xref: /openbmc/linux/lib/maple_tree.c (revision aaa746ad)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  */
8 
9 /*
10  * DOC: Interesting implementation details of the Maple Tree
11  *
12  * Each node type has a number of slots for entries and a number of slots for
13  * pivots.  In the case of dense nodes, the pivots are implied by the position
14  * and are simply the slot index + the minimum of the node.
15  *
16  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
17  * indicate that the tree is specifying ranges,  Pivots may appear in the
18  * subtree with an entry attached to the value where as keys are unique to a
19  * specific position of a B-tree.  Pivot values are inclusive of the slot with
20  * the same index.
21  *
22  *
23  * The following illustrates the layout of a range64 nodes slots and pivots.
24  *
25  *
26  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
28  *           │   │   │   │     │    │    │    │    └─ Implied maximum
29  *           │   │   │   │     │    │    │    └─ Pivot 14
30  *           │   │   │   │     │    │    └─ Pivot 13
31  *           │   │   │   │     │    └─ Pivot 12
32  *           │   │   │   │     └─ Pivot 11
33  *           │   │   │   └─ Pivot 2
34  *           │   │   └─ Pivot 1
35  *           │   └─ Pivot 0
36  *           └─  Implied minimum
37  *
38  * Slot contents:
39  *  Internal (non-leaf) nodes contain pointers to other nodes.
40  *  Leaf nodes contain entries.
41  *
42  * The location of interest is often referred to as an offset.  All offsets have
43  * a slot, but the last offset has an implied pivot from the node above (or
44  * UINT_MAX for the root node.
45  *
46  * Ranges complicate certain write activities.  When modifying any of
47  * the B-tree variants, it is known that one entry will either be added or
48  * deleted.  When modifying the Maple Tree, one store operation may overwrite
49  * the entire data set, or one half of the tree, or the middle half of the tree.
50  *
51  */
52 
53 
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
64 
65 #define MA_ROOT_PARENT 1
66 
67 /*
68  * Maple state flags
69  * * MA_STATE_BULK		- Bulk insert mode
70  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
71  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
72  */
73 #define MA_STATE_BULK		1
74 #define MA_STATE_REBALANCE	2
75 #define MA_STATE_PREALLOC	4
76 
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
81 
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 	[maple_dense]		= MAPLE_NODE_SLOTS,
85 	[maple_leaf_64]		= ULONG_MAX,
86 	[maple_range_64]	= ULONG_MAX,
87 	[maple_arange_64]	= ULONG_MAX,
88 };
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
90 #endif
91 
92 static const unsigned char mt_slots[] = {
93 	[maple_dense]		= MAPLE_NODE_SLOTS,
94 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
95 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
96 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
97 };
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
99 
100 static const unsigned char mt_pivots[] = {
101 	[maple_dense]		= 0,
102 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
103 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
104 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
105 };
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107 
108 static const unsigned char mt_min_slots[] = {
109 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
110 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
111 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
112 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
113 };
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115 
116 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
118 
119 struct maple_big_node {
120 	struct maple_pnode *parent;
121 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 	union {
123 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 		struct {
125 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 		};
128 	};
129 	unsigned char b_end;
130 	enum maple_type type;
131 };
132 
133 /*
134  * The maple_subtree_state is used to build a tree to replace a segment of an
135  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
136  * dead node and restart on updates.
137  */
138 struct maple_subtree_state {
139 	struct ma_state *orig_l;	/* Original left side of subtree */
140 	struct ma_state *orig_r;	/* Original right side of subtree */
141 	struct ma_state *l;		/* New left side of subtree */
142 	struct ma_state *m;		/* New middle of subtree (rare) */
143 	struct ma_state *r;		/* New right side of subtree */
144 	struct ma_topiary *free;	/* nodes to be freed */
145 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
146 	struct maple_big_node *bn;
147 };
148 
149 /* Functions */
150 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
151 {
152 	return kmem_cache_alloc(maple_node_cache, gfp | __GFP_ZERO);
153 }
154 
155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
156 {
157 	return kmem_cache_alloc_bulk(maple_node_cache, gfp | __GFP_ZERO, size,
158 				     nodes);
159 }
160 
161 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
162 {
163 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
164 }
165 
166 static void mt_free_rcu(struct rcu_head *head)
167 {
168 	struct maple_node *node = container_of(head, struct maple_node, rcu);
169 
170 	kmem_cache_free(maple_node_cache, node);
171 }
172 
173 /*
174  * ma_free_rcu() - Use rcu callback to free a maple node
175  * @node: The node to free
176  *
177  * The maple tree uses the parent pointer to indicate this node is no longer in
178  * use and will be freed.
179  */
180 static void ma_free_rcu(struct maple_node *node)
181 {
182 	node->parent = ma_parent_ptr(node);
183 	call_rcu(&node->rcu, mt_free_rcu);
184 }
185 
186 
187 static void mas_set_height(struct ma_state *mas)
188 {
189 	unsigned int new_flags = mas->tree->ma_flags;
190 
191 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
192 	BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
193 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
194 	mas->tree->ma_flags = new_flags;
195 }
196 
197 static unsigned int mas_mt_height(struct ma_state *mas)
198 {
199 	return mt_height(mas->tree);
200 }
201 
202 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
203 {
204 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
205 		MAPLE_NODE_TYPE_MASK;
206 }
207 
208 static inline bool ma_is_dense(const enum maple_type type)
209 {
210 	return type < maple_leaf_64;
211 }
212 
213 static inline bool ma_is_leaf(const enum maple_type type)
214 {
215 	return type < maple_range_64;
216 }
217 
218 static inline bool mte_is_leaf(const struct maple_enode *entry)
219 {
220 	return ma_is_leaf(mte_node_type(entry));
221 }
222 
223 /*
224  * We also reserve values with the bottom two bits set to '10' which are
225  * below 4096
226  */
227 static inline bool mt_is_reserved(const void *entry)
228 {
229 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
230 		xa_is_internal(entry);
231 }
232 
233 static inline void mas_set_err(struct ma_state *mas, long err)
234 {
235 	mas->node = MA_ERROR(err);
236 }
237 
238 static inline bool mas_is_ptr(struct ma_state *mas)
239 {
240 	return mas->node == MAS_ROOT;
241 }
242 
243 static inline bool mas_is_start(struct ma_state *mas)
244 {
245 	return mas->node == MAS_START;
246 }
247 
248 bool mas_is_err(struct ma_state *mas)
249 {
250 	return xa_is_err(mas->node);
251 }
252 
253 static inline bool mas_searchable(struct ma_state *mas)
254 {
255 	if (mas_is_none(mas))
256 		return false;
257 
258 	if (mas_is_ptr(mas))
259 		return false;
260 
261 	return true;
262 }
263 
264 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
265 {
266 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
267 }
268 
269 /*
270  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
271  * @entry: The maple encoded node
272  *
273  * Return: a maple topiary pointer
274  */
275 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
276 {
277 	return (struct maple_topiary *)
278 		((unsigned long)entry & ~MAPLE_NODE_MASK);
279 }
280 
281 /*
282  * mas_mn() - Get the maple state node.
