xref: /openbmc/linux/lib/maple_tree.c (revision ece68749)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  */
8 
9 /*
10  * DOC: Interesting implementation details of the Maple Tree
11  *
12  * Each node type has a number of slots for entries and a number of slots for
13  * pivots.  In the case of dense nodes, the pivots are implied by the position
14  * and are simply the slot index + the minimum of the node.
15  *
16  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
17  * indicate that the tree is specifying ranges,  Pivots may appear in the
18  * subtree with an entry attached to the value where as keys are unique to a
19  * specific position of a B-tree.  Pivot values are inclusive of the slot with
20  * the same index.
21  *
22  *
23  * The following illustrates the layout of a range64 nodes slots and pivots.
24  *
25  *
26  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
28  *           │   │   │   │     │    │    │    │    └─ Implied maximum
29  *           │   │   │   │     │    │    │    └─ Pivot 14
30  *           │   │   │   │     │    │    └─ Pivot 13
31  *           │   │   │   │     │    └─ Pivot 12
32  *           │   │   │   │     └─ Pivot 11
33  *           │   │   │   └─ Pivot 2
34  *           │   │   └─ Pivot 1
35  *           │   └─ Pivot 0
36  *           └─  Implied minimum
37  *
38  * Slot contents:
39  *  Internal (non-leaf) nodes contain pointers to other nodes.
40  *  Leaf nodes contain entries.
41  *
42  * The location of interest is often referred to as an offset.  All offsets have
43  * a slot, but the last offset has an implied pivot from the node above (or
44  * UINT_MAX for the root node.
45  *
46  * Ranges complicate certain write activities.  When modifying any of
47  * the B-tree variants, it is known that one entry will either be added or
48  * deleted.  When modifying the Maple Tree, one store operation may overwrite
49  * the entire data set, or one half of the tree, or the middle half of the tree.
50  *
51  */
52 
53 
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
64 
65 #define MA_ROOT_PARENT 1
66 
67 /*
68  * Maple state flags
69  * * MA_STATE_BULK		- Bulk insert mode
70  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
71  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
72  */
73 #define MA_STATE_BULK		1
74 #define MA_STATE_REBALANCE	2
75 #define MA_STATE_PREALLOC	4
76 
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
81 
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 	[maple_dense]		= MAPLE_NODE_SLOTS,
85 	[maple_leaf_64]		= ULONG_MAX,
86 	[maple_range_64]	= ULONG_MAX,
87 	[maple_arange_64]	= ULONG_MAX,
88 };
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
90 #endif
91 
92 static const unsigned char mt_slots[] = {
93 	[maple_dense]		= MAPLE_NODE_SLOTS,
94 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
95 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
96 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
97 };
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
99 
100 static const unsigned char mt_pivots[] = {
101 	[maple_dense]		= 0,
102 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
103 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
104 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
105 };
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107 
108 static const unsigned char mt_min_slots[] = {
109 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
110 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
111 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
112 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
113 };
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115 
116 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
118 
119 struct maple_big_node {
120 	struct maple_pnode *parent;
121 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 	union {
123 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 		struct {
125 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 		};
128 	};
129 	unsigned char b_end;
130 	enum maple_type type;
131 };
132 
133 /*
134  * The maple_subtree_state is used to build a tree to replace a segment of an
135  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
136  * dead node and restart on updates.
137  */
138 struct maple_subtree_state {
139 	struct ma_state *orig_l;	/* Original left side of subtree */
140 	struct ma_state *orig_r;	/* Original right side of subtree */
141 	struct ma_state *l;		/* New left side of subtree */
142 	struct ma_state *m;		/* New middle of subtree (rare) */
143 	struct ma_state *r;		/* New right side of subtree */
144 	struct ma_topiary *free;	/* nodes to be freed */
145 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
146 	struct maple_big_node *bn;
147 };
148 
149 #ifdef CONFIG_KASAN_STACK
150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151 #define noinline_for_kasan noinline_for_stack
152 #else
153 #define noinline_for_kasan inline
154 #endif
155 
156 /* Functions */
157 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158 {
159 	return kmem_cache_alloc(maple_node_cache, gfp);
160 }
161 
162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163 {
164 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
165 }
166 
167 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168 {
169 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170 }
171 
172 static void mt_free_rcu(struct rcu_head *head)
173 {
174 	struct maple_node *node = container_of(head, struct maple_node, rcu);
175 
176 	kmem_cache_free(maple_node_cache, node);
177 }
178 
179 /*
180  * ma_free_rcu() - Use rcu callback to free a maple node
181  * @node: The node to free
182  *
183  * The maple tree uses the parent pointer to indicate this node is no longer in
184  * use and will be freed.
185  */
186 static void ma_free_rcu(struct maple_node *node)
187 {
188 	WARN_ON(node->parent != ma_parent_ptr(node));
189 	call_rcu(&node->rcu, mt_free_rcu);
190 }
191 
192 static void mas_set_height(struct ma_state *mas)
193 {
194 	unsigned int new_flags = mas->tree->ma_flags;
195 
196 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
197 	BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
198 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 	mas->tree->ma_flags = new_flags;
200 }
201 
202 static unsigned int mas_mt_height(struct ma_state *mas)
203 {
204 	return mt_height(mas->tree);
205 }
206 
207 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208 {
209 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 		MAPLE_NODE_TYPE_MASK;
211 }
212 
213 static inline bool ma_is_dense(const enum maple_type type)
214 {
215 	return type < maple_leaf_64;
216 }
217 
218 static inline bool ma_is_leaf(const enum maple_type type)
219 {
220 	return type < maple_range_64;
221 }
222 
223 static inline bool mte_is_leaf(const struct maple_enode *entry)
224 {
225 	return ma_is_leaf(mte_node_type(entry));
226 }
227 
228 /*
229  * We also reserve values with the bottom two bits set to '10' which are
230  * below 4096
231  */
232 static inline bool mt_is_reserved(const void *entry)
233 {
234 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 		xa_is_internal(entry);
236 }
237 
238 static inline void mas_set_err(struct ma_state *mas, long err)
239 {
240 	mas->node = MA_ERROR(err);
241 }
242 
243 static inline bool mas_is_ptr(struct ma_state *mas)
244 {
245 	return mas->node == MAS_ROOT;
246 }
247 
248 static inline bool mas_is_start(struct ma_state *mas)
249 {
250 	return mas->node == MAS_START;
251 }
252 
253 bool mas_is_err(struct ma_state *mas)
254 {
255 	return xa_is_err(mas->node);
256 }
257 
258 static inline bool mas_searchable(struct ma_state *mas)
259 {
260 	if (mas_is_none(mas))
261 		return false;
262 
263 	if (mas_is_ptr(mas))
264 		return false;
265 
266 	return true;
267 }
268 
269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270 {
271 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272 }
273 
274 /*
275  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276  * @entry: The maple encoded node
277  *
278  * Return: a maple topiary pointer
279  */
280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281 {
282 	return (struct maple_topiary *)
283 		((unsigned long)entry & ~MAPLE_NODE_MASK);
284 }
285 
286 /*
287  * mas_mn() - Get the maple state node.
288  * @mas: The maple state
289  *
290  * Return: the maple node (not encoded - bare pointer).
291  */
292 static inline struct maple_node *mas_mn(const struct ma_state *mas)
293 {
294 	return mte_to_node(mas->node);
295 }
296 
297 /*
298  * mte_set_node_dead() - Set a maple encoded node as dead.
299  * @mn: The maple encoded node.
300  */
301 static inline void mte_set_node_dead(struct maple_enode *mn)
302 {
303 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 	smp_wmb(); /* Needed for RCU */
305 }
306 
307 /* Bit 1 indicates the root is a node */
308 #define MAPLE_ROOT_NODE			0x02
309 /* maple_type stored bit 3-6 */
310 #define MAPLE_ENODE_TYPE_SHIFT		0x03
311 /* Bit 2 means a NULL somewhere below */
312 #define MAPLE_ENODE_NULL		0x04
313 
314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 					     enum maple_type type)
316 {
317 	return (void *)((unsigned long)node |
318 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319 }
320 
321 static inline void *mte_mk_root(const struct maple_enode *node)
322 {
323 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324 }
325 
326 static inline void *mte_safe_root(const struct maple_enode *node)
327 {
328 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329 }
330 
331 static inline void *mte_set_full(const struct maple_enode *node)
332 {
333 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
334 }
335 
336 static inline void *mte_clear_full(const struct maple_enode *node)
337 {
338 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339 }
340 
341 static inline bool mte_has_null(const struct maple_enode *node)
342 {
343 	return (unsigned long)node & MAPLE_ENODE_NULL;
344 }
345 
346 static inline bool ma_is_root(struct maple_node *node)
347 {
348 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
349 }
350 
351 static inline bool mte_is_root(const struct maple_enode *node)
352 {
353 	return ma_is_root(mte_to_node(node));
354 }
355 
356 static inline bool mas_is_root_limits(const struct ma_state *mas)
357 {
358 	return !mas->min && mas->max == ULONG_MAX;
359 }
360 
361 static inline bool mt_is_alloc(struct maple_tree *mt)
362 {
363 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364 }
365 
366 /*
367  * The Parent Pointer
368  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
370  * bit values need an extra bit to store the offset.  This extra bit comes from
371  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
372  * indicate if bit 2 is part of the type or the slot.
373  *
374  * Note types:
375  *  0x??1 = Root
376  *  0x?00 = 16 bit nodes
377  *  0x010 = 32 bit nodes
378  *  0x110 = 64 bit nodes
379  *
380  * Slot size and alignment
381  *  0b??1 : Root
382  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
383  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
384  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
385  */
386 
387 #define MAPLE_PARENT_ROOT		0x01
388 
389 #define MAPLE_PARENT_SLOT_SHIFT		0x03
390 #define MAPLE_PARENT_SLOT_MASK		0xF8
391 
392 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
393 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
394 
395 #define MAPLE_PARENT_RANGE64		0x06
396 #define MAPLE_PARENT_RANGE32		0x04
397 #define MAPLE_PARENT_NOT_RANGE16	0x02
398 
399 /*
400  * mte_parent_shift() - Get the parent shift for the slot storage.
401  * @parent: The parent pointer cast as an unsigned long
402  * Return: The shift into that pointer to the star to of the slot
403  */
404 static inline unsigned long mte_parent_shift(unsigned long parent)
405 {
406 	/* Note bit 1 == 0 means 16B */
407 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 		return MAPLE_PARENT_SLOT_SHIFT;
409 
410 	return MAPLE_PARENT_16B_SLOT_SHIFT;
411 }
412 
413 /*
414  * mte_parent_slot_mask() - Get the slot mask for the parent.
415  * @parent: The parent pointer cast as an unsigned long.
416  * Return: The slot mask for that parent.
417  */
418 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419 {
420 	/* Note bit 1 == 0 means 16B */
421 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 		return MAPLE_PARENT_SLOT_MASK;
423 
424 	return MAPLE_PARENT_16B_SLOT_MASK;
425 }
426 
427 /*
428  * mas_parent_enum() - Return the maple_type of the parent from the stored
429  * parent type.
430  * @mas: The maple state
431  * @node: The maple_enode to extract the parent's enum
432  * Return: The node->parent maple_type
433  */
434 static inline
435 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
436 				struct maple_tree *mt)
437 {
438 	unsigned long p_type;
439 
440 	p_type = (unsigned long)p_enode;
441 	if (p_type & MAPLE_PARENT_ROOT)
442 		return 0; /* Validated in the caller. */
443 
444 	p_type &= MAPLE_NODE_MASK;
445 	p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
446 
447 	switch (p_type) {
448 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
449 		if (mt_is_alloc(mt))
450 			return maple_arange_64;
451 		return maple_range_64;
452 	}
453 
454 	return 0;
455 }
456 
457 static inline
458 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
459 {
460 	return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
461 }
462 
463 /*
464  * mte_set_parent() - Set the parent node and encode the slot
465  * @enode: The encoded maple node.
466  * @parent: The encoded maple node that is the parent of @enode.
467  * @slot: The slot that @enode resides in @parent.
468  *
469  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
470  * parent type.
471  */
472 static inline
473 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
474 		    unsigned char slot)
475 {
476 	unsigned long val = (unsigned long)parent;
477 	unsigned long shift;
478 	unsigned long type;
479 	enum maple_type p_type = mte_node_type(parent);
480 
481 	BUG_ON(p_type == maple_dense);
482 	BUG_ON(p_type == maple_leaf_64);
483 
484 	switch (p_type) {
485 	case maple_range_64:
486 	case maple_arange_64:
487 		shift = MAPLE_PARENT_SLOT_SHIFT;
488 		type = MAPLE_PARENT_RANGE64;
489 		break;
490 	default:
491 	case maple_dense:
492 	case maple_leaf_64:
493 		shift = type = 0;
494 		break;
495 	}
496 
497 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
498 	val |= (slot << shift) | type;
499 	mte_to_node(enode)->parent = ma_parent_ptr(val);
500 }
501 
502 /*
503  * mte_parent_slot() - get the parent slot of @enode.
504  * @enode: The encoded maple node.
505  *
506  * Return: The slot in the parent node where @enode resides.
507  */
508 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
509 {
510 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
511 
512 	if (val & MA_ROOT_PARENT)
513 		return 0;
514 
515 	/*
516 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
517 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
518 	 */
519 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
520 }
521 
522 /*
523  * mte_parent() - Get the parent of @node.
524  * @node: The encoded maple node.
525  *
526  * Return: The parent maple node.
527  */
528 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
529 {
530 	return (void *)((unsigned long)
531 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
532 }
533 
534 /*
535  * ma_dead_node() - check if the @enode is dead.
536  * @enode: The encoded maple node
537  *
538  * Return: true if dead, false otherwise.
539  */
540 static inline bool ma_dead_node(const struct maple_node *node)
541 {
542 	struct maple_node *parent;
543 
544 	/* Do not reorder reads from the node prior to the parent check */
545 	smp_rmb();
546 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
547 	return (parent == node);
548 }
549 
550 /*
551  * mte_dead_node() - check if the @enode is dead.
552  * @enode: The encoded maple node
553  *
554  * Return: true if dead, false otherwise.
555  */
556 static inline bool mte_dead_node(const struct maple_enode *enode)
557 {
558 	struct maple_node *parent, *node;
559 
560 	node = mte_to_node(enode);
561 	/* Do not reorder reads from the node prior to the parent check */
562 	smp_rmb();
563 	parent = mte_parent(enode);
564 	return (parent == node);
565 }
566 
567 /*
568  * mas_allocated() - Get the number of nodes allocated in a maple state.
569  * @mas: The maple state
570  *
571  * The ma_state alloc member is overloaded to hold a pointer to the first
572  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
573  * set, then the alloc contains the number of requested nodes.  If there is an
574  * allocated node, then the total allocated nodes is in that node.
575  *
576  * Return: The total number of nodes allocated
577  */
578 static inline unsigned long mas_allocated(const struct ma_state *mas)
579 {
580 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
581 		return 0;
582 
583 	return mas->alloc->total;
584 }
585 
586 /*
587  * mas_set_alloc_req() - Set the requested number of allocations.
588  * @mas: the maple state
589  * @count: the number of allocations.
590  *
591  * The requested number of allocations is either in the first allocated node,
592  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
593  * no allocated node.  Set the request either in the node or do the necessary
594  * encoding to store in @mas->alloc directly.
595  */
596 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
597 {
598 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
599 		if (!count)
600 			mas->alloc = NULL;
601 		else
602 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
603 		return;
604 	}
605 
606 	mas->alloc->request_count = count;
607 }
608 
609 /*
610  * mas_alloc_req() - get the requested number of allocations.
611  * @mas: The maple state
612  *
613  * The alloc count is either stored directly in @mas, or in
614  * @mas->alloc->request_count if there is at least one node allocated.  Decode
615  * the request count if it's stored directly in @mas->alloc.
616  *
617  * Return: The allocation request count.
618  */
619 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
620 {
621 	if ((unsigned long)mas->alloc & 0x1)
622 		return (unsigned long)(mas->alloc) >> 1;
623 	else if (mas->alloc)
624 		return mas->alloc->request_count;
625 	return 0;
626 }
627 
628 /*
629  * ma_pivots() - Get a pointer to the maple node pivots.
630  * @node - the maple node
631  * @type - the node type
632  *
633  * In the event of a dead node, this array may be %NULL
634  *
635  * Return: A pointer to the maple node pivots
636  */
637 static inline unsigned long *ma_pivots(struct maple_node *node,
638 					   enum maple_type type)
639 {
640 	switch (type) {
641 	case maple_arange_64:
642 		return node->ma64.pivot;
643 	case maple_range_64:
644 	case maple_leaf_64:
645 		return node->mr64.pivot;
646 	case maple_dense:
647 		return NULL;
648 	}
649 	return NULL;
650 }
651 
652 /*
653  * ma_gaps() - Get a pointer to the maple node gaps.
654  * @node - the maple node
655  * @type - the node type
656  *
657  * Return: A pointer to the maple node gaps
658  */
659 static inline unsigned long *ma_gaps(struct maple_node *node,
660 				     enum maple_type type)
661 {
662 	switch (type) {
663 	case maple_arange_64:
664 		return node->ma64.gap;
665 	case maple_range_64:
666 	case maple_leaf_64:
667 	case maple_dense:
668 		return NULL;
669 	}
670 	return NULL;
671 }
672 
673 /*
674  * mte_pivot() - Get the pivot at @piv of the maple encoded node.
675  * @mn: The maple encoded node.
676  * @piv: The pivot.
677  *
678  * Return: the pivot at @piv of @mn.
679  */
680 static inline unsigned long mte_pivot(const struct maple_enode *mn,
681 				 unsigned char piv)
682 {
683 	struct maple_node *node = mte_to_node(mn);
684 	enum maple_type type = mte_node_type(mn);
685 
686 	if (piv >= mt_pivots[type]) {
687 		WARN_ON(1);
688 		return 0;
689 	}
690 	switch (type) {
691 	case maple_arange_64:
692 		return node->ma64.pivot[piv];
693 	case maple_range_64:
694 	case maple_leaf_64:
695 		return node->mr64.pivot[piv];
696 	case maple_dense:
697 		return 0;
698 	}
699 	return 0;
700 }
701 
702 /*
703  * mas_safe_pivot() - get the pivot at @piv or mas->max.
704  * @mas: The maple state
705  * @pivots: The pointer to the maple node pivots
706  * @piv: The pivot to fetch
707  * @type: The maple node type
708  *
709  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
710  * otherwise.
711  */
712 static inline unsigned long
713 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
714 	       unsigned char piv, enum maple_type type)
715 {
716 	if (piv >= mt_pivots[type])
717 		return mas->max;
718 
719 	return pivots[piv];
720 }
721 
722 /*
723  * mas_safe_min() - Return the minimum for a given offset.
724  * @mas: The maple state
725  * @pivots: The pointer to the maple node pivots
726  * @offset: The offset into the pivot array
727  *
728  * Return: The minimum range value that is contained in @offset.
729  */
730 static inline unsigned long
731 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
732 {
733 	if (likely(offset))
734 		return pivots[offset - 1] + 1;
735 
736 	return mas->min;
737 }
738 
739 /*
740  * mas_logical_pivot() - Get the logical pivot of a given offset.
741  * @mas: The maple state
742  * @pivots: The pointer to the maple node pivots
743  * @offset: The offset into the pivot array
744  * @type: The maple node type
745  *
746  * When there is no value at a pivot (beyond the end of the data), then the
747  * pivot is actually @mas->max.
748  *
749  * Return: the logical pivot of a given @offset.
750  */
751 static inline unsigned long
752 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
753 		  unsigned char offset, enum maple_type type)
754 {
755 	unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
756 
757 	if (likely(lpiv))
758 		return lpiv;
759 
760 	if (likely(offset))
761 		return mas->max;
762 
763 	return lpiv;
764 }
765 
766 /*
767  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
768  * @mn: The encoded maple node
769  * @piv: The pivot offset
770  * @val: The value of the pivot
771  */
772 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
773 				unsigned long val)
774 {
775 	struct maple_node *node = mte_to_node(mn);
776 	enum maple_type type = mte_node_type(mn);
777 
778 	BUG_ON(piv >= mt_pivots[type]);
779 	switch (type) {
780 	default:
781 	case maple_range_64:
782 	case maple_leaf_64:
783 		node->mr64.pivot[piv] = val;
784 		break;
785 	case maple_arange_64:
786 		node->ma64.pivot[piv] = val;
787 		break;
788 	case maple_dense:
789 		break;
790 	}
791 
792 }
793 
794 /*
795  * ma_slots() - Get a pointer to the maple node slots.
796  * @mn: The maple node
797  * @mt: The maple node type
798  *
799  * Return: A pointer to the maple node slots
800  */
801 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
802 {
803 	switch (mt) {
804 	default:
805 	case maple_arange_64:
806 		return mn->ma64.slot;
807 	case maple_range_64:
808 	case maple_leaf_64:
809 		return mn->mr64.slot;
810 	case maple_dense:
811 		return mn->slot;
812 	}
813 }
814 
815 static inline bool mt_locked(const struct maple_tree *mt)
816 {
817 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
818 		lockdep_is_held(&mt->ma_lock);
819 }
820 
821 static inline void *mt_slot(const struct maple_tree *mt,
822 		void __rcu **slots, unsigned char offset)
823 {
824 	return rcu_dereference_check(slots[offset], mt_locked(mt));
825 }
826 
827 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
828 				   unsigned char offset)
829 {
830 	return rcu_dereference_protected(slots[offset], mt_locked(mt));
831 }
832 /*
833  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
834  * @mas: The maple state
835  * @slots: The pointer to the slots
836  * @offset: The offset into the slots array to fetch
837  *
838  * Return: The entry stored in @slots at the @offset.
839  */
840 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
841 				       unsigned char offset)
842 {
843 	return mt_slot_locked(mas->tree, slots, offset);
844 }
845 
846 /*
847  * mas_slot() - Get the slot value when not holding the maple tree lock.
848  * @mas: The maple state
849  * @slots: The pointer to the slots
850  * @offset: The offset into the slots array to fetch
851  *
852  * Return: The entry stored in @slots at the @offset
853  */
854 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
855 			     unsigned char offset)
856 {
857 	return mt_slot(mas->tree, slots, offset);
858 }
859 
860 /*
861  * mas_root() - Get the maple tree root.
862  * @mas: The maple state.
863  *
864  * Return: The pointer to the root of the tree
865  */
866 static inline void *mas_root(struct ma_state *mas)
867 {
868 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
869 }
870 
871 static inline void *mt_root_locked(struct maple_tree *mt)
872 {
873 	return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
874 }
875 
876 /*
877  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
878  * @mas: The maple state.
879  *
880  * Return: The pointer to the root of the tree
881  */
882 static inline void *mas_root_locked(struct ma_state *mas)
883 {
884 	return mt_root_locked(mas->tree);
885 }
886 
887 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
888 					     enum maple_type mt)
889 {
890 	switch (mt) {
891 	case maple_arange_64:
892 		return &mn->ma64.meta;
893 	default:
894 		return &mn->mr64.meta;
895 	}
896 }
897 
898 /*
899  * ma_set_meta() - Set the metadata information of a node.
900  * @mn: The maple node
901  * @mt: The maple node type
902  * @offset: The offset of the highest sub-gap in this node.
903  * @end: The end of the data in this node.
904  */
905 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
906 			       unsigned char offset, unsigned char end)
907 {
908 	struct maple_metadata *meta = ma_meta(mn, mt);
909 
910 	meta->gap = offset;
911 	meta->end = end;
912 }
913 
914 /*
915  * mt_clear_meta() - clear the metadata information of a node, if it exists
916  * @mt: The maple tree
917  * @mn: The maple node
918  * @type: The maple node type
919  * @offset: The offset of the highest sub-gap in this node.
920  * @end: The end of the data in this node.
921  */
922 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
923 				  enum maple_type type)
924 {
925 	struct maple_metadata *meta;
926 	unsigned long *pivots;
927 	void __rcu **slots;
928 	void *next;
929 
930 	switch (type) {
931 	case maple_range_64:
932 		pivots = mn->mr64.pivot;
933 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
934 			slots = mn->mr64.slot;
935 			next = mt_slot_locked(mt, slots,
936 					      MAPLE_RANGE64_SLOTS - 1);
937 			if (unlikely((mte_to_node(next) &&
938 				      mte_node_type(next))))
939 				return; /* no metadata, could be node */
940 		}
941 		fallthrough;
942 	case maple_arange_64:
943 		meta = ma_meta(mn, type);
944 		break;
945 	default:
946 		return;
947 	}
948 
949 	meta->gap = 0;
950 	meta->end = 0;
951 }
952 
953 /*
954  * ma_meta_end() - Get the data end of a node from the metadata
955  * @mn: The maple node
956  * @mt: The maple node type
957  */
958 static inline unsigned char ma_meta_end(struct maple_node *mn,
959 					enum maple_type mt)
960 {
961 	struct maple_metadata *meta = ma_meta(mn, mt);
962 
963 	return meta->end;
964 }
965 
966 /*
967  * ma_meta_gap() - Get the largest gap location of a node from the metadata
968  * @mn: The maple node
969  * @mt: The maple node type
970  */
971 static inline unsigned char ma_meta_gap(struct maple_node *mn,
972 					enum maple_type mt)
973 {
974 	BUG_ON(mt != maple_arange_64);
975 
976 	return mn->ma64.meta.gap;
977 }
978 
979 /*
980  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
981  * @mn: The maple node
982  * @mn: The maple node type
983  * @offset: The location of the largest gap.
984  */
985 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
986 				   unsigned char offset)
987 {
988 
989 	struct maple_metadata *meta = ma_meta(mn, mt);
990 
991 	meta->gap = offset;
992 }
993 
994 /*
995  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
996  * @mat - the ma_topiary, a linked list of dead nodes.
997  * @dead_enode - the node to be marked as dead and added to the tail of the list
998  *
999  * Add the @dead_enode to the linked list in @mat.
1000  */
1001 static inline void mat_add(struct ma_topiary *mat,
1002 			   struct maple_enode *dead_enode)
1003 {
1004 	mte_set_node_dead(dead_enode);
1005 	mte_to_mat(dead_enode)->next = NULL;
1006 	if (!mat->tail) {
1007 		mat->tail = mat->head = dead_enode;
1008 		return;
1009 	}
1010 
1011 	mte_to_mat(mat->tail)->next = dead_enode;
1012 	mat->tail = dead_enode;
1013 }
1014 
1015 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
1016 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
1017 
1018 /*
1019  * mas_mat_free() - Free all nodes in a dead list.
1020  * @mas - the maple state
1021  * @mat - the ma_topiary linked list of dead nodes to free.
1022  *
1023  * Free walk a dead list.
1024  */
1025 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
1026 {
1027 	struct maple_enode *next;
1028 
1029 	while (mat->head) {
1030 		next = mte_to_mat(mat->head)->next;
1031 		mas_free(mas, mat->head);
1032 		mat->head = next;
1033 	}
1034 }
1035 
1036 /*
1037  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1038  * @mas - the maple state
1039  * @mat - the ma_topiary linked list of dead nodes to free.
1040  *
1041  * Destroy walk a dead list.
1042  */
1043 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1044 {
1045 	struct maple_enode *next;
1046 
1047 	while (mat->head) {
1048 		next = mte_to_mat(mat->head)->next;
1049 		mte_destroy_walk(mat->head, mat->mtree);
1050 		mat->head = next;
1051 	}
1052 }
1053 /*
1054  * mas_descend() - Descend into the slot stored in the ma_state.
1055  * @mas - the maple state.
1056  *
1057  * Note: Not RCU safe, only use in write side or debug code.
