xref: /openbmc/linux/lib/maple_tree.c (revision e9adcfec)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  */
8 
9 /*
10  * DOC: Interesting implementation details of the Maple Tree
11  *
12  * Each node type has a number of slots for entries and a number of slots for
13  * pivots.  In the case of dense nodes, the pivots are implied by the position
14  * and are simply the slot index + the minimum of the node.
15  *
16  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
17  * indicate that the tree is specifying ranges,  Pivots may appear in the
18  * subtree with an entry attached to the value where as keys are unique to a
19  * specific position of a B-tree.  Pivot values are inclusive of the slot with
20  * the same index.
21  *
22  *
23  * The following illustrates the layout of a range64 nodes slots and pivots.
24  *
25  *
26  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
28  *           │   │   │   │     │    │    │    │    └─ Implied maximum
29  *           │   │   │   │     │    │    │    └─ Pivot 14
30  *           │   │   │   │     │    │    └─ Pivot 13
31  *           │   │   │   │     │    └─ Pivot 12
32  *           │   │   │   │     └─ Pivot 11
33  *           │   │   │   └─ Pivot 2
34  *           │   │   └─ Pivot 1
35  *           │   └─ Pivot 0
36  *           └─  Implied minimum
37  *
38  * Slot contents:
39  *  Internal (non-leaf) nodes contain pointers to other nodes.
40  *  Leaf nodes contain entries.
41  *
42  * The location of interest is often referred to as an offset.  All offsets have
43  * a slot, but the last offset has an implied pivot from the node above (or
44  * UINT_MAX for the root node.
45  *
46  * Ranges complicate certain write activities.  When modifying any of
47  * the B-tree variants, it is known that one entry will either be added or
48  * deleted.  When modifying the Maple Tree, one store operation may overwrite
49  * the entire data set, or one half of the tree, or the middle half of the tree.
50  *
51  */
52 
53 
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
64 
65 #define MA_ROOT_PARENT 1
66 
67 /*
68  * Maple state flags
69  * * MA_STATE_BULK		- Bulk insert mode
70  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
71  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
72  */
73 #define MA_STATE_BULK		1
74 #define MA_STATE_REBALANCE	2
75 #define MA_STATE_PREALLOC	4
76 
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
81 
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 	[maple_dense]		= MAPLE_NODE_SLOTS,
85 	[maple_leaf_64]		= ULONG_MAX,
86 	[maple_range_64]	= ULONG_MAX,
87 	[maple_arange_64]	= ULONG_MAX,
88 };
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
90 #endif
91 
92 static const unsigned char mt_slots[] = {
93 	[maple_dense]		= MAPLE_NODE_SLOTS,
94 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
95 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
96 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
97 };
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
99 
100 static const unsigned char mt_pivots[] = {
101 	[maple_dense]		= 0,
102 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
103 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
104 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
105 };
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107 
108 static const unsigned char mt_min_slots[] = {
109 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
110 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
111 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
112 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
113 };
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115 
116 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
118 
119 struct maple_big_node {
120 	struct maple_pnode *parent;
121 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 	union {
123 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 		struct {
125 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 		};
128 	};
129 	unsigned char b_end;
130 	enum maple_type type;
131 };
132 
133 /*
134  * The maple_subtree_state is used to build a tree to replace a segment of an
135  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
136  * dead node and restart on updates.
137  */
138 struct maple_subtree_state {
139 	struct ma_state *orig_l;	/* Original left side of subtree */
140 	struct ma_state *orig_r;	/* Original right side of subtree */
141 	struct ma_state *l;		/* New left side of subtree */
142 	struct ma_state *m;		/* New middle of subtree (rare) */
143 	struct ma_state *r;		/* New right side of subtree */
144 	struct ma_topiary *free;	/* nodes to be freed */
145 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
146 	struct maple_big_node *bn;
147 };
148 
149 /* Functions */
150 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
151 {
152 	return kmem_cache_alloc(maple_node_cache, gfp);
153 }
154 
155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
156 {
157 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
158 }
159 
160 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
161 {
162 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
163 }
164 
165 static void mt_free_rcu(struct rcu_head *head)
166 {
167 	struct maple_node *node = container_of(head, struct maple_node, rcu);
168 
169 	kmem_cache_free(maple_node_cache, node);
170 }
171 
172 /*
173  * ma_free_rcu() - Use rcu callback to free a maple node
174  * @node: The node to free
175  *
176  * The maple tree uses the parent pointer to indicate this node is no longer in
177  * use and will be freed.
178  */
179 static void ma_free_rcu(struct maple_node *node)
180 {
181 	node->parent = ma_parent_ptr(node);
182 	call_rcu(&node->rcu, mt_free_rcu);
183 }
184 
185 static void mas_set_height(struct ma_state *mas)
186 {
187 	unsigned int new_flags = mas->tree->ma_flags;
188 
189 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
190 	BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
191 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
192 	mas->tree->ma_flags = new_flags;
193 }
194 
195 static unsigned int mas_mt_height(struct ma_state *mas)
196 {
197 	return mt_height(mas->tree);
198 }
199 
200 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
201 {
202 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
203 		MAPLE_NODE_TYPE_MASK;
204 }
205 
206 static inline bool ma_is_dense(const enum maple_type type)
207 {
208 	return type < maple_leaf_64;
209 }
210 
211 static inline bool ma_is_leaf(const enum maple_type type)
212 {
213 	return type < maple_range_64;
214 }
215 
216 static inline bool mte_is_leaf(const struct maple_enode *entry)
217 {
218 	return ma_is_leaf(mte_node_type(entry));
219 }
220 
221 /*
222  * We also reserve values with the bottom two bits set to '10' which are
223  * below 4096
224  */
225 static inline bool mt_is_reserved(const void *entry)
226 {
227 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
228 		xa_is_internal(entry);
229 }
230 
231 static inline void mas_set_err(struct ma_state *mas, long err)
232 {
233 	mas->node = MA_ERROR(err);
234 }
235 
236 static inline bool mas_is_ptr(struct ma_state *mas)
237 {
238 	return mas->node == MAS_ROOT;
239 }
240 
241 static inline bool mas_is_start(struct ma_state *mas)
242 {
243 	return mas->node == MAS_START;
244 }
245 
246 bool mas_is_err(struct ma_state *mas)
247 {
248 	return xa_is_err(mas->node);
249 }
250 
251 static inline bool mas_searchable(struct ma_state *mas)
252 {
253 	if (mas_is_none(mas))
254 		return false;
255 
256 	if (mas_is_ptr(mas))
257 		return false;
258 
259 	return true;
260 }
261 
262 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
263 {
264 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
265 }
266 
267 /*
268  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
269  * @entry: The maple encoded node
270  *
271  * Return: a maple topiary pointer
272  */
273 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
274 {
275 	return (struct maple_topiary *)
276 		((unsigned long)entry & ~MAPLE_NODE_MASK);
277 }
278 
279 /*
280  * mas_mn() - Get the maple state node.
281  * @mas: The maple state
282  *
283  * Return: the maple node (not encoded - bare pointer).
284  */
285 static inline struct maple_node *mas_mn(const struct ma_state *mas)
286 {
287 	return mte_to_node(mas->node);
288 }
289 
290 /*
291  * mte_set_node_dead() - Set a maple encoded node as dead.
292  * @mn: The maple encoded node.
293  */
294 static inline void mte_set_node_dead(struct maple_enode *mn)
295 {
296 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
297 	smp_wmb(); /* Needed for RCU */
298 }
299 
300 /* Bit 1 indicates the root is a node */
301 #define MAPLE_ROOT_NODE			0x02
302 /* maple_type stored bit 3-6 */
303 #define MAPLE_ENODE_TYPE_SHIFT		0x03
304 /* Bit 2 means a NULL somewhere below */
305 #define MAPLE_ENODE_NULL		0x04
306 
307 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
308 					     enum maple_type type)
309 {
310 	return (void *)((unsigned long)node |
311 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
312 }
313 
314 static inline void *mte_mk_root(const struct maple_enode *node)
315 {
316 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
317 }
318 
319 static inline void *mte_safe_root(const struct maple_enode *node)
320 {
321 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
322 }
323 
324 static inline void *mte_set_full(const struct maple_enode *node)
325 {
326 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
327 }
328 
329 static inline void *mte_clear_full(const struct maple_enode *node)
330 {
331 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
332 }
333 
334 static inline bool mte_has_null(const struct maple_enode *node)
335 {
336 	return (unsigned long)node & MAPLE_ENODE_NULL;
337 }
338 
339 static inline bool ma_is_root(struct maple_node *node)
340 {
341 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
342 }
343 
344 static inline bool mte_is_root(const struct maple_enode *node)
345 {
346 	return ma_is_root(mte_to_node(node));
347 }
348 
349 static inline bool mas_is_root_limits(const struct ma_state *mas)
350 {
351 	return !mas->min && mas->max == ULONG_MAX;
352 }
353 
354 static inline bool mt_is_alloc(struct maple_tree *mt)
355 {
356 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
357 }
358 
359 /*
360  * The Parent Pointer
361  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
362  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
363  * bit values need an extra bit to store the offset.  This extra bit comes from
364  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
365  * indicate if bit 2 is part of the type or the slot.
366  *
367  * Note types:
368  *  0x??1 = Root
369  *  0x?00 = 16 bit nodes
370  *  0x010 = 32 bit nodes
371  *  0x110 = 64 bit nodes
372  *
373  * Slot size and alignment
374  *  0b??1 : Root
375  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
376  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
377  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
378  */
379 
380 #define MAPLE_PARENT_ROOT		0x01
381 
382 #define MAPLE_PARENT_SLOT_SHIFT		0x03
383 #define MAPLE_PARENT_SLOT_MASK		0xF8
384 
385 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
386 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
387 
388 #define MAPLE_PARENT_RANGE64		0x06
389 #define MAPLE_PARENT_RANGE32		0x04
390 #define MAPLE_PARENT_NOT_RANGE16	0x02
391 
392 /*
393  * mte_parent_shift() - Get the parent shift for the slot storage.
394  * @parent: The parent pointer cast as an unsigned long
395  * Return: The shift into that pointer to the star to of the slot
396  */
397 static inline unsigned long mte_parent_shift(unsigned long parent)
398 {
399 	/* Note bit 1 == 0 means 16B */
400 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
401 		return MAPLE_PARENT_SLOT_SHIFT;
402 
403 	return MAPLE_PARENT_16B_SLOT_SHIFT;
404 }
405 
406 /*
407  * mte_parent_slot_mask() - Get the slot mask for the parent.
408  * @parent: The parent pointer cast as an unsigned long.
409  * Return: The slot mask for that parent.
410  */
411 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
412 {
413 	/* Note bit 1 == 0 means 16B */
414 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
415 		return MAPLE_PARENT_SLOT_MASK;
416 
417 	return MAPLE_PARENT_16B_SLOT_MASK;
418 }
419 
420 /*
421  * mas_parent_enum() - Return the maple_type of the parent from the stored
422  * parent type.
423  * @mas: The maple state
424  * @node: The maple_enode to extract the parent's enum
425  * Return: The node->parent maple_type
426  */
427 static inline
428 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
429 				struct maple_tree *mt)
430 {
431 	unsigned long p_type;
432 
433 	p_type = (unsigned long)p_enode;
434 	if (p_type & MAPLE_PARENT_ROOT)
435 		return 0; /* Validated in the caller. */
436 
437 	p_type &= MAPLE_NODE_MASK;
438 	p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
439 
440 	switch (p_type) {
441 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
442 		if (mt_is_alloc(mt))
443 			return maple_arange_64;
444 		return maple_range_64;
445 	}
446 
447 	return 0;
448 }
449 
450 static inline
451 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
452 {
453 	return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
454 }
455 
456 /*
457  * mte_set_parent() - Set the parent node and encode the slot
458  * @enode: The encoded maple node.
459  * @parent: The encoded maple node that is the parent of @enode.
460  * @slot: The slot that @enode resides in @parent.
461  *
462  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
463  * parent type.
464  */
465 static inline
466 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
467 		    unsigned char slot)
468 {
469 	unsigned long val = (unsigned long)parent;
470 	unsigned long shift;
471 	unsigned long type;
472 	enum maple_type p_type = mte_node_type(parent);
473 
474 	BUG_ON(p_type == maple_dense);
475 	BUG_ON(p_type == maple_leaf_64);
476 
477 	switch (p_type) {
478 	case maple_range_64:
479 	case maple_arange_64:
480 		shift = MAPLE_PARENT_SLOT_SHIFT;
481 		type = MAPLE_PARENT_RANGE64;
482 		break;
483 	default:
484 	case maple_dense:
485 	case maple_leaf_64:
486 		shift = type = 0;
487 		break;
488 	}
489 
490 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
491 	val |= (slot << shift) | type;
492 	mte_to_node(enode)->parent = ma_parent_ptr(val);
493 }
494 
495 /*
496  * mte_parent_slot() - get the parent slot of @enode.
497  * @enode: The encoded maple node.
498  *
499  * Return: The slot in the parent node where @enode resides.
500  */
501 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
502 {
503 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
504 
505 	if (val & MA_ROOT_PARENT)
506 		return 0;
507 
508 	/*
509 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
510 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
511 	 */
512 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
513 }
514 
515 /*
516  * mte_parent() - Get the parent of @node.
517  * @node: The encoded maple node.
518  *
519  * Return: The parent maple node.
520  */
521 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
522 {
523 	return (void *)((unsigned long)
524 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
525 }
526 
527 /*
528  * ma_dead_node() - check if the @enode is dead.
529  * @enode: The encoded maple node
530  *
531  * Return: true if dead, false otherwise.
532  */
533 static inline bool ma_dead_node(const struct maple_node *node)
534 {
535 	struct maple_node *parent = (void *)((unsigned long)
536 					     node->parent & ~MAPLE_NODE_MASK);
537 
538 	return (parent == node);
539 }
540 /*
541  * mte_dead_node() - check if the @enode is dead.
542  * @enode: The encoded maple node
543  *
544  * Return: true if dead, false otherwise.
545  */
546 static inline bool mte_dead_node(const struct maple_enode *enode)
547 {
548 	struct maple_node *parent, *node;
549 
550 	node = mte_to_node(enode);
551 	parent = mte_parent(enode);
552 	return (parent == node);
553 }
554 
555 /*
556  * mas_allocated() - Get the number of nodes allocated in a maple state.
557  * @mas: The maple state
558  *
559  * The ma_state alloc member is overloaded to hold a pointer to the first
560  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
561  * set, then the alloc contains the number of requested nodes.  If there is an
562  * allocated node, then the total allocated nodes is in that node.
563  *
564  * Return: The total number of nodes allocated
565  */
566 static inline unsigned long mas_allocated(const struct ma_state *mas)
567 {
568 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
569 		return 0;
570 
571 	return mas->alloc->total;
572 }
573 
574 /*
575  * mas_set_alloc_req() - Set the requested number of allocations.
576  * @mas: the maple state
577  * @count: the number of allocations.
578  *
579  * The requested number of allocations is either in the first allocated node,
580  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
581  * no allocated node.  Set the request either in the node or do the necessary
582  * encoding to store in @mas->alloc directly.
583  */
584 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
585 {
586 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
587 		if (!count)
588 			mas->alloc = NULL;
589 		else
590 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
591 		return;
592 	}
593 
594 	mas->alloc->request_count = count;
595 }
596 
597 /*
598  * mas_alloc_req() - get the requested number of allocations.
599  * @mas: The maple state
600  *
601  * The alloc count is either stored directly in @mas, or in
602  * @mas->alloc->request_count if there is at least one node allocated.  Decode
603  * the request count if it's stored directly in @mas->alloc.
604  *
605  * Return: The allocation request count.
606  */
607 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
608 {
609 	if ((unsigned long)mas->alloc & 0x1)
610 		return (unsigned long)(mas->alloc) >> 1;
611 	else if (mas->alloc)
612 		return mas->alloc->request_count;
613 	return 0;
614 }
615 
616 /*
617  * ma_pivots() - Get a pointer to the maple node pivots.
618  * @node - the maple node
619  * @type - the node type
620  *
621  * Return: A pointer to the maple node pivots
622  */
623 static inline unsigned long *ma_pivots(struct maple_node *node,
624 					   enum maple_type type)
625 {
626 	switch (type) {
627 	case maple_arange_64:
628 		return node->ma64.pivot;
629 	case maple_range_64:
630 	case maple_leaf_64:
631 		return node->mr64.pivot;
632 	case maple_dense:
633 		return NULL;
634 	}
635 	return NULL;
636 }
637 
638 /*
639  * ma_gaps() - Get a pointer to the maple node gaps.
640  * @node - the maple node
641  * @type - the node type
642  *
643  * Return: A pointer to the maple node gaps
644  */
645 static inline unsigned long *ma_gaps(struct maple_node *node,
646 				     enum maple_type type)
647 {
648 	switch (type) {
649 	case maple_arange_64:
650 		return node->ma64.gap;
651 	case maple_range_64:
652 	case maple_leaf_64:
653 	case maple_dense:
654 		return NULL;
655 	}
656 	return NULL;
657 }
658 
659 /*
660  * mte_pivot() - Get the pivot at @piv of the maple encoded node.
661  * @mn: The maple encoded node.
662  * @piv: The pivot.
663  *
664  * Return: the pivot at @piv of @mn.
665  */
666 static inline unsigned long mte_pivot(const struct maple_enode *mn,
667 				 unsigned char piv)
668 {
669 	struct maple_node *node = mte_to_node(mn);
670 
671 	if (piv >= mt_pivots[piv]) {
672 		WARN_ON(1);
673 		return 0;
674 	}
675 	switch (mte_node_type(mn)) {
676 	case maple_arange_64:
677 		return node->ma64.pivot[piv];
678 	case maple_range_64:
679 	case maple_leaf_64:
680 		return node->mr64.pivot[piv];
681 	case maple_dense:
682 		return 0;
683 	}
684 	return 0;
685 }
686 
687 /*
688  * mas_safe_pivot() - get the pivot at @piv or mas->max.
689  * @mas: The maple state
690  * @pivots: The pointer to the maple node pivots
691  * @piv: The pivot to fetch
692  * @type: The maple node type
693  *
694  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
695  * otherwise.
696  */
697 static inline unsigned long
698 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
699 	       unsigned char piv, enum maple_type type)
700 {
701 	if (piv >= mt_pivots[type])
702 		return mas->max;
703 
704 	return pivots[piv];
705 }
706 
707 /*
708  * mas_safe_min() - Return the minimum for a given offset.
709  * @mas: The maple state
710  * @pivots: The pointer to the maple node pivots
711  * @offset: The offset into the pivot array
712  *
713  * Return: The minimum range value that is contained in @offset.
714  */
715 static inline unsigned long
716 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
717 {
718 	if (likely(offset))
719 		return pivots[offset - 1] + 1;
720 
721 	return mas->min;
722 }
723 
724 /*
725  * mas_logical_pivot() - Get the logical pivot of a given offset.
726  * @mas: The maple state
727  * @pivots: The pointer to the maple node pivots
728  * @offset: The offset into the pivot array
729  * @type: The maple node type
730  *
731  * When there is no value at a pivot (beyond the end of the data), then the
732  * pivot is actually @mas->max.
733  *
734  * Return: the logical pivot of a given @offset.
735  */
736 static inline unsigned long
737 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
738 		  unsigned char offset, enum maple_type type)
739 {
740 	unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
741 
742 	if (likely(lpiv))
743 		return lpiv;
744 
745 	if (likely(offset))
746 		return mas->max;
747 
748 	return lpiv;
749 }
750 
751 /*
752  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
753  * @mn: The encoded maple node
754  * @piv: The pivot offset
755  * @val: The value of the pivot
756  */
757 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
758 				unsigned long val)
759 {
760 	struct maple_node *node = mte_to_node(mn);
761 	enum maple_type type = mte_node_type(mn);
762 
763 	BUG_ON(piv >= mt_pivots[type]);
764 	switch (type) {
765 	default:
766 	case maple_range_64:
767 	case maple_leaf_64:
768 		node->mr64.pivot[piv] = val;
769 		break;
770 	case maple_arange_64:
771 		node->ma64.pivot[piv] = val;
772 		break;
773 	case maple_dense:
774 		break;
775 	}
776 
777 }
778 
779 /*
780  * ma_slots() - Get a pointer to the maple node slots.
781  * @mn: The maple node
782  * @mt: The maple node type
783  *
784  * Return: A pointer to the maple node slots
785  */
786 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
787 {
788 	switch (mt) {
789 	default:
790 	case maple_arange_64:
791 		return mn->ma64.slot;
792 	case maple_range_64:
793 	case maple_leaf_64:
794 		return mn->mr64.slot;
795 	case maple_dense:
796 		return mn->slot;
797 	}
798 }
799 
800 static inline bool mt_locked(const struct maple_tree *mt)
801 {
802 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
803 		lockdep_is_held(&mt->ma_lock);
804 }
805 
806 static inline void *mt_slot(const struct maple_tree *mt,
807 		void __rcu **slots, unsigned char offset)
808 {
809 	return rcu_dereference_check(slots[offset], mt_locked(mt));
810 }
811 
812 /*
813  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
814  * @mas: The maple state
815  * @slots: The pointer to the slots
816  * @offset: The offset into the slots array to fetch
817  *
818  * Return: The entry stored in @slots at the @offset.
819  */
820 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
821 				       unsigned char offset)
822 {
823 	return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
824 }
825 
826 /*
827  * mas_slot() - Get the slot value when not holding the maple tree lock.
828  * @mas: The maple state
829  * @slots: The pointer to the slots
830  * @offset: The offset into the slots array to fetch
831  *
832  * Return: The entry stored in @slots at the @offset
833  */
834 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
835 			     unsigned char offset)
836 {
837 	return mt_slot(mas->tree, slots, offset);
838 }
839 
840 /*
841  * mas_root() - Get the maple tree root.
842  * @mas: The maple state.
843  *
844  * Return: The pointer to the root of the tree
845  */
846 static inline void *mas_root(struct ma_state *mas)
847 {
848 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
849 }
850 
851 static inline void *mt_root_locked(struct maple_tree *mt)
852 {
853 	return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
854 }
855 
856 /*
857  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
858  * @mas: The maple state.
859  *
860  * Return: The pointer to the root of the tree
861  */
862 static inline void *mas_root_locked(struct ma_state *mas)
863 {
864 	return mt_root_locked(mas->tree);
865 }
866 
867 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
868 					     enum maple_type mt)
869 {
870 	switch (mt) {
871 	case maple_arange_64:
872 		return &mn->ma64.meta;
873 	default:
874 		return &mn->mr64.meta;
875 	}
876 }
877 
878 /*
879  * ma_set_meta() - Set the metadata information of a node.
880  * @mn: The maple node
881  * @mt: The maple node type
882  * @offset: The offset of the highest sub-gap in this node.
883  * @end: The end of the data in this node.
884  */
885 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
886 			       unsigned char offset, unsigned char end)
887 {
888 	struct maple_metadata *meta = ma_meta(mn, mt);
889 
890 	meta->gap = offset;
891 	meta->end = end;
892 }
893 
894 /*
895  * ma_meta_end() - Get the data end of a node from the metadata
896  * @mn: The maple node
897  * @mt: The maple node type
898  */
899 static inline unsigned char ma_meta_end(struct maple_node *mn,
900 					enum maple_type mt)
901 {
902 	struct maple_metadata *meta = ma_meta(mn, mt);
903 
904 	return meta->end;
905 }
906 
907 /*
908  * ma_meta_gap() - Get the largest gap location of a node from the metadata
909  * @mn: The maple node
910  * @mt: The maple node type
911  */
912 static inline unsigned char ma_meta_gap(struct maple_node *mn,
913 					enum maple_type mt)
914 {
915 	BUG_ON(mt != maple_arange_64);
916 
917 	return mn->ma64.meta.gap;
918 }
919 
920 /*
921  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
922  * @mn: The maple node
923  * @mn: The maple node type
924  * @offset: The location of the largest gap.
925  */
926 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
927 				   unsigned char offset)
928 {
929 
930 	struct maple_metadata *meta = ma_meta(mn, mt);
931 
932 	meta->gap = offset;
933 }
934 
935 /*
936  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
937  * @mat - the ma_topiary, a linked list of dead nodes.
938  * @dead_enode - the node to be marked as dead and added to the tail of the list
939  *
940  * Add the @dead_enode to the linked list in @mat.
941  */
942 static inline void mat_add(struct ma_topiary *mat,
943 			   struct maple_enode *dead_enode)
944 {
945 	mte_set_node_dead(dead_enode);
946 	mte_to_mat(dead_enode)->next = NULL;
947 	if (!mat->tail) {
948 		mat->tail = mat->head = dead_enode;
949 		return;
950 	}
951 
952 	mte_to_mat(mat->tail)->next = dead_enode;
953 	mat->tail = dead_enode;
954 }
955 
956 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
957 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
958 
959 /*
960  * mas_mat_free() - Free all nodes in a dead list.
961  * @mas - the maple state
962  * @mat - the ma_topiary linked list of dead nodes to free.
963  *
964  * Free walk a dead list.
965  */
966 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
967 {
968 	struct maple_enode *next;
969 
970 	while (mat->head) {
971 		next = mte_to_mat(mat->head)->next;
972 		mas_free(mas, mat->head);
973 		mat->head = next;
974 	}
975 }
976 
977 /*
978  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
979  * @mas - the maple state
980  * @mat - the ma_topiary linked list of dead nodes to free.
981  *
982  * Destroy walk a dead list.
983  */
984 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
985 {
986 	struct maple_enode *next;
987 
988 	while (mat->head) {
989 		next = mte_to_mat(mat->head)->next;
990 		mte_destroy_walk(mat->head, mat->mtree);
991 		mat->head = next;
992 	}
993 }
994 /*
995  * mas_descend() - Descend into the slot stored in the ma_state.
996  * @mas - the maple state.
997  *
998  * Note: Not RCU safe, only use in write side or debug code.
999  */
1000 static inline void mas_descend(struct ma_state *mas)
1001 {
1002 	enum maple_type type;
1003 	unsigned long *pivots;
1004 	struct maple_node *node;
1005 	void __rcu **slots;
1006 
1007 	node = mas_mn(mas);
1008 	type = mte_node_type(mas->node);
1009 	pivots = ma_pivots(node, type);
1010 	slots = ma_slots(node, type);
1011 
1012 	if (mas->offset)
1013 		mas->min = pivots[mas->offset - 1] + 1;
1014 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1015 	mas->node = mas_slot(mas, slots, mas->offset);
1016 }
1017 
1018 /*
1019  * mte_set_gap() - Set a maple node gap.
1020  * @mn: The encoded maple node
1021  * @gap: The offset of the gap to set
1022  * @val: The gap value
1023  */
1024 static inline void mte_set_gap(const struct maple_enode *mn,
1025 				 unsigned char gap, unsigned long val)
1026 {
1027 	switch (mte_node_type(mn)) {
1028 	default:
1029 		break;
1030 	case maple_arange_64:
1031 		mte_to_node(mn)->ma64.gap[gap] = val;
1032 		break;
1033 	}
1034 }
1035 
1036 /*
1037  * mas_ascend() - Walk up a level of the tree.
1038  * @mas: The maple state
1039  *
1040  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1041  * may cause several levels of walking up to find the correct min and max.
1042  * May find a dead node which will cause a premature return.
