xref: /openbmc/linux/lib/math/div64.c (revision b285d2ae)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
4  *
5  * Based on former do_div() implementation from asm-parisc/div64.h:
6  *	Copyright (C) 1999 Hewlett-Packard Co
7  *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  *
10  * Generic C version of 64bit/32bit division and modulo, with
11  * 64bit result and 32bit remainder.
12  *
13  * The fast case for (n>>32 == 0) is handled inline by do_div().
14  *
15  * Code generated for this function might be very inefficient
16  * for some CPUs. __div64_32() can be overridden by linking arch-specific
17  * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
18  * or by defining a preprocessor macro in arch/include/asm/div64.h.
19  */
20 
21 #include <linux/export.h>
22 #include <linux/kernel.h>
23 #include <linux/math64.h>
24 
25 /* Not needed on 64bit architectures */
26 #if BITS_PER_LONG == 32
27 
28 #ifndef __div64_32
29 uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
30 {
31 	uint64_t rem = *n;
32 	uint64_t b = base;
33 	uint64_t res, d = 1;
34 	uint32_t high = rem >> 32;
35 
36 	/* Reduce the thing a bit first */
37 	res = 0;
38 	if (high >= base) {
39 		high /= base;
40 		res = (uint64_t) high << 32;
41 		rem -= (uint64_t) (high*base) << 32;
42 	}
43 
44 	while ((int64_t)b > 0 && b < rem) {
45 		b = b+b;
46 		d = d+d;
47 	}
48 
49 	do {
50 		if (rem >= b) {
51 			rem -= b;
52 			res += d;
53 		}
54 		b >>= 1;
55 		d >>= 1;
56 	} while (d);
57 
58 	*n = res;
59 	return rem;
60 }
61 EXPORT_SYMBOL(__div64_32);
62 #endif
63 
64 /**
65  * div_s64_rem - signed 64bit divide with 64bit divisor and remainder
66  * @dividend:	64bit dividend
67  * @divisor:	64bit divisor
68  * @remainder:  64bit remainder
69  */
70 #ifndef div_s64_rem
71 s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
72 {
73 	u64 quotient;
74 
75 	if (dividend < 0) {
76 		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
77 		*remainder = -*remainder;
78 		if (divisor > 0)
79 			quotient = -quotient;
80 	} else {
81 		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
82 		if (divisor < 0)
83 			quotient = -quotient;
84 	}
85 	return quotient;
86 }
87 EXPORT_SYMBOL(div_s64_rem);
88 #endif
89 
90 /**
91  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
92  * @dividend:	64bit dividend
93  * @divisor:	64bit divisor
94  * @remainder:  64bit remainder
95  *
96  * This implementation is a comparable to algorithm used by div64_u64.
97  * But this operation, which includes math for calculating the remainder,
98  * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
99  * systems.
100  */
101 #ifndef div64_u64_rem
102 u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
103 {
104 	u32 high = divisor >> 32;
105 	u64 quot;
106 
107 	if (high == 0) {
108 		u32 rem32;
109 		quot = div_u64_rem(dividend, divisor, &rem32);
110 		*remainder = rem32;
111 	} else {
112 		int n = fls(high);
113 		quot = div_u64(dividend >> n, divisor >> n);
114 
115 		if (quot != 0)
116 			quot--;
117 
118 		*remainder = dividend - quot * divisor;
119 		if (*remainder >= divisor) {
120 			quot++;
121 			*remainder -= divisor;
122 		}
123 	}
124 
125 	return quot;
126 }
127 EXPORT_SYMBOL(div64_u64_rem);
128 #endif
129 
130 /**
131  * div64_u64 - unsigned 64bit divide with 64bit divisor
132  * @dividend:	64bit dividend
133  * @divisor:	64bit divisor
134  *
135  * This implementation is a modified version of the algorithm proposed
136  * by the book 'Hacker's Delight'.  The original source and full proof
137  * can be found here and is available for use without restriction.
138  *
139  * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
140  */
141 #ifndef div64_u64
142 u64 div64_u64(u64 dividend, u64 divisor)
143 {
144 	u32 high = divisor >> 32;
145 	u64 quot;
146 
147 	if (high == 0) {
148 		quot = div_u64(dividend, divisor);
149 	} else {
150 		int n = fls(high);
151 		quot = div_u64(dividend >> n, divisor >> n);
152 
153 		if (quot != 0)
154 			quot--;
155 		if ((dividend - quot * divisor) >= divisor)
156 			quot++;
157 	}
158 
159 	return quot;
160 }
161 EXPORT_SYMBOL(div64_u64);
162 #endif
163 
164 /**
165  * div64_s64 - signed 64bit divide with 64bit divisor
166  * @dividend:	64bit dividend
167  * @divisor:	64bit divisor
168  */
169 #ifndef div64_s64
170 s64 div64_s64(s64 dividend, s64 divisor)
171 {
172 	s64 quot, t;
173 
174 	quot = div64_u64(abs(dividend), abs(divisor));
175 	t = (dividend ^ divisor) >> 63;
176 
177 	return (quot ^ t) - t;
178 }
179 EXPORT_SYMBOL(div64_s64);
180 #endif
181 
182 #endif /* BITS_PER_LONG == 32 */
183 
184 /*
185  * Iterative div/mod for use when dividend is not expected to be much
186  * bigger than divisor.
187  */
188 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
189 {
190 	return __iter_div_u64_rem(dividend, divisor, remainder);
191 }
192 EXPORT_SYMBOL(iter_div_u64_rem);
193 
194 #ifndef mul_u64_u64_div_u64
195 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
196 {
197 	u64 res = 0, div, rem;
198 	int shift;
199 
200 	/* can a * b overflow ? */
201 	if (ilog2(a) + ilog2(b) > 62) {
202 		/*
203 		 * (b * a) / c is equal to
204 		 *
205 		 *      (b / c) * a +
206 		 *      (b % c) * a / c
207 		 *
208 		 * if nothing overflows. Can the 1st multiplication
209 		 * overflow? Yes, but we do not care: this can only
210 		 * happen if the end result can't fit in u64 anyway.
211 		 *
212 		 * So the code below does
213 		 *
214 		 *      res = (b / c) * a;
215 		 *      b = b % c;
216 		 */
217 		div = div64_u64_rem(b, c, &rem);
218 		res = div * a;
219 		b = rem;
220 
221 		shift = ilog2(a) + ilog2(b) - 62;
222 		if (shift > 0) {
223 			/* drop precision */
224 			b >>= shift;
225 			c >>= shift;
226 			if (!c)
227 				return res;
228 		}
229 	}
230 
231 	return res + div64_u64(a * b, c);
232 }
233 #endif
234