283  * @mas: The maple state
284  *
285  * Return: the maple node (not encoded - bare pointer).
286  */
287 static inline struct maple_node *mas_mn(const struct ma_state *mas)
288 {
289 	return mte_to_node(mas->node);
290 }
291 
292 /*
293  * mte_set_node_dead() - Set a maple encoded node as dead.
294  * @mn: The maple encoded node.
295  */
296 static inline void mte_set_node_dead(struct maple_enode *mn)
297 {
298 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
299 	smp_wmb(); /* Needed for RCU */
300 }
301 
302 /* Bit 1 indicates the root is a node */
303 #define MAPLE_ROOT_NODE			0x02
304 /* maple_type stored bit 3-6 */
305 #define MAPLE_ENODE_TYPE_SHIFT		0x03
306 /* Bit 2 means a NULL somewhere below */
307 #define MAPLE_ENODE_NULL		0x04
308 
309 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
310 					     enum maple_type type)
311 {
312 	return (void *)((unsigned long)node |
313 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
314 }
315 
316 static inline void *mte_mk_root(const struct maple_enode *node)
317 {
318 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
319 }
320 
321 static inline void *mte_safe_root(const struct maple_enode *node)
322 {
323 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
324 }
325 
326 static inline void *mte_set_full(const struct maple_enode *node)
327 {
328 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
329 }
330 
331 static inline void *mte_clear_full(const struct maple_enode *node)
332 {
333 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
334 }
335 
336 static inline bool mte_has_null(const struct maple_enode *node)
337 {
338 	return (unsigned long)node & MAPLE_ENODE_NULL;
339 }
340 
341 static inline bool ma_is_root(struct maple_node *node)
342 {
343 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
344 }
345 
346 static inline bool mte_is_root(const struct maple_enode *node)
347 {
348 	return ma_is_root(mte_to_node(node));
349 }
350 
351 static inline bool mas_is_root_limits(const struct ma_state *mas)
352 {
353 	return !mas->min && mas->max == ULONG_MAX;
354 }
355 
356 static inline bool mt_is_alloc(struct maple_tree *mt)
357 {
358 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
359 }
360 
361 /*
362  * The Parent Pointer
363  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
364  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
365  * bit values need an extra bit to store the offset.  This extra bit comes from
366  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
367  * indicate if bit 2 is part of the type or the slot.
368  *
369  * Note types:
370  *  0x??1 = Root
371  *  0x?00 = 16 bit nodes
372  *  0x010 = 32 bit nodes
373  *  0x110 = 64 bit nodes
374  *
375  * Slot size and alignment
376  *  0b??1 : Root
377  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
378  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
379  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
380  */
381 
382 #define MAPLE_PARENT_ROOT		0x01
383 
384 #define MAPLE_PARENT_SLOT_SHIFT		0x03
385 #define MAPLE_PARENT_SLOT_MASK		0xF8
386 
387 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
388 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
389 
390 #define MAPLE_PARENT_RANGE64		0x06
391 #define MAPLE_PARENT_RANGE32		0x04
392 #define MAPLE_PARENT_NOT_RANGE16	0x02
393 
394 /*
395  * mte_parent_shift() - Get the parent shift for the slot storage.
396  * @parent: The parent pointer cast as an unsigned long
397  * Return: The shift into that pointer to the star to of the slot
398  */
399 static inline unsigned long mte_parent_shift(unsigned long parent)
400 {
401 	/* Note bit 1 == 0 means 16B */
402 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
403 		return MAPLE_PARENT_SLOT_SHIFT;
404 
405 	return MAPLE_PARENT_16B_SLOT_SHIFT;
406 }
407 
408 /*
409  * mte_parent_slot_mask() - Get the slot mask for the parent.
410  * @parent: The parent pointer cast as an unsigned long.
411  * Return: The slot mask for that parent.
412  */
413 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
414 {
415 	/* Note bit 1 == 0 means 16B */
416 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
417 		return MAPLE_PARENT_SLOT_MASK;
418 
419 	return MAPLE_PARENT_16B_SLOT_MASK;
420 }
421 
422 /*
423  * mas_parent_enum() - Return the maple_type of the parent from the stored
424  * parent type.
425  * @mas: The maple state
426  * @node: The maple_enode to extract the parent's enum
427  * Return: The node->parent maple_type
428  */
429 static inline
430 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
431 				struct maple_tree *mt)
432 {
433 	unsigned long p_type;
434 
435 	p_type = (unsigned long)p_enode;
436 	if (p_type & MAPLE_PARENT_ROOT)
437 		return 0; /* Validated in the caller. */
438 
439 	p_type &= MAPLE_NODE_MASK;
440 	p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
441 
442 	switch (p_type) {
443 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
444 		if (mt_is_alloc(mt))
445 			return maple_arange_64;
446 		return maple_range_64;
447 	}
448 
449 	return 0;
450 }
451 
452 static inline
453 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
454 {
455 	return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
456 }
457 
458 /*
459  * mte_set_parent() - Set the parent node and encode the slot
460  * @enode: The encoded maple node.
461  * @parent: The encoded maple node that is the parent of @enode.
462  * @slot: The slot that @enode resides in @parent.
463  *
464  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
465  * parent type.
