1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 */ 8 9 /* 10 * DOC: Interesting implementation details of the Maple Tree 11 * 12 * Each node type has a number of slots for entries and a number of slots for 13 * pivots. In the case of dense nodes, the pivots are implied by the position 14 * and are simply the slot index + the minimum of the node. 15 * 16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 17 * indicate that the tree is specifying ranges, Pivots may appear in the 18 * subtree with an entry attached to the value where as keys are unique to a 19 * specific position of a B-tree. Pivot values are inclusive of the slot with 20 * the same index. 21 * 22 * 23 * The following illustrates the layout of a range64 nodes slots and pivots. 24 * 25 * 26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 28 * │ │ │ │ │ │ │ │ └─ Implied maximum 29 * │ │ │ │ │ │ │ └─ Pivot 14 30 * │ │ │ │ │ │ └─ Pivot 13 31 * │ │ │ │ │ └─ Pivot 12 32 * │ │ │ │ └─ Pivot 11 33 * │ │ │ └─ Pivot 2 34 * │ │ └─ Pivot 1 35 * │ └─ Pivot 0 36 * └─ Implied minimum 37 * 38 * Slot contents: 39 * Internal (non-leaf) nodes contain pointers to other nodes. 40 * Leaf nodes contain entries. 41 * 42 * The location of interest is often referred to as an offset. All offsets have 43 * a slot, but the last offset has an implied pivot from the node above (or 44 * UINT_MAX for the root node. 45 * 46 * Ranges complicate certain write activities. When modifying any of 47 * the B-tree variants, it is known that one entry will either be added or 48 * deleted. When modifying the Maple Tree, one store operation may overwrite 49 * the entire data set, or one half of the tree, or the middle half of the tree. 50 * 51 */ 52 53 54 #include <linux/maple_tree.h> 55 #include <linux/xarray.h> 56 #include <linux/types.h> 57 #include <linux/export.h> 58 #include <linux/slab.h> 59 #include <linux/limits.h> 60 #include <asm/barrier.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/maple_tree.h> 64 65 #define MA_ROOT_PARENT 1 66 67 /* 68 * Maple state flags 69 * * MA_STATE_BULK - Bulk insert mode 70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 72 */ 73 #define MA_STATE_BULK 1 74 #define MA_STATE_REBALANCE 2 75 #define MA_STATE_PREALLOC 4 76 77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 78 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 79 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 80 static struct kmem_cache *maple_node_cache; 81 82 #ifdef CONFIG_DEBUG_MAPLE_TREE 83 static const unsigned long mt_max[] = { 84 [maple_dense] = MAPLE_NODE_SLOTS, 85 [maple_leaf_64] = ULONG_MAX, 86 [maple_range_64] = ULONG_MAX, 87 [maple_arange_64] = ULONG_MAX, 88 }; 89 #define mt_node_max(x) mt_max[mte_node_type(x)] 90 #endif 91 92 static const unsigned char mt_slots[] = { 93 [maple_dense] = MAPLE_NODE_SLOTS, 94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 95 [maple_range_64] = MAPLE_RANGE64_SLOTS, 96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 97 }; 98 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 99 100 static const unsigned char mt_pivots[] = { 101 [maple_dense] = 0, 102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 105 }; 106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 107 108 static const unsigned char mt_min_slots[] = { 109 [maple_dense] = MAPLE_NODE_SLOTS / 2, 110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 113 }; 114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 115 116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 118 119 struct maple_big_node { 120 struct maple_pnode *parent; 121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 122 union { 123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 124 struct { 125 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 126 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 127 }; 128 }; 129 unsigned char b_end; 130 enum maple_type type; 131 }; 132 133 /* 134 * The maple_subtree_state is used to build a tree to replace a segment of an 135 * existing tree in a more atomic way. Any walkers of the older tree will hit a 136 * dead node and restart on updates. 137 */ 138 struct maple_subtree_state { 139 struct ma_state *orig_l; /* Original left side of subtree */ 140 struct ma_state *orig_r; /* Original right side of subtree */ 141 struct ma_state *l; /* New left side of subtree */ 142 struct ma_state *m; /* New middle of subtree (rare) */ 143 struct ma_state *r; /* New right side of subtree */ 144 struct ma_topiary *free; /* nodes to be freed */ 145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 146 struct maple_big_node *bn; 147 }; 148 149 /* Functions */ 150 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 151 { 152 return kmem_cache_alloc(maple_node_cache, gfp); 153 } 154 155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 156 { 157 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 158 } 159 160 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 161 { 162 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 163 } 164 165 static void mt_free_rcu(struct rcu_head *head) 166 { 167 struct maple_node *node = container_of(head, struct maple_node, rcu); 168 169 kmem_cache_free(maple_node_cache, node); 170 } 171 172 /* 173 * ma_free_rcu() - Use rcu callback to free a maple node 174 * @node: The node to free 175 * 176 * The maple tree uses the parent pointer to indicate this node is no longer in 177 * use and will be freed. 178 */ 179 static void ma_free_rcu(struct maple_node *node) 180 { 181 node->parent = ma_parent_ptr(node); 182 call_rcu(&node->rcu, mt_free_rcu); 183 } 184 185 static void mas_set_height(struct ma_state *mas) 186 { 187 unsigned int new_flags = mas->tree->ma_flags; 188 189 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 190 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX); 191 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 192 mas->tree->ma_flags = new_flags; 193 } 194 195 static unsigned int mas_mt_height(struct ma_state *mas) 196 { 197 return mt_height(mas->tree); 198 } 199 200 static inline enum maple_type mte_node_type(const struct maple_enode *entry) 201 { 202 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 203 MAPLE_NODE_TYPE_MASK; 204 } 205 206 static inline bool ma_is_dense(const enum maple_type type) 207 { 208 return type < maple_leaf_64; 209 } 210 211 static inline bool ma_is_leaf(const enum maple_type type) 212 { 213 return type < maple_range_64; 214 } 215 216 static inline bool mte_is_leaf(const struct maple_enode *entry) 217 { 218 return ma_is_leaf(mte_node_type(entry)); 219 } 220 221 /* 222 * We also reserve values with the bottom two bits set to '10' which are 223 * below 4096 224 */ 225 static inline bool mt_is_reserved(const void *entry) 226 { 227 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 228 xa_is_internal(entry); 229 } 230 231 static inline void mas_set_err(struct ma_state *mas, long err) 232 { 233 mas->node = MA_ERROR(err); 234 } 235 236 static inline bool mas_is_ptr(struct ma_state *mas) 237 { 238 return mas->node == MAS_ROOT; 239 } 240 241 static inline bool mas_is_start(struct ma_state *mas) 242 { 243 return mas->node == MAS_START; 244 } 245 246 bool mas_is_err(struct ma_state *mas) 247 { 248 return xa_is_err(mas->node); 249 } 250 251 static inline bool mas_searchable(struct ma_state *mas) 252 { 253 if (mas_is_none(mas)) 254 return false; 255 256 if (mas_is_ptr(mas)) 257 return false; 258 259 return true; 260 } 261 262 static inline struct maple_node *mte_to_node(const struct maple_enode *entry) 263 { 264 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 265 } 266 267 /* 268 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 269 * @entry: The maple encoded node 270 * 271 * Return: a maple topiary pointer 272 */ 273 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 274 { 275 return (struct maple_topiary *) 276 ((unsigned long)entry & ~MAPLE_NODE_MASK); 277 } 278 279 /* 280 * mas_mn() - Get the maple state node. 281 * @mas: The maple state 282 * 283 * Return: the maple node (not encoded - bare pointer). 284 */ 285 static inline struct maple_node *mas_mn(const struct ma_state *mas) 286 { 287 return mte_to_node(mas->node); 288 } 289 290 /* 291 * mte_set_node_dead() - Set a maple encoded node as dead. 292 * @mn: The maple encoded node. 293 */ 294 static inline void mte_set_node_dead(struct maple_enode *mn) 295 { 296 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 297 smp_wmb(); /* Needed for RCU */ 298 } 299 300 /* Bit 1 indicates the root is a node */ 301 #define MAPLE_ROOT_NODE 0x02 302 /* maple_type stored bit 3-6 */ 303 #define MAPLE_ENODE_TYPE_SHIFT 0x03 304 /* Bit 2 means a NULL somewhere below */ 305 #define MAPLE_ENODE_NULL 0x04 306 307 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 308 enum maple_type type) 309 { 310 return (void *)((unsigned long)node | 311 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 312 } 313 314 static inline void *mte_mk_root(const struct maple_enode *node) 315 { 316 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 317 } 318 319 static inline void *mte_safe_root(const struct maple_enode *node) 320 { 321 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 322 } 323 324 static inline void *mte_set_full(const struct maple_enode *node) 325 { 326 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 327 } 328 329 static inline void *mte_clear_full(const struct maple_enode *node) 330 { 331 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 332 } 333 334 static inline bool mte_has_null(const struct maple_enode *node) 335 { 336 return (unsigned long)node & MAPLE_ENODE_NULL; 337 } 338 339 static inline bool ma_is_root(struct maple_node *node) 340 { 341 return ((unsigned long)node->parent & MA_ROOT_PARENT); 342 } 343 344 static inline bool mte_is_root(const struct maple_enode *node) 345 { 346 return ma_is_root(mte_to_node(node)); 347 } 348 349 static inline bool mas_is_root_limits(const struct ma_state *mas) 350 { 351 return !mas->min && mas->max == ULONG_MAX; 352 } 353 354 static inline bool mt_is_alloc(struct maple_tree *mt) 355 { 356 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 357 } 358 359 /* 360 * The Parent Pointer 361 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 362 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 363 * bit values need an extra bit to store the offset. This extra bit comes from 364 * a reuse of the last bit in the node type. This is possible by using bit 1 to 365 * indicate if bit 2 is part of the type or the slot. 366 * 367 * Note types: 368 * 0x??1 = Root 369 * 0x?00 = 16 bit nodes 370 * 0x010 = 32 bit nodes 371 * 0x110 = 64 bit nodes 372 * 373 * Slot size and alignment 374 * 0b??1 : Root 375 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 376 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 377 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 378 */ 379 380 #define MAPLE_PARENT_ROOT 0x01 381 382 #define MAPLE_PARENT_SLOT_SHIFT 0x03 383 #define MAPLE_PARENT_SLOT_MASK 0xF8 384 385 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 386 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 387 388 #define MAPLE_PARENT_RANGE64 0x06 389 #define MAPLE_PARENT_RANGE32 0x04 390 #define MAPLE_PARENT_NOT_RANGE16 0x02 391 392 /* 393 * mte_parent_shift() - Get the parent shift for the slot storage. 394 * @parent: The parent pointer cast as an unsigned long 395 * Return: The shift into that pointer to the star to of the slot 396 */ 397 static inline unsigned long mte_parent_shift(unsigned long parent) 398 { 399 /* Note bit 1 == 0 means 16B */ 400 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 401 return MAPLE_PARENT_SLOT_SHIFT; 402 403 return MAPLE_PARENT_16B_SLOT_SHIFT; 404 } 405 406 /* 407 * mte_parent_slot_mask() - Get the slot mask for the parent. 408 * @parent: The parent pointer cast as an unsigned long. 409 * Return: The slot mask for that parent. 410 */ 411 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 412 { 413 /* Note bit 1 == 0 means 16B */ 414 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 415 return MAPLE_PARENT_SLOT_MASK; 416 417 return MAPLE_PARENT_16B_SLOT_MASK; 418 } 419 420 /* 421 * mas_parent_enum() - Return the maple_type of the parent from the stored 422 * parent type. 423 * @mas: The maple state 424 * @node: The maple_enode to extract the parent's enum 425 * Return: The node->parent maple_type 426 */ 427 static inline 428 enum maple_type mte_parent_enum(struct maple_enode *p_enode, 429 struct maple_tree *mt) 430 { 431 unsigned long p_type; 432 433 p_type = (unsigned long)p_enode; 434 if (p_type & MAPLE_PARENT_ROOT) 435 return 0; /* Validated in the caller. */ 436 437 p_type &= MAPLE_NODE_MASK; 438 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type)); 439 440 switch (p_type) { 441 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 442 if (mt_is_alloc(mt)) 443 return maple_arange_64; 444 return maple_range_64; 445 } 446 447 return 0; 448 } 449 450 static inline 451 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode) 452 { 453 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree); 454 } 455 456 /* 457 * mte_set_parent() - Set the parent node and encode the slot 458 * @enode: The encoded maple node. 459 * @parent: The encoded maple node that is the parent of @enode. 460 * @slot: The slot that @enode resides in @parent. 461 * 462 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 463 * parent type. 464 */ 465 static inline 466 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent, 467 unsigned char slot) 468 { 469 unsigned long val = (unsigned long)parent; 470 unsigned long shift; 471 unsigned long type; 472 enum maple_type p_type = mte_node_type(parent); 473 474 BUG_ON(p_type == maple_dense); 475 BUG_ON(p_type == maple_leaf_64); 476 477 switch (p_type) { 478 case maple_range_64: 479 case maple_arange_64: 480 shift = MAPLE_PARENT_SLOT_SHIFT; 481 type = MAPLE_PARENT_RANGE64; 482 break; 483 default: 484 case maple_dense: 485 case maple_leaf_64: 486 shift = type = 0; 487 break; 488 } 489 490 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 491 val |= (slot << shift) | type; 492 mte_to_node(enode)->parent = ma_parent_ptr(val); 493 } 494 495 /* 496 * mte_parent_slot() - get the parent slot of @enode. 497 * @enode: The encoded maple node. 498 * 499 * Return: The slot in the parent node where @enode resides. 500 */ 501 static inline unsigned int mte_parent_slot(const struct maple_enode *enode) 502 { 503 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 504 505 if (val & MA_ROOT_PARENT) 506 return 0; 507 508 /* 509 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 510 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 511 */ 512 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 513 } 514 515 /* 516 * mte_parent() - Get the parent of @node. 517 * @node: The encoded maple node. 518 * 519 * Return: The parent maple node. 520 */ 521 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 522 { 523 return (void *)((unsigned long) 524 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 525 } 526 527 /* 528 * ma_dead_node() - check if the @enode is dead. 529 * @enode: The encoded maple node 530 * 531 * Return: true if dead, false otherwise. 532 */ 533 static inline bool ma_dead_node(const struct maple_node *node) 534 { 535 struct maple_node *parent = (void *)((unsigned long) 536 node->parent & ~MAPLE_NODE_MASK); 537 538 return (parent == node); 539 } 540 /* 541 * mte_dead_node() - check if the @enode is dead. 542 * @enode: The encoded maple node 543 * 544 * Return: true if dead, false otherwise. 545 */ 546 static inline bool mte_dead_node(const struct maple_enode *enode) 547 { 548 struct maple_node *parent, *node; 549 550 node = mte_to_node(enode); 551 parent = mte_parent(enode); 552 return (parent == node); 553 } 554 555 /* 556 * mas_allocated() - Get the number of nodes allocated in a maple state. 557 * @mas: The maple state 558 * 559 * The ma_state alloc member is overloaded to hold a pointer to the first 560 * allocated node or to the number of requested nodes to allocate. If bit 0 is 561 * set, then the alloc contains the number of requested nodes. If there is an 562 * allocated node, then the total allocated nodes is in that node. 563 * 564 * Return: The total number of nodes allocated 565 */ 566 static inline unsigned long mas_allocated(const struct ma_state *mas) 567 { 568 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 569 return 0; 570 571 return mas->alloc->total; 572 } 573 574 /* 575 * mas_set_alloc_req() - Set the requested number of allocations. 576 * @mas: the maple state 577 * @count: the number of allocations. 578 * 579 * The requested number of allocations is either in the first allocated node, 580 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 581 * no allocated node. Set the request either in the node or do the necessary 582 * encoding to store in @mas->alloc directly. 583 */ 584 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 585 { 586 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 587 if (!count) 588 mas->alloc = NULL; 589 else 590 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 591 return; 592 } 593 594 mas->alloc->request_count = count; 595 } 596 597 /* 598 * mas_alloc_req() - get the requested number of allocations. 599 * @mas: The maple state 600 * 601 * The alloc count is either stored directly in @mas, or in 602 * @mas->alloc->request_count if there is at least one node allocated. Decode 603 * the request count if it's stored directly in @mas->alloc. 604 * 605 * Return: The allocation request count. 606 */ 607 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 608 { 609 if ((unsigned long)mas->alloc & 0x1) 610 return (unsigned long)(mas->alloc) >> 1; 611 else if (mas->alloc) 612 return mas->alloc->request_count; 613 return 0; 614 } 615 616 /* 617 * ma_pivots() - Get a pointer to the maple node pivots. 618 * @node - the maple node 619 * @type - the node type 620 * 621 * Return: A pointer to the maple node pivots 622 */ 623 static inline unsigned long *ma_pivots(struct maple_node *node, 624 enum maple_type type) 625 { 626 switch (type) { 627 case maple_arange_64: 628 return node->ma64.pivot; 629 case maple_range_64: 630 case maple_leaf_64: 631 return node->mr64.pivot; 632 case maple_dense: 633 return NULL; 634 } 635 return NULL; 636 } 637 638 /* 639 * ma_gaps() - Get a pointer to the maple node gaps. 640 * @node - the maple node 641 * @type - the node type 642 * 643 * Return: A pointer to the maple node gaps 644 */ 645 static inline unsigned long *ma_gaps(struct maple_node *node, 646 enum maple_type type) 647 { 648 switch (type) { 649 case maple_arange_64: 650 return node->ma64.gap; 651 case maple_range_64: 652 case maple_leaf_64: 653 case maple_dense: 654 return NULL; 655 } 656 return NULL; 657 } 658 659 /* 660 * mte_pivot() - Get the pivot at @piv of the maple encoded node. 661 * @mn: The maple encoded node. 662 * @piv: The pivot. 663 * 664 * Return: the pivot at @piv of @mn. 665 */ 666 static inline unsigned long mte_pivot(const struct maple_enode *mn, 667 unsigned char piv) 668 { 669 struct maple_node *node = mte_to_node(mn); 670 671 if (piv >= mt_pivots[piv]) { 672 WARN_ON(1); 673 return 0; 674 } 675 switch (mte_node_type(mn)) { 676 case maple_arange_64: 677 return node->ma64.pivot[piv]; 678 case maple_range_64: 679 case maple_leaf_64: 680 return node->mr64.pivot[piv]; 681 case maple_dense: 682 return 0; 683 } 684 return 0; 685 } 686 687 /* 688 * mas_safe_pivot() - get the pivot at @piv or mas->max. 689 * @mas: The maple state 690 * @pivots: The pointer to the maple node pivots 691 * @piv: The pivot to fetch 692 * @type: The maple node type 693 * 694 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 695 * otherwise. 696 */ 697 static inline unsigned long 698 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 699 unsigned char piv, enum maple_type type) 700 { 701 if (piv >= mt_pivots[type]) 702 return mas->max; 703 704 return pivots[piv]; 705 } 706 707 /* 708 * mas_safe_min() - Return the minimum for a given offset. 709 * @mas: The maple state 710 * @pivots: The pointer to the maple node pivots 711 * @offset: The offset into the pivot array 712 * 713 * Return: The minimum range value that is contained in @offset. 714 */ 715 static inline unsigned long 716 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 717 { 718 if (likely(offset)) 719 return pivots[offset - 1] + 1; 720 721 return mas->min; 722 } 723 724 /* 725 * mas_logical_pivot() - Get the logical pivot of a given offset. 726 * @mas: The maple state 727 * @pivots: The pointer to the maple node pivots 728 * @offset: The offset into the pivot array 729 * @type: The maple node type 730 * 731 * When there is no value at a pivot (beyond the end of the data), then the 732 * pivot is actually @mas->max. 733 * 734 * Return: the logical pivot of a given @offset. 735 */ 736 static inline unsigned long 737 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots, 738 unsigned char offset, enum maple_type type) 739 { 740 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type); 741 742 if (likely(lpiv)) 743 return lpiv; 744 745 if (likely(offset)) 746 return mas->max; 747 748 return lpiv; 749 } 750 751 /* 752 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 753 * @mn: The encoded maple node 754 * @piv: The pivot offset 755 * @val: The value of the pivot 756 */ 757 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 758 unsigned long val) 759 { 760 struct maple_node *node = mte_to_node(mn); 761 enum maple_type type = mte_node_type(mn); 762 763 BUG_ON(piv >= mt_pivots[type]); 764 switch (type) { 765 default: 766 case maple_range_64: 767 case maple_leaf_64: 768 node->mr64.pivot[piv] = val; 769 break; 770 case maple_arange_64: 771 node->ma64.pivot[piv] = val; 772 break; 773 case maple_dense: 774 break; 775 } 776 777 } 778 779 /* 780 * ma_slots() - Get a pointer to the maple node slots. 781 * @mn: The maple node 782 * @mt: The maple node type 783 * 784 * Return: A pointer to the maple node slots 785 */ 786 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 787 { 788 switch (mt) { 789 default: 790 case maple_arange_64: 791 return mn->ma64.slot; 792 case maple_range_64: 793 case maple_leaf_64: 794 return mn->mr64.slot; 795 case maple_dense: 796 return mn->slot; 797 } 798 } 799 800 static inline bool mt_locked(const struct maple_tree *mt) 801 { 802 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 803 lockdep_is_held(&mt->ma_lock); 804 } 805 806 static inline void *mt_slot(const struct maple_tree *mt, 807 void __rcu **slots, unsigned char offset) 808 { 809 return rcu_dereference_check(slots[offset], mt_locked(mt)); 810 } 811 812 /* 813 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 814 * @mas: The maple state 815 * @slots: The pointer to the slots 816 * @offset: The offset into the slots array to fetch 817 * 818 * Return: The entry stored in @slots at the @offset. 819 */ 820 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots, 821 unsigned char offset) 822 { 823 return rcu_dereference_protected(slots[offset], mt_locked(mas->tree)); 824 } 825 826 /* 827 * mas_slot() - Get the slot value when not holding the maple tree lock. 828 * @mas: The maple state 829 * @slots: The pointer to the slots 830 * @offset: The offset into the slots array to fetch 831 * 832 * Return: The entry stored in @slots at the @offset 833 */ 834 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 835 unsigned char offset) 836 { 837 return mt_slot(mas->tree, slots, offset); 838 } 839 840 /* 841 * mas_root() - Get the maple tree root. 842 * @mas: The maple state. 843 * 844 * Return: The pointer to the root of the tree 845 */ 846 static inline void *mas_root(struct ma_state *mas) 847 { 848 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 849 } 850 851 static inline void *mt_root_locked(struct maple_tree *mt) 852 { 853 return rcu_dereference_protected(mt->ma_root, mt_locked(mt)); 854 } 855 856 /* 857 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 858 * @mas: The maple state. 859 * 860 * Return: The pointer to the root of the tree 861 */ 862 static inline void *mas_root_locked(struct ma_state *mas) 863 { 864 return mt_root_locked(mas->tree); 865 } 866 867 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 868 enum maple_type mt) 869 { 870 switch (mt) { 871 case maple_arange_64: 872 return &mn->ma64.meta; 873 default: 874 return &mn->mr64.meta; 875 } 876 } 877 878 /* 879 * ma_set_meta() - Set the metadata information of a node. 880 * @mn: The maple node 881 * @mt: The maple node type 882 * @offset: The offset of the highest sub-gap in this node. 883 * @end: The end of the data in this node. 884 */ 885 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 886 unsigned char offset, unsigned char end) 887 { 888 struct maple_metadata *meta = ma_meta(mn, mt); 889 890 meta->gap = offset; 891 meta->end = end; 892 } 893 894 /* 895 * ma_meta_end() - Get the data end of a node from the metadata 896 * @mn: The maple node 897 * @mt: The maple node type 898 */ 899 static inline unsigned char ma_meta_end(struct maple_node *mn, 900 enum maple_type mt) 901 { 902 struct maple_metadata *meta = ma_meta(mn, mt); 903 904 return meta->end; 905 } 906 907 /* 908 * ma_meta_gap() - Get the largest gap location of a node from the metadata 909 * @mn: The maple node 910 * @mt: The maple node type 911 */ 912 static inline unsigned char ma_meta_gap(struct maple_node *mn, 913 enum maple_type mt) 914 { 915 BUG_ON(mt != maple_arange_64); 916 917 return mn->ma64.meta.gap; 918 } 919 920 /* 921 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 922 * @mn: The maple node 923 * @mn: The maple node type 924 * @offset: The location of the largest gap. 925 */ 926 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 927 unsigned char offset) 928 { 929 930 struct maple_metadata *meta = ma_meta(mn, mt); 931 932 meta->gap = offset; 933 } 934 935 /* 936 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 937 * @mat - the ma_topiary, a linked list of dead nodes. 