1058  */
1059 static inline void mas_descend(struct ma_state *mas)
1060 {
1061 	enum maple_type type;
1062 	unsigned long *pivots;
1063 	struct maple_node *node;
1064 	void __rcu **slots;
1065 
1066 	node = mas_mn(mas);
1067 	type = mte_node_type(mas->node);
1068 	pivots = ma_pivots(node, type);
1069 	slots = ma_slots(node, type);
1070 
1071 	if (mas->offset)
1072 		mas->min = pivots[mas->offset - 1] + 1;
1073 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1074 	mas->node = mas_slot(mas, slots, mas->offset);
1075 }
1076 
1077 /*
1078  * mte_set_gap() - Set a maple node gap.
1079  * @mn: The encoded maple node
1080  * @gap: The offset of the gap to set
1081  * @val: The gap value
1082  */
1083 static inline void mte_set_gap(const struct maple_enode *mn,
1084 				 unsigned char gap, unsigned long val)
1085 {
1086 	switch (mte_node_type(mn)) {
1087 	default:
1088 		break;
1089 	case maple_arange_64:
1090 		mte_to_node(mn)->ma64.gap[gap] = val;
1091 		break;
1092 	}
1093 }
1094 
1095 /*
1096  * mas_ascend() - Walk up a level of the tree.
1097  * @mas: The maple state
1098  *
1099  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1100  * may cause several levels of walking up to find the correct min and max.
1101  * May find a dead node which will cause a premature return.
1102  * Return: 1 on dead node, 0 otherwise
1103  */
1104 static int mas_ascend(struct ma_state *mas)
1105 {
1106 	struct maple_enode *p_enode; /* parent enode. */
1107 	struct maple_enode *a_enode; /* ancestor enode. */
1108 	struct maple_node *a_node; /* ancestor node. */
1109 	struct maple_node *p_node; /* parent node. */
1110 	unsigned char a_slot;
1111 	enum maple_type a_type;
1112 	unsigned long min, max;
1113 	unsigned long *pivots;
1114 	unsigned char offset;
1115 	bool set_max = false, set_min = false;
1116 
1117 	a_node = mas_mn(mas);
1118 	if (ma_is_root(a_node)) {
1119 		mas->offset = 0;
1120 		return 0;
1121 	}
1122 
1123 	p_node = mte_parent(mas->node);
1124 	if (unlikely(a_node == p_node))
1125 		return 1;
1126 	a_type = mas_parent_enum(mas, mas->node);
1127 	offset = mte_parent_slot(mas->node);
1128 	a_enode = mt_mk_node(p_node, a_type);
1129 
1130 	/* Check to make sure all parent information is still accurate */
1131 	if (p_node != mte_parent(mas->node))
1132 		return 1;
1133 
1134 	mas->node = a_enode;
1135 	mas->offset = offset;
1136 
1137 	if (mte_is_root(a_enode)) {
1138 		mas->max = ULONG_MAX;
1139 		mas->min = 0;
1140 		return 0;
1141 	}
1142 
1143 	min = 0;
1144 	max = ULONG_MAX;
1145 	do {
1146 		p_enode = a_enode;
1147 		a_type = mas_parent_enum(mas, p_enode);
1148 		a_node = mte_parent(p_enode);
1149 		a_slot = mte_parent_slot(p_enode);
1150 		a_enode = mt_mk_node(a_node, a_type);
1151 		pivots = ma_pivots(a_node, a_type);
1152 
1153 		if (unlikely(ma_dead_node(a_node)))
1154 			return 1;
1155 
1156 		if (!set_min && a_slot) {
1157 			set_min = true;
1158 			min = pivots[a_slot - 1] + 1;
1159 		}
1160 
1161 		if (!set_max && a_slot < mt_pivots[a_type]) {
1162 			set_max = true;
1163 			max = pivots[a_slot];
1164 		}
1165 
1166 		if (unlikely(ma_dead_node(a_node)))
1167 			return 1;
1168 
1169 		if (unlikely(ma_is_root(a_node)))
1170 			break;
1171 
1172 	} while (!set_min || !set_max);
1173 
1174 	mas->max = max;
1175 	mas->min = min;
1176 	return 0;
1177 }
1178 
1179 /*
1180  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1181  * @mas: The maple state
1182  *
1183  * Return: A pointer to a maple node.
1184  */
1185 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1186 {
1187 	struct maple_alloc *ret, *node = mas->alloc;
1188 	unsigned long total = mas_allocated(mas);
1189 	unsigned int req = mas_alloc_req(mas);
1190 
1191 	/* nothing or a request pending. */
1192 	if (WARN_ON(!total))
1193 		return NULL;
1194 
1195 	if (total == 1) {
1196 		/* single allocation in this ma_state */
1197 		mas->alloc = NULL;
1198 		ret = node;
1199 		goto single_node;
1200 	}
1201 
1202 	if (node->node_count == 1) {
1203 		/* Single allocation in this node. */
1204 		mas->alloc = node->slot[0];
1205 		mas->alloc->total = node->total - 1;
1206 		ret = node;
1207 		goto new_head;
1208 	}
1209 	node->total--;
1210 	ret = node->slot[--node->node_count];
1211 	node->slot[node->node_count] = NULL;
1212 
1213 single_node:
1214 new_head:
1215 	if (req) {
1216 		req++;
1217 		mas_set_alloc_req(mas, req);
1218 	}
1219 
1220 	memset(ret, 0, sizeof(*ret));
1221 	return (struct maple_node *)ret;
1222 }
1223 
1224 /*
1225  * mas_push_node() - Push a node back on the maple state allocation.
1226  * @mas: The maple state
1227  * @used: The used maple node
1228  *
1229  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1230  * requested node count as necessary.
1231  */
1232 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1233 {
1234 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1235 	struct maple_alloc *head = mas->alloc;
1236 	unsigned long count;
1237 	unsigned int requested = mas_alloc_req(mas);
1238 
1239 	count = mas_allocated(mas);
1240 
1241 	reuse->request_count = 0;
1242 	reuse->node_count = 0;
1243 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1244 		head->slot[head->node_count++] = reuse;
1245 		head->total++;
1246 		goto done;
1247 	}
1248 
1249 	reuse->total = 1;
1250 	if ((head) && !((unsigned long)head & 0x1)) {
1251 		reuse->slot[0] = head;
1252 		reuse->node_count = 1;
1253 		reuse->total += head->total;
1254 	}
1255 
1256 	mas->alloc = reuse;
1257 done:
1258 	if (requested > 1)
1259 		mas_set_alloc_req(mas, requested - 1);
1260 }
1261 
1262 /*
1263  * mas_alloc_nodes() - Allocate nodes into a maple state
1264  * @mas: The maple state
1265  * @gfp: The GFP Flags
1266  */
1267 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1268 {
1269 	struct maple_alloc *node;
1270 	unsigned long allocated = mas_allocated(mas);
1271 	unsigned int requested = mas_alloc_req(mas);
1272 	unsigned int count;
1273 	void **slots = NULL;
1274 	unsigned int max_req = 0;
1275 
1276 	if (!requested)
1277 		return;
1278 
1279 	mas_set_alloc_req(mas, 0);
1280 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1281 		if (allocated)
1282 			return;
1283 		WARN_ON(!allocated);
1284 	}
1285 
1286 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1287 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1288 		if (!node)
1289 			goto nomem_one;
1290 
1291 		if (allocated) {
1292 			node->slot[0] = mas->alloc;
1293 			node->node_count = 1;
1294 		} else {
1295 			node->node_count = 0;
1296 		}
1297 
1298 		mas->alloc = node;
1299 		node->total = ++allocated;
1300 		requested--;
1301 	}
1302 
1303 	node = mas->alloc;
1304 	node->request_count = 0;
1305 	while (requested) {
1306 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1307 		slots = (void **)&node->slot[node->node_count];
1308 		max_req = min(requested, max_req);
1309 		count = mt_alloc_bulk(gfp, max_req, slots);
1310 		if (!count)
1311 			goto nomem_bulk;
1312 
1313 		if (node->node_count == 0) {
1314 			node->slot[0]->node_count = 0;
1315 			node->slot[0]->request_count = 0;
1316 		}
1317 
1318 		node->node_count += count;
1319 		allocated += count;
1320 		node = node->slot[0];
1321 		requested -= count;
1322 	}
1323 	mas->alloc->total = allocated;
1324 	return;
1325 
1326 nomem_bulk:
1327 	/* Clean up potential freed allocations on bulk failure */
1328 	memset(slots, 0, max_req * sizeof(unsigned long));
1329 nomem_one:
1330 	mas_set_alloc_req(mas, requested);
1331 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1332 		mas->alloc->total = allocated;
1333 	mas_set_err(mas, -ENOMEM);
1334 }
1335 
1336 /*
1337  * mas_free() - Free an encoded maple node
1338  * @mas: The maple state
1339  * @used: The encoded maple node to free.
1340  *
1341  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1342  * otherwise.
1343  */
1344 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1345 {
1346 	struct maple_node *tmp = mte_to_node(used);
1347 
1348 	if (mt_in_rcu(mas->tree))
1349 		ma_free_rcu(tmp);
1350 	else
1351 		mas_push_node(mas, tmp);
1352 }
1353 
1354 /*
1355  * mas_node_count() - Check if enough nodes are allocated and request more if
1356  * there is not enough nodes.
1357  * @mas: The maple state
1358  * @count: The number of nodes needed
1359  * @gfp: the gfp flags
1360  */
1361 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1362 {
1363 	unsigned long allocated = mas_allocated(mas);
1364 
1365 	if (allocated < count) {
1366 		mas_set_alloc_req(mas, count - allocated);
1367 		mas_alloc_nodes(mas, gfp);
1368 	}
1369 }
1370 
1371 /*
1372  * mas_node_count() - Check if enough nodes are allocated and request more if
1373  * there is not enough nodes.
1374  * @mas: The maple state
1375  * @count: The number of nodes needed
1376  *
1377  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1378  */
1379 static void mas_node_count(struct ma_state *mas, int count)
1380 {
1381 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1382 }
1383 
1384 /*
1385  * mas_start() - Sets up maple state for operations.
1386  * @mas: The maple state.
1387  *
1388  * If mas->node == MAS_START, then set the min, max and depth to
1389  * defaults.
1390  *
1391  * Return:
1392  * - If mas->node is an error or not MAS_START, return NULL.
1393  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
1394  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
1395  * - If it's a tree:            NULL & mas->node == safe root node.
1396  */
1397 static inline struct maple_enode *mas_start(struct ma_state *mas)
1398 {
1399 	if (likely(mas_is_start(mas))) {
1400 		struct maple_enode *root;
1401 
1402 		mas->min = 0;
1403 		mas->max = ULONG_MAX;
1404 		mas->depth = 0;
1405 
1406 retry:
1407 		root = mas_root(mas);
1408 		/* Tree with nodes */
1409 		if (likely(xa_is_node(root))) {
1410 			mas->depth = 1;
1411 			mas->node = mte_safe_root(root);
1412 			mas->offset = 0;
1413 			if (mte_dead_node(mas->node))
1414 				goto retry;
1415 
1416 			return NULL;
1417 		}
1418 
1419 		/* empty tree */
1420 		if (unlikely(!root)) {
1421 			mas->node = MAS_NONE;
1422 			mas->offset = MAPLE_NODE_SLOTS;
1423 			return NULL;
1424 		}
1425 
1426 		/* Single entry tree */
1427 		mas->node = MAS_ROOT;
1428 		mas->offset = MAPLE_NODE_SLOTS;
1429 
1430 		/* Single entry tree. */
1431 		if (mas->index > 0)
1432 			return NULL;
1433 
1434 		return root;
1435 	}
1436 
1437 	return NULL;
1438 }
1439 
1440 /*
1441  * ma_data_end() - Find the end of the data in a node.
1442  * @node: The maple node
1443  * @type: The maple node type
1444  * @pivots: The array of pivots in the node
1445  * @max: The maximum value in the node
1446  *
1447  * Uses metadata to find the end of the data when possible.
1448  * Return: The zero indexed last slot with data (may be null).
1449  */
1450 static inline unsigned char ma_data_end(struct maple_node *node,
1451 					enum maple_type type,
1452 					unsigned long *pivots,
1453 					unsigned long max)
1454 {
1455 	unsigned char offset;
1456 
1457 	if (!pivots)
1458 		return 0;
1459 
1460 	if (type == maple_arange_64)
1461 		return ma_meta_end(node, type);
1462 
1463 	offset = mt_pivots[type] - 1;
1464 	if (likely(!pivots[offset]))
1465 		return ma_meta_end(node, type);
1466 
1467 	if (likely(pivots[offset] == max))
1468 		return offset;
1469 
1470 	return mt_pivots[type];
1471 }
1472 
1473 /*
1474  * mas_data_end() - Find the end of the data (slot).
1475  * @mas: the maple state
1476  *
1477  * This method is optimized to check the metadata of a node if the node type
1478  * supports data end metadata.
1479  *
1480  * Return: The zero indexed last slot with data (may be null).
1481  */
1482 static inline unsigned char mas_data_end(struct ma_state *mas)
1483 {
1484 	enum maple_type type;
1485 	struct maple_node *node;
1486 	unsigned char offset;
1487 	unsigned long *pivots;
1488 
1489 	type = mte_node_type(mas->node);
1490 	node = mas_mn(mas);
1491 	if (type == maple_arange_64)
1492 		return ma_meta_end(node, type);
1493 
1494 	pivots = ma_pivots(node, type);
1495 	if (unlikely(ma_dead_node(node)))
1496 		return 0;
1497 
1498 	offset = mt_pivots[type] - 1;
1499 	if (likely(!pivots[offset]))
1500 		return ma_meta_end(node, type);
1501 
1502 	if (likely(pivots[offset] == mas->max))
1503 		return offset;
1504 
1505 	return mt_pivots[type];
1506 }
1507 
1508 /*
1509  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1510  * @mas - the maple state
1511  *
1512  * Return: The maximum gap in the leaf.
1513  */
1514 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1515 {
1516 	enum maple_type mt;
1517 	unsigned long pstart, gap, max_gap;
1518 	struct maple_node *mn;
1519 	unsigned long *pivots;
1520 	void __rcu **slots;
1521 	unsigned char i;
1522 	unsigned char max_piv;
1523 
1524 	mt = mte_node_type(mas->node);
1525 	mn = mas_mn(mas);
1526 	slots = ma_slots(mn, mt);
1527 	max_gap = 0;
1528 	if (unlikely(ma_is_dense(mt))) {
1529 		gap = 0;
1530 		for (i = 0; i < mt_slots[mt]; i++) {
1531 			if (slots[i]) {
1532 				if (gap > max_gap)
1533 					max_gap = gap;
1534 				gap = 0;
1535 			} else {
1536 				gap++;
1537 			}
1538 		}
1539 		if (gap > max_gap)
1540 			max_gap = gap;
1541 		return max_gap;
1542 	}
1543 
1544 	/*
1545 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1546 	 * be skipped if there is a gap in slot 0.
1547 	 */
1548 	pivots = ma_pivots(mn, mt);
1549 	if (likely(!slots[0])) {
1550 		max_gap = pivots[0] - mas->min + 1;
1551 		i = 2;
1552 	} else {
1553 		i = 1;
1554 	}
1555 
1556 	/* reduce max_piv as the special case is checked before the loop */
1557 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1558 	/*
1559 	 * Check end implied pivot which can only be a gap on the right most
1560 	 * node.
1561 	 */
1562 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1563 		gap = ULONG_MAX - pivots[max_piv];
1564 		if (gap > max_gap)
1565 			max_gap = gap;
1566 	}
1567 
1568 	for (; i <= max_piv; i++) {
1569 		/* data == no gap. */
1570 		if (likely(slots[i]))
1571 			continue;
1572 
1573 		pstart = pivots[i - 1];
1574 		gap = pivots[i] - pstart;
1575 		if (gap > max_gap)
1576 			max_gap = gap;
1577 
1578 		/* There cannot be two gaps in a row. */
1579 		i++;
1580 	}
1581 	return max_gap;
1582 }
1583 
1584 /*
1585  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1586  * @node: The maple node
1587  * @gaps: The pointer to the gaps
1588  * @mt: The maple node type
1589  * @*off: Pointer to store the offset location of the gap.
1590  *
1591  * Uses the metadata data end to scan backwards across set gaps.
1592  *
1593  * Return: The maximum gap value
1594  */
1595 static inline unsigned long
1596 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1597 	    unsigned char *off)
1598 {
1599 	unsigned char offset, i;
1600 	unsigned long max_gap = 0;
1601 
1602 	i = offset = ma_meta_end(node, mt);
1603 	do {
1604 		if (gaps[i] > max_gap) {
1605 			max_gap = gaps[i];
1606 			offset = i;
1607 		}
1608 	} while (i--);
1609 
1610 	*off = offset;
1611 	return max_gap;
1612 }
1613 
1614 /*
1615  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1616  * @mas: The maple state.
1617  *
1618  * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1619  *
1620  * Return: The gap value.
1621  */
1622 static inline unsigned long mas_max_gap(struct ma_state *mas)
1623 {
1624 	unsigned long *gaps;
1625 	unsigned char offset;
1626 	enum maple_type mt;
1627 	struct maple_node *node;
1628 
1629 	mt = mte_node_type(mas->node);
1630 	if (ma_is_leaf(mt))
1631 		return mas_leaf_max_gap(mas);
1632 
1633 	node = mas_mn(mas);
1634 	offset = ma_meta_gap(node, mt);
1635 	if (offset == MAPLE_ARANGE64_META_MAX)
1636 		return 0;
1637 
1638 	gaps = ma_gaps(node, mt);
1639 	return gaps[offset];
1640 }
1641 
1642 /*
1643  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1644  * @mas: The maple state
1645  * @offset: The gap offset in the parent to set
1646  * @new: The new gap value.
1647  *
1648  * Set the parent gap then continue to set the gap upwards, using the metadata
1649  * of the parent to see if it is necessary to check the node above.
1650  */
1651 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1652 		unsigned long new)
1653 {
1654 	unsigned long meta_gap = 0;
1655 	struct maple_node *pnode;
1656 	struct maple_enode *penode;
1657 	unsigned long *pgaps;
1658 	unsigned char meta_offset;
1659 	enum maple_type pmt;
1660 
1661 	pnode = mte_parent(mas->node);
1662 	pmt = mas_parent_enum(mas, mas->node);
1663 	penode = mt_mk_node(pnode, pmt);
1664 	pgaps = ma_gaps(pnode, pmt);
1665 
1666 ascend:
1667 	meta_offset = ma_meta_gap(pnode, pmt);
1668 	if (meta_offset == MAPLE_ARANGE64_META_MAX)
1669 		meta_gap = 0;
1670 	else
1671 		meta_gap = pgaps[meta_offset];
1672 
1673 	pgaps[offset] = new;
1674 
1675 	if (meta_gap == new)
1676 		return;
1677 
1678 	if (offset != meta_offset) {
1679 		if (meta_gap > new)
1680 			return;
1681 
1682 		ma_set_meta_gap(pnode, pmt, offset);
1683 	} else if (new < meta_gap) {
1684 		meta_offset = 15;
1685 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1686 		ma_set_meta_gap(pnode, pmt, meta_offset);
1687 	}
1688 
1689 	if (ma_is_root(pnode))
1690 		return;
1691 
1692 	/* Go to the parent node. */
1693 	pnode = mte_parent(penode);
1694 	pmt = mas_parent_enum(mas, penode);
1695 	pgaps = ma_gaps(pnode, pmt);
1696 	offset = mte_parent_slot(penode);
1697 	penode = mt_mk_node(pnode, pmt);
1698 	goto ascend;
1699 }
1700 
1701 /*
1702  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1703  * @mas - the maple state.
1704  */
1705 static inline void mas_update_gap(struct ma_state *mas)
1706 {
1707 	unsigned char pslot;
1708 	unsigned long p_gap;
1709 	unsigned long max_gap;
1710 
1711 	if (!mt_is_alloc(mas->tree))
1712 		return;
1713 
1714 	if (mte_is_root(mas->node))
1715 		return;
1716 
1717 	max_gap = mas_max_gap(mas);
1718 
1719 	pslot = mte_parent_slot(mas->node);
1720 	p_gap = ma_gaps(mte_parent(mas->node),
1721 			mas_parent_enum(mas, mas->node))[pslot];
1722 
1723 	if (p_gap != max_gap)
1724 		mas_parent_gap(mas, pslot, max_gap);
1725 }
1726 
1727 /*
1728  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1729  * @parent with the slot encoded.
1730  * @mas - the maple state (for the tree)
1731  * @parent - the maple encoded node containing the children.
1732  */
1733 static inline void mas_adopt_children(struct ma_state *mas,
1734 		struct maple_enode *parent)
1735 {
1736 	enum maple_type type = mte_node_type(parent);
1737 	struct maple_node *node = mas_mn(mas);
1738 	void __rcu **slots = ma_slots(node, type);
1739 	unsigned long *pivots = ma_pivots(node, type);
1740 	struct maple_enode *child;
1741 	unsigned char offset;
1742 
1743 	offset = ma_data_end(node, type, pivots, mas->max);
1744 	do {
1745 		child = mas_slot_locked(mas, slots, offset);
1746 		mte_set_parent(child, parent, offset);
1747 	} while (offset--);
1748 }
1749 
1750 /*
1751  * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the
1752  * parent encoding to locate the maple node in the tree.
1753  * @mas - the ma_state to use for operations.
1754  * @advanced - boolean to adopt the child nodes and free the old node (false) or
1755  * leave the node (true) and handle the adoption and free elsewhere.
1756  */
1757 static inline void mas_replace(struct ma_state *mas, bool advanced)
1758 	__must_hold(mas->tree->lock)
1759 {
1760 	struct maple_node *mn = mas_mn(mas);
1761 	struct maple_enode *old_enode;
1762 	unsigned char offset = 0;
1763 	void __rcu **slots = NULL;
1764 
1765 	if (ma_is_root(mn)) {
1766 		old_enode = mas_root_locked(mas);
1767 	} else {
1768 		offset = mte_parent_slot(mas->node);
1769 		slots = ma_slots(mte_parent(mas->node),
1770 				 mas_parent_enum(mas, mas->node));
1771 		old_enode = mas_slot_locked(mas, slots, offset);
1772 	}
1773 
1774 	if (!advanced && !mte_is_leaf(mas->node))
1775 		mas_adopt_children(mas, mas->node);
1776 
1777 	if (mte_is_root(mas->node)) {
1778 		mn->parent = ma_parent_ptr(
1779 			      ((unsigned long)mas->tree | MA_ROOT_PARENT));
1780 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1781 		mas_set_height(mas);
1782 	} else {
1783 		rcu_assign_pointer(slots[offset], mas->node);
1784 	}
1785 
1786 	if (!advanced) {
1787 		mte_set_node_dead(old_enode);
1788 		mas_free(mas, old_enode);
1789 	}
1790 }
1791 
1792 /*
1793  * mas_new_child() - Find the new child of a node.
1794  * @mas: the maple state
1795  * @child: the maple state to store the child.
1796  */
1797 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1798 	__must_hold(mas->tree->lock)
1799 {
1800 	enum maple_type mt;
1801 	unsigned char offset;
1802 	unsigned char end;
1803 	unsigned long *pivots;
1804 	struct maple_enode *entry;
1805 	struct maple_node *node;
1806 	void __rcu **slots;
1807 
1808 	mt = mte_node_type(mas->node);
1809 	node = mas_mn(mas);
1810 	slots = ma_slots(node, mt);
1811 	pivots = ma_pivots(node, mt);
1812 	end = ma_data_end(node, mt, pivots, mas->max);
1813 	for (offset = mas->offset; offset <= end; offset++) {
1814 		entry = mas_slot_locked(mas, slots, offset);
1815 		if (mte_parent(entry) == node) {
1816 			*child = *mas;
1817 			mas->offset = offset + 1;
1818 			child->offset = offset;
1819 			mas_descend(child);
1820 			child->offset = 0;
1821 			return true;
1822 		}
1823 	}
1824 	return false;
1825 }
1826 
1827 /*
1828  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1829  * old data or set b_node->b_end.
1830  * @b_node: the maple_big_node
1831  * @shift: the shift count
1832  */
1833 static inline void mab_shift_right(struct maple_big_node *b_node,
1834 				 unsigned char shift)
1835 {
1836 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1837 
1838 	memmove(b_node->pivot + shift, b_node->pivot, size);
1839 	memmove(b_node->slot + shift, b_node->slot, size);
1840 	if (b_node->type == maple_arange_64)
1841 		memmove(b_node->gap + shift, b_node->gap, size);
1842 }
1843 
1844 /*
1845  * mab_middle_node() - Check if a middle node is needed (unlikely)
1846  * @b_node: the maple_big_node that contains the data.
1847  * @size: the amount of data in the b_node
1848  * @split: the potential split location
1849  * @slot_count: the size that can be stored in a single node being considered.
1850  *
1851  * Return: true if a middle node is required.
1852  */
1853 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1854 				   unsigned char slot_count)
1855 {
1856 	unsigned char size = b_node->b_end;
1857 
1858 	if (size >= 2 * slot_count)
1859 		return true;
1860 
1861 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1862 		return true;
1863 
1864 	return false;
1865 }
1866 
1867 /*
1868  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1869  * @b_node: the maple_big_node with the data
1870  * @split: the suggested split location
1871  * @slot_count: the number of slots in the node being considered.
1872  *
1873  * Return: the split location.
1874  */
1875 static inline int mab_no_null_split(struct maple_big_node *b_node,
1876 				    unsigned char split, unsigned char slot_count)
1877 {
1878 	if (!b_node->slot[split]) {
1879 		/*
1880 		 * If the split is less than the max slot && the right side will
1881 		 * still be sufficient, then increment the split on NULL.
1882 		 */
1883 		if ((split < slot_count - 1) &&
1884 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1885 			split++;
1886 		else
1887 			split--;
1888 	}
1889 	return split;
1890 }
1891 
1892 /*
1893  * mab_calc_split() - Calculate the split location and if there needs to be two
1894  * splits.
1895  * @bn: The maple_big_node with the data
1896  * @mid_split: The second split, if required.  0 otherwise.
1897  *
1898  * Return: The first split location.  The middle split is set in @mid_split.
1899  */
1900 static inline int mab_calc_split(struct ma_state *mas,
1901 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1902 {
1903 	unsigned char b_end = bn->b_end;
1904 	int split = b_end / 2; /* Assume equal split. */
1905 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1906 
1907 	/*
1908 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1909 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1910 	 * limitation means that the split of a node must be checked for this condition
1911 	 * and be able to put more data in one direction or the other.
1912 	 */
1913 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1914 		*mid_split = 0;
1915 		split = b_end - mt_min_slots[bn->type];
1916 
1917 		if (!ma_is_leaf(bn->type))
1918 			return split;
1919 
1920 		mas->mas_flags |= MA_STATE_REBALANCE;
1921 		if (!bn->slot[split])
1922 			split--;
1923 		return split;
1924 	}
1925 
1926 	/*
1927 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1928 	 * split scenario.  The 3-way split comes about by means of a store of a range
1929 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1930 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1931 	 * also be located in different parent nodes which are also full.  This can
1932 	 * carry upwards all the way to the root in the worst case.
1933 	 */
1934 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1935 		split = b_end / 3;
1936 		*mid_split = split * 2;
1937 	} else {
1938 		slot_min = mt_min_slots[bn->type];
1939 
1940 		*mid_split = 0;
1941 		/*
1942 		 * Avoid having a range less than the slot count unless it
1943 		 * causes one node to be deficient.
1944 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1945 		 */
1946 		while (((bn->pivot[split] - min) < slot_count - 1) &&
1947 		       (split < slot_count - 1) && (b_end - split > slot_min))
1948 			split++;
1949 	}
1950 
1951 	/* Avoid ending a node on a NULL entry */
1952 	split = mab_no_null_split(bn, split, slot_count);
1953 
1954 	if (unlikely(*mid_split))
1955 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1956 
1957 	return split;
1958 }
1959 
1960 /*
1961  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1962  * and set @b_node->b_end to the next free slot.
