned int 1089 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 1090 unsigned long first_index, unsigned int max_items, 1091 unsigned int tag) 1092 { 1093 struct radix_tree_iter iter; 1094 void **slot; 1095 unsigned int ret = 0; 1096 1097 if (unlikely(!max_items)) 1098 return 0; 1099 1100 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1101 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot)); 1102 if (!results[ret]) 1103 continue; 1104 if (++ret == max_items) 1105 break; 1106 } 1107 1108 return ret; 1109 } 1110 EXPORT_SYMBOL(radix_tree_gang_lookup_tag); 1111 1112 /** 1113 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a 1114 * radix tree based on a tag 1115 * @root: radix tree root 1116 * @results: where the results of the lookup are placed 1117 * @first_index: start the lookup from this key 1118 * @max_items: place up to this many items at *results 1119 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1120 * 1121 * Performs an index-ascending scan of the tree for present items which 1122 * have the tag indexed by @tag set. Places the slots at *@results and 1123 * returns the number of slots which were placed at *@results. 1124 */ 1125 unsigned int 1126 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 1127 unsigned long first_index, unsigned int max_items, 1128 unsigned int tag) 1129 { 1130 struct radix_tree_iter iter; 1131 void **slot; 1132 unsigned int ret = 0; 1133 1134 if (unlikely(!max_items)) 1135 return 0; 1136 1137 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1138 results[ret] = slot; 1139 if (++ret == max_items) 1140 break; 1141 } 1142 1143 return ret; 1144 } 1145 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); 1146 1147 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP) 1148 #include <linux/sched.h> /* for cond_resched() */ 1149 1150 /* 1151 * This linear search is at present only useful to shmem_unuse_inode(). 1152 */ 1153 static unsigned long __locate(struct radix_tree_node *slot, void *item, 1154 unsigned long index, unsigned long *found_index) 1155 { 1156 unsigned int shift, height; 1157 unsigned long i; 1158 1159 height = slot->path & RADIX_TREE_HEIGHT_MASK; 1160 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 1161 1162 for ( ; height > 1; height--) { 1163 i = (index >> shift) & RADIX_TREE_MAP_MASK; 1164 for (;;) { 1165 if (slot->slots[i] != NULL) 1166 break; 1167 index &= ~((1UL << shift) - 1); 1168 index += 1UL << shift; 1169 if (index == 0) 1170 goto out; /* 32-bit wraparound */ 1171 i++; 1172 if (i == RADIX_TREE_MAP_SIZE) 1173 goto out; 1174 } 1175 1176 shift -= RADIX_TREE_MAP_SHIFT; 1177 slot = rcu_dereference_raw(slot->slots[i]); 1178 if (slot == NULL) 1179 goto out; 1180 } 1181 1182 /* Bottom level: check items */ 1183 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { 1184 if (slot->slots[i] == item) { 1185 *found_index = index + i; 1186 index = 0; 1187 goto out; 1188 } 1189 } 1190 index += RADIX_TREE_MAP_SIZE; 1191 out: 1192 return index; 1193 } 1194 1195 /** 1196 * radix_tree_locate_item - search through radix tree for item 1197 * @root: radix tree root 1198 * @item: item to be found 1199 * 1200 * Returns index where item was found, or -1 if not found. 1201 * Caller must hold no lock (since this time-consuming function needs 1202 * to be preemptible), and must check afterwards if item is still there. 