xref: /openbmc/linux/lib/math/rational.c (revision a5d46d9a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * rational fractions
4  *
5  * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
6  * Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com>
7  *
8  * helper functions when coping with rational numbers
9  */
10 
11 #include <linux/rational.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/minmax.h>
15 #include <linux/limits.h>
16 
17 /*
18  * calculate best rational approximation for a given fraction
19  * taking into account restricted register size, e.g. to find
20  * appropriate values for a pll with 5 bit denominator and
21  * 8 bit numerator register fields, trying to set up with a
22  * frequency ratio of 3.1415, one would say:
23  *
24  * rational_best_approximation(31415, 10000,
25  *		(1 << 8) - 1, (1 << 5) - 1, &n, &d);
26  *
27  * you may look at given_numerator as a fixed point number,
28  * with the fractional part size described in given_denominator.
29  *
30  * for theoretical background, see:
31  * https://en.wikipedia.org/wiki/Continued_fraction
32  */
33 
34 void rational_best_approximation(
35 	unsigned long given_numerator, unsigned long given_denominator,
36 	unsigned long max_numerator, unsigned long max_denominator,
37 	unsigned long *best_numerator, unsigned long *best_denominator)
38 {
39 	/* n/d is the starting rational, which is continually
40 	 * decreased each iteration using the Euclidean algorithm.
41 	 *
42 	 * dp is the value of d from the prior iteration.
43 	 *
44 	 * n2/d2, n1/d1, and n0/d0 are our successively more accurate
45 	 * approximations of the rational.  They are, respectively,
46 	 * the current, previous, and two prior iterations of it.
47 	 *
48 	 * a is current term of the continued fraction.
49 	 */
50 	unsigned long n, d, n0, d0, n1, d1, n2, d2;
51 	n = given_numerator;
52 	d = given_denominator;
53 	n0 = d1 = 0;
54 	n1 = d0 = 1;
55 
56 	for (;;) {
57 		unsigned long dp, a;
58 
59 		if (d == 0)
60 			break;
61 		/* Find next term in continued fraction, 'a', via
62 		 * Euclidean algorithm.
63 		 */
64 		dp = d;
65 		a = n / d;
66 		d = n % d;
67 		n = dp;
68 
69 		/* Calculate the current rational approximation (aka
70 		 * convergent), n2/d2, using the term just found and
71 		 * the two prior approximations.
72 		 */
73 		n2 = n0 + a * n1;
74 		d2 = d0 + a * d1;
75 
76 		/* If the current convergent exceeds the maxes, then
77 		 * return either the previous convergent or the
78 		 * largest semi-convergent, the final term of which is
79 		 * found below as 't'.
80 		 */
81 		if ((n2 > max_numerator) || (d2 > max_denominator)) {
82 			unsigned long t = ULONG_MAX;
83 
84 			if (d1)
85 				t = (max_denominator - d0) / d1;
86 			if (n1)
87 				t = min(t, (max_numerator - n0) / n1);
88 
89 			/* This tests if the semi-convergent is closer than the previous
90 			 * convergent.  If d1 is zero there is no previous convergent as this
91 			 * is the 1st iteration, so always choose the semi-convergent.
92 			 */
93 			if (!d1 || 2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
94 				n1 = n0 + t * n1;
95 				d1 = d0 + t * d1;
96 			}
97 			break;
98 		}
99 		n0 = n1;
100 		n1 = n2;
101 		d0 = d1;
102 		d1 = d2;
103 	}
104 	*best_numerator = n1;
105 	*best_denominator = d1;
106 }
107 
108 EXPORT_SYMBOL(rational_best_approximation);
109