1963  * @mas: The maple state
1964  * @mas_start: The starting slot to copy
1965  * @mas_end: The end slot to copy (inclusively)
1966  * @b_node: The maple_big_node to place the data
1967  * @mab_start: The starting location in maple_big_node to store the data.
1968  */
1969 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1970 			unsigned char mas_end, struct maple_big_node *b_node,
1971 			unsigned char mab_start)
1972 {
1973 	enum maple_type mt;
1974 	struct maple_node *node;
1975 	void __rcu **slots;
1976 	unsigned long *pivots, *gaps;
1977 	int i = mas_start, j = mab_start;
1978 	unsigned char piv_end;
1979 
1980 	node = mas_mn(mas);
1981 	mt = mte_node_type(mas->node);
1982 	pivots = ma_pivots(node, mt);
1983 	if (!i) {
1984 		b_node->pivot[j] = pivots[i++];
1985 		if (unlikely(i > mas_end))
1986 			goto complete;
1987 		j++;
1988 	}
1989 
1990 	piv_end = min(mas_end, mt_pivots[mt]);
1991 	for (; i < piv_end; i++, j++) {
1992 		b_node->pivot[j] = pivots[i];
1993 		if (unlikely(!b_node->pivot[j]))
1994 			break;
1995 
1996 		if (unlikely(mas->max == b_node->pivot[j]))
1997 			goto complete;
1998 	}
1999 
2000 	if (likely(i <= mas_end))
2001 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
2002 
2003 complete:
2004 	b_node->b_end = ++j;
2005 	j -= mab_start;
2006 	slots = ma_slots(node, mt);
2007 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
2008 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
2009 		gaps = ma_gaps(node, mt);
2010 		memcpy(b_node->gap + mab_start, gaps + mas_start,
2011 		       sizeof(unsigned long) * j);
2012 	}
2013 }
2014 
2015 /*
2016  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
2017  * @mas: The maple state
2018  * @node: The maple node
2019  * @pivots: pointer to the maple node pivots
2020  * @mt: The maple type
2021  * @end: The assumed end
2022  *
2023  * Note, end may be incremented within this function but not modified at the
2024  * source.  This is fine since the metadata is the last thing to be stored in a
2025  * node during a write.
2026  */
2027 static inline void mas_leaf_set_meta(struct ma_state *mas,
2028 		struct maple_node *node, unsigned long *pivots,
2029 		enum maple_type mt, unsigned char end)
2030 {
2031 	/* There is no room for metadata already */
2032 	if (mt_pivots[mt] <= end)
2033 		return;
2034 
2035 	if (pivots[end] && pivots[end] < mas->max)
2036 		end++;
2037 
2038 	if (end < mt_slots[mt] - 1)
2039 		ma_set_meta(node, mt, 0, end);
2040 }
2041 
2042 /*
2043  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2044  * @b_node: the maple_big_node that has the data
2045  * @mab_start: the start location in @b_node.
2046  * @mab_end: The end location in @b_node (inclusively)
2047  * @mas: The maple state with the maple encoded node.
2048  */
2049 static inline void mab_mas_cp(struct maple_big_node *b_node,
2050 			      unsigned char mab_start, unsigned char mab_end,
2051 			      struct ma_state *mas, bool new_max)
2052 {
2053 	int i, j = 0;
2054 	enum maple_type mt = mte_node_type(mas->node);
2055 	struct maple_node *node = mte_to_node(mas->node);
2056 	void __rcu **slots = ma_slots(node, mt);
2057 	unsigned long *pivots = ma_pivots(node, mt);
2058 	unsigned long *gaps = NULL;
2059 	unsigned char end;
2060 
2061 	if (mab_end - mab_start > mt_pivots[mt])
2062 		mab_end--;
2063 
2064 	if (!pivots[mt_pivots[mt] - 1])
2065 		slots[mt_pivots[mt]] = NULL;
2066 
2067 	i = mab_start;
2068 	do {
2069 		pivots[j++] = b_node->pivot[i++];
2070 	} while (i <= mab_end && likely(b_node->pivot[i]));
2071 
2072 	memcpy(slots, b_node->slot + mab_start,
2073 	       sizeof(void *) * (i - mab_start));
2074 
2075 	if (new_max)
2076 		mas->max = b_node->pivot[i - 1];
2077 
2078 	end = j - 1;
2079 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2080 		unsigned long max_gap = 0;
2081 		unsigned char offset = 15;
2082 
2083 		gaps = ma_gaps(node, mt);
2084 		do {
2085 			gaps[--j] = b_node->gap[--i];
2086 			if (gaps[j] > max_gap) {
2087 				offset = j;
2088 				max_gap = gaps[j];
2089 			}
2090 		} while (j);
2091 
2092 		ma_set_meta(node, mt, offset, end);
2093 	} else {
2094 		mas_leaf_set_meta(mas, node, pivots, mt, end);
2095 	}
2096 }
2097 
2098 /*
2099  * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2100  * @mas: the maple state with the maple encoded node of the sub-tree.
2101  *
2102  * Descend through a sub-tree and adopt children who do not have the correct
2103  * parents set.  Follow the parents which have the correct parents as they are
2104  * the new entries which need to be followed to find other incorrectly set
2105  * parents.
2106  */
2107 static inline void mas_descend_adopt(struct ma_state *mas)
2108 {
2109 	struct ma_state list[3], next[3];
2110 	int i, n;
2111 
2112 	/*
2113 	 * At each level there may be up to 3 correct parent pointers which indicates
2114 	 * the new nodes which need to be walked to find any new nodes at a lower level.
2115 	 */
2116 
2117 	for (i = 0; i < 3; i++) {
2118 		list[i] = *mas;
2119 		list[i].offset = 0;
2120 		next[i].offset = 0;
2121 	}
2122 	next[0] = *mas;
2123 
2124 	while (!mte_is_leaf(list[0].node)) {
2125 		n = 0;
2126 		for (i = 0; i < 3; i++) {
2127 			if (mas_is_none(&list[i]))
2128 				continue;
2129 
2130 			if (i && list[i-1].node == list[i].node)
2131 				continue;
2132 
2133 			while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2134 				n++;
2135 
2136 			mas_adopt_children(&list[i], list[i].node);
2137 		}
2138 
2139 		while (n < 3)
2140 			next[n++].node = MAS_NONE;
2141 
2142 		/* descend by setting the list to the children */
2143 		for (i = 0; i < 3; i++)
2144 			list[i] = next[i];
2145 	}
2146 }
2147 
2148 /*
2149  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2150  * @mas: The maple state
2151  * @end: The maple node end
2152  * @mt: The maple node type
2153  */
2154 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2155 				      enum maple_type mt)
2156 {
2157 	if (!(mas->mas_flags & MA_STATE_BULK))
2158 		return;
2159 
2160 	if (mte_is_root(mas->node))
2161 		return;
2162 
2163 	if (end > mt_min_slots[mt]) {
2164 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2165 		return;
2166 	}
2167 }
2168 
2169 /*
2170  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2171  * data from a maple encoded node.
2172  * @wr_mas: the maple write state
2173  * @b_node: the maple_big_node to fill with data
2174  * @offset_end: the offset to end copying
2175  *
2176  * Return: The actual end of the data stored in @b_node
2177  */
2178 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2179 		struct maple_big_node *b_node, unsigned char offset_end)
2180 {
2181 	unsigned char slot;
2182 	unsigned char b_end;
2183 	/* Possible underflow of piv will wrap back to 0 before use. */
2184 	unsigned long piv;
2185 	struct ma_state *mas = wr_mas->mas;
2186 
2187 	b_node->type = wr_mas->type;
2188 	b_end = 0;
2189 	slot = mas->offset;
2190 	if (slot) {
2191 		/* Copy start data up to insert. */
2192 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2193 		b_end = b_node->b_end;
2194 		piv = b_node->pivot[b_end - 1];
2195 	} else
2196 		piv = mas->min - 1;
2197 
2198 	if (piv + 1 < mas->index) {
2199 		/* Handle range starting after old range */
2200 		b_node->slot[b_end] = wr_mas->content;
2201 		if (!wr_mas->content)
2202 			b_node->gap[b_end] = mas->index - 1 - piv;
2203 		b_node->pivot[b_end++] = mas->index - 1;
2204 	}
2205 
2206 	/* Store the new entry. */
2207 	mas->offset = b_end;
2208 	b_node->slot[b_end] = wr_mas->entry;
2209 	b_node->pivot[b_end] = mas->last;
2210 
2211 	/* Appended. */
2212 	if (mas->last >= mas->max)
2213 		goto b_end;
2214 
2215 	/* Handle new range ending before old range ends */
2216 	piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2217 	if (piv > mas->last) {
2218 		if (piv == ULONG_MAX)
2219 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2220 
2221 		if (offset_end != slot)
2222 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2223 							  offset_end);
2224 
2225 		b_node->slot[++b_end] = wr_mas->content;
2226 		if (!wr_mas->content)
2227 			b_node->gap[b_end] = piv - mas->last + 1;
2228 		b_node->pivot[b_end] = piv;
2229 	}
2230 
2231 	slot = offset_end + 1;
2232 	if (slot > wr_mas->node_end)
2233 		goto b_end;
2234 
2235 	/* Copy end data to the end of the node. */
2236 	mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2237 	b_node->b_end--;
2238 	return;
2239 
2240 b_end:
2241 	b_node->b_end = b_end;
2242 }
2243 
2244 /*
2245  * mas_prev_sibling() - Find the previous node with the same parent.
2246  * @mas: the maple state
2247  *
2248  * Return: True if there is a previous sibling, false otherwise.
2249  */
2250 static inline bool mas_prev_sibling(struct ma_state *mas)
2251 {
2252 	unsigned int p_slot = mte_parent_slot(mas->node);
2253 
2254 	if (mte_is_root(mas->node))
2255 		return false;
2256 
2257 	if (!p_slot)
2258 		return false;
2259 
2260 	mas_ascend(mas);
2261 	mas->offset = p_slot - 1;
2262 	mas_descend(mas);
2263 	return true;
2264 }
2265 
2266 /*
2267  * mas_next_sibling() - Find the next node with the same parent.
2268  * @mas: the maple state
2269  *
2270  * Return: true if there is a next sibling, false otherwise.
2271  */
2272 static inline bool mas_next_sibling(struct ma_state *mas)
2273 {
2274 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2275 
2276 	if (mte_is_root(mas->node))
2277 		return false;
2278 
2279 	parent = *mas;
2280 	mas_ascend(&parent);
2281 	parent.offset = mte_parent_slot(mas->node) + 1;
2282 	if (parent.offset > mas_data_end(&parent))
2283 		return false;
2284 
2285 	*mas = parent;
2286 	mas_descend(mas);
2287 	return true;
2288 }
2289 
2290 /*
2291  * mte_node_or_node() - Return the encoded node or MAS_NONE.
2292  * @enode: The encoded maple node.
2293  *
2294  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2295  *
2296  * Return: @enode or MAS_NONE
2297  */
2298 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2299 {
2300 	if (enode)
2301 		return enode;
2302 
2303 	return ma_enode_ptr(MAS_NONE);
2304 }
2305 
2306 /*
2307  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2308  * @wr_mas: The maple write state
2309  *
2310  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2311  */
2312 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2313 {
2314 	struct ma_state *mas = wr_mas->mas;
2315 	unsigned char count, offset;
2316 
2317 	if (unlikely(ma_is_dense(wr_mas->type))) {
2318 		wr_mas->r_max = wr_mas->r_min = mas->index;
2319 		mas->offset = mas->index = mas->min;
2320 		return;
2321 	}
2322 
2323 	wr_mas->node = mas_mn(wr_mas->mas);
2324 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2325 	count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2326 					       wr_mas->pivots, mas->max);
2327 	offset = mas->offset;
2328 
2329 	while (offset < count && mas->index > wr_mas->pivots[offset])
2330 		offset++;
2331 
2332 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2333 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2334 	wr_mas->offset_end = mas->offset = offset;
2335 }
2336 
2337 /*
2338  * mas_topiary_range() - Add a range of slots to the topiary.
2339  * @mas: The maple state
2340  * @destroy: The topiary to add the slots (usually destroy)
2341  * @start: The starting slot inclusively
2342  * @end: The end slot inclusively
2343  */
2344 static inline void mas_topiary_range(struct ma_state *mas,
2345 	struct ma_topiary *destroy, unsigned char start, unsigned char end)
2346 {
2347 	void __rcu **slots;
2348 	unsigned char offset;
2349 
2350 	MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2351 	slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2352 	for (offset = start; offset <= end; offset++) {
2353 		struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2354 
2355 		if (mte_dead_node(enode))
2356 			continue;
2357 
2358 		mat_add(destroy, enode);
2359 	}
2360 }
2361 
2362 /*
2363  * mast_topiary() - Add the portions of the tree to the removal list; either to
2364  * be freed or discarded (destroy walk).
2365  * @mast: The maple_subtree_state.
2366  */
2367 static inline void mast_topiary(struct maple_subtree_state *mast)
2368 {
2369 	MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2370 	unsigned char r_start, r_end;
2371 	unsigned char l_start, l_end;
2372 	void __rcu **l_slots, **r_slots;
2373 
2374 	wr_mas.type = mte_node_type(mast->orig_l->node);
2375 	mast->orig_l->index = mast->orig_l->last;
2376 	mas_wr_node_walk(&wr_mas);
2377 	l_start = mast->orig_l->offset + 1;
2378 	l_end = mas_data_end(mast->orig_l);
2379 	r_start = 0;
2380 	r_end = mast->orig_r->offset;
2381 
2382 	if (r_end)
2383 		r_end--;
2384 
2385 	l_slots = ma_slots(mas_mn(mast->orig_l),
2386 			   mte_node_type(mast->orig_l->node));
2387 
2388 	r_slots = ma_slots(mas_mn(mast->orig_r),
2389 			   mte_node_type(mast->orig_r->node));
2390 
2391 	if ((l_start < l_end) &&
2392 	    mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2393 		l_start++;
2394 	}
2395 
2396 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2397 		if (r_end)
2398 			r_end--;
2399 	}
2400 
2401 	if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2402 		return;
2403 
2404 	/* At the node where left and right sides meet, add the parts between */
2405 	if (mast->orig_l->node == mast->orig_r->node) {
2406 		return mas_topiary_range(mast->orig_l, mast->destroy,
2407 					     l_start, r_end);
2408 	}
2409 
2410 	/* mast->orig_r is different and consumed. */
2411 	if (mte_is_leaf(mast->orig_r->node))
2412 		return;
2413 
2414 	if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2415 		l_end--;
2416 
2417 
2418 	if (l_start <= l_end)
2419 		mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2420 
2421 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2422 		r_start++;
2423 
2424 	if (r_start <= r_end)
2425 		mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2426 }
2427 
2428 /*
2429  * mast_rebalance_next() - Rebalance against the next node
2430  * @mast: The maple subtree state
2431  * @old_r: The encoded maple node to the right (next node).
2432  */
2433 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2434 {
2435 	unsigned char b_end = mast->bn->b_end;
2436 
2437 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2438 		   mast->bn, b_end);
2439 	mast->orig_r->last = mast->orig_r->max;
2440 }
2441 
2442 /*
2443  * mast_rebalance_prev() - Rebalance against the previous node
2444  * @mast: The maple subtree state
2445  * @old_l: The encoded maple node to the left (previous node)
2446  */
2447 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2448 {
2449 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2450 	unsigned char b_end = mast->bn->b_end;
2451 
2452 	mab_shift_right(mast->bn, end);
2453 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2454 	mast->l->min = mast->orig_l->min;
2455 	mast->orig_l->index = mast->orig_l->min;
2456 	mast->bn->b_end = end + b_end;
2457 	mast->l->offset += end;
2458 }
2459 
2460 /*
2461  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2462  * the node to the right.  Checking the nodes to the right then the left at each
2463  * level upwards until root is reached.  Free and destroy as needed.
2464  * Data is copied into the @mast->bn.
2465  * @mast: The maple_subtree_state.
2466  */
2467 static inline
2468 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2469 {
2470 	struct ma_state r_tmp = *mast->orig_r;
2471 	struct ma_state l_tmp = *mast->orig_l;
2472 	struct maple_enode *ancestor = NULL;
2473 	unsigned char start, end;
2474 	unsigned char depth = 0;
2475 
2476 	r_tmp = *mast->orig_r;
2477 	l_tmp = *mast->orig_l;
2478 	do {
2479 		mas_ascend(mast->orig_r);
2480 		mas_ascend(mast->orig_l);
2481 		depth++;
2482 		if (!ancestor &&
2483 		    (mast->orig_r->node == mast->orig_l->node)) {
2484 			ancestor = mast->orig_r->node;
2485 			end = mast->orig_r->offset - 1;
2486 			start = mast->orig_l->offset + 1;
2487 		}
2488 
2489 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2490 			if (!ancestor) {
2491 				ancestor = mast->orig_r->node;
2492 				start = 0;
2493 			}
2494 
2495 			mast->orig_r->offset++;
2496 			do {
2497 				mas_descend(mast->orig_r);
2498 				mast->orig_r->offset = 0;
2499 				depth--;
2500 			} while (depth);
2501 
2502 			mast_rebalance_next(mast);
2503 			do {
2504 				unsigned char l_off = 0;
2505 				struct maple_enode *child = r_tmp.node;
2506 
2507 				mas_ascend(&r_tmp);
2508 				if (ancestor == r_tmp.node)
2509 					l_off = start;
2510 
2511 				if (r_tmp.offset)
2512 					r_tmp.offset--;
2513 
2514 				if (l_off < r_tmp.offset)
2515 					mas_topiary_range(&r_tmp, mast->destroy,
2516 							  l_off, r_tmp.offset);
2517 
2518 				if (l_tmp.node != child)
2519 					mat_add(mast->free, child);
2520 
2521 			} while (r_tmp.node != ancestor);
2522 
2523 			*mast->orig_l = l_tmp;
2524 			return true;
2525 
2526 		} else if (mast->orig_l->offset != 0) {
2527 			if (!ancestor) {
2528 				ancestor = mast->orig_l->node;
2529 				end = mas_data_end(mast->orig_l);
2530 			}
2531 
2532 			mast->orig_l->offset--;
2533 			do {
2534 				mas_descend(mast->orig_l);
2535 				mast->orig_l->offset =
2536 					mas_data_end(mast->orig_l);
2537 				depth--;
2538 			} while (depth);
2539 
2540 			mast_rebalance_prev(mast);
2541 			do {
2542 				unsigned char r_off;
2543 				struct maple_enode *child = l_tmp.node;
2544 
2545 				mas_ascend(&l_tmp);
2546 				if (ancestor == l_tmp.node)
2547 					r_off = end;
2548 				else
2549 					r_off = mas_data_end(&l_tmp);
2550 
2551 				if (l_tmp.offset < r_off)
2552 					l_tmp.offset++;
2553 
2554 				if (l_tmp.offset < r_off)
2555 					mas_topiary_range(&l_tmp, mast->destroy,
2556 							  l_tmp.offset, r_off);
2557 
2558 				if (r_tmp.node != child)
2559 					mat_add(mast->free, child);
2560 
2561 			} while (l_tmp.node != ancestor);
2562 
2563 			*mast->orig_r = r_tmp;
2564 			return true;
2565 		}
2566 	} while (!mte_is_root(mast->orig_r->node));
2567 
2568 	*mast->orig_r = r_tmp;
2569 	*mast->orig_l = l_tmp;
2570 	return false;
2571 }
2572 
2573 /*
2574  * mast_ascend_free() - Add current original maple state nodes to the free list
2575  * and ascend.
2576  * @mast: the maple subtree state.
2577  *
2578  * Ascend the original left and right sides and add the previous nodes to the
2579  * free list.  Set the slots to point to the correct location in the new nodes.
2580  */
2581 static inline void
2582 mast_ascend_free(struct maple_subtree_state *mast)
2583 {
2584 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2585 	struct maple_enode *left = mast->orig_l->node;
2586 	struct maple_enode *right = mast->orig_r->node;
2587 
2588 	mas_ascend(mast->orig_l);
2589 	mas_ascend(mast->orig_r);
2590 	mat_add(mast->free, left);
2591 
2592 	if (left != right)
2593 		mat_add(mast->free, right);
2594 
2595 	mast->orig_r->offset = 0;
2596 	mast->orig_r->index = mast->r->max;
2597 	/* last should be larger than or equal to index */
2598 	if (mast->orig_r->last < mast->orig_r->index)
2599 		mast->orig_r->last = mast->orig_r->index;
2600 	/*
2601 	 * The node may not contain the value so set slot to ensure all
2602 	 * of the nodes contents are freed or destroyed.
2603 	 */
2604 	wr_mas.type = mte_node_type(mast->orig_r->node);
2605 	mas_wr_node_walk(&wr_mas);
2606 	/* Set up the left side of things */
2607 	mast->orig_l->offset = 0;
2608 	mast->orig_l->index = mast->l->min;
2609 	wr_mas.mas = mast->orig_l;
2610 	wr_mas.type = mte_node_type(mast->orig_l->node);
2611 	mas_wr_node_walk(&wr_mas);
2612 
2613 	mast->bn->type = wr_mas.type;
2614 }
2615 
2616 /*
2617  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2618  * @mas: the maple state with the allocations.
2619  * @b_node: the maple_big_node with the type encoding.
2620  *
2621  * Use the node type from the maple_big_node to allocate a new node from the
2622  * ma_state.  This function exists mainly for code readability.
2623  *
2624  * Return: A new maple encoded node
2625  */
2626 static inline struct maple_enode
2627 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2628 {
2629 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2630 }
2631 
2632 /*
2633  * mas_mab_to_node() - Set up right and middle nodes
2634  *
2635  * @mas: the maple state that contains the allocations.
2636  * @b_node: the node which contains the data.
2637  * @left: The pointer which will have the left node
2638  * @right: The pointer which may have the right node
2639  * @middle: the pointer which may have the middle node (rare)
2640  * @mid_split: the split location for the middle node
2641  *
2642  * Return: the split of left.
2643  */
2644 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2645 	struct maple_big_node *b_node, struct maple_enode **left,
2646 	struct maple_enode **right, struct maple_enode **middle,
2647 	unsigned char *mid_split, unsigned long min)
2648 {
2649 	unsigned char split = 0;
2650 	unsigned char slot_count = mt_slots[b_node->type];
2651 
2652 	*left = mas_new_ma_node(mas, b_node);
2653 	*right = NULL;
2654 	*middle = NULL;
2655 	*mid_split = 0;
2656 
2657 	if (b_node->b_end < slot_count) {
2658 		split = b_node->b_end;
2659 	} else {
2660 		split = mab_calc_split(mas, b_node, mid_split, min);
2661 		*right = mas_new_ma_node(mas, b_node);
2662 	}
2663 
2664 	if (*mid_split)
2665 		*middle = mas_new_ma_node(mas, b_node);
2666 
2667 	return split;
2668 
2669 }
2670 
2671 /*
2672  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2673  * pointer.
2674  * @b_node - the big node to add the entry
2675  * @mas - the maple state to get the pivot (mas->max)
2676  * @entry - the entry to add, if NULL nothing happens.
2677  */
2678 static inline void mab_set_b_end(struct maple_big_node *b_node,
2679 				 struct ma_state *mas,
2680 				 void *entry)
2681 {
2682 	if (!entry)
2683 		return;
2684 
2685 	b_node->slot[b_node->b_end] = entry;
2686 	if (mt_is_alloc(mas->tree))
2687 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2688 	b_node->pivot[b_node->b_end++] = mas->max;
2689 }
2690 
2691 /*
2692  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2693  * of @mas->node to either @left or @right, depending on @slot and @split
2694  *
2695  * @mas - the maple state with the node that needs a parent
2696  * @left - possible parent 1
2697  * @right - possible parent 2
2698  * @slot - the slot the mas->node was placed
2699  * @split - the split location between @left and @right
2700  */
2701 static inline void mas_set_split_parent(struct ma_state *mas,
2702 					struct maple_enode *left,
2703 					struct maple_enode *right,
2704 					unsigned char *slot, unsigned char split)
2705 {
2706 	if (mas_is_none(mas))
2707 		return;
2708 
2709 	if ((*slot) <= split)
2710 		mte_set_parent(mas->node, left, *slot);
2711 	else if (right)
2712 		mte_set_parent(mas->node, right, (*slot) - split - 1);
2713 
2714 	(*slot)++;
2715 }
2716 
2717 /*
2718  * mte_mid_split_check() - Check if the next node passes the mid-split
2719  * @**l: Pointer to left encoded maple node.
2720  * @**m: Pointer to middle encoded maple node.
2721  * @**r: Pointer to right encoded maple node.
2722  * @slot: The offset
2723  * @*split: The split location.
2724  * @mid_split: The middle split.
2725  */
2726 static inline void mte_mid_split_check(struct maple_enode **l,
2727 				       struct maple_enode **r,
2728 				       struct maple_enode *right,
2729 				       unsigned char slot,
2730 				       unsigned char *split,
2731 				       unsigned char mid_split)
2732 {
2733 	if (*r == right)
2734 		return;
2735 
2736 	if (slot < mid_split)
2737 		return;
2738 
2739 	*l = *r;
2740 	*r = right;
2741 	*split = mid_split;
2742 }
2743 
2744 /*
2745  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2746  * is taken from @mast->l.
2747  * @mast - the maple subtree state
2748  * @left - the left node
2749  * @right - the right node
2750  * @split - the split location.
2751  */
2752 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2753 					  struct maple_enode *left,
2754 					  struct maple_enode *middle,
2755 					  struct maple_enode *right,
2756 					  unsigned char split,
2757 					  unsigned char mid_split)
2758 {
2759 	unsigned char slot;
2760 	struct maple_enode *l = left;
2761 	struct maple_enode *r = right;
2762 
2763 	if (mas_is_none(mast->l))
2764 		return;
2765 
2766 	if (middle)
2767 		r = middle;
2768 
2769 	slot = mast->l->offset;
2770 
2771 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2772 	mas_set_split_parent(mast->l, l, r, &slot, split);
2773 
2774 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2775 	mas_set_split_parent(mast->m, l, r, &slot, split);
2776 
2777 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2778 	mas_set_split_parent(mast->r, l, r, &slot, split);
2779 }
2780 
2781 /*
2782  * mas_wmb_replace() - Write memory barrier and replace
2783  * @mas: The maple state
2784  * @free: the maple topiary list of nodes to free
2785  * @destroy: The maple topiary list of nodes to destroy (walk and free)
2786  *
2787  * Updates gap as necessary.
2788  */
2789 static inline void mas_wmb_replace(struct ma_state *mas,
2790 				   struct ma_topiary *free,
2791 				   struct ma_topiary *destroy)
2792 {
2793 	/* All nodes must see old data as dead prior to replacing that data */
2794 	smp_wmb(); /* Needed for RCU */
2795 
2796 	/* Insert the new data in the tree */
2797 	mas_replace(mas, true);
2798 
2799 	if (!mte_is_leaf(mas->node))
2800 		mas_descend_adopt(mas);
2801 
2802 	mas_mat_free(mas, free);
2803 
2804 	if (destroy)
2805 		mas_mat_destroy(mas, destroy);
2806 
2807 	if (mte_is_leaf(mas->node))
2808 		return;
2809 
2810 	mas_update_gap(mas);
2811 }
2812 
2813 /*
2814  * mast_new_root() - Set a new tree root during subtree creation
2815  * @mast: The maple subtree state
2816  * @mas: The maple state
2817  */
2818 static inline void mast_new_root(struct maple_subtree_state *mast,
2819 				 struct ma_state *mas)
2820 {
2821 	mas_mn(mast->l)->parent =
2822 		ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2823 	if (!mte_dead_node(mast->orig_l->node) &&
2824 	    !mte_is_root(mast->orig_l->node)) {
2825 		do {
2826 			mast_ascend_free(mast);
2827 			mast_topiary(mast);
2828 		} while (!mte_is_root(mast->orig_l->node));
2829 	}
2830 	if ((mast->orig_l->node != mas->node) &&
2831 		   (mast->l->depth > mas_mt_height(mas))) {
2832 		mat_add(mast->free, mas->node);
2833 	}
2834 }
2835 
2836 /*
2837  * mast_cp_to_nodes() - Copy data out to nodes.