1203 */ 1204 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1205 { 1206 struct radix_tree_node *node; 1207 unsigned long max_index; 1208 unsigned long cur_index = 0; 1209 unsigned long found_index = -1; 1210 1211 do { 1212 rcu_read_lock(); 1213 node = rcu_dereference_raw(root->rnode); 1214 if (!radix_tree_is_indirect_ptr(node)) { 1215 rcu_read_unlock(); 1216 if (node == item) 1217 found_index = 0; 1218 break; 1219 } 1220 1221 node = indirect_to_ptr(node); 1222 max_index = radix_tree_maxindex(node->path & 1223 RADIX_TREE_HEIGHT_MASK); 1224 if (cur_index > max_index) { 1225 rcu_read_unlock(); 1226 break; 1227 } 1228 1229 cur_index = __locate(node, item, cur_index, &found_index); 1230 rcu_read_unlock(); 1231 cond_resched(); 1232 } while (cur_index != 0 && cur_index <= max_index); 1233 1234 return found_index; 1235 } 1236 #else 1237 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1238 { 1239 return -1; 1240 } 1241 #endif /* CONFIG_SHMEM && CONFIG_SWAP */ 1242 1243 /** 1244 * radix_tree_shrink - shrink height of a radix tree to minimal 1245 * @root radix tree root 1246 */ 1247 static inline void radix_tree_shrink(struct radix_tree_root *root) 1248 { 1249 /* try to shrink tree height */ 1250 while (root->height > 0) { 1251 struct radix_tree_node *to_free = root->rnode; 1252 struct radix_tree_node *slot; 1253 1254 BUG_ON(!radix_tree_is_indirect_ptr(to_free)); 1255 to_free = indirect_to_ptr(to_free); 1256 1257 /* 1258 * The candidate node has more than one child, or its child 1259 * is not at the leftmost slot, we cannot shrink. 1260 */ 1261 if (to_free->count != 1) 1262 break; 1263 if (!to_free->slots[0]) 1264 break; 1265 1266 /* 1267 * We don't need rcu_assign_pointer(), since we are simply 1268 * moving the node from one part of the tree to another: if it 1269 * was safe to dereference the old pointer to it 1270 * (to_free->slots[0]), it will be safe to dereference the new 1271 * one (root->rnode) as far as dependent read barriers go. 1272 */ 1273 slot = to_free->slots[0]; 1274 if (root->height > 1) { 1275 slot->parent = NULL; 1276 slot = ptr_to_indirect(slot); 1277 } 1278 root->rnode = slot; 1279 root->height--; 1280 1281 /* 1282 * We have a dilemma here. The node's slot[0] must not be 1283 * NULLed in case there are concurrent lookups expecting to 1284 * find the item. However if this was a bottom-level node, 1285 * then it may be subject to the slot pointer being visible 1286 * to callers dereferencing it. If item corresponding to 1287 * slot[0] is subsequently deleted, these callers would expect 1288 * their slot to become empty sooner or later. 1289 * 1290 * For example, lockless pagecache will look up a slot, deref 1291 * the page pointer, and if the page is 0 refcount it means it 1292 * was concurrently deleted from pagecache so try the deref 1293 * again. Fortunately there is already a requirement for logic 1294 * to retry the entire slot lookup -- the indirect pointer 1295 * problem (replacing direct root node with an indirect pointer 1296 * also results in a stale slot). So tag the slot as indirect 1297 * to force callers to retry. 1298 */ 1299 if (root->height == 0) 1300 *((unsigned long *)&to_free->slots[0]) |= 1301 RADIX_TREE_INDIRECT_PTR; 1302 1303 radix_tree_node_free(to_free); 1304 } 1305 } 1306 1307 /** 1308 * __radix_tree_delete_node - try to free node after clearing a slot 1309 * @root: radix tree root 1310 * @node: node containing @index 1311 * 1312 * After clearing the slot at @index in @node from radix tree 1313 * rooted at @root, call this function to attempt freeing the 1314 * node and shrinking the tree. 1315 * 1316 * Returns %true if @node was freed, %false otherwise. 1317 */ 1318 bool __radix_tree_delete_node(struct radix_tree_root *root, 1319 struct radix_tree_node *node) 1320 { 1321 bool deleted = false; 1322 1323 do { 1324 struct radix_tree_node *parent; 1325 1326 if (node->count) { 1327 if (node == indirect_to_ptr(root->rnode)) { 1328 radix_tree_shrink(root); 1329 if (root->height == 0) 1330 deleted = true; 1331 } 1332 return deleted; 1333 } 1334 1335 parent = node->parent; 1336 if (parent) { 1337 unsigned int offset; 1338 1339 offset = node->path >> RADIX_TREE_HEIGHT_SHIFT; 1340 parent->slots[offset] = NULL; 1341 parent->count--; 1342 } else { 1343 root_tag_clear_all(root); 1344 root->height = 0; 1345 root->rnode = NULL; 1346 } 1347 1348 radix_tree_node_free(node); 1349 deleted = true; 1350 1351 node = parent; 1352 } while (node); 1353 1354 return deleted; 1355 } 1356 1357 /** 1358 * radix_tree_delete_item - delete an item from a radix tree 1359 * @root: radix tree root 1360 * @index: index key 1361 * @item: expected item 1362 * 1363 * Remove @item at @index from the radix tree rooted at @root. 1364 * 1365 * Returns the address of the deleted item, or NULL if it was not present 1366 * or the entry at the given @index was not @item. 1367 */ 1368 void *radix_tree_delete_item(struct radix_tree_root *root, 1369 unsigned long index, void *item) 1370 { 1371 struct radix_tree_node *node; 1372 unsigned int offset; 1373 void **slot; 1374 void *entry; 1375 int tag; 1376 1377 entry = __radix_tree_lookup(root, index, &node, &slot); 1378 if (!entry) 1379 return NULL; 1380 1381 if (item && entry != item) 1382 return NULL; 1383 1384 if (!node) { 1385 root_tag_clear_all(root); 1386 root->rnode = NULL; 1387 return entry; 1388 } 1389 1390 offset = index & RADIX_TREE_MAP_MASK; 1391 1392 /* 1393 * Clear all tags associated with the item to be deleted. 1394 * This way of doing it would be inefficient, but seldom is any set. 1395 */ 1396 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 1397 if (tag_get(node, tag, offset)) 1398 radix_tree_tag_clear(root, index, tag); 1399 } 1400 1401 node->slots[offset] = NULL; 1402 node->count--; 1403 1404 __radix_tree_delete_node(root, node); 1405 1406 return entry; 1407 } 1408 EXPORT_SYMBOL(radix_tree_delete_item); 1409 1410 /** 1411 * radix_tree_delete - delete an item from a radix tree 1412 * @root: radix tree root 1413 * @index: index key 1414 * 1415 * Remove the item at @index from the radix tree rooted at @root. 1416 * 1417 * Returns the address of the deleted item, or NULL if it was not present. 1418 */ 1419 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) 1420 { 1421 return radix_tree_delete_item(root, index, NULL); 1422 } 1423 EXPORT_SYMBOL(radix_tree_delete); 1424 1425 /** 1426 * radix_tree_tagged - test whether any items in the tree are tagged 1427 * @root: radix tree root 1428 * @tag: tag to test 1429 */ 1430 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) 1431 { 1432 return root_tag_get(root, tag); 1433 } 1434 EXPORT_SYMBOL(radix_tree_tagged); 1435 1436 static void 1437 radix_tree_node_ctor(void *arg) 1438 { 1439 struct radix_tree_node *node = arg; 1440 1441 memset(node, 0, sizeof(*node)); 1442 INIT_LIST_HEAD(&node->private_list); 1443 } 1444 1445 static __init unsigned long __maxindex(unsigned int height) 1446 { 1447 unsigned int width = height * RADIX_TREE_MAP_SHIFT; 1448 int shift = RADIX_TREE_INDEX_BITS - width; 1449 1450 if (shift < 0) 1451 return ~0UL; 1452 if (shift >= BITS_PER_LONG) 1453 return 0UL; 1454 return ~0UL >> shift; 1455 } 1456 1457 static __init void radix_tree_init_maxindex(void) 1458 { 1459 unsigned int i; 1460 1461 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) 1462 height_to_maxindex[i] = __maxindex(i); 1463 } 1464 1465 static int radix_tree_callback(struct notifier_block *nfb, 1466 unsigned long action, 1467 void *hcpu) 1468 { 1469 int cpu = (long)hcpu; 1470 struct radix_tree_preload *rtp; 1471 struct radix_tree_node *node; 1472 1473 /* Free per-cpu pool of perloaded nodes */ 1474 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1475 rtp = &per_cpu(radix_tree_preloads, cpu); 1476 while (rtp->nr) { 1477 node = rtp->nodes; 1478 rtp->nodes = node->private_data; 1479 kmem_cache_free(radix_tree_node_cachep, node); 1480 rtp->nr--; 1481 } 1482 } 1483 return NOTIFY_OK; 1484 } 1485 1486 void __init radix_tree_init(void) 1487 { 1488 radix_tree_node_cachep = kmem_cache_create("radix_tree_node", 1489 sizeof(struct radix_tree_node), 0, 1490 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, 1491 radix_tree_node_ctor); 1492 radix_tree_init_maxindex(); 1493 hotcpu_notifier(radix_tree_callback, 0); 1494 } 1495