1043  * Return: 1 on dead node, 0 otherwise
1044  */
1045 static int mas_ascend(struct ma_state *mas)
1046 {
1047 	struct maple_enode *p_enode; /* parent enode. */
1048 	struct maple_enode *a_enode; /* ancestor enode. */
1049 	struct maple_node *a_node; /* ancestor node. */
1050 	struct maple_node *p_node; /* parent node. */
1051 	unsigned char a_slot;
1052 	enum maple_type a_type;
1053 	unsigned long min, max;
1054 	unsigned long *pivots;
1055 	unsigned char offset;
1056 	bool set_max = false, set_min = false;
1057 
1058 	a_node = mas_mn(mas);
1059 	if (ma_is_root(a_node)) {
1060 		mas->offset = 0;
1061 		return 0;
1062 	}
1063 
1064 	p_node = mte_parent(mas->node);
1065 	if (unlikely(a_node == p_node))
1066 		return 1;
1067 	a_type = mas_parent_enum(mas, mas->node);
1068 	offset = mte_parent_slot(mas->node);
1069 	a_enode = mt_mk_node(p_node, a_type);
1070 
1071 	/* Check to make sure all parent information is still accurate */
1072 	if (p_node != mte_parent(mas->node))
1073 		return 1;
1074 
1075 	mas->node = a_enode;
1076 	mas->offset = offset;
1077 
1078 	if (mte_is_root(a_enode)) {
1079 		mas->max = ULONG_MAX;
1080 		mas->min = 0;
1081 		return 0;
1082 	}
1083 
1084 	min = 0;
1085 	max = ULONG_MAX;
1086 	do {
1087 		p_enode = a_enode;
1088 		a_type = mas_parent_enum(mas, p_enode);
1089 		a_node = mte_parent(p_enode);
1090 		a_slot = mte_parent_slot(p_enode);
1091 		pivots = ma_pivots(a_node, a_type);
1092 		a_enode = mt_mk_node(a_node, a_type);
1093 
1094 		if (!set_min && a_slot) {
1095 			set_min = true;
1096 			min = pivots[a_slot - 1] + 1;
1097 		}
1098 
1099 		if (!set_max && a_slot < mt_pivots[a_type]) {
1100 			set_max = true;
1101 			max = pivots[a_slot];
1102 		}
1103 
1104 		if (unlikely(ma_dead_node(a_node)))
1105 			return 1;
1106 
1107 		if (unlikely(ma_is_root(a_node)))
1108 			break;
1109 
1110 	} while (!set_min || !set_max);
1111 
1112 	mas->max = max;
1113 	mas->min = min;
1114 	return 0;
1115 }
1116 
1117 /*
1118  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1119  * @mas: The maple state
1120  *
1121  * Return: A pointer to a maple node.
1122  */
1123 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1124 {
1125 	struct maple_alloc *ret, *node = mas->alloc;
1126 	unsigned long total = mas_allocated(mas);
1127 	unsigned int req = mas_alloc_req(mas);
1128 
1129 	/* nothing or a request pending. */
1130 	if (WARN_ON(!total))
1131 		return NULL;
1132 
1133 	if (total == 1) {
1134 		/* single allocation in this ma_state */
1135 		mas->alloc = NULL;
1136 		ret = node;
1137 		goto single_node;
1138 	}
1139 
1140 	if (node->node_count == 1) {
1141 		/* Single allocation in this node. */
1142 		mas->alloc = node->slot[0];
1143 		mas->alloc->total = node->total - 1;
1144 		ret = node;
1145 		goto new_head;
1146 	}
1147 	node->total--;
1148 	ret = node->slot[--node->node_count];
1149 	node->slot[node->node_count] = NULL;
1150 
1151 single_node:
1152 new_head:
1153 	if (req) {
1154 		req++;
1155 		mas_set_alloc_req(mas, req);
1156 	}
1157 
1158 	memset(ret, 0, sizeof(*ret));
1159 	return (struct maple_node *)ret;
1160 }
1161 
1162 /*
1163  * mas_push_node() - Push a node back on the maple state allocation.
1164  * @mas: The maple state
1165  * @used: The used maple node
1166  *
1167  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1168  * requested node count as necessary.
1169  */
1170 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1171 {
1172 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1173 	struct maple_alloc *head = mas->alloc;
1174 	unsigned long count;
1175 	unsigned int requested = mas_alloc_req(mas);
1176 
1177 	count = mas_allocated(mas);
1178 
1179 	reuse->request_count = 0;
1180 	reuse->node_count = 0;
1181 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1182 		head->slot[head->node_count++] = reuse;
1183 		head->total++;
1184 		goto done;
1185 	}
1186 
1187 	reuse->total = 1;
1188 	if ((head) && !((unsigned long)head & 0x1)) {
1189 		reuse->slot[0] = head;
1190 		reuse->node_count = 1;
1191 		reuse->total += head->total;
1192 	}
1193 
1194 	mas->alloc = reuse;
1195 done:
1196 	if (requested > 1)
1197 		mas_set_alloc_req(mas, requested - 1);
1198 }
1199 
1200 /*
1201  * mas_alloc_nodes() - Allocate nodes into a maple state
1202  * @mas: The maple state
1203  * @gfp: The GFP Flags
1204  */
1205 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1206 {
1207 	struct maple_alloc *node;
1208 	unsigned long allocated = mas_allocated(mas);
1209 	unsigned int requested = mas_alloc_req(mas);
1210 	unsigned int count;
1211 	void **slots = NULL;
1212 	unsigned int max_req = 0;
1213 
1214 	if (!requested)
1215 		return;
1216 
1217 	mas_set_alloc_req(mas, 0);
1218 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1219 		if (allocated)
1220 			return;
1221 		WARN_ON(!allocated);
1222 	}
1223 
1224 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1225 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1226 		if (!node)
1227 			goto nomem_one;
1228 
1229 		if (allocated) {
1230 			node->slot[0] = mas->alloc;
1231 			node->node_count = 1;
1232 		} else {
1233 			node->node_count = 0;
1234 		}
1235 
1236 		mas->alloc = node;
1237 		node->total = ++allocated;
1238 		requested--;
1239 	}
1240 
1241 	node = mas->alloc;
1242 	node->request_count = 0;
1243 	while (requested) {
1244 		max_req = MAPLE_ALLOC_SLOTS;
1245 		if (node->node_count) {
1246 			unsigned int offset = node->node_count;
1247 
1248 			slots = (void **)&node->slot[offset];
1249 			max_req -= offset;
1250 		} else {
1251 			slots = (void **)&node->slot;
1252 		}
1253 
1254 		max_req = min(requested, max_req);
1255 		count = mt_alloc_bulk(gfp, max_req, slots);
1256 		if (!count)
1257 			goto nomem_bulk;
1258 
1259 		node->node_count += count;
1260 		allocated += count;
1261 		node = node->slot[0];
1262 		node->node_count = 0;
1263 		node->request_count = 0;
1264 		requested -= count;
1265 	}
1266 	mas->alloc->total = allocated;
1267 	return;
1268 
1269 nomem_bulk:
1270 	/* Clean up potential freed allocations on bulk failure */
1271 	memset(slots, 0, max_req * sizeof(unsigned long));
1272 nomem_one:
1273 	mas_set_alloc_req(mas, requested);
1274 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1275 		mas->alloc->total = allocated;
1276 	mas_set_err(mas, -ENOMEM);
1277 }
1278 
1279 /*
1280  * mas_free() - Free an encoded maple node
1281  * @mas: The maple state
1282  * @used: The encoded maple node to free.
1283  *
1284  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1285  * otherwise.
1286  */
1287 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1288 {
1289 	struct maple_node *tmp = mte_to_node(used);
1290 
1291 	if (mt_in_rcu(mas->tree))
1292 		ma_free_rcu(tmp);
1293 	else
1294 		mas_push_node(mas, tmp);
1295 }
1296 
1297 /*
1298  * mas_node_count() - Check if enough nodes are allocated and request more if
1299  * there is not enough nodes.
1300  * @mas: The maple state
1301  * @count: The number of nodes needed
1302  * @gfp: the gfp flags
1303  */
1304 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1305 {
1306 	unsigned long allocated = mas_allocated(mas);
1307 
1308 	if (allocated < count) {
1309 		mas_set_alloc_req(mas, count - allocated);
1310 		mas_alloc_nodes(mas, gfp);
1311 	}
1312 }
1313 
1314 /*
1315  * mas_node_count() - Check if enough nodes are allocated and request more if
1316  * there is not enough nodes.
1317  * @mas: The maple state
1318  * @count: The number of nodes needed
1319  *
1320  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1321  */
1322 static void mas_node_count(struct ma_state *mas, int count)
1323 {
1324 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1325 }
1326 
1327 /*
1328  * mas_start() - Sets up maple state for operations.
1329  * @mas: The maple state.
1330  *
1331  * If mas->node == MAS_START, then set the min, max and depth to
1332  * defaults.
1333  *
1334  * Return:
1335  * - If mas->node is an error or not MAS_START, return NULL.
1336  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
1337  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
1338  * - If it's a tree:            NULL & mas->node == safe root node.
1339  */
1340 static inline struct maple_enode *mas_start(struct ma_state *mas)
1341 {
1342 	if (likely(mas_is_start(mas))) {
1343 		struct maple_enode *root;
1344 
1345 		mas->min = 0;
1346 		mas->max = ULONG_MAX;
1347 		mas->depth = 0;
1348 
1349 		root = mas_root(mas);
1350 		/* Tree with nodes */
1351 		if (likely(xa_is_node(root))) {
1352 			mas->depth = 1;
1353 			mas->node = mte_safe_root(root);
1354 			mas->offset = 0;
1355 			return NULL;
1356 		}
1357 
1358 		/* empty tree */
1359 		if (unlikely(!root)) {
1360 			mas->node = MAS_NONE;
1361 			mas->offset = MAPLE_NODE_SLOTS;
1362 			return NULL;
1363 		}
1364 
1365 		/* Single entry tree */
1366 		mas->node = MAS_ROOT;
1367 		mas->offset = MAPLE_NODE_SLOTS;
1368 
1369 		/* Single entry tree. */
1370 		if (mas->index > 0)
1371 			return NULL;
1372 
1373 		return root;
1374 	}
1375 
1376 	return NULL;
1377 }
1378 
1379 /*
1380  * ma_data_end() - Find the end of the data in a node.
1381  * @node: The maple node
1382  * @type: The maple node type
1383  * @pivots: The array of pivots in the node
1384  * @max: The maximum value in the node
1385  *
1386  * Uses metadata to find the end of the data when possible.
1387  * Return: The zero indexed last slot with data (may be null).
1388  */
1389 static inline unsigned char ma_data_end(struct maple_node *node,
1390 					enum maple_type type,
1391 					unsigned long *pivots,
1392 					unsigned long max)
1393 {
1394 	unsigned char offset;
1395 
1396 	if (type == maple_arange_64)
1397 		return ma_meta_end(node, type);
1398 
1399 	offset = mt_pivots[type] - 1;
1400 	if (likely(!pivots[offset]))
1401 		return ma_meta_end(node, type);
1402 
1403 	if (likely(pivots[offset] == max))
1404 		return offset;
1405 
1406 	return mt_pivots[type];
1407 }
1408 
1409 /*
1410  * mas_data_end() - Find the end of the data (slot).
1411  * @mas: the maple state
1412  *
1413  * This method is optimized to check the metadata of a node if the node type
1414  * supports data end metadata.
1415  *
1416  * Return: The zero indexed last slot with data (may be null).
1417  */
1418 static inline unsigned char mas_data_end(struct ma_state *mas)
1419 {
1420 	enum maple_type type;
1421 	struct maple_node *node;
1422 	unsigned char offset;
1423 	unsigned long *pivots;
1424 
1425 	type = mte_node_type(mas->node);
1426 	node = mas_mn(mas);
1427 	if (type == maple_arange_64)
1428 		return ma_meta_end(node, type);
1429 
1430 	pivots = ma_pivots(node, type);
1431 	offset = mt_pivots[type] - 1;
1432 	if (likely(!pivots[offset]))
1433 		return ma_meta_end(node, type);
1434 
1435 	if (likely(pivots[offset] == mas->max))
1436 		return offset;
1437 
1438 	return mt_pivots[type];
1439 }
1440 
1441 /*
1442  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1443  * @mas - the maple state
1444  *
1445  * Return: The maximum gap in the leaf.
1446  */
1447 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1448 {
1449 	enum maple_type mt;
1450 	unsigned long pstart, gap, max_gap;
1451 	struct maple_node *mn;
1452 	unsigned long *pivots;
1453 	void __rcu **slots;
1454 	unsigned char i;
1455 	unsigned char max_piv;
1456 
1457 	mt = mte_node_type(mas->node);
1458 	mn = mas_mn(mas);
1459 	slots = ma_slots(mn, mt);
1460 	max_gap = 0;
1461 	if (unlikely(ma_is_dense(mt))) {
1462 		gap = 0;
1463 		for (i = 0; i < mt_slots[mt]; i++) {
1464 			if (slots[i]) {
1465 				if (gap > max_gap)
1466 					max_gap = gap;
1467 				gap = 0;
1468 			} else {
1469 				gap++;
1470 			}
1471 		}
1472 		if (gap > max_gap)
1473 			max_gap = gap;
1474 		return max_gap;
1475 	}
1476 
1477 	/*
1478 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1479 	 * be skipped if there is a gap in slot 0.
1480 	 */
1481 	pivots = ma_pivots(mn, mt);
1482 	if (likely(!slots[0])) {
1483 		max_gap = pivots[0] - mas->min + 1;
1484 		i = 2;
1485 	} else {
1486 		i = 1;
1487 	}
1488 
1489 	/* reduce max_piv as the special case is checked before the loop */
1490 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1491 	/*
1492 	 * Check end implied pivot which can only be a gap on the right most
1493 	 * node.
1494 	 */
1495 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1496 		gap = ULONG_MAX - pivots[max_piv];
1497 		if (gap > max_gap)
1498 			max_gap = gap;
1499 	}
1500 
1501 	for (; i <= max_piv; i++) {
1502 		/* data == no gap. */
1503 		if (likely(slots[i]))
1504 			continue;
1505 
1506 		pstart = pivots[i - 1];
1507 		gap = pivots[i] - pstart;
1508 		if (gap > max_gap)
1509 			max_gap = gap;
1510 
1511 		/* There cannot be two gaps in a row. */
1512 		i++;
1513 	}
1514 	return max_gap;
1515 }
1516 
1517 /*
1518  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1519  * @node: The maple node
1520  * @gaps: The pointer to the gaps
1521  * @mt: The maple node type
1522  * @*off: Pointer to store the offset location of the gap.
1523  *
1524  * Uses the metadata data end to scan backwards across set gaps.
1525  *
1526  * Return: The maximum gap value
1527  */
1528 static inline unsigned long
1529 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1530 	    unsigned char *off)
1531 {
1532 	unsigned char offset, i;
1533 	unsigned long max_gap = 0;
1534 
1535 	i = offset = ma_meta_end(node, mt);
1536 	do {
1537 		if (gaps[i] > max_gap) {
1538 			max_gap = gaps[i];
1539 			offset = i;
1540 		}
1541 	} while (i--);
1542 
1543 	*off = offset;
1544 	return max_gap;
1545 }
1546 
1547 /*
1548  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1549  * @mas: The maple state.
1550  *
1551  * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1552  *
1553  * Return: The gap value.
1554  */
1555 static inline unsigned long mas_max_gap(struct ma_state *mas)
1556 {
1557 	unsigned long *gaps;
1558 	unsigned char offset;
1559 	enum maple_type mt;
1560 	struct maple_node *node;
1561 
1562 	mt = mte_node_type(mas->node);
1563 	if (ma_is_leaf(mt))
1564 		return mas_leaf_max_gap(mas);
1565 
1566 	node = mas_mn(mas);
1567 	offset = ma_meta_gap(node, mt);
1568 	if (offset == MAPLE_ARANGE64_META_MAX)
1569 		return 0;
1570 
1571 	gaps = ma_gaps(node, mt);
1572 	return gaps[offset];
1573 }
1574 
1575 /*
1576  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1577  * @mas: The maple state
1578  * @offset: The gap offset in the parent to set
1579  * @new: The new gap value.
1580  *
1581  * Set the parent gap then continue to set the gap upwards, using the metadata
1582  * of the parent to see if it is necessary to check the node above.
1583  */
1584 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1585 		unsigned long new)
1586 {
1587 	unsigned long meta_gap = 0;
1588 	struct maple_node *pnode;
1589 	struct maple_enode *penode;
1590 	unsigned long *pgaps;
1591 	unsigned char meta_offset;
1592 	enum maple_type pmt;
1593 
1594 	pnode = mte_parent(mas->node);
1595 	pmt = mas_parent_enum(mas, mas->node);
1596 	penode = mt_mk_node(pnode, pmt);
1597 	pgaps = ma_gaps(pnode, pmt);
1598 
1599 ascend:
1600 	meta_offset = ma_meta_gap(pnode, pmt);
1601 	if (meta_offset == MAPLE_ARANGE64_META_MAX)
1602 		meta_gap = 0;
1603 	else
1604 		meta_gap = pgaps[meta_offset];
1605 
1606 	pgaps[offset] = new;
1607 
1608 	if (meta_gap == new)
1609 		return;
1610 
1611 	if (offset != meta_offset) {
1612 		if (meta_gap > new)
1613 			return;
1614 
1615 		ma_set_meta_gap(pnode, pmt, offset);
1616 	} else if (new < meta_gap) {
1617 		meta_offset = 15;
1618 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1619 		ma_set_meta_gap(pnode, pmt, meta_offset);
1620 	}
1621 
1622 	if (ma_is_root(pnode))
1623 		return;
1624 
1625 	/* Go to the parent node. */
1626 	pnode = mte_parent(penode);
1627 	pmt = mas_parent_enum(mas, penode);
1628 	pgaps = ma_gaps(pnode, pmt);
1629 	offset = mte_parent_slot(penode);
1630 	penode = mt_mk_node(pnode, pmt);
1631 	goto ascend;
1632 }
1633 
1634 /*
1635  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1636  * @mas - the maple state.
1637  */
1638 static inline void mas_update_gap(struct ma_state *mas)
1639 {
1640 	unsigned char pslot;
1641 	unsigned long p_gap;
1642 	unsigned long max_gap;
1643 
1644 	if (!mt_is_alloc(mas->tree))
1645 		return;
1646 
1647 	if (mte_is_root(mas->node))
1648 		return;
1649 
1650 	max_gap = mas_max_gap(mas);
1651 
1652 	pslot = mte_parent_slot(mas->node);
1653 	p_gap = ma_gaps(mte_parent(mas->node),
1654 			mas_parent_enum(mas, mas->node))[pslot];
1655 
1656 	if (p_gap != max_gap)
1657 		mas_parent_gap(mas, pslot, max_gap);
1658 }
1659 
1660 /*
1661  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1662  * @parent with the slot encoded.
1663  * @mas - the maple state (for the tree)
1664  * @parent - the maple encoded node containing the children.
1665  */
1666 static inline void mas_adopt_children(struct ma_state *mas,
1667 		struct maple_enode *parent)
1668 {
1669 	enum maple_type type = mte_node_type(parent);
1670 	struct maple_node *node = mas_mn(mas);
1671 	void __rcu **slots = ma_slots(node, type);
1672 	unsigned long *pivots = ma_pivots(node, type);
1673 	struct maple_enode *child;
1674 	unsigned char offset;
1675 
1676 	offset = ma_data_end(node, type, pivots, mas->max);
1677 	do {
1678 		child = mas_slot_locked(mas, slots, offset);
1679 		mte_set_parent(child, parent, offset);
1680 	} while (offset--);
1681 }
1682 
1683 /*
1684  * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the
1685  * parent encoding to locate the maple node in the tree.
1686  * @mas - the ma_state to use for operations.
1687  * @advanced - boolean to adopt the child nodes and free the old node (false) or
1688  * leave the node (true) and handle the adoption and free elsewhere.
1689  */
1690 static inline void mas_replace(struct ma_state *mas, bool advanced)
1691 	__must_hold(mas->tree->lock)
1692 {
1693 	struct maple_node *mn = mas_mn(mas);
1694 	struct maple_enode *old_enode;
1695 	unsigned char offset = 0;
1696 	void __rcu **slots = NULL;
1697 
1698 	if (ma_is_root(mn)) {
1699 		old_enode = mas_root_locked(mas);
1700 	} else {
1701 		offset = mte_parent_slot(mas->node);
1702 		slots = ma_slots(mte_parent(mas->node),
1703 				 mas_parent_enum(mas, mas->node));
1704 		old_enode = mas_slot_locked(mas, slots, offset);
1705 	}
1706 
1707 	if (!advanced && !mte_is_leaf(mas->node))
1708 		mas_adopt_children(mas, mas->node);
1709 
1710 	if (mte_is_root(mas->node)) {
1711 		mn->parent = ma_parent_ptr(
1712 			      ((unsigned long)mas->tree | MA_ROOT_PARENT));
1713 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1714 		mas_set_height(mas);
1715 	} else {
1716 		rcu_assign_pointer(slots[offset], mas->node);
1717 	}
1718 
1719 	if (!advanced)
1720 		mas_free(mas, old_enode);
1721 }
1722 
1723 /*
1724  * mas_new_child() - Find the new child of a node.
1725  * @mas: the maple state
1726  * @child: the maple state to store the child.
1727  */
1728 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1729 	__must_hold(mas->tree->lock)
1730 {
1731 	enum maple_type mt;
1732 	unsigned char offset;
1733 	unsigned char end;
1734 	unsigned long *pivots;
1735 	struct maple_enode *entry;
1736 	struct maple_node *node;
1737 	void __rcu **slots;
1738 
1739 	mt = mte_node_type(mas->node);
1740 	node = mas_mn(mas);
1741 	slots = ma_slots(node, mt);
1742 	pivots = ma_pivots(node, mt);
1743 	end = ma_data_end(node, mt, pivots, mas->max);
1744 	for (offset = mas->offset; offset <= end; offset++) {
1745 		entry = mas_slot_locked(mas, slots, offset);
1746 		if (mte_parent(entry) == node) {
1747 			*child = *mas;
1748 			mas->offset = offset + 1;
1749 			child->offset = offset;
1750 			mas_descend(child);
1751 			child->offset = 0;
1752 			return true;
1753 		}
1754 	}
1755 	return false;
1756 }
1757 
1758 /*
1759  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1760  * old data or set b_node->b_end.
1761  * @b_node: the maple_big_node
1762  * @shift: the shift count
1763  */
1764 static inline void mab_shift_right(struct maple_big_node *b_node,
1765 				 unsigned char shift)
1766 {
1767 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1768 
1769 	memmove(b_node->pivot + shift, b_node->pivot, size);
1770 	memmove(b_node->slot + shift, b_node->slot, size);
1771 	if (b_node->type == maple_arange_64)
1772 		memmove(b_node->gap + shift, b_node->gap, size);
1773 }
1774 
1775 /*
1776  * mab_middle_node() - Check if a middle node is needed (unlikely)
1777  * @b_node: the maple_big_node that contains the data.
1778  * @size: the amount of data in the b_node
1779  * @split: the potential split location
1780  * @slot_count: the size that can be stored in a single node being considered.
1781  *
1782  * Return: true if a middle node is required.
1783  */
1784 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1785 				   unsigned char slot_count)
1786 {
1787 	unsigned char size = b_node->b_end;
1788 
1789 	if (size >= 2 * slot_count)
1790 		return true;
1791 
1792 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1793 		return true;
1794 
1795 	return false;
1796 }
1797 
1798 /*
1799  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1800  * @b_node: the maple_big_node with the data
1801  * @split: the suggested split location
1802  * @slot_count: the number of slots in the node being considered.
1803  *
1804  * Return: the split location.
1805  */
1806 static inline int mab_no_null_split(struct maple_big_node *b_node,
1807 				    unsigned char split, unsigned char slot_count)
1808 {
1809 	if (!b_node->slot[split]) {
1810 		/*
1811 		 * If the split is less than the max slot && the right side will
1812 		 * still be sufficient, then increment the split on NULL.
1813 		 */
1814 		if ((split < slot_count - 1) &&
1815 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1816 			split++;
1817 		else
1818 			split--;
1819 	}
1820 	return split;
1821 }
1822 
1823 /*
1824  * mab_calc_split() - Calculate the split location and if there needs to be two
1825  * splits.
1826  * @bn: The maple_big_node with the data
1827  * @mid_split: The second split, if required.  0 otherwise.
1828  *
1829  * Return: The first split location.  The middle split is set in @mid_split.
1830  */
1831 static inline int mab_calc_split(struct ma_state *mas,
1832 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1833 {
1834 	unsigned char b_end = bn->b_end;
1835 	int split = b_end / 2; /* Assume equal split. */
1836 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1837 
1838 	/*
1839 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1840 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1841 	 * limitation means that the split of a node must be checked for this condition
1842 	 * and be able to put more data in one direction or the other.
1843 	 */
1844 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1845 		*mid_split = 0;
1846 		split = b_end - mt_min_slots[bn->type];
1847 
1848 		if (!ma_is_leaf(bn->type))
1849 			return split;
1850 
1851 		mas->mas_flags |= MA_STATE_REBALANCE;
1852 		if (!bn->slot[split])
1853 			split--;
1854 		return split;
1855 	}
1856 
1857 	/*
1858 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1859 	 * split scenario.  The 3-way split comes about by means of a store of a range
1860 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1861 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1862 	 * also be located in different parent nodes which are also full.  This can
1863 	 * carry upwards all the way to the root in the worst case.
1864 	 */
1865 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1866 		split = b_end / 3;
1867 		*mid_split = split * 2;
1868 	} else {
1869 		slot_min = mt_min_slots[bn->type];
1870 
1871 		*mid_split = 0;
1872 		/*
1873 		 * Avoid having a range less than the slot count unless it
1874 		 * causes one node to be deficient.
1875 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1876 		 */
1877 		while (((bn->pivot[split] - min) < slot_count - 1) &&
1878 		       (split < slot_count - 1) && (b_end - split > slot_min))
1879 			split++;
1880 	}
1881 
1882 	/* Avoid ending a node on a NULL entry */
1883 	split = mab_no_null_split(bn, split, slot_count);
1884 
1885 	if (unlikely(*mid_split))
1886 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1887 
1888 	return split;
1889 }
1890 
1891 /*
1892  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1893  * and set @b_node->b_end to the next free slot.
1894  * @mas: The maple state
1895  * @mas_start: The starting slot to copy
1896  * @mas_end: The end slot to copy (inclusively)
1897  * @b_node: The maple_big_node to place the data
1898  * @mab_start: The starting location in maple_big_node to store the data.
1899  */
1900 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1901 			unsigned char mas_end, struct maple_big_node *b_node,
1902 			unsigned char mab_start)
1903 {
1904 	enum maple_type mt;
1905 	struct maple_node *node;
1906 	void __rcu **slots;
1907 	unsigned long *pivots, *gaps;
1908 	int i = mas_start, j = mab_start;
1909 	unsigned char piv_end;
1910 
1911 	node = mas_mn(mas);
1912 	mt = mte_node_type(mas->node);
1913 	pivots = ma_pivots(node, mt);
1914 	if (!i) {
1915 		b_node->pivot[j] = pivots[i++];
1916 		if (unlikely(i > mas_end))
1917 			goto complete;
1918 		j++;
1919 	}
1920 
1921 	piv_end = min(mas_end, mt_pivots[mt]);
1922 	for (; i < piv_end; i++, j++) {
1923 		b_node->pivot[j] = pivots[i];
1924 		if (unlikely(!b_node->pivot[j]))
1925 			break;
1926 
1927 		if (unlikely(mas->max == b_node->pivot[j]))
1928 			goto complete;
1929 	}
1930 
1931 	if (likely(i <= mas_end))
1932 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1933 
1934 complete:
1935 	b_node->b_end = ++j;
1936 	j -= mab_start;
1937 	slots = ma_slots(node, mt);
1938 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1939 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1940 		gaps = ma_gaps(node, mt);
1941 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1942 		       sizeof(unsigned long) * j);
1943 	}
1944 }
1945 
1946 /*
1947  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1948  * @mas: The maple state
1949  * @node: The maple node
1950  * @pivots: pointer to the maple node pivots
1951  * @mt: The maple type
1952  * @end: The assumed end
1953  *
1954  * Note, end may be incremented within this function but not modified at the
1955  * source.  This is fine since the metadata is the last thing to be stored in a
1956  * node during a write.