938 * @dead_enode - the node to be marked as dead and added to the tail of the list 939 * 940 * Add the @dead_enode to the linked list in @mat. 941 */ 942 static inline void mat_add(struct ma_topiary *mat, 943 struct maple_enode *dead_enode) 944 { 945 mte_set_node_dead(dead_enode); 946 mte_to_mat(dead_enode)->next = NULL; 947 if (!mat->tail) { 948 mat->tail = mat->head = dead_enode; 949 return; 950 } 951 952 mte_to_mat(mat->tail)->next = dead_enode; 953 mat->tail = dead_enode; 954 } 955 956 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 957 static inline void mas_free(struct ma_state *mas, struct maple_enode *used); 958 959 /* 960 * mas_mat_free() - Free all nodes in a dead list. 961 * @mas - the maple state 962 * @mat - the ma_topiary linked list of dead nodes to free. 963 * 964 * Free walk a dead list. 965 */ 966 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat) 967 { 968 struct maple_enode *next; 969 970 while (mat->head) { 971 next = mte_to_mat(mat->head)->next; 972 mas_free(mas, mat->head); 973 mat->head = next; 974 } 975 } 976 977 /* 978 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 979 * @mas - the maple state 980 * @mat - the ma_topiary linked list of dead nodes to free. 981 * 982 * Destroy walk a dead list. 983 */ 984 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 985 { 986 struct maple_enode *next; 987 988 while (mat->head) { 989 next = mte_to_mat(mat->head)->next; 990 mte_destroy_walk(mat->head, mat->mtree); 991 mat->head = next; 992 } 993 } 994 /* 995 * mas_descend() - Descend into the slot stored in the ma_state. 996 * @mas - the maple state. 997 * 998 * Note: Not RCU safe, only use in write side or debug code. 999 */ 1000 static inline void mas_descend(struct ma_state *mas) 1001 { 1002 enum maple_type type; 1003 unsigned long *pivots; 1004 struct maple_node *node; 1005 void __rcu **slots; 1006 1007 node = mas_mn(mas); 1008 type = mte_node_type(mas->node); 1009 pivots = ma_pivots(node, type); 1010 slots = ma_slots(node, type); 1011 1012 if (mas->offset) 1013 mas->min = pivots[mas->offset - 1] + 1; 1014 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1015 mas->node = mas_slot(mas, slots, mas->offset); 1016 } 1017 1018 /* 1019 * mte_set_gap() - Set a maple node gap. 1020 * @mn: The encoded maple node 1021 * @gap: The offset of the gap to set 1022 * @val: The gap value 1023 */ 1024 static inline void mte_set_gap(const struct maple_enode *mn, 1025 unsigned char gap, unsigned long val) 1026 { 1027 switch (mte_node_type(mn)) { 1028 default: 1029 break; 1030 case maple_arange_64: 1031 mte_to_node(mn)->ma64.gap[gap] = val; 1032 break; 1033 } 1034 } 1035 1036 /* 1037 * mas_ascend() - Walk up a level of the tree. 1038 * @mas: The maple state 1039 * 1040 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1041 * may cause several levels of walking up to find the correct min and max. 1042 * May find a dead node which will cause a premature return. 1043 * Return: 1 on dead node, 0 otherwise 1044 */ 1045 static int mas_ascend(struct ma_state *mas) 1046 { 1047 struct maple_enode *p_enode; /* parent enode. */ 1048 struct maple_enode *a_enode; /* ancestor enode. */ 1049 struct maple_node *a_node; /* ancestor node. */ 1050 struct maple_node *p_node; /* parent node. */ 1051 unsigned char a_slot; 1052 enum maple_type a_type; 1053 unsigned long min, max; 1054 unsigned long *pivots; 1055 unsigned char offset; 1056 bool set_max = false, set_min = false; 1057 1058 a_node = mas_mn(mas); 1059 if (ma_is_root(a_node)) { 1060 mas->offset = 0; 1061 return 0; 1062 } 1063 1064 p_node = mte_parent(mas->node); 1065 if (unlikely(a_node == p_node)) 1066 return 1; 1067 a_type = mas_parent_enum(mas, mas->node); 1068 offset = mte_parent_slot(mas->node); 1069 a_enode = mt_mk_node(p_node, a_type); 1070 1071 /* Check to make sure all parent information is still accurate */ 1072 if (p_node != mte_parent(mas->node)) 1073 return 1; 1074 1075 mas->node = a_enode; 1076 mas->offset = offset; 1077 1078 if (mte_is_root(a_enode)) { 1079 mas->max = ULONG_MAX; 1080 mas->min = 0; 1081 return 0; 1082 } 1083 1084 min = 0; 1085 max = ULONG_MAX; 1086 do { 1087 p_enode = a_enode; 1088 a_type = mas_parent_enum(mas, p_enode); 1089 a_node = mte_parent(p_enode); 1090 a_slot = mte_parent_slot(p_enode); 1091 pivots = ma_pivots(a_node, a_type); 1092 a_enode = mt_mk_node(a_node, a_type); 1093 1094 if (!set_min && a_slot) { 1095 set_min = true; 1096 min = pivots[a_slot - 1] + 1; 1097 } 1098 1099 if (!set_max && a_slot < mt_pivots[a_type]) { 1100 set_max = true; 1101 max = pivots[a_slot]; 1102 } 1103 1104 if (unlikely(ma_dead_node(a_node))) 1105 return 1; 1106 1107 if (unlikely(ma_is_root(a_node))) 1108 break; 1109 1110 } while (!set_min || !set_max); 1111 1112 mas->max = max; 1113 mas->min = min; 1114 return 0; 1115 } 1116 1117 /* 1118 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1119 * @mas: The maple state 1120 * 1121 * Return: A pointer to a maple node. 1122 */ 1123 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1124 { 1125 struct maple_alloc *ret, *node = mas->alloc; 1126 unsigned long total = mas_allocated(mas); 1127 unsigned int req = mas_alloc_req(mas); 1128 1129 /* nothing or a request pending. */ 1130 if (WARN_ON(!total)) 1131 return NULL; 1132 1133 if (total == 1) { 1134 /* single allocation in this ma_state */ 1135 mas->alloc = NULL; 1136 ret = node; 1137 goto single_node; 1138 } 1139 1140 if (node->node_count == 1) { 1141 /* Single allocation in this node. */ 1142 mas->alloc = node->slot[0]; 1143 mas->alloc->total = node->total - 1; 1144 ret = node; 1145 goto new_head; 1146 } 1147 node->total--; 1148 ret = node->slot[--node->node_count]; 1149 node->slot[node->node_count] = NULL; 1150 1151 single_node: 1152 new_head: 1153 if (req) { 1154 req++; 1155 mas_set_alloc_req(mas, req); 1156 } 1157 1158 memset(ret, 0, sizeof(*ret)); 1159 return (struct maple_node *)ret; 1160 } 1161 1162 /* 1163 * mas_push_node() - Push a node back on the maple state allocation. 1164 * @mas: The maple state 1165 * @used: The used maple node 1166 * 1167 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1168 * requested node count as necessary. 1169 */ 1170 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1171 { 1172 struct maple_alloc *reuse = (struct maple_alloc *)used; 1173 struct maple_alloc *head = mas->alloc; 1174 unsigned long count; 1175 unsigned int requested = mas_alloc_req(mas); 1176 1177 count = mas_allocated(mas); 1178 1179 reuse->request_count = 0; 1180 reuse->node_count = 0; 1181 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1182 head->slot[head->node_count++] = reuse; 1183 head->total++; 1184 goto done; 1185 } 1186 1187 reuse->total = 1; 1188 if ((head) && !((unsigned long)head & 0x1)) { 1189 reuse->slot[0] = head; 1190 reuse->node_count = 1; 1191 reuse->total += head->total; 1192 } 1193 1194 mas->alloc = reuse; 1195 done: 1196 if (requested > 1) 1197 mas_set_alloc_req(mas, requested - 1); 1198 } 1199 1200 /* 1201 * mas_alloc_nodes() - Allocate nodes into a maple state 1202 * @mas: The maple state 1203 * @gfp: The GFP Flags 1204 */ 1205 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1206 { 1207 struct maple_alloc *node; 1208 unsigned long allocated = mas_allocated(mas); 1209 unsigned int requested = mas_alloc_req(mas); 1210 unsigned int count; 1211 void **slots = NULL; 1212 unsigned int max_req = 0; 1213 1214 if (!requested) 1215 return; 1216 1217 mas_set_alloc_req(mas, 0); 1218 if (mas->mas_flags & MA_STATE_PREALLOC) { 1219 if (allocated) 1220 return; 1221 WARN_ON(!allocated); 1222 } 1223 1224 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1225 node = (struct maple_alloc *)mt_alloc_one(gfp); 1226 if (!node) 1227 goto nomem_one; 1228 1229 if (allocated) { 1230 node->slot[0] = mas->alloc; 1231 node->node_count = 1; 1232 } else { 1233 node->node_count = 0; 1234 } 1235 1236 mas->alloc = node; 1237 node->total = ++allocated; 1238 requested--; 1239 } 1240 1241 node = mas->alloc; 1242 node->request_count = 0; 1243 while (requested) { 1244 max_req = MAPLE_ALLOC_SLOTS; 1245 if (node->node_count) { 1246 unsigned int offset = node->node_count; 1247 1248 slots = (void **)&node->slot[offset]; 1249 max_req -= offset; 1250 } else { 1251 slots = (void **)&node->slot; 1252 } 1253 1254 max_req = min(requested, max_req); 1255 count = mt_alloc_bulk(gfp, max_req, slots); 1256 if (!count) 1257 goto nomem_bulk; 1258 1259 node->node_count += count; 1260 allocated += count; 1261 node = node->slot[0]; 1262 node->node_count = 0; 1263 node->request_count = 0; 1264 requested -= count; 1265 } 1266 mas->alloc->total = allocated; 1267 return; 1268 1269 nomem_bulk: 1270 /* Clean up potential freed allocations on bulk failure */ 1271 memset(slots, 0, max_req * sizeof(unsigned long)); 1272 nomem_one: 1273 mas_set_alloc_req(mas, requested); 1274 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1275 mas->alloc->total = allocated; 1276 mas_set_err(mas, -ENOMEM); 1277 } 1278 1279 /* 1280 * mas_free() - Free an encoded maple node 1281 * @mas: The maple state 1282 * @used: The encoded maple node to free. 1283 * 1284 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1285 * otherwise. 1286 */ 1287 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1288 { 1289 struct maple_node *tmp = mte_to_node(used); 1290 1291 if (mt_in_rcu(mas->tree)) 1292 ma_free_rcu(tmp); 1293 else 1294 mas_push_node(mas, tmp); 1295 } 1296 1297 /* 1298 * mas_node_count() - Check if enough nodes are allocated and request more if 1299 * there is not enough nodes. 1300 * @mas: The maple state 1301 * @count: The number of nodes needed 1302 * @gfp: the gfp flags 1303 */ 1304 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1305 { 1306 unsigned long allocated = mas_allocated(mas); 1307 1308 if (allocated < count) { 1309 mas_set_alloc_req(mas, count - allocated); 1310 mas_alloc_nodes(mas, gfp); 1311 } 1312 } 1313 1314 /* 1315 * mas_node_count() - Check if enough nodes are allocated and request more if 1316 * there is not enough nodes. 1317 * @mas: The maple state 1318 * @count: The number of nodes needed 1319 * 1320 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1321 */ 1322 static void mas_node_count(struct ma_state *mas, int count) 1323 { 1324 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1325 } 1326 1327 /* 1328 * mas_start() - Sets up maple state for operations. 1329 * @mas: The maple state. 1330 * 1331 * If mas->node == MAS_START, then set the min, max and depth to 1332 * defaults. 1333 * 1334 * Return: 1335 * - If mas->node is an error or not MAS_START, return NULL. 1336 * - If it's an empty tree: NULL & mas->node == MAS_NONE 1337 * - If it's a single entry: The entry & mas->node == MAS_ROOT 1338 * - If it's a tree: NULL & mas->node == safe root node. 1339 */ 1340 static inline struct maple_enode *mas_start(struct ma_state *mas) 1341 { 1342 if (likely(mas_is_start(mas))) { 1343 struct maple_enode *root; 1344 1345 mas->min = 0; 1346 mas->max = ULONG_MAX; 1347 mas->depth = 0; 1348 1349 root = mas_root(mas); 1350 /* Tree with nodes */ 1351 if (likely(xa_is_node(root))) { 1352 mas->depth = 1; 1353 mas->node = mte_safe_root(root); 1354 mas->offset = 0; 1355 return NULL; 1356 } 1357 1358 /* empty tree */ 1359 if (unlikely(!root)) { 1360 mas->node = MAS_NONE; 1361 mas->offset = MAPLE_NODE_SLOTS; 1362 return NULL; 1363 } 1364 1365 /* Single entry tree */ 1366 mas->node = MAS_ROOT; 1367 mas->offset = MAPLE_NODE_SLOTS; 1368 1369 /* Single entry tree. */ 1370 if (mas->index > 0) 1371 return NULL; 1372 1373 return root; 1374 } 1375 1376 return NULL; 1377 } 1378 1379 /* 1380 * ma_data_end() - Find the end of the data in a node. 1381 * @node: The maple node 1382 * @type: The maple node type 1383 * @pivots: The array of pivots in the node 1384 * @max: The maximum value in the node 1385 * 1386 * Uses metadata to find the end of the data when possible. 1387 * Return: The zero indexed last slot with data (may be null). 1388 */ 1389 static inline unsigned char ma_data_end(struct maple_node *node, 1390 enum maple_type type, 1391 unsigned long *pivots, 1392 unsigned long max) 1393 { 1394 unsigned char offset; 1395 1396 if (type == maple_arange_64) 1397 return ma_meta_end(node, type); 1398 1399 offset = mt_pivots[type] - 1; 1400 if (likely(!pivots[offset])) 1401 return ma_meta_end(node, type); 1402 1403 if (likely(pivots[offset] == max)) 1404 return offset; 1405 1406 return mt_pivots[type]; 1407 } 1408 1409 /* 1410 * mas_data_end() - Find the end of the data (slot). 1411 * @mas: the maple state 1412 * 1413 * This method is optimized to check the metadata of a node if the node type 1414 * supports data end metadata. 1415 * 1416 * Return: The zero indexed last slot with data (may be null). 1417 */ 1418 static inline unsigned char mas_data_end(struct ma_state *mas) 1419 { 1420 enum maple_type type; 1421 struct maple_node *node; 1422 unsigned char offset; 1423 unsigned long *pivots; 1424 1425 type = mte_node_type(mas->node); 1426 node = mas_mn(mas); 1427 if (type == maple_arange_64) 1428 return ma_meta_end(node, type); 1429 1430 pivots = ma_pivots(node, type); 1431 offset = mt_pivots[type] - 1; 1432 if (likely(!pivots[offset])) 1433 return ma_meta_end(node, type); 1434 1435 if (likely(pivots[offset] == mas->max)) 1436 return offset; 1437 1438 return mt_pivots[type]; 1439 } 1440 1441 /* 1442 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1443 * @mas - the maple state 1444 * 1445 * Return: The maximum gap in the leaf. 1446 */ 1447 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1448 { 1449 enum maple_type mt; 1450 unsigned long pstart, gap, max_gap; 1451 struct maple_node *mn; 1452 unsigned long *pivots; 1453 void __rcu **slots; 1454 unsigned char i; 1455 unsigned char max_piv; 1456 1457 mt = mte_node_type(mas->node); 1458 mn = mas_mn(mas); 1459 slots = ma_slots(mn, mt); 1460 max_gap = 0; 1461 if (unlikely(ma_is_dense(mt))) { 1462 gap = 0; 1463 for (i = 0; i < mt_slots[mt]; i++) { 1464 if (slots[i]) { 1465 if (gap > max_gap) 1466 max_gap = gap; 1467 gap = 0; 1468 } else { 1469 gap++; 1470 } 1471 } 1472 if (gap > max_gap) 1473 max_gap = gap; 1474 return max_gap; 1475 } 1476 1477 /* 1478 * Check the first implied pivot optimizes the loop below and slot 1 may 1479 * be skipped if there is a gap in slot 0. 1480 */ 1481 pivots = ma_pivots(mn, mt); 1482 if (likely(!slots[0])) { 1483 max_gap = pivots[0] - mas->min + 1; 1484 i = 2; 1485 } else { 1486 i = 1; 1487 } 1488 1489 /* reduce max_piv as the special case is checked before the loop */ 1490 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1491 /* 1492 * Check end implied pivot which can only be a gap on the right most 1493 * node. 1494 */ 1495 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1496 gap = ULONG_MAX - pivots[max_piv]; 1497 if (gap > max_gap) 1498 max_gap = gap; 1499 } 1500 1501 for (; i <= max_piv; i++) { 1502 /* data == no gap. */ 1503 if (likely(slots[i])) 1504 continue; 1505 1506 pstart = pivots[i - 1]; 1507 gap = pivots[i] - pstart; 1508 if (gap > max_gap) 1509 max_gap = gap; 1510 1511 /* There cannot be two gaps in a row. */ 1512 i++; 1513 } 1514 return max_gap; 1515 } 1516 1517 /* 1518 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1519 * @node: The maple node 1520 * @gaps: The pointer to the gaps 1521 * @mt: The maple node type 1522 * @*off: Pointer to store the offset location of the gap. 1523 * 1524 * Uses the metadata data end to scan backwards across set gaps. 1525 * 1526 * Return: The maximum gap value 1527 */ 1528 static inline unsigned long 1529 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1530 unsigned char *off) 1531 { 1532 unsigned char offset, i; 1533 unsigned long max_gap = 0; 1534 1535 i = offset = ma_meta_end(node, mt); 1536 do { 1537 if (gaps[i] > max_gap) { 1538 max_gap = gaps[i]; 1539 offset = i; 1540 } 1541 } while (i--); 1542 1543 *off = offset; 1544 return max_gap; 1545 } 1546 1547 /* 1548 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1549 * @mas: The maple state. 1550 * 1551 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap. 1552 * 1553 * Return: The gap value. 1554 */ 1555 static inline unsigned long mas_max_gap(struct ma_state *mas) 1556 { 1557 unsigned long *gaps; 1558 unsigned char offset; 1559 enum maple_type mt; 1560 struct maple_node *node; 1561 1562 mt = mte_node_type(mas->node); 1563 if (ma_is_leaf(mt)) 1564 return mas_leaf_max_gap(mas); 1565 1566 node = mas_mn(mas); 1567 offset = ma_meta_gap(node, mt); 1568 if (offset == MAPLE_ARANGE64_META_MAX) 1569 return 0; 1570 1571 gaps = ma_gaps(node, mt); 1572 return gaps[offset]; 1573 } 1574 1575 /* 1576 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1577 * @mas: The maple state 1578 * @offset: The gap offset in the parent to set 1579 * @new: The new gap value. 1580 * 1581 * Set the parent gap then continue to set the gap upwards, using the metadata 1582 * of the parent to see if it is necessary to check the node above. 1583 */ 1584 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1585 unsigned long new) 1586 { 1587 unsigned long meta_gap = 0; 1588 struct maple_node *pnode; 1589 struct maple_enode *penode; 1590 unsigned long *pgaps; 1591 unsigned char meta_offset; 1592 enum maple_type pmt; 1593 1594 pnode = mte_parent(mas->node); 1595 pmt = mas_parent_enum(mas, mas->node); 1596 penode = mt_mk_node(pnode, pmt); 1597 pgaps = ma_gaps(pnode, pmt); 1598 1599 ascend: 1600 meta_offset = ma_meta_gap(pnode, pmt); 1601 if (meta_offset == MAPLE_ARANGE64_META_MAX) 1602 meta_gap = 0; 1603 else 1604 meta_gap = pgaps[meta_offset]; 1605 1606 pgaps[offset] = new; 1607 1608 if (meta_gap == new) 1609 return; 1610 1611 if (offset != meta_offset) { 1612 if (meta_gap > new) 1613 return; 1614 1615 ma_set_meta_gap(pnode, pmt, offset); 1616 } else if (new < meta_gap) { 1617 meta_offset = 15; 1618 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1619 ma_set_meta_gap(pnode, pmt, meta_offset); 1620 } 1621 1622 if (ma_is_root(pnode)) 1623 return; 1624 1625 /* Go to the parent node. */ 1626 pnode = mte_parent(penode); 1627 pmt = mas_parent_enum(mas, penode); 1628 pgaps = ma_gaps(pnode, pmt); 1629 offset = mte_parent_slot(penode); 1630 penode = mt_mk_node(pnode, pmt); 1631 goto ascend; 1632 } 1633 1634 /* 1635 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1636 * @mas - the maple state. 1637 */ 1638 static inline void mas_update_gap(struct ma_state *mas) 1639 { 1640 unsigned char pslot; 1641 unsigned long p_gap; 1642 unsigned long max_gap; 1643 1644 if (!mt_is_alloc(mas->tree)) 1645 return; 1646 1647 if (mte_is_root(mas->node)) 1648 return; 1649 1650 max_gap = mas_max_gap(mas); 1651 1652 pslot = mte_parent_slot(mas->node); 1653 p_gap = ma_gaps(mte_parent(mas->node), 1654 mas_parent_enum(mas, mas->node))[pslot]; 1655 1656 if (p_gap != max_gap) 1657 mas_parent_gap(mas, pslot, max_gap); 1658 } 1659 1660 /* 1661 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1662 * @parent with the slot encoded. 1663 * @mas - the maple state (for the tree) 1664 * @parent - the maple encoded node containing the children. 1665 */ 1666 static inline void mas_adopt_children(struct ma_state *mas, 1667 struct maple_enode *parent) 1668 { 1669 enum maple_type type = mte_node_type(parent); 1670 struct maple_node *node = mas_mn(mas); 1671 void __rcu **slots = ma_slots(node, type); 1672 unsigned long *pivots = ma_pivots(node, type); 1673 struct maple_enode *child; 1674 unsigned char offset; 1675 1676 offset = ma_data_end(node, type, pivots, mas->max); 1677 do { 1678 child = mas_slot_locked(mas, slots, offset); 1679 mte_set_parent(child, parent, offset); 1680 } while (offset--); 1681 } 1682 1683 /* 1684 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the 1685 * parent encoding to locate the maple node in the tree. 1686 * @mas - the ma_state to use for operations. 1687 * @advanced - boolean to adopt the child nodes and free the old node (false) or 1688 * leave the node (true) and handle the adoption and free elsewhere. 1689 */ 1690 static inline void mas_replace(struct ma_state *mas, bool advanced) 1691 __must_hold(mas->tree->lock) 1692 { 1693 struct maple_node *mn = mas_mn(mas); 1694 struct maple_enode *old_enode; 1695 unsigned char offset = 0; 1696 void __rcu **slots = NULL; 1697 1698 if (ma_is_root(mn)) { 1699 old_enode = mas_root_locked(mas); 1700 } else { 1701 offset = mte_parent_slot(mas->node); 1702 slots = ma_slots(mte_parent(mas->node), 1703 mas_parent_enum(mas, mas->node)); 1704 old_enode = mas_slot_locked(mas, slots, offset); 1705 } 1706 1707 if (!advanced && !mte_is_leaf(mas->node)) 1708 mas_adopt_children(mas, mas->node); 1709 1710 if (mte_is_root(mas->node)) { 1711 mn->parent = ma_parent_ptr( 1712 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 1713 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1714 mas_set_height(mas); 1715 } else { 1716 rcu_assign_pointer(slots[offset], mas->node); 1717 } 1718 1719 if (!advanced) 1720 mas_free(mas, old_enode); 1721 } 1722 1723 /* 1724 * mas_new_child() - Find the new child of a node. 1725 * @mas: the maple state 1726 * @child: the maple state to store the child. 1727 */ 1728 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child) 1729 __must_hold(mas->tree->lock) 1730 { 1731 enum maple_type mt; 1732 unsigned char offset; 1733 unsigned char end; 1734 unsigned long *pivots; 1735 struct maple_enode *entry; 1736 struct maple_node *node; 1737 void __rcu **slots; 1738 1739 mt = mte_node_type(mas->node); 1740 node = mas_mn(mas); 1741 slots = ma_slots(node, mt); 1742 pivots = ma_pivots(node, mt); 1743 end = ma_data_end(node, mt, pivots, mas->max); 1744 for (offset = mas->offset; offset <= end; offset++) { 1745 entry = mas_slot_locked(mas, slots, offset); 1746 if (mte_parent(entry) == node) { 1747 *child = *mas; 1748 mas->offset = offset + 1; 1749 child->offset = offset; 1750 mas_descend(child); 1751 child->offset = 0; 1752 return true; 1753 } 1754 } 1755 return false; 1756 } 1757 1758 /* 1759 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1760 * old data or set b_node->b_end. 1761 * @b_node: the maple_big_node 1762 * @shift: the shift count 1763 */ 1764 static inline void mab_shift_right(struct maple_big_node *b_node, 1765 unsigned char shift) 1766 { 1767 unsigned long size = b_node->b_end * sizeof(unsigned long); 1768 1769 memmove(b_node->pivot + shift, b_node->pivot, size); 1770 memmove(b_node->slot + shift, b_node->slot, size); 1771 if (b_node->type == maple_arange_64) 1772 memmove(b_node->gap + shift, b_node->gap, size); 1773 } 1774 1775 /* 1776 * mab_middle_node() - Check if a middle node is needed (unlikely) 1777 * @b_node: the maple_big_node that contains the data. 1778 * @size: the amount of data in the b_node 1779 * @split: the potential split location 1780 * @slot_count: the size that can be stored in a single node being considered. 1781 * 1782 * Return: true if a middle node is required. 1783 */ 1784 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1785 unsigned char slot_count) 1786 { 1787 unsigned char size = b_node->b_end; 1788 1789 if (size >= 2 * slot_count) 1790 return true; 1791 1792 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1793 return true; 1794 1795 return false; 1796 } 1797 1798 /* 1799 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1800 * @b_node: the maple_big_node with the data 1801 * @split: the suggested split location 1802 * @slot_count: the number of slots in the node being considered. 1803 * 1804 * Return: the split location. 1805 */ 1806 static inline int mab_no_null_split(struct maple_big_node *b_node, 1807 unsigned char split, unsigned char slot_count) 1808 { 1809 if (!b_node->slot[split]) { 1810 /* 1811 * If the split is less than the max slot && the right side will 1812 * still be sufficient, then increment the split on NULL. 1813 */ 1814 if ((split < slot_count - 1) && 1815 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1816 split++; 1817 else 1818 split--; 1819 } 1820 return split; 1821 } 1822 1823 /* 1824 * mab_calc_split() - Calculate the split location and if there needs to be two 1825 * splits. 1826 * @bn: The maple_big_node with the data 1827 * @mid_split: The second split, if required. 0 otherwise. 1828 * 1829 * Return: The first split location. The middle split is set in @mid_split. 