1 #define pr_fmt(fmt) "prime numbers: " fmt "\n" 2 3 #include <linux/module.h> 4 #include <linux/mutex.h> 5 #include <linux/prime_numbers.h> 6 #include <linux/slab.h> 7 8 #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) 9 10 struct primes { 11 struct rcu_head rcu; 12 unsigned long last, sz; 13 unsigned long primes[]; 14 }; 15 16 #if BITS_PER_LONG == 64 17 static const struct primes small_primes = { 18 .last = 61, 19 .sz = 64, 20 .primes = { 21 BIT(2) | 22 BIT(3) | 23 BIT(5) | 24 BIT(7) | 25 BIT(11) | 26 BIT(13) | 27 BIT(17) | 28 BIT(19) | 29 BIT(23) | 30 BIT(29) | 31 BIT(31) | 32 BIT(37) | 33 BIT(41) | 34 BIT(43) | 35 BIT(47) | 36 BIT(53) | 37 BIT(59) | 38 BIT(61) 39 } 40 }; 41 #elif BITS_PER_LONG == 32 42 static const struct primes small_primes = { 43 .last = 31, 44 .sz = 32, 45 .primes = { 46 BIT(2) | 47 BIT(3) | 48 BIT(5) | 49 BIT(7) | 50 BIT(11) | 51 BIT(13) | 52 BIT(17) | 53 BIT(19) | 54 BIT(23) | 55 BIT(29) | 56 BIT(31) 57 } 58 }; 59 #else 60 #error "unhandled BITS_PER_LONG" 61 #endif 62 63 static DEFINE_MUTEX(lock); 64 static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); 65 66 static unsigned long selftest_max; 67 68 static bool slow_is_prime_number(unsigned long x) 69 { 70 unsigned long y = int_sqrt(x); 71 72 while (y > 1) { 73 if ((x % y) == 0) 74 break; 75 y--; 76 } 77 78 return y == 1; 79 } 80 81 static unsigned long slow_next_prime_number(unsigned long x) 82 { 83 while (x < ULONG_MAX && !slow_is_prime_number(++x)) 84 ; 85 86 return x; 87 } 88 89 static unsigned long clear_multiples(unsigned long x, 90 unsigned long *p, 91 unsigned long start, 92 unsigned long end) 93 { 94 unsigned long m; 95 96 m = 2 * x; 97 if (m < start) 98 m = roundup(start, x); 99 100 while (m < end) { 101 __clear_bit(m, p); 102 m += x; 103 } 104 105 return x; 106 } 107 108 static bool expand_to_next_prime(unsigned long x) 109 { 110 const struct primes *p; 111 struct primes *new; 112 unsigned long sz, y; 113 114 /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, 115 * there is always at least one prime p between n and 2n - 2. 116 * Equivalently, if n > 1, then there is always at least one prime p 117 * such that n < p < 2n. 118 * 119 * http://mathworld.wolfram.com/BertrandsPostulate.html 120 * https://en.wikipedia.org/wiki/Bertrand's_postulate 121 */ 122 sz = 2 * x; 123 if (sz < x) 124 return false; 125 126 sz = round_up(sz, BITS_PER_LONG); 127 new = kmalloc(sizeof(*new) + bitmap_size(sz), 128 GFP_KERNEL | __GFP_NOWARN); 129 if (!new) 130 return false; 131 132 mutex_lock(&lock); 133 p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); 134 if (x < p->last) { 135 kfree(new); 136 goto unlock; 137 } 138 139 /* Where memory permits, track the primes using the 140 * Sieve of Eratosthenes. The sieve is to remove all multiples of known 141 * primes from the set, what remains in the set is therefore prime. 142 */ 143 bitmap_fill(new->primes, sz); 144 bitmap_copy(new->primes, p->primes, p->sz); 145 for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) 146 new->last = clear_multiples(y, new->primes, p->sz, sz); 147 new->sz = sz; 148 149 BUG_ON(new->last <= x); 150 151 rcu_assign_pointer(primes, new); 152 if (p != &small_primes) 153 kfree_rcu((struct primes *)p, rcu); 154 155 unlock: 156 mutex_unlock(&lock); 157 return true; 158 } 159 160 static void free_primes(void) 161 { 162 const struct primes *p; 163 164 mutex_lock(&lock); 165 p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); 166 if (p != &small_primes) { 167 rcu_assign_pointer(primes, &small_primes); 168 kfree_rcu((struct primes *)p, rcu); 169 } 170 mutex_unlock(&lock); 171 } 172 173 /** 174 * next_prime_number - return the next