1957  */
1958 static inline void mas_leaf_set_meta(struct ma_state *mas,
1959 		struct maple_node *node, unsigned long *pivots,
1960 		enum maple_type mt, unsigned char end)
1961 {
1962 	/* There is no room for metadata already */
1963 	if (mt_pivots[mt] <= end)
1964 		return;
1965 
1966 	if (pivots[end] && pivots[end] < mas->max)
1967 		end++;
1968 
1969 	if (end < mt_slots[mt] - 1)
1970 		ma_set_meta(node, mt, 0, end);
1971 }
1972 
1973 /*
1974  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1975  * @b_node: the maple_big_node that has the data
1976  * @mab_start: the start location in @b_node.
1977  * @mab_end: The end location in @b_node (inclusively)
1978  * @mas: The maple state with the maple encoded node.
1979  */
1980 static inline void mab_mas_cp(struct maple_big_node *b_node,
1981 			      unsigned char mab_start, unsigned char mab_end,
1982 			      struct ma_state *mas, bool new_max)
1983 {
1984 	int i, j = 0;
1985 	enum maple_type mt = mte_node_type(mas->node);
1986 	struct maple_node *node = mte_to_node(mas->node);
1987 	void __rcu **slots = ma_slots(node, mt);
1988 	unsigned long *pivots = ma_pivots(node, mt);
1989 	unsigned long *gaps = NULL;
1990 	unsigned char end;
1991 
1992 	if (mab_end - mab_start > mt_pivots[mt])
1993 		mab_end--;
1994 
1995 	if (!pivots[mt_pivots[mt] - 1])
1996 		slots[mt_pivots[mt]] = NULL;
1997 
1998 	i = mab_start;
1999 	do {
2000 		pivots[j++] = b_node->pivot[i++];
2001 	} while (i <= mab_end && likely(b_node->pivot[i]));
2002 
2003 	memcpy(slots, b_node->slot + mab_start,
2004 	       sizeof(void *) * (i - mab_start));
2005 
2006 	if (new_max)
2007 		mas->max = b_node->pivot[i - 1];
2008 
2009 	end = j - 1;
2010 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2011 		unsigned long max_gap = 0;
2012 		unsigned char offset = 15;
2013 
2014 		gaps = ma_gaps(node, mt);
2015 		do {
2016 			gaps[--j] = b_node->gap[--i];
2017 			if (gaps[j] > max_gap) {
2018 				offset = j;
2019 				max_gap = gaps[j];
2020 			}
2021 		} while (j);
2022 
2023 		ma_set_meta(node, mt, offset, end);
2024 	} else {
2025 		mas_leaf_set_meta(mas, node, pivots, mt, end);
2026 	}
2027 }
2028 
2029 /*
2030  * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2031  * @mas: the maple state with the maple encoded node of the sub-tree.
2032  *
2033  * Descend through a sub-tree and adopt children who do not have the correct
2034  * parents set.  Follow the parents which have the correct parents as they are
2035  * the new entries which need to be followed to find other incorrectly set
2036  * parents.
2037  */
2038 static inline void mas_descend_adopt(struct ma_state *mas)
2039 {
2040 	struct ma_state list[3], next[3];
2041 	int i, n;
2042 
2043 	/*
2044 	 * At each level there may be up to 3 correct parent pointers which indicates
2045 	 * the new nodes which need to be walked to find any new nodes at a lower level.
2046 	 */
2047 
2048 	for (i = 0; i < 3; i++) {
2049 		list[i] = *mas;
2050 		list[i].offset = 0;
2051 		next[i].offset = 0;
2052 	}
2053 	next[0] = *mas;
2054 
2055 	while (!mte_is_leaf(list[0].node)) {
2056 		n = 0;
2057 		for (i = 0; i < 3; i++) {
2058 			if (mas_is_none(&list[i]))
2059 				continue;
2060 
2061 			if (i && list[i-1].node == list[i].node)
2062 				continue;
2063 
2064 			while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2065 				n++;
2066 
2067 			mas_adopt_children(&list[i], list[i].node);
2068 		}
2069 
2070 		while (n < 3)
2071 			next[n++].node = MAS_NONE;
2072 
2073 		/* descend by setting the list to the children */
2074 		for (i = 0; i < 3; i++)
2075 			list[i] = next[i];
2076 	}
2077 }
2078 
2079 /*
2080  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2081  * @mas: The maple state
2082  * @end: The maple node end
2083  * @mt: The maple node type
2084  */
2085 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2086 				      enum maple_type mt)
2087 {
2088 	if (!(mas->mas_flags & MA_STATE_BULK))
2089 		return;
2090 
2091 	if (mte_is_root(mas->node))
2092 		return;
2093 
2094 	if (end > mt_min_slots[mt]) {
2095 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2096 		return;
2097 	}
2098 }
2099 
2100 /*
2101  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2102  * data from a maple encoded node.
2103  * @wr_mas: the maple write state
2104  * @b_node: the maple_big_node to fill with data
2105  * @offset_end: the offset to end copying
2106  *
2107  * Return: The actual end of the data stored in @b_node
2108  */
2109 static inline void mas_store_b_node(struct ma_wr_state *wr_mas,
2110 		struct maple_big_node *b_node, unsigned char offset_end)
2111 {
2112 	unsigned char slot;
2113 	unsigned char b_end;
2114 	/* Possible underflow of piv will wrap back to 0 before use. */
2115 	unsigned long piv;
2116 	struct ma_state *mas = wr_mas->mas;
2117 
2118 	b_node->type = wr_mas->type;
2119 	b_end = 0;
2120 	slot = mas->offset;
2121 	if (slot) {
2122 		/* Copy start data up to insert. */
2123 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2124 		b_end = b_node->b_end;
2125 		piv = b_node->pivot[b_end - 1];
2126 	} else
2127 		piv = mas->min - 1;
2128 
2129 	if (piv + 1 < mas->index) {
2130 		/* Handle range starting after old range */
2131 		b_node->slot[b_end] = wr_mas->content;
2132 		if (!wr_mas->content)
2133 			b_node->gap[b_end] = mas->index - 1 - piv;
2134 		b_node->pivot[b_end++] = mas->index - 1;
2135 	}
2136 
2137 	/* Store the new entry. */
2138 	mas->offset = b_end;
2139 	b_node->slot[b_end] = wr_mas->entry;
2140 	b_node->pivot[b_end] = mas->last;
2141 
2142 	/* Appended. */
2143 	if (mas->last >= mas->max)
2144 		goto b_end;
2145 
2146 	/* Handle new range ending before old range ends */
2147 	piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2148 	if (piv > mas->last) {
2149 		if (piv == ULONG_MAX)
2150 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2151 
2152 		if (offset_end != slot)
2153 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2154 							  offset_end);
2155 
2156 		b_node->slot[++b_end] = wr_mas->content;
2157 		if (!wr_mas->content)
2158 			b_node->gap[b_end] = piv - mas->last + 1;
2159 		b_node->pivot[b_end] = piv;
2160 	}
2161 
2162 	slot = offset_end + 1;
2163 	if (slot > wr_mas->node_end)
2164 		goto b_end;
2165 
2166 	/* Copy end data to the end of the node. */
2167 	mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2168 	b_node->b_end--;
2169 	return;
2170 
2171 b_end:
2172 	b_node->b_end = b_end;
2173 }
2174 
2175 /*
2176  * mas_prev_sibling() - Find the previous node with the same parent.
2177  * @mas: the maple state
2178  *
2179  * Return: True if there is a previous sibling, false otherwise.
2180  */
2181 static inline bool mas_prev_sibling(struct ma_state *mas)
2182 {
2183 	unsigned int p_slot = mte_parent_slot(mas->node);
2184 
2185 	if (mte_is_root(mas->node))
2186 		return false;
2187 
2188 	if (!p_slot)
2189 		return false;
2190 
2191 	mas_ascend(mas);
2192 	mas->offset = p_slot - 1;
2193 	mas_descend(mas);
2194 	return true;
2195 }
2196 
2197 /*
2198  * mas_next_sibling() - Find the next node with the same parent.
2199  * @mas: the maple state
2200  *
2201  * Return: true if there is a next sibling, false otherwise.
2202  */
2203 static inline bool mas_next_sibling(struct ma_state *mas)
2204 {
2205 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2206 
2207 	if (mte_is_root(mas->node))
2208 		return false;
2209 
2210 	parent = *mas;
2211 	mas_ascend(&parent);
2212 	parent.offset = mte_parent_slot(mas->node) + 1;
2213 	if (parent.offset > mas_data_end(&parent))
2214 		return false;
2215 
2216 	*mas = parent;
2217 	mas_descend(mas);
2218 	return true;
2219 }
2220 
2221 /*
2222  * mte_node_or_node() - Return the encoded node or MAS_NONE.
2223  * @enode: The encoded maple node.
2224  *
2225  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2226  *
2227  * Return: @enode or MAS_NONE
2228  */
2229 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2230 {
2231 	if (enode)
2232 		return enode;
2233 
2234 	return ma_enode_ptr(MAS_NONE);
2235 }
2236 
2237 /*
2238  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2239  * @wr_mas: The maple write state
2240  *
2241  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2242  */
2243 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2244 {
2245 	struct ma_state *mas = wr_mas->mas;
2246 	unsigned char count;
2247 	unsigned char offset;
2248 	unsigned long index, min, max;
2249 
2250 	if (unlikely(ma_is_dense(wr_mas->type))) {
2251 		wr_mas->r_max = wr_mas->r_min = mas->index;
2252 		mas->offset = mas->index = mas->min;
2253 		return;
2254 	}
2255 
2256 	wr_mas->node = mas_mn(wr_mas->mas);
2257 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2258 	count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2259 					       wr_mas->pivots, mas->max);
2260 	offset = mas->offset;
2261 	min = mas_safe_min(mas, wr_mas->pivots, offset);
2262 	if (unlikely(offset == count))
2263 		goto max;
2264 
2265 	max = wr_mas->pivots[offset];
2266 	index = mas->index;
2267 	if (unlikely(index <= max))
2268 		goto done;
2269 
2270 	if (unlikely(!max && offset))
2271 		goto max;
2272 
2273 	min = max + 1;
2274 	while (++offset < count) {
2275 		max = wr_mas->pivots[offset];
2276 		if (index <= max)
2277 			goto done;
2278 		else if (unlikely(!max))
2279 			break;
2280 
2281 		min = max + 1;
2282 	}
2283 
2284 max:
2285 	max = mas->max;
2286 done:
2287 	wr_mas->r_max = max;
2288 	wr_mas->r_min = min;
2289 	wr_mas->offset_end = mas->offset = offset;
2290 }
2291 
2292 /*
2293  * mas_topiary_range() - Add a range of slots to the topiary.
2294  * @mas: The maple state
2295  * @destroy: The topiary to add the slots (usually destroy)
2296  * @start: The starting slot inclusively
2297  * @end: The end slot inclusively
2298  */
2299 static inline void mas_topiary_range(struct ma_state *mas,
2300 	struct ma_topiary *destroy, unsigned char start, unsigned char end)
2301 {
2302 	void __rcu **slots;
2303 	unsigned char offset;
2304 
2305 	MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2306 	slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2307 	for (offset = start; offset <= end; offset++) {
2308 		struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2309 
2310 		if (mte_dead_node(enode))
2311 			continue;
2312 
2313 		mat_add(destroy, enode);
2314 	}
2315 }
2316 
2317 /*
2318  * mast_topiary() - Add the portions of the tree to the removal list; either to
2319  * be freed or discarded (destroy walk).
2320  * @mast: The maple_subtree_state.
2321  */
2322 static inline void mast_topiary(struct maple_subtree_state *mast)
2323 {
2324 	MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2325 	unsigned char r_start, r_end;
2326 	unsigned char l_start, l_end;
2327 	void __rcu **l_slots, **r_slots;
2328 
2329 	wr_mas.type = mte_node_type(mast->orig_l->node);
2330 	mast->orig_l->index = mast->orig_l->last;
2331 	mas_wr_node_walk(&wr_mas);
2332 	l_start = mast->orig_l->offset + 1;
2333 	l_end = mas_data_end(mast->orig_l);
2334 	r_start = 0;
2335 	r_end = mast->orig_r->offset;
2336 
2337 	if (r_end)
2338 		r_end--;
2339 
2340 	l_slots = ma_slots(mas_mn(mast->orig_l),
2341 			   mte_node_type(mast->orig_l->node));
2342 
2343 	r_slots = ma_slots(mas_mn(mast->orig_r),
2344 			   mte_node_type(mast->orig_r->node));
2345 
2346 	if ((l_start < l_end) &&
2347 	    mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2348 		l_start++;
2349 	}
2350 
2351 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2352 		if (r_end)
2353 			r_end--;
2354 	}
2355 
2356 	if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2357 		return;
2358 
2359 	/* At the node where left and right sides meet, add the parts between */
2360 	if (mast->orig_l->node == mast->orig_r->node) {
2361 		return mas_topiary_range(mast->orig_l, mast->destroy,
2362 					     l_start, r_end);
2363 	}
2364 
2365 	/* mast->orig_r is different and consumed. */
2366 	if (mte_is_leaf(mast->orig_r->node))
2367 		return;
2368 
2369 	if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2370 		l_end--;
2371 
2372 
2373 	if (l_start <= l_end)
2374 		mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2375 
2376 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2377 		r_start++;
2378 
2379 	if (r_start <= r_end)
2380 		mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2381 }
2382 
2383 /*
2384  * mast_rebalance_next() - Rebalance against the next node
2385  * @mast: The maple subtree state
2386  * @old_r: The encoded maple node to the right (next node).
2387  */
2388 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2389 {
2390 	unsigned char b_end = mast->bn->b_end;
2391 
2392 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2393 		   mast->bn, b_end);
2394 	mast->orig_r->last = mast->orig_r->max;
2395 }
2396 
2397 /*
2398  * mast_rebalance_prev() - Rebalance against the previous node
2399  * @mast: The maple subtree state
2400  * @old_l: The encoded maple node to the left (previous node)
2401  */
2402 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2403 {
2404 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2405 	unsigned char b_end = mast->bn->b_end;
2406 
2407 	mab_shift_right(mast->bn, end);
2408 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2409 	mast->l->min = mast->orig_l->min;
2410 	mast->orig_l->index = mast->orig_l->min;
2411 	mast->bn->b_end = end + b_end;
2412 	mast->l->offset += end;
2413 }
2414 
2415 /*
2416  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2417  * the node to the right.  Checking the nodes to the right then the left at each
2418  * level upwards until root is reached.  Free and destroy as needed.
2419  * Data is copied into the @mast->bn.
2420  * @mast: The maple_subtree_state.
2421  */
2422 static inline
2423 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2424 {
2425 	struct ma_state r_tmp = *mast->orig_r;
2426 	struct ma_state l_tmp = *mast->orig_l;
2427 	struct maple_enode *ancestor = NULL;
2428 	unsigned char start, end;
2429 	unsigned char depth = 0;
2430 
2431 	r_tmp = *mast->orig_r;
2432 	l_tmp = *mast->orig_l;
2433 	do {
2434 		mas_ascend(mast->orig_r);
2435 		mas_ascend(mast->orig_l);
2436 		depth++;
2437 		if (!ancestor &&
2438 		    (mast->orig_r->node == mast->orig_l->node)) {
2439 			ancestor = mast->orig_r->node;
2440 			end = mast->orig_r->offset - 1;
2441 			start = mast->orig_l->offset + 1;
2442 		}
2443 
2444 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2445 			if (!ancestor) {
2446 				ancestor = mast->orig_r->node;
2447 				start = 0;
2448 			}
2449 
2450 			mast->orig_r->offset++;
2451 			do {
2452 				mas_descend(mast->orig_r);
2453 				mast->orig_r->offset = 0;
2454 				depth--;
2455 			} while (depth);
2456 
2457 			mast_rebalance_next(mast);
2458 			do {
2459 				unsigned char l_off = 0;
2460 				struct maple_enode *child = r_tmp.node;
2461 
2462 				mas_ascend(&r_tmp);
2463 				if (ancestor == r_tmp.node)
2464 					l_off = start;
2465 
2466 				if (r_tmp.offset)
2467 					r_tmp.offset--;
2468 
2469 				if (l_off < r_tmp.offset)
2470 					mas_topiary_range(&r_tmp, mast->destroy,
2471 							  l_off, r_tmp.offset);
2472 
2473 				if (l_tmp.node != child)
2474 					mat_add(mast->free, child);
2475 
2476 			} while (r_tmp.node != ancestor);
2477 
2478 			*mast->orig_l = l_tmp;
2479 			return true;
2480 
2481 		} else if (mast->orig_l->offset != 0) {
2482 			if (!ancestor) {
2483 				ancestor = mast->orig_l->node;
2484 				end = mas_data_end(mast->orig_l);
2485 			}
2486 
2487 			mast->orig_l->offset--;
2488 			do {
2489 				mas_descend(mast->orig_l);
2490 				mast->orig_l->offset =
2491 					mas_data_end(mast->orig_l);
2492 				depth--;
2493 			} while (depth);
2494 
2495 			mast_rebalance_prev(mast);
2496 			do {
2497 				unsigned char r_off;
2498 				struct maple_enode *child = l_tmp.node;
2499 
2500 				mas_ascend(&l_tmp);
2501 				if (ancestor == l_tmp.node)
2502 					r_off = end;
2503 				else
2504 					r_off = mas_data_end(&l_tmp);
2505 
2506 				if (l_tmp.offset < r_off)
2507 					l_tmp.offset++;
2508 
2509 				if (l_tmp.offset < r_off)
2510 					mas_topiary_range(&l_tmp, mast->destroy,
2511 							  l_tmp.offset, r_off);
2512 
2513 				if (r_tmp.node != child)
2514 					mat_add(mast->free, child);
2515 
2516 			} while (l_tmp.node != ancestor);
2517 
2518 			*mast->orig_r = r_tmp;
2519 			return true;
2520 		}
2521 	} while (!mte_is_root(mast->orig_r->node));
2522 
2523 	*mast->orig_r = r_tmp;
2524 	*mast->orig_l = l_tmp;
2525 	return false;
2526 }
2527 
2528 /*
2529  * mast_ascend_free() - Add current original maple state nodes to the free list
2530  * and ascend.
2531  * @mast: the maple subtree state.
2532  *
2533  * Ascend the original left and right sides and add the previous nodes to the
2534  * free list.  Set the slots to point to the correct location in the new nodes.
2535  */
2536 static inline void
2537 mast_ascend_free(struct maple_subtree_state *mast)
2538 {
2539 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2540 	struct maple_enode *left = mast->orig_l->node;
2541 	struct maple_enode *right = mast->orig_r->node;
2542 
2543 	mas_ascend(mast->orig_l);
2544 	mas_ascend(mast->orig_r);
2545 	mat_add(mast->free, left);
2546 
2547 	if (left != right)
2548 		mat_add(mast->free, right);
2549 
2550 	mast->orig_r->offset = 0;
2551 	mast->orig_r->index = mast->r->max;
2552 	/* last should be larger than or equal to index */
2553 	if (mast->orig_r->last < mast->orig_r->index)
2554 		mast->orig_r->last = mast->orig_r->index;
2555 	/*
2556 	 * The node may not contain the value so set slot to ensure all
2557 	 * of the nodes contents are freed or destroyed.
2558 	 */
2559 	wr_mas.type = mte_node_type(mast->orig_r->node);
2560 	mas_wr_node_walk(&wr_mas);
2561 	/* Set up the left side of things */
2562 	mast->orig_l->offset = 0;
2563 	mast->orig_l->index = mast->l->min;
2564 	wr_mas.mas = mast->orig_l;
2565 	wr_mas.type = mte_node_type(mast->orig_l->node);
2566 	mas_wr_node_walk(&wr_mas);
2567 
2568 	mast->bn->type = wr_mas.type;
2569 }
2570 
2571 /*
2572  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2573  * @mas: the maple state with the allocations.
2574  * @b_node: the maple_big_node with the type encoding.
2575  *
2576  * Use the node type from the maple_big_node to allocate a new node from the
2577  * ma_state.  This function exists mainly for code readability.
2578  *
2579  * Return: A new maple encoded node
2580  */
2581 static inline struct maple_enode
2582 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2583 {
2584 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2585 }
2586 
2587 /*
2588  * mas_mab_to_node() - Set up right and middle nodes
2589  *
2590  * @mas: the maple state that contains the allocations.
2591  * @b_node: the node which contains the data.
2592  * @left: The pointer which will have the left node
2593  * @right: The pointer which may have the right node
2594  * @middle: the pointer which may have the middle node (rare)
2595  * @mid_split: the split location for the middle node
2596  *
2597  * Return: the split of left.
2598  */
2599 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2600 	struct maple_big_node *b_node, struct maple_enode **left,
2601 	struct maple_enode **right, struct maple_enode **middle,
2602 	unsigned char *mid_split, unsigned long min)
2603 {
2604 	unsigned char split = 0;
2605 	unsigned char slot_count = mt_slots[b_node->type];
2606 
2607 	*left = mas_new_ma_node(mas, b_node);
2608 	*right = NULL;
2609 	*middle = NULL;
2610 	*mid_split = 0;
2611 
2612 	if (b_node->b_end < slot_count) {
2613 		split = b_node->b_end;
2614 	} else {
2615 		split = mab_calc_split(mas, b_node, mid_split, min);
2616 		*right = mas_new_ma_node(mas, b_node);
2617 	}
2618 
2619 	if (*mid_split)
2620 		*middle = mas_new_ma_node(mas, b_node);
2621 
2622 	return split;
2623 
2624 }
2625 
2626 /*
2627  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2628  * pointer.
2629  * @b_node - the big node to add the entry
2630  * @mas - the maple state to get the pivot (mas->max)
2631  * @entry - the entry to add, if NULL nothing happens.
2632  */
2633 static inline void mab_set_b_end(struct maple_big_node *b_node,
2634 				 struct ma_state *mas,
2635 				 void *entry)
2636 {
2637 	if (!entry)
2638 		return;
2639 
2640 	b_node->slot[b_node->b_end] = entry;
2641 	if (mt_is_alloc(mas->tree))
2642 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2643 	b_node->pivot[b_node->b_end++] = mas->max;
2644 }
2645 
2646 /*
2647  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2648  * of @mas->node to either @left or @right, depending on @slot and @split
2649  *
2650  * @mas - the maple state with the node that needs a parent
2651  * @left - possible parent 1
2652  * @right - possible parent 2
2653  * @slot - the slot the mas->node was placed
2654  * @split - the split location between @left and @right
2655  */
2656 static inline void mas_set_split_parent(struct ma_state *mas,
2657 					struct maple_enode *left,
2658 					struct maple_enode *right,
2659 					unsigned char *slot, unsigned char split)
2660 {
2661 	if (mas_is_none(mas))
2662 		return;
2663 
2664 	if ((*slot) <= split)
2665 		mte_set_parent(mas->node, left, *slot);
2666 	else if (right)
2667 		mte_set_parent(mas->node, right, (*slot) - split - 1);
2668 
2669 	(*slot)++;
2670 }
2671 
2672 /*
2673  * mte_mid_split_check() - Check if the next node passes the mid-split
2674  * @**l: Pointer to left encoded maple node.
2675  * @**m: Pointer to middle encoded maple node.
2676  * @**r: Pointer to right encoded maple node.
2677  * @slot: The offset
2678  * @*split: The split location.
2679  * @mid_split: The middle split.
2680  */
2681 static inline void mte_mid_split_check(struct maple_enode **l,
2682 				       struct maple_enode **r,
2683 				       struct maple_enode *right,
2684 				       unsigned char slot,
2685 				       unsigned char *split,
2686 				       unsigned char mid_split)
2687 {
2688 	if (*r == right)
2689 		return;
2690 
2691 	if (slot < mid_split)
2692 		return;
2693 
2694 	*l = *r;
2695 	*r = right;
2696 	*split = mid_split;
2697 }
2698 
2699 /*
2700  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2701  * is taken from @mast->l.
2702  * @mast - the maple subtree state
2703  * @left - the left node
2704  * @right - the right node
2705  * @split - the split location.
2706  */
2707 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2708 					  struct maple_enode *left,
2709 					  struct maple_enode *middle,
2710 					  struct maple_enode *right,
2711 					  unsigned char split,
2712 					  unsigned char mid_split)
2713 {
2714 	unsigned char slot;
2715 	struct maple_enode *l = left;
2716 	struct maple_enode *r = right;
2717 
2718 	if (mas_is_none(mast->l))
2719 		return;
2720 
2721 	if (middle)
2722 		r = middle;
2723 
2724 	slot = mast->l->offset;
2725 
2726 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2727 	mas_set_split_parent(mast->l, l, r, &slot, split);
2728 
2729 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2730 	mas_set_split_parent(mast->m, l, r, &slot, split);
2731 
2732 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2733 	mas_set_split_parent(mast->r, l, r, &slot, split);
2734 }
2735 
2736 /*
2737  * mas_wmb_replace() - Write memory barrier and replace
2738  * @mas: The maple state
2739  * @free: the maple topiary list of nodes to free
2740  * @destroy: The maple topiary list of nodes to destroy (walk and free)
2741  *
2742  * Updates gap as necessary.
2743  */
2744 static inline void mas_wmb_replace(struct ma_state *mas,
2745 				   struct ma_topiary *free,
2746 				   struct ma_topiary *destroy)
2747 {
2748 	/* All nodes must see old data as dead prior to replacing that data */
2749 	smp_wmb(); /* Needed for RCU */
2750 
2751 	/* Insert the new data in the tree */
2752 	mas_replace(mas, true);
2753 
2754 	if (!mte_is_leaf(mas->node))
2755 		mas_descend_adopt(mas);
2756 
2757 	mas_mat_free(mas, free);
2758 
2759 	if (destroy)
2760 		mas_mat_destroy(mas, destroy);
2761 
2762 	if (mte_is_leaf(mas->node))
2763 		return;
2764 
2765 	mas_update_gap(mas);
2766 }
2767 
2768 /*
2769  * mast_new_root() - Set a new tree root during subtree creation
2770  * @mast: The maple subtree state
2771  * @mas: The maple state
2772  */
2773 static inline void mast_new_root(struct maple_subtree_state *mast,
2774 				 struct ma_state *mas)
2775 {
2776 	mas_mn(mast->l)->parent =
2777 		ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2778 	if (!mte_dead_node(mast->orig_l->node) &&
2779 	    !mte_is_root(mast->orig_l->node)) {
2780 		do {
2781 			mast_ascend_free(mast);
2782 			mast_topiary(mast);
2783 		} while (!mte_is_root(mast->orig_l->node));
2784 	}
2785 	if ((mast->orig_l->node != mas->node) &&
2786 		   (mast->l->depth > mas_mt_height(mas))) {
2787 		mat_add(mast->free, mas->node);
2788 	}
2789 }
2790 
2791 /*
2792  * mast_cp_to_nodes() - Copy data out to nodes.