1830 */ 1831 static inline int mab_calc_split(struct ma_state *mas, 1832 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1833 { 1834 unsigned char b_end = bn->b_end; 1835 int split = b_end / 2; /* Assume equal split. */ 1836 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1837 1838 /* 1839 * To support gap tracking, all NULL entries are kept together and a node cannot 1840 * end on a NULL entry, with the exception of the left-most leaf. The 1841 * limitation means that the split of a node must be checked for this condition 1842 * and be able to put more data in one direction or the other. 1843 */ 1844 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1845 *mid_split = 0; 1846 split = b_end - mt_min_slots[bn->type]; 1847 1848 if (!ma_is_leaf(bn->type)) 1849 return split; 1850 1851 mas->mas_flags |= MA_STATE_REBALANCE; 1852 if (!bn->slot[split]) 1853 split--; 1854 return split; 1855 } 1856 1857 /* 1858 * Although extremely rare, it is possible to enter what is known as the 3-way 1859 * split scenario. The 3-way split comes about by means of a store of a range 1860 * that overwrites the end and beginning of two full nodes. The result is a set 1861 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1862 * also be located in different parent nodes which are also full. This can 1863 * carry upwards all the way to the root in the worst case. 1864 */ 1865 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1866 split = b_end / 3; 1867 *mid_split = split * 2; 1868 } else { 1869 slot_min = mt_min_slots[bn->type]; 1870 1871 *mid_split = 0; 1872 /* 1873 * Avoid having a range less than the slot count unless it 1874 * causes one node to be deficient. 1875 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1876 */ 1877 while (((bn->pivot[split] - min) < slot_count - 1) && 1878 (split < slot_count - 1) && (b_end - split > slot_min)) 1879 split++; 1880 } 1881 1882 /* Avoid ending a node on a NULL entry */ 1883 split = mab_no_null_split(bn, split, slot_count); 1884 1885 if (unlikely(*mid_split)) 1886 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1887 1888 return split; 1889 } 1890 1891 /* 1892 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1893 * and set @b_node->b_end to the next free slot. 1894 * @mas: The maple state 1895 * @mas_start: The starting slot to copy 1896 * @mas_end: The end slot to copy (inclusively) 1897 * @b_node: The maple_big_node to place the data 1898 * @mab_start: The starting location in maple_big_node to store the data. 1899 */ 1900 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1901 unsigned char mas_end, struct maple_big_node *b_node, 1902 unsigned char mab_start) 1903 { 1904 enum maple_type mt; 1905 struct maple_node *node; 1906 void __rcu **slots; 1907 unsigned long *pivots, *gaps; 1908 int i = mas_start, j = mab_start; 1909 unsigned char piv_end; 1910 1911 node = mas_mn(mas); 1912 mt = mte_node_type(mas->node); 1913 pivots = ma_pivots(node, mt); 1914 if (!i) { 1915 b_node->pivot[j] = pivots[i++]; 1916 if (unlikely(i > mas_end)) 1917 goto complete; 1918 j++; 1919 } 1920 1921 piv_end = min(mas_end, mt_pivots[mt]); 1922 for (; i < piv_end; i++, j++) { 1923 b_node->pivot[j] = pivots[i]; 1924 if (unlikely(!b_node->pivot[j])) 1925 break; 1926 1927 if (unlikely(mas->max == b_node->pivot[j])) 1928 goto complete; 1929 } 1930 1931 if (likely(i <= mas_end)) 1932 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1933 1934 complete: 1935 b_node->b_end = ++j; 1936 j -= mab_start; 1937 slots = ma_slots(node, mt); 1938 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1939 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1940 gaps = ma_gaps(node, mt); 1941 memcpy(b_node->gap + mab_start, gaps + mas_start, 1942 sizeof(unsigned long) * j); 1943 } 1944 } 1945 1946 /* 1947 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1948 * @mas: The maple state 1949 * @node: The maple node 1950 * @pivots: pointer to the maple node pivots 1951 * @mt: The maple type 1952 * @end: The assumed end 1953 * 1954 * Note, end may be incremented within this function but not modified at the 1955 * source. This is fine since the metadata is the last thing to be stored in a 1956 * node during a write. 1957 */ 1958 static inline void mas_leaf_set_meta(struct ma_state *mas, 1959 struct maple_node *node, unsigned long *pivots, 1960 enum maple_type mt, unsigned char end) 1961 { 1962 /* There is no room for metadata already */ 1963 if (mt_pivots[mt] <= end) 1964 return; 1965 1966 if (pivots[end] && pivots[end] < mas->max) 1967 end++; 1968 1969 if (end < mt_slots[mt] - 1) 1970 ma_set_meta(node, mt, 0, end); 1971 } 1972 1973 /* 1974 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 1975 * @b_node: the maple_big_node that has the data 1976 * @mab_start: the start location in @b_node. 1977 * @mab_end: The end location in @b_node (inclusively) 1978 * @mas: The maple state with the maple encoded node. 1979 */ 1980 static inline void mab_mas_cp(struct maple_big_node *b_node, 1981 unsigned char mab_start, unsigned char mab_end, 1982 struct ma_state *mas, bool new_max) 1983 { 1984 int i, j = 0; 1985 enum maple_type mt = mte_node_type(mas->node); 1986 struct maple_node *node = mte_to_node(mas->node); 1987 void __rcu **slots = ma_slots(node, mt); 1988 unsigned long *pivots = ma_pivots(node, mt); 1989 unsigned long *gaps = NULL; 1990 unsigned char end; 1991 1992 if (mab_end - mab_start > mt_pivots[mt]) 1993 mab_end--; 1994 1995 if (!pivots[mt_pivots[mt] - 1]) 1996 slots[mt_pivots[mt]] = NULL; 1997 1998 i = mab_start; 1999 do { 2000 pivots[j++] = b_node->pivot[i++]; 2001 } while (i <= mab_end && likely(b_node->pivot[i])); 2002 2003 memcpy(slots, b_node->slot + mab_start, 2004 sizeof(void *) * (i - mab_start)); 2005 2006 if (new_max) 2007 mas->max = b_node->pivot[i - 1]; 2008 2009 end = j - 1; 2010 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2011 unsigned long max_gap = 0; 2012 unsigned char offset = 15; 2013 2014 gaps = ma_gaps(node, mt); 2015 do { 2016 gaps[--j] = b_node->gap[--i]; 2017 if (gaps[j] > max_gap) { 2018 offset = j; 2019 max_gap = gaps[j]; 2020 } 2021 } while (j); 2022 2023 ma_set_meta(node, mt, offset, end); 2024 } else { 2025 mas_leaf_set_meta(mas, node, pivots, mt, end); 2026 } 2027 } 2028 2029 /* 2030 * mas_descend_adopt() - Descend through a sub-tree and adopt children. 2031 * @mas: the maple state with the maple encoded node of the sub-tree. 2032 * 2033 * Descend through a sub-tree and adopt children who do not have the correct 2034 * parents set. Follow the parents which have the correct parents as they are 2035 * the new entries which need to be followed to find other incorrectly set 2036 * parents. 2037 */ 2038 static inline void mas_descend_adopt(struct ma_state *mas) 2039 { 2040 struct ma_state list[3], next[3]; 2041 int i, n; 2042 2043 /* 2044 * At each level there may be up to 3 correct parent pointers which indicates 2045 * the new nodes which need to be walked to find any new nodes at a lower level. 2046 */ 2047 2048 for (i = 0; i < 3; i++) { 2049 list[i] = *mas; 2050 list[i].offset = 0; 2051 next[i].offset = 0; 2052 } 2053 next[0] = *mas; 2054 2055 while (!mte_is_leaf(list[0].node)) { 2056 n = 0; 2057 for (i = 0; i < 3; i++) { 2058 if (mas_is_none(&list[i])) 2059 continue; 2060 2061 if (i && list[i-1].node == list[i].node) 2062 continue; 2063 2064 while ((n < 3) && (mas_new_child(&list[i], &next[n]))) 2065 n++; 2066 2067 mas_adopt_children(&list[i], list[i].node); 2068 } 2069 2070 while (n < 3) 2071 next[n++].node = MAS_NONE; 2072 2073 /* descend by setting the list to the children */ 2074 for (i = 0; i < 3; i++) 2075 list[i] = next[i]; 2076 } 2077 } 2078 2079 /* 2080 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2081 * @mas: The maple state 2082 * @end: The maple node end 2083 * @mt: The maple node type 2084 */ 2085 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2086 enum maple_type mt) 2087 { 2088 if (!(mas->mas_flags & MA_STATE_BULK)) 2089 return; 2090 2091 if (mte_is_root(mas->node)) 2092 return; 2093 2094 if (end > mt_min_slots[mt]) { 2095 mas->mas_flags &= ~MA_STATE_REBALANCE; 2096 return; 2097 } 2098 } 2099 2100 /* 2101 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2102 * data from a maple encoded node. 2103 * @wr_mas: the maple write state 2104 * @b_node: the maple_big_node to fill with data 2105 * @offset_end: the offset to end copying 2106 * 2107 * Return: The actual end of the data stored in @b_node 2108 */ 2109 static inline void mas_store_b_node(struct ma_wr_state *wr_mas, 2110 struct maple_big_node *b_node, unsigned char offset_end) 2111 { 2112 unsigned char slot; 2113 unsigned char b_end; 2114 /* Possible underflow of piv will wrap back to 0 before use. */ 2115 unsigned long piv; 2116 struct ma_state *mas = wr_mas->mas; 2117 2118 b_node->type = wr_mas->type; 2119 b_end = 0; 2120 slot = mas->offset; 2121 if (slot) { 2122 /* Copy start data up to insert. */ 2123 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2124 b_end = b_node->b_end; 2125 piv = b_node->pivot[b_end - 1]; 2126 } else 2127 piv = mas->min - 1; 2128 2129 if (piv + 1 < mas->index) { 2130 /* Handle range starting after old range */ 2131 b_node->slot[b_end] = wr_mas->content; 2132 if (!wr_mas->content) 2133 b_node->gap[b_end] = mas->index - 1 - piv; 2134 b_node->pivot[b_end++] = mas->index - 1; 2135 } 2136 2137 /* Store the new entry. */ 2138 mas->offset = b_end; 2139 b_node->slot[b_end] = wr_mas->entry; 2140 b_node->pivot[b_end] = mas->last; 2141 2142 /* Appended. */ 2143 if (mas->last >= mas->max) 2144 goto b_end; 2145 2146 /* Handle new range ending before old range ends */ 2147 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2148 if (piv > mas->last) { 2149 if (piv == ULONG_MAX) 2150 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2151 2152 if (offset_end != slot) 2153 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2154 offset_end); 2155 2156 b_node->slot[++b_end] = wr_mas->content; 2157 if (!wr_mas->content) 2158 b_node->gap[b_end] = piv - mas->last + 1; 2159 b_node->pivot[b_end] = piv; 2160 } 2161 2162 slot = offset_end + 1; 2163 if (slot > wr_mas->node_end) 2164 goto b_end; 2165 2166 /* Copy end data to the end of the node. */ 2167 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end); 2168 b_node->b_end--; 2169 return; 2170 2171 b_end: 2172 b_node->b_end = b_end; 2173 } 2174 2175 /* 2176 * mas_prev_sibling() - Find the previous node with the same parent. 2177 * @mas: the maple state 2178 * 2179 * Return: True if there is a previous sibling, false otherwise. 2180 */ 2181 static inline bool mas_prev_sibling(struct ma_state *mas) 2182 { 2183 unsigned int p_slot = mte_parent_slot(mas->node); 2184 2185 if (mte_is_root(mas->node)) 2186 return false; 2187 2188 if (!p_slot) 2189 return false; 2190 2191 mas_ascend(mas); 2192 mas->offset = p_slot - 1; 2193 mas_descend(mas); 2194 return true; 2195 } 2196 2197 /* 2198 * mas_next_sibling() - Find the next node with the same parent. 2199 * @mas: the maple state 2200 * 2201 * Return: true if there is a next sibling, false otherwise. 2202 */ 2203 static inline bool mas_next_sibling(struct ma_state *mas) 2204 { 2205 MA_STATE(parent, mas->tree, mas->index, mas->last); 2206 2207 if (mte_is_root(mas->node)) 2208 return false; 2209 2210 parent = *mas; 2211 mas_ascend(&parent); 2212 parent.offset = mte_parent_slot(mas->node) + 1; 2213 if (parent.offset > mas_data_end(&parent)) 2214 return false; 2215 2216 *mas = parent; 2217 mas_descend(mas); 2218 return true; 2219 } 2220 2221 /* 2222 * mte_node_or_node() - Return the encoded node or MAS_NONE. 2223 * @enode: The encoded maple node. 2224 * 2225 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state. 2226 * 2227 * Return: @enode or MAS_NONE 2228 */ 2229 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode) 2230 { 2231 if (enode) 2232 return enode; 2233 2234 return ma_enode_ptr(MAS_NONE); 2235 } 2236 2237 /* 2238 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2239 * @wr_mas: The maple write state 2240 * 2241 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2242 */ 2243 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2244 { 2245 struct ma_state *mas = wr_mas->mas; 2246 unsigned char count; 2247 unsigned char offset; 2248 unsigned long index, min, max; 2249 2250 if (unlikely(ma_is_dense(wr_mas->type))) { 2251 wr_mas->r_max = wr_mas->r_min = mas->index; 2252 mas->offset = mas->index = mas->min; 2253 return; 2254 } 2255 2256 wr_mas->node = mas_mn(wr_mas->mas); 2257 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2258 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type, 2259 wr_mas->pivots, mas->max); 2260 offset = mas->offset; 2261 min = mas_safe_min(mas, wr_mas->pivots, offset); 2262 if (unlikely(offset == count)) 2263 goto max; 2264 2265 max = wr_mas->pivots[offset]; 2266 index = mas->index; 2267 if (unlikely(index <= max)) 2268 goto done; 2269 2270 if (unlikely(!max && offset)) 2271 goto max; 2272 2273 min = max + 1; 2274 while (++offset < count) { 2275 max = wr_mas->pivots[offset]; 2276 if (index <= max) 2277 goto done; 2278 else if (unlikely(!max)) 2279 break; 2280 2281 min = max + 1; 2282 } 2283 2284 max: 2285 max = mas->max; 2286 done: 2287 wr_mas->r_max = max; 2288 wr_mas->r_min = min; 2289 wr_mas->offset_end = mas->offset = offset; 2290 } 2291 2292 /* 2293 * mas_topiary_range() - Add a range of slots to the topiary. 2294 * @mas: The maple state 2295 * @destroy: The topiary to add the slots (usually destroy) 2296 * @start: The starting slot inclusively 2297 * @end: The end slot inclusively 2298 */ 2299 static inline void mas_topiary_range(struct ma_state *mas, 2300 struct ma_topiary *destroy, unsigned char start, unsigned char end) 2301 { 2302 void __rcu **slots; 2303 unsigned char offset; 2304 2305 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node)); 2306 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node)); 2307 for (offset = start; offset <= end; offset++) { 2308 struct maple_enode *enode = mas_slot_locked(mas, slots, offset); 2309 2310 if (mte_dead_node(enode)) 2311 continue; 2312 2313 mat_add(destroy, enode); 2314 } 2315 } 2316 2317 /* 2318 * mast_topiary() - Add the portions of the tree to the removal list; either to 2319 * be freed or discarded (destroy walk). 2320 * @mast: The maple_subtree_state. 2321 */ 2322 static inline void mast_topiary(struct maple_subtree_state *mast) 2323 { 2324 MA_WR_STATE(wr_mas, mast->orig_l, NULL); 2325 unsigned char r_start, r_end; 2326 unsigned char l_start, l_end; 2327 void __rcu **l_slots, **r_slots; 2328 2329 wr_mas.type = mte_node_type(mast->orig_l->node); 2330 mast->orig_l->index = mast->orig_l->last; 2331 mas_wr_node_walk(&wr_mas); 2332 l_start = mast->orig_l->offset + 1; 2333 l_end = mas_data_end(mast->orig_l); 2334 r_start = 0; 2335 r_end = mast->orig_r->offset; 2336 2337 if (r_end) 2338 r_end--; 2339 2340 l_slots = ma_slots(mas_mn(mast->orig_l), 2341 mte_node_type(mast->orig_l->node)); 2342 2343 r_slots = ma_slots(mas_mn(mast->orig_r), 2344 mte_node_type(mast->orig_r->node)); 2345 2346 if ((l_start < l_end) && 2347 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) { 2348 l_start++; 2349 } 2350 2351 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) { 2352 if (r_end) 2353 r_end--; 2354 } 2355 2356 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node)) 2357 return; 2358 2359 /* At the node where left and right sides meet, add the parts between */ 2360 if (mast->orig_l->node == mast->orig_r->node) { 2361 return mas_topiary_range(mast->orig_l, mast->destroy, 2362 l_start, r_end); 2363 } 2364 2365 /* mast->orig_r is different and consumed. */ 2366 if (mte_is_leaf(mast->orig_r->node)) 2367 return; 2368 2369 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end))) 2370 l_end--; 2371 2372 2373 if (l_start <= l_end) 2374 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end); 2375 2376 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start))) 2377 r_start++; 2378 2379 if (r_start <= r_end) 2380 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end); 2381 } 2382 2383 /* 2384 * mast_rebalance_next() - Rebalance against the next node 2385 * @mast: The maple subtree state 2386 * @old_r: The encoded maple node to the right (next node). 2387 */ 2388 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2389 { 2390 unsigned char b_end = mast->bn->b_end; 2391 2392 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2393 mast->bn, b_end); 2394 mast->orig_r->last = mast->orig_r->max; 2395 } 2396 2397 /* 2398 * mast_rebalance_prev() - Rebalance against the previous node 2399 * @mast: The maple subtree state 2400 * @old_l: The encoded maple node to the left (previous node) 2401 */ 2402 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2403 { 2404 unsigned char end = mas_data_end(mast->orig_l) + 1; 2405 unsigned char b_end = mast->bn->b_end; 2406 2407 mab_shift_right(mast->bn, end); 2408 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2409 mast->l->min = mast->orig_l->min; 2410 mast->orig_l->index = mast->orig_l->min; 2411 mast->bn->b_end = end + b_end; 2412 mast->l->offset += end; 2413 } 2414 2415 /* 2416 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2417 * the node to the right. Checking the nodes to the right then the left at each 2418 * level upwards until root is reached. Free and destroy as needed. 2419 * Data is copied into the @mast->bn. 2420 * @mast: The maple_subtree_state. 2421 */ 2422 static inline 2423 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2424 { 2425 struct ma_state r_tmp = *mast->orig_r; 2426 struct ma_state l_tmp = *mast->orig_l; 2427 struct maple_enode *ancestor = NULL; 2428 unsigned char start, end; 2429 unsigned char depth = 0; 2430 2431 r_tmp = *mast->orig_r; 2432 l_tmp = *mast->orig_l; 2433 do { 2434 mas_ascend(mast->orig_r); 2435 mas_ascend(mast->orig_l); 2436 depth++; 2437 if (!ancestor && 2438 (mast->orig_r->node == mast->orig_l->node)) { 2439 ancestor = mast->orig_r->node; 2440 end = mast->orig_r->offset - 1; 2441 start = mast->orig_l->offset + 1; 2442 } 2443 2444 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2445 if (!ancestor) { 2446 ancestor = mast->orig_r->node; 2447 start = 0; 2448 } 2449 2450 mast->orig_r->offset++; 2451 do { 2452 mas_descend(mast->orig_r); 2453 mast->orig_r->offset = 0; 2454 depth--; 2455 } while (depth); 2456 2457 mast_rebalance_next(mast); 2458 do { 2459 unsigned char l_off = 0; 2460 struct maple_enode *child = r_tmp.node; 2461 2462 mas_ascend(&r_tmp); 2463 if (ancestor == r_tmp.node) 2464 l_off = start; 2465 2466 if (r_tmp.offset) 2467 r_tmp.offset--; 2468 2469 if (l_off < r_tmp.offset) 2470 mas_topiary_range(&r_tmp, mast->destroy, 2471 l_off, r_tmp.offset); 2472 2473 if (l_tmp.node != child) 2474 mat_add(mast->free, child); 2475 2476 } while (r_tmp.node != ancestor); 2477 2478 *mast->orig_l = l_tmp; 2479 return true; 2480 2481 } else if (mast->orig_l->offset != 0) { 2482 if (!ancestor) { 2483 ancestor = mast->orig_l->node; 2484 end = mas_data_end(mast->orig_l); 2485 } 2486 2487 mast->orig_l->offset--; 2488 do { 2489 mas_descend(mast->orig_l); 2490 mast->orig_l->offset = 2491 mas_data_end(mast->orig_l); 2492 depth--; 2493 } while (depth); 2494 2495 mast_rebalance_prev(mast); 2496 do { 2497 unsigned char r_off; 2498 struct maple_enode *child = l_tmp.node; 2499 2500 mas_ascend(&l_tmp); 2501 if (ancestor == l_tmp.node) 2502 r_off = end; 2503 else 2504 r_off = mas_data_end(&l_tmp); 2505 2506 if (l_tmp.offset < r_off) 2507 l_tmp.offset++; 2508 2509 if (l_tmp.offset < r_off) 2510 mas_topiary_range(&l_tmp, mast->destroy, 2511 l_tmp.offset, r_off); 2512 2513 if (r_tmp.node != child) 2514 mat_add(mast->free, child); 2515 2516 } while (l_tmp.node != ancestor); 2517 2518 *mast->orig_r = r_tmp; 2519 return true; 2520 } 2521 } while (!mte_is_root(mast->orig_r->node)); 2522 2523 *mast->orig_r = r_tmp; 2524 *mast->orig_l = l_tmp; 2525 return false; 2526 } 2527 2528 /* 2529 * mast_ascend_free() - Add current original maple state nodes to the free list 2530 * and ascend. 2531 * @mast: the maple subtree state. 2532 * 2533 * Ascend the original left and right sides and add the previous nodes to the 2534 * free list. Set the slots to point to the correct location in the new nodes. 2535 */ 2536 static inline void 2537 mast_ascend_free(struct maple_subtree_state *mast) 2538 { 2539 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2540 struct maple_enode *left = mast->orig_l->node; 2541 struct maple_enode *right = mast->orig_r->node; 2542 2543 mas_ascend(mast->orig_l); 2544 mas_ascend(mast->orig_r); 2545 mat_add(mast->free, left); 2546 2547 if (left != right) 2548 mat_add(mast->free, right); 2549 2550 mast->orig_r->offset = 0; 2551 mast->orig_r->index = mast->r->max; 2552 /* last should be larger than or equal to index */ 2553 if (mast->orig_r->last < mast->orig_r->index) 2554 mast->orig_r->last = mast->orig_r->index; 2555 /* 2556 * The node may not contain the value so set slot to ensure all 2557 * of the nodes contents are freed or destroyed. 2558 */ 2559 wr_mas.type = mte_node_type(mast->orig_r->node); 2560 mas_wr_node_walk(&wr_mas); 2561 /* Set up the left side of things */ 2562 mast->orig_l->offset = 0; 2563 mast->orig_l->index = mast->l->min; 2564 wr_mas.mas = mast->orig_l; 2565 wr_mas.type = mte_node_type(mast->orig_l->node); 2566 mas_wr_node_walk(&wr_mas); 2567 2568 mast->bn->type = wr_mas.type; 2569 } 2570 2571 /* 2572 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2573 * @mas: the maple state with the allocations. 2574 * @b_node: the maple_big_node with the type encoding. 2575 * 2576 * Use the node type from the maple_big_node to allocate a new node from the 2577 * ma_state. This function exists mainly for code readability. 2578 * 2579 * Return: A new maple encoded node 2580 */ 2581 static inline struct maple_enode 2582 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2583 { 2584 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2585 } 2586 2587 /* 2588 * mas_mab_to_node() - Set up right and middle nodes 2589 * 2590 * @mas: the maple state that contains the allocations. 2591 * @b_node: the node which contains the data. 2592 * @left: The pointer which will have the left node 2593 * @right: The pointer which may have the right node 2594 * @middle: the pointer which may have the middle node (rare) 2595 * @mid_split: the split location for the middle node 2596 * 2597 * Return: the split of left. 2598 */ 2599 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2600 struct maple_big_node *b_node, struct maple_enode **left, 2601 struct maple_enode **right, struct maple_enode **middle, 2602 unsigned char *mid_split, unsigned long min) 2603 { 2604 unsigned char split = 0; 2605 unsigned char slot_count = mt_slots[b_node->type]; 2606 2607 *left = mas_new_ma_node(mas, b_node); 2608 *right = NULL; 2609 *middle = NULL; 2610 *mid_split = 0; 2611 2612 if (b_node->b_end < slot_count) { 2613 split = b_node->b_end; 2614 } else { 2615 split = mab_calc_split(mas, b_node, mid_split, min); 2616 *right = mas_new_ma_node(mas, b_node); 2617 } 2618 2619 if (*mid_split) 2620 *middle = mas_new_ma_node(mas, b_node); 2621 2622 return split; 2623 2624 } 2625 2626 /* 2627 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2628 * pointer. 2629 * @b_node - the big node to add the entry 2630 * @mas - the maple state to get the pivot (mas->max) 2631 * @entry - the entry to add, if NULL nothing happens. 2632 */ 2633 static inline void mab_set_b_end(struct maple_big_node *b_node, 2634 struct ma_state *mas, 2635 void *entry) 2636 { 2637 if (!entry) 2638 return; 2639 2640 b_node->slot[b_node->b_end] = entry; 2641 if (mt_is_alloc(mas->tree)) 2642 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2643 b_node->pivot[b_node->b_end++] = mas->max; 2644 } 2645 2646 /* 2647 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2648 * of @mas->node to either @left or @right, depending on @slot and @split 2649 * 2650 * @mas - the maple state with the node that needs a parent 2651 * @left - possible parent 1 2652 * @right - possible parent 2 2653 * @slot - the slot the mas->node was placed 2654 * @split - the split location between @left and @right 2655 */ 2656 static inline void mas_set_split_parent(struct ma_state *mas, 2657 struct maple_enode *left, 2658 struct maple_enode *right, 2659 unsigned char *slot, unsigned char split) 2660 { 2661 if (mas_is_none(mas)) 2662 return; 2663 2664 if ((*slot) <= split) 2665 mte_set_parent(mas->node, left, *slot); 2666 else if (right) 2667 mte_set_parent(mas->node, right, (*slot) - split - 1); 2668 2669 (*slot)++; 2670 } 2671 2672 /* 2673 * mte_mid_split_check() - Check if the next node passes the mid-split 2674 * @**l: Pointer to left encoded maple node. 2675 * @**m: Pointer to middle encoded maple node. 2676 * @**r: Pointer to right encoded maple node. 2677 * @slot: The offset 2678 * @*split: The split location. 2679 * @mid_split: The middle split. 2680 */ 2681 static inline void mte_mid_split_check(struct maple_enode **l, 2682 struct maple_enode **r, 2683 struct maple_enode *right, 2684 unsigned char slot, 2685 unsigned char *split, 2686 unsigned char mid_split) 2687 { 2688 if (*r == right) 2689 return; 2690 2691 if (slot < mid_split) 2692 return; 2693 2694 *l = *r; 2695 *r = right; 2696 *split = mid_split; 2697 } 2698 2699 /* 2700 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2701 * is taken from @mast->l. 2702 * @mast - the maple subtree state 2703 * @left - the left node 2704 * @right - the right node 2705 * @split - the split location. 