xref: /openbmc/linux/lib/math/div64.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
4  *
5  * Based on former do_div() implementation from asm-parisc/div64.h:
6  *	Copyright (C) 1999 Hewlett-Packard Co
7  *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  *
10  * Generic C version of 64bit/32bit division and modulo, with
11  * 64bit result and 32bit remainder.
12  *
13  * The fast case for (n>>32 == 0) is handled inline by do_div().
14  *
15  * Code generated for this function might be very inefficient
16  * for some CPUs. __div64_32() can be overridden by linking arch-specific
17  * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
18  * or by defining a preprocessor macro in arch/include/asm/div64.h.
19  */
20 
21 #include <linux/bitops.h>
22 #include <linux/export.h>
23 #include <linux/math.h>
24 #include <linux/math64.h>
25 #include <linux/log2.h>
26 
27 /* Not needed on 64bit architectures */
28 #if BITS_PER_LONG == 32
29 
30 #ifndef __div64_32
31 uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
32 {
33 	uint64_t rem = *n;
34 	uint64_t b = base;
35 	uint64_t res, d = 1;
36 	uint32_t high = rem >> 32;
37 
38 	/* Reduce the thing a bit first */
39 	res = 0;
40 	if (high >= base) {
41 		high /= base;
42 		res = (uint64_t) high << 32;
43 		rem -= (uint64_t) (high*base) << 32;
44 	}
45 
46 	while ((int64_t)b > 0 && b < rem) {
47 		b = b+b;
48 		d = d+d;
49 	}
50 
51 	do {
52 		if (rem >= b) {
53 			rem -= b;
54 			res += d;
55 		}
56 		b >>= 1;
57 		d >>= 1;
58 	} while (d);
59 
60 	*n = res;
61 	return rem;
62 }
63 EXPORT_SYMBOL(__div64_32);
64 #endif
65 
66 /**
67  * div_s64_rem - signed 64bit divide with 64bit divisor and remainder
68  * @dividend:	64bit dividend
69  * @divisor:	64bit divisor
70  * @remainder:  64bit remainder
71  */
72 #ifndef div_s64_rem
73 s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
74 {
75 	u64 quotient;
76 
77 	if (dividend < 0) {
78 		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
79 		*remainder = -*remainder;
80 		if (divisor > 0)
81 			quotient = -quotient;
82 	} else {
83 		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
84 		if (divisor < 0)
85 			quotient = -quotient;
86 	}
87 	return quotient;
88 }
89 EXPORT_SYMBOL(div_s64_rem);
90 #endif
91 
92 /**
93  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
94  * @dividend:	64bit dividend
95  * @divisor:	64bit divisor
96  * @remainder:  64bit remainder
97  *
98  * This implementation is a comparable to algorithm used by div64_u64.
99  * But this operation, which includes math for calculating the remainder,
100  * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
101  * systems.
102  */
103 #ifndef div64_u64_rem
104 u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
105 {
106 	u32 high = divisor >> 32;
107 	u64 quot;
108 
109 	if (high == 0) {
110 		u32 rem32;
111 		quot = div_u64_rem(dividend, divisor, &rem32);
112 		*remainder = rem32;
113 	} else {
114 		int n = fls(high);
115 		quot = div_u64(dividend >> n, divisor >> n);
116 
117 		if (quot != 0)
118 			quot--;
119 
120 		*remainder = dividend - quot * divisor;
121 		if (*remainder >= divisor) {
122 			quot++;
123 			*remainder -= divisor;
124 		}
125 	}
126 
127 	return quot;
128 }
129 EXPORT_SYMBOL(div64_u64_rem);
130 #endif
131 
132 /**
133  * div64_u64 - unsigned 64bit divide with 64bit divisor
134  * @dividend:	64bit dividend
135  * @divisor:	64bit divisor
136  *
137  * This implementation is a modified version of the algorithm proposed
138  * by the book 'Hacker's Delight'.  The original source and full proof
139  * can be found here and is available for use without restriction.
140  *
141  * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
142  */
143 #ifndef div64_u64
144 u64 div64_u64(u64 dividend, u64 divisor)
145 {
146 	u32 high = divisor >> 32;
147 	u64 quot;
148 
149 	if (high == 0) {
150 		quot = div_u64(dividend, divisor);
151 	} else {
152 		int n = fls(high);
153 		quot = div_u64(dividend >> n, divisor >> n);
154 
155 		if (quot != 0)
156 			quot--;
157 		if ((dividend - quot * divisor) >= divisor)
158 			quot++;
159 	}
160 
161 	return quot;
162 }
163 EXPORT_SYMBOL(div64_u64);
164 #endif
165 
166 /**
167  * div64_s64 - signed 64bit divide with 64bit divisor
168  * @dividend:	64bit dividend
169  * @divisor:	64bit divisor
170  */
171 #ifndef div64_s64
172 s64 div64_s64(s64 dividend, s64 divisor)
173 {
174 	s64 quot, t;
175 
176 	quot = div64_u64(abs(dividend), abs(divisor));
177 	t = (dividend ^ divisor) >> 63;
178 
179 	return (quot ^ t) - t;
180 }
181 EXPORT_SYMBOL(div64_s64);
182 #endif
183 
184 #endif /* BITS_PER_LONG == 32 */
185 
186 /*
187  * Iterative div/mod for use when dividend is not expected to be much
188  * bigger than divisor.
189  */
190 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
191 {
192 	return __iter_div_u64_rem(dividend, divisor, remainder);
193 }
194 EXPORT_SYMBOL(iter_div_u64_rem);
195 
196 #ifndef mul_u64_u64_div_u64
197 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
198 {
199 	u64 res = 0, div, rem;
200 	int shift;
201 
202 	/* can a * b overflow ? */
203 	if (ilog2(a) + ilog2(b) > 62) {
204 		/*
205 		 * (b * a) / c is equal to
206 		 *
207 		 *      (b / c) * a +
208 		 *      (b % c) * a / c
209 		 *
210 		 * if nothing overflows. Can the 1st multiplication
211 		 * overflow? Yes, but we do not care: this can only
212 		 * happen if the end result can't fit in u64 anyway.
213 		 *
214 		 * So the code below does
215 		 *
216 		 *      res = (b / c) * a;
217 		 *      b = b % c;
218 		 */
219 		div = div64_u64_rem(b, c, &rem);
220 		res = div * a;
221 		b = rem;
222 
223 		shift = ilog2(a) + ilog2(b) - 62;
224 		if (shift > 0) {
225 			/* drop precision */
226 			b >>= shift;
227 			c >>= shift;
228 			if (!c)
229 				return res;
230 		}
231 	}
232 
233 	return res + div64_u64(a * b, c);
234 }
235 #endif
236