2793  * @mast: The maple subtree state
2794  * @left: The left encoded maple node
2795  * @middle: The middle encoded maple node
2796  * @right: The right encoded maple node
2797  * @split: The location to split between left and (middle ? middle : right)
2798  * @mid_split: The location to split between middle and right.
2799  */
2800 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2801 	struct maple_enode *left, struct maple_enode *middle,
2802 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2803 {
2804 	bool new_lmax = true;
2805 
2806 	mast->l->node = mte_node_or_none(left);
2807 	mast->m->node = mte_node_or_none(middle);
2808 	mast->r->node = mte_node_or_none(right);
2809 
2810 	mast->l->min = mast->orig_l->min;
2811 	if (split == mast->bn->b_end) {
2812 		mast->l->max = mast->orig_r->max;
2813 		new_lmax = false;
2814 	}
2815 
2816 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2817 
2818 	if (middle) {
2819 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2820 		mast->m->min = mast->bn->pivot[split] + 1;
2821 		split = mid_split;
2822 	}
2823 
2824 	mast->r->max = mast->orig_r->max;
2825 	if (right) {
2826 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2827 		mast->r->min = mast->bn->pivot[split] + 1;
2828 	}
2829 }
2830 
2831 /*
2832  * mast_combine_cp_left - Copy in the original left side of the tree into the
2833  * combined data set in the maple subtree state big node.
2834  * @mast: The maple subtree state
2835  */
2836 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2837 {
2838 	unsigned char l_slot = mast->orig_l->offset;
2839 
2840 	if (!l_slot)
2841 		return;
2842 
2843 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2844 }
2845 
2846 /*
2847  * mast_combine_cp_right: Copy in the original right side of the tree into the
2848  * combined data set in the maple subtree state big node.
2849  * @mast: The maple subtree state
2850  */
2851 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2852 {
2853 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2854 		return;
2855 
2856 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2857 		   mt_slot_count(mast->orig_r->node), mast->bn,
2858 		   mast->bn->b_end);
2859 	mast->orig_r->last = mast->orig_r->max;
2860 }
2861 
2862 /*
2863  * mast_sufficient: Check if the maple subtree state has enough data in the big
2864  * node to create at least one sufficient node
2865  * @mast: the maple subtree state
2866  */
2867 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2868 {
2869 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2870 		return true;
2871 
2872 	return false;
2873 }
2874 
2875 /*
2876  * mast_overflow: Check if there is too much data in the subtree state for a
2877  * single node.
2878  * @mast: The maple subtree state
2879  */
2880 static inline bool mast_overflow(struct maple_subtree_state *mast)
2881 {
2882 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2883 		return true;
2884 
2885 	return false;
2886 }
2887 
2888 static inline void *mtree_range_walk(struct ma_state *mas)
2889 {
2890 	unsigned long *pivots;
2891 	unsigned char offset;
2892 	struct maple_node *node;
2893 	struct maple_enode *next, *last;
2894 	enum maple_type type;
2895 	void __rcu **slots;
2896 	unsigned char end;
2897 	unsigned long max, min;
2898 	unsigned long prev_max, prev_min;
2899 
2900 	next = mas->node;
2901 	min = mas->min;
2902 	max = mas->max;
2903 	do {
2904 		offset = 0;
2905 		last = next;
2906 		node = mte_to_node(next);
2907 		type = mte_node_type(next);
2908 		pivots = ma_pivots(node, type);
2909 		end = ma_data_end(node, type, pivots, max);
2910 		if (unlikely(ma_dead_node(node)))
2911 			goto dead_node;
2912 
2913 		if (pivots[offset] >= mas->index) {
2914 			prev_max = max;
2915 			prev_min = min;
2916 			max = pivots[offset];
2917 			goto next;
2918 		}
2919 
2920 		do {
2921 			offset++;
2922 		} while ((offset < end) && (pivots[offset] < mas->index));
2923 
2924 		prev_min = min;
2925 		min = pivots[offset - 1] + 1;
2926 		prev_max = max;
2927 		if (likely(offset < end && pivots[offset]))
2928 			max = pivots[offset];
2929 
2930 next:
2931 		slots = ma_slots(node, type);
2932 		next = mt_slot(mas->tree, slots, offset);
2933 		if (unlikely(ma_dead_node(node)))
2934 			goto dead_node;
2935 	} while (!ma_is_leaf(type));
2936 
2937 	mas->offset = offset;
2938 	mas->index = min;
2939 	mas->last = max;
2940 	mas->min = prev_min;
2941 	mas->max = prev_max;
2942 	mas->node = last;
2943 	return (void *)next;
2944 
2945 dead_node:
2946 	mas_reset(mas);
2947 	return NULL;
2948 }
2949 
2950 /*
2951  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2952  * @mas: The starting maple state
2953  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2954  * @count: The estimated count of iterations needed.
2955  *
2956  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2957  * is hit.  First @b_node is split into two entries which are inserted into the
2958  * next iteration of the loop.  @b_node is returned populated with the final
2959  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2960  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2961  * to account of what has been copied into the new sub-tree.  The update of
2962  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2963  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2964  * the new sub-tree in case the sub-tree becomes the full tree.
2965  *
2966  * Return: the number of elements in b_node during the last loop.
2967  */
2968 static int mas_spanning_rebalance(struct ma_state *mas,
2969 		struct maple_subtree_state *mast, unsigned char count)
2970 {
2971 	unsigned char split, mid_split;
2972 	unsigned char slot = 0;
2973 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2974 
2975 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2976 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2977 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2978 	MA_TOPIARY(free, mas->tree);
2979 	MA_TOPIARY(destroy, mas->tree);
2980 
2981 	/*
2982 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2983 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2984 	 */
2985 	mast->l = &l_mas;
2986 	mast->m = &m_mas;
2987 	mast->r = &r_mas;
2988 	mast->free = &free;
2989 	mast->destroy = &destroy;
2990 	l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2991 
2992 	/* Check if this is not root and has sufficient data.  */
2993 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2994 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2995 		mast_spanning_rebalance(mast);
2996 
2997 	mast->orig_l->depth = 0;
2998 
2999 	/*
3000 	 * Each level of the tree is examined and balanced, pushing data to the left or
3001 	 * right, or rebalancing against left or right nodes is employed to avoid
3002 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
3003 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
3004 	 * will have the incorrect parent pointers and currently be in two trees: the
3005 	 * original tree and the partially new tree.  To remedy the parent pointers in
3006 	 * the old tree, the new data is swapped into the active tree and a walk down
3007 	 * the tree is performed and the parent pointers are updated.
3008 	 * See mas_descend_adopt() for more information..
3009 	 */
3010 	while (count--) {
3011 		mast->bn->b_end--;
3012 		mast->bn->type = mte_node_type(mast->orig_l->node);
3013 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3014 					&mid_split, mast->orig_l->min);
3015 		mast_set_split_parents(mast, left, middle, right, split,
3016 				       mid_split);
3017 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3018 
3019 		/*
3020 		 * Copy data from next level in the tree to mast->bn from next
3021 		 * iteration
3022 		 */
3023 		memset(mast->bn, 0, sizeof(struct maple_big_node));
3024 		mast->bn->type = mte_node_type(left);
3025 		mast->orig_l->depth++;
3026 
3027 		/* Root already stored in l->node. */
3028 		if (mas_is_root_limits(mast->l))
3029 			goto new_root;
3030 
3031 		mast_ascend_free(mast);
3032 		mast_combine_cp_left(mast);
3033 		l_mas.offset = mast->bn->b_end;
3034 		mab_set_b_end(mast->bn, &l_mas, left);
3035 		mab_set_b_end(mast->bn, &m_mas, middle);
3036 		mab_set_b_end(mast->bn, &r_mas, right);
3037 
3038 		/* Copy anything necessary out of the right node. */
3039 		mast_combine_cp_right(mast);
3040 		mast_topiary(mast);
3041 		mast->orig_l->last = mast->orig_l->max;
3042 
3043 		if (mast_sufficient(mast))
3044 			continue;
3045 
3046 		if (mast_overflow(mast))
3047 			continue;
3048 
3049 		/* May be a new root stored in mast->bn */
3050 		if (mas_is_root_limits(mast->orig_l))
3051 			break;
3052 
3053 		mast_spanning_rebalance(mast);
3054 
3055 		/* rebalancing from other nodes may require another loop. */
3056 		if (!count)
3057 			count++;
3058 	}
3059 
3060 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3061 				mte_node_type(mast->orig_l->node));
3062 	mast->orig_l->depth++;
3063 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3064 	mte_set_parent(left, l_mas.node, slot);
3065 	if (middle)
3066 		mte_set_parent(middle, l_mas.node, ++slot);
3067 
3068 	if (right)
3069 		mte_set_parent(right, l_mas.node, ++slot);
3070 
3071 	if (mas_is_root_limits(mast->l)) {
3072 new_root:
3073 		mast_new_root(mast, mas);
3074 	} else {
3075 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3076 	}
3077 
3078 	if (!mte_dead_node(mast->orig_l->node))
3079 		mat_add(&free, mast->orig_l->node);
3080 
3081 	mas->depth = mast->orig_l->depth;
3082 	*mast->orig_l = l_mas;
3083 	mte_set_node_dead(mas->node);
3084 
3085 	/* Set up mas for insertion. */
3086 	mast->orig_l->depth = mas->depth;
3087 	mast->orig_l->alloc = mas->alloc;
3088 	*mas = *mast->orig_l;
3089 	mas_wmb_replace(mas, &free, &destroy);
3090 	mtree_range_walk(mas);
3091 	return mast->bn->b_end;
3092 }
3093 
3094 /*
3095  * mas_rebalance() - Rebalance a given node.
3096  * @mas: The maple state
3097  * @b_node: The big maple node.
3098  *
3099  * Rebalance two nodes into a single node or two new nodes that are sufficient.
3100  * Continue upwards until tree is sufficient.
3101  *
3102  * Return: the number of elements in b_node during the last loop.
3103  */
3104 static inline int mas_rebalance(struct ma_state *mas,
3105 				struct maple_big_node *b_node)
3106 {
3107 	char empty_count = mas_mt_height(mas);
3108 	struct maple_subtree_state mast;
3109 	unsigned char shift, b_end = ++b_node->b_end;
3110 
3111 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3112 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3113 
3114 	trace_ma_op(__func__, mas);
3115 
3116 	/*
3117 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
3118 	 * against the node to the right if it exists, otherwise the node to the
3119 	 * left of this node is rebalanced against this node.  If rebalancing
3120 	 * causes just one node to be produced instead of two, then the parent
3121 	 * is also examined and rebalanced if it is insufficient.  Every level
3122 	 * tries to combine the data in the same way.  If one node contains the
3123 	 * entire range of the tree, then that node is used as a new root node.
3124 	 */
3125 	mas_node_count(mas, 1 + empty_count * 3);
3126 	if (mas_is_err(mas))
3127 		return 0;
3128 
3129 	mast.orig_l = &l_mas;
3130 	mast.orig_r = &r_mas;
3131 	mast.bn = b_node;
3132 	mast.bn->type = mte_node_type(mas->node);
3133 
3134 	l_mas = r_mas = *mas;
3135 
3136 	if (mas_next_sibling(&r_mas)) {
3137 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3138 		r_mas.last = r_mas.index = r_mas.max;
3139 	} else {
3140 		mas_prev_sibling(&l_mas);
3141 		shift = mas_data_end(&l_mas) + 1;
3142 		mab_shift_right(b_node, shift);
3143 		mas->offset += shift;
3144 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3145 		b_node->b_end = shift + b_end;
3146 		l_mas.index = l_mas.last = l_mas.min;
3147 	}
3148 
3149 	return mas_spanning_rebalance(mas, &mast, empty_count);
3150 }
3151 
3152 /*
3153  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3154  * state.
3155  * @mas: The maple state
3156  * @end: The end of the left-most node.
3157  *
3158  * During a mass-insert event (such as forking), it may be necessary to
3159  * rebalance the left-most node when it is not sufficient.
3160  */
3161 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3162 {
3163 	enum maple_type mt = mte_node_type(mas->node);
3164 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3165 	struct maple_enode *eparent;
3166 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3167 	void __rcu **l_slots, **slots;
3168 	unsigned long *l_pivs, *pivs, gap;
3169 	bool in_rcu = mt_in_rcu(mas->tree);
3170 
3171 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3172 
3173 	l_mas = *mas;
3174 	mas_prev_sibling(&l_mas);
3175 
3176 	/* set up node. */
3177 	if (in_rcu) {
3178 		/* Allocate for both left and right as well as parent. */
3179 		mas_node_count(mas, 3);
3180 		if (mas_is_err(mas))
3181 			return;
3182 
3183 		newnode = mas_pop_node(mas);
3184 	} else {
3185 		newnode = &reuse;
3186 	}
3187 
3188 	node = mas_mn(mas);
3189 	newnode->parent = node->parent;
3190 	slots = ma_slots(newnode, mt);
3191 	pivs = ma_pivots(newnode, mt);
3192 	left = mas_mn(&l_mas);
3193 	l_slots = ma_slots(left, mt);
3194 	l_pivs = ma_pivots(left, mt);
3195 	if (!l_slots[split])
3196 		split++;
3197 	tmp = mas_data_end(&l_mas) - split;
3198 
3199 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3200 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3201 	pivs[tmp] = l_mas.max;
3202 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3203 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3204 
3205 	l_mas.max = l_pivs[split];
3206 	mas->min = l_mas.max + 1;
3207 	eparent = mt_mk_node(mte_parent(l_mas.node),
3208 			     mas_parent_enum(&l_mas, l_mas.node));
3209 	tmp += end;
3210 	if (!in_rcu) {
3211 		unsigned char max_p = mt_pivots[mt];
3212 		unsigned char max_s = mt_slots[mt];
3213 
3214 		if (tmp < max_p)
3215 			memset(pivs + tmp, 0,
3216 			       sizeof(unsigned long *) * (max_p - tmp));
3217 
3218 		if (tmp < mt_slots[mt])
3219 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3220 
3221 		memcpy(node, newnode, sizeof(struct maple_node));
3222 		ma_set_meta(node, mt, 0, tmp - 1);
3223 		mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3224 			      l_pivs[split]);
3225 
3226 		/* Remove data from l_pivs. */
3227 		tmp = split + 1;
3228 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3229 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3230 		ma_set_meta(left, mt, 0, split);
3231 
3232 		goto done;
3233 	}
3234 
3235 	/* RCU requires replacing both l_mas, mas, and parent. */
3236 	mas->node = mt_mk_node(newnode, mt);
3237 	ma_set_meta(newnode, mt, 0, tmp);
3238 
3239 	new_left = mas_pop_node(mas);
3240 	new_left->parent = left->parent;
3241 	mt = mte_node_type(l_mas.node);
3242 	slots = ma_slots(new_left, mt);
3243 	pivs = ma_pivots(new_left, mt);
3244 	memcpy(slots, l_slots, sizeof(void *) * split);
3245 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3246 	ma_set_meta(new_left, mt, 0, split);
3247 	l_mas.node = mt_mk_node(new_left, mt);
3248 
3249 	/* replace parent. */
3250 	offset = mte_parent_slot(mas->node);
3251 	mt = mas_parent_enum(&l_mas, l_mas.node);
3252 	parent = mas_pop_node(mas);
3253 	slots = ma_slots(parent, mt);
3254 	pivs = ma_pivots(parent, mt);
3255 	memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3256 	rcu_assign_pointer(slots[offset], mas->node);
3257 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3258 	pivs[offset - 1] = l_mas.max;
3259 	eparent = mt_mk_node(parent, mt);
3260 done:
3261 	gap = mas_leaf_max_gap(mas);
3262 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3263 	gap = mas_leaf_max_gap(&l_mas);
3264 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3265 	mas_ascend(mas);
3266 
3267 	if (in_rcu)
3268 		mas_replace(mas, false);
3269 
3270 	mas_update_gap(mas);
3271 }
3272 
3273 /*
3274  * mas_split_final_node() - Split the final node in a subtree operation.
3275  * @mast: the maple subtree state
3276  * @mas: The maple state
3277  * @height: The height of the tree in case it's a new root.
3278  */
3279 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3280 					struct ma_state *mas, int height)
3281 {
3282 	struct maple_enode *ancestor;
3283 
3284 	if (mte_is_root(mas->node)) {
3285 		if (mt_is_alloc(mas->tree))
3286 			mast->bn->type = maple_arange_64;
3287 		else
3288 			mast->bn->type = maple_range_64;
3289 		mas->depth = height;
3290 	}
3291 	/*
3292 	 * Only a single node is used here, could be root.
3293 	 * The Big_node data should just fit in a single node.
3294 	 */
3295 	ancestor = mas_new_ma_node(mas, mast->bn);
3296 	mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3297 	mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3298 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3299 
3300 	mast->l->node = ancestor;
3301 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3302 	mas->offset = mast->bn->b_end - 1;
3303 	return true;
3304 }
3305 
3306 /*
3307  * mast_fill_bnode() - Copy data into the big node in the subtree state
3308  * @mast: The maple subtree state
3309  * @mas: the maple state
3310  * @skip: The number of entries to skip for new nodes insertion.
3311  */
3312 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3313 					 struct ma_state *mas,
3314 					 unsigned char skip)
3315 {
3316 	bool cp = true;
3317 	struct maple_enode *old = mas->node;
3318 	unsigned char split;
3319 
3320 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3321 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3322 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3323 	mast->bn->b_end = 0;
3324 
3325 	if (mte_is_root(mas->node)) {
3326 		cp = false;
3327 	} else {
3328 		mas_ascend(mas);
3329 		mat_add(mast->free, old);
3330 		mas->offset = mte_parent_slot(mas->node);
3331 	}
3332 
3333 	if (cp && mast->l->offset)
3334 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3335 
3336 	split = mast->bn->b_end;
3337 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3338 	mast->r->offset = mast->bn->b_end;
3339 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3340 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3341 		cp = false;
3342 
3343 	if (cp)
3344 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3345 			   mast->bn, mast->bn->b_end);
3346 
3347 	mast->bn->b_end--;
3348 	mast->bn->type = mte_node_type(mas->node);
3349 }
3350 
3351 /*
3352  * mast_split_data() - Split the data in the subtree state big node into regular
3353  * nodes.
3354  * @mast: The maple subtree state
3355  * @mas: The maple state
3356  * @split: The location to split the big node
3357  */
3358 static inline void mast_split_data(struct maple_subtree_state *mast,
3359 	   struct ma_state *mas, unsigned char split)
3360 {
3361 	unsigned char p_slot;
3362 
3363 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3364 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3365 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3366 	mast->l->offset = mte_parent_slot(mas->node);
3367 	mast->l->max = mast->bn->pivot[split];
3368 	mast->r->min = mast->l->max + 1;
3369 	if (mte_is_leaf(mas->node))
3370 		return;
3371 
3372 	p_slot = mast->orig_l->offset;
3373 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3374 			     &p_slot, split);
3375 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3376 			     &p_slot, split);
3377 }
3378 
3379 /*
3380  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3381  * data to the right or left node if there is room.
3382  * @mas: The maple state
3383  * @height: The current height of the maple state
3384  * @mast: The maple subtree state
3385  * @left: Push left or not.
3386  *
3387  * Keeping the height of the tree low means faster lookups.
3388  *
3389  * Return: True if pushed, false otherwise.
3390  */
3391 static inline bool mas_push_data(struct ma_state *mas, int height,
3392 				 struct maple_subtree_state *mast, bool left)
3393 {
3394 	unsigned char slot_total = mast->bn->b_end;
3395 	unsigned char end, space, split;
3396 
3397 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3398 	tmp_mas = *mas;
3399 	tmp_mas.depth = mast->l->depth;
3400 
3401 	if (left && !mas_prev_sibling(&tmp_mas))
3402 		return false;
3403 	else if (!left && !mas_next_sibling(&tmp_mas))
3404 		return false;
3405 
3406 	end = mas_data_end(&tmp_mas);
3407 	slot_total += end;
3408 	space = 2 * mt_slot_count(mas->node) - 2;
3409 	/* -2 instead of -1 to ensure there isn't a triple split */
3410 	if (ma_is_leaf(mast->bn->type))
3411 		space--;
3412 
3413 	if (mas->max == ULONG_MAX)
3414 		space--;
3415 
3416 	if (slot_total >= space)
3417 		return false;
3418 
3419 	/* Get the data; Fill mast->bn */
3420 	mast->bn->b_end++;
3421 	if (left) {
3422 		mab_shift_right(mast->bn, end + 1);
3423 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3424 		mast->bn->b_end = slot_total + 1;
3425 	} else {
3426 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3427 	}
3428 
3429 	/* Configure mast for splitting of mast->bn */
3430 	split = mt_slots[mast->bn->type] - 2;
3431 	if (left) {
3432 		/*  Switch mas to prev node  */
3433 		mat_add(mast->free, mas->node);
3434 		*mas = tmp_mas;
3435 		/* Start using mast->l for the left side. */
3436 		tmp_mas.node = mast->l->node;
3437 		*mast->l = tmp_mas;
3438 	} else {
3439 		mat_add(mast->free, tmp_mas.node);
3440 		tmp_mas.node = mast->r->node;
3441 		*mast->r = tmp_mas;
3442 		split = slot_total - split;
3443 	}
3444 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3445 	/* Update parent slot for split calculation. */
3446 	if (left)
3447 		mast->orig_l->offset += end + 1;
3448 
3449 	mast_split_data(mast, mas, split);
3450 	mast_fill_bnode(mast, mas, 2);
3451 	mas_split_final_node(mast, mas, height + 1);
3452 	return true;
3453 }
3454 
3455 /*
3456  * mas_split() - Split data that is too big for one node into two.
3457  * @mas: The maple state
3458  * @b_node: The maple big node
3459  * Return: 1 on success, 0 on failure.
3460  */
3461 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3462 {
3463 	struct maple_subtree_state mast;
3464 	int height = 0;
3465 	unsigned char mid_split, split = 0;
3466 
3467 	/*
3468 	 * Splitting is handled differently from any other B-tree; the Maple
3469 	 * Tree splits upwards.  Splitting up means that the split operation
3470 	 * occurs when the walk of the tree hits the leaves and not on the way
3471 	 * down.  The reason for splitting up is that it is impossible to know
3472 	 * how much space will be needed until the leaf is (or leaves are)
3473 	 * reached.  Since overwriting data is allowed and a range could
3474 	 * overwrite more than one range or result in changing one entry into 3
3475 	 * entries, it is impossible to know if a split is required until the
3476 	 * data is examined.
3477 	 *
3478 	 * Splitting is a balancing act between keeping allocations to a minimum
3479 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3480 	 * for an entry followed by a contraction when the entry is removed.  To
3481 	 * accomplish the balance, there are empty slots remaining in both left
3482 	 * and right nodes after a split.
3483 	 */
3484 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3485 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3486 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3487 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3488 	MA_TOPIARY(mat, mas->tree);
3489 
3490 	trace_ma_op(__func__, mas);
3491 	mas->depth = mas_mt_height(mas);
3492 	/* Allocation failures will happen early. */
3493 	mas_node_count(mas, 1 + mas->depth * 2);
3494 	if (mas_is_err(mas))
3495 		return 0;
3496 
3497 	mast.l = &l_mas;
3498 	mast.r = &r_mas;
3499 	mast.orig_l = &prev_l_mas;
3500 	mast.orig_r = &prev_r_mas;
3501 	mast.free = &mat;
3502 	mast.bn = b_node;
3503 
3504 	while (height++ <= mas->depth) {
3505 		if (mt_slots[b_node->type] > b_node->b_end) {
3506 			mas_split_final_node(&mast, mas, height);
3507 			break;
3508 		}
3509 
3510 		l_mas = r_mas = *mas;
3511 		l_mas.node = mas_new_ma_node(mas, b_node);
3512 		r_mas.node = mas_new_ma_node(mas, b_node);
3513 		/*
3514 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3515 		 * left or right node has space to spare.  This is referred to as "pushing left"
3516 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3517 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3518 		 * is a significant savings.
3519 		 */
3520 		/* Try to push left. */
3521 		if (mas_push_data(mas, height, &mast, true))
3522 			break;
3523 
3524 		/* Try to push right. */
3525 		if (mas_push_data(mas, height, &mast, false))
3526 			break;
3527 
3528 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3529 		mast_split_data(&mast, mas, split);
3530 		/*
3531 		 * Usually correct, mab_mas_cp in the above call overwrites
3532 		 * r->max.
3533 		 */
3534 		mast.r->max = mas->max;
3535 		mast_fill_bnode(&mast, mas, 1);
3536 		prev_l_mas = *mast.l;
3537 		prev_r_mas = *mast.r;
3538 	}
3539 
3540 	/* Set the original node as dead */
3541 	mat_add(mast.free, mas->node);
3542 	mas->node = l_mas.node;
3543 	mas_wmb_replace(mas, mast.free, NULL);
3544 	mtree_range_walk(mas);
3545 	return 1;
3546 }
3547 
3548 /*
3549  * mas_reuse_node() - Reuse the node to store the data.
3550  * @wr_mas: The maple write state
3551  * @bn: The maple big node
3552  * @end: The end of the data.
3553  *
3554  * Will always return false in RCU mode.
3555  *
3556  * Return: True if node was reused, false otherwise.
3557  */
3558 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3559 			  struct maple_big_node *bn, unsigned char end)
3560 {
3561 	/* Need to be rcu safe. */
3562 	if (mt_in_rcu(wr_mas->mas->tree))
3563 		return false;
3564 
3565 	if (end > bn->b_end) {
3566 		int clear = mt_slots[wr_mas->type] - bn->b_end;
3567 
3568 		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3569 		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3570 	}
3571 	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3572 	return true;
3573 }
3574 
3575 /*
3576  * mas_commit_b_node() - Commit the big node into the tree.
3577  * @wr_mas: The maple write state
3578  * @b_node: The maple big node
3579  * @end: The end of the data.