2706 */ 2707 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2708 struct maple_enode *left, 2709 struct maple_enode *middle, 2710 struct maple_enode *right, 2711 unsigned char split, 2712 unsigned char mid_split) 2713 { 2714 unsigned char slot; 2715 struct maple_enode *l = left; 2716 struct maple_enode *r = right; 2717 2718 if (mas_is_none(mast->l)) 2719 return; 2720 2721 if (middle) 2722 r = middle; 2723 2724 slot = mast->l->offset; 2725 2726 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2727 mas_set_split_parent(mast->l, l, r, &slot, split); 2728 2729 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2730 mas_set_split_parent(mast->m, l, r, &slot, split); 2731 2732 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2733 mas_set_split_parent(mast->r, l, r, &slot, split); 2734 } 2735 2736 /* 2737 * mas_wmb_replace() - Write memory barrier and replace 2738 * @mas: The maple state 2739 * @free: the maple topiary list of nodes to free 2740 * @destroy: The maple topiary list of nodes to destroy (walk and free) 2741 * 2742 * Updates gap as necessary. 2743 */ 2744 static inline void mas_wmb_replace(struct ma_state *mas, 2745 struct ma_topiary *free, 2746 struct ma_topiary *destroy) 2747 { 2748 /* All nodes must see old data as dead prior to replacing that data */ 2749 smp_wmb(); /* Needed for RCU */ 2750 2751 /* Insert the new data in the tree */ 2752 mas_replace(mas, true); 2753 2754 if (!mte_is_leaf(mas->node)) 2755 mas_descend_adopt(mas); 2756 2757 mas_mat_free(mas, free); 2758 2759 if (destroy) 2760 mas_mat_destroy(mas, destroy); 2761 2762 if (mte_is_leaf(mas->node)) 2763 return; 2764 2765 mas_update_gap(mas); 2766 } 2767 2768 /* 2769 * mast_new_root() - Set a new tree root during subtree creation 2770 * @mast: The maple subtree state 2771 * @mas: The maple state 2772 */ 2773 static inline void mast_new_root(struct maple_subtree_state *mast, 2774 struct ma_state *mas) 2775 { 2776 mas_mn(mast->l)->parent = 2777 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT)); 2778 if (!mte_dead_node(mast->orig_l->node) && 2779 !mte_is_root(mast->orig_l->node)) { 2780 do { 2781 mast_ascend_free(mast); 2782 mast_topiary(mast); 2783 } while (!mte_is_root(mast->orig_l->node)); 2784 } 2785 if ((mast->orig_l->node != mas->node) && 2786 (mast->l->depth > mas_mt_height(mas))) { 2787 mat_add(mast->free, mas->node); 2788 } 2789 } 2790 2791 /* 2792 * mast_cp_to_nodes() - Copy data out to nodes. 2793 * @mast: The maple subtree state 2794 * @left: The left encoded maple node 2795 * @middle: The middle encoded maple node 2796 * @right: The right encoded maple node 2797 * @split: The location to split between left and (middle ? middle : right) 2798 * @mid_split: The location to split between middle and right. 2799 */ 2800 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2801 struct maple_enode *left, struct maple_enode *middle, 2802 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2803 { 2804 bool new_lmax = true; 2805 2806 mast->l->node = mte_node_or_none(left); 2807 mast->m->node = mte_node_or_none(middle); 2808 mast->r->node = mte_node_or_none(right); 2809 2810 mast->l->min = mast->orig_l->min; 2811 if (split == mast->bn->b_end) { 2812 mast->l->max = mast->orig_r->max; 2813 new_lmax = false; 2814 } 2815 2816 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2817 2818 if (middle) { 2819 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2820 mast->m->min = mast->bn->pivot[split] + 1; 2821 split = mid_split; 2822 } 2823 2824 mast->r->max = mast->orig_r->max; 2825 if (right) { 2826 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2827 mast->r->min = mast->bn->pivot[split] + 1; 2828 } 2829 } 2830 2831 /* 2832 * mast_combine_cp_left - Copy in the original left side of the tree into the 2833 * combined data set in the maple subtree state big node. 2834 * @mast: The maple subtree state 2835 */ 2836 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2837 { 2838 unsigned char l_slot = mast->orig_l->offset; 2839 2840 if (!l_slot) 2841 return; 2842 2843 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2844 } 2845 2846 /* 2847 * mast_combine_cp_right: Copy in the original right side of the tree into the 2848 * combined data set in the maple subtree state big node. 2849 * @mast: The maple subtree state 2850 */ 2851 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2852 { 2853 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2854 return; 2855 2856 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2857 mt_slot_count(mast->orig_r->node), mast->bn, 2858 mast->bn->b_end); 2859 mast->orig_r->last = mast->orig_r->max; 2860 } 2861 2862 /* 2863 * mast_sufficient: Check if the maple subtree state has enough data in the big 2864 * node to create at least one sufficient node 2865 * @mast: the maple subtree state 2866 */ 2867 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2868 { 2869 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2870 return true; 2871 2872 return false; 2873 } 2874 2875 /* 2876 * mast_overflow: Check if there is too much data in the subtree state for a 2877 * single node. 2878 * @mast: The maple subtree state 2879 */ 2880 static inline bool mast_overflow(struct maple_subtree_state *mast) 2881 { 2882 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2883 return true; 2884 2885 return false; 2886 } 2887 2888 static inline void *mtree_range_walk(struct ma_state *mas) 2889 { 2890 unsigned long *pivots; 2891 unsigned char offset; 2892 struct maple_node *node; 2893 struct maple_enode *next, *last; 2894 enum maple_type type; 2895 void __rcu **slots; 2896 unsigned char end; 2897 unsigned long max, min; 2898 unsigned long prev_max, prev_min; 2899 2900 next = mas->node; 2901 min = mas->min; 2902 max = mas->max; 2903 do { 2904 offset = 0; 2905 last = next; 2906 node = mte_to_node(next); 2907 type = mte_node_type(next); 2908 pivots = ma_pivots(node, type); 2909 end = ma_data_end(node, type, pivots, max); 2910 if (unlikely(ma_dead_node(node))) 2911 goto dead_node; 2912 2913 if (pivots[offset] >= mas->index) { 2914 prev_max = max; 2915 prev_min = min; 2916 max = pivots[offset]; 2917 goto next; 2918 } 2919 2920 do { 2921 offset++; 2922 } while ((offset < end) && (pivots[offset] < mas->index)); 2923 2924 prev_min = min; 2925 min = pivots[offset - 1] + 1; 2926 prev_max = max; 2927 if (likely(offset < end && pivots[offset])) 2928 max = pivots[offset]; 2929 2930 next: 2931 slots = ma_slots(node, type); 2932 next = mt_slot(mas->tree, slots, offset); 2933 if (unlikely(ma_dead_node(node))) 2934 goto dead_node; 2935 } while (!ma_is_leaf(type)); 2936 2937 mas->offset = offset; 2938 mas->index = min; 2939 mas->last = max; 2940 mas->min = prev_min; 2941 mas->max = prev_max; 2942 mas->node = last; 2943 return (void *)next; 2944 2945 dead_node: 2946 mas_reset(mas); 2947 return NULL; 2948 } 2949 2950 /* 2951 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2952 * @mas: The starting maple state 2953 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2954 * @count: The estimated count of iterations needed. 2955 * 2956 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2957 * is hit. First @b_node is split into two entries which are inserted into the 2958 * next iteration of the loop. @b_node is returned populated with the final 2959 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2960 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2961 * to account of what has been copied into the new sub-tree. The update of 2962 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2963 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2964 * the new sub-tree in case the sub-tree becomes the full tree. 2965 * 2966 * Return: the number of elements in b_node during the last loop. 2967 */ 2968 static int mas_spanning_rebalance(struct ma_state *mas, 2969 struct maple_subtree_state *mast, unsigned char count) 2970 { 2971 unsigned char split, mid_split; 2972 unsigned char slot = 0; 2973 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2974 2975 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 2976 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2977 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 2978 MA_TOPIARY(free, mas->tree); 2979 MA_TOPIARY(destroy, mas->tree); 2980 2981 /* 2982 * The tree needs to be rebalanced and leaves need to be kept at the same level. 2983 * Rebalancing is done by use of the ``struct maple_topiary``. 2984 */ 2985 mast->l = &l_mas; 2986 mast->m = &m_mas; 2987 mast->r = &r_mas; 2988 mast->free = &free; 2989 mast->destroy = &destroy; 2990 l_mas.node = r_mas.node = m_mas.node = MAS_NONE; 2991 2992 /* Check if this is not root and has sufficient data. */ 2993 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 2994 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 2995 mast_spanning_rebalance(mast); 2996 2997 mast->orig_l->depth = 0; 2998 2999 /* 3000 * Each level of the tree is examined and balanced, pushing data to the left or 3001 * right, or rebalancing against left or right nodes is employed to avoid 3002 * rippling up the tree to limit the amount of churn. Once a new sub-section of 3003 * the tree is created, there may be a mix of new and old nodes. The old nodes 3004 * will have the incorrect parent pointers and currently be in two trees: the 3005 * original tree and the partially new tree. To remedy the parent pointers in 3006 * the old tree, the new data is swapped into the active tree and a walk down 3007 * the tree is performed and the parent pointers are updated. 3008 * See mas_descend_adopt() for more information.. 3009 */ 3010 while (count--) { 3011 mast->bn->b_end--; 3012 mast->bn->type = mte_node_type(mast->orig_l->node); 3013 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 3014 &mid_split, mast->orig_l->min); 3015 mast_set_split_parents(mast, left, middle, right, split, 3016 mid_split); 3017 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 3018 3019 /* 3020 * Copy data from next level in the tree to mast->bn from next 3021 * iteration 3022 */ 3023 memset(mast->bn, 0, sizeof(struct maple_big_node)); 3024 mast->bn->type = mte_node_type(left); 3025 mast->orig_l->depth++; 3026 3027 /* Root already stored in l->node. */ 3028 if (mas_is_root_limits(mast->l)) 3029 goto new_root; 3030 3031 mast_ascend_free(mast); 3032 mast_combine_cp_left(mast); 3033 l_mas.offset = mast->bn->b_end; 3034 mab_set_b_end(mast->bn, &l_mas, left); 3035 mab_set_b_end(mast->bn, &m_mas, middle); 3036 mab_set_b_end(mast->bn, &r_mas, right); 3037 3038 /* Copy anything necessary out of the right node. */ 3039 mast_combine_cp_right(mast); 3040 mast_topiary(mast); 3041 mast->orig_l->last = mast->orig_l->max; 3042 3043 if (mast_sufficient(mast)) 3044 continue; 3045 3046 if (mast_overflow(mast)) 3047 continue; 3048 3049 /* May be a new root stored in mast->bn */ 3050 if (mas_is_root_limits(mast->orig_l)) 3051 break; 3052 3053 mast_spanning_rebalance(mast); 3054 3055 /* rebalancing from other nodes may require another loop. */ 3056 if (!count) 3057 count++; 3058 } 3059 3060 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 3061 mte_node_type(mast->orig_l->node)); 3062 mast->orig_l->depth++; 3063 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 3064 mte_set_parent(left, l_mas.node, slot); 3065 if (middle) 3066 mte_set_parent(middle, l_mas.node, ++slot); 3067 3068 if (right) 3069 mte_set_parent(right, l_mas.node, ++slot); 3070 3071 if (mas_is_root_limits(mast->l)) { 3072 new_root: 3073 mast_new_root(mast, mas); 3074 } else { 3075 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 3076 } 3077 3078 if (!mte_dead_node(mast->orig_l->node)) 3079 mat_add(&free, mast->orig_l->node); 3080 3081 mas->depth = mast->orig_l->depth; 3082 *mast->orig_l = l_mas; 3083 mte_set_node_dead(mas->node); 3084 3085 /* Set up mas for insertion. */ 3086 mast->orig_l->depth = mas->depth; 3087 mast->orig_l->alloc = mas->alloc; 3088 *mas = *mast->orig_l; 3089 mas_wmb_replace(mas, &free, &destroy); 3090 mtree_range_walk(mas); 3091 return mast->bn->b_end; 3092 } 3093 3094 /* 3095 * mas_rebalance() - Rebalance a given node. 3096 * @mas: The maple state 3097 * @b_node: The big maple node. 3098 * 3099 * Rebalance two nodes into a single node or two new nodes that are sufficient. 3100 * Continue upwards until tree is sufficient. 3101 * 3102 * Return: the number of elements in b_node during the last loop. 3103 */ 3104 static inline int mas_rebalance(struct ma_state *mas, 3105 struct maple_big_node *b_node) 3106 { 3107 char empty_count = mas_mt_height(mas); 3108 struct maple_subtree_state mast; 3109 unsigned char shift, b_end = ++b_node->b_end; 3110 3111 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3112 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3113 3114 trace_ma_op(__func__, mas); 3115 3116 /* 3117 * Rebalancing occurs if a node is insufficient. Data is rebalanced 3118 * against the node to the right if it exists, otherwise the node to the 3119 * left of this node is rebalanced against this node. If rebalancing 3120 * causes just one node to be produced instead of two, then the parent 3121 * is also examined and rebalanced if it is insufficient. Every level 3122 * tries to combine the data in the same way. If one node contains the 3123 * entire range of the tree, then that node is used as a new root node. 3124 */ 3125 mas_node_count(mas, 1 + empty_count * 3); 3126 if (mas_is_err(mas)) 3127 return 0; 3128 3129 mast.orig_l = &l_mas; 3130 mast.orig_r = &r_mas; 3131 mast.bn = b_node; 3132 mast.bn->type = mte_node_type(mas->node); 3133 3134 l_mas = r_mas = *mas; 3135 3136 if (mas_next_sibling(&r_mas)) { 3137 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 3138 r_mas.last = r_mas.index = r_mas.max; 3139 } else { 3140 mas_prev_sibling(&l_mas); 3141 shift = mas_data_end(&l_mas) + 1; 3142 mab_shift_right(b_node, shift); 3143 mas->offset += shift; 3144 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3145 b_node->b_end = shift + b_end; 3146 l_mas.index = l_mas.last = l_mas.min; 3147 } 3148 3149 return mas_spanning_rebalance(mas, &mast, empty_count); 3150 } 3151 3152 /* 3153 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3154 * state. 3155 * @mas: The maple state 3156 * @end: The end of the left-most node. 3157 * 3158 * During a mass-insert event (such as forking), it may be necessary to 3159 * rebalance the left-most node when it is not sufficient. 3160 */ 3161 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3162 { 3163 enum maple_type mt = mte_node_type(mas->node); 3164 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3165 struct maple_enode *eparent; 3166 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3167 void __rcu **l_slots, **slots; 3168 unsigned long *l_pivs, *pivs, gap; 3169 bool in_rcu = mt_in_rcu(mas->tree); 3170 3171 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3172 3173 l_mas = *mas; 3174 mas_prev_sibling(&l_mas); 3175 3176 /* set up node. */ 3177 if (in_rcu) { 3178 /* Allocate for both left and right as well as parent. */ 3179 mas_node_count(mas, 3); 3180 if (mas_is_err(mas)) 3181 return; 3182 3183 newnode = mas_pop_node(mas); 3184 } else { 3185 newnode = &reuse; 3186 } 3187 3188 node = mas_mn(mas); 3189 newnode->parent = node->parent; 3190 slots = ma_slots(newnode, mt); 3191 pivs = ma_pivots(newnode, mt); 3192 left = mas_mn(&l_mas); 3193 l_slots = ma_slots(left, mt); 3194 l_pivs = ma_pivots(left, mt); 3195 if (!l_slots[split]) 3196 split++; 3197 tmp = mas_data_end(&l_mas) - split; 3198 3199 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3200 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3201 pivs[tmp] = l_mas.max; 3202 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3203 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3204 3205 l_mas.max = l_pivs[split]; 3206 mas->min = l_mas.max + 1; 3207 eparent = mt_mk_node(mte_parent(l_mas.node), 3208 mas_parent_enum(&l_mas, l_mas.node)); 3209 tmp += end; 3210 if (!in_rcu) { 3211 unsigned char max_p = mt_pivots[mt]; 3212 unsigned char max_s = mt_slots[mt]; 3213 3214 if (tmp < max_p) 3215 memset(pivs + tmp, 0, 3216 sizeof(unsigned long *) * (max_p - tmp)); 3217 3218 if (tmp < mt_slots[mt]) 3219 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3220 3221 memcpy(node, newnode, sizeof(struct maple_node)); 3222 ma_set_meta(node, mt, 0, tmp - 1); 3223 mte_set_pivot(eparent, mte_parent_slot(l_mas.node), 3224 l_pivs[split]); 3225 3226 /* Remove data from l_pivs. */ 3227 tmp = split + 1; 3228 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3229 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3230 ma_set_meta(left, mt, 0, split); 3231 3232 goto done; 3233 } 3234 3235 /* RCU requires replacing both l_mas, mas, and parent. */ 3236 mas->node = mt_mk_node(newnode, mt); 3237 ma_set_meta(newnode, mt, 0, tmp); 3238 3239 new_left = mas_pop_node(mas); 3240 new_left->parent = left->parent; 3241 mt = mte_node_type(l_mas.node); 3242 slots = ma_slots(new_left, mt); 3243 pivs = ma_pivots(new_left, mt); 3244 memcpy(slots, l_slots, sizeof(void *) * split); 3245 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3246 ma_set_meta(new_left, mt, 0, split); 3247 l_mas.node = mt_mk_node(new_left, mt); 3248 3249 /* replace parent. */ 3250 offset = mte_parent_slot(mas->node); 3251 mt = mas_parent_enum(&l_mas, l_mas.node); 3252 parent = mas_pop_node(mas); 3253 slots = ma_slots(parent, mt); 3254 pivs = ma_pivots(parent, mt); 3255 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node)); 3256 rcu_assign_pointer(slots[offset], mas->node); 3257 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3258 pivs[offset - 1] = l_mas.max; 3259 eparent = mt_mk_node(parent, mt); 3260 done: 3261 gap = mas_leaf_max_gap(mas); 3262 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3263 gap = mas_leaf_max_gap(&l_mas); 3264 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3265 mas_ascend(mas); 3266 3267 if (in_rcu) 3268 mas_replace(mas, false); 3269 3270 mas_update_gap(mas); 3271 } 3272 3273 /* 3274 * mas_split_final_node() - Split the final node in a subtree operation. 3275 * @mast: the maple subtree state 3276 * @mas: The maple state 3277 * @height: The height of the tree in case it's a new root. 3278 */ 3279 static inline bool mas_split_final_node(struct maple_subtree_state *mast, 3280 struct ma_state *mas, int height) 3281 { 3282 struct maple_enode *ancestor; 3283 3284 if (mte_is_root(mas->node)) { 3285 if (mt_is_alloc(mas->tree)) 3286 mast->bn->type = maple_arange_64; 3287 else 3288 mast->bn->type = maple_range_64; 3289 mas->depth = height; 3290 } 3291 /* 3292 * Only a single node is used here, could be root. 3293 * The Big_node data should just fit in a single node. 3294 */ 3295 ancestor = mas_new_ma_node(mas, mast->bn); 3296 mte_set_parent(mast->l->node, ancestor, mast->l->offset); 3297 mte_set_parent(mast->r->node, ancestor, mast->r->offset); 3298 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3299 3300 mast->l->node = ancestor; 3301 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3302 mas->offset = mast->bn->b_end - 1; 3303 return true; 3304 } 3305 3306 /* 3307 * mast_fill_bnode() - Copy data into the big node in the subtree state 3308 * @mast: The maple subtree state 3309 * @mas: the maple state 3310 * @skip: The number of entries to skip for new nodes insertion. 3311 */ 3312 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3313 struct ma_state *mas, 3314 unsigned char skip) 3315 { 3316 bool cp = true; 3317 struct maple_enode *old = mas->node; 3318 unsigned char split; 3319 3320 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3321 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3322 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3323 mast->bn->b_end = 0; 3324 3325 if (mte_is_root(mas->node)) { 3326 cp = false; 3327 } else { 3328 mas_ascend(mas); 3329 mat_add(mast->free, old); 3330 mas->offset = mte_parent_slot(mas->node); 3331 } 3332 3333 if (cp && mast->l->offset) 3334 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3335 3336 split = mast->bn->b_end; 3337 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3338 mast->r->offset = mast->bn->b_end; 3339 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3340 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3341 cp = false; 3342 3343 if (cp) 3344 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3345 mast->bn, mast->bn->b_end); 3346 3347 mast->bn->b_end--; 3348 mast->bn->type = mte_node_type(mas->node); 3349 } 3350 3351 /* 3352 * mast_split_data() - Split the data in the subtree state big node into regular 3353 * nodes. 3354 * @mast: The maple subtree state 3355 * @mas: The maple state 3356 * @split: The location to split the big node 3357 */ 3358 static inline void mast_split_data(struct maple_subtree_state *mast, 3359 struct ma_state *mas, unsigned char split) 3360 { 3361 unsigned char p_slot; 3362 3363 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3364 mte_set_pivot(mast->r->node, 0, mast->r->max); 3365 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3366 mast->l->offset = mte_parent_slot(mas->node); 3367 mast->l->max = mast->bn->pivot[split]; 3368 mast->r->min = mast->l->max + 1; 3369 if (mte_is_leaf(mas->node)) 3370 return; 3371 3372 p_slot = mast->orig_l->offset; 3373 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3374 &p_slot, split); 3375 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3376 &p_slot, split); 3377 } 3378 3379 /* 3380 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3381 * data to the right or left node if there is room. 3382 * @mas: The maple state 3383 * @height: The current height of the maple state 3384 * @mast: The maple subtree state 3385 * @left: Push left or not. 3386 * 3387 * Keeping the height of the tree low means faster lookups. 3388 * 3389 * Return: True if pushed, false otherwise. 3390 */ 3391 static inline bool mas_push_data(struct ma_state *mas, int height, 3392 struct maple_subtree_state *mast, bool left) 3393 { 3394 unsigned char slot_total = mast->bn->b_end; 3395 unsigned char end, space, split; 3396 3397 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3398 tmp_mas = *mas; 3399 tmp_mas.depth = mast->l->depth; 3400 3401 if (left && !mas_prev_sibling(&tmp_mas)) 3402 return false; 3403 else if (!left && !mas_next_sibling(&tmp_mas)) 3404 return false; 3405 3406 end = mas_data_end(&tmp_mas); 3407 slot_total += end; 3408 space = 2 * mt_slot_count(mas->node) - 2; 3409 /* -2 instead of -1 to ensure there isn't a triple split */ 3410 if (ma_is_leaf(mast->bn->type)) 3411 space--; 3412 3413 if (mas->max == ULONG_MAX) 3414 space--; 3415 3416 if (slot_total >= space) 3417 return false; 3418 3419 /* Get the data; Fill mast->bn */ 3420 mast->bn->b_end++; 3421 if (left) { 3422 mab_shift_right(mast->bn, end + 1); 3423 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3424 mast->bn->b_end = slot_total + 1; 3425 } else { 3426 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3427 } 3428 3429 /* Configure mast for splitting of mast->bn */ 3430 split = mt_slots[mast->bn->type] - 2; 3431 if (left) { 3432 /* Switch mas to prev node */ 3433 mat_add(mast->free, mas->node); 3434 *mas = tmp_mas; 3435 /* Start using mast->l for the left side. */ 3436 tmp_mas.node = mast->l->node; 3437 *mast->l = tmp_mas; 3438 } else { 3439 mat_add(mast->free, tmp_mas.node); 3440 tmp_mas.node = mast->r->node; 3441 *mast->r = tmp_mas; 3442 split = slot_total - split; 3443 } 3444 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3445 /* Update parent slot for split calculation. */ 3446 if (left) 3447 mast->orig_l->offset += end + 1; 3448 3449 mast_split_data(mast, mas, split); 3450 mast_fill_bnode(mast, mas, 2); 3451 mas_split_final_node(mast, mas, height + 1); 3452 return true; 3453 } 3454 3455 /* 3456 * mas_split() - Split data that is too big for one node into two. 3457 * @mas: The maple state 3458 * @b_node: The maple big node 3459 * Return: 1 on success, 0 on failure. 3460 */ 3461 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3462 { 3463 struct maple_subtree_state mast; 3464 int height = 0; 3465 unsigned char mid_split, split = 0; 3466 3467 /* 3468 * Splitting is handled differently from any other B-tree; the Maple 3469 * Tree splits upwards. Splitting up means that the split operation 3470 * occurs when the walk of the tree hits the leaves and not on the way 3471 * down. The reason for splitting up is that it is impossible to know 3472 * how much space will be needed until the leaf is (or leaves are) 3473 * reached. Since overwriting data is allowed and a range could 3474 * overwrite more than one range or result in changing one entry into 3 3475 * entries, it is impossible to know if a split is required until the 3476 * data is examined. 3477 * 3478 * Splitting is a balancing act between keeping allocations to a minimum 3479 * and avoiding a 'jitter' event where a tree is expanded to make room 3480 * for an entry followed by a contraction when the entry is removed. To 3481 * accomplish the balance, there are empty slots remaining in both left 3482 * and right nodes after a split. 