2838  * @mast: The maple subtree state
2839  * @left: The left encoded maple node
2840  * @middle: The middle encoded maple node
2841  * @right: The right encoded maple node
2842  * @split: The location to split between left and (middle ? middle : right)
2843  * @mid_split: The location to split between middle and right.
2844  */
2845 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2846 	struct maple_enode *left, struct maple_enode *middle,
2847 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2848 {
2849 	bool new_lmax = true;
2850 
2851 	mast->l->node = mte_node_or_none(left);
2852 	mast->m->node = mte_node_or_none(middle);
2853 	mast->r->node = mte_node_or_none(right);
2854 
2855 	mast->l->min = mast->orig_l->min;
2856 	if (split == mast->bn->b_end) {
2857 		mast->l->max = mast->orig_r->max;
2858 		new_lmax = false;
2859 	}
2860 
2861 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2862 
2863 	if (middle) {
2864 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2865 		mast->m->min = mast->bn->pivot[split] + 1;
2866 		split = mid_split;
2867 	}
2868 
2869 	mast->r->max = mast->orig_r->max;
2870 	if (right) {
2871 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2872 		mast->r->min = mast->bn->pivot[split] + 1;
2873 	}
2874 }
2875 
2876 /*
2877  * mast_combine_cp_left - Copy in the original left side of the tree into the
2878  * combined data set in the maple subtree state big node.
2879  * @mast: The maple subtree state
2880  */
2881 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2882 {
2883 	unsigned char l_slot = mast->orig_l->offset;
2884 
2885 	if (!l_slot)
2886 		return;
2887 
2888 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2889 }
2890 
2891 /*
2892  * mast_combine_cp_right: Copy in the original right side of the tree into the
2893  * combined data set in the maple subtree state big node.
2894  * @mast: The maple subtree state
2895  */
2896 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2897 {
2898 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2899 		return;
2900 
2901 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2902 		   mt_slot_count(mast->orig_r->node), mast->bn,
2903 		   mast->bn->b_end);
2904 	mast->orig_r->last = mast->orig_r->max;
2905 }
2906 
2907 /*
2908  * mast_sufficient: Check if the maple subtree state has enough data in the big
2909  * node to create at least one sufficient node
2910  * @mast: the maple subtree state
2911  */
2912 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2913 {
2914 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2915 		return true;
2916 
2917 	return false;
2918 }
2919 
2920 /*
2921  * mast_overflow: Check if there is too much data in the subtree state for a
2922  * single node.
2923  * @mast: The maple subtree state
2924  */
2925 static inline bool mast_overflow(struct maple_subtree_state *mast)
2926 {
2927 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2928 		return true;
2929 
2930 	return false;
2931 }
2932 
2933 static inline void *mtree_range_walk(struct ma_state *mas)
2934 {
2935 	unsigned long *pivots;
2936 	unsigned char offset;
2937 	struct maple_node *node;
2938 	struct maple_enode *next, *last;
2939 	enum maple_type type;
2940 	void __rcu **slots;
2941 	unsigned char end;
2942 	unsigned long max, min;
2943 	unsigned long prev_max, prev_min;
2944 
2945 	next = mas->node;
2946 	min = mas->min;
2947 	max = mas->max;
2948 	do {
2949 		offset = 0;
2950 		last = next;
2951 		node = mte_to_node(next);
2952 		type = mte_node_type(next);
2953 		pivots = ma_pivots(node, type);
2954 		end = ma_data_end(node, type, pivots, max);
2955 		if (unlikely(ma_dead_node(node)))
2956 			goto dead_node;
2957 
2958 		if (pivots[offset] >= mas->index) {
2959 			prev_max = max;
2960 			prev_min = min;
2961 			max = pivots[offset];
2962 			goto next;
2963 		}
2964 
2965 		do {
2966 			offset++;
2967 		} while ((offset < end) && (pivots[offset] < mas->index));
2968 
2969 		prev_min = min;
2970 		min = pivots[offset - 1] + 1;
2971 		prev_max = max;
2972 		if (likely(offset < end && pivots[offset]))
2973 			max = pivots[offset];
2974 
2975 next:
2976 		slots = ma_slots(node, type);
2977 		next = mt_slot(mas->tree, slots, offset);
2978 		if (unlikely(ma_dead_node(node)))
2979 			goto dead_node;
2980 	} while (!ma_is_leaf(type));
2981 
2982 	mas->offset = offset;
2983 	mas->index = min;
2984 	mas->last = max;
2985 	mas->min = prev_min;
2986 	mas->max = prev_max;
2987 	mas->node = last;
2988 	return (void *)next;
2989 
2990 dead_node:
2991 	mas_reset(mas);
2992 	return NULL;
2993 }
2994 
2995 /*
2996  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2997  * @mas: The starting maple state
2998  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2999  * @count: The estimated count of iterations needed.
3000  *
3001  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
3002  * is hit.  First @b_node is split into two entries which are inserted into the
3003  * next iteration of the loop.  @b_node is returned populated with the final
3004  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
3005  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
3006  * to account of what has been copied into the new sub-tree.  The update of
3007  * orig_l_mas->last is used in mas_consume to find the slots that will need to
3008  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
3009  * the new sub-tree in case the sub-tree becomes the full tree.
3010  *
3011  * Return: the number of elements in b_node during the last loop.
3012  */
3013 static int mas_spanning_rebalance(struct ma_state *mas,
3014 		struct maple_subtree_state *mast, unsigned char count)
3015 {
3016 	unsigned char split, mid_split;
3017 	unsigned char slot = 0;
3018 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
3019 
3020 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
3021 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3022 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
3023 	MA_TOPIARY(free, mas->tree);
3024 	MA_TOPIARY(destroy, mas->tree);
3025 
3026 	/*
3027 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
3028 	 * Rebalancing is done by use of the ``struct maple_topiary``.
3029 	 */
3030 	mast->l = &l_mas;
3031 	mast->m = &m_mas;
3032 	mast->r = &r_mas;
3033 	mast->free = &free;
3034 	mast->destroy = &destroy;
3035 	l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
3036 
3037 	/* Check if this is not root and has sufficient data.  */
3038 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
3039 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3040 		mast_spanning_rebalance(mast);
3041 
3042 	mast->orig_l->depth = 0;
3043 
3044 	/*
3045 	 * Each level of the tree is examined and balanced, pushing data to the left or
3046 	 * right, or rebalancing against left or right nodes is employed to avoid
3047 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
3048 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
3049 	 * will have the incorrect parent pointers and currently be in two trees: the
3050 	 * original tree and the partially new tree.  To remedy the parent pointers in
3051 	 * the old tree, the new data is swapped into the active tree and a walk down
3052 	 * the tree is performed and the parent pointers are updated.
3053 	 * See mas_descend_adopt() for more information..
3054 	 */
3055 	while (count--) {
3056 		mast->bn->b_end--;
3057 		mast->bn->type = mte_node_type(mast->orig_l->node);
3058 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3059 					&mid_split, mast->orig_l->min);
3060 		mast_set_split_parents(mast, left, middle, right, split,
3061 				       mid_split);
3062 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3063 
3064 		/*
3065 		 * Copy data from next level in the tree to mast->bn from next
3066 		 * iteration
3067 		 */
3068 		memset(mast->bn, 0, sizeof(struct maple_big_node));
3069 		mast->bn->type = mte_node_type(left);
3070 		mast->orig_l->depth++;
3071 
3072 		/* Root already stored in l->node. */
3073 		if (mas_is_root_limits(mast->l))
3074 			goto new_root;
3075 
3076 		mast_ascend_free(mast);
3077 		mast_combine_cp_left(mast);
3078 		l_mas.offset = mast->bn->b_end;
3079 		mab_set_b_end(mast->bn, &l_mas, left);
3080 		mab_set_b_end(mast->bn, &m_mas, middle);
3081 		mab_set_b_end(mast->bn, &r_mas, right);
3082 
3083 		/* Copy anything necessary out of the right node. */
3084 		mast_combine_cp_right(mast);
3085 		mast_topiary(mast);
3086 		mast->orig_l->last = mast->orig_l->max;
3087 
3088 		if (mast_sufficient(mast))
3089 			continue;
3090 
3091 		if (mast_overflow(mast))
3092 			continue;
3093 
3094 		/* May be a new root stored in mast->bn */
3095 		if (mas_is_root_limits(mast->orig_l))
3096 			break;
3097 
3098 		mast_spanning_rebalance(mast);
3099 
3100 		/* rebalancing from other nodes may require another loop. */
3101 		if (!count)
3102 			count++;
3103 	}
3104 
3105 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3106 				mte_node_type(mast->orig_l->node));
3107 	mast->orig_l->depth++;
3108 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3109 	mte_set_parent(left, l_mas.node, slot);
3110 	if (middle)
3111 		mte_set_parent(middle, l_mas.node, ++slot);
3112 
3113 	if (right)
3114 		mte_set_parent(right, l_mas.node, ++slot);
3115 
3116 	if (mas_is_root_limits(mast->l)) {
3117 new_root:
3118 		mast_new_root(mast, mas);
3119 	} else {
3120 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3121 	}
3122 
3123 	if (!mte_dead_node(mast->orig_l->node))
3124 		mat_add(&free, mast->orig_l->node);
3125 
3126 	mas->depth = mast->orig_l->depth;
3127 	*mast->orig_l = l_mas;
3128 	mte_set_node_dead(mas->node);
3129 
3130 	/* Set up mas for insertion. */
3131 	mast->orig_l->depth = mas->depth;
3132 	mast->orig_l->alloc = mas->alloc;
3133 	*mas = *mast->orig_l;
3134 	mas_wmb_replace(mas, &free, &destroy);
3135 	mtree_range_walk(mas);
3136 	return mast->bn->b_end;
3137 }
3138 
3139 /*
3140  * mas_rebalance() - Rebalance a given node.
3141  * @mas: The maple state
3142  * @b_node: The big maple node.
3143  *
3144  * Rebalance two nodes into a single node or two new nodes that are sufficient.
3145  * Continue upwards until tree is sufficient.
3146  *
3147  * Return: the number of elements in b_node during the last loop.
3148  */
3149 static inline int mas_rebalance(struct ma_state *mas,
3150 				struct maple_big_node *b_node)
3151 {
3152 	char empty_count = mas_mt_height(mas);
3153 	struct maple_subtree_state mast;
3154 	unsigned char shift, b_end = ++b_node->b_end;
3155 
3156 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3157 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3158 
3159 	trace_ma_op(__func__, mas);
3160 
3161 	/*
3162 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
3163 	 * against the node to the right if it exists, otherwise the node to the
3164 	 * left of this node is rebalanced against this node.  If rebalancing
3165 	 * causes just one node to be produced instead of two, then the parent
3166 	 * is also examined and rebalanced if it is insufficient.  Every level
3167 	 * tries to combine the data in the same way.  If one node contains the
3168 	 * entire range of the tree, then that node is used as a new root node.
3169 	 */
3170 	mas_node_count(mas, 1 + empty_count * 3);
3171 	if (mas_is_err(mas))
3172 		return 0;
3173 
3174 	mast.orig_l = &l_mas;
3175 	mast.orig_r = &r_mas;
3176 	mast.bn = b_node;
3177 	mast.bn->type = mte_node_type(mas->node);
3178 
3179 	l_mas = r_mas = *mas;
3180 
3181 	if (mas_next_sibling(&r_mas)) {
3182 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3183 		r_mas.last = r_mas.index = r_mas.max;
3184 	} else {
3185 		mas_prev_sibling(&l_mas);
3186 		shift = mas_data_end(&l_mas) + 1;
3187 		mab_shift_right(b_node, shift);
3188 		mas->offset += shift;
3189 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3190 		b_node->b_end = shift + b_end;
3191 		l_mas.index = l_mas.last = l_mas.min;
3192 	}
3193 
3194 	return mas_spanning_rebalance(mas, &mast, empty_count);
3195 }
3196 
3197 /*
3198  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3199  * state.
3200  * @mas: The maple state
3201  * @end: The end of the left-most node.
3202  *
3203  * During a mass-insert event (such as forking), it may be necessary to
3204  * rebalance the left-most node when it is not sufficient.
3205  */
3206 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3207 {
3208 	enum maple_type mt = mte_node_type(mas->node);
3209 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3210 	struct maple_enode *eparent;
3211 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3212 	void __rcu **l_slots, **slots;
3213 	unsigned long *l_pivs, *pivs, gap;
3214 	bool in_rcu = mt_in_rcu(mas->tree);
3215 
3216 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3217 
3218 	l_mas = *mas;
3219 	mas_prev_sibling(&l_mas);
3220 
3221 	/* set up node. */
3222 	if (in_rcu) {
3223 		/* Allocate for both left and right as well as parent. */
3224 		mas_node_count(mas, 3);
3225 		if (mas_is_err(mas))
3226 			return;
3227 
3228 		newnode = mas_pop_node(mas);
3229 	} else {
3230 		newnode = &reuse;
3231 	}
3232 
3233 	node = mas_mn(mas);
3234 	newnode->parent = node->parent;
3235 	slots = ma_slots(newnode, mt);
3236 	pivs = ma_pivots(newnode, mt);
3237 	left = mas_mn(&l_mas);
3238 	l_slots = ma_slots(left, mt);
3239 	l_pivs = ma_pivots(left, mt);
3240 	if (!l_slots[split])
3241 		split++;
3242 	tmp = mas_data_end(&l_mas) - split;
3243 
3244 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3245 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3246 	pivs[tmp] = l_mas.max;
3247 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3248 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3249 
3250 	l_mas.max = l_pivs[split];
3251 	mas->min = l_mas.max + 1;
3252 	eparent = mt_mk_node(mte_parent(l_mas.node),
3253 			     mas_parent_enum(&l_mas, l_mas.node));
3254 	tmp += end;
3255 	if (!in_rcu) {
3256 		unsigned char max_p = mt_pivots[mt];
3257 		unsigned char max_s = mt_slots[mt];
3258 
3259 		if (tmp < max_p)
3260 			memset(pivs + tmp, 0,
3261 			       sizeof(unsigned long) * (max_p - tmp));
3262 
3263 		if (tmp < mt_slots[mt])
3264 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3265 
3266 		memcpy(node, newnode, sizeof(struct maple_node));
3267 		ma_set_meta(node, mt, 0, tmp - 1);
3268 		mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3269 			      l_pivs[split]);
3270 
3271 		/* Remove data from l_pivs. */
3272 		tmp = split + 1;
3273 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3274 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3275 		ma_set_meta(left, mt, 0, split);
3276 
3277 		goto done;
3278 	}
3279 
3280 	/* RCU requires replacing both l_mas, mas, and parent. */
3281 	mas->node = mt_mk_node(newnode, mt);
3282 	ma_set_meta(newnode, mt, 0, tmp);
3283 
3284 	new_left = mas_pop_node(mas);
3285 	new_left->parent = left->parent;
3286 	mt = mte_node_type(l_mas.node);
3287 	slots = ma_slots(new_left, mt);
3288 	pivs = ma_pivots(new_left, mt);
3289 	memcpy(slots, l_slots, sizeof(void *) * split);
3290 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3291 	ma_set_meta(new_left, mt, 0, split);
3292 	l_mas.node = mt_mk_node(new_left, mt);
3293 
3294 	/* replace parent. */
3295 	offset = mte_parent_slot(mas->node);
3296 	mt = mas_parent_enum(&l_mas, l_mas.node);
3297 	parent = mas_pop_node(mas);
3298 	slots = ma_slots(parent, mt);
3299 	pivs = ma_pivots(parent, mt);
3300 	memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3301 	rcu_assign_pointer(slots[offset], mas->node);
3302 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3303 	pivs[offset - 1] = l_mas.max;
3304 	eparent = mt_mk_node(parent, mt);
3305 done:
3306 	gap = mas_leaf_max_gap(mas);
3307 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3308 	gap = mas_leaf_max_gap(&l_mas);
3309 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3310 	mas_ascend(mas);
3311 
3312 	if (in_rcu)
3313 		mas_replace(mas, false);
3314 
3315 	mas_update_gap(mas);
3316 }
3317 
3318 /*
3319  * mas_split_final_node() - Split the final node in a subtree operation.
3320  * @mast: the maple subtree state
3321  * @mas: The maple state
3322  * @height: The height of the tree in case it's a new root.
3323  */
3324 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3325 					struct ma_state *mas, int height)
3326 {
3327 	struct maple_enode *ancestor;
3328 
3329 	if (mte_is_root(mas->node)) {
3330 		if (mt_is_alloc(mas->tree))
3331 			mast->bn->type = maple_arange_64;
3332 		else
3333 			mast->bn->type = maple_range_64;
3334 		mas->depth = height;
3335 	}
3336 	/*
3337 	 * Only a single node is used here, could be root.
3338 	 * The Big_node data should just fit in a single node.
3339 	 */
3340 	ancestor = mas_new_ma_node(mas, mast->bn);
3341 	mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3342 	mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3343 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3344 
3345 	mast->l->node = ancestor;
3346 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3347 	mas->offset = mast->bn->b_end - 1;
3348 	return true;
3349 }
3350 
3351 /*
3352  * mast_fill_bnode() - Copy data into the big node in the subtree state
3353  * @mast: The maple subtree state
3354  * @mas: the maple state
3355  * @skip: The number of entries to skip for new nodes insertion.
3356  */
3357 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3358 					 struct ma_state *mas,
3359 					 unsigned char skip)
3360 {
3361 	bool cp = true;
3362 	struct maple_enode *old = mas->node;
3363 	unsigned char split;
3364 
3365 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3366 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3367 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3368 	mast->bn->b_end = 0;
3369 
3370 	if (mte_is_root(mas->node)) {
3371 		cp = false;
3372 	} else {
3373 		mas_ascend(mas);
3374 		mat_add(mast->free, old);
3375 		mas->offset = mte_parent_slot(mas->node);
3376 	}
3377 
3378 	if (cp && mast->l->offset)
3379 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3380 
3381 	split = mast->bn->b_end;
3382 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3383 	mast->r->offset = mast->bn->b_end;
3384 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3385 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3386 		cp = false;
3387 
3388 	if (cp)
3389 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3390 			   mast->bn, mast->bn->b_end);
3391 
3392 	mast->bn->b_end--;
3393 	mast->bn->type = mte_node_type(mas->node);
3394 }
3395 
3396 /*
3397  * mast_split_data() - Split the data in the subtree state big node into regular
3398  * nodes.
3399  * @mast: The maple subtree state
3400  * @mas: The maple state
3401  * @split: The location to split the big node
3402  */
3403 static inline void mast_split_data(struct maple_subtree_state *mast,
3404 	   struct ma_state *mas, unsigned char split)
3405 {
3406 	unsigned char p_slot;
3407 
3408 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3409 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3410 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3411 	mast->l->offset = mte_parent_slot(mas->node);
3412 	mast->l->max = mast->bn->pivot[split];
3413 	mast->r->min = mast->l->max + 1;
3414 	if (mte_is_leaf(mas->node))
3415 		return;
3416 
3417 	p_slot = mast->orig_l->offset;
3418 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3419 			     &p_slot, split);
3420 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3421 			     &p_slot, split);
3422 }
3423 
3424 /*
3425  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3426  * data to the right or left node if there is room.
3427  * @mas: The maple state
3428  * @height: The current height of the maple state
3429  * @mast: The maple subtree state
3430  * @left: Push left or not.
3431  *
3432  * Keeping the height of the tree low means faster lookups.
3433  *
3434  * Return: True if pushed, false otherwise.
3435  */
3436 static inline bool mas_push_data(struct ma_state *mas, int height,
3437 				 struct maple_subtree_state *mast, bool left)
3438 {
3439 	unsigned char slot_total = mast->bn->b_end;
3440 	unsigned char end, space, split;
3441 
3442 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3443 	tmp_mas = *mas;
3444 	tmp_mas.depth = mast->l->depth;
3445 
3446 	if (left && !mas_prev_sibling(&tmp_mas))
3447 		return false;
3448 	else if (!left && !mas_next_sibling(&tmp_mas))
3449 		return false;
3450 
3451 	end = mas_data_end(&tmp_mas);
3452 	slot_total += end;
3453 	space = 2 * mt_slot_count(mas->node) - 2;
3454 	/* -2 instead of -1 to ensure there isn't a triple split */
3455 	if (ma_is_leaf(mast->bn->type))
3456 		space--;
3457 
3458 	if (mas->max == ULONG_MAX)
3459 		space--;
3460 
3461 	if (slot_total >= space)
3462 		return false;
3463 
3464 	/* Get the data; Fill mast->bn */
3465 	mast->bn->b_end++;
3466 	if (left) {
3467 		mab_shift_right(mast->bn, end + 1);
3468 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3469 		mast->bn->b_end = slot_total + 1;
3470 	} else {
3471 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3472 	}
3473 
3474 	/* Configure mast for splitting of mast->bn */
3475 	split = mt_slots[mast->bn->type] - 2;
3476 	if (left) {
3477 		/*  Switch mas to prev node  */
3478 		mat_add(mast->free, mas->node);
3479 		*mas = tmp_mas;
3480 		/* Start using mast->l for the left side. */
3481 		tmp_mas.node = mast->l->node;
3482 		*mast->l = tmp_mas;
3483 	} else {
3484 		mat_add(mast->free, tmp_mas.node);
3485 		tmp_mas.node = mast->r->node;
3486 		*mast->r = tmp_mas;
3487 		split = slot_total - split;
3488 	}
3489 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3490 	/* Update parent slot for split calculation. */
3491 	if (left)
3492 		mast->orig_l->offset += end + 1;
3493 
3494 	mast_split_data(mast, mas, split);
3495 	mast_fill_bnode(mast, mas, 2);
3496 	mas_split_final_node(mast, mas, height + 1);
3497 	return true;
3498 }
3499 
3500 /*
3501  * mas_split() - Split data that is too big for one node into two.
3502  * @mas: The maple state
3503  * @b_node: The maple big node
3504  * Return: 1 on success, 0 on failure.
3505  */
3506 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3507 {
3508 	struct maple_subtree_state mast;
3509 	int height = 0;
3510 	unsigned char mid_split, split = 0;
3511 
3512 	/*
3513 	 * Splitting is handled differently from any other B-tree; the Maple
3514 	 * Tree splits upwards.  Splitting up means that the split operation
3515 	 * occurs when the walk of the tree hits the leaves and not on the way
3516 	 * down.  The reason for splitting up is that it is impossible to know
3517 	 * how much space will be needed until the leaf is (or leaves are)
3518 	 * reached.  Since overwriting data is allowed and a range could
3519 	 * overwrite more than one range or result in changing one entry into 3
3520 	 * entries, it is impossible to know if a split is required until the
3521 	 * data is examined.
3522 	 *
3523 	 * Splitting is a balancing act between keeping allocations to a minimum
3524 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3525 	 * for an entry followed by a contraction when the entry is removed.  To
3526 	 * accomplish the balance, there are empty slots remaining in both left
3527 	 * and right nodes after a split.
3528 	 */
3529 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3530 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3531 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3532 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3533 	MA_TOPIARY(mat, mas->tree);
3534 
3535 	trace_ma_op(__func__, mas);
3536 	mas->depth = mas_mt_height(mas);
3537 	/* Allocation failures will happen early. */
3538 	mas_node_count(mas, 1 + mas->depth * 2);
3539 	if (mas_is_err(mas))
3540 		return 0;
3541 
3542 	mast.l = &l_mas;
3543 	mast.r = &r_mas;
3544 	mast.orig_l = &prev_l_mas;
3545 	mast.orig_r = &prev_r_mas;
3546 	mast.free = &mat;
3547 	mast.bn = b_node;
3548 
3549 	while (height++ <= mas->depth) {
3550 		if (mt_slots[b_node->type] > b_node->b_end) {
3551 			mas_split_final_node(&mast, mas, height);
3552 			break;
3553 		}
3554 
3555 		l_mas = r_mas = *mas;
3556 		l_mas.node = mas_new_ma_node(mas, b_node);
3557 		r_mas.node = mas_new_ma_node(mas, b_node);
3558 		/*
3559 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3560 		 * left or right node has space to spare.  This is referred to as "pushing left"
3561 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3562 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3563 		 * is a significant savings.
3564 		 */
3565 		/* Try to push left. */
3566 		if (mas_push_data(mas, height, &mast, true))
3567 			break;
3568 
3569 		/* Try to push right. */
3570 		if (mas_push_data(mas, height, &mast, false))
3571 			break;
3572 
3573 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3574 		mast_split_data(&mast, mas, split);
3575 		/*
3576 		 * Usually correct, mab_mas_cp in the above call overwrites
3577 		 * r->max.
3578 		 */
3579 		mast.r->max = mas->max;
3580 		mast_fill_bnode(&mast, mas, 1);
3581 		prev_l_mas = *mast.l;
3582 		prev_r_mas = *mast.r;
3583 	}
3584 
3585 	/* Set the original node as dead */
3586 	mat_add(mast.free, mas->node);
3587 	mas->node = l_mas.node;
3588 	mas_wmb_replace(mas, mast.free, NULL);
3589 	mtree_range_walk(mas);
3590 	return 1;
3591 }
3592 
3593 /*
3594  * mas_reuse_node() - Reuse the node to store the data.
3595  * @wr_mas: The maple write state
3596  * @bn: The maple big node
3597  * @end: The end of the data.
3598  *
3599  * Will always return false in RCU mode.
3600  *
3601  * Return: True if node was reused, false otherwise.
3602  */
3603 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3604 			  struct maple_big_node *bn, unsigned char end)
3605 {
3606 	/* Need to be rcu safe. */
3607 	if (mt_in_rcu(wr_mas->mas->tree))
3608 		return false;
3609 
3610 	if (end > bn->b_end) {
3611 		int clear = mt_slots[wr_mas->type] - bn->b_end;
3612 
3613 		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3614 		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3615 	}
3616 	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3617 	return true;
3618 }
3619 
3620 /*
3621  * mas_commit_b_node() - Commit the big node into the tree.
3622  * @wr_mas: The maple write state
3623  * @b_node: The maple big node
3624  * @end: The end of the data.