466  */
467 static inline
468 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
469 		    unsigned char slot)
470 {
471 	unsigned long val = (unsigned long) parent;
472 	unsigned long shift;
473 	unsigned long type;
474 	enum maple_type p_type = mte_node_type(parent);
475 
476 	BUG_ON(p_type == maple_dense);
477 	BUG_ON(p_type == maple_leaf_64);
478 
479 	switch (p_type) {
480 	case maple_range_64:
481 	case maple_arange_64:
482 		shift = MAPLE_PARENT_SLOT_SHIFT;
483 		type = MAPLE_PARENT_RANGE64;
484 		break;
485 	default:
486 	case maple_dense:
487 	case maple_leaf_64:
488 		shift = type = 0;
489 		break;
490 	}
491 
492 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
493 	val |= (slot << shift) | type;
494 	mte_to_node(enode)->parent = ma_parent_ptr(val);
495 }
496 
497 /*
498  * mte_parent_slot() - get the parent slot of @enode.
499  * @enode: The encoded maple node.
500  *
501  * Return: The slot in the parent node where @enode resides.
502  */
503 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
504 {
505 	unsigned long val = (unsigned long) mte_to_node(enode)->parent;
506 
507 	/* Root. */
508 	if (val & 1)
509 		return 0;
510 
511 	/*
512 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
513 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
514 	 */
515 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
516 }
517 
518 /*
519  * mte_parent() - Get the parent of @node.
520  * @node: The encoded maple node.
521  *
522  * Return: The parent maple node.
523  */
524 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
525 {
526 	return (void *)((unsigned long)
527 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
528 }
529 
530 /*
531  * ma_dead_node() - check if the @enode is dead.
532  * @enode: The encoded maple node
533  *
534  * Return: true if dead, false otherwise.
535  */
536 static inline bool ma_dead_node(const struct maple_node *node)
537 {
538 	struct maple_node *parent = (void *)((unsigned long)
539 					     node->parent & ~MAPLE_NODE_MASK);
540 
541 	return (parent == node);
542 }
543 /*
544  * mte_dead_node() - check if the @enode is dead.
545  * @enode: The encoded maple node
546  *
547  * Return: true if dead, false otherwise.
548  */
549 static inline bool mte_dead_node(const struct maple_enode *enode)
550 {
551 	struct maple_node *parent, *node;
552 
553 	node = mte_to_node(enode);
554 	parent = mte_parent(enode);
555 	return (parent == node);
556 }
557 
558 /*
559  * mas_allocated() - Get the number of nodes allocated in a maple state.
560  * @mas: The maple state
561  *
562  * The ma_state alloc member is overloaded to hold a pointer to the first
563  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
564  * set, then the alloc contains the number of requested nodes.  If there is an
565  * allocated node, then the total allocated nodes is in that node.
566  *
567  * Return: The total number of nodes allocated
568  */
569 static inline unsigned long mas_allocated(const struct ma_state *mas)
570 {
571 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
572 		return 0;
573 
574 	return mas->alloc->total;
575 }
576 
577 /*
578  * mas_set_alloc_req() - Set the requested number of allocations.
579  * @mas: the maple state
580  * @count: the number of allocations.
581  *
582  * The requested number of allocations is either in the first allocated node,
583  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
584  * no allocated node.  Set the request either in the node or do the necessary
585  * encoding to store in @mas->alloc directly.
586  */
587 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
588 {
589 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
590 		if (!count)
591 			mas->alloc = NULL;
592 		else
593 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
594 		return;
595 	}
596 
597 	mas->alloc->request_count = count;
598 }
599 
600 /*
601  * mas_alloc_req() - get the requested number of allocations.
602  * @mas: The maple state
603  *
604  * The alloc count is either stored directly in @mas, or in
605  * @mas->alloc->request_count if there is at least one node allocated.  Decode
606  * the request count if it's stored directly in @mas->alloc.
607  *
608  * Return: The allocation request count.
609  */
610 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
611 {
612 	if ((unsigned long)mas->alloc & 0x1)
613 		return (unsigned long)(mas->alloc) >> 1;
614 	else if (mas->alloc)
615 		return mas->alloc->request_count;
616 	return 0;
617 }
618 
619 /*
620  * ma_pivots() - Get a pointer to the maple node pivots.
621  * @node - the maple node
622  * @type - the node type
623  *
624  * Return: A pointer to the maple node pivots
625  */
626 static inline unsigned long *ma_pivots(struct maple_node *node,
627 					   enum maple_type type)
628 {
629 	switch (type) {
630 	case maple_arange_64:
631 		return node->ma64.pivot;
632 	case maple_range_64:
633 	case maple_leaf_64:
634 		return node->mr64.pivot;
635 	case maple_dense:
636 		return NULL;
637 	}
638 	return NULL;
639 }
640 
641 /*
642  * ma_gaps() - Get a pointer to the maple node gaps.
643  * @node - the maple node
644  * @type - the node type
645  *
646  * Return: A pointer to the maple node gaps
647  */
648 static inline unsigned long *ma_gaps(struct maple_node *node,
649 				     enum maple_type type)
650 {
651 	switch (type) {
652 	case maple_arange_64:
653 		return node->ma64.gap;
654 	case maple_range_64:
655 	case maple_leaf_64:
656 	case maple_dense:
657 		return NULL;
658 	}
659 	return NULL;
660 }
661 
662 /*
663  * mte_pivot() - Get the pivot at @piv of the maple encoded node.
664  * @mn: The maple encoded node.
665  * @piv: The pivot.
666  *
667  * Return: the pivot at @piv of @mn.
668  */
669 static inline unsigned long mte_pivot(const struct maple_enode *mn,
670 				 unsigned char piv)
671 {
672 	struct maple_node *node = mte_to_node(mn);
673 
674 	if (piv >= mt_pivots[piv]) {
675 		WARN_ON(1);
676 		return 0;
677 	}
678 	switch (mte_node_type(mn)) {
679 	case maple_arange_64:
680 		return node->ma64.pivot[piv];
681 	case maple_range_64:
682 	case maple_leaf_64:
683 		return node->mr64.pivot[piv];
684 	case maple_dense:
685 		return 0;
686 	}
687 	return 0;
688 }
689 
690 /*
691  * mas_safe_pivot() - get the pivot at @piv or mas->max.