3483 */ 3484 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3485 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3486 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3487 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3488 MA_TOPIARY(mat, mas->tree); 3489 3490 trace_ma_op(__func__, mas); 3491 mas->depth = mas_mt_height(mas); 3492 /* Allocation failures will happen early. */ 3493 mas_node_count(mas, 1 + mas->depth * 2); 3494 if (mas_is_err(mas)) 3495 return 0; 3496 3497 mast.l = &l_mas; 3498 mast.r = &r_mas; 3499 mast.orig_l = &prev_l_mas; 3500 mast.orig_r = &prev_r_mas; 3501 mast.free = &mat; 3502 mast.bn = b_node; 3503 3504 while (height++ <= mas->depth) { 3505 if (mt_slots[b_node->type] > b_node->b_end) { 3506 mas_split_final_node(&mast, mas, height); 3507 break; 3508 } 3509 3510 l_mas = r_mas = *mas; 3511 l_mas.node = mas_new_ma_node(mas, b_node); 3512 r_mas.node = mas_new_ma_node(mas, b_node); 3513 /* 3514 * Another way that 'jitter' is avoided is to terminate a split up early if the 3515 * left or right node has space to spare. This is referred to as "pushing left" 3516 * or "pushing right" and is similar to the B* tree, except the nodes left or 3517 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3518 * is a significant savings. 3519 */ 3520 /* Try to push left. */ 3521 if (mas_push_data(mas, height, &mast, true)) 3522 break; 3523 3524 /* Try to push right. */ 3525 if (mas_push_data(mas, height, &mast, false)) 3526 break; 3527 3528 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3529 mast_split_data(&mast, mas, split); 3530 /* 3531 * Usually correct, mab_mas_cp in the above call overwrites 3532 * r->max. 3533 */ 3534 mast.r->max = mas->max; 3535 mast_fill_bnode(&mast, mas, 1); 3536 prev_l_mas = *mast.l; 3537 prev_r_mas = *mast.r; 3538 } 3539 3540 /* Set the original node as dead */ 3541 mat_add(mast.free, mas->node); 3542 mas->node = l_mas.node; 3543 mas_wmb_replace(mas, mast.free, NULL); 3544 mtree_range_walk(mas); 3545 return 1; 3546 } 3547 3548 /* 3549 * mas_reuse_node() - Reuse the node to store the data. 3550 * @wr_mas: The maple write state 3551 * @bn: The maple big node 3552 * @end: The end of the data. 3553 * 3554 * Will always return false in RCU mode. 3555 * 3556 * Return: True if node was reused, false otherwise. 3557 */ 3558 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3559 struct maple_big_node *bn, unsigned char end) 3560 { 3561 /* Need to be rcu safe. */ 3562 if (mt_in_rcu(wr_mas->mas->tree)) 3563 return false; 3564 3565 if (end > bn->b_end) { 3566 int clear = mt_slots[wr_mas->type] - bn->b_end; 3567 3568 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3569 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3570 } 3571 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3572 return true; 3573 } 3574 3575 /* 3576 * mas_commit_b_node() - Commit the big node into the tree. 3577 * @wr_mas: The maple write state 3578 * @b_node: The maple big node 3579 * @end: The end of the data. 3580 */ 3581 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas, 3582 struct maple_big_node *b_node, unsigned char end) 3583 { 3584 struct maple_node *node; 3585 unsigned char b_end = b_node->b_end; 3586 enum maple_type b_type = b_node->type; 3587 3588 if ((b_end < mt_min_slots[b_type]) && 3589 (!mte_is_root(wr_mas->mas->node)) && 3590 (mas_mt_height(wr_mas->mas) > 1)) 3591 return mas_rebalance(wr_mas->mas, b_node); 3592 3593 if (b_end >= mt_slots[b_type]) 3594 return mas_split(wr_mas->mas, b_node); 3595 3596 if (mas_reuse_node(wr_mas, b_node, end)) 3597 goto reuse_node; 3598 3599 mas_node_count(wr_mas->mas, 1); 3600 if (mas_is_err(wr_mas->mas)) 3601 return 0; 3602 3603 node = mas_pop_node(wr_mas->mas); 3604 node->parent = mas_mn(wr_mas->mas)->parent; 3605 wr_mas->mas->node = mt_mk_node(node, b_type); 3606 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3607 mas_replace(wr_mas->mas, false); 3608 reuse_node: 3609 mas_update_gap(wr_mas->mas); 3610 return 1; 3611 } 3612 3613 /* 3614 * mas_root_expand() - Expand a root to a node 3615 * @mas: The maple state 3616 * @entry: The entry to store into the tree 3617 */ 3618 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3619 { 3620 void *contents = mas_root_locked(mas); 3621 enum maple_type type = maple_leaf_64; 3622 struct maple_node *node; 3623 void __rcu **slots; 3624 unsigned long *pivots; 3625 int slot = 0; 3626 3627 mas_node_count(mas, 1); 3628 if (unlikely(mas_is_err(mas))) 3629 return 0; 3630 3631 node = mas_pop_node(mas); 3632 pivots = ma_pivots(node, type); 3633 slots = ma_slots(node, type); 3634 node->parent = ma_parent_ptr( 3635 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3636 mas->node = mt_mk_node(node, type); 3637 3638 if (mas->index) { 3639 if (contents) { 3640 rcu_assign_pointer(slots[slot], contents); 3641 if (likely(mas->index > 1)) 3642 slot++; 3643 } 3644 pivots[slot++] = mas->index - 1; 3645 } 3646 3647 rcu_assign_pointer(slots[slot], entry); 3648 mas->offset = slot; 3649 pivots[slot] = mas->last; 3650 if (mas->last != ULONG_MAX) 3651 slot++; 3652 mas->depth = 1; 3653 mas_set_height(mas); 3654 3655 /* swap the new root into the tree */ 3656 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3657 ma_set_meta(node, maple_leaf_64, 0, slot); 3658 return slot; 3659 } 3660 3661 static inline void mas_store_root(struct ma_state *mas, void *entry) 3662 { 3663 if (likely((mas->last != 0) || (mas->index != 0))) 3664 mas_root_expand(mas, entry); 3665 else if (((unsigned long) (entry) & 3) == 2) 3666 mas_root_expand(mas, entry); 3667 else { 3668 rcu_assign_pointer(mas->tree->ma_root, entry); 3669 mas->node = MAS_START; 3670 } 3671 } 3672 3673 /* 3674 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3675 * spans the node. 3676 * @mas: The maple state 3677 * @piv: The pivot value being written 3678 * @type: The maple node type 3679 * @entry: The data to write 3680 * 3681 * Spanning writes are writes that start in one node and end in another OR if 3682 * the write of a %NULL will cause the node to end with a %NULL. 3683 * 3684 * Return: True if this is a spanning write, false otherwise. 3685 */ 3686 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3687 { 3688 unsigned long max; 3689 unsigned long last = wr_mas->mas->last; 3690 unsigned long piv = wr_mas->r_max; 3691 enum maple_type type = wr_mas->type; 3692 void *entry = wr_mas->entry; 3693 3694 /* Contained in this pivot */ 3695 if (piv > last) 3696 return false; 3697 3698 max = wr_mas->mas->max; 3699 if (unlikely(ma_is_leaf(type))) { 3700 /* Fits in the node, but may span slots. */ 3701 if (last < max) 3702 return false; 3703 3704 /* Writes to the end of the node but not null. */ 3705 if ((last == max) && entry) 3706 return false; 3707 3708 /* 3709 * Writing ULONG_MAX is not a spanning write regardless of the 3710 * value being written as long as the range fits in the node. 3711 */ 3712 if ((last == ULONG_MAX) && (last == max)) 3713 return false; 3714 } else if (piv == last) { 3715 if (entry) 3716 return false; 3717 3718 /* Detect spanning store wr walk */ 3719 if (last == ULONG_MAX) 3720 return false; 3721 } 3722 3723 trace_ma_write(__func__, wr_mas->mas, piv, entry); 3724 3725 return true; 3726 } 3727 3728 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3729 { 3730 wr_mas->type = mte_node_type(wr_mas->mas->node); 3731 mas_wr_node_walk(wr_mas); 3732 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3733 } 3734 3735 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3736 { 3737 wr_mas->mas->max = wr_mas->r_max; 3738 wr_mas->mas->min = wr_mas->r_min; 3739 wr_mas->mas->node = wr_mas->content; 3740 wr_mas->mas->offset = 0; 3741 wr_mas->mas->depth++; 3742 } 3743 /* 3744 * mas_wr_walk() - Walk the tree for a write. 3745 * @wr_mas: The maple write state 3746 * 3747 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3748 * 3749 * Return: True if it's contained in a node, false on spanning write. 3750 */ 3751 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3752 { 3753 struct ma_state *mas = wr_mas->mas; 3754 3755 while (true) { 3756 mas_wr_walk_descend(wr_mas); 3757 if (unlikely(mas_is_span_wr(wr_mas))) 3758 return false; 3759 3760 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3761 mas->offset); 3762 if (ma_is_leaf(wr_mas->type)) 3763 return true; 3764 3765 mas_wr_walk_traverse(wr_mas); 3766 } 3767 3768 return true; 3769 } 3770 3771 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3772 { 3773 struct ma_state *mas = wr_mas->mas; 3774 3775 while (true) { 3776 mas_wr_walk_descend(wr_mas); 3777 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3778 mas->offset); 3779 if (ma_is_leaf(wr_mas->type)) 3780 return true; 3781 mas_wr_walk_traverse(wr_mas); 3782 3783 } 3784 return true; 3785 } 3786 /* 3787 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3788 * @l_wr_mas: The left maple write state 3789 * @r_wr_mas: The right maple write state 3790 */ 3791 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3792 struct ma_wr_state *r_wr_mas) 3793 { 3794 struct ma_state *r_mas = r_wr_mas->mas; 3795 struct ma_state *l_mas = l_wr_mas->mas; 3796 unsigned char l_slot; 3797 3798 l_slot = l_mas->offset; 3799 if (!l_wr_mas->content) 3800 l_mas->index = l_wr_mas->r_min; 3801 3802 if ((l_mas->index == l_wr_mas->r_min) && 3803 (l_slot && 3804 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3805 if (l_slot > 1) 3806 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3807 else 3808 l_mas->index = l_mas->min; 3809 3810 l_mas->offset = l_slot - 1; 3811 } 3812 3813 if (!r_wr_mas->content) { 3814 if (r_mas->last < r_wr_mas->r_max) 3815 r_mas->last = r_wr_mas->r_max; 3816 r_mas->offset++; 3817 } else if ((r_mas->last == r_wr_mas->r_max) && 3818 (r_mas->last < r_mas->max) && 3819 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3820 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3821 r_wr_mas->type, r_mas->offset + 1); 3822 r_mas->offset++; 3823 } 3824 } 3825 3826 static inline void *mas_state_walk(struct ma_state *mas) 3827 { 3828 void *entry; 3829 3830 entry = mas_start(mas); 3831 if (mas_is_none(mas)) 3832 return NULL; 3833 3834 if (mas_is_ptr(mas)) 3835 return entry; 3836 3837 return mtree_range_walk(mas); 3838 } 3839 3840 /* 3841 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3842 * to date. 3843 * 3844 * @mas: The maple state. 3845 * 3846 * Note: Leaves mas in undesirable state. 3847 * Return: The entry for @mas->index or %NULL on dead node. 3848 */ 3849 static inline void *mtree_lookup_walk(struct ma_state *mas) 3850 { 3851 unsigned long *pivots; 3852 unsigned char offset; 3853 struct maple_node *node; 3854 struct maple_enode *next; 3855 enum maple_type type; 3856 void __rcu **slots; 3857 unsigned char end; 3858 unsigned long max; 3859 3860 next = mas->node; 3861 max = ULONG_MAX; 3862 do { 3863 offset = 0; 3864 node = mte_to_node(next); 3865 type = mte_node_type(next); 3866 pivots = ma_pivots(node, type); 3867 end = ma_data_end(node, type, pivots, max); 3868 if (unlikely(ma_dead_node(node))) 3869 goto dead_node; 3870 3871 if (pivots[offset] >= mas->index) 3872 goto next; 3873 3874 do { 3875 offset++; 3876 } while ((offset < end) && (pivots[offset] < mas->index)); 3877 3878 if (likely(offset > end)) 3879 max = pivots[offset]; 3880 3881 next: 3882 slots = ma_slots(node, type); 3883 next = mt_slot(mas->tree, slots, offset); 3884 if (unlikely(ma_dead_node(node))) 3885 goto dead_node; 3886 } while (!ma_is_leaf(type)); 3887 3888 return (void *)next; 3889 3890 dead_node: 3891 mas_reset(mas); 3892 return NULL; 3893 } 3894 3895 /* 3896 * mas_new_root() - Create a new root node that only contains the entry passed 3897 * in. 3898 * @mas: The maple state 3899 * @entry: The entry to store. 3900 * 3901 * Only valid when the index == 0 and the last == ULONG_MAX 3902 * 3903 * Return 0 on error, 1 on success. 3904 */ 3905 static inline int mas_new_root(struct ma_state *mas, void *entry) 3906 { 3907 struct maple_enode *root = mas_root_locked(mas); 3908 enum maple_type type = maple_leaf_64; 3909 struct maple_node *node; 3910 void __rcu **slots; 3911 unsigned long *pivots; 3912 3913 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3914 mas->depth = 0; 3915 mas_set_height(mas); 3916 rcu_assign_pointer(mas->tree->ma_root, entry); 3917 mas->node = MAS_START; 3918 goto done; 3919 } 3920 3921 mas_node_count(mas, 1); 3922 if (mas_is_err(mas)) 3923 return 0; 3924 3925 node = mas_pop_node(mas); 3926 pivots = ma_pivots(node, type); 3927 slots = ma_slots(node, type); 3928 node->parent = ma_parent_ptr( 3929 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3930 mas->node = mt_mk_node(node, type); 3931 rcu_assign_pointer(slots[0], entry); 3932 pivots[0] = mas->last; 3933 mas->depth = 1; 3934 mas_set_height(mas); 3935 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3936 3937 done: 3938 if (xa_is_node(root)) 3939 mte_destroy_walk(root, mas->tree); 3940 3941 return 1; 3942 } 3943 /* 3944 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3945 * and new nodes where necessary, then place the sub-tree in the actual tree. 3946 * Note that mas is expected to point to the node which caused the store to 3947 * span. 3948 * @wr_mas: The maple write state 3949 * 3950 * Return: 0 on error, positive on success. 3951 */ 3952 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3953 { 3954 struct maple_subtree_state mast; 3955 struct maple_big_node b_node; 3956 struct ma_state *mas; 3957 unsigned char height; 3958 3959 /* Left and Right side of spanning store */ 3960 MA_STATE(l_mas, NULL, 0, 0); 3961 MA_STATE(r_mas, NULL, 0, 0); 3962 3963 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3964 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3965 3966 /* 3967 * A store operation that spans multiple nodes is called a spanning 3968 * store and is handled early in the store call stack by the function 3969 * mas_is_span_wr(). When a spanning store is identified, the maple 3970 * state is duplicated. The first maple state walks the left tree path 3971 * to ``index``, the duplicate walks the right tree path to ``last``. 3972 * The data in the two nodes are combined into a single node, two nodes, 3973 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3974 * written to the last entry of a node is considered a spanning store as 3975 * a rebalance is required for the operation to complete and an overflow 3976 * of data may happen. 3977 */ 3978 mas = wr_mas->mas; 3979 trace_ma_op(__func__, mas); 3980 3981 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3982 return mas_new_root(mas, wr_mas->entry); 3983 /* 3984 * Node rebalancing may occur due to this store, so there may be three new 3985 * entries per level plus a new root. 3986 */ 3987 height = mas_mt_height(mas); 3988 mas_node_count(mas, 1 + height * 3); 3989 if (mas_is_err(mas)) 3990 return 0; 3991 3992 /* 3993 * Set up right side. Need to get to the next offset after the spanning 3994 * store to ensure it's not NULL and to combine both the next node and 3995 * the node with the start together. 3996 */ 3997 r_mas = *mas; 3998 /* Avoid overflow, walk to next slot in the tree. */ 3999 if (r_mas.last + 1) 4000 r_mas.last++; 4001 4002 r_mas.index = r_mas.last; 4003 mas_wr_walk_index(&r_wr_mas); 4004 r_mas.last = r_mas.index = mas->last; 4005 4006 /* Set up left side. */ 4007 l_mas = *mas; 4008 mas_wr_walk_index(&l_wr_mas); 4009 4010 if (!wr_mas->entry) { 4011 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 4012 mas->offset = l_mas.offset; 4013 mas->index = l_mas.index; 4014 mas->last = l_mas.last = r_mas.last; 4015 } 4016 4017 /* expanding NULLs may make this cover the entire range */ 4018 if (!l_mas.index && r_mas.last == ULONG_MAX) { 4019 mas_set_range(mas, 0, ULONG_MAX); 4020 return mas_new_root(mas, wr_mas->entry); 4021 } 4022 4023 memset(&b_node, 0, sizeof(struct maple_big_node)); 4024 /* Copy l_mas and store the value in b_node. */ 4025 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end); 4026 /* Copy r_mas into b_node. */ 4027 if (r_mas.offset <= r_wr_mas.node_end) 4028 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end, 4029 &b_node, b_node.b_end + 1); 4030 else 4031 b_node.b_end++; 4032 4033 /* Stop spanning searches by searching for just index. */ 4034 l_mas.index = l_mas.last = mas->index; 4035 4036 mast.bn = &b_node; 4037 mast.orig_l = &l_mas; 4038 mast.orig_r = &r_mas; 4039 /* Combine l_mas and r_mas and split them up evenly again. */ 4040 return mas_spanning_rebalance(mas, &mast, height + 1); 4041 } 4042 4043 /* 4044 * mas_wr_node_store() - Attempt to store the value in a node 4045 * @wr_mas: The maple write state 4046 * 4047 * Attempts to reuse the node, but may allocate. 4048 * 4049 * Return: True if stored, false otherwise 4050 */ 4051 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas) 4052 { 4053 struct ma_state *mas = wr_mas->mas; 4054 void __rcu **dst_slots; 4055 unsigned long *dst_pivots; 4056 unsigned char dst_offset; 4057 unsigned char new_end = wr_mas->node_end; 4058 unsigned char offset; 4059 unsigned char node_slots = mt_slots[wr_mas->type]; 4060 struct maple_node reuse, *newnode; 4061 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type]; 4062 bool in_rcu = mt_in_rcu(mas->tree); 4063 4064 offset = mas->offset; 4065 if (mas->last == wr_mas->r_max) { 4066 /* runs right to the end of the node */ 4067 if (mas->last == mas->max) 4068 new_end = offset; 4069 /* don't copy this offset */ 4070 wr_mas->offset_end++; 4071 } else if (mas->last < wr_mas->r_max) { 4072 /* new range ends in this range */ 4073 if (unlikely(wr_mas->r_max == ULONG_MAX)) 4074 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type); 4075 4076 new_end++; 4077 } else { 4078 if (wr_mas->end_piv == mas->last) 4079 wr_mas->offset_end++; 4080 4081 new_end -= wr_mas->offset_end - offset - 1; 4082 } 4083 4084 /* new range starts within a range */ 4085 if (wr_mas->r_min < mas->index) 4086 new_end++; 4087 4088 /* Not enough room */ 4089 if (new_end >= node_slots) 4090 return false; 4091 4092 /* Not enough data. */ 4093 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 4094 !(mas->mas_flags & MA_STATE_BULK)) 4095 return false; 4096 4097 /* set up node. */ 4098 if (in_rcu) { 4099 mas_node_count(mas, 1); 4100 if (mas_is_err(mas)) 4101 return false; 4102 4103 newnode = mas_pop_node(mas); 4104 } else { 4105 memset(&reuse, 0, sizeof(struct maple_node)); 4106 newnode = &reuse; 4107 } 4108 4109 newnode->parent = mas_mn(mas)->parent; 4110 dst_pivots = ma_pivots(newnode, wr_mas->type); 4111 dst_slots = ma_slots(newnode, wr_mas->type); 4112 /* Copy from start to insert point */ 4113 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1)); 4114 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1)); 4115 dst_offset = offset; 4116 4117 /* Handle insert of new range starting after old range */ 4118 if (wr_mas->r_min < mas->index) { 4119 mas->offset++; 4120 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content); 4121 dst_pivots[dst_offset++] = mas->index - 1; 4122 } 4123 4124 /* Store the new entry and range end. */ 4125 if (dst_offset < max_piv) 4126 dst_pivots[dst_offset] = mas->last; 4127 mas->offset = dst_offset; 4128 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry); 4129 4130 /* 4131 * this range wrote to the end of the node or it overwrote the rest of 4132 * the data 4133 */ 4134 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) { 4135 new_end = dst_offset; 4136 goto done; 4137 } 4138 4139 dst_offset++; 4140 /* Copy to the end of node if necessary. */ 4141 copy_size = wr_mas->node_end - wr_mas->offset_end + 1; 4142 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end, 4143 sizeof(void *) * copy_size); 4144 if (dst_offset < max_piv) { 4145 if (copy_size > max_piv - dst_offset) 4146 copy_size = max_piv - dst_offset; 4147 4148 memcpy(dst_pivots + dst_offset, 4149 wr_mas->pivots + wr_mas->offset_end, 4150 sizeof(unsigned long) * copy_size); 4151 } 4152 4153 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1)) 4154 dst_pivots[new_end] = mas->max; 4155 4156 done: 4157 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end); 4158 if (in_rcu) { 4159 mas->node = mt_mk_node(newnode, wr_mas->type); 4160 mas_replace(mas, false); 4161 } else { 4162 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 4163 } 4164 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4165 mas_update_gap(mas); 4166 return true; 4167 } 4168 4169 /* 4170 * mas_wr_slot_store: Attempt to store a value in a slot. 4171 * @wr_mas: the maple write state 4172 * 4173 * Return: True if stored, false otherwise 4174 */ 4175 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 4176 { 4177 struct ma_state *mas = wr_mas->mas; 4178 unsigned long lmax; /* Logical max. */ 4179 unsigned char offset = mas->offset; 4180 4181 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) || 4182 (offset != wr_mas->node_end))) 4183 return false; 4184 4185 if (offset == wr_mas->node_end - 1) 4186 lmax = mas->max; 4187 else 4188 lmax = wr_mas->pivots[offset + 1]; 4189 4190 /* going to overwrite too many slots. */ 4191 if (lmax < mas->last) 4192 return false; 4193 4194 if (wr_mas->r_min == mas->index) { 4195 /* overwriting two or more ranges with one. */ 4196 if (lmax == mas->last) 4197 return false; 4198 4199 /* Overwriting all of offset and a portion of offset + 1. */ 4200 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry); 4201 wr_mas->pivots[offset] = mas->last; 4202 goto done; 4203 } 4204 4205 /* Doesn't end on the next range end. */ 4206 if (lmax != mas->last) 4207 return false; 4208 4209 /* Overwriting a portion of offset and all of offset + 1 */ 4210 if ((offset + 1 < mt_pivots[wr_mas->type]) && 4211 (wr_mas->entry || wr_mas->pivots[offset + 1])) 4212 wr_mas->pivots[offset + 1] = mas->last; 4213 4214 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry); 4215 wr_mas->pivots[offset] = mas->index - 1; 4216 mas->offset++; /* Keep mas accurate. */ 4217 4218 done: 4219 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4220 mas_update_gap(mas); 4221 return true; 4222 } 4223 4224 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4225 { 4226 while ((wr_mas->mas->last > wr_mas->end_piv) && 4227 (wr_mas->offset_end < wr_mas->node_end)) 4228 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end]; 4229 4230 if (wr_mas->mas->last > wr_mas->end_piv) 4231 wr_mas->end_piv = wr_mas->mas->max; 4232 } 4233 4234 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4235 { 4236 struct ma_state *mas = wr_mas->mas; 4237 4238 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end]) 4239 mas->last = wr_mas->end_piv; 4240 4241 /* Check next slot(s) if we are overwriting the end */ 4242 if ((mas->last == wr_mas->end_piv) && 4243 (wr_mas->node_end != wr_mas->offset_end) && 4244 !wr_mas->slots[wr_mas->offset_end + 1]) { 4245 wr_mas->offset_end++; 4246 if (wr_mas->offset_end == wr_mas->node_end) 4247 mas->last = mas->max; 4248 else 4249 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4250 wr_mas->end_piv = mas->last; 4251 } 4252 4253 if (!wr_mas->content) { 4254 /* If this one is null, the next and prev are not */ 4255 mas->index = wr_mas->r_min; 4256 } else { 4257 /* Check prev slot if we are overwriting the start */ 4258 if (mas->index == wr_mas->r_min && mas->offset && 4259 !wr_mas->slots[mas->offset - 1]) { 4260 mas->offset--; 4261 wr_mas->r_min = mas->index = 4262 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4263 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4264 } 4265 } 4266 } 4267 4268 static inline bool mas_wr_append(struct ma_wr_state *wr_mas) 4269 { 4270 unsigned char end = wr_mas->node_end; 4271 unsigned char new_end = end + 1; 4272 struct ma_state *mas = wr_mas->mas; 4273 unsigned char node_pivots = mt_pivots[wr_mas->type]; 4274 4275 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) { 4276 if (new_end < node_pivots) 4277 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4278 4279 if (new_end < node_pivots) 4280 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4281 4282 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry); 4283 mas->offset = new_end; 4284 wr_mas->pivots[end] = mas->index - 1; 4285 4286 return true; 4287 } 4288 4289 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) { 4290 if (new_end < node_pivots) 4291 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4292 4293 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content); 4294 if (new_end < node_pivots) 4295 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4296 4297 wr_mas->pivots[end] = mas->last; 4298 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry); 4299 return true; 4300 } 4301 4302 return false; 4303 } 4304 4305 /* 4306 * mas_wr_bnode() - Slow path for a modification. 