3625  */
3626 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3627 			    struct maple_big_node *b_node, unsigned char end)
3628 {
3629 	struct maple_node *node;
3630 	unsigned char b_end = b_node->b_end;
3631 	enum maple_type b_type = b_node->type;
3632 
3633 	if ((b_end < mt_min_slots[b_type]) &&
3634 	    (!mte_is_root(wr_mas->mas->node)) &&
3635 	    (mas_mt_height(wr_mas->mas) > 1))
3636 		return mas_rebalance(wr_mas->mas, b_node);
3637 
3638 	if (b_end >= mt_slots[b_type])
3639 		return mas_split(wr_mas->mas, b_node);
3640 
3641 	if (mas_reuse_node(wr_mas, b_node, end))
3642 		goto reuse_node;
3643 
3644 	mas_node_count(wr_mas->mas, 1);
3645 	if (mas_is_err(wr_mas->mas))
3646 		return 0;
3647 
3648 	node = mas_pop_node(wr_mas->mas);
3649 	node->parent = mas_mn(wr_mas->mas)->parent;
3650 	wr_mas->mas->node = mt_mk_node(node, b_type);
3651 	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3652 	mas_replace(wr_mas->mas, false);
3653 reuse_node:
3654 	mas_update_gap(wr_mas->mas);
3655 	return 1;
3656 }
3657 
3658 /*
3659  * mas_root_expand() - Expand a root to a node
3660  * @mas: The maple state
3661  * @entry: The entry to store into the tree
3662  */
3663 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3664 {
3665 	void *contents = mas_root_locked(mas);
3666 	enum maple_type type = maple_leaf_64;
3667 	struct maple_node *node;
3668 	void __rcu **slots;
3669 	unsigned long *pivots;
3670 	int slot = 0;
3671 
3672 	mas_node_count(mas, 1);
3673 	if (unlikely(mas_is_err(mas)))
3674 		return 0;
3675 
3676 	node = mas_pop_node(mas);
3677 	pivots = ma_pivots(node, type);
3678 	slots = ma_slots(node, type);
3679 	node->parent = ma_parent_ptr(
3680 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3681 	mas->node = mt_mk_node(node, type);
3682 
3683 	if (mas->index) {
3684 		if (contents) {
3685 			rcu_assign_pointer(slots[slot], contents);
3686 			if (likely(mas->index > 1))
3687 				slot++;
3688 		}
3689 		pivots[slot++] = mas->index - 1;
3690 	}
3691 
3692 	rcu_assign_pointer(slots[slot], entry);
3693 	mas->offset = slot;
3694 	pivots[slot] = mas->last;
3695 	if (mas->last != ULONG_MAX)
3696 		slot++;
3697 	mas->depth = 1;
3698 	mas_set_height(mas);
3699 	ma_set_meta(node, maple_leaf_64, 0, slot);
3700 	/* swap the new root into the tree */
3701 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3702 	return slot;
3703 }
3704 
3705 static inline void mas_store_root(struct ma_state *mas, void *entry)
3706 {
3707 	if (likely((mas->last != 0) || (mas->index != 0)))
3708 		mas_root_expand(mas, entry);
3709 	else if (((unsigned long) (entry) & 3) == 2)
3710 		mas_root_expand(mas, entry);
3711 	else {
3712 		rcu_assign_pointer(mas->tree->ma_root, entry);
3713 		mas->node = MAS_START;
3714 	}
3715 }
3716 
3717 /*
3718  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3719  * spans the node.
3720  * @mas: The maple state
3721  * @piv: The pivot value being written
3722  * @type: The maple node type
3723  * @entry: The data to write
3724  *
3725  * Spanning writes are writes that start in one node and end in another OR if
3726  * the write of a %NULL will cause the node to end with a %NULL.
3727  *
3728  * Return: True if this is a spanning write, false otherwise.
3729  */
3730 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3731 {
3732 	unsigned long max;
3733 	unsigned long last = wr_mas->mas->last;
3734 	unsigned long piv = wr_mas->r_max;
3735 	enum maple_type type = wr_mas->type;
3736 	void *entry = wr_mas->entry;
3737 
3738 	/* Contained in this pivot */
3739 	if (piv > last)
3740 		return false;
3741 
3742 	max = wr_mas->mas->max;
3743 	if (unlikely(ma_is_leaf(type))) {
3744 		/* Fits in the node, but may span slots. */
3745 		if (last < max)
3746 			return false;
3747 
3748 		/* Writes to the end of the node but not null. */
3749 		if ((last == max) && entry)
3750 			return false;
3751 
3752 		/*
3753 		 * Writing ULONG_MAX is not a spanning write regardless of the
3754 		 * value being written as long as the range fits in the node.
3755 		 */
3756 		if ((last == ULONG_MAX) && (last == max))
3757 			return false;
3758 	} else if (piv == last) {
3759 		if (entry)
3760 			return false;
3761 
3762 		/* Detect spanning store wr walk */
3763 		if (last == ULONG_MAX)
3764 			return false;
3765 	}
3766 
3767 	trace_ma_write(__func__, wr_mas->mas, piv, entry);
3768 
3769 	return true;
3770 }
3771 
3772 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3773 {
3774 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3775 	mas_wr_node_walk(wr_mas);
3776 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3777 }
3778 
3779 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3780 {
3781 	wr_mas->mas->max = wr_mas->r_max;
3782 	wr_mas->mas->min = wr_mas->r_min;
3783 	wr_mas->mas->node = wr_mas->content;
3784 	wr_mas->mas->offset = 0;
3785 	wr_mas->mas->depth++;
3786 }
3787 /*
3788  * mas_wr_walk() - Walk the tree for a write.
3789  * @wr_mas: The maple write state
3790  *
3791  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3792  *
3793  * Return: True if it's contained in a node, false on spanning write.
3794  */
3795 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3796 {
3797 	struct ma_state *mas = wr_mas->mas;
3798 
3799 	while (true) {
3800 		mas_wr_walk_descend(wr_mas);
3801 		if (unlikely(mas_is_span_wr(wr_mas)))
3802 			return false;
3803 
3804 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3805 						  mas->offset);
3806 		if (ma_is_leaf(wr_mas->type))
3807 			return true;
3808 
3809 		mas_wr_walk_traverse(wr_mas);
3810 	}
3811 
3812 	return true;
3813 }
3814 
3815 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3816 {
3817 	struct ma_state *mas = wr_mas->mas;
3818 
3819 	while (true) {
3820 		mas_wr_walk_descend(wr_mas);
3821 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3822 						  mas->offset);
3823 		if (ma_is_leaf(wr_mas->type))
3824 			return true;
3825 		mas_wr_walk_traverse(wr_mas);
3826 
3827 	}
3828 	return true;
3829 }
3830 /*
3831  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3832  * @l_wr_mas: The left maple write state
3833  * @r_wr_mas: The right maple write state
3834  */
3835 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3836 					    struct ma_wr_state *r_wr_mas)
3837 {
3838 	struct ma_state *r_mas = r_wr_mas->mas;
3839 	struct ma_state *l_mas = l_wr_mas->mas;
3840 	unsigned char l_slot;
3841 
3842 	l_slot = l_mas->offset;
3843 	if (!l_wr_mas->content)
3844 		l_mas->index = l_wr_mas->r_min;
3845 
3846 	if ((l_mas->index == l_wr_mas->r_min) &&
3847 		 (l_slot &&
3848 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3849 		if (l_slot > 1)
3850 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3851 		else
3852 			l_mas->index = l_mas->min;
3853 
3854 		l_mas->offset = l_slot - 1;
3855 	}
3856 
3857 	if (!r_wr_mas->content) {
3858 		if (r_mas->last < r_wr_mas->r_max)
3859 			r_mas->last = r_wr_mas->r_max;
3860 		r_mas->offset++;
3861 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3862 	    (r_mas->last < r_mas->max) &&
3863 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3864 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3865 					     r_wr_mas->type, r_mas->offset + 1);
3866 		r_mas->offset++;
3867 	}
3868 }
3869 
3870 static inline void *mas_state_walk(struct ma_state *mas)
3871 {
3872 	void *entry;
3873 
3874 	entry = mas_start(mas);
3875 	if (mas_is_none(mas))
3876 		return NULL;
3877 
3878 	if (mas_is_ptr(mas))
3879 		return entry;
3880 
3881 	return mtree_range_walk(mas);
3882 }
3883 
3884 /*
3885  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3886  * to date.
3887  *
3888  * @mas: The maple state.
3889  *
3890  * Note: Leaves mas in undesirable state.
3891  * Return: The entry for @mas->index or %NULL on dead node.
3892  */
3893 static inline void *mtree_lookup_walk(struct ma_state *mas)
3894 {
3895 	unsigned long *pivots;
3896 	unsigned char offset;
3897 	struct maple_node *node;
3898 	struct maple_enode *next;
3899 	enum maple_type type;
3900 	void __rcu **slots;
3901 	unsigned char end;
3902 	unsigned long max;
3903 
3904 	next = mas->node;
3905 	max = ULONG_MAX;
3906 	do {
3907 		offset = 0;
3908 		node = mte_to_node(next);
3909 		type = mte_node_type(next);
3910 		pivots = ma_pivots(node, type);
3911 		end = ma_data_end(node, type, pivots, max);
3912 		if (unlikely(ma_dead_node(node)))
3913 			goto dead_node;
3914 		do {
3915 			if (pivots[offset] >= mas->index) {
3916 				max = pivots[offset];
3917 				break;
3918 			}
3919 		} while (++offset < end);
3920 
3921 		slots = ma_slots(node, type);
3922 		next = mt_slot(mas->tree, slots, offset);
3923 		if (unlikely(ma_dead_node(node)))
3924 			goto dead_node;
3925 	} while (!ma_is_leaf(type));
3926 
3927 	return (void *)next;
3928 
3929 dead_node:
3930 	mas_reset(mas);
3931 	return NULL;
3932 }
3933 
3934 /*
3935  * mas_new_root() - Create a new root node that only contains the entry passed
3936  * in.
3937  * @mas: The maple state
3938  * @entry: The entry to store.
3939  *
3940  * Only valid when the index == 0 and the last == ULONG_MAX
3941  *
3942  * Return 0 on error, 1 on success.
3943  */
3944 static inline int mas_new_root(struct ma_state *mas, void *entry)
3945 {
3946 	struct maple_enode *root = mas_root_locked(mas);
3947 	enum maple_type type = maple_leaf_64;
3948 	struct maple_node *node;
3949 	void __rcu **slots;
3950 	unsigned long *pivots;
3951 
3952 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3953 		mas->depth = 0;
3954 		mas_set_height(mas);
3955 		rcu_assign_pointer(mas->tree->ma_root, entry);
3956 		mas->node = MAS_START;
3957 		goto done;
3958 	}
3959 
3960 	mas_node_count(mas, 1);
3961 	if (mas_is_err(mas))
3962 		return 0;
3963 
3964 	node = mas_pop_node(mas);
3965 	pivots = ma_pivots(node, type);
3966 	slots = ma_slots(node, type);
3967 	node->parent = ma_parent_ptr(
3968 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3969 	mas->node = mt_mk_node(node, type);
3970 	rcu_assign_pointer(slots[0], entry);
3971 	pivots[0] = mas->last;
3972 	mas->depth = 1;
3973 	mas_set_height(mas);
3974 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3975 
3976 done:
3977 	if (xa_is_node(root))
3978 		mte_destroy_walk(root, mas->tree);
3979 
3980 	return 1;
3981 }
3982 /*
3983  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3984  * and new nodes where necessary, then place the sub-tree in the actual tree.
3985  * Note that mas is expected to point to the node which caused the store to
3986  * span.
3987  * @wr_mas: The maple write state
3988  *
3989  * Return: 0 on error, positive on success.
3990  */
3991 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3992 {
3993 	struct maple_subtree_state mast;
3994 	struct maple_big_node b_node;
3995 	struct ma_state *mas;
3996 	unsigned char height;
3997 
3998 	/* Left and Right side of spanning store */
3999 	MA_STATE(l_mas, NULL, 0, 0);
4000 	MA_STATE(r_mas, NULL, 0, 0);
4001 
4002 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
4003 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
4004 
4005 	/*
4006 	 * A store operation that spans multiple nodes is called a spanning
4007 	 * store and is handled early in the store call stack by the function
4008 	 * mas_is_span_wr().  When a spanning store is identified, the maple
4009 	 * state is duplicated.  The first maple state walks the left tree path
4010 	 * to ``index``, the duplicate walks the right tree path to ``last``.
4011 	 * The data in the two nodes are combined into a single node, two nodes,
4012 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
4013 	 * written to the last entry of a node is considered a spanning store as
4014 	 * a rebalance is required for the operation to complete and an overflow
4015 	 * of data may happen.
4016 	 */
4017 	mas = wr_mas->mas;
4018 	trace_ma_op(__func__, mas);
4019 
4020 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
4021 		return mas_new_root(mas, wr_mas->entry);
4022 	/*
4023 	 * Node rebalancing may occur due to this store, so there may be three new
4024 	 * entries per level plus a new root.
4025 	 */
4026 	height = mas_mt_height(mas);
4027 	mas_node_count(mas, 1 + height * 3);
4028 	if (mas_is_err(mas))
4029 		return 0;
4030 
4031 	/*
4032 	 * Set up right side.  Need to get to the next offset after the spanning
4033 	 * store to ensure it's not NULL and to combine both the next node and
4034 	 * the node with the start together.
4035 	 */
4036 	r_mas = *mas;
4037 	/* Avoid overflow, walk to next slot in the tree. */
4038 	if (r_mas.last + 1)
4039 		r_mas.last++;
4040 
4041 	r_mas.index = r_mas.last;
4042 	mas_wr_walk_index(&r_wr_mas);
4043 	r_mas.last = r_mas.index = mas->last;
4044 
4045 	/* Set up left side. */
4046 	l_mas = *mas;
4047 	mas_wr_walk_index(&l_wr_mas);
4048 
4049 	if (!wr_mas->entry) {
4050 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4051 		mas->offset = l_mas.offset;
4052 		mas->index = l_mas.index;
4053 		mas->last = l_mas.last = r_mas.last;
4054 	}
4055 
4056 	/* expanding NULLs may make this cover the entire range */
4057 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
4058 		mas_set_range(mas, 0, ULONG_MAX);
4059 		return mas_new_root(mas, wr_mas->entry);
4060 	}
4061 
4062 	memset(&b_node, 0, sizeof(struct maple_big_node));
4063 	/* Copy l_mas and store the value in b_node. */
4064 	mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4065 	/* Copy r_mas into b_node. */
4066 	if (r_mas.offset <= r_wr_mas.node_end)
4067 		mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4068 			   &b_node, b_node.b_end + 1);
4069 	else
4070 		b_node.b_end++;
4071 
4072 	/* Stop spanning searches by searching for just index. */
4073 	l_mas.index = l_mas.last = mas->index;
4074 
4075 	mast.bn = &b_node;
4076 	mast.orig_l = &l_mas;
4077 	mast.orig_r = &r_mas;
4078 	/* Combine l_mas and r_mas and split them up evenly again. */
4079 	return mas_spanning_rebalance(mas, &mast, height + 1);
4080 }
4081 
4082 /*
4083  * mas_wr_node_store() - Attempt to store the value in a node
4084  * @wr_mas: The maple write state
4085  *
4086  * Attempts to reuse the node, but may allocate.
4087  *
4088  * Return: True if stored, false otherwise
4089  */
4090 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4091 {
4092 	struct ma_state *mas = wr_mas->mas;
4093 	void __rcu **dst_slots;
4094 	unsigned long *dst_pivots;
4095 	unsigned char dst_offset;
4096 	unsigned char new_end = wr_mas->node_end;
4097 	unsigned char offset;
4098 	unsigned char node_slots = mt_slots[wr_mas->type];
4099 	struct maple_node reuse, *newnode;
4100 	unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4101 	bool in_rcu = mt_in_rcu(mas->tree);
4102 
4103 	offset = mas->offset;
4104 	if (mas->last == wr_mas->r_max) {
4105 		/* runs right to the end of the node */
4106 		if (mas->last == mas->max)
4107 			new_end = offset;
4108 		/* don't copy this offset */
4109 		wr_mas->offset_end++;
4110 	} else if (mas->last < wr_mas->r_max) {
4111 		/* new range ends in this range */
4112 		if (unlikely(wr_mas->r_max == ULONG_MAX))
4113 			mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4114 
4115 		new_end++;
4116 	} else {
4117 		if (wr_mas->end_piv == mas->last)
4118 			wr_mas->offset_end++;
4119 
4120 		new_end -= wr_mas->offset_end - offset - 1;
4121 	}
4122 
4123 	/* new range starts within a range */
4124 	if (wr_mas->r_min < mas->index)
4125 		new_end++;
4126 
4127 	/* Not enough room */
4128 	if (new_end >= node_slots)
4129 		return false;
4130 
4131 	/* Not enough data. */
4132 	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4133 	    !(mas->mas_flags & MA_STATE_BULK))
4134 		return false;
4135 
4136 	/* set up node. */
4137 	if (in_rcu) {
4138 		mas_node_count(mas, 1);
4139 		if (mas_is_err(mas))
4140 			return false;
4141 
4142 		newnode = mas_pop_node(mas);
4143 	} else {
4144 		memset(&reuse, 0, sizeof(struct maple_node));
4145 		newnode = &reuse;
4146 	}
4147 
4148 	newnode->parent = mas_mn(mas)->parent;
4149 	dst_pivots = ma_pivots(newnode, wr_mas->type);
4150 	dst_slots = ma_slots(newnode, wr_mas->type);
4151 	/* Copy from start to insert point */
4152 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4153 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4154 	dst_offset = offset;
4155 
4156 	/* Handle insert of new range starting after old range */
4157 	if (wr_mas->r_min < mas->index) {
4158 		mas->offset++;
4159 		rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4160 		dst_pivots[dst_offset++] = mas->index - 1;
4161 	}
4162 
4163 	/* Store the new entry and range end. */
4164 	if (dst_offset < max_piv)
4165 		dst_pivots[dst_offset] = mas->last;
4166 	mas->offset = dst_offset;
4167 	rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4168 
4169 	/*
4170 	 * this range wrote to the end of the node or it overwrote the rest of
4171 	 * the data
4172 	 */
4173 	if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4174 		new_end = dst_offset;
4175 		goto done;
4176 	}
4177 
4178 	dst_offset++;
4179 	/* Copy to the end of node if necessary. */
4180 	copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4181 	memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4182 	       sizeof(void *) * copy_size);
4183 	if (dst_offset < max_piv) {
4184 		if (copy_size > max_piv - dst_offset)
4185 			copy_size = max_piv - dst_offset;
4186 
4187 		memcpy(dst_pivots + dst_offset,
4188 		       wr_mas->pivots + wr_mas->offset_end,
4189 		       sizeof(unsigned long) * copy_size);
4190 	}
4191 
4192 	if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4193 		dst_pivots[new_end] = mas->max;
4194 
4195 done:
4196 	mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4197 	if (in_rcu) {
4198 		mte_set_node_dead(mas->node);
4199 		mas->node = mt_mk_node(newnode, wr_mas->type);
4200 		mas_replace(mas, false);
4201 	} else {
4202 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4203 	}
4204 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4205 	mas_update_gap(mas);
4206 	return true;
4207 }
4208 
4209 /*
4210  * mas_wr_slot_store: Attempt to store a value in a slot.
4211  * @wr_mas: the maple write state
4212  *
4213  * Return: True if stored, false otherwise
4214  */
4215 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4216 {
4217 	struct ma_state *mas = wr_mas->mas;
4218 	unsigned long lmax; /* Logical max. */
4219 	unsigned char offset = mas->offset;
4220 
4221 	if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4222 				  (offset != wr_mas->node_end)))
4223 		return false;
4224 
4225 	if (offset == wr_mas->node_end - 1)
4226 		lmax = mas->max;
4227 	else
4228 		lmax = wr_mas->pivots[offset + 1];
4229 
4230 	/* going to overwrite too many slots. */
4231 	if (lmax < mas->last)
4232 		return false;
4233 
4234 	if (wr_mas->r_min == mas->index) {
4235 		/* overwriting two or more ranges with one. */
4236 		if (lmax == mas->last)
4237 			return false;
4238 
4239 		/* Overwriting all of offset and a portion of offset + 1. */
4240 		rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4241 		wr_mas->pivots[offset] = mas->last;
4242 		goto done;
4243 	}
4244 
4245 	/* Doesn't end on the next range end. */
4246 	if (lmax != mas->last)
4247 		return false;
4248 
4249 	/* Overwriting a portion of offset and all of offset + 1 */
4250 	if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4251 	    (wr_mas->entry || wr_mas->pivots[offset + 1]))
4252 		wr_mas->pivots[offset + 1] = mas->last;
4253 
4254 	rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4255 	wr_mas->pivots[offset] = mas->index - 1;
4256 	mas->offset++; /* Keep mas accurate. */
4257 
4258 done:
4259 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4260 	mas_update_gap(mas);
4261 	return true;
4262 }
4263 
4264 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4265 {
4266 	while ((wr_mas->mas->last > wr_mas->end_piv) &&
4267 	       (wr_mas->offset_end < wr_mas->node_end))
4268 		wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4269 
4270 	if (wr_mas->mas->last > wr_mas->end_piv)
4271 		wr_mas->end_piv = wr_mas->mas->max;
4272 }
4273 
4274 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4275 {
4276 	struct ma_state *mas = wr_mas->mas;
4277 
4278 	if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4279 		mas->last = wr_mas->end_piv;
4280 
4281 	/* Check next slot(s) if we are overwriting the end */
4282 	if ((mas->last == wr_mas->end_piv) &&
4283 	    (wr_mas->node_end != wr_mas->offset_end) &&
4284 	    !wr_mas->slots[wr_mas->offset_end + 1]) {
4285 		wr_mas->offset_end++;
4286 		if (wr_mas->offset_end == wr_mas->node_end)
4287 			mas->last = mas->max;
4288 		else
4289 			mas->last = wr_mas->pivots[wr_mas->offset_end];
4290 		wr_mas->end_piv = mas->last;
4291 	}
4292 
4293 	if (!wr_mas->content) {
4294 		/* If this one is null, the next and prev are not */
4295 		mas->index = wr_mas->r_min;
4296 	} else {
4297 		/* Check prev slot if we are overwriting the start */
4298 		if (mas->index == wr_mas->r_min && mas->offset &&
4299 		    !wr_mas->slots[mas->offset - 1]) {
4300 			mas->offset--;
4301 			wr_mas->r_min = mas->index =
4302 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4303 			wr_mas->r_max = wr_mas->pivots[mas->offset];
4304 		}
4305 	}
4306 }
4307 
4308 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4309 {
4310 	unsigned char end = wr_mas->node_end;
4311 	unsigned char new_end = end + 1;
4312 	struct ma_state *mas = wr_mas->mas;
4313 	unsigned char node_pivots = mt_pivots[wr_mas->type];
4314 
4315 	if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4316 		if (new_end < node_pivots)
4317 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4318 
4319 		if (new_end < node_pivots)
4320 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4321 
4322 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4323 		mas->offset = new_end;
4324 		wr_mas->pivots[end] = mas->index - 1;
4325 
4326 		return true;
4327 	}
4328 
4329 	if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4330 		if (new_end < node_pivots)
4331 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4332 
4333 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4334 		if (new_end < node_pivots)
4335 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4336 
4337 		wr_mas->pivots[end] = mas->last;
4338 		rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4339 		return true;
4340 	}
4341 
4342 	return false;
4343 }
4344 
4345 /*
4346  * mas_wr_bnode() - Slow path for a modification.
4347  * @wr_mas: The write maple state
4348  *
4349  * This is where split, rebalance end up.
4350  */
4351 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4352 {
4353 	struct maple_big_node b_node;
4354 
4355 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4356 	memset(&b_node, 0, sizeof(struct maple_big_node));
4357 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4358 	mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4359 }
4360 
4361 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4362 {
4363 	unsigned char node_slots;
4364 	unsigned char node_size;
4365 	struct ma_state *mas = wr_mas->mas;
4366 
4367 	/* Direct replacement */
4368 	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4369 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4370 		if (!!wr_mas->entry ^ !!wr_mas->content)
4371 			mas_update_gap(mas);
4372 		return;
4373 	}
4374 
4375 	/* Attempt to append */
4376 	node_slots = mt_slots[wr_mas->type];
4377 	node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4378 	if (mas->max == ULONG_MAX)
4379 		node_size++;
4380 
4381 	/* slot and node store will not fit, go to the slow path */
4382 	if (unlikely(node_size >= node_slots))
4383 		goto slow_path;
4384 
4385 	if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4386 	    (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4387 		if (!wr_mas->content || !wr_mas->entry)
4388 			mas_update_gap(mas);
4389 		return;
4390 	}
4391 
4392 	if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4393 		return;
4394 	else if (mas_wr_node_store(wr_mas))
4395 		return;
4396 
4397 	if (mas_is_err(mas))
4398 		return;
4399 
4400 slow_path:
4401 	mas_wr_bnode(wr_mas);
4402 }
4403 
4404 /*
4405  * mas_wr_store_entry() - Internal call to store a value
4406  * @mas: The maple state
4407  * @entry: The entry to store.
4408  *
4409  * Return: The contents that was stored at the index.
4410  */
4411 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4412 {
4413 	struct ma_state *mas = wr_mas->mas;
4414 
4415 	wr_mas->content = mas_start(mas);
4416 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4417 		mas_store_root(mas, wr_mas->entry);
4418 		return wr_mas->content;
4419 	}
4420 
4421 	if (unlikely(!mas_wr_walk(wr_mas))) {
4422 		mas_wr_spanning_store(wr_mas);
4423 		return wr_mas->content;
4424 	}
4425 
4426 	/* At this point, we are at the leaf node that needs to be altered. */
4427 	wr_mas->end_piv = wr_mas->r_max;
4428 	mas_wr_end_piv(wr_mas);
4429 
4430 	if (!wr_mas->entry)
4431 		mas_wr_extend_null(wr_mas);
4432 
4433 	/* New root for a single pointer */
4434 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4435 		mas_new_root(mas, wr_mas->entry);
4436 		return wr_mas->content;
4437 	}
4438 
4439 	mas_wr_modify(wr_mas);
4440 	return wr_mas->content;
4441 }
4442 
4443 /**
4444  * mas_insert() - Internal call to insert a value
4445  * @mas: The maple state
4446  * @entry: The entry to store
4447  *
4448  * Return: %NULL or the contents that already exists at the requested index
4449  * otherwise.  The maple state needs to be checked for error conditions.
4450  */
4451 static inline void *mas_insert(struct ma_state *mas, void *entry)
4452 {
4453 	MA_WR_STATE(wr_mas, mas, entry);
4454 
4455 	/*
4456 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4457 	 * tree.  If the insert fits exactly into an existing gap with a value
4458 	 * of NULL, then the slot only needs to be written with the new value.
4459 	 * If the range being inserted is adjacent to another range, then only a
4460 	 * single pivot needs to be inserted (as well as writing the entry).  If
4461 	 * the new range is within a gap but does not touch any other ranges,
4462 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4463 	 * usual, the entry must be written.  Most operations require a new node
4464 	 * to be allocated and replace an existing node to ensure RCU safety,
4465 	 * when in RCU mode.  The exception to requiring a newly allocated node
4466 	 * is when inserting at the end of a node (appending).  When done
4467 	 * carefully, appending can reuse the node in place.
4468 	 */
4469 	wr_mas.content = mas_start(mas);
4470 	if (wr_mas.content)
4471 		goto exists;
4472 
4473 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4474 		mas_store_root(mas, entry);
4475 		return NULL;
4476 	}
4477 
4478 	/* spanning writes always overwrite something */
4479 	if (!mas_wr_walk(&wr_mas))
4480 		goto exists;
4481 
4482 	/* At this point, we are at the leaf node that needs to be altered. */
4483 	wr_mas.offset_end = mas->offset;
4484 	wr_mas.end_piv = wr_mas.r_max;
4485 
4486 	if (wr_mas.content || (mas->last > wr_mas.r_max))
4487 		goto exists;
4488 
4489 	if (!entry)
4490 		return NULL;
4491 
4492 	mas_wr_modify(&wr_mas);
4493 	return wr_mas.content;
4494 
4495 exists:
4496 	mas_set_err(mas, -EEXIST);
4497 	return wr_mas.content;
4498 
4499 }
4500 
4501 /*
4502  * mas_prev_node() - Find the prev non-null entry at the same level in the
4503  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
4504  * @mas: The maple state
4505  * @min: The lower limit to search
4506  *
4507  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4508  * Return: 1 if the node is dead, 0 otherwise.