692  * @mas: The maple state
693  * @pivots: The pointer to the maple node pivots
694  * @piv: The pivot to fetch
695  * @type: The maple node type
696  *
697  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
698  * otherwise.
699  */
700 static inline unsigned long
701 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
702 	       unsigned char piv, enum maple_type type)
703 {
704 	if (piv >= mt_pivots[type])
705 		return mas->max;
706 
707 	return pivots[piv];
708 }
709 
710 /*
711  * mas_safe_min() - Return the minimum for a given offset.
712  * @mas: The maple state
713  * @pivots: The pointer to the maple node pivots
714  * @offset: The offset into the pivot array
715  *
716  * Return: The minimum range value that is contained in @offset.
717  */
718 static inline unsigned long
719 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
720 {
721 	if (likely(offset))
722 		return pivots[offset - 1] + 1;
723 
724 	return mas->min;
725 }
726 
727 /*
728  * mas_logical_pivot() - Get the logical pivot of a given offset.
729  * @mas: The maple state
730  * @pivots: The pointer to the maple node pivots
731  * @offset: The offset into the pivot array
732  * @type: The maple node type
733  *
734  * When there is no value at a pivot (beyond the end of the data), then the
735  * pivot is actually @mas->max.
736  *
737  * Return: the logical pivot of a given @offset.
738  */
739 static inline unsigned long
740 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
741 		  unsigned char offset, enum maple_type type)
742 {
743 	unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
744 
745 	if (likely(lpiv))
746 		return lpiv;
747 
748 	if (likely(offset))
749 		return mas->max;
750 
751 	return lpiv;
752 }
753 
754 /*
755  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
756  * @mn: The encoded maple node
757  * @piv: The pivot offset
758  * @val: The value of the pivot
759  */
760 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
761 				unsigned long val)
762 {
763 	struct maple_node *node = mte_to_node(mn);
764 	enum maple_type type = mte_node_type(mn);
765 
766 	BUG_ON(piv >= mt_pivots[type]);
767 	switch (type) {
768 	default:
769 	case maple_range_64:
770 	case maple_leaf_64:
771 		node->mr64.pivot[piv] = val;
772 		break;
773 	case maple_arange_64:
774 		node->ma64.pivot[piv] = val;
775 		break;
776 	case maple_dense:
777 		break;
778 	}
779 
780 }
781 
782 /*
783  * ma_slots() - Get a pointer to the maple node slots.
784  * @mn: The maple node
785  * @mt: The maple node type
786  *
787  * Return: A pointer to the maple node slots
788  */
789 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
790 {
791 	switch (mt) {
792 	default:
793 	case maple_arange_64:
794 		return mn->ma64.slot;
795 	case maple_range_64:
796 	case maple_leaf_64:
797 		return mn->mr64.slot;
798 	case maple_dense:
799 		return mn->slot;
800 	}
801 }
802 
803 static inline bool mt_locked(const struct maple_tree *mt)
804 {
805 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
806 		lockdep_is_held(&mt->ma_lock);
807 }
808 
809 static inline void *mt_slot(const struct maple_tree *mt,
810 		void __rcu **slots, unsigned char offset)
811 {
812 	return rcu_dereference_check(slots[offset], mt_locked(mt));
813 }
814 
815 /*
816  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
817  * @mas: The maple state
818  * @slots: The pointer to the slots
819  * @offset: The offset into the slots array to fetch
820  *
821  * Return: The entry stored in @slots at the @offset.
822  */
823 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
824 				       unsigned char offset)
825 {
826 	return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
827 }
828 
829 /*
830  * mas_slot() - Get the slot value when not holding the maple tree lock.
831  * @mas: The maple state
832  * @slots: The pointer to the slots
833  * @offset: The offset into the slots array to fetch
834  *
835  * Return: The entry stored in @slots at the @offset
836  */
837 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
838 			     unsigned char offset)
839 {
840 	return mt_slot(mas->tree, slots, offset);
841 }
842 
843 /*
844  * mas_root() - Get the maple tree root.
845  * @mas: The maple state.
846  *
847  * Return: The pointer to the root of the tree
848  */
849 static inline void *mas_root(struct ma_state *mas)
850 {
851 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
852 }
853 
854 static inline void *mt_root_locked(struct maple_tree *mt)
855 {
856 	return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
857 }
858 
859 /*
860  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
861  * @mas: The maple state.
862  *
863  * Return: The pointer to the root of the tree
864  */
865 static inline void *mas_root_locked(struct ma_state *mas)
866 {
867 	return mt_root_locked(mas->tree);
868 }
869 
870 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
871 					     enum maple_type mt)
872 {
873 	switch (mt) {
874 	case maple_arange_64:
875 		return &mn->ma64.meta;
876 	default:
877 		return &mn->mr64.meta;
878 	}
879 }
880 
881 /*
882  * ma_set_meta() - Set the metadata information of a node.
883  * @mn: The maple node
884  * @mt: The maple node type
885  * @offset: The offset of the highest sub-gap in this node.
886  * @end: The end of the data in this node.
887  */
888 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
889 			       unsigned char offset, unsigned char end)
890 {
891 	struct maple_metadata *meta = ma_meta(mn, mt);
892 
893 	meta->gap = offset;
894 	meta->end = end;
895 }
896 
897 /*
898  * ma_meta_end() - Get the data end of a node from the metadata
899  * @mn: The maple node
900  * @mt: The maple node type
901  */
902 static inline unsigned char ma_meta_end(struct maple_node *mn,
903 					enum maple_type mt)
904 {
905 	struct maple_metadata *meta = ma_meta(mn, mt);
906 
907 	return meta->end;
908 }
909 
910 /*
911  * ma_meta_gap() - Get the largest gap location of a node from the metadata
912  * @mn: The maple node
913  * @mt: The maple node type
914  */
915 static inline unsigned char ma_meta_gap(struct maple_node *mn,
916 					enum maple_type mt)
917 {
918 	BUG_ON(mt != maple_arange_64);
919 
920 	return mn->ma64.meta.gap;
921 }
922 
923 /*
924  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
925  * @mn: The maple node
926  * @mn: The maple node type
927  * @offset: The location of the largest gap.