3580  */
3581 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas,
3582 			    struct maple_big_node *b_node, unsigned char end)
3583 {
3584 	struct maple_node *node;
3585 	unsigned char b_end = b_node->b_end;
3586 	enum maple_type b_type = b_node->type;
3587 
3588 	if ((b_end < mt_min_slots[b_type]) &&
3589 	    (!mte_is_root(wr_mas->mas->node)) &&
3590 	    (mas_mt_height(wr_mas->mas) > 1))
3591 		return mas_rebalance(wr_mas->mas, b_node);
3592 
3593 	if (b_end >= mt_slots[b_type])
3594 		return mas_split(wr_mas->mas, b_node);
3595 
3596 	if (mas_reuse_node(wr_mas, b_node, end))
3597 		goto reuse_node;
3598 
3599 	mas_node_count(wr_mas->mas, 1);
3600 	if (mas_is_err(wr_mas->mas))
3601 		return 0;
3602 
3603 	node = mas_pop_node(wr_mas->mas);
3604 	node->parent = mas_mn(wr_mas->mas)->parent;
3605 	wr_mas->mas->node = mt_mk_node(node, b_type);
3606 	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3607 	mas_replace(wr_mas->mas, false);
3608 reuse_node:
3609 	mas_update_gap(wr_mas->mas);
3610 	return 1;
3611 }
3612 
3613 /*
3614  * mas_root_expand() - Expand a root to a node
3615  * @mas: The maple state
3616  * @entry: The entry to store into the tree
3617  */
3618 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3619 {
3620 	void *contents = mas_root_locked(mas);
3621 	enum maple_type type = maple_leaf_64;
3622 	struct maple_node *node;
3623 	void __rcu **slots;
3624 	unsigned long *pivots;
3625 	int slot = 0;
3626 
3627 	mas_node_count(mas, 1);
3628 	if (unlikely(mas_is_err(mas)))
3629 		return 0;
3630 
3631 	node = mas_pop_node(mas);
3632 	pivots = ma_pivots(node, type);
3633 	slots = ma_slots(node, type);
3634 	node->parent = ma_parent_ptr(
3635 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3636 	mas->node = mt_mk_node(node, type);
3637 
3638 	if (mas->index) {
3639 		if (contents) {
3640 			rcu_assign_pointer(slots[slot], contents);
3641 			if (likely(mas->index > 1))
3642 				slot++;
3643 		}
3644 		pivots[slot++] = mas->index - 1;
3645 	}
3646 
3647 	rcu_assign_pointer(slots[slot], entry);
3648 	mas->offset = slot;
3649 	pivots[slot] = mas->last;
3650 	if (mas->last != ULONG_MAX)
3651 		slot++;
3652 	mas->depth = 1;
3653 	mas_set_height(mas);
3654 
3655 	/* swap the new root into the tree */
3656 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3657 	ma_set_meta(node, maple_leaf_64, 0, slot);
3658 	return slot;
3659 }
3660 
3661 static inline void mas_store_root(struct ma_state *mas, void *entry)
3662 {
3663 	if (likely((mas->last != 0) || (mas->index != 0)))
3664 		mas_root_expand(mas, entry);
3665 	else if (((unsigned long) (entry) & 3) == 2)
3666 		mas_root_expand(mas, entry);
3667 	else {
3668 		rcu_assign_pointer(mas->tree->ma_root, entry);
3669 		mas->node = MAS_START;
3670 	}
3671 }
3672 
3673 /*
3674  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3675  * spans the node.
3676  * @mas: The maple state
3677  * @piv: The pivot value being written
3678  * @type: The maple node type
3679  * @entry: The data to write
3680  *
3681  * Spanning writes are writes that start in one node and end in another OR if
3682  * the write of a %NULL will cause the node to end with a %NULL.
3683  *
3684  * Return: True if this is a spanning write, false otherwise.
3685  */
3686 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3687 {
3688 	unsigned long max;
3689 	unsigned long last = wr_mas->mas->last;
3690 	unsigned long piv = wr_mas->r_max;
3691 	enum maple_type type = wr_mas->type;
3692 	void *entry = wr_mas->entry;
3693 
3694 	/* Contained in this pivot */
3695 	if (piv > last)
3696 		return false;
3697 
3698 	max = wr_mas->mas->max;
3699 	if (unlikely(ma_is_leaf(type))) {
3700 		/* Fits in the node, but may span slots. */
3701 		if (last < max)
3702 			return false;
3703 
3704 		/* Writes to the end of the node but not null. */
3705 		if ((last == max) && entry)
3706 			return false;
3707 
3708 		/*
3709 		 * Writing ULONG_MAX is not a spanning write regardless of the
3710 		 * value being written as long as the range fits in the node.
3711 		 */
3712 		if ((last == ULONG_MAX) && (last == max))
3713 			return false;
3714 	} else if (piv == last) {
3715 		if (entry)
3716 			return false;
3717 
3718 		/* Detect spanning store wr walk */
3719 		if (last == ULONG_MAX)
3720 			return false;
3721 	}
3722 
3723 	trace_ma_write(__func__, wr_mas->mas, piv, entry);
3724 
3725 	return true;
3726 }
3727 
3728 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3729 {
3730 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3731 	mas_wr_node_walk(wr_mas);
3732 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3733 }
3734 
3735 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3736 {
3737 	wr_mas->mas->max = wr_mas->r_max;
3738 	wr_mas->mas->min = wr_mas->r_min;
3739 	wr_mas->mas->node = wr_mas->content;
3740 	wr_mas->mas->offset = 0;
3741 	wr_mas->mas->depth++;
3742 }
3743 /*
3744  * mas_wr_walk() - Walk the tree for a write.
3745  * @wr_mas: The maple write state
3746  *
3747  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3748  *
3749  * Return: True if it's contained in a node, false on spanning write.
3750  */
3751 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3752 {
3753 	struct ma_state *mas = wr_mas->mas;
3754 
3755 	while (true) {
3756 		mas_wr_walk_descend(wr_mas);
3757 		if (unlikely(mas_is_span_wr(wr_mas)))
3758 			return false;
3759 
3760 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3761 						  mas->offset);
3762 		if (ma_is_leaf(wr_mas->type))
3763 			return true;
3764 
3765 		mas_wr_walk_traverse(wr_mas);
3766 	}
3767 
3768 	return true;
3769 }
3770 
3771 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3772 {
3773 	struct ma_state *mas = wr_mas->mas;
3774 
3775 	while (true) {
3776 		mas_wr_walk_descend(wr_mas);
3777 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3778 						  mas->offset);
3779 		if (ma_is_leaf(wr_mas->type))
3780 			return true;
3781 		mas_wr_walk_traverse(wr_mas);
3782 
3783 	}
3784 	return true;
3785 }
3786 /*
3787  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3788  * @l_wr_mas: The left maple write state
3789  * @r_wr_mas: The right maple write state
3790  */
3791 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3792 					    struct ma_wr_state *r_wr_mas)
3793 {
3794 	struct ma_state *r_mas = r_wr_mas->mas;
3795 	struct ma_state *l_mas = l_wr_mas->mas;
3796 	unsigned char l_slot;
3797 
3798 	l_slot = l_mas->offset;
3799 	if (!l_wr_mas->content)
3800 		l_mas->index = l_wr_mas->r_min;
3801 
3802 	if ((l_mas->index == l_wr_mas->r_min) &&
3803 		 (l_slot &&
3804 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3805 		if (l_slot > 1)
3806 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3807 		else
3808 			l_mas->index = l_mas->min;
3809 
3810 		l_mas->offset = l_slot - 1;
3811 	}
3812 
3813 	if (!r_wr_mas->content) {
3814 		if (r_mas->last < r_wr_mas->r_max)
3815 			r_mas->last = r_wr_mas->r_max;
3816 		r_mas->offset++;
3817 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3818 	    (r_mas->last < r_mas->max) &&
3819 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3820 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3821 					     r_wr_mas->type, r_mas->offset + 1);
3822 		r_mas->offset++;
3823 	}
3824 }
3825 
3826 static inline void *mas_state_walk(struct ma_state *mas)
3827 {
3828 	void *entry;
3829 
3830 	entry = mas_start(mas);
3831 	if (mas_is_none(mas))
3832 		return NULL;
3833 
3834 	if (mas_is_ptr(mas))
3835 		return entry;
3836 
3837 	return mtree_range_walk(mas);
3838 }
3839 
3840 /*
3841  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3842  * to date.
3843  *
3844  * @mas: The maple state.
3845  *
3846  * Note: Leaves mas in undesirable state.
3847  * Return: The entry for @mas->index or %NULL on dead node.
3848  */
3849 static inline void *mtree_lookup_walk(struct ma_state *mas)
3850 {
3851 	unsigned long *pivots;
3852 	unsigned char offset;
3853 	struct maple_node *node;
3854 	struct maple_enode *next;
3855 	enum maple_type type;
3856 	void __rcu **slots;
3857 	unsigned char end;
3858 	unsigned long max;
3859 
3860 	next = mas->node;
3861 	max = ULONG_MAX;
3862 	do {
3863 		offset = 0;
3864 		node = mte_to_node(next);
3865 		type = mte_node_type(next);
3866 		pivots = ma_pivots(node, type);
3867 		end = ma_data_end(node, type, pivots, max);
3868 		if (unlikely(ma_dead_node(node)))
3869 			goto dead_node;
3870 
3871 		if (pivots[offset] >= mas->index)
3872 			goto next;
3873 
3874 		do {
3875 			offset++;
3876 		} while ((offset < end) && (pivots[offset] < mas->index));
3877 
3878 		if (likely(offset > end))
3879 			max = pivots[offset];
3880 
3881 next:
3882 		slots = ma_slots(node, type);
3883 		next = mt_slot(mas->tree, slots, offset);
3884 		if (unlikely(ma_dead_node(node)))
3885 			goto dead_node;
3886 	} while (!ma_is_leaf(type));
3887 
3888 	return (void *)next;
3889 
3890 dead_node:
3891 	mas_reset(mas);
3892 	return NULL;
3893 }
3894 
3895 /*
3896  * mas_new_root() - Create a new root node that only contains the entry passed
3897  * in.
3898  * @mas: The maple state
3899  * @entry: The entry to store.
3900  *
3901  * Only valid when the index == 0 and the last == ULONG_MAX
3902  *
3903  * Return 0 on error, 1 on success.
3904  */
3905 static inline int mas_new_root(struct ma_state *mas, void *entry)
3906 {
3907 	struct maple_enode *root = mas_root_locked(mas);
3908 	enum maple_type type = maple_leaf_64;
3909 	struct maple_node *node;
3910 	void __rcu **slots;
3911 	unsigned long *pivots;
3912 
3913 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3914 		mas->depth = 0;
3915 		mas_set_height(mas);
3916 		rcu_assign_pointer(mas->tree->ma_root, entry);
3917 		mas->node = MAS_START;
3918 		goto done;
3919 	}
3920 
3921 	mas_node_count(mas, 1);
3922 	if (mas_is_err(mas))
3923 		return 0;
3924 
3925 	node = mas_pop_node(mas);
3926 	pivots = ma_pivots(node, type);
3927 	slots = ma_slots(node, type);
3928 	node->parent = ma_parent_ptr(
3929 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3930 	mas->node = mt_mk_node(node, type);
3931 	rcu_assign_pointer(slots[0], entry);
3932 	pivots[0] = mas->last;
3933 	mas->depth = 1;
3934 	mas_set_height(mas);
3935 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3936 
3937 done:
3938 	if (xa_is_node(root))
3939 		mte_destroy_walk(root, mas->tree);
3940 
3941 	return 1;
3942 }
3943 /*
3944  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3945  * and new nodes where necessary, then place the sub-tree in the actual tree.
3946  * Note that mas is expected to point to the node which caused the store to
3947  * span.
3948  * @wr_mas: The maple write state
3949  *
3950  * Return: 0 on error, positive on success.
3951  */
3952 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3953 {
3954 	struct maple_subtree_state mast;
3955 	struct maple_big_node b_node;
3956 	struct ma_state *mas;
3957 	unsigned char height;
3958 
3959 	/* Left and Right side of spanning store */
3960 	MA_STATE(l_mas, NULL, 0, 0);
3961 	MA_STATE(r_mas, NULL, 0, 0);
3962 
3963 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3964 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3965 
3966 	/*
3967 	 * A store operation that spans multiple nodes is called a spanning
3968 	 * store and is handled early in the store call stack by the function
3969 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3970 	 * state is duplicated.  The first maple state walks the left tree path
3971 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3972 	 * The data in the two nodes are combined into a single node, two nodes,
3973 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3974 	 * written to the last entry of a node is considered a spanning store as
3975 	 * a rebalance is required for the operation to complete and an overflow
3976 	 * of data may happen.
3977 	 */
3978 	mas = wr_mas->mas;
3979 	trace_ma_op(__func__, mas);
3980 
3981 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3982 		return mas_new_root(mas, wr_mas->entry);
3983 	/*
3984 	 * Node rebalancing may occur due to this store, so there may be three new
3985 	 * entries per level plus a new root.
3986 	 */
3987 	height = mas_mt_height(mas);
3988 	mas_node_count(mas, 1 + height * 3);
3989 	if (mas_is_err(mas))
3990 		return 0;
3991 
3992 	/*
3993 	 * Set up right side.  Need to get to the next offset after the spanning
3994 	 * store to ensure it's not NULL and to combine both the next node and
3995 	 * the node with the start together.
3996 	 */
3997 	r_mas = *mas;
3998 	/* Avoid overflow, walk to next slot in the tree. */
3999 	if (r_mas.last + 1)
4000 		r_mas.last++;
4001 
4002 	r_mas.index = r_mas.last;
4003 	mas_wr_walk_index(&r_wr_mas);
4004 	r_mas.last = r_mas.index = mas->last;
4005 
4006 	/* Set up left side. */
4007 	l_mas = *mas;
4008 	mas_wr_walk_index(&l_wr_mas);
4009 
4010 	if (!wr_mas->entry) {
4011 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4012 		mas->offset = l_mas.offset;
4013 		mas->index = l_mas.index;
4014 		mas->last = l_mas.last = r_mas.last;
4015 	}
4016 
4017 	/* expanding NULLs may make this cover the entire range */
4018 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
4019 		mas_set_range(mas, 0, ULONG_MAX);
4020 		return mas_new_root(mas, wr_mas->entry);
4021 	}
4022 
4023 	memset(&b_node, 0, sizeof(struct maple_big_node));
4024 	/* Copy l_mas and store the value in b_node. */
4025 	mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4026 	/* Copy r_mas into b_node. */
4027 	if (r_mas.offset <= r_wr_mas.node_end)
4028 		mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4029 			   &b_node, b_node.b_end + 1);
4030 	else
4031 		b_node.b_end++;
4032 
4033 	/* Stop spanning searches by searching for just index. */
4034 	l_mas.index = l_mas.last = mas->index;
4035 
4036 	mast.bn = &b_node;
4037 	mast.orig_l = &l_mas;
4038 	mast.orig_r = &r_mas;
4039 	/* Combine l_mas and r_mas and split them up evenly again. */
4040 	return mas_spanning_rebalance(mas, &mast, height + 1);
4041 }
4042 
4043 /*
4044  * mas_wr_node_store() - Attempt to store the value in a node
4045  * @wr_mas: The maple write state
4046  *
4047  * Attempts to reuse the node, but may allocate.
4048  *
4049  * Return: True if stored, false otherwise
4050  */
4051 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4052 {
4053 	struct ma_state *mas = wr_mas->mas;
4054 	void __rcu **dst_slots;
4055 	unsigned long *dst_pivots;
4056 	unsigned char dst_offset;
4057 	unsigned char new_end = wr_mas->node_end;
4058 	unsigned char offset;
4059 	unsigned char node_slots = mt_slots[wr_mas->type];
4060 	struct maple_node reuse, *newnode;
4061 	unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4062 	bool in_rcu = mt_in_rcu(mas->tree);
4063 
4064 	offset = mas->offset;
4065 	if (mas->last == wr_mas->r_max) {
4066 		/* runs right to the end of the node */
4067 		if (mas->last == mas->max)
4068 			new_end = offset;
4069 		/* don't copy this offset */
4070 		wr_mas->offset_end++;
4071 	} else if (mas->last < wr_mas->r_max) {
4072 		/* new range ends in this range */
4073 		if (unlikely(wr_mas->r_max == ULONG_MAX))
4074 			mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4075 
4076 		new_end++;
4077 	} else {
4078 		if (wr_mas->end_piv == mas->last)
4079 			wr_mas->offset_end++;
4080 
4081 		new_end -= wr_mas->offset_end - offset - 1;
4082 	}
4083 
4084 	/* new range starts within a range */
4085 	if (wr_mas->r_min < mas->index)
4086 		new_end++;
4087 
4088 	/* Not enough room */
4089 	if (new_end >= node_slots)
4090 		return false;
4091 
4092 	/* Not enough data. */
4093 	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4094 	    !(mas->mas_flags & MA_STATE_BULK))
4095 		return false;
4096 
4097 	/* set up node. */
4098 	if (in_rcu) {
4099 		mas_node_count(mas, 1);
4100 		if (mas_is_err(mas))
4101 			return false;
4102 
4103 		newnode = mas_pop_node(mas);
4104 	} else {
4105 		memset(&reuse, 0, sizeof(struct maple_node));
4106 		newnode = &reuse;
4107 	}
4108 
4109 	newnode->parent = mas_mn(mas)->parent;
4110 	dst_pivots = ma_pivots(newnode, wr_mas->type);
4111 	dst_slots = ma_slots(newnode, wr_mas->type);
4112 	/* Copy from start to insert point */
4113 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4114 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4115 	dst_offset = offset;
4116 
4117 	/* Handle insert of new range starting after old range */
4118 	if (wr_mas->r_min < mas->index) {
4119 		mas->offset++;
4120 		rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4121 		dst_pivots[dst_offset++] = mas->index - 1;
4122 	}
4123 
4124 	/* Store the new entry and range end. */
4125 	if (dst_offset < max_piv)
4126 		dst_pivots[dst_offset] = mas->last;
4127 	mas->offset = dst_offset;
4128 	rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4129 
4130 	/*
4131 	 * this range wrote to the end of the node or it overwrote the rest of
4132 	 * the data
4133 	 */
4134 	if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4135 		new_end = dst_offset;
4136 		goto done;
4137 	}
4138 
4139 	dst_offset++;
4140 	/* Copy to the end of node if necessary. */
4141 	copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4142 	memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4143 	       sizeof(void *) * copy_size);
4144 	if (dst_offset < max_piv) {
4145 		if (copy_size > max_piv - dst_offset)
4146 			copy_size = max_piv - dst_offset;
4147 
4148 		memcpy(dst_pivots + dst_offset,
4149 		       wr_mas->pivots + wr_mas->offset_end,
4150 		       sizeof(unsigned long) * copy_size);
4151 	}
4152 
4153 	if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4154 		dst_pivots[new_end] = mas->max;
4155 
4156 done:
4157 	mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4158 	if (in_rcu) {
4159 		mas->node = mt_mk_node(newnode, wr_mas->type);
4160 		mas_replace(mas, false);
4161 	} else {
4162 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4163 	}
4164 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4165 	mas_update_gap(mas);
4166 	return true;
4167 }
4168 
4169 /*
4170  * mas_wr_slot_store: Attempt to store a value in a slot.
4171  * @wr_mas: the maple write state
4172  *
4173  * Return: True if stored, false otherwise
4174  */
4175 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4176 {
4177 	struct ma_state *mas = wr_mas->mas;
4178 	unsigned long lmax; /* Logical max. */
4179 	unsigned char offset = mas->offset;
4180 
4181 	if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4182 				  (offset != wr_mas->node_end)))
4183 		return false;
4184 
4185 	if (offset == wr_mas->node_end - 1)
4186 		lmax = mas->max;
4187 	else
4188 		lmax = wr_mas->pivots[offset + 1];
4189 
4190 	/* going to overwrite too many slots. */
4191 	if (lmax < mas->last)
4192 		return false;
4193 
4194 	if (wr_mas->r_min == mas->index) {
4195 		/* overwriting two or more ranges with one. */
4196 		if (lmax == mas->last)
4197 			return false;
4198 
4199 		/* Overwriting all of offset and a portion of offset + 1. */
4200 		rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4201 		wr_mas->pivots[offset] = mas->last;
4202 		goto done;
4203 	}
4204 
4205 	/* Doesn't end on the next range end. */
4206 	if (lmax != mas->last)
4207 		return false;
4208 
4209 	/* Overwriting a portion of offset and all of offset + 1 */
4210 	if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4211 	    (wr_mas->entry || wr_mas->pivots[offset + 1]))
4212 		wr_mas->pivots[offset + 1] = mas->last;
4213 
4214 	rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4215 	wr_mas->pivots[offset] = mas->index - 1;
4216 	mas->offset++; /* Keep mas accurate. */
4217 
4218 done:
4219 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4220 	mas_update_gap(mas);
4221 	return true;
4222 }
4223 
4224 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4225 {
4226 	while ((wr_mas->mas->last > wr_mas->end_piv) &&
4227 	       (wr_mas->offset_end < wr_mas->node_end))
4228 		wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4229 
4230 	if (wr_mas->mas->last > wr_mas->end_piv)
4231 		wr_mas->end_piv = wr_mas->mas->max;
4232 }
4233 
4234 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4235 {
4236 	struct ma_state *mas = wr_mas->mas;
4237 
4238 	if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4239 		mas->last = wr_mas->end_piv;
4240 
4241 	/* Check next slot(s) if we are overwriting the end */
4242 	if ((mas->last == wr_mas->end_piv) &&
4243 	    (wr_mas->node_end != wr_mas->offset_end) &&
4244 	    !wr_mas->slots[wr_mas->offset_end + 1]) {
4245 		wr_mas->offset_end++;
4246 		if (wr_mas->offset_end == wr_mas->node_end)
4247 			mas->last = mas->max;
4248 		else
4249 			mas->last = wr_mas->pivots[wr_mas->offset_end];
4250 		wr_mas->end_piv = mas->last;
4251 	}
4252 
4253 	if (!wr_mas->content) {
4254 		/* If this one is null, the next and prev are not */
4255 		mas->index = wr_mas->r_min;
4256 	} else {
4257 		/* Check prev slot if we are overwriting the start */
4258 		if (mas->index == wr_mas->r_min && mas->offset &&
4259 		    !wr_mas->slots[mas->offset - 1]) {
4260 			mas->offset--;
4261 			wr_mas->r_min = mas->index =
4262 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4263 			wr_mas->r_max = wr_mas->pivots[mas->offset];
4264 		}
4265 	}
4266 }
4267 
4268 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4269 {
4270 	unsigned char end = wr_mas->node_end;
4271 	unsigned char new_end = end + 1;
4272 	struct ma_state *mas = wr_mas->mas;
4273 	unsigned char node_pivots = mt_pivots[wr_mas->type];
4274 
4275 	if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4276 		if (new_end < node_pivots)
4277 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4278 
4279 		if (new_end < node_pivots)
4280 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4281 
4282 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4283 		mas->offset = new_end;
4284 		wr_mas->pivots[end] = mas->index - 1;
4285 
4286 		return true;
4287 	}
4288 
4289 	if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4290 		if (new_end < node_pivots)
4291 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4292 
4293 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4294 		if (new_end < node_pivots)
4295 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4296 
4297 		wr_mas->pivots[end] = mas->last;
4298 		rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4299 		return true;
4300 	}
4301 
4302 	return false;
4303 }
4304 
4305 /*
4306  * mas_wr_bnode() - Slow path for a modification.
4307  * @wr_mas: The write maple state
4308  *
4309  * This is where split, rebalance end up.
4310  */
4311 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4312 {
4313 	struct maple_big_node b_node;
4314 
4315 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4316 	memset(&b_node, 0, sizeof(struct maple_big_node));
4317 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4318 	mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4319 }
4320 
4321 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4322 {
4323 	unsigned char node_slots;
4324 	unsigned char node_size;
4325 	struct ma_state *mas = wr_mas->mas;
4326 
4327 	/* Direct replacement */
4328 	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4329 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4330 		if (!!wr_mas->entry ^ !!wr_mas->content)
4331 			mas_update_gap(mas);
4332 		return;
4333 	}
4334 
4335 	/* Attempt to append */
4336 	node_slots = mt_slots[wr_mas->type];
4337 	node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4338 	if (mas->max == ULONG_MAX)
4339 		node_size++;
4340 
4341 	/* slot and node store will not fit, go to the slow path */
4342 	if (unlikely(node_size >= node_slots))
4343 		goto slow_path;
4344 
4345 	if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4346 	    (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4347 		if (!wr_mas->content || !wr_mas->entry)
4348 			mas_update_gap(mas);
4349 		return;
4350 	}
4351 
4352 	if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4353 		return;
4354 	else if (mas_wr_node_store(wr_mas))
4355 		return;
4356 
4357 	if (mas_is_err(mas))
4358 		return;
4359 
4360 slow_path:
4361 	mas_wr_bnode(wr_mas);
4362 }
4363 
4364 /*
4365  * mas_wr_store_entry() - Internal call to store a value
4366  * @mas: The maple state
4367  * @entry: The entry to store.
4368  *
4369  * Return: The contents that was stored at the index.
4370  */
4371 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4372 {
4373 	struct ma_state *mas = wr_mas->mas;
4374 
4375 	wr_mas->content = mas_start(mas);
4376 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4377 		mas_store_root(mas, wr_mas->entry);
4378 		return wr_mas->content;
4379 	}
4380 
4381 	if (unlikely(!mas_wr_walk(wr_mas))) {
4382 		mas_wr_spanning_store(wr_mas);
4383 		return wr_mas->content;
4384 	}
4385 
4386 	/* At this point, we are at the leaf node that needs to be altered. */
4387 	wr_mas->end_piv = wr_mas->r_max;
4388 	mas_wr_end_piv(wr_mas);
4389 
4390 	if (!wr_mas->entry)
4391 		mas_wr_extend_null(wr_mas);
4392 
4393 	/* New root for a single pointer */
4394 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4395 		mas_new_root(mas, wr_mas->entry);
4396 		return wr_mas->content;
4397 	}
4398 
4399 	mas_wr_modify(wr_mas);
4400 	return wr_mas->content;
4401 }
4402 
4403 /**
4404  * mas_insert() - Internal call to insert a value
4405  * @mas: The maple state
4406  * @entry: The entry to store
4407  *
4408  * Return: %NULL or the contents that already exists at the requested index
4409  * otherwise.  The maple state needs to be checked for error conditions.
4410  */
4411 static inline void *mas_insert(struct ma_state *mas, void *entry)
4412 {
4413 	MA_WR_STATE(wr_mas, mas, entry);
4414 
4415 	/*
4416 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4417 	 * tree.  If the insert fits exactly into an existing gap with a value
4418 	 * of NULL, then the slot only needs to be written with the new value.
4419 	 * If the range being inserted is adjacent to another range, then only a
4420 	 * single pivot needs to be inserted (as well as writing the entry).  If
4421 	 * the new range is within a gap but does not touch any other ranges,
4422 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4423 	 * usual, the entry must be written.  Most operations require a new node
4424 	 * to be allocated and replace an existing node to ensure RCU safety,
4425 	 * when in RCU mode.  The exception to requiring a newly allocated node
4426 	 * is when inserting at the end of a node (appending).  When done
4427 	 * carefully, appending can reuse the node in place.
4428 	 */
4429 	wr_mas.content = mas_start(mas);
4430 	if (wr_mas.content)
4431 		goto exists;
4432 
4433 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4434 		mas_store_root(mas, entry);
4435 		return NULL;
4436 	}
4437 
4438 	/* spanning writes always overwrite something */
4439 	if (!mas_wr_walk(&wr_mas))
4440 		goto exists;
4441 
4442 	/* At this point, we are at the leaf node that needs to be altered. */
4443 	wr_mas.offset_end = mas->offset;
4444 	wr_mas.end_piv = wr_mas.r_max;
4445 
4446 	if (wr_mas.content || (mas->last > wr_mas.r_max))
4447 		goto exists;
4448 
4449 	if (!entry)
4450 		return NULL;
4451 
4452 	mas_wr_modify(&wr_mas);
4453 	return wr_mas.content;
4454 
4455 exists:
4456 	mas_set_err(mas, -EEXIST);
4457 	return wr_mas.content;
4458 
4459 }
4460 
4461 /*
4462  * mas_prev_node() - Find the prev non-null entry at the same level in the
4463  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
4464  * @mas: The maple state
4465  * @min: The lower limit to search
4466  *
4467  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4468  * Return: 1 if the node is dead, 0 otherwise.