4509  */
4510 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4511 {
4512 	enum maple_type mt;
4513 	int offset, level;
4514 	void __rcu **slots;
4515 	struct maple_node *node;
4516 	struct maple_enode *enode;
4517 	unsigned long *pivots;
4518 
4519 	if (mas_is_none(mas))
4520 		return 0;
4521 
4522 	level = 0;
4523 	do {
4524 		node = mas_mn(mas);
4525 		if (ma_is_root(node))
4526 			goto no_entry;
4527 
4528 		/* Walk up. */
4529 		if (unlikely(mas_ascend(mas)))
4530 			return 1;
4531 		offset = mas->offset;
4532 		level++;
4533 	} while (!offset);
4534 
4535 	offset--;
4536 	mt = mte_node_type(mas->node);
4537 	node = mas_mn(mas);
4538 	slots = ma_slots(node, mt);
4539 	pivots = ma_pivots(node, mt);
4540 	if (unlikely(ma_dead_node(node)))
4541 		return 1;
4542 
4543 	mas->max = pivots[offset];
4544 	if (offset)
4545 		mas->min = pivots[offset - 1] + 1;
4546 	if (unlikely(ma_dead_node(node)))
4547 		return 1;
4548 
4549 	if (mas->max < min)
4550 		goto no_entry_min;
4551 
4552 	while (level > 1) {
4553 		level--;
4554 		enode = mas_slot(mas, slots, offset);
4555 		if (unlikely(ma_dead_node(node)))
4556 			return 1;
4557 
4558 		mas->node = enode;
4559 		mt = mte_node_type(mas->node);
4560 		node = mas_mn(mas);
4561 		slots = ma_slots(node, mt);
4562 		pivots = ma_pivots(node, mt);
4563 		offset = ma_data_end(node, mt, pivots, mas->max);
4564 		if (unlikely(ma_dead_node(node)))
4565 			return 1;
4566 
4567 		if (offset)
4568 			mas->min = pivots[offset - 1] + 1;
4569 
4570 		if (offset < mt_pivots[mt])
4571 			mas->max = pivots[offset];
4572 
4573 		if (mas->max < min)
4574 			goto no_entry;
4575 	}
4576 
4577 	mas->node = mas_slot(mas, slots, offset);
4578 	if (unlikely(ma_dead_node(node)))
4579 		return 1;
4580 
4581 	mas->offset = mas_data_end(mas);
4582 	if (unlikely(mte_dead_node(mas->node)))
4583 		return 1;
4584 
4585 	return 0;
4586 
4587 no_entry_min:
4588 	mas->offset = offset;
4589 	if (offset)
4590 		mas->min = pivots[offset - 1] + 1;
4591 no_entry:
4592 	if (unlikely(ma_dead_node(node)))
4593 		return 1;
4594 
4595 	mas->node = MAS_NONE;
4596 	return 0;
4597 }
4598 
4599 /*
4600  * mas_next_node() - Get the next node at the same level in the tree.
4601  * @mas: The maple state
4602  * @max: The maximum pivot value to check.
4603  *
4604  * The next value will be mas->node[mas->offset] or MAS_NONE.
4605  * Return: 1 on dead node, 0 otherwise.
4606  */
4607 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4608 				unsigned long max)
4609 {
4610 	unsigned long min, pivot;
4611 	unsigned long *pivots;
4612 	struct maple_enode *enode;
4613 	int level = 0;
4614 	unsigned char offset;
4615 	unsigned char node_end;
4616 	enum maple_type mt;
4617 	void __rcu **slots;
4618 
4619 	if (mas->max >= max)
4620 		goto no_entry;
4621 
4622 	level = 0;
4623 	do {
4624 		if (ma_is_root(node))
4625 			goto no_entry;
4626 
4627 		min = mas->max + 1;
4628 		if (min > max)
4629 			goto no_entry;
4630 
4631 		if (unlikely(mas_ascend(mas)))
4632 			return 1;
4633 
4634 		offset = mas->offset;
4635 		level++;
4636 		node = mas_mn(mas);
4637 		mt = mte_node_type(mas->node);
4638 		pivots = ma_pivots(node, mt);
4639 		node_end = ma_data_end(node, mt, pivots, mas->max);
4640 		if (unlikely(ma_dead_node(node)))
4641 			return 1;
4642 
4643 	} while (unlikely(offset == node_end));
4644 
4645 	slots = ma_slots(node, mt);
4646 	pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4647 	while (unlikely(level > 1)) {
4648 		/* Descend, if necessary */
4649 		enode = mas_slot(mas, slots, offset);
4650 		if (unlikely(ma_dead_node(node)))
4651 			return 1;
4652 
4653 		mas->node = enode;
4654 		level--;
4655 		node = mas_mn(mas);
4656 		mt = mte_node_type(mas->node);
4657 		slots = ma_slots(node, mt);
4658 		pivots = ma_pivots(node, mt);
4659 		if (unlikely(ma_dead_node(node)))
4660 			return 1;
4661 
4662 		offset = 0;
4663 		pivot = pivots[0];
4664 	}
4665 
4666 	enode = mas_slot(mas, slots, offset);
4667 	if (unlikely(ma_dead_node(node)))
4668 		return 1;
4669 
4670 	mas->node = enode;
4671 	mas->min = min;
4672 	mas->max = pivot;
4673 	return 0;
4674 
4675 no_entry:
4676 	if (unlikely(ma_dead_node(node)))
4677 		return 1;
4678 
4679 	mas->node = MAS_NONE;
4680 	return 0;
4681 }
4682 
4683 /*
4684  * mas_next_nentry() - Get the next node entry
4685  * @mas: The maple state
4686  * @max: The maximum value to check
4687  * @*range_start: Pointer to store the start of the range.
4688  *
4689  * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4690  * pivot of the entry.
4691  *
4692  * Return: The next entry, %NULL otherwise
4693  */
4694 static inline void *mas_next_nentry(struct ma_state *mas,
4695 	    struct maple_node *node, unsigned long max, enum maple_type type)
4696 {
4697 	unsigned char count;
4698 	unsigned long pivot;
4699 	unsigned long *pivots;
4700 	void __rcu **slots;
4701 	void *entry;
4702 
4703 	if (mas->last == mas->max) {
4704 		mas->index = mas->max;
4705 		return NULL;
4706 	}
4707 
4708 	slots = ma_slots(node, type);
4709 	pivots = ma_pivots(node, type);
4710 	count = ma_data_end(node, type, pivots, mas->max);
4711 	if (unlikely(ma_dead_node(node)))
4712 		return NULL;
4713 
4714 	mas->index = mas_safe_min(mas, pivots, mas->offset);
4715 	if (unlikely(ma_dead_node(node)))
4716 		return NULL;
4717 
4718 	if (mas->index > max)
4719 		return NULL;
4720 
4721 	if (mas->offset > count)
4722 		return NULL;
4723 
4724 	while (mas->offset < count) {
4725 		pivot = pivots[mas->offset];
4726 		entry = mas_slot(mas, slots, mas->offset);
4727 		if (ma_dead_node(node))
4728 			return NULL;
4729 
4730 		if (entry)
4731 			goto found;
4732 
4733 		if (pivot >= max)
4734 			return NULL;
4735 
4736 		mas->index = pivot + 1;
4737 		mas->offset++;
4738 	}
4739 
4740 	if (mas->index > mas->max) {
4741 		mas->index = mas->last;
4742 		return NULL;
4743 	}
4744 
4745 	pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4746 	entry = mas_slot(mas, slots, mas->offset);
4747 	if (ma_dead_node(node))
4748 		return NULL;
4749 
4750 	if (!pivot)
4751 		return NULL;
4752 
4753 	if (!entry)
4754 		return NULL;
4755 
4756 found:
4757 	mas->last = pivot;
4758 	return entry;
4759 }
4760 
4761 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4762 {
4763 retry:
4764 	mas_set(mas, index);
4765 	mas_state_walk(mas);
4766 	if (mas_is_start(mas))
4767 		goto retry;
4768 }
4769 
4770 /*
4771  * mas_next_entry() - Internal function to get the next entry.
4772  * @mas: The maple state
4773  * @limit: The maximum range start.
4774  *
4775  * Set the @mas->node to the next entry and the range_start to
4776  * the beginning value for the entry.  Does not check beyond @limit.
4777  * Sets @mas->index and @mas->last to the limit if it is hit.
4778  * Restarts on dead nodes.
4779  *
4780  * Return: the next entry or %NULL.
4781  */
4782 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4783 {
4784 	void *entry = NULL;
4785 	struct maple_enode *prev_node;
4786 	struct maple_node *node;
4787 	unsigned char offset;
4788 	unsigned long last;
4789 	enum maple_type mt;
4790 
4791 	if (mas->index > limit) {
4792 		mas->index = mas->last = limit;
4793 		mas_pause(mas);
4794 		return NULL;
4795 	}
4796 	last = mas->last;
4797 retry:
4798 	offset = mas->offset;
4799 	prev_node = mas->node;
4800 	node = mas_mn(mas);
4801 	mt = mte_node_type(mas->node);
4802 	mas->offset++;
4803 	if (unlikely(mas->offset >= mt_slots[mt])) {
4804 		mas->offset = mt_slots[mt] - 1;
4805 		goto next_node;
4806 	}
4807 
4808 	while (!mas_is_none(mas)) {
4809 		entry = mas_next_nentry(mas, node, limit, mt);
4810 		if (unlikely(ma_dead_node(node))) {
4811 			mas_rewalk(mas, last);
4812 			goto retry;
4813 		}
4814 
4815 		if (likely(entry))
4816 			return entry;
4817 
4818 		if (unlikely((mas->index > limit)))
4819 			break;
4820 
4821 next_node:
4822 		prev_node = mas->node;
4823 		offset = mas->offset;
4824 		if (unlikely(mas_next_node(mas, node, limit))) {
4825 			mas_rewalk(mas, last);
4826 			goto retry;
4827 		}
4828 		mas->offset = 0;
4829 		node = mas_mn(mas);
4830 		mt = mte_node_type(mas->node);
4831 	}
4832 
4833 	mas->index = mas->last = limit;
4834 	mas->offset = offset;
4835 	mas->node = prev_node;
4836 	return NULL;
4837 }
4838 
4839 /*
4840  * mas_prev_nentry() - Get the previous node entry.
4841  * @mas: The maple state.
4842  * @limit: The lower limit to check for a value.
4843  *
4844  * Return: the entry, %NULL otherwise.
4845  */
4846 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4847 				    unsigned long index)
4848 {
4849 	unsigned long pivot, min;
4850 	unsigned char offset;
4851 	struct maple_node *mn;
4852 	enum maple_type mt;
4853 	unsigned long *pivots;
4854 	void __rcu **slots;
4855 	void *entry;
4856 
4857 retry:
4858 	if (!mas->offset)
4859 		return NULL;
4860 
4861 	mn = mas_mn(mas);
4862 	mt = mte_node_type(mas->node);
4863 	offset = mas->offset - 1;
4864 	if (offset >= mt_slots[mt])
4865 		offset = mt_slots[mt] - 1;
4866 
4867 	slots = ma_slots(mn, mt);
4868 	pivots = ma_pivots(mn, mt);
4869 	if (unlikely(ma_dead_node(mn))) {
4870 		mas_rewalk(mas, index);
4871 		goto retry;
4872 	}
4873 
4874 	if (offset == mt_pivots[mt])
4875 		pivot = mas->max;
4876 	else
4877 		pivot = pivots[offset];
4878 
4879 	if (unlikely(ma_dead_node(mn))) {
4880 		mas_rewalk(mas, index);
4881 		goto retry;
4882 	}
4883 
4884 	while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4885 	       !pivot))
4886 		pivot = pivots[--offset];
4887 
4888 	min = mas_safe_min(mas, pivots, offset);
4889 	entry = mas_slot(mas, slots, offset);
4890 	if (unlikely(ma_dead_node(mn))) {
4891 		mas_rewalk(mas, index);
4892 		goto retry;
4893 	}
4894 
4895 	if (likely(entry)) {
4896 		mas->offset = offset;
4897 		mas->last = pivot;
4898 		mas->index = min;
4899 	}
4900 	return entry;
4901 }
4902 
4903 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4904 {
4905 	void *entry;
4906 
4907 	if (mas->index < min) {
4908 		mas->index = mas->last = min;
4909 		mas->node = MAS_NONE;
4910 		return NULL;
4911 	}
4912 retry:
4913 	while (likely(!mas_is_none(mas))) {
4914 		entry = mas_prev_nentry(mas, min, mas->index);
4915 		if (unlikely(mas->last < min))
4916 			goto not_found;
4917 
4918 		if (likely(entry))
4919 			return entry;
4920 
4921 		if (unlikely(mas_prev_node(mas, min))) {
4922 			mas_rewalk(mas, mas->index);
4923 			goto retry;
4924 		}
4925 
4926 		mas->offset++;
4927 	}
4928 
4929 	mas->offset--;
4930 not_found:
4931 	mas->index = mas->last = min;
4932 	return NULL;
4933 }
4934 
4935 /*
4936  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4937  * highest gap address of a given size in a given node and descend.
4938  * @mas: The maple state
4939  * @size: The needed size.
4940  *
4941  * Return: True if found in a leaf, false otherwise.
4942  *
4943  */
4944 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4945 		unsigned long *gap_min, unsigned long *gap_max)
4946 {
4947 	enum maple_type type = mte_node_type(mas->node);
4948 	struct maple_node *node = mas_mn(mas);
4949 	unsigned long *pivots, *gaps;
4950 	void __rcu **slots;
4951 	unsigned long gap = 0;
4952 	unsigned long max, min;
4953 	unsigned char offset;
4954 
4955 	if (unlikely(mas_is_err(mas)))
4956 		return true;
4957 
4958 	if (ma_is_dense(type)) {
4959 		/* dense nodes. */
4960 		mas->offset = (unsigned char)(mas->index - mas->min);
4961 		return true;
4962 	}
4963 
4964 	pivots = ma_pivots(node, type);
4965 	slots = ma_slots(node, type);
4966 	gaps = ma_gaps(node, type);
4967 	offset = mas->offset;
4968 	min = mas_safe_min(mas, pivots, offset);
4969 	/* Skip out of bounds. */
4970 	while (mas->last < min)
4971 		min = mas_safe_min(mas, pivots, --offset);
4972 
4973 	max = mas_safe_pivot(mas, pivots, offset, type);
4974 	while (mas->index <= max) {
4975 		gap = 0;
4976 		if (gaps)
4977 			gap = gaps[offset];
4978 		else if (!mas_slot(mas, slots, offset))
4979 			gap = max - min + 1;
4980 
4981 		if (gap) {
4982 			if ((size <= gap) && (size <= mas->last - min + 1))
4983 				break;
4984 
4985 			if (!gaps) {
4986 				/* Skip the next slot, it cannot be a gap. */
4987 				if (offset < 2)
4988 					goto ascend;
4989 
4990 				offset -= 2;
4991 				max = pivots[offset];
4992 				min = mas_safe_min(mas, pivots, offset);
4993 				continue;
4994 			}
4995 		}
4996 
4997 		if (!offset)
4998 			goto ascend;
4999 
5000 		offset--;
5001 		max = min - 1;
5002 		min = mas_safe_min(mas, pivots, offset);
5003 	}
5004 
5005 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
5006 		goto no_space;
5007 
5008 	if (unlikely(ma_is_leaf(type))) {
5009 		mas->offset = offset;
5010 		*gap_min = min;
5011 		*gap_max = min + gap - 1;
5012 		return true;
5013 	}
5014 
5015 	/* descend, only happens under lock. */
5016 	mas->node = mas_slot(mas, slots, offset);
5017 	mas->min = min;
5018 	mas->max = max;
5019 	mas->offset = mas_data_end(mas);
5020 	return false;
5021 
5022 ascend:
5023 	if (!mte_is_root(mas->node))
5024 		return false;
5025 
5026 no_space:
5027 	mas_set_err(mas, -EBUSY);
5028 	return false;
5029 }
5030 
5031 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
5032 {
5033 	enum maple_type type = mte_node_type(mas->node);
5034 	unsigned long pivot, min, gap = 0;
5035 	unsigned char offset, data_end;
5036 	unsigned long *gaps, *pivots;
5037 	void __rcu **slots;
5038 	struct maple_node *node;
5039 	bool found = false;
5040 
5041 	if (ma_is_dense(type)) {
5042 		mas->offset = (unsigned char)(mas->index - mas->min);
5043 		return true;
5044 	}
5045 
5046 	node = mas_mn(mas);
5047 	pivots = ma_pivots(node, type);
5048 	slots = ma_slots(node, type);
5049 	gaps = ma_gaps(node, type);
5050 	offset = mas->offset;
5051 	min = mas_safe_min(mas, pivots, offset);
5052 	data_end = ma_data_end(node, type, pivots, mas->max);
5053 	for (; offset <= data_end; offset++) {
5054 		pivot = mas_logical_pivot(mas, pivots, offset, type);
5055 
5056 		/* Not within lower bounds */
5057 		if (mas->index > pivot)
5058 			goto next_slot;
5059 
5060 		if (gaps)
5061 			gap = gaps[offset];
5062 		else if (!mas_slot(mas, slots, offset))
5063 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5064 		else
5065 			goto next_slot;
5066 
5067 		if (gap >= size) {
5068 			if (ma_is_leaf(type)) {
5069 				found = true;
5070 				goto done;
5071 			}
5072 			if (mas->index <= pivot) {
5073 				mas->node = mas_slot(mas, slots, offset);
5074 				mas->min = min;
5075 				mas->max = pivot;
5076 				offset = 0;
5077 				break;
5078 			}
5079 		}
5080 next_slot:
5081 		min = pivot + 1;
5082 		if (mas->last <= pivot) {
5083 			mas_set_err(mas, -EBUSY);
5084 			return true;
5085 		}
5086 	}
5087 
5088 	if (mte_is_root(mas->node))
5089 		found = true;
5090 done:
5091 	mas->offset = offset;
5092 	return found;
5093 }
5094 
5095 /**
5096  * mas_walk() - Search for @mas->index in the tree.
5097  * @mas: The maple state.
5098  *
5099  * mas->index and mas->last will be set to the range if there is a value.  If
5100  * mas->node is MAS_NONE, reset to MAS_START.
5101  *
5102  * Return: the entry at the location or %NULL.
5103  */
5104 void *mas_walk(struct ma_state *mas)
5105 {
5106 	void *entry;
5107 
5108 retry:
5109 	entry = mas_state_walk(mas);
5110 	if (mas_is_start(mas))
5111 		goto retry;
5112 
5113 	if (mas_is_ptr(mas)) {
5114 		if (!mas->index) {
5115 			mas->last = 0;
5116 		} else {
5117 			mas->index = 1;
5118 			mas->last = ULONG_MAX;
5119 		}
5120 		return entry;
5121 	}
5122 
5123 	if (mas_is_none(mas)) {
5124 		mas->index = 0;
5125 		mas->last = ULONG_MAX;
5126 	}
5127 
5128 	return entry;
5129 }
5130 EXPORT_SYMBOL_GPL(mas_walk);
5131 
5132 static inline bool mas_rewind_node(struct ma_state *mas)
5133 {
5134 	unsigned char slot;
5135 
5136 	do {
5137 		if (mte_is_root(mas->node)) {
5138 			slot = mas->offset;
5139 			if (!slot)
5140 				return false;
5141 		} else {
5142 			mas_ascend(mas);
5143 			slot = mas->offset;
5144 		}
5145 	} while (!slot);
5146 
5147 	mas->offset = --slot;
5148 	return true;
5149 }
5150 
5151 /*
5152  * mas_skip_node() - Internal function.  Skip over a node.
5153  * @mas: The maple state.
5154  *
5155  * Return: true if there is another node, false otherwise.
5156  */
5157 static inline bool mas_skip_node(struct ma_state *mas)
5158 {
5159 	if (mas_is_err(mas))
5160 		return false;
5161 
5162 	do {
5163 		if (mte_is_root(mas->node)) {
5164 			if (mas->offset >= mas_data_end(mas)) {
5165 				mas_set_err(mas, -EBUSY);
5166 				return false;
5167 			}
5168 		} else {
5169 			mas_ascend(mas);
5170 		}
5171 	} while (mas->offset >= mas_data_end(mas));
5172 
5173 	mas->offset++;
5174 	return true;
5175 }
5176 
5177 /*
5178  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5179  * @size
5180  * @mas: The maple state
5181  * @size: The size of the gap required
5182  *
5183  * Search between @mas->index and @mas->last for a gap of @size.
5184  */
5185 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5186 {
5187 	struct maple_enode *last = NULL;
5188 
5189 	/*
5190 	 * There are 4 options:
5191 	 * go to child (descend)
5192 	 * go back to parent (ascend)
5193 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5194 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5195 	 */
5196 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5197 		if (last == mas->node)
5198 			mas_skip_node(mas);
5199 		else
5200 			last = mas->node;
5201 	}
5202 }
5203 
5204 /*
5205  * mas_fill_gap() - Fill a located gap with @entry.
5206  * @mas: The maple state
5207  * @entry: The value to store
5208  * @slot: The offset into the node to store the @entry
5209  * @size: The size of the entry
5210  * @index: The start location
5211  */
5212 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5213 		unsigned char slot, unsigned long size, unsigned long *index)
5214 {
5215 	MA_WR_STATE(wr_mas, mas, entry);
5216 	unsigned char pslot = mte_parent_slot(mas->node);
5217 	struct maple_enode *mn = mas->node;
5218 	unsigned long *pivots;
5219 	enum maple_type ptype;
5220 	/*
5221 	 * mas->index is the start address for the search
5222 	 *  which may no longer be needed.
5223 	 * mas->last is the end address for the search
5224 	 */
5225 
5226 	*index = mas->index;
5227 	mas->last = mas->index + size - 1;
5228 
5229 	/*
5230 	 * It is possible that using mas->max and mas->min to correctly
5231 	 * calculate the index and last will cause an issue in the gap
5232 	 * calculation, so fix the ma_state here
5233 	 */
5234 	mas_ascend(mas);
5235 	ptype = mte_node_type(mas->node);
5236 	pivots = ma_pivots(mas_mn(mas), ptype);
5237 	mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5238 	mas->min = mas_safe_min(mas, pivots, pslot);
5239 	mas->node = mn;
5240 	mas->offset = slot;
5241 	mas_wr_store_entry(&wr_mas);
5242 }
5243 
5244 /*
5245  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5246  * searching for a gap in an empty tree.
5247  * @mas: The maple state
5248  * @min: the minimum range
5249  * @max: The maximum range
5250  * @size: The size of the gap
5251  * @fwd: Searching forward or back
5252  */
5253 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5254 				unsigned long max, unsigned long size, bool fwd)
5255 {
5256 	if (!unlikely(mas_is_none(mas)) && min == 0) {
5257 		min++;
5258 		/*
5259 		 * At this time, min is increased, we need to recheck whether
5260 		 * the size is satisfied.
5261 		 */
5262 		if (min > max || max - min + 1 < size)
5263 			return -EBUSY;
5264 	}
5265 	/* mas_is_ptr */
5266 
5267 	if (fwd) {
5268 		mas->index = min;
5269 		mas->last = min + size - 1;
5270 	} else {
5271 		mas->last = max;
5272 		mas->index = max - size + 1;
5273 	}
5274 	return 0;
5275 }
5276 
5277 /*
5278  * mas_empty_area() - Get the lowest address within the range that is
5279  * sufficient for the size requested.
5280  * @mas: The maple state
5281  * @min: The lowest value of the range
5282  * @max: The highest value of the range
5283  * @size: The size needed
5284  */
5285 int mas_empty_area(struct ma_state *mas, unsigned long min,
5286 		unsigned long max, unsigned long size)
5287 {
5288 	unsigned char offset;
5289 	unsigned long *pivots;
5290 	enum maple_type mt;
5291 
5292 	if (min >= max)
5293 		return -EINVAL;
5294 
5295 	if (mas_is_start(mas))
5296 		mas_start(mas);
5297 	else if (mas->offset >= 2)
5298 		mas->offset -= 2;
5299 	else if (!mas_skip_node(mas))
5300 		return -EBUSY;
5301 
5302 	/* Empty set */
5303 	if (mas_is_none(mas) || mas_is_ptr(mas))
5304 		return mas_sparse_area(mas, min, max, size, true);
5305 
5306 	/* The start of the window can only be within these values */
5307 	mas->index = min;
5308 	mas->last = max;
5309 	mas_awalk(mas, size);
5310 
5311 	if (unlikely(mas_is_err(mas)))
5312 		return xa_err(mas->node);
5313 
5314 	offset = mas->offset;
5315 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5316 		return -EBUSY;
5317 
5318 	mt = mte_node_type(mas->node);
5319 	pivots = ma_pivots(mas_mn(mas), mt);
5320 	min = mas_safe_min(mas, pivots, offset);
5321 	if (mas->index < min)
5322 		mas->index = min;
5323 	mas->last = mas->index + size - 1;
5324 	return 0;
5325 }
5326 EXPORT_SYMBOL_GPL(mas_empty_area);
5327 
5328 /*
5329  * mas_empty_area_rev() - Get the highest address within the range that is
5330  * sufficient for the size requested.
5331  * @mas: The maple state
5332  * @min: The lowest value of the range
5333  * @max: The highest value of the range
5334  * @size: The size needed
5335  */
5336 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5337 		unsigned long max, unsigned long size)
5338 {
5339 	struct maple_enode *last = mas->node;
5340 
5341 	if (min >= max)
5342 		return -EINVAL;
5343 
5344 	if (mas_is_start(mas)) {
5345 		mas_start(mas);
5346 		mas->offset = mas_data_end(mas);
5347 	} else if (mas->offset >= 2) {
5348 		mas->offset -= 2;
5349 	} else if (!mas_rewind_node(mas)) {
5350 		return -EBUSY;
5351 	}
5352 
5353 	/* Empty set. */
5354 	if (mas_is_none(mas) || mas_is_ptr(mas))
5355 		return mas_sparse_area(mas, min, max, size, false);
5356 
5357 	/* The start of the window can only be within these values. */
5358 	mas->index = min;
5359 	mas->last = max;
5360 
5361 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5362 		if (last == mas->node) {
5363 			if (!mas_rewind_node(mas))
5364 				return -EBUSY;
5365 		} else {
5366 			last = mas->node;
5367 		}
5368 	}
5369 
5370 	if (mas_is_err(mas))
5371 		return xa_err(mas->node);
5372 
5373 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5374 		return -EBUSY;
5375 
5376 	/* Trim the upper limit to the max. */
5377 	if (max <= mas->last)
5378 		mas->last = max;
5379 
5380 	mas->index = mas->last - size + 1;
5381 	return 0;
5382 }
5383 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5384 
5385 static inline int mas_alloc(struct ma_state *mas, void *entry,
5386 		unsigned long size, unsigned long *index)
5387 {
5388 	unsigned long min;
5389 
5390 	mas_start(mas);
5391 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5392 		mas_root_expand(mas, entry);
5393 		if (mas_is_err(mas))
5394 			return xa_err(mas->node);
5395 
5396 		if (!mas->index)
5397 			return mte_pivot(mas->node, 0);
5398 		return mte_pivot(mas->node, 1);
5399 	}
5400 
5401 	/* Must be walking a tree. */
5402 	mas_awalk(mas, size);
5403 	if (mas_is_err(mas))
5404 		return xa_err(mas->node);
5405 
5406 	if (mas->offset == MAPLE_NODE_SLOTS)
5407 		goto no_gap;
5408 
5409 	/*
5410 	 * At this point, mas->node points to the right node and we have an
5411 	 * offset that has a sufficient gap.