928  */
929 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
930 				   unsigned char offset)
931 {
932 
933 	struct maple_metadata *meta = ma_meta(mn, mt);
934 
935 	meta->gap = offset;
936 }
937 
938 /*
939  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
940  * @mat - the ma_topiary, a linked list of dead nodes.
941  * @dead_enode - the node to be marked as dead and added to the tail of the list
942  *
943  * Add the @dead_enode to the linked list in @mat.
944  */
945 static inline void mat_add(struct ma_topiary *mat,
946 			   struct maple_enode *dead_enode)
947 {
948 	mte_set_node_dead(dead_enode);
949 	mte_to_mat(dead_enode)->next = NULL;
950 	if (!mat->tail) {
951 		mat->tail = mat->head = dead_enode;
952 		return;
953 	}
954 
955 	mte_to_mat(mat->tail)->next = dead_enode;
956 	mat->tail = dead_enode;
957 }
958 
959 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
960 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
961 
962 /*
963  * mas_mat_free() - Free all nodes in a dead list.
964  * @mas - the maple state
965  * @mat - the ma_topiary linked list of dead nodes to free.
966  *
967  * Free walk a dead list.
968  */
969 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
970 {
971 	struct maple_enode *next;
972 
973 	while (mat->head) {
974 		next = mte_to_mat(mat->head)->next;
975 		mas_free(mas, mat->head);
976 		mat->head = next;
977 	}
978 }
979 
980 /*
981  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
982  * @mas - the maple state
983  * @mat - the ma_topiary linked list of dead nodes to free.
984  *
985  * Destroy walk a dead list.
986  */
987 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
988 {
989 	struct maple_enode *next;
990 
991 	while (mat->head) {
992 		next = mte_to_mat(mat->head)->next;
993 		mte_destroy_walk(mat->head, mat->mtree);
994 		mat->head = next;
995 	}
996 }
997 /*
998  * mas_descend() - Descend into the slot stored in the ma_state.
999  * @mas - the maple state.
1000  *
1001  * Note: Not RCU safe, only use in write side or debug code.
1002  */
1003 static inline void mas_descend(struct ma_state *mas)
1004 {
1005 	enum maple_type type;
1006 	unsigned long *pivots;
1007 	struct maple_node *node;
1008 	void __rcu **slots;
1009 
1010 	node = mas_mn(mas);
1011 	type = mte_node_type(mas->node);
1012 	pivots = ma_pivots(node, type);
1013 	slots = ma_slots(node, type);
1014 
1015 	if (mas->offset)
1016 		mas->min = pivots[mas->offset - 1] + 1;
1017 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1018 	mas->node = mas_slot(mas, slots, mas->offset);
1019 }
1020 
1021 /*
1022  * mte_set_gap() - Set a maple node gap.
1023  * @mn: The encoded maple node
1024  * @gap: The offset of the gap to set
1025  * @val: The gap value
1026  */
1027 static inline void mte_set_gap(const struct maple_enode *mn,
1028 				 unsigned char gap, unsigned long val)
1029 {
1030 	switch (mte_node_type(mn)) {
1031 	default:
1032 		break;
1033 	case maple_arange_64:
1034 		mte_to_node(mn)->ma64.gap[gap] = val;
1035 		break;
1036 	}
1037 }
1038 
1039 /*
1040  * mas_ascend() - Walk up a level of the tree.
1041  * @mas: The maple state
1042  *
1043  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1044  * may cause several levels of walking up to find the correct min and max.
1045  * May find a dead node which will cause a premature return.
1046  * Return: 1 on dead node, 0 otherwise
1047  */
1048 static int mas_ascend(struct ma_state *mas)
1049 {
1050 	struct maple_enode *p_enode; /* parent enode. */
1051 	struct maple_enode *a_enode; /* ancestor enode. */
1052 	struct maple_node *a_node; /* ancestor node. */
1053 	struct maple_node *p_node; /* parent node. */
1054 	unsigned char a_slot;
1055 	enum maple_type a_type;
1056 	unsigned long min, max;
1057 	unsigned long *pivots;
1058 	unsigned char offset;
1059 	bool set_max = false, set_min = false;
1060 
1061 	a_node = mas_mn(mas);
1062 	if (ma_is_root(a_node)) {
1063 		mas->offset = 0;
1064 		return 0;
1065 	}
1066 
1067 	p_node = mte_parent(mas->node);
1068 	if (unlikely(a_node == p_node))
1069 		return 1;
1070 	a_type = mas_parent_enum(mas, mas->node);
1071 	offset = mte_parent_slot(mas->node);
1072 	a_enode = mt_mk_node(p_node, a_type);
1073 
1074 	/* Check to make sure all parent information is still accurate */
1075 	if (p_node != mte_parent(mas->node))
1076 		return 1;
1077 
1078 	mas->node = a_enode;
1079 	mas->offset = offset;
1080 
1081 	if (mte_is_root(a_enode)) {
1082 		mas->max = ULONG_MAX;
1083 		mas->min = 0;
1084 		return 0;
1085 	}
1086 
1087 	min = 0;
1088 	max = ULONG_MAX;
1089 	do {
1090 		p_enode = a_enode;
1091 		a_type = mas_parent_enum(mas, p_enode);
1092 		a_node = mte_parent(p_enode);
1093 		a_slot = mte_parent_slot(p_enode);
1094 		pivots = ma_pivots(a_node, a_type);
1095 		a_enode = mt_mk_node(a_node, a_type);
1096 
1097 		if (!set_min && a_slot) {
1098 			set_min = true;
1099 			min = pivots[a_slot - 1] + 1;
1100 		}
1101 
1102 		if (!set_max && a_slot < mt_pivots[a_type]) {
1103 			set_max = true;
1104 			max = pivots[a_slot];
1105 		}
1106 
1107 		if (unlikely(ma_dead_node(a_node)))
1108 			return 1;
1109 
1110 		if (unlikely(ma_is_root(a_node)))
1111 			break;
1112 
1113 	} while (!set_min || !set_max);
1114 
1115 	mas->max = max;
1116 	mas->min = min;
1117 	return 0;
1118 }
1119 
1120 /*
1121  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1122  * @mas: The maple state
1123  *
1124  * Return: A pointer to a maple node.