4307 * @wr_mas: The write maple state 4308 * 4309 * This is where split, rebalance end up. 4310 */ 4311 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4312 { 4313 struct maple_big_node b_node; 4314 4315 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4316 memset(&b_node, 0, sizeof(struct maple_big_node)); 4317 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4318 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end); 4319 } 4320 4321 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4322 { 4323 unsigned char node_slots; 4324 unsigned char node_size; 4325 struct ma_state *mas = wr_mas->mas; 4326 4327 /* Direct replacement */ 4328 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4329 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4330 if (!!wr_mas->entry ^ !!wr_mas->content) 4331 mas_update_gap(mas); 4332 return; 4333 } 4334 4335 /* Attempt to append */ 4336 node_slots = mt_slots[wr_mas->type]; 4337 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2; 4338 if (mas->max == ULONG_MAX) 4339 node_size++; 4340 4341 /* slot and node store will not fit, go to the slow path */ 4342 if (unlikely(node_size >= node_slots)) 4343 goto slow_path; 4344 4345 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) && 4346 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) { 4347 if (!wr_mas->content || !wr_mas->entry) 4348 mas_update_gap(mas); 4349 return; 4350 } 4351 4352 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas)) 4353 return; 4354 else if (mas_wr_node_store(wr_mas)) 4355 return; 4356 4357 if (mas_is_err(mas)) 4358 return; 4359 4360 slow_path: 4361 mas_wr_bnode(wr_mas); 4362 } 4363 4364 /* 4365 * mas_wr_store_entry() - Internal call to store a value 4366 * @mas: The maple state 4367 * @entry: The entry to store. 4368 * 4369 * Return: The contents that was stored at the index. 4370 */ 4371 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4372 { 4373 struct ma_state *mas = wr_mas->mas; 4374 4375 wr_mas->content = mas_start(mas); 4376 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4377 mas_store_root(mas, wr_mas->entry); 4378 return wr_mas->content; 4379 } 4380 4381 if (unlikely(!mas_wr_walk(wr_mas))) { 4382 mas_wr_spanning_store(wr_mas); 4383 return wr_mas->content; 4384 } 4385 4386 /* At this point, we are at the leaf node that needs to be altered. */ 4387 wr_mas->end_piv = wr_mas->r_max; 4388 mas_wr_end_piv(wr_mas); 4389 4390 if (!wr_mas->entry) 4391 mas_wr_extend_null(wr_mas); 4392 4393 /* New root for a single pointer */ 4394 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4395 mas_new_root(mas, wr_mas->entry); 4396 return wr_mas->content; 4397 } 4398 4399 mas_wr_modify(wr_mas); 4400 return wr_mas->content; 4401 } 4402 4403 /** 4404 * mas_insert() - Internal call to insert a value 4405 * @mas: The maple state 4406 * @entry: The entry to store 4407 * 4408 * Return: %NULL or the contents that already exists at the requested index 4409 * otherwise. The maple state needs to be checked for error conditions. 4410 */ 4411 static inline void *mas_insert(struct ma_state *mas, void *entry) 4412 { 4413 MA_WR_STATE(wr_mas, mas, entry); 4414 4415 /* 4416 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4417 * tree. If the insert fits exactly into an existing gap with a value 4418 * of NULL, then the slot only needs to be written with the new value. 4419 * If the range being inserted is adjacent to another range, then only a 4420 * single pivot needs to be inserted (as well as writing the entry). If 4421 * the new range is within a gap but does not touch any other ranges, 4422 * then two pivots need to be inserted: the start - 1, and the end. As 4423 * usual, the entry must be written. Most operations require a new node 4424 * to be allocated and replace an existing node to ensure RCU safety, 4425 * when in RCU mode. The exception to requiring a newly allocated node 4426 * is when inserting at the end of a node (appending). When done 4427 * carefully, appending can reuse the node in place. 4428 */ 4429 wr_mas.content = mas_start(mas); 4430 if (wr_mas.content) 4431 goto exists; 4432 4433 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4434 mas_store_root(mas, entry); 4435 return NULL; 4436 } 4437 4438 /* spanning writes always overwrite something */ 4439 if (!mas_wr_walk(&wr_mas)) 4440 goto exists; 4441 4442 /* At this point, we are at the leaf node that needs to be altered. */ 4443 wr_mas.offset_end = mas->offset; 4444 wr_mas.end_piv = wr_mas.r_max; 4445 4446 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4447 goto exists; 4448 4449 if (!entry) 4450 return NULL; 4451 4452 mas_wr_modify(&wr_mas); 4453 return wr_mas.content; 4454 4455 exists: 4456 mas_set_err(mas, -EEXIST); 4457 return wr_mas.content; 4458 4459 } 4460 4461 /* 4462 * mas_prev_node() - Find the prev non-null entry at the same level in the 4463 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE. 4464 * @mas: The maple state 4465 * @min: The lower limit to search 4466 * 4467 * The prev node value will be mas->node[mas->offset] or MAS_NONE. 4468 * Return: 1 if the node is dead, 0 otherwise. 4469 */ 4470 static inline int mas_prev_node(struct ma_state *mas, unsigned long min) 4471 { 4472 enum maple_type mt; 4473 int offset, level; 4474 void __rcu **slots; 4475 struct maple_node *node; 4476 struct maple_enode *enode; 4477 unsigned long *pivots; 4478 4479 if (mas_is_none(mas)) 4480 return 0; 4481 4482 level = 0; 4483 do { 4484 node = mas_mn(mas); 4485 if (ma_is_root(node)) 4486 goto no_entry; 4487 4488 /* Walk up. */ 4489 if (unlikely(mas_ascend(mas))) 4490 return 1; 4491 offset = mas->offset; 4492 level++; 4493 } while (!offset); 4494 4495 offset--; 4496 mt = mte_node_type(mas->node); 4497 node = mas_mn(mas); 4498 slots = ma_slots(node, mt); 4499 pivots = ma_pivots(node, mt); 4500 mas->max = pivots[offset]; 4501 if (offset) 4502 mas->min = pivots[offset - 1] + 1; 4503 if (unlikely(ma_dead_node(node))) 4504 return 1; 4505 4506 if (mas->max < min) 4507 goto no_entry_min; 4508 4509 while (level > 1) { 4510 level--; 4511 enode = mas_slot(mas, slots, offset); 4512 if (unlikely(ma_dead_node(node))) 4513 return 1; 4514 4515 mas->node = enode; 4516 mt = mte_node_type(mas->node); 4517 node = mas_mn(mas); 4518 slots = ma_slots(node, mt); 4519 pivots = ma_pivots(node, mt); 4520 offset = ma_data_end(node, mt, pivots, mas->max); 4521 if (offset) 4522 mas->min = pivots[offset - 1] + 1; 4523 4524 if (offset < mt_pivots[mt]) 4525 mas->max = pivots[offset]; 4526 4527 if (mas->max < min) 4528 goto no_entry; 4529 } 4530 4531 mas->node = mas_slot(mas, slots, offset); 4532 if (unlikely(ma_dead_node(node))) 4533 return 1; 4534 4535 mas->offset = mas_data_end(mas); 4536 if (unlikely(mte_dead_node(mas->node))) 4537 return 1; 4538 4539 return 0; 4540 4541 no_entry_min: 4542 mas->offset = offset; 4543 if (offset) 4544 mas->min = pivots[offset - 1] + 1; 4545 no_entry: 4546 if (unlikely(ma_dead_node(node))) 4547 return 1; 4548 4549 mas->node = MAS_NONE; 4550 return 0; 4551 } 4552 4553 /* 4554 * mas_next_node() - Get the next node at the same level in the tree. 4555 * @mas: The maple state 4556 * @max: The maximum pivot value to check. 4557 * 4558 * The next value will be mas->node[mas->offset] or MAS_NONE. 4559 * Return: 1 on dead node, 0 otherwise. 4560 */ 4561 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node, 4562 unsigned long max) 4563 { 4564 unsigned long min, pivot; 4565 unsigned long *pivots; 4566 struct maple_enode *enode; 4567 int level = 0; 4568 unsigned char offset; 4569 enum maple_type mt; 4570 void __rcu **slots; 4571 4572 if (mas->max >= max) 4573 goto no_entry; 4574 4575 level = 0; 4576 do { 4577 if (ma_is_root(node)) 4578 goto no_entry; 4579 4580 min = mas->max + 1; 4581 if (min > max) 4582 goto no_entry; 4583 4584 if (unlikely(mas_ascend(mas))) 4585 return 1; 4586 4587 offset = mas->offset; 4588 level++; 4589 node = mas_mn(mas); 4590 mt = mte_node_type(mas->node); 4591 pivots = ma_pivots(node, mt); 4592 } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max))); 4593 4594 slots = ma_slots(node, mt); 4595 pivot = mas_safe_pivot(mas, pivots, ++offset, mt); 4596 while (unlikely(level > 1)) { 4597 /* Descend, if necessary */ 4598 enode = mas_slot(mas, slots, offset); 4599 if (unlikely(ma_dead_node(node))) 4600 return 1; 4601 4602 mas->node = enode; 4603 level--; 4604 node = mas_mn(mas); 4605 mt = mte_node_type(mas->node); 4606 slots = ma_slots(node, mt); 4607 pivots = ma_pivots(node, mt); 4608 offset = 0; 4609 pivot = pivots[0]; 4610 } 4611 4612 enode = mas_slot(mas, slots, offset); 4613 if (unlikely(ma_dead_node(node))) 4614 return 1; 4615 4616 mas->node = enode; 4617 mas->min = min; 4618 mas->max = pivot; 4619 return 0; 4620 4621 no_entry: 4622 if (unlikely(ma_dead_node(node))) 4623 return 1; 4624 4625 mas->node = MAS_NONE; 4626 return 0; 4627 } 4628 4629 /* 4630 * mas_next_nentry() - Get the next node entry 4631 * @mas: The maple state 4632 * @max: The maximum value to check 4633 * @*range_start: Pointer to store the start of the range. 4634 * 4635 * Sets @mas->offset to the offset of the next node entry, @mas->last to the 4636 * pivot of the entry. 4637 * 4638 * Return: The next entry, %NULL otherwise 4639 */ 4640 static inline void *mas_next_nentry(struct ma_state *mas, 4641 struct maple_node *node, unsigned long max, enum maple_type type) 4642 { 4643 unsigned char count; 4644 unsigned long pivot; 4645 unsigned long *pivots; 4646 void __rcu **slots; 4647 void *entry; 4648 4649 if (mas->last == mas->max) { 4650 mas->index = mas->max; 4651 return NULL; 4652 } 4653 4654 pivots = ma_pivots(node, type); 4655 slots = ma_slots(node, type); 4656 mas->index = mas_safe_min(mas, pivots, mas->offset); 4657 if (ma_dead_node(node)) 4658 return NULL; 4659 4660 if (mas->index > max) 4661 return NULL; 4662 4663 count = ma_data_end(node, type, pivots, mas->max); 4664 if (mas->offset > count) 4665 return NULL; 4666 4667 while (mas->offset < count) { 4668 pivot = pivots[mas->offset]; 4669 entry = mas_slot(mas, slots, mas->offset); 4670 if (ma_dead_node(node)) 4671 return NULL; 4672 4673 if (entry) 4674 goto found; 4675 4676 if (pivot >= max) 4677 return NULL; 4678 4679 mas->index = pivot + 1; 4680 mas->offset++; 4681 } 4682 4683 if (mas->index > mas->max) { 4684 mas->index = mas->last; 4685 return NULL; 4686 } 4687 4688 pivot = mas_safe_pivot(mas, pivots, mas->offset, type); 4689 entry = mas_slot(mas, slots, mas->offset); 4690 if (ma_dead_node(node)) 4691 return NULL; 4692 4693 if (!pivot) 4694 return NULL; 4695 4696 if (!entry) 4697 return NULL; 4698 4699 found: 4700 mas->last = pivot; 4701 return entry; 4702 } 4703 4704 static inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4705 { 4706 retry: 4707 mas_set(mas, index); 4708 mas_state_walk(mas); 4709 if (mas_is_start(mas)) 4710 goto retry; 4711 } 4712 4713 /* 4714 * mas_next_entry() - Internal function to get the next entry. 4715 * @mas: The maple state 4716 * @limit: The maximum range start. 4717 * 4718 * Set the @mas->node to the next entry and the range_start to 4719 * the beginning value for the entry. Does not check beyond @limit. 4720 * Sets @mas->index and @mas->last to the limit if it is hit. 4721 * Restarts on dead nodes. 4722 * 4723 * Return: the next entry or %NULL. 4724 */ 4725 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4726 { 4727 void *entry = NULL; 4728 struct maple_enode *prev_node; 4729 struct maple_node *node; 4730 unsigned char offset; 4731 unsigned long last; 4732 enum maple_type mt; 4733 4734 last = mas->last; 4735 retry: 4736 offset = mas->offset; 4737 prev_node = mas->node; 4738 node = mas_mn(mas); 4739 mt = mte_node_type(mas->node); 4740 mas->offset++; 4741 if (unlikely(mas->offset >= mt_slots[mt])) { 4742 mas->offset = mt_slots[mt] - 1; 4743 goto next_node; 4744 } 4745 4746 while (!mas_is_none(mas)) { 4747 entry = mas_next_nentry(mas, node, limit, mt); 4748 if (unlikely(ma_dead_node(node))) { 4749 mas_rewalk(mas, last); 4750 goto retry; 4751 } 4752 4753 if (likely(entry)) 4754 return entry; 4755 4756 if (unlikely((mas->index > limit))) 4757 break; 4758 4759 next_node: 4760 prev_node = mas->node; 4761 offset = mas->offset; 4762 if (unlikely(mas_next_node(mas, node, limit))) { 4763 mas_rewalk(mas, last); 4764 goto retry; 4765 } 4766 mas->offset = 0; 4767 node = mas_mn(mas); 4768 mt = mte_node_type(mas->node); 4769 } 4770 4771 mas->index = mas->last = limit; 4772 mas->offset = offset; 4773 mas->node = prev_node; 4774 return NULL; 4775 } 4776 4777 /* 4778 * mas_prev_nentry() - Get the previous node entry. 4779 * @mas: The maple state. 4780 * @limit: The lower limit to check for a value. 4781 * 4782 * Return: the entry, %NULL otherwise. 4783 */ 4784 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit, 4785 unsigned long index) 4786 { 4787 unsigned long pivot, min; 4788 unsigned char offset; 4789 struct maple_node *mn; 4790 enum maple_type mt; 4791 unsigned long *pivots; 4792 void __rcu **slots; 4793 void *entry; 4794 4795 retry: 4796 if (!mas->offset) 4797 return NULL; 4798 4799 mn = mas_mn(mas); 4800 mt = mte_node_type(mas->node); 4801 offset = mas->offset - 1; 4802 if (offset >= mt_slots[mt]) 4803 offset = mt_slots[mt] - 1; 4804 4805 slots = ma_slots(mn, mt); 4806 pivots = ma_pivots(mn, mt); 4807 if (offset == mt_pivots[mt]) 4808 pivot = mas->max; 4809 else 4810 pivot = pivots[offset]; 4811 4812 if (unlikely(ma_dead_node(mn))) { 4813 mas_rewalk(mas, index); 4814 goto retry; 4815 } 4816 4817 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) || 4818 !pivot)) 4819 pivot = pivots[--offset]; 4820 4821 min = mas_safe_min(mas, pivots, offset); 4822 entry = mas_slot(mas, slots, offset); 4823 if (unlikely(ma_dead_node(mn))) { 4824 mas_rewalk(mas, index); 4825 goto retry; 4826 } 4827 4828 if (likely(entry)) { 4829 mas->offset = offset; 4830 mas->last = pivot; 4831 mas->index = min; 4832 } 4833 return entry; 4834 } 4835 4836 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min) 4837 { 4838 void *entry; 4839 4840 retry: 4841 while (likely(!mas_is_none(mas))) { 4842 entry = mas_prev_nentry(mas, min, mas->index); 4843 if (unlikely(mas->last < min)) 4844 goto not_found; 4845 4846 if (likely(entry)) 4847 return entry; 4848 4849 if (unlikely(mas_prev_node(mas, min))) { 4850 mas_rewalk(mas, mas->index); 4851 goto retry; 4852 } 4853 4854 mas->offset++; 4855 } 4856 4857 mas->offset--; 4858 not_found: 4859 mas->index = mas->last = min; 4860 return NULL; 4861 } 4862 4863 /* 4864 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4865 * highest gap address of a given size in a given node and descend. 4866 * @mas: The maple state 4867 * @size: The needed size. 4868 * 4869 * Return: True if found in a leaf, false otherwise. 4870 * 4871 */ 4872 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size) 4873 { 4874 enum maple_type type = mte_node_type(mas->node); 4875 struct maple_node *node = mas_mn(mas); 4876 unsigned long *pivots, *gaps; 4877 void __rcu **slots; 4878 unsigned long gap = 0; 4879 unsigned long max, min, index; 4880 unsigned char offset; 4881 4882 if (unlikely(mas_is_err(mas))) 4883 return true; 4884 4885 if (ma_is_dense(type)) { 4886 /* dense nodes. */ 4887 mas->offset = (unsigned char)(mas->index - mas->min); 4888 return true; 4889 } 4890 4891 pivots = ma_pivots(node, type); 4892 slots = ma_slots(node, type); 4893 gaps = ma_gaps(node, type); 4894 offset = mas->offset; 4895 min = mas_safe_min(mas, pivots, offset); 4896 /* Skip out of bounds. */ 4897 while (mas->last < min) 4898 min = mas_safe_min(mas, pivots, --offset); 4899 4900 max = mas_safe_pivot(mas, pivots, offset, type); 4901 index = mas->index; 4902 while (index <= max) { 4903 gap = 0; 4904 if (gaps) 4905 gap = gaps[offset]; 4906 else if (!mas_slot(mas, slots, offset)) 4907 gap = max - min + 1; 4908 4909 if (gap) { 4910 if ((size <= gap) && (size <= mas->last - min + 1)) 4911 break; 4912 4913 if (!gaps) { 4914 /* Skip the next slot, it cannot be a gap. */ 4915 if (offset < 2) 4916 goto ascend; 4917 4918 offset -= 2; 4919 max = pivots[offset]; 4920 min = mas_safe_min(mas, pivots, offset); 4921 continue; 4922 } 4923 } 4924 4925 if (!offset) 4926 goto ascend; 4927 4928 offset--; 4929 max = min - 1; 4930 min = mas_safe_min(mas, pivots, offset); 4931 } 4932 4933 if (unlikely(index > max)) { 4934 mas_set_err(mas, -EBUSY); 4935 return false; 4936 } 4937 4938 if (unlikely(ma_is_leaf(type))) { 4939 mas->offset = offset; 4940 mas->min = min; 4941 mas->max = min + gap - 1; 4942 return true; 4943 } 4944 4945 /* descend, only happens under lock. */ 4946 mas->node = mas_slot(mas, slots, offset); 4947 mas->min = min; 4948 mas->max = max; 4949 mas->offset = mas_data_end(mas); 4950 return false; 4951 4952 ascend: 4953 if (mte_is_root(mas->node)) 4954 mas_set_err(mas, -EBUSY); 4955 4956 return false; 4957 } 4958 4959 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4960 { 4961 enum maple_type type = mte_node_type(mas->node); 4962 unsigned long pivot, min, gap = 0; 4963 unsigned char offset; 4964 unsigned long *gaps; 4965 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 4966 void __rcu **slots = ma_slots(mas_mn(mas), type); 4967 bool found = false; 4968 4969 if (ma_is_dense(type)) { 4970 mas->offset = (unsigned char)(mas->index - mas->min); 4971 return true; 4972 } 4973 4974 gaps = ma_gaps(mte_to_node(mas->node), type); 4975 offset = mas->offset; 4976 min = mas_safe_min(mas, pivots, offset); 4977 for (; offset < mt_slots[type]; offset++) { 4978 pivot = mas_safe_pivot(mas, pivots, offset, type); 4979 if (offset && !pivot) 4980 break; 4981 4982 /* Not within lower bounds */ 4983 if (mas->index > pivot) 4984 goto next_slot; 4985 4986 if (gaps) 4987 gap = gaps[offset]; 4988 else if (!mas_slot(mas, slots, offset)) 4989 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 4990 else 4991 goto next_slot; 4992 4993 if (gap >= size) { 4994 if (ma_is_leaf(type)) { 4995 found = true; 4996 goto done; 4997 } 4998 if (mas->index <= pivot) { 4999 mas->node = mas_slot(mas, slots, offset); 5000 mas->min = min; 5001 mas->max = pivot; 5002 offset = 0; 5003 break; 5004 } 5005 } 5006 next_slot: 5007 min = pivot + 1; 5008 if (mas->last <= pivot) { 5009 mas_set_err(mas, -EBUSY); 5010 return true; 5011 } 5012 } 5013 5014 if (mte_is_root(mas->node)) 5015 found = true; 5016 done: 5017 mas->offset = offset; 5018 return found; 5019 } 5020 5021 /** 5022 * mas_walk() - Search for @mas->index in the tree. 5023 * @mas: The maple state. 5024 * 5025 * mas->index and mas->last will be set to the range if there is a value. If 5026 * mas->node is MAS_NONE, reset to MAS_START. 5027 * 5028 * Return: the entry at the location or %NULL. 5029 */ 5030 void *mas_walk(struct ma_state *mas) 5031 { 5032 void *entry; 5033 5034 retry: 5035 entry = mas_state_walk(mas); 5036 if (mas_is_start(mas)) 5037 goto retry; 5038 5039 if (mas_is_ptr(mas)) { 5040 if (!mas->index) { 5041 mas->last = 0; 5042 } else { 5043 mas->index = 1; 5044 mas->last = ULONG_MAX; 5045 } 5046 return entry; 5047 } 5048 5049 if (mas_is_none(mas)) { 5050 mas->index = 0; 5051 mas->last = ULONG_MAX; 5052 } 5053 5054 return entry; 5055 } 5056 EXPORT_SYMBOL_GPL(mas_walk); 5057 5058 static inline bool mas_rewind_node(struct ma_state *mas) 5059 { 5060 unsigned char slot; 5061 5062 do { 5063 if (mte_is_root(mas->node)) { 5064 slot = mas->offset; 5065 if (!slot) 5066 return false; 5067 } else { 5068 mas_ascend(mas); 5069 slot = mas->offset; 5070 } 5071 } while (!slot); 5072 5073 mas->offset = --slot; 5074 return true; 5075 } 5076 5077 /* 5078 * mas_skip_node() - Internal function. Skip over a node. 5079 * @mas: The maple state. 5080 * 5081 * Return: true if there is another node, false otherwise. 5082 */ 5083 static inline bool mas_skip_node(struct ma_state *mas) 5084 { 5085 unsigned char slot, slot_count; 5086 unsigned long *pivots; 5087 enum maple_type mt; 5088 5089 mt = mte_node_type(mas->node); 5090 slot_count = mt_slots[mt] - 1; 5091 do { 5092 if (mte_is_root(mas->node)) { 5093 slot = mas->offset; 5094 if (slot > slot_count) { 5095 mas_set_err(mas, -EBUSY); 5096 return false; 5097 } 5098 } else { 5099 mas_ascend(mas); 5100 slot = mas->offset; 5101 mt = mte_node_type(mas->node); 5102 slot_count = mt_slots[mt] - 1; 5103 } 5104 } while (slot > slot_count); 5105 5106 mas->offset = ++slot; 5107 pivots = ma_pivots(mas_mn(mas), mt); 5108 if (slot > 0) 5109 mas->min = pivots[slot - 1] + 1; 5110 5111 if (slot <= slot_count) 5112 mas->max = pivots[slot]; 5113 5114 return true; 5115 } 5116 5117 /* 5118 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5119 * @size 5120 * @mas: The maple state 5121 * @size: The size of the gap required 5122 * 5123 * Search between @mas->index and @mas->last for a gap of @size. 5124 */ 5125 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5126 { 5127 struct maple_enode *last = NULL; 5128 5129 /* 5130 * There are 4 options: 5131 * go to child (descend) 5132 * go back to parent (ascend) 5133 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5134 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5135 */ 5136 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5137 if (last == mas->node) 5138 mas_skip_node(mas); 5139 else 5140 last = mas->node; 5141 } 5142 } 5143 5144 /* 5145 * mas_fill_gap() - Fill a located gap with @entry. 5146 * @mas: The maple state 5147 * @entry: The value to store 5148 * @slot: The offset into the node to store the @entry 5149 * @size: The size of the entry 5150 * @index: The start location 5151 */ 5152 static inline void mas_fill_gap(struct ma_state *mas, void *entry, 5153 unsigned char slot, unsigned long size, unsigned long *index) 5154 { 5155 MA_WR_STATE(wr_mas, mas, entry); 5156 unsigned char pslot = mte_parent_slot(mas->node); 5157 struct maple_enode *mn = mas->node; 5158 unsigned long *pivots; 5159 enum maple_type ptype; 5160 /* 5161 * mas->index is the start address for the search 5162 * which may no longer be needed. 5163 * mas->last is the end address for the search 5164 */ 5165 5166 *index = mas->index; 5167 mas->last = mas->index + size - 1; 5168 5169 /* 5170 * It is possible that using mas->max and mas->min to correctly 5171 * calculate the index and last will cause an issue in the gap 5172 * calculation, so fix the ma_state here 5173 */ 5174 mas_ascend(mas); 5175 ptype = mte_node_type(mas->node); 5176 pivots = ma_pivots(mas_mn(mas), ptype); 5177 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype); 5178 mas->min = mas_safe_min(mas, pivots, pslot); 5179 mas->node = mn; 5180 mas->offset = slot; 5181 mas_wr_store_entry(&wr_mas); 5182 } 5183 5184 /* 5185 * mas_sparse_area() - Internal function. Return upper or lower limit when 5186 * searching for a gap in an empty tree. 5187 * @mas: The maple state 5188 * @min: the minimum range 5189 * @max: The maximum range 5190 * @size: The size of the gap 5191 * @fwd: Searching forward or back 5192 */ 5193 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min, 5194 unsigned long max, unsigned long size, bool fwd) 5195 { 5196 unsigned long start = 0; 5197 5198 if (!unlikely(mas_is_none(mas))) 5199 start++; 5200 /* mas_is_ptr */ 5201 5202 if (start < min) 5203 start = min; 5204 5205 if (fwd) { 5206 mas->index = start; 5207 mas->last = start + size - 1; 5208 return; 5209 } 5210 5211 mas->index = max; 5212 } 5213 5214 /* 5215 * mas_empty_area() - Get the lowest address within the range that is 5216 * sufficient for the size requested. 5217 * @mas: The maple state 5218 * @min: The lowest value of the range 5219 * @max: The highest value of the range 5220 * @size: The size needed 5221 */ 5222 int mas_empty_area(struct ma_state *mas, unsigned long min, 5223 unsigned long max, unsigned long size) 5224 { 5225 unsigned char offset; 5226 unsigned long *pivots; 5227 enum maple_type mt; 5228 5229 if (mas_is_start(mas)) 5230 mas_start(mas); 5231 else if (mas->offset >= 2) 5232 mas->offset -= 2; 5233 else if (!mas_skip_node(mas)) 5234 return -EBUSY; 5235 5236 /* Empty set */ 5237 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5238 mas_sparse_area(mas, min, max, size, true); 5239 return 0; 5240 } 5241 5242 /* The start of the window can only be within these values */ 5243 mas->index = min; 5244 mas->last = max; 5245 mas_awalk(mas, size); 5246 5247 if (unlikely(mas_is_err(mas))) 5248 return xa_err(mas->node); 5249 5250 offset = mas->offset; 5251 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5252 return -EBUSY; 5253 5254 mt = mte_node_type(mas->node); 5255 pivots = ma_pivots(mas_mn(mas), mt); 5256 if (offset) 5257 mas->min = pivots[offset - 1] + 1; 5258 5259 if (offset < mt_pivots[mt]) 5260 mas->max = pivots[offset]; 5261 5262 if (mas->index < mas->min) 5263 mas->index = mas->min; 5264 5265 mas->last = mas->index + size - 1; 5266 return 0; 5267 } 5268 EXPORT_SYMBOL_GPL(mas_empty_area); 5269 5270 /* 5271 * mas_empty_area_rev() - Get the highest address within the range that is 5272 * sufficient for the size requested. 5273 * @mas: The maple state 5274 * @min: The lowest value of the range 5275 * @max: The highest value of the range 5276 * @size: The size needed 5277 */ 5278 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5279 unsigned long max, unsigned long size) 5280 { 5281 struct maple_enode *last = mas->node; 5282 5283 if (mas_is_start(mas)) { 5284 mas_start(mas); 5285 mas->offset = mas_data_end(mas); 5286 } else if (mas->offset >= 2) { 5287 mas->offset -= 2; 5288 } else if (!mas_rewind_node(mas)) { 5289 return -EBUSY; 5290 } 5291 5292 /* Empty set. */ 5293 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5294 mas_sparse_area(mas, min, max, size, false); 5295 return 0; 5296 } 5297 5298 /* The start of the window can only be within these values. */ 5299 mas->index = min; 5300 mas->last = max; 5301 5302 while (!mas_rev_awalk(mas, size)) { 5303 if (last == mas->node) { 5304 if (!mas_rewind_node(mas)) 5305 return -EBUSY; 5306 } else { 5307 last = mas->node; 5308 } 5309 } 5310 5311 if (mas_is_err(mas)) 5312 return xa_err(mas->node); 5313 5314 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5315 return -EBUSY; 5316 5317 /* 5318 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If 5319 * the maximum is outside the window we are searching, then use the last 5320 * location in the search. 