5412 	 */
5413 	min = mas->min;
5414 	if (mas->offset)
5415 		min = mte_pivot(mas->node, mas->offset - 1) + 1;
5416 
5417 	if (mas->index < min)
5418 		mas->index = min;
5419 
5420 	mas_fill_gap(mas, entry, mas->offset, size, index);
5421 	return 0;
5422 
5423 no_gap:
5424 	return -EBUSY;
5425 }
5426 
5427 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5428 				unsigned long max, void *entry,
5429 				unsigned long size, unsigned long *index)
5430 {
5431 	int ret = 0;
5432 
5433 	ret = mas_empty_area_rev(mas, min, max, size);
5434 	if (ret)
5435 		return ret;
5436 
5437 	if (mas_is_err(mas))
5438 		return xa_err(mas->node);
5439 
5440 	if (mas->offset == MAPLE_NODE_SLOTS)
5441 		goto no_gap;
5442 
5443 	mas_fill_gap(mas, entry, mas->offset, size, index);
5444 	return 0;
5445 
5446 no_gap:
5447 	return -EBUSY;
5448 }
5449 
5450 /*
5451  * mte_dead_leaves() - Mark all leaves of a node as dead.
5452  * @mas: The maple state
5453  * @slots: Pointer to the slot array
5454  * @type: The maple node type
5455  *
5456  * Must hold the write lock.
5457  *
5458  * Return: The number of leaves marked as dead.
5459  */
5460 static inline
5461 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5462 			      void __rcu **slots)
5463 {
5464 	struct maple_node *node;
5465 	enum maple_type type;
5466 	void *entry;
5467 	int offset;
5468 
5469 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5470 		entry = mt_slot(mt, slots, offset);
5471 		type = mte_node_type(entry);
5472 		node = mte_to_node(entry);
5473 		/* Use both node and type to catch LE & BE metadata */
5474 		if (!node || !type)
5475 			break;
5476 
5477 		mte_set_node_dead(entry);
5478 		node->type = type;
5479 		rcu_assign_pointer(slots[offset], node);
5480 	}
5481 
5482 	return offset;
5483 }
5484 
5485 /**
5486  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5487  * @enode: The maple encoded node
5488  * @offset: The starting offset
5489  *
5490  * Note: This can only be used from the RCU callback context.
5491  */
5492 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5493 {
5494 	struct maple_node *node, *next;
5495 	void __rcu **slots = NULL;
5496 
5497 	next = mte_to_node(*enode);
5498 	do {
5499 		*enode = ma_enode_ptr(next);
5500 		node = mte_to_node(*enode);
5501 		slots = ma_slots(node, node->type);
5502 		next = rcu_dereference_protected(slots[offset],
5503 					lock_is_held(&rcu_callback_map));
5504 		offset = 0;
5505 	} while (!ma_is_leaf(next->type));
5506 
5507 	return slots;
5508 }
5509 
5510 /**
5511  * mt_free_walk() - Walk & free a tree in the RCU callback context
5512  * @head: The RCU head that's within the node.
5513  *
5514  * Note: This can only be used from the RCU callback context.
5515  */
5516 static void mt_free_walk(struct rcu_head *head)
5517 {
5518 	void __rcu **slots;
5519 	struct maple_node *node, *start;
5520 	struct maple_enode *enode;
5521 	unsigned char offset;
5522 	enum maple_type type;
5523 
5524 	node = container_of(head, struct maple_node, rcu);
5525 
5526 	if (ma_is_leaf(node->type))
5527 		goto free_leaf;
5528 
5529 	start = node;
5530 	enode = mt_mk_node(node, node->type);
5531 	slots = mte_dead_walk(&enode, 0);
5532 	node = mte_to_node(enode);
5533 	do {
5534 		mt_free_bulk(node->slot_len, slots);
5535 		offset = node->parent_slot + 1;
5536 		enode = node->piv_parent;
5537 		if (mte_to_node(enode) == node)
5538 			goto free_leaf;
5539 
5540 		type = mte_node_type(enode);
5541 		slots = ma_slots(mte_to_node(enode), type);
5542 		if ((offset < mt_slots[type]) &&
5543 		    rcu_dereference_protected(slots[offset],
5544 					      lock_is_held(&rcu_callback_map)))
5545 			slots = mte_dead_walk(&enode, offset);
5546 		node = mte_to_node(enode);
5547 	} while ((node != start) || (node->slot_len < offset));
5548 
5549 	slots = ma_slots(node, node->type);
5550 	mt_free_bulk(node->slot_len, slots);
5551 
5552 free_leaf:
5553 	mt_free_rcu(&node->rcu);
5554 }
5555 
5556 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5557 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5558 {
5559 	struct maple_node *node;
5560 	struct maple_enode *next = *enode;
5561 	void __rcu **slots = NULL;
5562 	enum maple_type type;
5563 	unsigned char next_offset = 0;
5564 
5565 	do {
5566 		*enode = next;
5567 		node = mte_to_node(*enode);
5568 		type = mte_node_type(*enode);
5569 		slots = ma_slots(node, type);
5570 		next = mt_slot_locked(mt, slots, next_offset);
5571 		if ((mte_dead_node(next)))
5572 			next = mt_slot_locked(mt, slots, ++next_offset);
5573 
5574 		mte_set_node_dead(*enode);
5575 		node->type = type;
5576 		node->piv_parent = prev;
5577 		node->parent_slot = offset;
5578 		offset = next_offset;
5579 		next_offset = 0;
5580 		prev = *enode;
5581 	} while (!mte_is_leaf(next));
5582 
5583 	return slots;
5584 }
5585 
5586 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5587 			    bool free)
5588 {
5589 	void __rcu **slots;
5590 	struct maple_node *node = mte_to_node(enode);
5591 	struct maple_enode *start;
5592 
5593 	if (mte_is_leaf(enode)) {
5594 		node->type = mte_node_type(enode);
5595 		goto free_leaf;
5596 	}
5597 
5598 	start = enode;
5599 	slots = mte_destroy_descend(&enode, mt, start, 0);
5600 	node = mte_to_node(enode); // Updated in the above call.
5601 	do {
5602 		enum maple_type type;
5603 		unsigned char offset;
5604 		struct maple_enode *parent, *tmp;
5605 
5606 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5607 		if (free)
5608 			mt_free_bulk(node->slot_len, slots);
5609 		offset = node->parent_slot + 1;
5610 		enode = node->piv_parent;
5611 		if (mte_to_node(enode) == node)
5612 			goto free_leaf;
5613 
5614 		type = mte_node_type(enode);
5615 		slots = ma_slots(mte_to_node(enode), type);
5616 		if (offset >= mt_slots[type])
5617 			goto next;
5618 
5619 		tmp = mt_slot_locked(mt, slots, offset);
5620 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5621 			parent = enode;
5622 			enode = tmp;
5623 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5624 		}
5625 next:
5626 		node = mte_to_node(enode);
5627 	} while (start != enode);
5628 
5629 	node = mte_to_node(enode);
5630 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5631 	if (free)
5632 		mt_free_bulk(node->slot_len, slots);
5633 
5634 free_leaf:
5635 	if (free)
5636 		mt_free_rcu(&node->rcu);
5637 	else
5638 		mt_clear_meta(mt, node, node->type);
5639 }
5640 
5641 /*
5642  * mte_destroy_walk() - Free a tree or sub-tree.
5643  * @enode: the encoded maple node (maple_enode) to start
5644  * @mt: the tree to free - needed for node types.
5645  *
5646  * Must hold the write lock.
5647  */
5648 static inline void mte_destroy_walk(struct maple_enode *enode,
5649 				    struct maple_tree *mt)
5650 {
5651 	struct maple_node *node = mte_to_node(enode);
5652 
5653 	if (mt_in_rcu(mt)) {
5654 		mt_destroy_walk(enode, mt, false);
5655 		call_rcu(&node->rcu, mt_free_walk);
5656 	} else {
5657 		mt_destroy_walk(enode, mt, true);
5658 	}
5659 }
5660 
5661 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5662 {
5663 	if (unlikely(mas_is_paused(wr_mas->mas)))
5664 		mas_reset(wr_mas->mas);
5665 
5666 	if (!mas_is_start(wr_mas->mas)) {
5667 		if (mas_is_none(wr_mas->mas)) {
5668 			mas_reset(wr_mas->mas);
5669 		} else {
5670 			wr_mas->r_max = wr_mas->mas->max;
5671 			wr_mas->type = mte_node_type(wr_mas->mas->node);
5672 			if (mas_is_span_wr(wr_mas))
5673 				mas_reset(wr_mas->mas);
5674 		}
5675 	}
5676 }
5677 
5678 /* Interface */
5679 
5680 /**
5681  * mas_store() - Store an @entry.
5682  * @mas: The maple state.
5683  * @entry: The entry to store.
5684  *
5685  * The @mas->index and @mas->last is used to set the range for the @entry.
5686  * Note: The @mas should have pre-allocated entries to ensure there is memory to
5687  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5688  *
5689  * Return: the first entry between mas->index and mas->last or %NULL.
5690  */
5691 void *mas_store(struct ma_state *mas, void *entry)
5692 {
5693 	MA_WR_STATE(wr_mas, mas, entry);
5694 
5695 	trace_ma_write(__func__, mas, 0, entry);
5696 #ifdef CONFIG_DEBUG_MAPLE_TREE
5697 	if (mas->index > mas->last)
5698 		pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5699 	MT_BUG_ON(mas->tree, mas->index > mas->last);
5700 	if (mas->index > mas->last) {
5701 		mas_set_err(mas, -EINVAL);
5702 		return NULL;
5703 	}
5704 
5705 #endif
5706 
5707 	/*
5708 	 * Storing is the same operation as insert with the added caveat that it
5709 	 * can overwrite entries.  Although this seems simple enough, one may
5710 	 * want to examine what happens if a single store operation was to
5711 	 * overwrite multiple entries within a self-balancing B-Tree.
5712 	 */
5713 	mas_wr_store_setup(&wr_mas);
5714 	mas_wr_store_entry(&wr_mas);
5715 	return wr_mas.content;
5716 }
5717 EXPORT_SYMBOL_GPL(mas_store);
5718 
5719 /**
5720  * mas_store_gfp() - Store a value into the tree.
5721  * @mas: The maple state
5722  * @entry: The entry to store
5723  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5724  *
5725  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5726  * be allocated.
5727  */
5728 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5729 {
5730 	MA_WR_STATE(wr_mas, mas, entry);
5731 
5732 	mas_wr_store_setup(&wr_mas);
5733 	trace_ma_write(__func__, mas, 0, entry);
5734 retry:
5735 	mas_wr_store_entry(&wr_mas);
5736 	if (unlikely(mas_nomem(mas, gfp)))
5737 		goto retry;
5738 
5739 	if (unlikely(mas_is_err(mas)))
5740 		return xa_err(mas->node);
5741 
5742 	return 0;
5743 }
5744 EXPORT_SYMBOL_GPL(mas_store_gfp);
5745 
5746 /**
5747  * mas_store_prealloc() - Store a value into the tree using memory
5748  * preallocated in the maple state.
5749  * @mas: The maple state
5750  * @entry: The entry to store.
5751  */
5752 void mas_store_prealloc(struct ma_state *mas, void *entry)
5753 {
5754 	MA_WR_STATE(wr_mas, mas, entry);
5755 
5756 	mas_wr_store_setup(&wr_mas);
5757 	trace_ma_write(__func__, mas, 0, entry);
5758 	mas_wr_store_entry(&wr_mas);
5759 	BUG_ON(mas_is_err(mas));
5760 	mas_destroy(mas);
5761 }
5762 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5763 
5764 /**
5765  * mas_preallocate() - Preallocate enough nodes for a store operation
5766  * @mas: The maple state
5767  * @gfp: The GFP_FLAGS to use for allocations.
5768  *
5769  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5770  */
5771 int mas_preallocate(struct ma_state *mas, gfp_t gfp)
5772 {
5773 	int ret;
5774 
5775 	mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5776 	mas->mas_flags |= MA_STATE_PREALLOC;
5777 	if (likely(!mas_is_err(mas)))
5778 		return 0;
5779 
5780 	mas_set_alloc_req(mas, 0);
5781 	ret = xa_err(mas->node);
5782 	mas_reset(mas);
5783 	mas_destroy(mas);
5784 	mas_reset(mas);
5785 	return ret;
5786 }
5787 EXPORT_SYMBOL_GPL(mas_preallocate);
5788 
5789 /*
5790  * mas_destroy() - destroy a maple state.
5791  * @mas: The maple state
5792  *
5793  * Upon completion, check the left-most node and rebalance against the node to
5794  * the right if necessary.  Frees any allocated nodes associated with this maple
5795  * state.
5796  */
5797 void mas_destroy(struct ma_state *mas)
5798 {
5799 	struct maple_alloc *node;
5800 	unsigned long total;
5801 
5802 	/*
5803 	 * When using mas_for_each() to insert an expected number of elements,
5804 	 * it is possible that the number inserted is less than the expected
5805 	 * number.  To fix an invalid final node, a check is performed here to
5806 	 * rebalance the previous node with the final node.
5807 	 */
5808 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5809 		unsigned char end;
5810 
5811 		if (mas_is_start(mas))
5812 			mas_start(mas);
5813 
5814 		mtree_range_walk(mas);
5815 		end = mas_data_end(mas) + 1;
5816 		if (end < mt_min_slot_count(mas->node) - 1)
5817 			mas_destroy_rebalance(mas, end);
5818 
5819 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5820 	}
5821 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5822 
5823 	total = mas_allocated(mas);
5824 	while (total) {
5825 		node = mas->alloc;
5826 		mas->alloc = node->slot[0];
5827 		if (node->node_count > 1) {
5828 			size_t count = node->node_count - 1;
5829 
5830 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5831 			total -= count;
5832 		}
5833 		kmem_cache_free(maple_node_cache, node);
5834 		total--;
5835 	}
5836 
5837 	mas->alloc = NULL;
5838 }
5839 EXPORT_SYMBOL_GPL(mas_destroy);
5840 
5841 /*
5842  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5843  * @mas: The maple state
5844  * @nr_entries: The number of expected entries.
5845  *
5846  * This will attempt to pre-allocate enough nodes to store the expected number
5847  * of entries.  The allocations will occur using the bulk allocator interface
5848  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5849  * to ensure any unused nodes are freed.
5850  *
5851  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5852  */
5853 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5854 {
5855 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5856 	struct maple_enode *enode = mas->node;
5857 	int nr_nodes;
5858 	int ret;
5859 
5860 	/*
5861 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5862 	 * forking a process and duplicating the VMAs from one tree to a new
5863 	 * tree.  When such a situation arises, it is known that the new tree is
5864 	 * not going to be used until the entire tree is populated.  For
5865 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5866 	 * This allows for optimistic splitting that favours the left and reuse
5867 	 * of nodes during the operation.
5868 	 */
5869 
5870 	/* Optimize splitting for bulk insert in-order */
5871 	mas->mas_flags |= MA_STATE_BULK;
5872 
5873 	/*
5874 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5875 	 * If this is wrong, it just means allocation can happen during
5876 	 * insertion of entries.
5877 	 */
5878 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5879 	if (!mt_is_alloc(mas->tree))
5880 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5881 
5882 	/* Leaves; reduce slots to keep space for expansion */
5883 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5884 	/* Internal nodes */
5885 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5886 	/* Add working room for split (2 nodes) + new parents */
5887 	mas_node_count(mas, nr_nodes + 3);
5888 
5889 	/* Detect if allocations run out */
5890 	mas->mas_flags |= MA_STATE_PREALLOC;
5891 
5892 	if (!mas_is_err(mas))
5893 		return 0;
5894 
5895 	ret = xa_err(mas->node);
5896 	mas->node = enode;
5897 	mas_destroy(mas);
5898 	return ret;
5899 
5900 }
5901 EXPORT_SYMBOL_GPL(mas_expected_entries);
5902 
5903 /**
5904  * mas_next() - Get the next entry.
5905  * @mas: The maple state
5906  * @max: The maximum index to check.
5907  *
5908  * Returns the next entry after @mas->index.
5909  * Must hold rcu_read_lock or the write lock.
5910  * Can return the zero entry.
5911  *
5912  * Return: The next entry or %NULL
5913  */
5914 void *mas_next(struct ma_state *mas, unsigned long max)
5915 {
5916 	if (mas_is_none(mas) || mas_is_paused(mas))
5917 		mas->node = MAS_START;
5918 
5919 	if (mas_is_start(mas))
5920 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5921 
5922 	if (mas_is_ptr(mas)) {
5923 		if (!mas->index) {
5924 			mas->index = 1;
5925 			mas->last = ULONG_MAX;
5926 		}
5927 		return NULL;
5928 	}
5929 
5930 	if (mas->last == ULONG_MAX)
5931 		return NULL;
5932 
5933 	/* Retries on dead nodes handled by mas_next_entry */
5934 	return mas_next_entry(mas, max);
5935 }
5936 EXPORT_SYMBOL_GPL(mas_next);
5937 
5938 /**
5939  * mt_next() - get the next value in the maple tree
5940  * @mt: The maple tree
5941  * @index: The start index
5942  * @max: The maximum index to check
5943  *
5944  * Return: The entry at @index or higher, or %NULL if nothing is found.
5945  */
5946 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5947 {
5948 	void *entry = NULL;
5949 	MA_STATE(mas, mt, index, index);
5950 
5951 	rcu_read_lock();
5952 	entry = mas_next(&mas, max);
5953 	rcu_read_unlock();
5954 	return entry;
5955 }
5956 EXPORT_SYMBOL_GPL(mt_next);
5957 
5958 /**
5959  * mas_prev() - Get the previous entry
5960  * @mas: The maple state
5961  * @min: The minimum value to check.
5962  *
5963  * Must hold rcu_read_lock or the write lock.
5964  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5965  * searchable nodes.
5966  *
5967  * Return: the previous value or %NULL.
5968  */
5969 void *mas_prev(struct ma_state *mas, unsigned long min)
5970 {
5971 	if (!mas->index) {
5972 		/* Nothing comes before 0 */
5973 		mas->last = 0;
5974 		mas->node = MAS_NONE;
5975 		return NULL;
5976 	}
5977 
5978 	if (unlikely(mas_is_ptr(mas)))
5979 		return NULL;
5980 
5981 	if (mas_is_none(mas) || mas_is_paused(mas))
5982 		mas->node = MAS_START;
5983 
5984 	if (mas_is_start(mas)) {
5985 		mas_walk(mas);
5986 		if (!mas->index)
5987 			return NULL;
5988 	}
5989 
5990 	if (mas_is_ptr(mas)) {
5991 		if (!mas->index) {
5992 			mas->last = 0;
5993 			return NULL;
5994 		}
5995 
5996 		mas->index = mas->last = 0;
5997 		return mas_root_locked(mas);
5998 	}
5999 	return mas_prev_entry(mas, min);
6000 }
6001 EXPORT_SYMBOL_GPL(mas_prev);
6002 
6003 /**
6004  * mt_prev() - get the previous value in the maple tree
6005  * @mt: The maple tree
6006  * @index: The start index
6007  * @min: The minimum index to check
6008  *
6009  * Return: The entry at @index or lower, or %NULL if nothing is found.
6010  */
6011 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
6012 {
6013 	void *entry = NULL;
6014 	MA_STATE(mas, mt, index, index);
6015 
6016 	rcu_read_lock();
6017 	entry = mas_prev(&mas, min);
6018 	rcu_read_unlock();
6019 	return entry;
6020 }
6021 EXPORT_SYMBOL_GPL(mt_prev);
6022 
6023 /**
6024  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
6025  * @mas: The maple state to pause
6026  *
6027  * Some users need to pause a walk and drop the lock they're holding in
6028  * order to yield to a higher priority thread or carry out an operation
6029  * on an entry.  Those users should call this function before they drop
6030  * the lock.  It resets the @mas to be suitable for the next iteration
6031  * of the loop after the user has reacquired the lock.  If most entries
6032  * found during a walk require you to call mas_pause(), the mt_for_each()
6033  * iterator may be more appropriate.
6034  *
6035  */
6036 void mas_pause(struct ma_state *mas)
6037 {
6038 	mas->node = MAS_PAUSE;
6039 }
6040 EXPORT_SYMBOL_GPL(mas_pause);
6041 
6042 /**
6043  * mas_find() - On the first call, find the entry at or after mas->index up to
6044  * %max.  Otherwise, find the entry after mas->index.
6045  * @mas: The maple state
6046  * @max: The maximum value to check.
6047  *
6048  * Must hold rcu_read_lock or the write lock.
6049  * If an entry exists, last and index are updated accordingly.
6050  * May set @mas->node to MAS_NONE.
6051  *
6052  * Return: The entry or %NULL.
6053  */
6054 void *mas_find(struct ma_state *mas, unsigned long max)
6055 {
6056 	if (unlikely(mas_is_paused(mas))) {
6057 		if (unlikely(mas->last == ULONG_MAX)) {
6058 			mas->node = MAS_NONE;
6059 			return NULL;
6060 		}
6061 		mas->node = MAS_START;
6062 		mas->index = ++mas->last;
6063 	}
6064 
6065 	if (unlikely(mas_is_none(mas)))
6066 		mas->node = MAS_START;
6067 
6068 	if (unlikely(mas_is_start(mas))) {
6069 		/* First run or continue */
6070 		void *entry;
6071 
6072 		if (mas->index > max)
6073 			return NULL;
6074 
6075 		entry = mas_walk(mas);
6076 		if (entry)
6077 			return entry;
6078 	}
6079 
6080 	if (unlikely(!mas_searchable(mas)))
6081 		return NULL;
6082 
6083 	/* Retries on dead nodes handled by mas_next_entry */
6084 	return mas_next_entry(mas, max);
6085 }
6086 EXPORT_SYMBOL_GPL(mas_find);
6087 
6088 /**
6089  * mas_find_rev: On the first call, find the first non-null entry at or below
6090  * mas->index down to %min.  Otherwise find the first non-null entry below
6091  * mas->index down to %min.
6092  * @mas: The maple state
6093  * @min: The minimum value to check.
6094  *
6095  * Must hold rcu_read_lock or the write lock.
6096  * If an entry exists, last and index are updated accordingly.
6097  * May set @mas->node to MAS_NONE.
6098  *
6099  * Return: The entry or %NULL.
6100  */
6101 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6102 {
6103 	if (unlikely(mas_is_paused(mas))) {
6104 		if (unlikely(mas->last == ULONG_MAX)) {
6105 			mas->node = MAS_NONE;
6106 			return NULL;
6107 		}
6108 		mas->node = MAS_START;
6109 		mas->last = --mas->index;
6110 	}
6111 
6112 	if (unlikely(mas_is_start(mas))) {
6113 		/* First run or continue */
6114 		void *entry;
6115 
6116 		if (mas->index < min)
6117 			return NULL;
6118 
6119 		entry = mas_walk(mas);
6120 		if (entry)
6121 			return entry;
6122 	}
6123 
6124 	if (unlikely(!mas_searchable(mas)))
6125 		return NULL;
6126 
6127 	if (mas->index < min)
6128 		return NULL;
6129 
6130 	/* Retries on dead nodes handled by mas_prev_entry */
6131 	return mas_prev_entry(mas, min);
6132 }
6133 EXPORT_SYMBOL_GPL(mas_find_rev);
6134 
6135 /**
6136  * mas_erase() - Find the range in which index resides and erase the entire
6137  * range.
6138  * @mas: The maple state
6139  *
6140  * Must hold the write lock.
6141  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6142  * erases that range.
6143  *
6144  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6145  */
6146 void *mas_erase(struct ma_state *mas)
6147 {
6148 	void *entry;
6149 	MA_WR_STATE(wr_mas, mas, NULL);
6150 
6151 	if (mas_is_none(mas) || mas_is_paused(mas))
6152 		mas->node = MAS_START;
6153 
6154 	/* Retry unnecessary when holding the write lock. */
6155 	entry = mas_state_walk(mas);
6156 	if (!entry)
6157 		return NULL;
6158 
6159 write_retry:
6160 	/* Must reset to ensure spanning writes of last slot are detected */
6161 	mas_reset(mas);
6162 	mas_wr_store_setup(&wr_mas);
6163 	mas_wr_store_entry(&wr_mas);
6164 	if (mas_nomem(mas, GFP_KERNEL))
6165 		goto write_retry;
6166 
6167 	return entry;
6168 }
6169 EXPORT_SYMBOL_GPL(mas_erase);
6170 
6171 /**
6172  * mas_nomem() - Check if there was an error allocating and do the allocation
6173  * if necessary If there are allocations, then free them.
6174  * @mas: The maple state
6175  * @gfp: The GFP_FLAGS to use for allocations
6176  * Return: true on allocation, false otherwise.
6177  */
6178 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6179 	__must_hold(mas->tree->lock)
6180 {
6181 	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6182 		mas_destroy(mas);
6183 		return false;
6184 	}
6185 
6186 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6187 		mtree_unlock(mas->tree);
6188 		mas_alloc_nodes(mas, gfp);
6189 		mtree_lock(mas->tree);
6190 	} else {
6191 		mas_alloc_nodes(mas, gfp);
6192 	}
6193 
6194 	if (!mas_allocated(mas))
6195 		return false;
6196 
6197 	mas->node = MAS_START;
6198 	return true;
6199 }
6200 
6201 void __init maple_tree_init(void)
6202 {
6203 	maple_node_cache = kmem_cache_create("maple_node",
6204 			sizeof(struct maple_node), sizeof(struct maple_node),
6205 			SLAB_PANIC, NULL);
6206 }
6207 
6208 /**
6209  * mtree_load() - Load a value stored in a maple tree
6210  * @mt: The maple tree
6211  * @index: The index to load
6212  *
6213  * Return: the entry or %NULL
6214  */
6215 void *mtree_load(struct maple_tree *mt, unsigned long index)
6216 {
6217 	MA_STATE(mas, mt, index, index);
6218 	void *entry;
6219 
6220 	trace_ma_read(__func__, &mas);
6221 	rcu_read_lock();
6222 retry:
6223 	entry = mas_start(&mas);
6224 	if (unlikely(mas_is_none(&mas)))
6225 		goto unlock;
6226 
6227 	if (unlikely(mas_is_ptr(&mas))) {
6228 		if (index)
6229 			entry = NULL;
6230 
6231 		goto unlock;
6232 	}
6233 
6234 	entry = mtree_lookup_walk(&mas);
6235 	if (!entry && unlikely(mas_is_start(&mas)))
6236 		goto retry;
6237 unlock:
6238 	rcu_read_unlock();
6239 	if (xa_is_zero(entry))
6240 		return NULL;
6241 
6242 	return entry;
6243 }
6244 EXPORT_SYMBOL(mtree_load);
6245 
6246 /**
6247  * mtree_store_range() - Store an entry at a given range.
6248  * @mt: The maple tree
6249  * @index: The start of the range
6250  * @last: The end of the range
6251  * @entry: The entry to store
6252  * @gfp: The GFP_FLAGS to use for allocations
6253  *
6254  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6255  * be allocated.
6256  */
6257 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6258 		unsigned long last, void *entry, gfp_t gfp)
6259 {
6260 	MA_STATE(mas, mt, index, last);
6261 	MA_WR_STATE(wr_mas, &mas, entry);
6262 
6263 	trace_ma_write(__func__, &mas, 0, entry);
6264 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6265 		return -EINVAL;
6266 
6267 	if (index > last)
6268 		return -EINVAL;
6269 
6270 	mtree_lock(mt);
6271 retry:
6272 	mas_wr_store_entry(&wr_mas);
6273 	if (mas_nomem(&mas, gfp))
6274 		goto retry;
6275 
6276 	mtree_unlock(mt);
6277 	if (mas_is_err(&mas))
6278 		return xa_err(mas.node);
6279 
6280 	return 0;
6281 }
6282 EXPORT_SYMBOL(mtree_store_range);
6283 
6284 /**
6285  * mtree_store() - Store an entry at a given index.
6286  * @mt: The maple tree
6287  * @index: The index to store the value
6288  * @entry: The entry to store
6289  * @gfp: The GFP_FLAGS to use for allocations
6290  *
6291  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6292  * be allocated.
6293  */
6294 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6295 		 gfp_t gfp)
6296 {
6297 	return mtree_store_range(mt, index, index, entry, gfp);
6298 }
6299 EXPORT_SYMBOL(mtree_store);
6300 
6301 /**
6302  * mtree_insert_range() - Insert an entry at a give range if there is no value.