4469  */
4470 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4471 {
4472 	enum maple_type mt;
4473 	int offset, level;
4474 	void __rcu **slots;
4475 	struct maple_node *node;
4476 	struct maple_enode *enode;
4477 	unsigned long *pivots;
4478 
4479 	if (mas_is_none(mas))
4480 		return 0;
4481 
4482 	level = 0;
4483 	do {
4484 		node = mas_mn(mas);
4485 		if (ma_is_root(node))
4486 			goto no_entry;
4487 
4488 		/* Walk up. */
4489 		if (unlikely(mas_ascend(mas)))
4490 			return 1;
4491 		offset = mas->offset;
4492 		level++;
4493 	} while (!offset);
4494 
4495 	offset--;
4496 	mt = mte_node_type(mas->node);
4497 	node = mas_mn(mas);
4498 	slots = ma_slots(node, mt);
4499 	pivots = ma_pivots(node, mt);
4500 	mas->max = pivots[offset];
4501 	if (offset)
4502 		mas->min = pivots[offset - 1] + 1;
4503 	if (unlikely(ma_dead_node(node)))
4504 		return 1;
4505 
4506 	if (mas->max < min)
4507 		goto no_entry_min;
4508 
4509 	while (level > 1) {
4510 		level--;
4511 		enode = mas_slot(mas, slots, offset);
4512 		if (unlikely(ma_dead_node(node)))
4513 			return 1;
4514 
4515 		mas->node = enode;
4516 		mt = mte_node_type(mas->node);
4517 		node = mas_mn(mas);
4518 		slots = ma_slots(node, mt);
4519 		pivots = ma_pivots(node, mt);
4520 		offset = ma_data_end(node, mt, pivots, mas->max);
4521 		if (offset)
4522 			mas->min = pivots[offset - 1] + 1;
4523 
4524 		if (offset < mt_pivots[mt])
4525 			mas->max = pivots[offset];
4526 
4527 		if (mas->max < min)
4528 			goto no_entry;
4529 	}
4530 
4531 	mas->node = mas_slot(mas, slots, offset);
4532 	if (unlikely(ma_dead_node(node)))
4533 		return 1;
4534 
4535 	mas->offset = mas_data_end(mas);
4536 	if (unlikely(mte_dead_node(mas->node)))
4537 		return 1;
4538 
4539 	return 0;
4540 
4541 no_entry_min:
4542 	mas->offset = offset;
4543 	if (offset)
4544 		mas->min = pivots[offset - 1] + 1;
4545 no_entry:
4546 	if (unlikely(ma_dead_node(node)))
4547 		return 1;
4548 
4549 	mas->node = MAS_NONE;
4550 	return 0;
4551 }
4552 
4553 /*
4554  * mas_next_node() - Get the next node at the same level in the tree.
4555  * @mas: The maple state
4556  * @max: The maximum pivot value to check.
4557  *
4558  * The next value will be mas->node[mas->offset] or MAS_NONE.
4559  * Return: 1 on dead node, 0 otherwise.
4560  */
4561 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4562 				unsigned long max)
4563 {
4564 	unsigned long min, pivot;
4565 	unsigned long *pivots;
4566 	struct maple_enode *enode;
4567 	int level = 0;
4568 	unsigned char offset;
4569 	enum maple_type mt;
4570 	void __rcu **slots;
4571 
4572 	if (mas->max >= max)
4573 		goto no_entry;
4574 
4575 	level = 0;
4576 	do {
4577 		if (ma_is_root(node))
4578 			goto no_entry;
4579 
4580 		min = mas->max + 1;
4581 		if (min > max)
4582 			goto no_entry;
4583 
4584 		if (unlikely(mas_ascend(mas)))
4585 			return 1;
4586 
4587 		offset = mas->offset;
4588 		level++;
4589 		node = mas_mn(mas);
4590 		mt = mte_node_type(mas->node);
4591 		pivots = ma_pivots(node, mt);
4592 	} while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4593 
4594 	slots = ma_slots(node, mt);
4595 	pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4596 	while (unlikely(level > 1)) {
4597 		/* Descend, if necessary */
4598 		enode = mas_slot(mas, slots, offset);
4599 		if (unlikely(ma_dead_node(node)))
4600 			return 1;
4601 
4602 		mas->node = enode;
4603 		level--;
4604 		node = mas_mn(mas);
4605 		mt = mte_node_type(mas->node);
4606 		slots = ma_slots(node, mt);
4607 		pivots = ma_pivots(node, mt);
4608 		offset = 0;
4609 		pivot = pivots[0];
4610 	}
4611 
4612 	enode = mas_slot(mas, slots, offset);
4613 	if (unlikely(ma_dead_node(node)))
4614 		return 1;
4615 
4616 	mas->node = enode;
4617 	mas->min = min;
4618 	mas->max = pivot;
4619 	return 0;
4620 
4621 no_entry:
4622 	if (unlikely(ma_dead_node(node)))
4623 		return 1;
4624 
4625 	mas->node = MAS_NONE;
4626 	return 0;
4627 }
4628 
4629 /*
4630  * mas_next_nentry() - Get the next node entry
4631  * @mas: The maple state
4632  * @max: The maximum value to check
4633  * @*range_start: Pointer to store the start of the range.
4634  *
4635  * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4636  * pivot of the entry.
4637  *
4638  * Return: The next entry, %NULL otherwise
4639  */
4640 static inline void *mas_next_nentry(struct ma_state *mas,
4641 	    struct maple_node *node, unsigned long max, enum maple_type type)
4642 {
4643 	unsigned char count;
4644 	unsigned long pivot;
4645 	unsigned long *pivots;
4646 	void __rcu **slots;
4647 	void *entry;
4648 
4649 	if (mas->last == mas->max) {
4650 		mas->index = mas->max;
4651 		return NULL;
4652 	}
4653 
4654 	pivots = ma_pivots(node, type);
4655 	slots = ma_slots(node, type);
4656 	mas->index = mas_safe_min(mas, pivots, mas->offset);
4657 	if (ma_dead_node(node))
4658 		return NULL;
4659 
4660 	if (mas->index > max)
4661 		return NULL;
4662 
4663 	count = ma_data_end(node, type, pivots, mas->max);
4664 	if (mas->offset > count)
4665 		return NULL;
4666 
4667 	while (mas->offset < count) {
4668 		pivot = pivots[mas->offset];
4669 		entry = mas_slot(mas, slots, mas->offset);
4670 		if (ma_dead_node(node))
4671 			return NULL;
4672 
4673 		if (entry)
4674 			goto found;
4675 
4676 		if (pivot >= max)
4677 			return NULL;
4678 
4679 		mas->index = pivot + 1;
4680 		mas->offset++;
4681 	}
4682 
4683 	if (mas->index > mas->max) {
4684 		mas->index = mas->last;
4685 		return NULL;
4686 	}
4687 
4688 	pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4689 	entry = mas_slot(mas, slots, mas->offset);
4690 	if (ma_dead_node(node))
4691 		return NULL;
4692 
4693 	if (!pivot)
4694 		return NULL;
4695 
4696 	if (!entry)
4697 		return NULL;
4698 
4699 found:
4700 	mas->last = pivot;
4701 	return entry;
4702 }
4703 
4704 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4705 {
4706 retry:
4707 	mas_set(mas, index);
4708 	mas_state_walk(mas);
4709 	if (mas_is_start(mas))
4710 		goto retry;
4711 }
4712 
4713 /*
4714  * mas_next_entry() - Internal function to get the next entry.
4715  * @mas: The maple state
4716  * @limit: The maximum range start.
4717  *
4718  * Set the @mas->node to the next entry and the range_start to
4719  * the beginning value for the entry.  Does not check beyond @limit.
4720  * Sets @mas->index and @mas->last to the limit if it is hit.
4721  * Restarts on dead nodes.
4722  *
4723  * Return: the next entry or %NULL.
4724  */
4725 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4726 {
4727 	void *entry = NULL;
4728 	struct maple_enode *prev_node;
4729 	struct maple_node *node;
4730 	unsigned char offset;
4731 	unsigned long last;
4732 	enum maple_type mt;
4733 
4734 	last = mas->last;
4735 retry:
4736 	offset = mas->offset;
4737 	prev_node = mas->node;
4738 	node = mas_mn(mas);
4739 	mt = mte_node_type(mas->node);
4740 	mas->offset++;
4741 	if (unlikely(mas->offset >= mt_slots[mt])) {
4742 		mas->offset = mt_slots[mt] - 1;
4743 		goto next_node;
4744 	}
4745 
4746 	while (!mas_is_none(mas)) {
4747 		entry = mas_next_nentry(mas, node, limit, mt);
4748 		if (unlikely(ma_dead_node(node))) {
4749 			mas_rewalk(mas, last);
4750 			goto retry;
4751 		}
4752 
4753 		if (likely(entry))
4754 			return entry;
4755 
4756 		if (unlikely((mas->index > limit)))
4757 			break;
4758 
4759 next_node:
4760 		prev_node = mas->node;
4761 		offset = mas->offset;
4762 		if (unlikely(mas_next_node(mas, node, limit))) {
4763 			mas_rewalk(mas, last);
4764 			goto retry;
4765 		}
4766 		mas->offset = 0;
4767 		node = mas_mn(mas);
4768 		mt = mte_node_type(mas->node);
4769 	}
4770 
4771 	mas->index = mas->last = limit;
4772 	mas->offset = offset;
4773 	mas->node = prev_node;
4774 	return NULL;
4775 }
4776 
4777 /*
4778  * mas_prev_nentry() - Get the previous node entry.
4779  * @mas: The maple state.
4780  * @limit: The lower limit to check for a value.
4781  *
4782  * Return: the entry, %NULL otherwise.
4783  */
4784 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4785 				    unsigned long index)
4786 {
4787 	unsigned long pivot, min;
4788 	unsigned char offset;
4789 	struct maple_node *mn;
4790 	enum maple_type mt;
4791 	unsigned long *pivots;
4792 	void __rcu **slots;
4793 	void *entry;
4794 
4795 retry:
4796 	if (!mas->offset)
4797 		return NULL;
4798 
4799 	mn = mas_mn(mas);
4800 	mt = mte_node_type(mas->node);
4801 	offset = mas->offset - 1;
4802 	if (offset >= mt_slots[mt])
4803 		offset = mt_slots[mt] - 1;
4804 
4805 	slots = ma_slots(mn, mt);
4806 	pivots = ma_pivots(mn, mt);
4807 	if (offset == mt_pivots[mt])
4808 		pivot = mas->max;
4809 	else
4810 		pivot = pivots[offset];
4811 
4812 	if (unlikely(ma_dead_node(mn))) {
4813 		mas_rewalk(mas, index);
4814 		goto retry;
4815 	}
4816 
4817 	while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4818 	       !pivot))
4819 		pivot = pivots[--offset];
4820 
4821 	min = mas_safe_min(mas, pivots, offset);
4822 	entry = mas_slot(mas, slots, offset);
4823 	if (unlikely(ma_dead_node(mn))) {
4824 		mas_rewalk(mas, index);
4825 		goto retry;
4826 	}
4827 
4828 	if (likely(entry)) {
4829 		mas->offset = offset;
4830 		mas->last = pivot;
4831 		mas->index = min;
4832 	}
4833 	return entry;
4834 }
4835 
4836 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4837 {
4838 	void *entry;
4839 
4840 retry:
4841 	while (likely(!mas_is_none(mas))) {
4842 		entry = mas_prev_nentry(mas, min, mas->index);
4843 		if (unlikely(mas->last < min))
4844 			goto not_found;
4845 
4846 		if (likely(entry))
4847 			return entry;
4848 
4849 		if (unlikely(mas_prev_node(mas, min))) {
4850 			mas_rewalk(mas, mas->index);
4851 			goto retry;
4852 		}
4853 
4854 		mas->offset++;
4855 	}
4856 
4857 	mas->offset--;
4858 not_found:
4859 	mas->index = mas->last = min;
4860 	return NULL;
4861 }
4862 
4863 /*
4864  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4865  * highest gap address of a given size in a given node and descend.
4866  * @mas: The maple state
4867  * @size: The needed size.
4868  *
4869  * Return: True if found in a leaf, false otherwise.
4870  *
4871  */
4872 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4873 {
4874 	enum maple_type type = mte_node_type(mas->node);
4875 	struct maple_node *node = mas_mn(mas);
4876 	unsigned long *pivots, *gaps;
4877 	void __rcu **slots;
4878 	unsigned long gap = 0;
4879 	unsigned long max, min, index;
4880 	unsigned char offset;
4881 
4882 	if (unlikely(mas_is_err(mas)))
4883 		return true;
4884 
4885 	if (ma_is_dense(type)) {
4886 		/* dense nodes. */
4887 		mas->offset = (unsigned char)(mas->index - mas->min);
4888 		return true;
4889 	}
4890 
4891 	pivots = ma_pivots(node, type);
4892 	slots = ma_slots(node, type);
4893 	gaps = ma_gaps(node, type);
4894 	offset = mas->offset;
4895 	min = mas_safe_min(mas, pivots, offset);
4896 	/* Skip out of bounds. */
4897 	while (mas->last < min)
4898 		min = mas_safe_min(mas, pivots, --offset);
4899 
4900 	max = mas_safe_pivot(mas, pivots, offset, type);
4901 	index = mas->index;
4902 	while (index <= max) {
4903 		gap = 0;
4904 		if (gaps)
4905 			gap = gaps[offset];
4906 		else if (!mas_slot(mas, slots, offset))
4907 			gap = max - min + 1;
4908 
4909 		if (gap) {
4910 			if ((size <= gap) && (size <= mas->last - min + 1))
4911 				break;
4912 
4913 			if (!gaps) {
4914 				/* Skip the next slot, it cannot be a gap. */
4915 				if (offset < 2)
4916 					goto ascend;
4917 
4918 				offset -= 2;
4919 				max = pivots[offset];
4920 				min = mas_safe_min(mas, pivots, offset);
4921 				continue;
4922 			}
4923 		}
4924 
4925 		if (!offset)
4926 			goto ascend;
4927 
4928 		offset--;
4929 		max = min - 1;
4930 		min = mas_safe_min(mas, pivots, offset);
4931 	}
4932 
4933 	if (unlikely(index > max)) {
4934 		mas_set_err(mas, -EBUSY);
4935 		return false;
4936 	}
4937 
4938 	if (unlikely(ma_is_leaf(type))) {
4939 		mas->offset = offset;
4940 		mas->min = min;
4941 		mas->max = min + gap - 1;
4942 		return true;
4943 	}
4944 
4945 	/* descend, only happens under lock. */
4946 	mas->node = mas_slot(mas, slots, offset);
4947 	mas->min = min;
4948 	mas->max = max;
4949 	mas->offset = mas_data_end(mas);
4950 	return false;
4951 
4952 ascend:
4953 	if (mte_is_root(mas->node))
4954 		mas_set_err(mas, -EBUSY);
4955 
4956 	return false;
4957 }
4958 
4959 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4960 {
4961 	enum maple_type type = mte_node_type(mas->node);
4962 	unsigned long pivot, min, gap = 0;
4963 	unsigned char offset;
4964 	unsigned long *gaps;
4965 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
4966 	void __rcu **slots = ma_slots(mas_mn(mas), type);
4967 	bool found = false;
4968 
4969 	if (ma_is_dense(type)) {
4970 		mas->offset = (unsigned char)(mas->index - mas->min);
4971 		return true;
4972 	}
4973 
4974 	gaps = ma_gaps(mte_to_node(mas->node), type);
4975 	offset = mas->offset;
4976 	min = mas_safe_min(mas, pivots, offset);
4977 	for (; offset < mt_slots[type]; offset++) {
4978 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4979 		if (offset && !pivot)
4980 			break;
4981 
4982 		/* Not within lower bounds */
4983 		if (mas->index > pivot)
4984 			goto next_slot;
4985 
4986 		if (gaps)
4987 			gap = gaps[offset];
4988 		else if (!mas_slot(mas, slots, offset))
4989 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4990 		else
4991 			goto next_slot;
4992 
4993 		if (gap >= size) {
4994 			if (ma_is_leaf(type)) {
4995 				found = true;
4996 				goto done;
4997 			}
4998 			if (mas->index <= pivot) {
4999 				mas->node = mas_slot(mas, slots, offset);
5000 				mas->min = min;
5001 				mas->max = pivot;
5002 				offset = 0;
5003 				break;
5004 			}
5005 		}
5006 next_slot:
5007 		min = pivot + 1;
5008 		if (mas->last <= pivot) {
5009 			mas_set_err(mas, -EBUSY);
5010 			return true;
5011 		}
5012 	}
5013 
5014 	if (mte_is_root(mas->node))
5015 		found = true;
5016 done:
5017 	mas->offset = offset;
5018 	return found;
5019 }
5020 
5021 /**
5022  * mas_walk() - Search for @mas->index in the tree.
5023  * @mas: The maple state.
5024  *
5025  * mas->index and mas->last will be set to the range if there is a value.  If
5026  * mas->node is MAS_NONE, reset to MAS_START.
5027  *
5028  * Return: the entry at the location or %NULL.
5029  */
5030 void *mas_walk(struct ma_state *mas)
5031 {
5032 	void *entry;
5033 
5034 retry:
5035 	entry = mas_state_walk(mas);
5036 	if (mas_is_start(mas))
5037 		goto retry;
5038 
5039 	if (mas_is_ptr(mas)) {
5040 		if (!mas->index) {
5041 			mas->last = 0;
5042 		} else {
5043 			mas->index = 1;
5044 			mas->last = ULONG_MAX;
5045 		}
5046 		return entry;
5047 	}
5048 
5049 	if (mas_is_none(mas)) {
5050 		mas->index = 0;
5051 		mas->last = ULONG_MAX;
5052 	}
5053 
5054 	return entry;
5055 }
5056 EXPORT_SYMBOL_GPL(mas_walk);
5057 
5058 static inline bool mas_rewind_node(struct ma_state *mas)
5059 {
5060 	unsigned char slot;
5061 
5062 	do {
5063 		if (mte_is_root(mas->node)) {
5064 			slot = mas->offset;
5065 			if (!slot)
5066 				return false;
5067 		} else {
5068 			mas_ascend(mas);
5069 			slot = mas->offset;
5070 		}
5071 	} while (!slot);
5072 
5073 	mas->offset = --slot;
5074 	return true;
5075 }
5076 
5077 /*
5078  * mas_skip_node() - Internal function.  Skip over a node.
5079  * @mas: The maple state.
5080  *
5081  * Return: true if there is another node, false otherwise.
5082  */
5083 static inline bool mas_skip_node(struct ma_state *mas)
5084 {
5085 	unsigned char slot, slot_count;
5086 	unsigned long *pivots;
5087 	enum maple_type mt;
5088 
5089 	mt = mte_node_type(mas->node);
5090 	slot_count = mt_slots[mt] - 1;
5091 	do {
5092 		if (mte_is_root(mas->node)) {
5093 			slot = mas->offset;
5094 			if (slot > slot_count) {
5095 				mas_set_err(mas, -EBUSY);
5096 				return false;
5097 			}
5098 		} else {
5099 			mas_ascend(mas);
5100 			slot = mas->offset;
5101 			mt = mte_node_type(mas->node);
5102 			slot_count = mt_slots[mt] - 1;
5103 		}
5104 	} while (slot > slot_count);
5105 
5106 	mas->offset = ++slot;
5107 	pivots = ma_pivots(mas_mn(mas), mt);
5108 	if (slot > 0)
5109 		mas->min = pivots[slot - 1] + 1;
5110 
5111 	if (slot <= slot_count)
5112 		mas->max = pivots[slot];
5113 
5114 	return true;
5115 }
5116 
5117 /*
5118  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5119  * @size
5120  * @mas: The maple state
5121  * @size: The size of the gap required
5122  *
5123  * Search between @mas->index and @mas->last for a gap of @size.
5124  */
5125 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5126 {
5127 	struct maple_enode *last = NULL;
5128 
5129 	/*
5130 	 * There are 4 options:
5131 	 * go to child (descend)
5132 	 * go back to parent (ascend)
5133 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5134 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5135 	 */
5136 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5137 		if (last == mas->node)
5138 			mas_skip_node(mas);
5139 		else
5140 			last = mas->node;
5141 	}
5142 }
5143 
5144 /*
5145  * mas_fill_gap() - Fill a located gap with @entry.
5146  * @mas: The maple state
5147  * @entry: The value to store
5148  * @slot: The offset into the node to store the @entry
5149  * @size: The size of the entry
5150  * @index: The start location
5151  */
5152 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5153 		unsigned char slot, unsigned long size, unsigned long *index)
5154 {
5155 	MA_WR_STATE(wr_mas, mas, entry);
5156 	unsigned char pslot = mte_parent_slot(mas->node);
5157 	struct maple_enode *mn = mas->node;
5158 	unsigned long *pivots;
5159 	enum maple_type ptype;
5160 	/*
5161 	 * mas->index is the start address for the search
5162 	 *  which may no longer be needed.
5163 	 * mas->last is the end address for the search
5164 	 */
5165 
5166 	*index = mas->index;
5167 	mas->last = mas->index + size - 1;
5168 
5169 	/*
5170 	 * It is possible that using mas->max and mas->min to correctly
5171 	 * calculate the index and last will cause an issue in the gap
5172 	 * calculation, so fix the ma_state here
5173 	 */
5174 	mas_ascend(mas);
5175 	ptype = mte_node_type(mas->node);
5176 	pivots = ma_pivots(mas_mn(mas), ptype);
5177 	mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5178 	mas->min = mas_safe_min(mas, pivots, pslot);
5179 	mas->node = mn;
5180 	mas->offset = slot;
5181 	mas_wr_store_entry(&wr_mas);
5182 }
5183 
5184 /*
5185  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5186  * searching for a gap in an empty tree.
5187  * @mas: The maple state
5188  * @min: the minimum range
5189  * @max: The maximum range
5190  * @size: The size of the gap
5191  * @fwd: Searching forward or back
5192  */
5193 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5194 				unsigned long max, unsigned long size, bool fwd)
5195 {
5196 	unsigned long start = 0;
5197 
5198 	if (!unlikely(mas_is_none(mas)))
5199 		start++;
5200 	/* mas_is_ptr */
5201 
5202 	if (start < min)
5203 		start = min;
5204 
5205 	if (fwd) {
5206 		mas->index = start;
5207 		mas->last = start + size - 1;
5208 		return;
5209 	}
5210 
5211 	mas->index = max;
5212 }
5213 
5214 /*
5215  * mas_empty_area() - Get the lowest address within the range that is
5216  * sufficient for the size requested.
5217  * @mas: The maple state
5218  * @min: The lowest value of the range
5219  * @max: The highest value of the range
5220  * @size: The size needed
5221  */
5222 int mas_empty_area(struct ma_state *mas, unsigned long min,
5223 		unsigned long max, unsigned long size)
5224 {
5225 	unsigned char offset;
5226 	unsigned long *pivots;
5227 	enum maple_type mt;
5228 
5229 	if (mas_is_start(mas))
5230 		mas_start(mas);
5231 	else if (mas->offset >= 2)
5232 		mas->offset -= 2;
5233 	else if (!mas_skip_node(mas))
5234 		return -EBUSY;
5235 
5236 	/* Empty set */
5237 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5238 		mas_sparse_area(mas, min, max, size, true);
5239 		return 0;
5240 	}
5241 
5242 	/* The start of the window can only be within these values */
5243 	mas->index = min;
5244 	mas->last = max;
5245 	mas_awalk(mas, size);
5246 
5247 	if (unlikely(mas_is_err(mas)))
5248 		return xa_err(mas->node);
5249 
5250 	offset = mas->offset;
5251 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5252 		return -EBUSY;
5253 
5254 	mt = mte_node_type(mas->node);
5255 	pivots = ma_pivots(mas_mn(mas), mt);
5256 	if (offset)
5257 		mas->min = pivots[offset - 1] + 1;
5258 
5259 	if (offset < mt_pivots[mt])
5260 		mas->max = pivots[offset];
5261 
5262 	if (mas->index < mas->min)
5263 		mas->index = mas->min;
5264 
5265 	mas->last = mas->index + size - 1;
5266 	return 0;
5267 }
5268 EXPORT_SYMBOL_GPL(mas_empty_area);
5269 
5270 /*
5271  * mas_empty_area_rev() - Get the highest address within the range that is
5272  * sufficient for the size requested.
5273  * @mas: The maple state
5274  * @min: The lowest value of the range
5275  * @max: The highest value of the range
5276  * @size: The size needed
5277  */
5278 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5279 		unsigned long max, unsigned long size)
5280 {
5281 	struct maple_enode *last = mas->node;
5282 
5283 	if (mas_is_start(mas)) {
5284 		mas_start(mas);
5285 		mas->offset = mas_data_end(mas);
5286 	} else if (mas->offset >= 2) {
5287 		mas->offset -= 2;
5288 	} else if (!mas_rewind_node(mas)) {
5289 		return -EBUSY;
5290 	}
5291 
5292 	/* Empty set. */
5293 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5294 		mas_sparse_area(mas, min, max, size, false);
5295 		return 0;
5296 	}
5297 
5298 	/* The start of the window can only be within these values. */
5299 	mas->index = min;
5300 	mas->last = max;
5301 
5302 	while (!mas_rev_awalk(mas, size)) {
5303 		if (last == mas->node) {
5304 			if (!mas_rewind_node(mas))
5305 				return -EBUSY;
5306 		} else {
5307 			last = mas->node;
5308 		}
5309 	}
5310 
5311 	if (mas_is_err(mas))
5312 		return xa_err(mas->node);
5313 
5314 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5315 		return -EBUSY;
5316 
5317 	/*
5318 	 * mas_rev_awalk() has set mas->min and mas->max to the gap values.  If
5319 	 * the maximum is outside the window we are searching, then use the last
5320 	 * location in the search.
5321 	 * mas->max and mas->min is the range of the gap.
5322 	 * mas->index and mas->last are currently set to the search range.
5323 	 */
5324 
5325 	/* Trim the upper limit to the max. */
5326 	if (mas->max <= mas->last)
5327 		mas->last = mas->max;
5328 
5329 	mas->index = mas->last - size + 1;
5330 	return 0;
5331 }
5332 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5333 
5334 static inline int mas_alloc(struct ma_state *mas, void *entry,
5335 		unsigned long size, unsigned long *index)
5336 {
5337 	unsigned long min;
5338 
5339 	mas_start(mas);
5340 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5341 		mas_root_expand(mas, entry);
5342 		if (mas_is_err(mas))
5343 			return xa_err(mas->node);
5344 
5345 		if (!mas->index)
5346 			return mte_pivot(mas->node, 0);
5347 		return mte_pivot(mas->node, 1);
5348 	}
5349 
5350 	/* Must be walking a tree. */
5351 	mas_awalk(mas, size);
5352 	if (mas_is_err(mas))
5353 		return xa_err(mas->node);
5354 
5355 	if (mas->offset == MAPLE_NODE_SLOTS)
5356 		goto no_gap;
5357 
5358 	/*
5359 	 * At this point, mas->node points to the right node and we have an
5360 	 * offset that has a sufficient gap.
5361 	 */
5362 	min = mas->min;
5363 	if (mas->offset)
5364 		min = mte_pivot(mas->node, mas->offset - 1) + 1;
5365 
5366 	if (mas->index < min)
5367 		mas->index = min;
5368 
5369 	mas_fill_gap(mas, entry, mas->offset, size, index);
5370 	return 0;
5371 
5372 no_gap:
5373 	return -EBUSY;
5374 }
5375 
5376 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5377 				unsigned long max, void *entry,
5378 				unsigned long size, unsigned long *index)
5379 {
5380 	int ret = 0;
5381 
5382 	ret = mas_empty_area_rev(mas, min, max, size);
5383 	if (ret)
5384 		return ret;
5385 
5386 	if (mas_is_err(mas))
5387 		return xa_err(mas->node);
5388 
5389 	if (mas->offset == MAPLE_NODE_SLOTS)
5390 		goto no_gap;
5391 
5392 	mas_fill_gap(mas, entry, mas->offset, size, index);
5393 	return 0;
5394 
5395 no_gap:
5396 	return -EBUSY;
5397 }
5398 
5399 /*
5400  * mas_dead_leaves() - Mark all leaves of a node as dead.