1125  */
1126 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1127 {
1128 	struct maple_alloc *ret, *node = mas->alloc;
1129 	unsigned long total = mas_allocated(mas);
1130 
1131 	/* nothing or a request pending. */
1132 	if (unlikely(!total))
1133 		return NULL;
1134 
1135 	if (total == 1) {
1136 		/* single allocation in this ma_state */
1137 		mas->alloc = NULL;
1138 		ret = node;
1139 		goto single_node;
1140 	}
1141 
1142 	if (!node->node_count) {
1143 		/* Single allocation in this node. */
1144 		mas->alloc = node->slot[0];
1145 		node->slot[0] = NULL;
1146 		mas->alloc->total = node->total - 1;
1147 		ret = node;
1148 		goto new_head;
1149 	}
1150 
1151 	node->total--;
1152 	ret = node->slot[node->node_count];
1153 	node->slot[node->node_count--] = NULL;
1154 
1155 single_node:
1156 new_head:
1157 	ret->total = 0;
1158 	ret->node_count = 0;
1159 	if (ret->request_count) {
1160 		mas_set_alloc_req(mas, ret->request_count + 1);
1161 		ret->request_count = 0;
1162 	}
1163 	return (struct maple_node *)ret;
1164 }
1165 
1166 /*
1167  * mas_push_node() - Push a node back on the maple state allocation.
1168  * @mas: The maple state
1169  * @used: The used maple node
1170  *
1171  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1172  * requested node count as necessary.
1173  */
1174 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1175 {
1176 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1177 	struct maple_alloc *head = mas->alloc;
1178 	unsigned long count;
1179 	unsigned int requested = mas_alloc_req(mas);
1180 
1181 	memset(reuse, 0, sizeof(*reuse));
1182 	count = mas_allocated(mas);
1183 
1184 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS - 1)) {
1185 		if (head->slot[0])
1186 			head->node_count++;
1187 		head->slot[head->node_count] = reuse;
1188 		head->total++;
1189 		goto done;
1190 	}
1191 
1192 	reuse->total = 1;
1193 	if ((head) && !((unsigned long)head & 0x1)) {
1194 		head->request_count = 0;
1195 		reuse->slot[0] = head;
1196 		reuse->total += head->total;
1197 	}
1198 
1199 	mas->alloc = reuse;
1200 done:
1201 	if (requested > 1)
1202 		mas_set_alloc_req(mas, requested - 1);
1203 }
1204 
1205 /*
1206  * mas_alloc_nodes() - Allocate nodes into a maple state
1207  * @mas: The maple state
1208  * @gfp: The GFP Flags
1209  */
1210 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1211 {
1212 	struct maple_alloc *node;
1213 	unsigned long allocated = mas_allocated(mas);
1214 	unsigned long success = allocated;
1215 	unsigned int requested = mas_alloc_req(mas);
1216 	unsigned int count;
1217 	void **slots = NULL;
1218 	unsigned int max_req = 0;
1219 
1220 	if (!requested)
1221 		return;
1222 
1223 	mas_set_alloc_req(mas, 0);
1224 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1225 		if (allocated)
1226 			return;
1227 		WARN_ON(!allocated);
1228 	}
1229 
1230 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS - 1) {
1231 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1232 		if (!node)
1233 			goto nomem_one;
1234 
1235 		if (allocated)
1236 			node->slot[0] = mas->alloc;
1237 
1238 		success++;
1239 		mas->alloc = node;
1240 		requested--;
1241 	}
1242 
1243 	node = mas->alloc;
1244 	while (requested) {
1245 		max_req = MAPLE_ALLOC_SLOTS;
1246 		if (node->slot[0]) {
1247 			unsigned int offset = node->node_count + 1;
1248 
1249 			slots = (void **)&node->slot[offset];
1250 			max_req -= offset;
1251 		} else {
1252 			slots = (void **)&node->slot;
1253 		}
1254 
1255 		max_req = min(requested, max_req);
1256 		count = mt_alloc_bulk(gfp, max_req, slots);
1257 		if (!count)
1258 			goto nomem_bulk;
1259 
1260 		node->node_count += count;
1261 		/* zero indexed. */
1262 		if (slots == (void **)&node->slot)
1263 			node->node_count--;
1264 
1265 		success += count;
1266 		node = node->slot[0];
1267 		requested -= count;
1268 	}
1269 	mas->alloc->total = success;
1270 	return;
1271 
1272 nomem_bulk:
1273 	/* Clean up potential freed allocations on bulk failure */
1274 	memset(slots, 0, max_req * sizeof(unsigned long));
1275 nomem_one:
1276 	mas_set_alloc_req(mas, requested);
1277 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1278 		mas->alloc->total = success;
1279 	mas_set_err(mas, -ENOMEM);
1280 	return;
1281 
1282 }
1283 
1284 /*
1285  * mas_free() - Free an encoded maple node
1286  * @mas: The maple state
1287  * @used: The encoded maple node to free.
1288  *
1289  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1290  * otherwise.
1291  */
1292 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1293 {
1294 	struct maple_node *tmp = mte_to_node(used);
1295 
1296 	if (mt_in_rcu(mas->tree))
1297 		ma_free_rcu(tmp);
1298 	else
1299 		mas_push_node(mas, tmp);
1300 }
1301 
1302 /*
1303  * mas_node_count() - Check if enough nodes are allocated and request more if
1304  * there is not enough nodes.
1305  * @mas: The maple state
1306  * @count: The number of nodes needed
1307  * @gfp: the gfp flags
1308  */
1309 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1310 {
1311 	unsigned long allocated = mas_allocated(mas);
1312 
1313 	if (allocated < count) {
1314 		mas_set_alloc_req(mas, count - allocated);
1315 		mas_alloc_nodes(mas, gfp);
1316 	}
1317 }
1318 
1319 /*
1320  * mas_node_count() - Check if enough nodes are allocated and request more if
1321  * there is not enough nodes.