6303  * @mt: The maple tree
6304  * @first: The start of the range
6305  * @last: The end of the range
6306  * @entry: The entry to store
6307  * @gfp: The GFP_FLAGS to use for allocations.
6308  *
6309  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6310  * request, -ENOMEM if memory could not be allocated.
6311  */
6312 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6313 		unsigned long last, void *entry, gfp_t gfp)
6314 {
6315 	MA_STATE(ms, mt, first, last);
6316 
6317 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6318 		return -EINVAL;
6319 
6320 	if (first > last)
6321 		return -EINVAL;
6322 
6323 	mtree_lock(mt);
6324 retry:
6325 	mas_insert(&ms, entry);
6326 	if (mas_nomem(&ms, gfp))
6327 		goto retry;
6328 
6329 	mtree_unlock(mt);
6330 	if (mas_is_err(&ms))
6331 		return xa_err(ms.node);
6332 
6333 	return 0;
6334 }
6335 EXPORT_SYMBOL(mtree_insert_range);
6336 
6337 /**
6338  * mtree_insert() - Insert an entry at a give index if there is no value.
6339  * @mt: The maple tree
6340  * @index : The index to store the value
6341  * @entry: The entry to store
6342  * @gfp: The FGP_FLAGS to use for allocations.
6343  *
6344  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6345  * request, -ENOMEM if memory could not be allocated.
6346  */
6347 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6348 		 gfp_t gfp)
6349 {
6350 	return mtree_insert_range(mt, index, index, entry, gfp);
6351 }
6352 EXPORT_SYMBOL(mtree_insert);
6353 
6354 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6355 		void *entry, unsigned long size, unsigned long min,
6356 		unsigned long max, gfp_t gfp)
6357 {
6358 	int ret = 0;
6359 
6360 	MA_STATE(mas, mt, min, max - size);
6361 	if (!mt_is_alloc(mt))
6362 		return -EINVAL;
6363 
6364 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6365 		return -EINVAL;
6366 
6367 	if (min > max)
6368 		return -EINVAL;
6369 
6370 	if (max < size)
6371 		return -EINVAL;
6372 
6373 	if (!size)
6374 		return -EINVAL;
6375 
6376 	mtree_lock(mt);
6377 retry:
6378 	mas.offset = 0;
6379 	mas.index = min;
6380 	mas.last = max - size;
6381 	ret = mas_alloc(&mas, entry, size, startp);
6382 	if (mas_nomem(&mas, gfp))
6383 		goto retry;
6384 
6385 	mtree_unlock(mt);
6386 	return ret;
6387 }
6388 EXPORT_SYMBOL(mtree_alloc_range);
6389 
6390 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6391 		void *entry, unsigned long size, unsigned long min,
6392 		unsigned long max, gfp_t gfp)
6393 {
6394 	int ret = 0;
6395 
6396 	MA_STATE(mas, mt, min, max - size);
6397 	if (!mt_is_alloc(mt))
6398 		return -EINVAL;
6399 
6400 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6401 		return -EINVAL;
6402 
6403 	if (min >= max)
6404 		return -EINVAL;
6405 
6406 	if (max < size - 1)
6407 		return -EINVAL;
6408 
6409 	if (!size)
6410 		return -EINVAL;
6411 
6412 	mtree_lock(mt);
6413 retry:
6414 	ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6415 	if (mas_nomem(&mas, gfp))
6416 		goto retry;
6417 
6418 	mtree_unlock(mt);
6419 	return ret;
6420 }
6421 EXPORT_SYMBOL(mtree_alloc_rrange);
6422 
6423 /**
6424  * mtree_erase() - Find an index and erase the entire range.
6425  * @mt: The maple tree
6426  * @index: The index to erase
6427  *
6428  * Erasing is the same as a walk to an entry then a store of a NULL to that
6429  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6430  *
6431  * Return: The entry stored at the @index or %NULL
6432  */
6433 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6434 {
6435 	void *entry = NULL;
6436 
6437 	MA_STATE(mas, mt, index, index);
6438 	trace_ma_op(__func__, &mas);
6439 
6440 	mtree_lock(mt);
6441 	entry = mas_erase(&mas);
6442 	mtree_unlock(mt);
6443 
6444 	return entry;
6445 }
6446 EXPORT_SYMBOL(mtree_erase);
6447 
6448 /**
6449  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6450  * @mt: The maple tree
6451  *
6452  * Note: Does not handle locking.
6453  */
6454 void __mt_destroy(struct maple_tree *mt)
6455 {
6456 	void *root = mt_root_locked(mt);
6457 
6458 	rcu_assign_pointer(mt->ma_root, NULL);
6459 	if (xa_is_node(root))
6460 		mte_destroy_walk(root, mt);
6461 
6462 	mt->ma_flags = 0;
6463 }
6464 EXPORT_SYMBOL_GPL(__mt_destroy);
6465 
6466 /**
6467  * mtree_destroy() - Destroy a maple tree
6468  * @mt: The maple tree
6469  *
6470  * Frees all resources used by the tree.  Handles locking.
6471  */
6472 void mtree_destroy(struct maple_tree *mt)
6473 {
6474 	mtree_lock(mt);
6475 	__mt_destroy(mt);
6476 	mtree_unlock(mt);
6477 }
6478 EXPORT_SYMBOL(mtree_destroy);
6479 
6480 /**
6481  * mt_find() - Search from the start up until an entry is found.
6482  * @mt: The maple tree
6483  * @index: Pointer which contains the start location of the search
6484  * @max: The maximum value to check
6485  *
6486  * Handles locking.  @index will be incremented to one beyond the range.
6487  *
6488  * Return: The entry at or after the @index or %NULL
6489  */
6490 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6491 {
6492 	MA_STATE(mas, mt, *index, *index);
6493 	void *entry;
6494 #ifdef CONFIG_DEBUG_MAPLE_TREE
6495 	unsigned long copy = *index;
6496 #endif
6497 
6498 	trace_ma_read(__func__, &mas);
6499 
6500 	if ((*index) > max)
6501 		return NULL;
6502 
6503 	rcu_read_lock();
6504 retry:
6505 	entry = mas_state_walk(&mas);
6506 	if (mas_is_start(&mas))
6507 		goto retry;
6508 
6509 	if (unlikely(xa_is_zero(entry)))
6510 		entry = NULL;
6511 
6512 	if (entry)
6513 		goto unlock;
6514 
6515 	while (mas_searchable(&mas) && (mas.index < max)) {
6516 		entry = mas_next_entry(&mas, max);
6517 		if (likely(entry && !xa_is_zero(entry)))
6518 			break;
6519 	}
6520 
6521 	if (unlikely(xa_is_zero(entry)))
6522 		entry = NULL;
6523 unlock:
6524 	rcu_read_unlock();
6525 	if (likely(entry)) {
6526 		*index = mas.last + 1;
6527 #ifdef CONFIG_DEBUG_MAPLE_TREE
6528 		if ((*index) && (*index) <= copy)
6529 			pr_err("index not increased! %lx <= %lx\n",
6530 			       *index, copy);
6531 		MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6532 #endif
6533 	}
6534 
6535 	return entry;
6536 }
6537 EXPORT_SYMBOL(mt_find);
6538 
6539 /**
6540  * mt_find_after() - Search from the start up until an entry is found.
6541  * @mt: The maple tree
6542  * @index: Pointer which contains the start location of the search
6543  * @max: The maximum value to check
6544  *
6545  * Handles locking, detects wrapping on index == 0
6546  *
6547  * Return: The entry at or after the @index or %NULL
6548  */
6549 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6550 		    unsigned long max)
6551 {
6552 	if (!(*index))
6553 		return NULL;
6554 
6555 	return mt_find(mt, index, max);
6556 }
6557 EXPORT_SYMBOL(mt_find_after);
6558 
6559 #ifdef CONFIG_DEBUG_MAPLE_TREE
6560 atomic_t maple_tree_tests_run;
6561 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6562 atomic_t maple_tree_tests_passed;
6563 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6564 
6565 #ifndef __KERNEL__
6566 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6567 void mt_set_non_kernel(unsigned int val)
6568 {
6569 	kmem_cache_set_non_kernel(maple_node_cache, val);
6570 }
6571 
6572 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6573 unsigned long mt_get_alloc_size(void)
6574 {
6575 	return kmem_cache_get_alloc(maple_node_cache);
6576 }
6577 
6578 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6579 void mt_zero_nr_tallocated(void)
6580 {
6581 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6582 }
6583 
6584 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6585 unsigned int mt_nr_tallocated(void)
6586 {
6587 	return kmem_cache_nr_tallocated(maple_node_cache);
6588 }
6589 
6590 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6591 unsigned int mt_nr_allocated(void)
6592 {
6593 	return kmem_cache_nr_allocated(maple_node_cache);
6594 }
6595 
6596 /*
6597  * mas_dead_node() - Check if the maple state is pointing to a dead node.
6598  * @mas: The maple state
6599  * @index: The index to restore in @mas.
6600  *
6601  * Used in test code.
6602  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6603  */
6604 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6605 {
6606 	if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6607 		return 0;
6608 
6609 	if (likely(!mte_dead_node(mas->node)))
6610 		return 0;
6611 
6612 	mas_rewalk(mas, index);
6613 	return 1;
6614 }
6615 
6616 void mt_cache_shrink(void)
6617 {
6618 }
6619 #else
6620 /*
6621  * mt_cache_shrink() - For testing, don't use this.
6622  *
6623  * Certain testcases can trigger an OOM when combined with other memory
6624  * debugging configuration options.  This function is used to reduce the
6625  * possibility of an out of memory even due to kmem_cache objects remaining
6626  * around for longer than usual.
6627  */
6628 void mt_cache_shrink(void)
6629 {
6630 	kmem_cache_shrink(maple_node_cache);
6631 
6632 }
6633 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6634 
6635 #endif /* not defined __KERNEL__ */
6636 /*
6637  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6638  * @mas: The maple state
6639  * @offset: The offset into the slot array to fetch.
6640  *
6641  * Return: The entry stored at @offset.
6642  */
6643 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6644 		unsigned char offset)
6645 {
6646 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6647 			offset);
6648 }
6649 
6650 
6651 /*
6652  * mas_first_entry() - Go the first leaf and find the first entry.
6653  * @mas: the maple state.
6654  * @limit: the maximum index to check.
6655  * @*r_start: Pointer to set to the range start.
6656  *
6657  * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6658  *
6659  * Return: The first entry or MAS_NONE.
6660  */
6661 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6662 		unsigned long limit, enum maple_type mt)
6663 
6664 {
6665 	unsigned long max;
6666 	unsigned long *pivots;
6667 	void __rcu **slots;
6668 	void *entry = NULL;
6669 
6670 	mas->index = mas->min;
6671 	if (mas->index > limit)
6672 		goto none;
6673 
6674 	max = mas->max;
6675 	mas->offset = 0;
6676 	while (likely(!ma_is_leaf(mt))) {
6677 		MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6678 		slots = ma_slots(mn, mt);
6679 		entry = mas_slot(mas, slots, 0);
6680 		pivots = ma_pivots(mn, mt);
6681 		if (unlikely(ma_dead_node(mn)))
6682 			return NULL;
6683 		max = pivots[0];
6684 		mas->node = entry;
6685 		mn = mas_mn(mas);
6686 		mt = mte_node_type(mas->node);
6687 	}
6688 	MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6689 
6690 	mas->max = max;
6691 	slots = ma_slots(mn, mt);
6692 	entry = mas_slot(mas, slots, 0);
6693 	if (unlikely(ma_dead_node(mn)))
6694 		return NULL;
6695 
6696 	/* Slot 0 or 1 must be set */
6697 	if (mas->index > limit)
6698 		goto none;
6699 
6700 	if (likely(entry))
6701 		return entry;
6702 
6703 	mas->offset = 1;
6704 	entry = mas_slot(mas, slots, 1);
6705 	pivots = ma_pivots(mn, mt);
6706 	if (unlikely(ma_dead_node(mn)))
6707 		return NULL;
6708 
6709 	mas->index = pivots[0] + 1;
6710 	if (mas->index > limit)
6711 		goto none;
6712 
6713 	if (likely(entry))
6714 		return entry;
6715 
6716 none:
6717 	if (likely(!ma_dead_node(mn)))
6718 		mas->node = MAS_NONE;
6719 	return NULL;
6720 }
6721 
6722 /* Depth first search, post-order */
6723 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6724 {
6725 
6726 	struct maple_enode *p = MAS_NONE, *mn = mas->node;
6727 	unsigned long p_min, p_max;
6728 
6729 	mas_next_node(mas, mas_mn(mas), max);
6730 	if (!mas_is_none(mas))
6731 		return;
6732 
6733 	if (mte_is_root(mn))
6734 		return;
6735 
6736 	mas->node = mn;
6737 	mas_ascend(mas);
6738 	while (mas->node != MAS_NONE) {
6739 		p = mas->node;
6740 		p_min = mas->min;
6741 		p_max = mas->max;
6742 		mas_prev_node(mas, 0);
6743 	}
6744 
6745 	if (p == MAS_NONE)
6746 		return;
6747 
6748 	mas->node = p;
6749 	mas->max = p_max;
6750 	mas->min = p_min;
6751 }
6752 
6753 /* Tree validations */
6754 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6755 		unsigned long min, unsigned long max, unsigned int depth);
6756 static void mt_dump_range(unsigned long min, unsigned long max,
6757 			  unsigned int depth)
6758 {
6759 	static const char spaces[] = "                                ";
6760 
6761 	if (min == max)
6762 		pr_info("%.*s%lu: ", depth * 2, spaces, min);
6763 	else
6764 		pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6765 }
6766 
6767 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6768 			  unsigned int depth)
6769 {
6770 	mt_dump_range(min, max, depth);
6771 
6772 	if (xa_is_value(entry))
6773 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6774 				xa_to_value(entry), entry);
6775 	else if (xa_is_zero(entry))
6776 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
6777 	else if (mt_is_reserved(entry))
6778 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6779 	else
6780 		pr_cont("%p\n", entry);
6781 }
6782 
6783 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6784 			unsigned long min, unsigned long max, unsigned int depth)
6785 {
6786 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6787 	bool leaf = mte_is_leaf(entry);
6788 	unsigned long first = min;
6789 	int i;
6790 
6791 	pr_cont(" contents: ");
6792 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6793 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6794 	pr_cont("%p\n", node->slot[i]);
6795 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6796 		unsigned long last = max;
6797 
6798 		if (i < (MAPLE_RANGE64_SLOTS - 1))
6799 			last = node->pivot[i];
6800 		else if (!node->slot[i] && max != mt_node_max(entry))
6801 			break;
6802 		if (last == 0 && i > 0)
6803 			break;
6804 		if (leaf)
6805 			mt_dump_entry(mt_slot(mt, node->slot, i),
6806 					first, last, depth + 1);
6807 		else if (node->slot[i])
6808 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6809 					first, last, depth + 1);
6810 
6811 		if (last == max)
6812 			break;
6813 		if (last > max) {
6814 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6815 					node, last, max, i);
6816 			break;
6817 		}
6818 		first = last + 1;
6819 	}
6820 }
6821 
6822 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6823 			unsigned long min, unsigned long max, unsigned int depth)
6824 {
6825 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6826 	bool leaf = mte_is_leaf(entry);
6827 	unsigned long first = min;
6828 	int i;
6829 
6830 	pr_cont(" contents: ");
6831 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6832 		pr_cont("%lu ", node->gap[i]);
6833 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6834 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6835 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6836 	pr_cont("%p\n", node->slot[i]);
6837 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6838 		unsigned long last = max;
6839 
6840 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
6841 			last = node->pivot[i];
6842 		else if (!node->slot[i])
6843 			break;
6844 		if (last == 0 && i > 0)
6845 			break;
6846 		if (leaf)
6847 			mt_dump_entry(mt_slot(mt, node->slot, i),
6848 					first, last, depth + 1);
6849 		else if (node->slot[i])
6850 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6851 					first, last, depth + 1);
6852 
6853 		if (last == max)
6854 			break;
6855 		if (last > max) {
6856 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6857 					node, last, max, i);
6858 			break;
6859 		}
6860 		first = last + 1;
6861 	}
6862 }
6863 
6864 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6865 		unsigned long min, unsigned long max, unsigned int depth)
6866 {
6867 	struct maple_node *node = mte_to_node(entry);
6868 	unsigned int type = mte_node_type(entry);
6869 	unsigned int i;
6870 
6871 	mt_dump_range(min, max, depth);
6872 
6873 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6874 			node ? node->parent : NULL);
6875 	switch (type) {
6876 	case maple_dense:
6877 		pr_cont("\n");
6878 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6879 			if (min + i > max)
6880 				pr_cont("OUT OF RANGE: ");
6881 			mt_dump_entry(mt_slot(mt, node->slot, i),
6882 					min + i, min + i, depth);
6883 		}
6884 		break;
6885 	case maple_leaf_64:
6886 	case maple_range_64:
6887 		mt_dump_range64(mt, entry, min, max, depth);
6888 		break;
6889 	case maple_arange_64:
6890 		mt_dump_arange64(mt, entry, min, max, depth);
6891 		break;
6892 
6893 	default:
6894 		pr_cont(" UNKNOWN TYPE\n");
6895 	}
6896 }
6897 
6898 void mt_dump(const struct maple_tree *mt)
6899 {
6900 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6901 
6902 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6903 		 mt, mt->ma_flags, mt_height(mt), entry);
6904 	if (!xa_is_node(entry))
6905 		mt_dump_entry(entry, 0, 0, 0);
6906 	else if (entry)
6907 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
6908 }
6909 EXPORT_SYMBOL_GPL(mt_dump);
6910 
6911 /*
6912  * Calculate the maximum gap in a node and check if that's what is reported in
6913  * the parent (unless root).
6914  */
6915 static void mas_validate_gaps(struct ma_state *mas)
6916 {
6917 	struct maple_enode *mte = mas->node;
6918 	struct maple_node *p_mn;
6919 	unsigned long gap = 0, max_gap = 0;
6920 	unsigned long p_end, p_start = mas->min;
6921 	unsigned char p_slot;
6922 	unsigned long *gaps = NULL;
6923 	unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6924 	int i;
6925 
6926 	if (ma_is_dense(mte_node_type(mte))) {
6927 		for (i = 0; i < mt_slot_count(mte); i++) {
6928 			if (mas_get_slot(mas, i)) {
6929 				if (gap > max_gap)
6930 					max_gap = gap;
6931 				gap = 0;
6932 				continue;
6933 			}
6934 			gap++;
6935 		}
6936 		goto counted;
6937 	}
6938 
6939 	gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6940 	for (i = 0; i < mt_slot_count(mte); i++) {
6941 		p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6942 
6943 		if (!gaps) {
6944 			if (mas_get_slot(mas, i)) {
6945 				gap = 0;
6946 				goto not_empty;
6947 			}
6948 
6949 			gap += p_end - p_start + 1;
6950 		} else {
6951 			void *entry = mas_get_slot(mas, i);
6952 
6953 			gap = gaps[i];
6954 			if (!entry) {
6955 				if (gap != p_end - p_start + 1) {
6956 					pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6957 						mas_mn(mas), i,
6958 						mas_get_slot(mas, i), gap,
6959 						p_end, p_start);
6960 					mt_dump(mas->tree);
6961 
6962 					MT_BUG_ON(mas->tree,
6963 						gap != p_end - p_start + 1);
6964 				}
6965 			} else {
6966 				if (gap > p_end - p_start + 1) {
6967 					pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6968 					mas_mn(mas), i, gap, p_end, p_start,
6969 					p_end - p_start + 1);
6970 					MT_BUG_ON(mas->tree,
6971 						gap > p_end - p_start + 1);
6972 				}
6973 			}
6974 		}
6975 
6976 		if (gap > max_gap)
6977 			max_gap = gap;
6978 not_empty:
6979 		p_start = p_end + 1;
6980 		if (p_end >= mas->max)
6981 			break;
6982 	}
6983 
6984 counted:
6985 	if (mte_is_root(mte))
6986 		return;
6987 
6988 	p_slot = mte_parent_slot(mas->node);
6989 	p_mn = mte_parent(mte);
6990 	MT_BUG_ON(mas->tree, max_gap > mas->max);
6991 	if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6992 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6993 		mt_dump(mas->tree);
6994 	}
6995 
6996 	MT_BUG_ON(mas->tree,
6997 		  ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6998 }
6999 
7000 static void mas_validate_parent_slot(struct ma_state *mas)
7001 {
7002 	struct maple_node *parent;
7003 	struct maple_enode *node;
7004 	enum maple_type p_type = mas_parent_enum(mas, mas->node);
7005 	unsigned char p_slot = mte_parent_slot(mas->node);
7006 	void __rcu **slots;
7007 	int i;
7008 
7009 	if (mte_is_root(mas->node))
7010 		return;
7011 
7012 	parent = mte_parent(mas->node);
7013 	slots = ma_slots(parent, p_type);
7014 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7015 
7016 	/* Check prev/next parent slot for duplicate node entry */
7017 
7018 	for (i = 0; i < mt_slots[p_type]; i++) {
7019 		node = mas_slot(mas, slots, i);
7020 		if (i == p_slot) {
7021 			if (node != mas->node)
7022 				pr_err("parent %p[%u] does not have %p\n",
7023 					parent, i, mas_mn(mas));
7024 			MT_BUG_ON(mas->tree, node != mas->node);
7025 		} else if (node == mas->node) {
7026 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7027 			       mas_mn(mas), parent, i, p_slot);
7028 			MT_BUG_ON(mas->tree, node == mas->node);
7029 		}
7030 	}
7031 }
7032 
7033 static void mas_validate_child_slot(struct ma_state *mas)
7034 {
7035 	enum maple_type type = mte_node_type(mas->node);
7036 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7037 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7038 	struct maple_enode *child;
7039 	unsigned char i;
7040 
7041 	if (mte_is_leaf(mas->node))
7042 		return;
7043 
7044 	for (i = 0; i < mt_slots[type]; i++) {
7045 		child = mas_slot(mas, slots, i);
7046 		if (!pivots[i] || pivots[i] == mas->max)
7047 			break;
7048 
7049 		if (!child)
7050 			break;
7051 
7052 		if (mte_parent_slot(child) != i) {
7053 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7054 			       mas_mn(mas), i, mte_to_node(child),
7055 			       mte_parent_slot(child));
7056 			MT_BUG_ON(mas->tree, 1);
7057 		}
7058 
7059 		if (mte_parent(child) != mte_to_node(mas->node)) {
7060 			pr_err("child %p has parent %p not %p\n",
7061 			       mte_to_node(child), mte_parent(child),
7062 			       mte_to_node(mas->node));
7063 			MT_BUG_ON(mas->tree, 1);
7064 		}
7065 	}
7066 }
7067 
7068 /*
7069  * Validate all pivots are within mas->min and mas->max.
7070  */
7071 static void mas_validate_limits(struct ma_state *mas)
7072 {
7073 	int i;
7074 	unsigned long prev_piv = 0;
7075 	enum maple_type type = mte_node_type(mas->node);
7076 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7077 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7078 
7079 	/* all limits are fine here. */
7080 	if (mte_is_root(mas->node))
7081 		return;
7082 
7083 	for (i = 0; i < mt_slots[type]; i++) {
7084 		unsigned long piv;
7085 
7086 		piv = mas_safe_pivot(mas, pivots, i, type);
7087 
7088 		if (!piv && (i != 0))
7089 			break;
7090 
7091 		if (!mte_is_leaf(mas->node)) {
7092 			void *entry = mas_slot(mas, slots, i);
7093 
7094 			if (!entry)
7095 				pr_err("%p[%u] cannot be null\n",
7096 				       mas_mn(mas), i);
7097 
7098 			MT_BUG_ON(mas->tree, !entry);
7099 		}
7100 
7101 		if (prev_piv > piv) {
7102 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7103 				mas_mn(mas), i, piv, prev_piv);
7104 			MT_BUG_ON(mas->tree, piv < prev_piv);
7105 		}
7106 
7107 		if (piv < mas->min) {
7108 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7109 				piv, mas->min);
7110 			MT_BUG_ON(mas->tree, piv < mas->min);
7111 		}
7112 		if (piv > mas->max) {
7113 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7114 				piv, mas->max);
7115 			MT_BUG_ON(mas->tree, piv > mas->max);
7116 		}
7117 		prev_piv = piv;
7118 		if (piv == mas->max)
7119 			break;
7120 	}
7121 	for (i += 1; i < mt_slots[type]; i++) {
7122 		void *entry = mas_slot(mas, slots, i);
7123 
7124 		if (entry && (i != mt_slots[type] - 1)) {
7125 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7126 			       i, entry);
7127 			MT_BUG_ON(mas->tree, entry != NULL);
7128 		}
7129 
7130 		if (i < mt_pivots[type]) {
7131 			unsigned long piv = pivots[i];
7132 
7133 			if (!piv)
7134 				continue;
7135 
7136 			pr_err("%p[%u] should not have piv %lu\n",
7137 			       mas_mn(mas), i, piv);
7138 			MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7139 		}
7140 	}
7141 }
7142 
7143 static void mt_validate_nulls(struct maple_tree *mt)
7144 {
7145 	void *entry, *last = (void *)1;
7146 	unsigned char offset = 0;
7147 	void __rcu **slots;
7148 	MA_STATE(mas, mt, 0, 0);
7149 
7150 	mas_start(&mas);
7151 	if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7152 		return;
7153 
7154 	while (!mte_is_leaf(mas.node))
7155 		mas_descend(&mas);
7156 
7157 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7158 	do {
7159 		entry = mas_slot(&mas, slots, offset);
7160 		if (!last && !entry) {
7161 			pr_err("Sequential nulls end at %p[%u]\n",
7162 				mas_mn(&mas), offset);
7163 		}
7164 		MT_BUG_ON(mt, !last && !entry);
7165 		last = entry;
7166 		if (offset == mas_data_end(&mas)) {
7167 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7168 			if (mas_is_none(&mas))
7169 				return;
7170 			offset = 0;
7171 			slots = ma_slots(mte_to_node(mas.node),
7172 					 mte_node_type(mas.node));
7173 		} else {
7174 			offset++;
7175 		}
7176 
7177 	} while (!mas_is_none(&mas));
7178 }
7179 
7180 /*
7181  * validate a maple tree by checking:
7182  * 1. The limits (pivots are within mas->min to mas->max)
7183  * 2. The gap is correctly set in the parents
7184  */
7185 void mt_validate(struct maple_tree *mt)
7186 {
7187 	unsigned char end;
7188 
7189 	MA_STATE(mas, mt, 0, 0);
7190 	rcu_read_lock();
7191 	mas_start(&mas);
7192 	if (!mas_searchable(&mas))
7193 		goto done;
7194 
7195 	mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7196 	while (!mas_is_none(&mas)) {
7197 		MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7198 		if (!mte_is_root(mas.node)) {
7199 			end = mas_data_end(&mas);
7200 			if ((end < mt_min_slot_count(mas.node)) &&
7201 			    (mas.max != ULONG_MAX)) {
7202 				pr_err("Invalid size %u of %p\n", end,
7203 				mas_mn(&mas));
7204 				MT_BUG_ON(mas.tree, 1);
7205 			}
7206 
7207 		}
7208 		mas_validate_parent_slot(&mas);
7209 		mas_validate_child_slot(&mas);
7210 		mas_validate_limits(&mas);
7211 		if (mt_is_alloc(mt))
7212 			mas_validate_gaps(&mas);
7213 		mas_dfs_postorder(&mas, ULONG_MAX);
7214 	}
7215 	mt_validate_nulls(mt);
7216 done:
7217 	rcu_read_unlock();
7218 
7219 }
7220 EXPORT_SYMBOL_GPL(mt_validate);
7221 
7222 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7223