5401  * @mas: The maple state
5402  * @slots: Pointer to the slot array
5403  *
5404  * Must hold the write lock.
5405  *
5406  * Return: The number of leaves marked as dead.
5407  */
5408 static inline
5409 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5410 {
5411 	struct maple_node *node;
5412 	enum maple_type type;
5413 	void *entry;
5414 	int offset;
5415 
5416 	for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5417 		entry = mas_slot_locked(mas, slots, offset);
5418 		type = mte_node_type(entry);
5419 		node = mte_to_node(entry);
5420 		/* Use both node and type to catch LE & BE metadata */
5421 		if (!node || !type)
5422 			break;
5423 
5424 		mte_set_node_dead(entry);
5425 		smp_wmb(); /* Needed for RCU */
5426 		node->type = type;
5427 		rcu_assign_pointer(slots[offset], node);
5428 	}
5429 
5430 	return offset;
5431 }
5432 
5433 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5434 {
5435 	struct maple_node *node, *next;
5436 	void __rcu **slots = NULL;
5437 
5438 	next = mas_mn(mas);
5439 	do {
5440 		mas->node = ma_enode_ptr(next);
5441 		node = mas_mn(mas);
5442 		slots = ma_slots(node, node->type);
5443 		next = mas_slot_locked(mas, slots, offset);
5444 		offset = 0;
5445 	} while (!ma_is_leaf(next->type));
5446 
5447 	return slots;
5448 }
5449 
5450 static void mt_free_walk(struct rcu_head *head)
5451 {
5452 	void __rcu **slots;
5453 	struct maple_node *node, *start;
5454 	struct maple_tree mt;
5455 	unsigned char offset;
5456 	enum maple_type type;
5457 	MA_STATE(mas, &mt, 0, 0);
5458 
5459 	node = container_of(head, struct maple_node, rcu);
5460 
5461 	if (ma_is_leaf(node->type))
5462 		goto free_leaf;
5463 
5464 	mt_init_flags(&mt, node->ma_flags);
5465 	mas_lock(&mas);
5466 	start = node;
5467 	mas.node = mt_mk_node(node, node->type);
5468 	slots = mas_dead_walk(&mas, 0);
5469 	node = mas_mn(&mas);
5470 	do {
5471 		mt_free_bulk(node->slot_len, slots);
5472 		offset = node->parent_slot + 1;
5473 		mas.node = node->piv_parent;
5474 		if (mas_mn(&mas) == node)
5475 			goto start_slots_free;
5476 
5477 		type = mte_node_type(mas.node);
5478 		slots = ma_slots(mte_to_node(mas.node), type);
5479 		if ((offset < mt_slots[type]) && (slots[offset]))
5480 			slots = mas_dead_walk(&mas, offset);
5481 
5482 		node = mas_mn(&mas);
5483 	} while ((node != start) || (node->slot_len < offset));
5484 
5485 	slots = ma_slots(node, node->type);
5486 	mt_free_bulk(node->slot_len, slots);
5487 
5488 start_slots_free:
5489 	mas_unlock(&mas);
5490 free_leaf:
5491 	mt_free_rcu(&node->rcu);
5492 }
5493 
5494 static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5495 			struct maple_enode *prev, unsigned char offset)
5496 {
5497 	struct maple_node *node;
5498 	struct maple_enode *next = mas->node;
5499 	void __rcu **slots = NULL;
5500 
5501 	do {
5502 		mas->node = next;
5503 		node = mas_mn(mas);
5504 		slots = ma_slots(node, mte_node_type(mas->node));
5505 		next = mas_slot_locked(mas, slots, 0);
5506 		if ((mte_dead_node(next)))
5507 			next = mas_slot_locked(mas, slots, 1);
5508 
5509 		mte_set_node_dead(mas->node);
5510 		node->type = mte_node_type(mas->node);
5511 		node->piv_parent = prev;
5512 		node->parent_slot = offset;
5513 		offset = 0;
5514 		prev = mas->node;
5515 	} while (!mte_is_leaf(next));
5516 
5517 	return slots;
5518 }
5519 
5520 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5521 			    bool free)
5522 {
5523 	void __rcu **slots;
5524 	struct maple_node *node = mte_to_node(enode);
5525 	struct maple_enode *start;
5526 	struct maple_tree mt;
5527 
5528 	MA_STATE(mas, &mt, 0, 0);
5529 
5530 	if (mte_is_leaf(enode))
5531 		goto free_leaf;
5532 
5533 	mt_init_flags(&mt, ma_flags);
5534 	mas_lock(&mas);
5535 
5536 	mas.node = start = enode;
5537 	slots = mas_destroy_descend(&mas, start, 0);
5538 	node = mas_mn(&mas);
5539 	do {
5540 		enum maple_type type;
5541 		unsigned char offset;
5542 		struct maple_enode *parent, *tmp;
5543 
5544 		node->slot_len = mas_dead_leaves(&mas, slots);
5545 		if (free)
5546 			mt_free_bulk(node->slot_len, slots);
5547 		offset = node->parent_slot + 1;
5548 		mas.node = node->piv_parent;
5549 		if (mas_mn(&mas) == node)
5550 			goto start_slots_free;
5551 
5552 		type = mte_node_type(mas.node);
5553 		slots = ma_slots(mte_to_node(mas.node), type);
5554 		if (offset >= mt_slots[type])
5555 			goto next;
5556 
5557 		tmp = mas_slot_locked(&mas, slots, offset);
5558 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5559 			parent = mas.node;
5560 			mas.node = tmp;
5561 			slots = mas_destroy_descend(&mas, parent, offset);
5562 		}
5563 next:
5564 		node = mas_mn(&mas);
5565 	} while (start != mas.node);
5566 
5567 	node = mas_mn(&mas);
5568 	node->slot_len = mas_dead_leaves(&mas, slots);
5569 	if (free)
5570 		mt_free_bulk(node->slot_len, slots);
5571 
5572 start_slots_free:
5573 	mas_unlock(&mas);
5574 
5575 free_leaf:
5576 	if (free)
5577 		mt_free_rcu(&node->rcu);
5578 }
5579 
5580 /*
5581  * mte_destroy_walk() - Free a tree or sub-tree.
5582  * @enode - the encoded maple node (maple_enode) to start
5583  * @mn - the tree to free - needed for node types.
5584  *
5585  * Must hold the write lock.
5586  */
5587 static inline void mte_destroy_walk(struct maple_enode *enode,
5588 				    struct maple_tree *mt)
5589 {
5590 	struct maple_node *node = mte_to_node(enode);
5591 
5592 	if (mt_in_rcu(mt)) {
5593 		mt_destroy_walk(enode, mt->ma_flags, false);
5594 		call_rcu(&node->rcu, mt_free_walk);
5595 	} else {
5596 		mt_destroy_walk(enode, mt->ma_flags, true);
5597 	}
5598 }
5599 
5600 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5601 {
5602 	if (!mas_is_start(wr_mas->mas)) {
5603 		if (mas_is_none(wr_mas->mas)) {
5604 			mas_reset(wr_mas->mas);
5605 		} else {
5606 			wr_mas->r_max = wr_mas->mas->max;
5607 			wr_mas->type = mte_node_type(wr_mas->mas->node);
5608 			if (mas_is_span_wr(wr_mas))
5609 				mas_reset(wr_mas->mas);
5610 		}
5611 	}
5612 }
5613 
5614 /* Interface */
5615 
5616 /**
5617  * mas_store() - Store an @entry.
5618  * @mas: The maple state.
5619  * @entry: The entry to store.
5620  *
5621  * The @mas->index and @mas->last is used to set the range for the @entry.
5622  * Note: The @mas should have pre-allocated entries to ensure there is memory to
5623  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5624  *
5625  * Return: the first entry between mas->index and mas->last or %NULL.
5626  */
5627 void *mas_store(struct ma_state *mas, void *entry)
5628 {
5629 	MA_WR_STATE(wr_mas, mas, entry);
5630 
5631 	trace_ma_write(__func__, mas, 0, entry);
5632 #ifdef CONFIG_DEBUG_MAPLE_TREE
5633 	if (mas->index > mas->last)
5634 		pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5635 	MT_BUG_ON(mas->tree, mas->index > mas->last);
5636 	if (mas->index > mas->last) {
5637 		mas_set_err(mas, -EINVAL);
5638 		return NULL;
5639 	}
5640 
5641 #endif
5642 
5643 	/*
5644 	 * Storing is the same operation as insert with the added caveat that it
5645 	 * can overwrite entries.  Although this seems simple enough, one may
5646 	 * want to examine what happens if a single store operation was to
5647 	 * overwrite multiple entries within a self-balancing B-Tree.
5648 	 */
5649 	mas_wr_store_setup(&wr_mas);
5650 	mas_wr_store_entry(&wr_mas);
5651 	return wr_mas.content;
5652 }
5653 EXPORT_SYMBOL_GPL(mas_store);
5654 
5655 /**
5656  * mas_store_gfp() - Store a value into the tree.
5657  * @mas: The maple state
5658  * @entry: The entry to store
5659  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5660  *
5661  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5662  * be allocated.
5663  */
5664 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5665 {
5666 	MA_WR_STATE(wr_mas, mas, entry);
5667 
5668 	mas_wr_store_setup(&wr_mas);
5669 	trace_ma_write(__func__, mas, 0, entry);
5670 retry:
5671 	mas_wr_store_entry(&wr_mas);
5672 	if (unlikely(mas_nomem(mas, gfp)))
5673 		goto retry;
5674 
5675 	if (unlikely(mas_is_err(mas)))
5676 		return xa_err(mas->node);
5677 
5678 	return 0;
5679 }
5680 EXPORT_SYMBOL_GPL(mas_store_gfp);
5681 
5682 /**
5683  * mas_store_prealloc() - Store a value into the tree using memory
5684  * preallocated in the maple state.
5685  * @mas: The maple state
5686  * @entry: The entry to store.
5687  */
5688 void mas_store_prealloc(struct ma_state *mas, void *entry)
5689 {
5690 	MA_WR_STATE(wr_mas, mas, entry);
5691 
5692 	mas_wr_store_setup(&wr_mas);
5693 	trace_ma_write(__func__, mas, 0, entry);
5694 	mas_wr_store_entry(&wr_mas);
5695 	BUG_ON(mas_is_err(mas));
5696 	mas_destroy(mas);
5697 }
5698 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5699 
5700 /**
5701  * mas_preallocate() - Preallocate enough nodes for a store operation
5702  * @mas: The maple state
5703  * @entry: The entry that will be stored
5704  * @gfp: The GFP_FLAGS to use for allocations.
5705  *
5706  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5707  */
5708 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5709 {
5710 	int ret;
5711 
5712 	mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5713 	mas->mas_flags |= MA_STATE_PREALLOC;
5714 	if (likely(!mas_is_err(mas)))
5715 		return 0;
5716 
5717 	mas_set_alloc_req(mas, 0);
5718 	ret = xa_err(mas->node);
5719 	mas_reset(mas);
5720 	mas_destroy(mas);
5721 	mas_reset(mas);
5722 	return ret;
5723 }
5724 
5725 /*
5726  * mas_destroy() - destroy a maple state.
5727  * @mas: The maple state
5728  *
5729  * Upon completion, check the left-most node and rebalance against the node to
5730  * the right if necessary.  Frees any allocated nodes associated with this maple
5731  * state.
5732  */
5733 void mas_destroy(struct ma_state *mas)
5734 {
5735 	struct maple_alloc *node;
5736 	unsigned long total;
5737 
5738 	/*
5739 	 * When using mas_for_each() to insert an expected number of elements,
5740 	 * it is possible that the number inserted is less than the expected
5741 	 * number.  To fix an invalid final node, a check is performed here to
5742 	 * rebalance the previous node with the final node.
5743 	 */
5744 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5745 		unsigned char end;
5746 
5747 		if (mas_is_start(mas))
5748 			mas_start(mas);
5749 
5750 		mtree_range_walk(mas);
5751 		end = mas_data_end(mas) + 1;
5752 		if (end < mt_min_slot_count(mas->node) - 1)
5753 			mas_destroy_rebalance(mas, end);
5754 
5755 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5756 	}
5757 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5758 
5759 	total = mas_allocated(mas);
5760 	while (total) {
5761 		node = mas->alloc;
5762 		mas->alloc = node->slot[0];
5763 		if (node->node_count > 1) {
5764 			size_t count = node->node_count - 1;
5765 
5766 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5767 			total -= count;
5768 		}
5769 		kmem_cache_free(maple_node_cache, node);
5770 		total--;
5771 	}
5772 
5773 	mas->alloc = NULL;
5774 }
5775 EXPORT_SYMBOL_GPL(mas_destroy);
5776 
5777 /*
5778  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5779  * @mas: The maple state
5780  * @nr_entries: The number of expected entries.
5781  *
5782  * This will attempt to pre-allocate enough nodes to store the expected number
5783  * of entries.  The allocations will occur using the bulk allocator interface
5784  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5785  * to ensure any unused nodes are freed.
5786  *
5787  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5788  */
5789 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5790 {
5791 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5792 	struct maple_enode *enode = mas->node;
5793 	int nr_nodes;
5794 	int ret;
5795 
5796 	/*
5797 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5798 	 * forking a process and duplicating the VMAs from one tree to a new
5799 	 * tree.  When such a situation arises, it is known that the new tree is
5800 	 * not going to be used until the entire tree is populated.  For
5801 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5802 	 * This allows for optimistic splitting that favours the left and reuse
5803 	 * of nodes during the operation.
5804 	 */
5805 
5806 	/* Optimize splitting for bulk insert in-order */
5807 	mas->mas_flags |= MA_STATE_BULK;
5808 
5809 	/*
5810 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5811 	 * If this is wrong, it just means allocation can happen during
5812 	 * insertion of entries.
5813 	 */
5814 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5815 	if (!mt_is_alloc(mas->tree))
5816 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5817 
5818 	/* Leaves; reduce slots to keep space for expansion */
5819 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5820 	/* Internal nodes */
5821 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5822 	/* Add working room for split (2 nodes) + new parents */
5823 	mas_node_count(mas, nr_nodes + 3);
5824 
5825 	/* Detect if allocations run out */
5826 	mas->mas_flags |= MA_STATE_PREALLOC;
5827 
5828 	if (!mas_is_err(mas))
5829 		return 0;
5830 
5831 	ret = xa_err(mas->node);
5832 	mas->node = enode;
5833 	mas_destroy(mas);
5834 	return ret;
5835 
5836 }
5837 EXPORT_SYMBOL_GPL(mas_expected_entries);
5838 
5839 /**
5840  * mas_next() - Get the next entry.
5841  * @mas: The maple state
5842  * @max: The maximum index to check.
5843  *
5844  * Returns the next entry after @mas->index.
5845  * Must hold rcu_read_lock or the write lock.
5846  * Can return the zero entry.
5847  *
5848  * Return: The next entry or %NULL
5849  */
5850 void *mas_next(struct ma_state *mas, unsigned long max)
5851 {
5852 	if (mas_is_none(mas) || mas_is_paused(mas))
5853 		mas->node = MAS_START;
5854 
5855 	if (mas_is_start(mas))
5856 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5857 
5858 	if (mas_is_ptr(mas)) {
5859 		if (!mas->index) {
5860 			mas->index = 1;
5861 			mas->last = ULONG_MAX;
5862 		}
5863 		return NULL;
5864 	}
5865 
5866 	if (mas->last == ULONG_MAX)
5867 		return NULL;
5868 
5869 	/* Retries on dead nodes handled by mas_next_entry */
5870 	return mas_next_entry(mas, max);
5871 }
5872 EXPORT_SYMBOL_GPL(mas_next);
5873 
5874 /**
5875  * mt_next() - get the next value in the maple tree
5876  * @mt: The maple tree
5877  * @index: The start index
5878  * @max: The maximum index to check
5879  *
5880  * Return: The entry at @index or higher, or %NULL if nothing is found.
5881  */
5882 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5883 {
5884 	void *entry = NULL;
5885 	MA_STATE(mas, mt, index, index);
5886 
5887 	rcu_read_lock();
5888 	entry = mas_next(&mas, max);
5889 	rcu_read_unlock();
5890 	return entry;
5891 }
5892 EXPORT_SYMBOL_GPL(mt_next);
5893 
5894 /**
5895  * mas_prev() - Get the previous entry
5896  * @mas: The maple state
5897  * @min: The minimum value to check.
5898  *
5899  * Must hold rcu_read_lock or the write lock.
5900  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5901  * searchable nodes.
5902  *
5903  * Return: the previous value or %NULL.
5904  */
5905 void *mas_prev(struct ma_state *mas, unsigned long min)
5906 {
5907 	if (!mas->index) {
5908 		/* Nothing comes before 0 */
5909 		mas->last = 0;
5910 		return NULL;
5911 	}
5912 
5913 	if (unlikely(mas_is_ptr(mas)))
5914 		return NULL;
5915 
5916 	if (mas_is_none(mas) || mas_is_paused(mas))
5917 		mas->node = MAS_START;
5918 
5919 	if (mas_is_start(mas)) {
5920 		mas_walk(mas);
5921 		if (!mas->index)
5922 			return NULL;
5923 	}
5924 
5925 	if (mas_is_ptr(mas)) {
5926 		if (!mas->index) {
5927 			mas->last = 0;
5928 			return NULL;
5929 		}
5930 
5931 		mas->index = mas->last = 0;
5932 		return mas_root_locked(mas);
5933 	}
5934 	return mas_prev_entry(mas, min);
5935 }
5936 EXPORT_SYMBOL_GPL(mas_prev);
5937 
5938 /**
5939  * mt_prev() - get the previous value in the maple tree
5940  * @mt: The maple tree
5941  * @index: The start index
5942  * @min: The minimum index to check
5943  *
5944  * Return: The entry at @index or lower, or %NULL if nothing is found.
5945  */
5946 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5947 {
5948 	void *entry = NULL;
5949 	MA_STATE(mas, mt, index, index);
5950 
5951 	rcu_read_lock();
5952 	entry = mas_prev(&mas, min);
5953 	rcu_read_unlock();
5954 	return entry;
5955 }
5956 EXPORT_SYMBOL_GPL(mt_prev);
5957 
5958 /**
5959  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5960  * @mas: The maple state to pause
5961  *
5962  * Some users need to pause a walk and drop the lock they're holding in
5963  * order to yield to a higher priority thread or carry out an operation
5964  * on an entry.  Those users should call this function before they drop
5965  * the lock.  It resets the @mas to be suitable for the next iteration
5966  * of the loop after the user has reacquired the lock.  If most entries
5967  * found during a walk require you to call mas_pause(), the mt_for_each()
5968  * iterator may be more appropriate.
5969  *
5970  */
5971 void mas_pause(struct ma_state *mas)
5972 {
5973 	mas->node = MAS_PAUSE;
5974 }
5975 EXPORT_SYMBOL_GPL(mas_pause);
5976 
5977 /**
5978  * mas_find() - On the first call, find the entry at or after mas->index up to
5979  * %max.  Otherwise, find the entry after mas->index.
5980  * @mas: The maple state
5981  * @max: The maximum value to check.
5982  *
5983  * Must hold rcu_read_lock or the write lock.
5984  * If an entry exists, last and index are updated accordingly.
5985  * May set @mas->node to MAS_NONE.
5986  *
5987  * Return: The entry or %NULL.
5988  */
5989 void *mas_find(struct ma_state *mas, unsigned long max)
5990 {
5991 	if (unlikely(mas_is_paused(mas))) {
5992 		if (unlikely(mas->last == ULONG_MAX)) {
5993 			mas->node = MAS_NONE;
5994 			return NULL;
5995 		}
5996 		mas->node = MAS_START;
5997 		mas->index = ++mas->last;
5998 	}
5999 
6000 	if (unlikely(mas_is_start(mas))) {
6001 		/* First run or continue */
6002 		void *entry;
6003 
6004 		if (mas->index > max)
6005 			return NULL;
6006 
6007 		entry = mas_walk(mas);
6008 		if (entry)
6009 			return entry;
6010 	}
6011 
6012 	if (unlikely(!mas_searchable(mas)))
6013 		return NULL;
6014 
6015 	/* Retries on dead nodes handled by mas_next_entry */
6016 	return mas_next_entry(mas, max);
6017 }
6018 EXPORT_SYMBOL_GPL(mas_find);
6019 
6020 /**
6021  * mas_find_rev: On the first call, find the first non-null entry at or below
6022  * mas->index down to %min.  Otherwise find the first non-null entry below
6023  * mas->index down to %min.
6024  * @mas: The maple state
6025  * @min: The minimum value to check.
6026  *
6027  * Must hold rcu_read_lock or the write lock.
6028  * If an entry exists, last and index are updated accordingly.
6029  * May set @mas->node to MAS_NONE.
6030  *
6031  * Return: The entry or %NULL.
6032  */
6033 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6034 {
6035 	if (unlikely(mas_is_paused(mas))) {
6036 		if (unlikely(mas->last == ULONG_MAX)) {
6037 			mas->node = MAS_NONE;
6038 			return NULL;
6039 		}
6040 		mas->node = MAS_START;
6041 		mas->last = --mas->index;
6042 	}
6043 
6044 	if (unlikely(mas_is_start(mas))) {
6045 		/* First run or continue */
6046 		void *entry;
6047 
6048 		if (mas->index < min)
6049 			return NULL;
6050 
6051 		entry = mas_walk(mas);
6052 		if (entry)
6053 			return entry;
6054 	}
6055 
6056 	if (unlikely(!mas_searchable(mas)))
6057 		return NULL;
6058 
6059 	if (mas->index < min)
6060 		return NULL;
6061 
6062 	/* Retries on dead nodes handled by mas_prev_entry */
6063 	return mas_prev_entry(mas, min);
6064 }
6065 EXPORT_SYMBOL_GPL(mas_find_rev);
6066 
6067 /**
6068  * mas_erase() - Find the range in which index resides and erase the entire
6069  * range.
6070  * @mas: The maple state
6071  *
6072  * Must hold the write lock.
6073  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6074  * erases that range.
6075  *
6076  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6077  */
6078 void *mas_erase(struct ma_state *mas)
6079 {
6080 	void *entry;
6081 	MA_WR_STATE(wr_mas, mas, NULL);
6082 
6083 	if (mas_is_none(mas) || mas_is_paused(mas))
6084 		mas->node = MAS_START;
6085 
6086 	/* Retry unnecessary when holding the write lock. */
6087 	entry = mas_state_walk(mas);
6088 	if (!entry)
6089 		return NULL;
6090 
6091 write_retry:
6092 	/* Must reset to ensure spanning writes of last slot are detected */
6093 	mas_reset(mas);
6094 	mas_wr_store_setup(&wr_mas);
6095 	mas_wr_store_entry(&wr_mas);
6096 	if (mas_nomem(mas, GFP_KERNEL))
6097 		goto write_retry;
6098 
6099 	return entry;
6100 }
6101 EXPORT_SYMBOL_GPL(mas_erase);
6102 
6103 /**
6104  * mas_nomem() - Check if there was an error allocating and do the allocation
6105  * if necessary If there are allocations, then free them.
6106  * @mas: The maple state
6107  * @gfp: The GFP_FLAGS to use for allocations
6108  * Return: true on allocation, false otherwise.
6109  */
6110 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6111 	__must_hold(mas->tree->lock)
6112 {
6113 	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6114 		mas_destroy(mas);
6115 		return false;
6116 	}
6117 
6118 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6119 		mtree_unlock(mas->tree);
6120 		mas_alloc_nodes(mas, gfp);
6121 		mtree_lock(mas->tree);
6122 	} else {
6123 		mas_alloc_nodes(mas, gfp);
6124 	}
6125 
6126 	if (!mas_allocated(mas))
6127 		return false;
6128 
6129 	mas->node = MAS_START;
6130 	return true;
6131 }
6132 
6133 void __init maple_tree_init(void)
6134 {
6135 	maple_node_cache = kmem_cache_create("maple_node",
6136 			sizeof(struct maple_node), sizeof(struct maple_node),
6137 			SLAB_PANIC, NULL);
6138 }
6139 
6140 /**
6141  * mtree_load() - Load a value stored in a maple tree
6142  * @mt: The maple tree
6143  * @index: The index to load
6144  *
6145  * Return: the entry or %NULL
6146  */
6147 void *mtree_load(struct maple_tree *mt, unsigned long index)
6148 {
6149 	MA_STATE(mas, mt, index, index);
6150 	void *entry;
6151 
6152 	trace_ma_read(__func__, &mas);
6153 	rcu_read_lock();
6154 retry:
6155 	entry = mas_start(&mas);
6156 	if (unlikely(mas_is_none(&mas)))
6157 		goto unlock;
6158 
6159 	if (unlikely(mas_is_ptr(&mas))) {
6160 		if (index)
6161 			entry = NULL;
6162 
6163 		goto unlock;
6164 	}
6165 
6166 	entry = mtree_lookup_walk(&mas);
6167 	if (!entry && unlikely(mas_is_start(&mas)))
6168 		goto retry;
6169 unlock:
6170 	rcu_read_unlock();
6171 	if (xa_is_zero(entry))
6172 		return NULL;
6173 
6174 	return entry;
6175 }
6176 EXPORT_SYMBOL(mtree_load);
6177 
6178 /**
6179  * mtree_store_range() - Store an entry at a given range.
6180  * @mt: The maple tree
6181  * @index: The start of the range
6182  * @last: The end of the range
6183  * @entry: The entry to store
6184  * @gfp: The GFP_FLAGS to use for allocations
6185  *
6186  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6187  * be allocated.
6188  */
6189 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6190 		unsigned long last, void *entry, gfp_t gfp)
6191 {
6192 	MA_STATE(mas, mt, index, last);
6193 	MA_WR_STATE(wr_mas, &mas, entry);
6194 
6195 	trace_ma_write(__func__, &mas, 0, entry);
6196 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6197 		return -EINVAL;
6198 
6199 	if (index > last)
6200 		return -EINVAL;
6201 
6202 	mtree_lock(mt);
6203 retry:
6204 	mas_wr_store_entry(&wr_mas);
6205 	if (mas_nomem(&mas, gfp))
6206 		goto retry;
6207 
6208 	mtree_unlock(mt);
6209 	if (mas_is_err(&mas))
6210 		return xa_err(mas.node);
6211 
6212 	return 0;
6213 }
6214 EXPORT_SYMBOL(mtree_store_range);
6215 
6216 /**
6217  * mtree_store() - Store an entry at a given index.
6218  * @mt: The maple tree
6219  * @index: The index to store the value
6220  * @entry: The entry to store
6221  * @gfp: The GFP_FLAGS to use for allocations
6222  *
6223  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6224  * be allocated.
6225  */
6226 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6227 		 gfp_t gfp)
6228 {
6229 	return mtree_store_range(mt, index, index, entry, gfp);
6230 }
6231 EXPORT_SYMBOL(mtree_store);
6232 
6233 /**
6234  * mtree_insert_range() - Insert an entry at a give range if there is no value.
6235  * @mt: The maple tree
6236  * @first: The start of the range
6237  * @last: The end of the range
6238  * @entry: The entry to store
6239  * @gfp: The GFP_FLAGS to use for allocations.