1322  * @mas: The maple state
1323  * @count: The number of nodes needed
1324  *
1325  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1326  */
1327 static void mas_node_count(struct ma_state *mas, int count)
1328 {
1329 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1330 }
1331 
1332 /*
1333  * mas_start() - Sets up maple state for operations.
1334  * @mas: The maple state.
1335  *
1336  * If mas->node == MAS_START, then set the min, max, depth, and offset to
1337  * defaults.
1338  *
1339  * Return:
1340  * - If mas->node is an error or not MAS_START, return NULL.
1341  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
1342  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
1343  * - If it's a tree:            NULL & mas->node == safe root node.
1344  */
1345 static inline struct maple_enode *mas_start(struct ma_state *mas)
1346 {
1347 	if (likely(mas_is_start(mas))) {
1348 		struct maple_enode *root;
1349 
1350 		mas->node = MAS_NONE;
1351 		mas->min = 0;
1352 		mas->max = ULONG_MAX;
1353 		mas->depth = 0;
1354 		mas->offset = 0;
1355 
1356 		root = mas_root(mas);
1357 		/* Tree with nodes */
1358 		if (likely(xa_is_node(root))) {
1359 			mas->depth = 1;
1360 			mas->node = mte_safe_root(root);
1361 			return NULL;
1362 		}
1363 
1364 		/* empty tree */
1365 		if (unlikely(!root)) {
1366 			mas->offset = MAPLE_NODE_SLOTS;
1367 			return NULL;
1368 		}
1369 
1370 		/* Single entry tree */
1371 		mas->node = MAS_ROOT;
1372 		mas->offset = MAPLE_NODE_SLOTS;
1373 
1374 		/* Single entry tree. */
1375 		if (mas->index > 0)
1376 			return NULL;
1377 
1378 		return root;
1379 	}
1380 
1381 	return NULL;
1382 }
1383 
1384 /*
1385  * ma_data_end() - Find the end of the data in a node.
1386  * @node: The maple node
1387  * @type: The maple node type
1388  * @pivots: The array of pivots in the node
1389  * @max: The maximum value in the node
1390  *
1391  * Uses metadata to find the end of the data when possible.
1392  * Return: The zero indexed last slot with data (may be null).
1393  */
1394 static inline unsigned char ma_data_end(struct maple_node *node,
1395 					enum maple_type type,
1396 					unsigned long *pivots,
1397 					unsigned long max)
1398 {
1399 	unsigned char offset;
1400 
1401 	if (type == maple_arange_64)
1402 		return ma_meta_end(node, type);
1403 
1404 	offset = mt_pivots[type] - 1;
1405 	if (likely(!pivots[offset]))
1406 		return ma_meta_end(node, type);
1407 
1408 	if (likely(pivots[offset] == max))
1409 		return offset;
1410 
1411 	return mt_pivots[type];
1412 }
1413 
1414 /*
1415  * mas_data_end() - Find the end of the data (slot).
1416  * @mas: the maple state
1417  *
1418  * This method is optimized to check the metadata of a node if the node type
1419  * supports data end metadata.
1420  *
1421  * Return: The zero indexed last slot with data (may be null).
1422  */
1423 static inline unsigned char mas_data_end(struct ma_state *mas)
1424 {
1425 	enum maple_type type;
1426 	struct maple_node *node;
1427 	unsigned char offset;
1428 	unsigned long *pivots;
1429 
1430 	type = mte_node_type(mas->node);
1431 	node = mas_mn(mas);
1432 	if (type == maple_arange_64)
1433 		return ma_meta_end(node, type);
1434 
1435 	pivots = ma_pivots(node, type);
1436 	offset = mt_pivots[type] - 1;
1437 	if (likely(!pivots[offset]))
1438 		return ma_meta_end(node, type);
1439 
1440 	if (likely(pivots[offset] == mas->max))
1441 		return offset;
1442 
1443 	return mt_pivots[type];
1444 }
1445 
1446 /*
1447  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1448  * @mas - the maple state
1449  *
1450  * Return: The maximum gap in the leaf.
1451  */
1452 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1453 {
1454 	enum maple_type mt;
1455 	unsigned long pstart, gap, max_gap;
1456 	struct maple_node *mn;
1457 	unsigned long *pivots;
1458 	void __rcu **slots;
1459 	unsigned char i;
1460 	unsigned char max_piv;
1461 
1462 	mt = mte_node_type(mas->node);
1463 	mn = mas_mn(mas);
1464 	slots = ma_slots(mn, mt);
1465 	max_gap = 0;
1466 	if (unlikely(ma_is_dense(mt))) {
1467 		gap = 0;
1468 		for (i = 0; i < mt_slots[mt]; i++) {
1469 			if (slots[i]) {
1470 				if (gap > max_gap)
1471 					max_gap = gap;
1472 				gap = 0;
1473 			} else {
1474 				gap++;
1475 			}
1476 		}
1477 		if (gap > max_gap)
1478 			max_gap = gap;
1479 		return max_gap;
1480 	}
1481 
1482 	/*
1483 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1484 	 * be skipped if there is a gap in slot 0.
1485 	 */
1486 	pivots = ma_pivots(mn, mt);
1487 	if (likely(!slots[0])) {
1488 		max_gap = pivots[0] - mas->min + 1;
1489 		i = 2;
1490 	} else {
1491 		i = 1;
1492 	}
1493 
1494 	/* reduce max_piv as the special case is checked before the loop */
1495 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1496 	/*
1497 	 * Check end implied pivot which can only be a gap on the right most
1498 	 * node.
1499 	 */
1500 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1501 		gap = ULONG_MAX - pivots[max_piv];
1502 		if (gap > max_gap)
1503 			max_gap = gap;
1504 	}
1505 
1506 	for (; i <= max_piv; i++) {
1507 		/* data == no gap. */
1508 		if (likely(slots[i]))
1509 			continue;
1510 
1511 		pstart = pivots[i - 1];
1512 		gap = pivots[i] - pstart;
1513 		if (gap > max_gap)
1514 			max_gap = gap;
1515 
1516 		/* There cannot be two gaps in a row. */
1517 		i++;
1518 	}
1519 	return max_gap;
1520 }
1521 
1522 /*
1523  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1524  * @node: The maple node
1525  * @gaps: The pointer to the gaps
1526  * @mt: The maple node type
1527  * @*off: Pointer to store the offset location of the gap.