5321 * mas->max and mas->min is the range of the gap. 5322 * mas->index and mas->last are currently set to the search range. 5323 */ 5324 5325 /* Trim the upper limit to the max. */ 5326 if (mas->max <= mas->last) 5327 mas->last = mas->max; 5328 5329 mas->index = mas->last - size + 1; 5330 return 0; 5331 } 5332 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5333 5334 static inline int mas_alloc(struct ma_state *mas, void *entry, 5335 unsigned long size, unsigned long *index) 5336 { 5337 unsigned long min; 5338 5339 mas_start(mas); 5340 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5341 mas_root_expand(mas, entry); 5342 if (mas_is_err(mas)) 5343 return xa_err(mas->node); 5344 5345 if (!mas->index) 5346 return mte_pivot(mas->node, 0); 5347 return mte_pivot(mas->node, 1); 5348 } 5349 5350 /* Must be walking a tree. */ 5351 mas_awalk(mas, size); 5352 if (mas_is_err(mas)) 5353 return xa_err(mas->node); 5354 5355 if (mas->offset == MAPLE_NODE_SLOTS) 5356 goto no_gap; 5357 5358 /* 5359 * At this point, mas->node points to the right node and we have an 5360 * offset that has a sufficient gap. 5361 */ 5362 min = mas->min; 5363 if (mas->offset) 5364 min = mte_pivot(mas->node, mas->offset - 1) + 1; 5365 5366 if (mas->index < min) 5367 mas->index = min; 5368 5369 mas_fill_gap(mas, entry, mas->offset, size, index); 5370 return 0; 5371 5372 no_gap: 5373 return -EBUSY; 5374 } 5375 5376 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min, 5377 unsigned long max, void *entry, 5378 unsigned long size, unsigned long *index) 5379 { 5380 int ret = 0; 5381 5382 ret = mas_empty_area_rev(mas, min, max, size); 5383 if (ret) 5384 return ret; 5385 5386 if (mas_is_err(mas)) 5387 return xa_err(mas->node); 5388 5389 if (mas->offset == MAPLE_NODE_SLOTS) 5390 goto no_gap; 5391 5392 mas_fill_gap(mas, entry, mas->offset, size, index); 5393 return 0; 5394 5395 no_gap: 5396 return -EBUSY; 5397 } 5398 5399 /* 5400 * mas_dead_leaves() - Mark all leaves of a node as dead. 5401 * @mas: The maple state 5402 * @slots: Pointer to the slot array 5403 * 5404 * Must hold the write lock. 5405 * 5406 * Return: The number of leaves marked as dead. 5407 */ 5408 static inline 5409 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots) 5410 { 5411 struct maple_node *node; 5412 enum maple_type type; 5413 void *entry; 5414 int offset; 5415 5416 for (offset = 0; offset < mt_slot_count(mas->node); offset++) { 5417 entry = mas_slot_locked(mas, slots, offset); 5418 type = mte_node_type(entry); 5419 node = mte_to_node(entry); 5420 /* Use both node and type to catch LE & BE metadata */ 5421 if (!node || !type) 5422 break; 5423 5424 mte_set_node_dead(entry); 5425 smp_wmb(); /* Needed for RCU */ 5426 node->type = type; 5427 rcu_assign_pointer(slots[offset], node); 5428 } 5429 5430 return offset; 5431 } 5432 5433 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset) 5434 { 5435 struct maple_node *node, *next; 5436 void __rcu **slots = NULL; 5437 5438 next = mas_mn(mas); 5439 do { 5440 mas->node = ma_enode_ptr(next); 5441 node = mas_mn(mas); 5442 slots = ma_slots(node, node->type); 5443 next = mas_slot_locked(mas, slots, offset); 5444 offset = 0; 5445 } while (!ma_is_leaf(next->type)); 5446 5447 return slots; 5448 } 5449 5450 static void mt_free_walk(struct rcu_head *head) 5451 { 5452 void __rcu **slots; 5453 struct maple_node *node, *start; 5454 struct maple_tree mt; 5455 unsigned char offset; 5456 enum maple_type type; 5457 MA_STATE(mas, &mt, 0, 0); 5458 5459 node = container_of(head, struct maple_node, rcu); 5460 5461 if (ma_is_leaf(node->type)) 5462 goto free_leaf; 5463 5464 mt_init_flags(&mt, node->ma_flags); 5465 mas_lock(&mas); 5466 start = node; 5467 mas.node = mt_mk_node(node, node->type); 5468 slots = mas_dead_walk(&mas, 0); 5469 node = mas_mn(&mas); 5470 do { 5471 mt_free_bulk(node->slot_len, slots); 5472 offset = node->parent_slot + 1; 5473 mas.node = node->piv_parent; 5474 if (mas_mn(&mas) == node) 5475 goto start_slots_free; 5476 5477 type = mte_node_type(mas.node); 5478 slots = ma_slots(mte_to_node(mas.node), type); 5479 if ((offset < mt_slots[type]) && (slots[offset])) 5480 slots = mas_dead_walk(&mas, offset); 5481 5482 node = mas_mn(&mas); 5483 } while ((node != start) || (node->slot_len < offset)); 5484 5485 slots = ma_slots(node, node->type); 5486 mt_free_bulk(node->slot_len, slots); 5487 5488 start_slots_free: 5489 mas_unlock(&mas); 5490 free_leaf: 5491 mt_free_rcu(&node->rcu); 5492 } 5493 5494 static inline void __rcu **mas_destroy_descend(struct ma_state *mas, 5495 struct maple_enode *prev, unsigned char offset) 5496 { 5497 struct maple_node *node; 5498 struct maple_enode *next = mas->node; 5499 void __rcu **slots = NULL; 5500 5501 do { 5502 mas->node = next; 5503 node = mas_mn(mas); 5504 slots = ma_slots(node, mte_node_type(mas->node)); 5505 next = mas_slot_locked(mas, slots, 0); 5506 if ((mte_dead_node(next))) 5507 next = mas_slot_locked(mas, slots, 1); 5508 5509 mte_set_node_dead(mas->node); 5510 node->type = mte_node_type(mas->node); 5511 node->piv_parent = prev; 5512 node->parent_slot = offset; 5513 offset = 0; 5514 prev = mas->node; 5515 } while (!mte_is_leaf(next)); 5516 5517 return slots; 5518 } 5519 5520 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags, 5521 bool free) 5522 { 5523 void __rcu **slots; 5524 struct maple_node *node = mte_to_node(enode); 5525 struct maple_enode *start; 5526 struct maple_tree mt; 5527 5528 MA_STATE(mas, &mt, 0, 0); 5529 5530 if (mte_is_leaf(enode)) 5531 goto free_leaf; 5532 5533 mt_init_flags(&mt, ma_flags); 5534 mas_lock(&mas); 5535 5536 mas.node = start = enode; 5537 slots = mas_destroy_descend(&mas, start, 0); 5538 node = mas_mn(&mas); 5539 do { 5540 enum maple_type type; 5541 unsigned char offset; 5542 struct maple_enode *parent, *tmp; 5543 5544 node->slot_len = mas_dead_leaves(&mas, slots); 5545 if (free) 5546 mt_free_bulk(node->slot_len, slots); 5547 offset = node->parent_slot + 1; 5548 mas.node = node->piv_parent; 5549 if (mas_mn(&mas) == node) 5550 goto start_slots_free; 5551 5552 type = mte_node_type(mas.node); 5553 slots = ma_slots(mte_to_node(mas.node), type); 5554 if (offset >= mt_slots[type]) 5555 goto next; 5556 5557 tmp = mas_slot_locked(&mas, slots, offset); 5558 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5559 parent = mas.node; 5560 mas.node = tmp; 5561 slots = mas_destroy_descend(&mas, parent, offset); 5562 } 5563 next: 5564 node = mas_mn(&mas); 5565 } while (start != mas.node); 5566 5567 node = mas_mn(&mas); 5568 node->slot_len = mas_dead_leaves(&mas, slots); 5569 if (free) 5570 mt_free_bulk(node->slot_len, slots); 5571 5572 start_slots_free: 5573 mas_unlock(&mas); 5574 5575 free_leaf: 5576 if (free) 5577 mt_free_rcu(&node->rcu); 5578 } 5579 5580 /* 5581 * mte_destroy_walk() - Free a tree or sub-tree. 5582 * @enode - the encoded maple node (maple_enode) to start 5583 * @mn - the tree to free - needed for node types. 5584 * 5585 * Must hold the write lock. 5586 */ 5587 static inline void mte_destroy_walk(struct maple_enode *enode, 5588 struct maple_tree *mt) 5589 { 5590 struct maple_node *node = mte_to_node(enode); 5591 5592 if (mt_in_rcu(mt)) { 5593 mt_destroy_walk(enode, mt->ma_flags, false); 5594 call_rcu(&node->rcu, mt_free_walk); 5595 } else { 5596 mt_destroy_walk(enode, mt->ma_flags, true); 5597 } 5598 } 5599 5600 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5601 { 5602 if (!mas_is_start(wr_mas->mas)) { 5603 if (mas_is_none(wr_mas->mas)) { 5604 mas_reset(wr_mas->mas); 5605 } else { 5606 wr_mas->r_max = wr_mas->mas->max; 5607 wr_mas->type = mte_node_type(wr_mas->mas->node); 5608 if (mas_is_span_wr(wr_mas)) 5609 mas_reset(wr_mas->mas); 5610 } 5611 } 5612 } 5613 5614 /* Interface */ 5615 5616 /** 5617 * mas_store() - Store an @entry. 5618 * @mas: The maple state. 5619 * @entry: The entry to store. 5620 * 5621 * The @mas->index and @mas->last is used to set the range for the @entry. 5622 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5623 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5624 * 5625 * Return: the first entry between mas->index and mas->last or %NULL. 5626 */ 5627 void *mas_store(struct ma_state *mas, void *entry) 5628 { 5629 MA_WR_STATE(wr_mas, mas, entry); 5630 5631 trace_ma_write(__func__, mas, 0, entry); 5632 #ifdef CONFIG_DEBUG_MAPLE_TREE 5633 if (mas->index > mas->last) 5634 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry); 5635 MT_BUG_ON(mas->tree, mas->index > mas->last); 5636 if (mas->index > mas->last) { 5637 mas_set_err(mas, -EINVAL); 5638 return NULL; 5639 } 5640 5641 #endif 5642 5643 /* 5644 * Storing is the same operation as insert with the added caveat that it 5645 * can overwrite entries. Although this seems simple enough, one may 5646 * want to examine what happens if a single store operation was to 5647 * overwrite multiple entries within a self-balancing B-Tree. 5648 */ 5649 mas_wr_store_setup(&wr_mas); 5650 mas_wr_store_entry(&wr_mas); 5651 return wr_mas.content; 5652 } 5653 EXPORT_SYMBOL_GPL(mas_store); 5654 5655 /** 5656 * mas_store_gfp() - Store a value into the tree. 5657 * @mas: The maple state 5658 * @entry: The entry to store 5659 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5660 * 5661 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5662 * be allocated. 5663 */ 5664 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5665 { 5666 MA_WR_STATE(wr_mas, mas, entry); 5667 5668 mas_wr_store_setup(&wr_mas); 5669 trace_ma_write(__func__, mas, 0, entry); 5670 retry: 5671 mas_wr_store_entry(&wr_mas); 5672 if (unlikely(mas_nomem(mas, gfp))) 5673 goto retry; 5674 5675 if (unlikely(mas_is_err(mas))) 5676 return xa_err(mas->node); 5677 5678 return 0; 5679 } 5680 EXPORT_SYMBOL_GPL(mas_store_gfp); 5681 5682 /** 5683 * mas_store_prealloc() - Store a value into the tree using memory 5684 * preallocated in the maple state. 5685 * @mas: The maple state 5686 * @entry: The entry to store. 5687 */ 5688 void mas_store_prealloc(struct ma_state *mas, void *entry) 5689 { 5690 MA_WR_STATE(wr_mas, mas, entry); 5691 5692 mas_wr_store_setup(&wr_mas); 5693 trace_ma_write(__func__, mas, 0, entry); 5694 mas_wr_store_entry(&wr_mas); 5695 BUG_ON(mas_is_err(mas)); 5696 mas_destroy(mas); 5697 } 5698 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5699 5700 /** 5701 * mas_preallocate() - Preallocate enough nodes for a store operation 5702 * @mas: The maple state 5703 * @entry: The entry that will be stored 5704 * @gfp: The GFP_FLAGS to use for allocations. 5705 * 5706 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5707 */ 5708 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) 5709 { 5710 int ret; 5711 5712 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp); 5713 mas->mas_flags |= MA_STATE_PREALLOC; 5714 if (likely(!mas_is_err(mas))) 5715 return 0; 5716 5717 mas_set_alloc_req(mas, 0); 5718 ret = xa_err(mas->node); 5719 mas_reset(mas); 5720 mas_destroy(mas); 5721 mas_reset(mas); 5722 return ret; 5723 } 5724 5725 /* 5726 * mas_destroy() - destroy a maple state. 5727 * @mas: The maple state 5728 * 5729 * Upon completion, check the left-most node and rebalance against the node to 5730 * the right if necessary. Frees any allocated nodes associated with this maple 5731 * state. 5732 */ 5733 void mas_destroy(struct ma_state *mas) 5734 { 5735 struct maple_alloc *node; 5736 unsigned long total; 5737 5738 /* 5739 * When using mas_for_each() to insert an expected number of elements, 5740 * it is possible that the number inserted is less than the expected 5741 * number. To fix an invalid final node, a check is performed here to 5742 * rebalance the previous node with the final node. 5743 */ 5744 if (mas->mas_flags & MA_STATE_REBALANCE) { 5745 unsigned char end; 5746 5747 if (mas_is_start(mas)) 5748 mas_start(mas); 5749 5750 mtree_range_walk(mas); 5751 end = mas_data_end(mas) + 1; 5752 if (end < mt_min_slot_count(mas->node) - 1) 5753 mas_destroy_rebalance(mas, end); 5754 5755 mas->mas_flags &= ~MA_STATE_REBALANCE; 5756 } 5757 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5758 5759 total = mas_allocated(mas); 5760 while (total) { 5761 node = mas->alloc; 5762 mas->alloc = node->slot[0]; 5763 if (node->node_count > 1) { 5764 size_t count = node->node_count - 1; 5765 5766 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5767 total -= count; 5768 } 5769 kmem_cache_free(maple_node_cache, node); 5770 total--; 5771 } 5772 5773 mas->alloc = NULL; 5774 } 5775 EXPORT_SYMBOL_GPL(mas_destroy); 5776 5777 /* 5778 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5779 * @mas: The maple state 5780 * @nr_entries: The number of expected entries. 5781 * 5782 * This will attempt to pre-allocate enough nodes to store the expected number 5783 * of entries. The allocations will occur using the bulk allocator interface 5784 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5785 * to ensure any unused nodes are freed. 5786 * 5787 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5788 */ 5789 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5790 { 5791 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5792 struct maple_enode *enode = mas->node; 5793 int nr_nodes; 5794 int ret; 5795 5796 /* 5797 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5798 * forking a process and duplicating the VMAs from one tree to a new 5799 * tree. When such a situation arises, it is known that the new tree is 5800 * not going to be used until the entire tree is populated. For 5801 * performance reasons, it is best to use a bulk load with RCU disabled. 5802 * This allows for optimistic splitting that favours the left and reuse 5803 * of nodes during the operation. 5804 */ 5805 5806 /* Optimize splitting for bulk insert in-order */ 5807 mas->mas_flags |= MA_STATE_BULK; 5808 5809 /* 5810 * Avoid overflow, assume a gap between each entry and a trailing null. 5811 * If this is wrong, it just means allocation can happen during 5812 * insertion of entries. 5813 */ 5814 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5815 if (!mt_is_alloc(mas->tree)) 5816 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5817 5818 /* Leaves; reduce slots to keep space for expansion */ 5819 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5820 /* Internal nodes */ 5821 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5822 /* Add working room for split (2 nodes) + new parents */ 5823 mas_node_count(mas, nr_nodes + 3); 5824 5825 /* Detect if allocations run out */ 5826 mas->mas_flags |= MA_STATE_PREALLOC; 5827 5828 if (!mas_is_err(mas)) 5829 return 0; 5830 5831 ret = xa_err(mas->node); 5832 mas->node = enode; 5833 mas_destroy(mas); 5834 return ret; 5835 5836 } 5837 EXPORT_SYMBOL_GPL(mas_expected_entries); 5838 5839 /** 5840 * mas_next() - Get the next entry. 5841 * @mas: The maple state 5842 * @max: The maximum index to check. 5843 * 5844 * Returns the next entry after @mas->index. 5845 * Must hold rcu_read_lock or the write lock. 5846 * Can return the zero entry. 5847 * 5848 * Return: The next entry or %NULL 5849 */ 5850 void *mas_next(struct ma_state *mas, unsigned long max) 5851 { 5852 if (mas_is_none(mas) || mas_is_paused(mas)) 5853 mas->node = MAS_START; 5854 5855 if (mas_is_start(mas)) 5856 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5857 5858 if (mas_is_ptr(mas)) { 5859 if (!mas->index) { 5860 mas->index = 1; 5861 mas->last = ULONG_MAX; 5862 } 5863 return NULL; 5864 } 5865 5866 if (mas->last == ULONG_MAX) 5867 return NULL; 5868 5869 /* Retries on dead nodes handled by mas_next_entry */ 5870 return mas_next_entry(mas, max); 5871 } 5872 EXPORT_SYMBOL_GPL(mas_next); 5873 5874 /** 5875 * mt_next() - get the next value in the maple tree 5876 * @mt: The maple tree 5877 * @index: The start index 5878 * @max: The maximum index to check 5879 * 5880 * Return: The entry at @index or higher, or %NULL if nothing is found. 5881 */ 5882 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5883 { 5884 void *entry = NULL; 5885 MA_STATE(mas, mt, index, index); 5886 5887 rcu_read_lock(); 5888 entry = mas_next(&mas, max); 5889 rcu_read_unlock(); 5890 return entry; 5891 } 5892 EXPORT_SYMBOL_GPL(mt_next); 5893 5894 /** 5895 * mas_prev() - Get the previous entry 5896 * @mas: The maple state 5897 * @min: The minimum value to check. 5898 * 5899 * Must hold rcu_read_lock or the write lock. 5900 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5901 * searchable nodes. 5902 * 5903 * Return: the previous value or %NULL. 5904 */ 5905 void *mas_prev(struct ma_state *mas, unsigned long min) 5906 { 5907 if (!mas->index) { 5908 /* Nothing comes before 0 */ 5909 mas->last = 0; 5910 return NULL; 5911 } 5912 5913 if (unlikely(mas_is_ptr(mas))) 5914 return NULL; 5915 5916 if (mas_is_none(mas) || mas_is_paused(mas)) 5917 mas->node = MAS_START; 5918 5919 if (mas_is_start(mas)) { 5920 mas_walk(mas); 5921 if (!mas->index) 5922 return NULL; 5923 } 5924 5925 if (mas_is_ptr(mas)) { 5926 if (!mas->index) { 5927 mas->last = 0; 5928 return NULL; 5929 } 5930 5931 mas->index = mas->last = 0; 5932 return mas_root_locked(mas); 5933 } 5934 return mas_prev_entry(mas, min); 5935 } 5936 EXPORT_SYMBOL_GPL(mas_prev); 5937 5938 /** 5939 * mt_prev() - get the previous value in the maple tree 5940 * @mt: The maple tree 5941 * @index: The start index 5942 * @min: The minimum index to check 5943 * 5944 * Return: The entry at @index or lower, or %NULL if nothing is found. 5945 */ 5946 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5947 { 5948 void *entry = NULL; 5949 MA_STATE(mas, mt, index, index); 5950 5951 rcu_read_lock(); 5952 entry = mas_prev(&mas, min); 5953 rcu_read_unlock(); 5954 return entry; 5955 } 5956 EXPORT_SYMBOL_GPL(mt_prev); 5957 5958 /** 5959 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5960 * @mas: The maple state to pause 5961 * 5962 * Some users need to pause a walk and drop the lock they're holding in 5963 * order to yield to a higher priority thread or carry out an operation 5964 * on an entry. Those users should call this function before they drop 5965 * the lock. It resets the @mas to be suitable for the next iteration 5966 * of the loop after the user has reacquired the lock. If most entries 5967 * found during a walk require you to call mas_pause(), the mt_for_each() 5968 * iterator may be more appropriate. 5969 * 5970 */ 5971 void mas_pause(struct ma_state *mas) 5972 { 5973 mas->node = MAS_PAUSE; 5974 } 5975 EXPORT_SYMBOL_GPL(mas_pause); 5976 5977 /** 5978 * mas_find() - On the first call, find the entry at or after mas->index up to 5979 * %max. Otherwise, find the entry after mas->index. 5980 * @mas: The maple state 5981 * @max: The maximum value to check. 5982 * 5983 * Must hold rcu_read_lock or the write lock. 5984 * If an entry exists, last and index are updated accordingly. 5985 * May set @mas->node to MAS_NONE. 5986 * 5987 * Return: The entry or %NULL. 5988 */ 5989 void *mas_find(struct ma_state *mas, unsigned long max) 5990 { 5991 if (unlikely(mas_is_paused(mas))) { 5992 if (unlikely(mas->last == ULONG_MAX)) { 5993 mas->node = MAS_NONE; 5994 return NULL; 5995 } 5996 mas->node = MAS_START; 5997 mas->index = ++mas->last; 5998 } 5999 6000 if (unlikely(mas_is_start(mas))) { 6001 /* First run or continue */ 6002 void *entry; 6003 6004 if (mas->index > max) 6005 return NULL; 6006 6007 entry = mas_walk(mas); 6008 if (entry) 6009 return entry; 6010 } 6011 6012 if (unlikely(!mas_searchable(mas))) 6013 return NULL; 6014 6015 /* Retries on dead nodes handled by mas_next_entry */ 6016 return mas_next_entry(mas, max); 6017 } 6018 EXPORT_SYMBOL_GPL(mas_find); 6019 6020 /** 6021 * mas_find_rev: On the first call, find the first non-null entry at or below 6022 * mas->index down to %min. Otherwise find the first non-null entry below 6023 * mas->index down to %min. 6024 * @mas: The maple state 6025 * @min: The minimum value to check. 6026 * 6027 * Must hold rcu_read_lock or the write lock. 6028 * If an entry exists, last and index are updated accordingly. 6029 * May set @mas->node to MAS_NONE. 6030 * 6031 * Return: The entry or %NULL. 6032 */ 6033 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6034 { 6035 if (unlikely(mas_is_paused(mas))) { 6036 if (unlikely(mas->last == ULONG_MAX)) { 6037 mas->node = MAS_NONE; 6038 return NULL; 6039 } 6040 mas->node = MAS_START; 6041 mas->last = --mas->index; 6042 } 6043 6044 if (unlikely(mas_is_start(mas))) { 6045 /* First run or continue */ 6046 void *entry; 6047 6048 if (mas->index < min) 6049 return NULL; 6050 6051 entry = mas_walk(mas); 6052 if (entry) 6053 return entry; 6054 } 6055 6056 if (unlikely(!mas_searchable(mas))) 6057 return NULL; 6058 6059 if (mas->index < min) 6060 return NULL; 6061 6062 /* Retries on dead nodes handled by mas_prev_entry */ 6063 return mas_prev_entry(mas, min); 6064 } 6065 EXPORT_SYMBOL_GPL(mas_find_rev); 6066 6067 /** 6068 * mas_erase() - Find the range in which index resides and erase the entire 6069 * range. 6070 * @mas: The maple state 6071 * 6072 * Must hold the write lock. 6073 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6074 * erases that range. 6075 * 6076 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6077 */ 6078 void *mas_erase(struct ma_state *mas) 6079 { 6080 void *entry; 6081 MA_WR_STATE(wr_mas, mas, NULL); 6082 6083 if (mas_is_none(mas) || mas_is_paused(mas)) 6084 mas->node = MAS_START; 6085 6086 /* Retry unnecessary when holding the write lock. */ 6087 entry = mas_state_walk(mas); 6088 if (!entry) 6089 return NULL; 6090 6091 write_retry: 6092 /* Must reset to ensure spanning writes of last slot are detected */ 6093 mas_reset(mas); 6094 mas_wr_store_setup(&wr_mas); 6095 mas_wr_store_entry(&wr_mas); 6096 if (mas_nomem(mas, GFP_KERNEL)) 6097 goto write_retry; 6098 6099 return entry; 6100 } 6101 EXPORT_SYMBOL_GPL(mas_erase); 6102 6103 /** 6104 * mas_nomem() - Check if there was an error allocating and do the allocation 6105 * if necessary If there are allocations, then free them. 6106 * @mas: The maple state 6107 * @gfp: The GFP_FLAGS to use for allocations 6108 * Return: true on allocation, false otherwise. 6109 */ 6110 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6111 __must_hold(mas->tree->lock) 6112 { 6113 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6114 mas_destroy(mas); 6115 return false; 6116 } 6117 6118 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6119 mtree_unlock(mas->tree); 6120 mas_alloc_nodes(mas, gfp); 6121 mtree_lock(mas->tree); 6122 } else { 6123 mas_alloc_nodes(mas, gfp); 6124 } 6125 6126 if (!mas_allocated(mas)) 6127 return false; 6128 6129 mas->node = MAS_START; 6130 return true; 6131 } 6132 6133 void __init maple_tree_init(void) 6134 { 6135 maple_node_cache = kmem_cache_create("maple_node", 6136 sizeof(struct maple_node), sizeof(struct maple_node), 6137 SLAB_PANIC, NULL); 6138 } 6139 6140 /** 6141 * mtree_load() - Load a value stored in a maple tree 6142 * @mt: The maple tree 6143 * @index: The index to load 6144 * 6145 * Return: the entry or %NULL 6146 */ 6147 void *mtree_load(struct maple_tree *mt, unsigned long index) 6148 { 6149 MA_STATE(mas, mt, index, index); 6150 void *entry; 6151 6152 trace_ma_read(__func__, &mas); 6153 rcu_read_lock(); 6154 retry: 6155 entry = mas_start(&mas); 6156 if (unlikely(mas_is_none(&mas))) 6157 goto unlock; 6158 6159 if (unlikely(mas_is_ptr(&mas))) { 6160 if (index) 6161 entry = NULL; 6162 6163 goto unlock; 6164 } 6165 6166 entry = mtree_lookup_walk(&mas); 6167 if (!entry && unlikely(mas_is_start(&mas))) 6168 goto retry; 6169 unlock: 6170 rcu_read_unlock(); 6171 if (xa_is_zero(entry)) 6172 return NULL; 6173 6174 return entry; 6175 } 6176 EXPORT_SYMBOL(mtree_load); 6177 6178 /** 6179 * mtree_store_range() - Store an entry at a given range. 6180 * @mt: The maple tree 6181 * @index: The start of the range 6182 * @last: The end of the range 6183 * @entry: The entry to store 6184 * @gfp: The GFP_FLAGS to use for allocations 6185 * 6186 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6187 * be allocated. 6188 */ 6189 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6190 unsigned long last, void *entry, gfp_t gfp) 6191 { 6192 MA_STATE(mas, mt, index, last); 6193 MA_WR_STATE(wr_mas, &mas, entry); 6194 6195 trace_ma_write(__func__, &mas, 0, entry); 6196 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6197 return -EINVAL; 6198 6199 if (index > last) 6200 return -EINVAL; 6201 6202 mtree_lock(mt); 6203 retry: 6204 mas_wr_store_entry(&wr_mas); 6205 if (mas_nomem(&mas, gfp)) 6206 goto retry; 6207 6208 mtree_unlock(mt); 6209 if (mas_is_err(&mas)) 6210 return xa_err(mas.node); 6211 6212 return 0; 6213 } 6214 EXPORT_SYMBOL(mtree_store_range); 6215 6216 /** 6217 * mtree_store() - Store an entry at a given index. 