prime number 175 * @x: the starting point for searching to test 176 * 177 * A prime number is an integer greater than 1 that is only divisible by 178 * itself and 1. The set of prime numbers is computed using the Sieve of 179 * Eratoshenes (on finding a prime, all multiples of that prime are removed 180 * from the set) enabling a fast lookup of the next prime number larger than 181 * @x. If the sieve fails (memory limitation), the search falls back to using 182 * slow trial-divison, up to the value of ULONG_MAX (which is reported as the 183 * final prime as a sentinel). 184 * 185 * Returns: the next prime number larger than @x 186 */ 187 unsigned long next_prime_number(unsigned long x) 188 { 189 const struct primes *p; 190 191 rcu_read_lock(); 192 p = rcu_dereference(primes); 193 while (x >= p->last) { 194 rcu_read_unlock(); 195 196 if (!expand_to_next_prime(x)) 197 return slow_next_prime_number(x); 198 199 rcu_read_lock(); 200 p = rcu_dereference(primes); 201 } 202 x = find_next_bit(p->primes, p->last, x + 1); 203 rcu_read_unlock(); 204 205 return x; 206 } 207 EXPORT_SYMBOL(next_prime_number); 208 209 /** 210 * is_prime_number - test whether the given number is prime 211 * @x: the number to test 212 * 213 * A prime number is an integer greater than 1 that is only divisible by 214 * itself and 1. Internally a cache of prime numbers is kept (to speed up 215 * searching for sequential primes, see next_prime_number()), but if the number 216 * falls outside of that cache, its primality is tested using trial-divison. 217 * 218 * Returns: true if @x is prime, false for composite numbers. 219 */ 220 bool is_prime_number(unsigned long x) 221 { 222 const struct primes *p; 223 bool result; 224 225 rcu_read_lock(); 226 p = rcu_dereference(primes); 227 while (x >= p->sz) { 228 rcu_read_unlock(); 229 230 if (!expand_to_next_prime(x)) 231 return slow_is_prime_number(x); 232 233 rcu_read_lock(); 234 p = rcu_dereference(primes); 235 } 236 result = test_bit(x, p->primes); 237 rcu_read_unlock(); 238 239 return result; 240 } 241 EXPORT_SYMBOL(is_prime_number); 242 243 static void dump_primes(void) 244 { 245 const struct primes *p; 246 char *buf; 247 248 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 249 250 rcu_read_lock(); 251 p = rcu_dereference(primes); 252 253 if (buf) 254 bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); 255 pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s", 256 p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); 257 258 rcu_read_unlock(); 259 260 kfree(buf); 261 } 262 263 static int selftest(unsigned long max) 264 { 265 unsigned long x, last; 266 267 if (!max) 268 return 0; 269 270 for (last = 0, x = 2; x < max; x++) { 271 bool slow = slow_is_prime_number(x); 272 bool fast = is_prime_number(x); 273 274 if (slow != fast) { 275 pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!", 276 x, slow ? "yes" : "no", fast ? "yes" : "no"); 277 goto err; 278 } 279 280 if (!slow) 281 continue; 282 283 if (next_prime_number(last) != x) { 284 pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu", 285 last, x, next_prime_number(last)); 286 goto err; 287 } 288 last = x; 289 } 290 291 pr_info("selftest(%lu) passed, last prime was %lu", x, last); 292 return 0; 293 294 err: 295 dump_primes(); 296 return -EINVAL; 297 } 298 299 static int __init primes_init(void) 300 { 301 return selftest(selftest_max); 302 } 303 304 static void __exit primes_exit(void) 305 { 306 free_primes(); 307 } 308 309 module_init(primes_init); 310 module_exit(primes_exit); 311 312 module_param_named(selftest, selftest_max, ulong, 0400); 313 314 MODULE_AUTHOR("Intel Corporation"); 315 MODULE_LICENSE("GPL"); 316