6240  *
6241  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6242  * request, -ENOMEM if memory could not be allocated.
6243  */
6244 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6245 		unsigned long last, void *entry, gfp_t gfp)
6246 {
6247 	MA_STATE(ms, mt, first, last);
6248 
6249 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6250 		return -EINVAL;
6251 
6252 	if (first > last)
6253 		return -EINVAL;
6254 
6255 	mtree_lock(mt);
6256 retry:
6257 	mas_insert(&ms, entry);
6258 	if (mas_nomem(&ms, gfp))
6259 		goto retry;
6260 
6261 	mtree_unlock(mt);
6262 	if (mas_is_err(&ms))
6263 		return xa_err(ms.node);
6264 
6265 	return 0;
6266 }
6267 EXPORT_SYMBOL(mtree_insert_range);
6268 
6269 /**
6270  * mtree_insert() - Insert an entry at a give index if there is no value.
6271  * @mt: The maple tree
6272  * @index : The index to store the value
6273  * @entry: The entry to store
6274  * @gfp: The FGP_FLAGS to use for allocations.
6275  *
6276  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6277  * request, -ENOMEM if memory could not be allocated.
6278  */
6279 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6280 		 gfp_t gfp)
6281 {
6282 	return mtree_insert_range(mt, index, index, entry, gfp);
6283 }
6284 EXPORT_SYMBOL(mtree_insert);
6285 
6286 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6287 		void *entry, unsigned long size, unsigned long min,
6288 		unsigned long max, gfp_t gfp)
6289 {
6290 	int ret = 0;
6291 
6292 	MA_STATE(mas, mt, min, max - size);
6293 	if (!mt_is_alloc(mt))
6294 		return -EINVAL;
6295 
6296 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6297 		return -EINVAL;
6298 
6299 	if (min > max)
6300 		return -EINVAL;
6301 
6302 	if (max < size)
6303 		return -EINVAL;
6304 
6305 	if (!size)
6306 		return -EINVAL;
6307 
6308 	mtree_lock(mt);
6309 retry:
6310 	mas.offset = 0;
6311 	mas.index = min;
6312 	mas.last = max - size;
6313 	ret = mas_alloc(&mas, entry, size, startp);
6314 	if (mas_nomem(&mas, gfp))
6315 		goto retry;
6316 
6317 	mtree_unlock(mt);
6318 	return ret;
6319 }
6320 EXPORT_SYMBOL(mtree_alloc_range);
6321 
6322 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6323 		void *entry, unsigned long size, unsigned long min,
6324 		unsigned long max, gfp_t gfp)
6325 {
6326 	int ret = 0;
6327 
6328 	MA_STATE(mas, mt, min, max - size);
6329 	if (!mt_is_alloc(mt))
6330 		return -EINVAL;
6331 
6332 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6333 		return -EINVAL;
6334 
6335 	if (min >= max)
6336 		return -EINVAL;
6337 
6338 	if (max < size - 1)
6339 		return -EINVAL;
6340 
6341 	if (!size)
6342 		return -EINVAL;
6343 
6344 	mtree_lock(mt);
6345 retry:
6346 	ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6347 	if (mas_nomem(&mas, gfp))
6348 		goto retry;
6349 
6350 	mtree_unlock(mt);
6351 	return ret;
6352 }
6353 EXPORT_SYMBOL(mtree_alloc_rrange);
6354 
6355 /**
6356  * mtree_erase() - Find an index and erase the entire range.
6357  * @mt: The maple tree
6358  * @index: The index to erase
6359  *
6360  * Erasing is the same as a walk to an entry then a store of a NULL to that
6361  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6362  *
6363  * Return: The entry stored at the @index or %NULL
6364  */
6365 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6366 {
6367 	void *entry = NULL;
6368 
6369 	MA_STATE(mas, mt, index, index);
6370 	trace_ma_op(__func__, &mas);
6371 
6372 	mtree_lock(mt);
6373 	entry = mas_erase(&mas);
6374 	mtree_unlock(mt);
6375 
6376 	return entry;
6377 }
6378 EXPORT_SYMBOL(mtree_erase);
6379 
6380 /**
6381  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6382  * @mt: The maple tree
6383  *
6384  * Note: Does not handle locking.
6385  */
6386 void __mt_destroy(struct maple_tree *mt)
6387 {
6388 	void *root = mt_root_locked(mt);
6389 
6390 	rcu_assign_pointer(mt->ma_root, NULL);
6391 	if (xa_is_node(root))
6392 		mte_destroy_walk(root, mt);
6393 
6394 	mt->ma_flags = 0;
6395 }
6396 EXPORT_SYMBOL_GPL(__mt_destroy);
6397 
6398 /**
6399  * mtree_destroy() - Destroy a maple tree
6400  * @mt: The maple tree
6401  *
6402  * Frees all resources used by the tree.  Handles locking.
6403  */
6404 void mtree_destroy(struct maple_tree *mt)
6405 {
6406 	mtree_lock(mt);
6407 	__mt_destroy(mt);
6408 	mtree_unlock(mt);
6409 }
6410 EXPORT_SYMBOL(mtree_destroy);
6411 
6412 /**
6413  * mt_find() - Search from the start up until an entry is found.
6414  * @mt: The maple tree
6415  * @index: Pointer which contains the start location of the search
6416  * @max: The maximum value to check
6417  *
6418  * Handles locking.  @index will be incremented to one beyond the range.
6419  *
6420  * Return: The entry at or after the @index or %NULL
6421  */
6422 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6423 {
6424 	MA_STATE(mas, mt, *index, *index);
6425 	void *entry;
6426 #ifdef CONFIG_DEBUG_MAPLE_TREE
6427 	unsigned long copy = *index;
6428 #endif
6429 
6430 	trace_ma_read(__func__, &mas);
6431 
6432 	if ((*index) > max)
6433 		return NULL;
6434 
6435 	rcu_read_lock();
6436 retry:
6437 	entry = mas_state_walk(&mas);
6438 	if (mas_is_start(&mas))
6439 		goto retry;
6440 
6441 	if (unlikely(xa_is_zero(entry)))
6442 		entry = NULL;
6443 
6444 	if (entry)
6445 		goto unlock;
6446 
6447 	while (mas_searchable(&mas) && (mas.index < max)) {
6448 		entry = mas_next_entry(&mas, max);
6449 		if (likely(entry && !xa_is_zero(entry)))
6450 			break;
6451 	}
6452 
6453 	if (unlikely(xa_is_zero(entry)))
6454 		entry = NULL;
6455 unlock:
6456 	rcu_read_unlock();
6457 	if (likely(entry)) {
6458 		*index = mas.last + 1;
6459 #ifdef CONFIG_DEBUG_MAPLE_TREE
6460 		if ((*index) && (*index) <= copy)
6461 			pr_err("index not increased! %lx <= %lx\n",
6462 			       *index, copy);
6463 		MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6464 #endif
6465 	}
6466 
6467 	return entry;
6468 }
6469 EXPORT_SYMBOL(mt_find);
6470 
6471 /**
6472  * mt_find_after() - Search from the start up until an entry is found.
6473  * @mt: The maple tree
6474  * @index: Pointer which contains the start location of the search
6475  * @max: The maximum value to check
6476  *
6477  * Handles locking, detects wrapping on index == 0
6478  *
6479  * Return: The entry at or after the @index or %NULL
6480  */
6481 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6482 		    unsigned long max)
6483 {
6484 	if (!(*index))
6485 		return NULL;
6486 
6487 	return mt_find(mt, index, max);
6488 }
6489 EXPORT_SYMBOL(mt_find_after);
6490 
6491 #ifdef CONFIG_DEBUG_MAPLE_TREE
6492 atomic_t maple_tree_tests_run;
6493 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6494 atomic_t maple_tree_tests_passed;
6495 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6496 
6497 #ifndef __KERNEL__
6498 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6499 void mt_set_non_kernel(unsigned int val)
6500 {
6501 	kmem_cache_set_non_kernel(maple_node_cache, val);
6502 }
6503 
6504 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6505 unsigned long mt_get_alloc_size(void)
6506 {
6507 	return kmem_cache_get_alloc(maple_node_cache);
6508 }
6509 
6510 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6511 void mt_zero_nr_tallocated(void)
6512 {
6513 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6514 }
6515 
6516 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6517 unsigned int mt_nr_tallocated(void)
6518 {
6519 	return kmem_cache_nr_tallocated(maple_node_cache);
6520 }
6521 
6522 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6523 unsigned int mt_nr_allocated(void)
6524 {
6525 	return kmem_cache_nr_allocated(maple_node_cache);
6526 }
6527 
6528 /*
6529  * mas_dead_node() - Check if the maple state is pointing to a dead node.
6530  * @mas: The maple state
6531  * @index: The index to restore in @mas.
6532  *
6533  * Used in test code.
6534  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6535  */
6536 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6537 {
6538 	if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6539 		return 0;
6540 
6541 	if (likely(!mte_dead_node(mas->node)))
6542 		return 0;
6543 
6544 	mas_rewalk(mas, index);
6545 	return 1;
6546 }
6547 
6548 void mt_cache_shrink(void)
6549 {
6550 }
6551 #else
6552 /*
6553  * mt_cache_shrink() - For testing, don't use this.
6554  *
6555  * Certain testcases can trigger an OOM when combined with other memory
6556  * debugging configuration options.  This function is used to reduce the
6557  * possibility of an out of memory even due to kmem_cache objects remaining
6558  * around for longer than usual.
6559  */
6560 void mt_cache_shrink(void)
6561 {
6562 	kmem_cache_shrink(maple_node_cache);
6563 
6564 }
6565 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6566 
6567 #endif /* not defined __KERNEL__ */
6568 /*
6569  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6570  * @mas: The maple state
6571  * @offset: The offset into the slot array to fetch.
6572  *
6573  * Return: The entry stored at @offset.
6574  */
6575 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6576 		unsigned char offset)
6577 {
6578 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6579 			offset);
6580 }
6581 
6582 
6583 /*
6584  * mas_first_entry() - Go the first leaf and find the first entry.
6585  * @mas: the maple state.
6586  * @limit: the maximum index to check.
6587  * @*r_start: Pointer to set to the range start.
6588  *
6589  * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6590  *
6591  * Return: The first entry or MAS_NONE.
6592  */
6593 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6594 		unsigned long limit, enum maple_type mt)
6595 
6596 {
6597 	unsigned long max;
6598 	unsigned long *pivots;
6599 	void __rcu **slots;
6600 	void *entry = NULL;
6601 
6602 	mas->index = mas->min;
6603 	if (mas->index > limit)
6604 		goto none;
6605 
6606 	max = mas->max;
6607 	mas->offset = 0;
6608 	while (likely(!ma_is_leaf(mt))) {
6609 		MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6610 		slots = ma_slots(mn, mt);
6611 		pivots = ma_pivots(mn, mt);
6612 		max = pivots[0];
6613 		entry = mas_slot(mas, slots, 0);
6614 		if (unlikely(ma_dead_node(mn)))
6615 			return NULL;
6616 		mas->node = entry;
6617 		mn = mas_mn(mas);
6618 		mt = mte_node_type(mas->node);
6619 	}
6620 	MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6621 
6622 	mas->max = max;
6623 	slots = ma_slots(mn, mt);
6624 	entry = mas_slot(mas, slots, 0);
6625 	if (unlikely(ma_dead_node(mn)))
6626 		return NULL;
6627 
6628 	/* Slot 0 or 1 must be set */
6629 	if (mas->index > limit)
6630 		goto none;
6631 
6632 	if (likely(entry))
6633 		return entry;
6634 
6635 	pivots = ma_pivots(mn, mt);
6636 	mas->index = pivots[0] + 1;
6637 	mas->offset = 1;
6638 	entry = mas_slot(mas, slots, 1);
6639 	if (unlikely(ma_dead_node(mn)))
6640 		return NULL;
6641 
6642 	if (mas->index > limit)
6643 		goto none;
6644 
6645 	if (likely(entry))
6646 		return entry;
6647 
6648 none:
6649 	if (likely(!ma_dead_node(mn)))
6650 		mas->node = MAS_NONE;
6651 	return NULL;
6652 }
6653 
6654 /* Depth first search, post-order */
6655 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6656 {
6657 
6658 	struct maple_enode *p = MAS_NONE, *mn = mas->node;
6659 	unsigned long p_min, p_max;
6660 
6661 	mas_next_node(mas, mas_mn(mas), max);
6662 	if (!mas_is_none(mas))
6663 		return;
6664 
6665 	if (mte_is_root(mn))
6666 		return;
6667 
6668 	mas->node = mn;
6669 	mas_ascend(mas);
6670 	while (mas->node != MAS_NONE) {
6671 		p = mas->node;
6672 		p_min = mas->min;
6673 		p_max = mas->max;
6674 		mas_prev_node(mas, 0);
6675 	}
6676 
6677 	if (p == MAS_NONE)
6678 		return;
6679 
6680 	mas->node = p;
6681 	mas->max = p_max;
6682 	mas->min = p_min;
6683 }
6684 
6685 /* Tree validations */
6686 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6687 		unsigned long min, unsigned long max, unsigned int depth);
6688 static void mt_dump_range(unsigned long min, unsigned long max,
6689 			  unsigned int depth)
6690 {
6691 	static const char spaces[] = "                                ";
6692 
6693 	if (min == max)
6694 		pr_info("%.*s%lu: ", depth * 2, spaces, min);
6695 	else
6696 		pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6697 }
6698 
6699 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6700 			  unsigned int depth)
6701 {
6702 	mt_dump_range(min, max, depth);
6703 
6704 	if (xa_is_value(entry))
6705 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6706 				xa_to_value(entry), entry);
6707 	else if (xa_is_zero(entry))
6708 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
6709 	else if (mt_is_reserved(entry))
6710 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6711 	else
6712 		pr_cont("%p\n", entry);
6713 }
6714 
6715 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6716 			unsigned long min, unsigned long max, unsigned int depth)
6717 {
6718 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6719 	bool leaf = mte_is_leaf(entry);
6720 	unsigned long first = min;
6721 	int i;
6722 
6723 	pr_cont(" contents: ");
6724 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6725 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6726 	pr_cont("%p\n", node->slot[i]);
6727 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6728 		unsigned long last = max;
6729 
6730 		if (i < (MAPLE_RANGE64_SLOTS - 1))
6731 			last = node->pivot[i];
6732 		else if (!node->slot[i] && max != mt_node_max(entry))
6733 			break;
6734 		if (last == 0 && i > 0)
6735 			break;
6736 		if (leaf)
6737 			mt_dump_entry(mt_slot(mt, node->slot, i),
6738 					first, last, depth + 1);
6739 		else if (node->slot[i])
6740 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6741 					first, last, depth + 1);
6742 
6743 		if (last == max)
6744 			break;
6745 		if (last > max) {
6746 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6747 					node, last, max, i);
6748 			break;
6749 		}
6750 		first = last + 1;
6751 	}
6752 }
6753 
6754 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6755 			unsigned long min, unsigned long max, unsigned int depth)
6756 {
6757 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6758 	bool leaf = mte_is_leaf(entry);
6759 	unsigned long first = min;
6760 	int i;
6761 
6762 	pr_cont(" contents: ");
6763 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6764 		pr_cont("%lu ", node->gap[i]);
6765 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6766 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6767 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6768 	pr_cont("%p\n", node->slot[i]);
6769 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6770 		unsigned long last = max;
6771 
6772 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
6773 			last = node->pivot[i];
6774 		else if (!node->slot[i])
6775 			break;
6776 		if (last == 0 && i > 0)
6777 			break;
6778 		if (leaf)
6779 			mt_dump_entry(mt_slot(mt, node->slot, i),
6780 					first, last, depth + 1);
6781 		else if (node->slot[i])
6782 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6783 					first, last, depth + 1);
6784 
6785 		if (last == max)
6786 			break;
6787 		if (last > max) {
6788 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6789 					node, last, max, i);
6790 			break;
6791 		}
6792 		first = last + 1;
6793 	}
6794 }
6795 
6796 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6797 		unsigned long min, unsigned long max, unsigned int depth)
6798 {
6799 	struct maple_node *node = mte_to_node(entry);
6800 	unsigned int type = mte_node_type(entry);
6801 	unsigned int i;
6802 
6803 	mt_dump_range(min, max, depth);
6804 
6805 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6806 			node ? node->parent : NULL);
6807 	switch (type) {
6808 	case maple_dense:
6809 		pr_cont("\n");
6810 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6811 			if (min + i > max)
6812 				pr_cont("OUT OF RANGE: ");
6813 			mt_dump_entry(mt_slot(mt, node->slot, i),
6814 					min + i, min + i, depth);
6815 		}
6816 		break;
6817 	case maple_leaf_64:
6818 	case maple_range_64:
6819 		mt_dump_range64(mt, entry, min, max, depth);
6820 		break;
6821 	case maple_arange_64:
6822 		mt_dump_arange64(mt, entry, min, max, depth);
6823 		break;
6824 
6825 	default:
6826 		pr_cont(" UNKNOWN TYPE\n");
6827 	}
6828 }
6829 
6830 void mt_dump(const struct maple_tree *mt)
6831 {
6832 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6833 
6834 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6835 		 mt, mt->ma_flags, mt_height(mt), entry);
6836 	if (!xa_is_node(entry))
6837 		mt_dump_entry(entry, 0, 0, 0);
6838 	else if (entry)
6839 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
6840 }
6841 EXPORT_SYMBOL_GPL(mt_dump);
6842 
6843 /*
6844  * Calculate the maximum gap in a node and check if that's what is reported in
6845  * the parent (unless root).
6846  */
6847 static void mas_validate_gaps(struct ma_state *mas)
6848 {
6849 	struct maple_enode *mte = mas->node;
6850 	struct maple_node *p_mn;
6851 	unsigned long gap = 0, max_gap = 0;
6852 	unsigned long p_end, p_start = mas->min;
6853 	unsigned char p_slot;
6854 	unsigned long *gaps = NULL;
6855 	unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6856 	int i;
6857 
6858 	if (ma_is_dense(mte_node_type(mte))) {
6859 		for (i = 0; i < mt_slot_count(mte); i++) {
6860 			if (mas_get_slot(mas, i)) {
6861 				if (gap > max_gap)
6862 					max_gap = gap;
6863 				gap = 0;
6864 				continue;
6865 			}
6866 			gap++;
6867 		}
6868 		goto counted;
6869 	}
6870 
6871 	gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6872 	for (i = 0; i < mt_slot_count(mte); i++) {
6873 		p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6874 
6875 		if (!gaps) {
6876 			if (mas_get_slot(mas, i)) {
6877 				gap = 0;
6878 				goto not_empty;
6879 			}
6880 
6881 			gap += p_end - p_start + 1;
6882 		} else {
6883 			void *entry = mas_get_slot(mas, i);
6884 
6885 			gap = gaps[i];
6886 			if (!entry) {
6887 				if (gap != p_end - p_start + 1) {
6888 					pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6889 						mas_mn(mas), i,
6890 						mas_get_slot(mas, i), gap,
6891 						p_end, p_start);
6892 					mt_dump(mas->tree);
6893 
6894 					MT_BUG_ON(mas->tree,
6895 						gap != p_end - p_start + 1);
6896 				}
6897 			} else {
6898 				if (gap > p_end - p_start + 1) {
6899 					pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6900 					mas_mn(mas), i, gap, p_end, p_start,
6901 					p_end - p_start + 1);
6902 					MT_BUG_ON(mas->tree,
6903 						gap > p_end - p_start + 1);
6904 				}
6905 			}
6906 		}
6907 
6908 		if (gap > max_gap)
6909 			max_gap = gap;
6910 not_empty:
6911 		p_start = p_end + 1;
6912 		if (p_end >= mas->max)
6913 			break;
6914 	}
6915 
6916 counted:
6917 	if (mte_is_root(mte))
6918 		return;
6919 
6920 	p_slot = mte_parent_slot(mas->node);
6921 	p_mn = mte_parent(mte);
6922 	MT_BUG_ON(mas->tree, max_gap > mas->max);
6923 	if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6924 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6925 		mt_dump(mas->tree);
6926 	}
6927 
6928 	MT_BUG_ON(mas->tree,
6929 		  ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6930 }
6931 
6932 static void mas_validate_parent_slot(struct ma_state *mas)
6933 {
6934 	struct maple_node *parent;
6935 	struct maple_enode *node;
6936 	enum maple_type p_type = mas_parent_enum(mas, mas->node);
6937 	unsigned char p_slot = mte_parent_slot(mas->node);
6938 	void __rcu **slots;
6939 	int i;
6940 
6941 	if (mte_is_root(mas->node))
6942 		return;
6943 
6944 	parent = mte_parent(mas->node);
6945 	slots = ma_slots(parent, p_type);
6946 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6947 
6948 	/* Check prev/next parent slot for duplicate node entry */
6949 
6950 	for (i = 0; i < mt_slots[p_type]; i++) {
6951 		node = mas_slot(mas, slots, i);
6952 		if (i == p_slot) {
6953 			if (node != mas->node)
6954 				pr_err("parent %p[%u] does not have %p\n",
6955 					parent, i, mas_mn(mas));
6956 			MT_BUG_ON(mas->tree, node != mas->node);
6957 		} else if (node == mas->node) {
6958 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6959 			       mas_mn(mas), parent, i, p_slot);
6960 			MT_BUG_ON(mas->tree, node == mas->node);
6961 		}
6962 	}
6963 }
6964 
6965 static void mas_validate_child_slot(struct ma_state *mas)
6966 {
6967 	enum maple_type type = mte_node_type(mas->node);
6968 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6969 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6970 	struct maple_enode *child;
6971 	unsigned char i;
6972 
6973 	if (mte_is_leaf(mas->node))
6974 		return;
6975 
6976 	for (i = 0; i < mt_slots[type]; i++) {
6977 		child = mas_slot(mas, slots, i);
6978 		if (!pivots[i] || pivots[i] == mas->max)
6979 			break;
6980 
6981 		if (!child)
6982 			break;
6983 
6984 		if (mte_parent_slot(child) != i) {
6985 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
6986 			       mas_mn(mas), i, mte_to_node(child),
6987 			       mte_parent_slot(child));
6988 			MT_BUG_ON(mas->tree, 1);
6989 		}
6990 
6991 		if (mte_parent(child) != mte_to_node(mas->node)) {
6992 			pr_err("child %p has parent %p not %p\n",
6993 			       mte_to_node(child), mte_parent(child),
6994 			       mte_to_node(mas->node));
6995 			MT_BUG_ON(mas->tree, 1);
6996 		}
6997 	}
6998 }
6999 
7000 /*
7001  * Validate all pivots are within mas->min and mas->max.
7002  */
7003 static void mas_validate_limits(struct ma_state *mas)
7004 {
7005 	int i;
7006 	unsigned long prev_piv = 0;
7007 	enum maple_type type = mte_node_type(mas->node);
7008 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7009 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7010 
7011 	/* all limits are fine here. */
7012 	if (mte_is_root(mas->node))
7013 		return;
7014 
7015 	for (i = 0; i < mt_slots[type]; i++) {
7016 		unsigned long piv;
7017 
7018 		piv = mas_safe_pivot(mas, pivots, i, type);
7019 
7020 		if (!piv && (i != 0))
7021 			break;
7022 
7023 		if (!mte_is_leaf(mas->node)) {
7024 			void *entry = mas_slot(mas, slots, i);
7025 
7026 			if (!entry)
7027 				pr_err("%p[%u] cannot be null\n",
7028 				       mas_mn(mas), i);
7029 
7030 			MT_BUG_ON(mas->tree, !entry);
7031 		}
7032 
7033 		if (prev_piv > piv) {
7034 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7035 				mas_mn(mas), i, piv, prev_piv);
7036 			MT_BUG_ON(mas->tree, piv < prev_piv);
7037 		}
7038 
7039 		if (piv < mas->min) {
7040 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7041 				piv, mas->min);
7042 			MT_BUG_ON(mas->tree, piv < mas->min);
7043 		}
7044 		if (piv > mas->max) {
7045 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7046 				piv, mas->max);
7047 			MT_BUG_ON(mas->tree, piv > mas->max);
7048 		}
7049 		prev_piv = piv;
7050 		if (piv == mas->max)
7051 			break;
7052 	}
7053 	for (i += 1; i < mt_slots[type]; i++) {
7054 		void *entry = mas_slot(mas, slots, i);
7055 
7056 		if (entry && (i != mt_slots[type] - 1)) {
7057 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7058 			       i, entry);
7059 			MT_BUG_ON(mas->tree, entry != NULL);
7060 		}
7061 
7062 		if (i < mt_pivots[type]) {
7063 			unsigned long piv = pivots[i];
7064 
7065 			if (!piv)
7066 				continue;
7067 
7068 			pr_err("%p[%u] should not have piv %lu\n",
7069 			       mas_mn(mas), i, piv);
7070 			MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7071 		}
7072 	}
7073 }
7074 
7075 static void mt_validate_nulls(struct maple_tree *mt)
7076 {
7077 	void *entry, *last = (void *)1;
7078 	unsigned char offset = 0;
7079 	void __rcu **slots;
7080 	MA_STATE(mas, mt, 0, 0);
7081 
7082 	mas_start(&mas);
7083 	if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7084 		return;
7085 
7086 	while (!mte_is_leaf(mas.node))
7087 		mas_descend(&mas);
7088 
7089 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7090 	do {
7091 		entry = mas_slot(&mas, slots, offset);
7092 		if (!last && !entry) {
7093 			pr_err("Sequential nulls end at %p[%u]\n",
7094 				mas_mn(&mas), offset);
7095 		}
7096 		MT_BUG_ON(mt, !last && !entry);
7097 		last = entry;
7098 		if (offset == mas_data_end(&mas)) {
7099 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7100 			if (mas_is_none(&mas))
7101 				return;
7102 			offset = 0;
7103 			slots = ma_slots(mte_to_node(mas.node),
7104 					 mte_node_type(mas.node));
7105 		} else {
7106 			offset++;
7107 		}
7108 
7109 	} while (!mas_is_none(&mas));
7110 }
7111 
7112 /*
7113  * validate a maple tree by checking:
7114  * 1. The limits (pivots are within mas->min to mas->max)
7115  * 2. The gap is correctly set in the parents
7116  */
7117 void mt_validate(struct maple_tree *mt)
7118 {
7119 	unsigned char end;
7120 
7121 	MA_STATE(mas, mt, 0, 0);
7122 	rcu_read_lock();
7123 	mas_start(&mas);
7124 	if (!mas_searchable(&mas))
7125 		goto done;
7126 
7127 	mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7128 	while (!mas_is_none(&mas)) {
7129 		MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7130 		if (!mte_is_root(mas.node)) {
7131 			end = mas_data_end(&mas);
7132 			if ((end < mt_min_slot_count(mas.node)) &&
7133 			    (mas.max != ULONG_MAX)) {
7134 				pr_err("Invalid size %u of %p\n", end,
7135 				mas_mn(&mas));
7136 				MT_BUG_ON(mas.tree, 1);
7137 			}
7138 
7139 		}
7140 		mas_validate_parent_slot(&mas);
7141 		mas_validate_child_slot(&mas);
7142 		mas_validate_limits(&mas);
7143 		if (mt_is_alloc(mt))
7144 			mas_validate_gaps(&mas);
7145 		mas_dfs_postorder(&mas, ULONG_MAX);
7146 	}
7147 	mt_validate_nulls(mt);
7148 done:
7149 	rcu_read_unlock();
7150 
7151 }
7152 EXPORT_SYMBOL_GPL(mt_validate);
7153 
7154 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7155