6218 * @mt: The maple tree 6219 * @index: The index to store the value 6220 * @entry: The entry to store 6221 * @gfp: The GFP_FLAGS to use for allocations 6222 * 6223 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6224 * be allocated. 6225 */ 6226 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6227 gfp_t gfp) 6228 { 6229 return mtree_store_range(mt, index, index, entry, gfp); 6230 } 6231 EXPORT_SYMBOL(mtree_store); 6232 6233 /** 6234 * mtree_insert_range() - Insert an entry at a give range if there is no value. 6235 * @mt: The maple tree 6236 * @first: The start of the range 6237 * @last: The end of the range 6238 * @entry: The entry to store 6239 * @gfp: The GFP_FLAGS to use for allocations. 6240 * 6241 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6242 * request, -ENOMEM if memory could not be allocated. 6243 */ 6244 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6245 unsigned long last, void *entry, gfp_t gfp) 6246 { 6247 MA_STATE(ms, mt, first, last); 6248 6249 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6250 return -EINVAL; 6251 6252 if (first > last) 6253 return -EINVAL; 6254 6255 mtree_lock(mt); 6256 retry: 6257 mas_insert(&ms, entry); 6258 if (mas_nomem(&ms, gfp)) 6259 goto retry; 6260 6261 mtree_unlock(mt); 6262 if (mas_is_err(&ms)) 6263 return xa_err(ms.node); 6264 6265 return 0; 6266 } 6267 EXPORT_SYMBOL(mtree_insert_range); 6268 6269 /** 6270 * mtree_insert() - Insert an entry at a give index if there is no value. 6271 * @mt: The maple tree 6272 * @index : The index to store the value 6273 * @entry: The entry to store 6274 * @gfp: The FGP_FLAGS to use for allocations. 6275 * 6276 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6277 * request, -ENOMEM if memory could not be allocated. 6278 */ 6279 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6280 gfp_t gfp) 6281 { 6282 return mtree_insert_range(mt, index, index, entry, gfp); 6283 } 6284 EXPORT_SYMBOL(mtree_insert); 6285 6286 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6287 void *entry, unsigned long size, unsigned long min, 6288 unsigned long max, gfp_t gfp) 6289 { 6290 int ret = 0; 6291 6292 MA_STATE(mas, mt, min, max - size); 6293 if (!mt_is_alloc(mt)) 6294 return -EINVAL; 6295 6296 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6297 return -EINVAL; 6298 6299 if (min > max) 6300 return -EINVAL; 6301 6302 if (max < size) 6303 return -EINVAL; 6304 6305 if (!size) 6306 return -EINVAL; 6307 6308 mtree_lock(mt); 6309 retry: 6310 mas.offset = 0; 6311 mas.index = min; 6312 mas.last = max - size; 6313 ret = mas_alloc(&mas, entry, size, startp); 6314 if (mas_nomem(&mas, gfp)) 6315 goto retry; 6316 6317 mtree_unlock(mt); 6318 return ret; 6319 } 6320 EXPORT_SYMBOL(mtree_alloc_range); 6321 6322 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6323 void *entry, unsigned long size, unsigned long min, 6324 unsigned long max, gfp_t gfp) 6325 { 6326 int ret = 0; 6327 6328 MA_STATE(mas, mt, min, max - size); 6329 if (!mt_is_alloc(mt)) 6330 return -EINVAL; 6331 6332 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6333 return -EINVAL; 6334 6335 if (min >= max) 6336 return -EINVAL; 6337 6338 if (max < size - 1) 6339 return -EINVAL; 6340 6341 if (!size) 6342 return -EINVAL; 6343 6344 mtree_lock(mt); 6345 retry: 6346 ret = mas_rev_alloc(&mas, min, max, entry, size, startp); 6347 if (mas_nomem(&mas, gfp)) 6348 goto retry; 6349 6350 mtree_unlock(mt); 6351 return ret; 6352 } 6353 EXPORT_SYMBOL(mtree_alloc_rrange); 6354 6355 /** 6356 * mtree_erase() - Find an index and erase the entire range. 6357 * @mt: The maple tree 6358 * @index: The index to erase 6359 * 6360 * Erasing is the same as a walk to an entry then a store of a NULL to that 6361 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6362 * 6363 * Return: The entry stored at the @index or %NULL 6364 */ 6365 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6366 { 6367 void *entry = NULL; 6368 6369 MA_STATE(mas, mt, index, index); 6370 trace_ma_op(__func__, &mas); 6371 6372 mtree_lock(mt); 6373 entry = mas_erase(&mas); 6374 mtree_unlock(mt); 6375 6376 return entry; 6377 } 6378 EXPORT_SYMBOL(mtree_erase); 6379 6380 /** 6381 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6382 * @mt: The maple tree 6383 * 6384 * Note: Does not handle locking. 6385 */ 6386 void __mt_destroy(struct maple_tree *mt) 6387 { 6388 void *root = mt_root_locked(mt); 6389 6390 rcu_assign_pointer(mt->ma_root, NULL); 6391 if (xa_is_node(root)) 6392 mte_destroy_walk(root, mt); 6393 6394 mt->ma_flags = 0; 6395 } 6396 EXPORT_SYMBOL_GPL(__mt_destroy); 6397 6398 /** 6399 * mtree_destroy() - Destroy a maple tree 6400 * @mt: The maple tree 6401 * 6402 * Frees all resources used by the tree. Handles locking. 6403 */ 6404 void mtree_destroy(struct maple_tree *mt) 6405 { 6406 mtree_lock(mt); 6407 __mt_destroy(mt); 6408 mtree_unlock(mt); 6409 } 6410 EXPORT_SYMBOL(mtree_destroy); 6411 6412 /** 6413 * mt_find() - Search from the start up until an entry is found. 6414 * @mt: The maple tree 6415 * @index: Pointer which contains the start location of the search 6416 * @max: The maximum value to check 6417 * 6418 * Handles locking. @index will be incremented to one beyond the range. 6419 * 6420 * Return: The entry at or after the @index or %NULL 6421 */ 6422 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6423 { 6424 MA_STATE(mas, mt, *index, *index); 6425 void *entry; 6426 #ifdef CONFIG_DEBUG_MAPLE_TREE 6427 unsigned long copy = *index; 6428 #endif 6429 6430 trace_ma_read(__func__, &mas); 6431 6432 if ((*index) > max) 6433 return NULL; 6434 6435 rcu_read_lock(); 6436 retry: 6437 entry = mas_state_walk(&mas); 6438 if (mas_is_start(&mas)) 6439 goto retry; 6440 6441 if (unlikely(xa_is_zero(entry))) 6442 entry = NULL; 6443 6444 if (entry) 6445 goto unlock; 6446 6447 while (mas_searchable(&mas) && (mas.index < max)) { 6448 entry = mas_next_entry(&mas, max); 6449 if (likely(entry && !xa_is_zero(entry))) 6450 break; 6451 } 6452 6453 if (unlikely(xa_is_zero(entry))) 6454 entry = NULL; 6455 unlock: 6456 rcu_read_unlock(); 6457 if (likely(entry)) { 6458 *index = mas.last + 1; 6459 #ifdef CONFIG_DEBUG_MAPLE_TREE 6460 if ((*index) && (*index) <= copy) 6461 pr_err("index not increased! %lx <= %lx\n", 6462 *index, copy); 6463 MT_BUG_ON(mt, (*index) && ((*index) <= copy)); 6464 #endif 6465 } 6466 6467 return entry; 6468 } 6469 EXPORT_SYMBOL(mt_find); 6470 6471 /** 6472 * mt_find_after() - Search from the start up until an entry is found. 6473 * @mt: The maple tree 6474 * @index: Pointer which contains the start location of the search 6475 * @max: The maximum value to check 6476 * 6477 * Handles locking, detects wrapping on index == 0 6478 * 6479 * Return: The entry at or after the @index or %NULL 6480 */ 6481 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6482 unsigned long max) 6483 { 6484 if (!(*index)) 6485 return NULL; 6486 6487 return mt_find(mt, index, max); 6488 } 6489 EXPORT_SYMBOL(mt_find_after); 6490 6491 #ifdef CONFIG_DEBUG_MAPLE_TREE 6492 atomic_t maple_tree_tests_run; 6493 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6494 atomic_t maple_tree_tests_passed; 6495 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6496 6497 #ifndef __KERNEL__ 6498 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6499 void mt_set_non_kernel(unsigned int val) 6500 { 6501 kmem_cache_set_non_kernel(maple_node_cache, val); 6502 } 6503 6504 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 6505 unsigned long mt_get_alloc_size(void) 6506 { 6507 return kmem_cache_get_alloc(maple_node_cache); 6508 } 6509 6510 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 6511 void mt_zero_nr_tallocated(void) 6512 { 6513 kmem_cache_zero_nr_tallocated(maple_node_cache); 6514 } 6515 6516 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 6517 unsigned int mt_nr_tallocated(void) 6518 { 6519 return kmem_cache_nr_tallocated(maple_node_cache); 6520 } 6521 6522 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 6523 unsigned int mt_nr_allocated(void) 6524 { 6525 return kmem_cache_nr_allocated(maple_node_cache); 6526 } 6527 6528 /* 6529 * mas_dead_node() - Check if the maple state is pointing to a dead node. 6530 * @mas: The maple state 6531 * @index: The index to restore in @mas. 6532 * 6533 * Used in test code. 6534 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise. 6535 */ 6536 static inline int mas_dead_node(struct ma_state *mas, unsigned long index) 6537 { 6538 if (unlikely(!mas_searchable(mas) || mas_is_start(mas))) 6539 return 0; 6540 6541 if (likely(!mte_dead_node(mas->node))) 6542 return 0; 6543 6544 mas_rewalk(mas, index); 6545 return 1; 6546 } 6547 6548 void mt_cache_shrink(void) 6549 { 6550 } 6551 #else 6552 /* 6553 * mt_cache_shrink() - For testing, don't use this. 6554 * 6555 * Certain testcases can trigger an OOM when combined with other memory 6556 * debugging configuration options. This function is used to reduce the 6557 * possibility of an out of memory even due to kmem_cache objects remaining 6558 * around for longer than usual. 6559 */ 6560 void mt_cache_shrink(void) 6561 { 6562 kmem_cache_shrink(maple_node_cache); 6563 6564 } 6565 EXPORT_SYMBOL_GPL(mt_cache_shrink); 6566 6567 #endif /* not defined __KERNEL__ */ 6568 /* 6569 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 6570 * @mas: The maple state 6571 * @offset: The offset into the slot array to fetch. 6572 * 6573 * Return: The entry stored at @offset. 6574 */ 6575 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 6576 unsigned char offset) 6577 { 6578 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 6579 offset); 6580 } 6581 6582 6583 /* 6584 * mas_first_entry() - Go the first leaf and find the first entry. 6585 * @mas: the maple state. 6586 * @limit: the maximum index to check. 6587 * @*r_start: Pointer to set to the range start. 6588 * 6589 * Sets mas->offset to the offset of the entry, r_start to the range minimum. 6590 * 6591 * Return: The first entry or MAS_NONE. 6592 */ 6593 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn, 6594 unsigned long limit, enum maple_type mt) 6595 6596 { 6597 unsigned long max; 6598 unsigned long *pivots; 6599 void __rcu **slots; 6600 void *entry = NULL; 6601 6602 mas->index = mas->min; 6603 if (mas->index > limit) 6604 goto none; 6605 6606 max = mas->max; 6607 mas->offset = 0; 6608 while (likely(!ma_is_leaf(mt))) { 6609 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6610 slots = ma_slots(mn, mt); 6611 pivots = ma_pivots(mn, mt); 6612 max = pivots[0]; 6613 entry = mas_slot(mas, slots, 0); 6614 if (unlikely(ma_dead_node(mn))) 6615 return NULL; 6616 mas->node = entry; 6617 mn = mas_mn(mas); 6618 mt = mte_node_type(mas->node); 6619 } 6620 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6621 6622 mas->max = max; 6623 slots = ma_slots(mn, mt); 6624 entry = mas_slot(mas, slots, 0); 6625 if (unlikely(ma_dead_node(mn))) 6626 return NULL; 6627 6628 /* Slot 0 or 1 must be set */ 6629 if (mas->index > limit) 6630 goto none; 6631 6632 if (likely(entry)) 6633 return entry; 6634 6635 pivots = ma_pivots(mn, mt); 6636 mas->index = pivots[0] + 1; 6637 mas->offset = 1; 6638 entry = mas_slot(mas, slots, 1); 6639 if (unlikely(ma_dead_node(mn))) 6640 return NULL; 6641 6642 if (mas->index > limit) 6643 goto none; 6644 6645 if (likely(entry)) 6646 return entry; 6647 6648 none: 6649 if (likely(!ma_dead_node(mn))) 6650 mas->node = MAS_NONE; 6651 return NULL; 6652 } 6653 6654 /* Depth first search, post-order */ 6655 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 6656 { 6657 6658 struct maple_enode *p = MAS_NONE, *mn = mas->node; 6659 unsigned long p_min, p_max; 6660 6661 mas_next_node(mas, mas_mn(mas), max); 6662 if (!mas_is_none(mas)) 6663 return; 6664 6665 if (mte_is_root(mn)) 6666 return; 6667 6668 mas->node = mn; 6669 mas_ascend(mas); 6670 while (mas->node != MAS_NONE) { 6671 p = mas->node; 6672 p_min = mas->min; 6673 p_max = mas->max; 6674 mas_prev_node(mas, 0); 6675 } 6676 6677 if (p == MAS_NONE) 6678 return; 6679 6680 mas->node = p; 6681 mas->max = p_max; 6682 mas->min = p_min; 6683 } 6684 6685 /* Tree validations */ 6686 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6687 unsigned long min, unsigned long max, unsigned int depth); 6688 static void mt_dump_range(unsigned long min, unsigned long max, 6689 unsigned int depth) 6690 { 6691 static const char spaces[] = " "; 6692 6693 if (min == max) 6694 pr_info("%.*s%lu: ", depth * 2, spaces, min); 6695 else 6696 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 6697 } 6698 6699 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 6700 unsigned int depth) 6701 { 6702 mt_dump_range(min, max, depth); 6703 6704 if (xa_is_value(entry)) 6705 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 6706 xa_to_value(entry), entry); 6707 else if (xa_is_zero(entry)) 6708 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 6709 else if (mt_is_reserved(entry)) 6710 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 6711 else 6712 pr_cont("%p\n", entry); 6713 } 6714 6715 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 6716 unsigned long min, unsigned long max, unsigned int depth) 6717 { 6718 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 6719 bool leaf = mte_is_leaf(entry); 6720 unsigned long first = min; 6721 int i; 6722 6723 pr_cont(" contents: "); 6724 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) 6725 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6726 pr_cont("%p\n", node->slot[i]); 6727 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 6728 unsigned long last = max; 6729 6730 if (i < (MAPLE_RANGE64_SLOTS - 1)) 6731 last = node->pivot[i]; 6732 else if (!node->slot[i] && max != mt_node_max(entry)) 6733 break; 6734 if (last == 0 && i > 0) 6735 break; 6736 if (leaf) 6737 mt_dump_entry(mt_slot(mt, node->slot, i), 6738 first, last, depth + 1); 6739 else if (node->slot[i]) 6740 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6741 first, last, depth + 1); 6742 6743 if (last == max) 6744 break; 6745 if (last > max) { 6746 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6747 node, last, max, i); 6748 break; 6749 } 6750 first = last + 1; 6751 } 6752 } 6753 6754 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 6755 unsigned long min, unsigned long max, unsigned int depth) 6756 { 6757 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 6758 bool leaf = mte_is_leaf(entry); 6759 unsigned long first = min; 6760 int i; 6761 6762 pr_cont(" contents: "); 6763 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) 6764 pr_cont("%lu ", node->gap[i]); 6765 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 6766 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) 6767 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6768 pr_cont("%p\n", node->slot[i]); 6769 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 6770 unsigned long last = max; 6771 6772 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 6773 last = node->pivot[i]; 6774 else if (!node->slot[i]) 6775 break; 6776 if (last == 0 && i > 0) 6777 break; 6778 if (leaf) 6779 mt_dump_entry(mt_slot(mt, node->slot, i), 6780 first, last, depth + 1); 6781 else if (node->slot[i]) 6782 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6783 first, last, depth + 1); 6784 6785 if (last == max) 6786 break; 6787 if (last > max) { 6788 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6789 node, last, max, i); 6790 break; 6791 } 6792 first = last + 1; 6793 } 6794 } 6795 6796 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6797 unsigned long min, unsigned long max, unsigned int depth) 6798 { 6799 struct maple_node *node = mte_to_node(entry); 6800 unsigned int type = mte_node_type(entry); 6801 unsigned int i; 6802 6803 mt_dump_range(min, max, depth); 6804 6805 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 6806 node ? node->parent : NULL); 6807 switch (type) { 6808 case maple_dense: 6809 pr_cont("\n"); 6810 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 6811 if (min + i > max) 6812 pr_cont("OUT OF RANGE: "); 6813 mt_dump_entry(mt_slot(mt, node->slot, i), 6814 min + i, min + i, depth); 6815 } 6816 break; 6817 case maple_leaf_64: 6818 case maple_range_64: 6819 mt_dump_range64(mt, entry, min, max, depth); 6820 break; 6821 case maple_arange_64: 6822 mt_dump_arange64(mt, entry, min, max, depth); 6823 break; 6824 6825 default: 6826 pr_cont(" UNKNOWN TYPE\n"); 6827 } 6828 } 6829 6830 void mt_dump(const struct maple_tree *mt) 6831 { 6832 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 6833 6834 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 6835 mt, mt->ma_flags, mt_height(mt), entry); 6836 if (!xa_is_node(entry)) 6837 mt_dump_entry(entry, 0, 0, 0); 6838 else if (entry) 6839 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0); 6840 } 6841 EXPORT_SYMBOL_GPL(mt_dump); 6842 6843 /* 6844 * Calculate the maximum gap in a node and check if that's what is reported in 6845 * the parent (unless root). 6846 */ 6847 static void mas_validate_gaps(struct ma_state *mas) 6848 { 6849 struct maple_enode *mte = mas->node; 6850 struct maple_node *p_mn; 6851 unsigned long gap = 0, max_gap = 0; 6852 unsigned long p_end, p_start = mas->min; 6853 unsigned char p_slot; 6854 unsigned long *gaps = NULL; 6855 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte)); 6856 int i; 6857 6858 if (ma_is_dense(mte_node_type(mte))) { 6859 for (i = 0; i < mt_slot_count(mte); i++) { 6860 if (mas_get_slot(mas, i)) { 6861 if (gap > max_gap) 6862 max_gap = gap; 6863 gap = 0; 6864 continue; 6865 } 6866 gap++; 6867 } 6868 goto counted; 6869 } 6870 6871 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte)); 6872 for (i = 0; i < mt_slot_count(mte); i++) { 6873 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte)); 6874 6875 if (!gaps) { 6876 if (mas_get_slot(mas, i)) { 6877 gap = 0; 6878 goto not_empty; 6879 } 6880 6881 gap += p_end - p_start + 1; 6882 } else { 6883 void *entry = mas_get_slot(mas, i); 6884 6885 gap = gaps[i]; 6886 if (!entry) { 6887 if (gap != p_end - p_start + 1) { 6888 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n", 6889 mas_mn(mas), i, 6890 mas_get_slot(mas, i), gap, 6891 p_end, p_start); 6892 mt_dump(mas->tree); 6893 6894 MT_BUG_ON(mas->tree, 6895 gap != p_end - p_start + 1); 6896 } 6897 } else { 6898 if (gap > p_end - p_start + 1) { 6899 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 6900 mas_mn(mas), i, gap, p_end, p_start, 6901 p_end - p_start + 1); 6902 MT_BUG_ON(mas->tree, 6903 gap > p_end - p_start + 1); 6904 } 6905 } 6906 } 6907 6908 if (gap > max_gap) 6909 max_gap = gap; 6910 not_empty: 6911 p_start = p_end + 1; 6912 if (p_end >= mas->max) 6913 break; 6914 } 6915 6916 counted: 6917 if (mte_is_root(mte)) 6918 return; 6919 6920 p_slot = mte_parent_slot(mas->node); 6921 p_mn = mte_parent(mte); 6922 MT_BUG_ON(mas->tree, max_gap > mas->max); 6923 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) { 6924 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 6925 mt_dump(mas->tree); 6926 } 6927 6928 MT_BUG_ON(mas->tree, 6929 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap); 6930 } 6931 6932 static void mas_validate_parent_slot(struct ma_state *mas) 6933 { 6934 struct maple_node *parent; 6935 struct maple_enode *node; 6936 enum maple_type p_type = mas_parent_enum(mas, mas->node); 6937 unsigned char p_slot = mte_parent_slot(mas->node); 6938 void __rcu **slots; 6939 int i; 6940 6941 if (mte_is_root(mas->node)) 6942 return; 6943 6944 parent = mte_parent(mas->node); 6945 slots = ma_slots(parent, p_type); 6946 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 6947 6948 /* Check prev/next parent slot for duplicate node entry */ 6949 6950 for (i = 0; i < mt_slots[p_type]; i++) { 6951 node = mas_slot(mas, slots, i); 6952 if (i == p_slot) { 6953 if (node != mas->node) 6954 pr_err("parent %p[%u] does not have %p\n", 6955 parent, i, mas_mn(mas)); 6956 MT_BUG_ON(mas->tree, node != mas->node); 6957 } else if (node == mas->node) { 6958 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 6959 mas_mn(mas), parent, i, p_slot); 6960 MT_BUG_ON(mas->tree, node == mas->node); 6961 } 6962 } 6963 } 6964 6965 static void mas_validate_child_slot(struct ma_state *mas) 6966 { 6967 enum maple_type type = mte_node_type(mas->node); 6968 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 6969 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 6970 struct maple_enode *child; 6971 unsigned char i; 6972 6973 if (mte_is_leaf(mas->node)) 6974 return; 6975 6976 for (i = 0; i < mt_slots[type]; i++) { 6977 child = mas_slot(mas, slots, i); 6978 if (!pivots[i] || pivots[i] == mas->max) 6979 break; 6980 6981 if (!child) 6982 break; 6983 6984 if (mte_parent_slot(child) != i) { 6985 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 6986 mas_mn(mas), i, mte_to_node(child), 6987 mte_parent_slot(child)); 6988 MT_BUG_ON(mas->tree, 1); 6989 } 6990 6991 if (mte_parent(child) != mte_to_node(mas->node)) { 6992 pr_err("child %p has parent %p not %p\n", 6993 mte_to_node(child), mte_parent(child), 6994 mte_to_node(mas->node)); 6995 MT_BUG_ON(mas->tree, 1); 6996 } 6997 } 6998 } 6999 7000 /* 7001 * Validate all pivots are within mas->min and mas->max. 7002 */ 7003 static void mas_validate_limits(struct ma_state *mas) 7004 { 7005 int i; 7006 unsigned long prev_piv = 0; 7007 enum maple_type type = mte_node_type(mas->node); 7008 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7009 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7010 7011 /* all limits are fine here. */ 7012 if (mte_is_root(mas->node)) 7013 return; 7014 7015 for (i = 0; i < mt_slots[type]; i++) { 7016 unsigned long piv; 7017 7018 piv = mas_safe_pivot(mas, pivots, i, type); 7019 7020 if (!piv && (i != 0)) 7021 break; 7022 7023 if (!mte_is_leaf(mas->node)) { 7024 void *entry = mas_slot(mas, slots, i); 7025 7026 if (!entry) 7027 pr_err("%p[%u] cannot be null\n", 7028 mas_mn(mas), i); 7029 7030 MT_BUG_ON(mas->tree, !entry); 7031 } 7032 7033 if (prev_piv > piv) { 7034 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7035 mas_mn(mas), i, piv, prev_piv); 7036 MT_BUG_ON(mas->tree, piv < prev_piv); 7037 } 7038 7039 if (piv < mas->min) { 7040 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7041 piv, mas->min); 7042 MT_BUG_ON(mas->tree, piv < mas->min); 7043 } 7044 if (piv > mas->max) { 7045 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7046 piv, mas->max); 7047 MT_BUG_ON(mas->tree, piv > mas->max); 7048 } 7049 prev_piv = piv; 7050 if (piv == mas->max) 7051 break; 7052 } 7053 for (i += 1; i < mt_slots[type]; i++) { 7054 void *entry = mas_slot(mas, slots, i); 7055 7056 if (entry && (i != mt_slots[type] - 1)) { 7057 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7058 i, entry); 7059 MT_BUG_ON(mas->tree, entry != NULL); 7060 } 7061 7062 if (i < mt_pivots[type]) { 7063 unsigned long piv = pivots[i]; 7064 7065 if (!piv) 7066 continue; 7067 7068 pr_err("%p[%u] should not have piv %lu\n", 7069 mas_mn(mas), i, piv); 7070 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1); 7071 } 7072 } 7073 } 7074 7075 static void mt_validate_nulls(struct maple_tree *mt) 7076 { 7077 void *entry, *last = (void *)1; 7078 unsigned char offset = 0; 7079 void __rcu **slots; 7080 MA_STATE(mas, mt, 0, 0); 7081 7082 mas_start(&mas); 7083 if (mas_is_none(&mas) || (mas.node == MAS_ROOT)) 7084 return; 7085 7086 while (!mte_is_leaf(mas.node)) 7087 mas_descend(&mas); 7088 7089 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7090 do { 7091 entry = mas_slot(&mas, slots, offset); 7092 if (!last && !entry) { 7093 pr_err("Sequential nulls end at %p[%u]\n", 7094 mas_mn(&mas), offset); 7095 } 7096 MT_BUG_ON(mt, !last && !entry); 7097 last = entry; 7098 if (offset == mas_data_end(&mas)) { 7099 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7100 if (mas_is_none(&mas)) 7101 return; 7102 offset = 0; 7103 slots = ma_slots(mte_to_node(mas.node), 7104 mte_node_type(mas.node)); 7105 } else { 7106 offset++; 7107 } 7108 7109 } while (!mas_is_none(&mas)); 7110 } 7111 7112 /* 7113 * validate a maple tree by checking: 7114 * 1. The limits (pivots are within mas->min to mas->max) 7115 * 2. The gap is correctly set in the parents 7116 */ 7117 void mt_validate(struct maple_tree *mt) 7118 { 7119 unsigned char end; 7120 7121 MA_STATE(mas, mt, 0, 0); 7122 rcu_read_lock(); 7123 mas_start(&mas); 7124 if (!mas_searchable(&mas)) 7125 goto done; 7126 7127 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node)); 7128 while (!mas_is_none(&mas)) { 7129 MT_BUG_ON(mas.tree, mte_dead_node(mas.node)); 7130 if (!mte_is_root(mas.node)) { 7131 end = mas_data_end(&mas); 7132 if ((end < mt_min_slot_count(mas.node)) && 7133 (mas.max != ULONG_MAX)) { 7134 pr_err("Invalid size %u of %p\n", end, 7135 mas_mn(&mas)); 7136 MT_BUG_ON(mas.tree, 1); 7137 } 7138 7139 } 7140 mas_validate_parent_slot(&mas); 7141 mas_validate_child_slot(&mas); 7142 mas_validate_limits(&mas); 7143 if (mt_is_alloc(mt)) 7144 mas_validate_gaps(&mas); 7145 mas_dfs_postorder(&mas, ULONG_MAX); 7146 } 7147 mt_validate_nulls(mt); 7148 done: 7149 rcu_read_unlock(); 7150 7151 } 7152 EXPORT_SYMBOL_GPL(mt_validate); 7153 7154 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7155