1528  *
1529  * Uses the metadata data end to scan backwards across set gaps.
1530  *
1531  * Return: The maximum gap value
1532  */
1533 static inline unsigned long
1534 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1535 	    unsigned char *off)
1536 {
1537 	unsigned char offset, i;
1538 	unsigned long max_gap = 0;
1539 
1540 	i = offset = ma_meta_end(node, mt);
1541 	do {
1542 		if (gaps[i] > max_gap) {
1543 			max_gap = gaps[i];
1544 			offset = i;
1545 		}
1546 	} while (i--);
1547 
1548 	*off = offset;
1549 	return max_gap;
1550 }
1551 
1552 /*
1553  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1554  * @mas: The maple state.
1555  *
1556  * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1557  *
1558  * Return: The gap value.
1559  */
1560 static inline unsigned long mas_max_gap(struct ma_state *mas)
1561 {
1562 	unsigned long *gaps;
1563 	unsigned char offset;
1564 	enum maple_type mt;
1565 	struct maple_node *node;
1566 
1567 	mt = mte_node_type(mas->node);
1568 	if (ma_is_leaf(mt))
1569 		return mas_leaf_max_gap(mas);
1570 
1571 	node = mas_mn(mas);
1572 	offset = ma_meta_gap(node, mt);
1573 	if (offset == MAPLE_ARANGE64_META_MAX)
1574 		return 0;
1575 
1576 	gaps = ma_gaps(node, mt);
1577 	return gaps[offset];
1578 }
1579 
1580 /*
1581  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1582  * @mas: The maple state
1583  * @offset: The gap offset in the parent to set
1584  * @new: The new gap value.
1585  *
1586  * Set the parent gap then continue to set the gap upwards, using the metadata
1587  * of the parent to see if it is necessary to check the node above.
1588  */
1589 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1590 		unsigned long new)
1591 {
1592 	unsigned long meta_gap = 0;
1593 	struct maple_node *pnode;
1594 	struct maple_enode *penode;
1595 	unsigned long *pgaps;
1596 	unsigned char meta_offset;
1597 	enum maple_type pmt;
1598 
1599 	pnode = mte_parent(mas->node);
1600 	pmt = mas_parent_enum(mas, mas->node);
1601 	penode = mt_mk_node(pnode, pmt);
1602 	pgaps = ma_gaps(pnode, pmt);
1603 
1604 ascend:
1605 	meta_offset = ma_meta_gap(pnode, pmt);
1606 	if (meta_offset == MAPLE_ARANGE64_META_MAX)
1607 		meta_gap = 0;
1608 	else
1609 		meta_gap = pgaps[meta_offset];
1610 
1611 	pgaps[offset] = new;
1612 
1613 	if (meta_gap == new)
1614 		return;
1615 
1616 	if (offset != meta_offset) {
1617 		if (meta_gap > new)
1618 			return;
1619 
1620 		ma_set_meta_gap(pnode, pmt, offset);
1621 	} else if (new < meta_gap) {
1622 		meta_offset = 15;
1623 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1624 		ma_set_meta_gap(pnode, pmt, meta_offset);
1625 	}
1626 
1627 	if (ma_is_root(pnode))
1628 		return;
1629 
1630 	/* Go to the parent node. */
1631 	pnode = mte_parent(penode);
1632 	pmt = mas_parent_enum(mas, penode);
1633 	pgaps = ma_gaps(pnode, pmt);
1634 	offset = mte_parent_slot(penode);
1635 	penode = mt_mk_node(pnode, pmt);
1636 	goto ascend;
1637 }
1638 
1639 /*
1640  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1641  * @mas - the maple state.
1642  */
1643 static inline void mas_update_gap(struct ma_state *mas)
1644 {
1645 	unsigned char pslot;
1646 	unsigned long p_gap;
1647 	unsigned long max_gap;
1648 
1649 	if (!mt_is_alloc(mas->tree))
1650 		return;
1651 
1652 	if (mte_is_root(mas->node))
1653 		return;
1654 
1655 	max_gap = mas_max_gap(mas);
1656 
1657 	pslot = mte_parent_slot(mas->node);
1658 	p_gap = ma_gaps(mte_parent(mas->node),
1659 			mas_parent_enum(mas, mas->node))[pslot];
1660 
1661 	if (p_gap != max_gap)
1662 		mas_parent_gap(mas, pslot, max_gap);
1663 }
1664 
1665 /*
1666  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1667  * @parent with the slot encoded.
1668  * @mas - the maple state (for the tree)
1669  * @parent - the maple encoded node containing the children.
1670  */
1671 static inline void mas_adopt_children(struct ma_state *mas,
1672 		struct maple_enode *parent)
1673 {
1674 	enum maple_type type = mte_node_type(parent);
1675 	struct maple_node *node = mas_mn(mas);
1676 	void __rcu **slots = ma_slots(node, type);
1677 	unsigned long *pivots = ma_pivots(node, type);
1678 	struct maple_enode *child;
1679 	unsigned char offset;
1680 
1681 	offset = ma_data_end(node, type, pivots, mas->max);
1682 	do {
1683 		child = mas_slot_locked(mas, slots, offset);
1684 		mte_set_parent(child, parent, offset);
1685 	} while (offset--);
1686 }
1687 
1688 /*
1689  * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the
1690  * parent encoding to locate the maple node in the tree.
1691  * @mas - the ma_state to use for operations.
1692  * @advanced - boolean to adopt the child nodes and free the old node (false) or
1693  * leave the node (true) and handle the adoption and free elsewhere.
1694  */
1695 static inline void mas_replace(struct ma_state *mas, bool advanced)
1696 	__must_hold(mas->tree->lock)
1697 {
1698 	struct maple_node *mn = mas_mn(mas);
1699 	struct maple_enode *old_enode;
1700 	unsigned char offset = 0;
1701 	void __rcu **slots = NULL;
1702 
1703 	if (ma_is_root(mn)) {
1704 		old_enode = mas_root_locked(mas);
1705 	} else {
1706 		offset = mte_parent_slot(mas->node);
1707 		slots = ma_slots(mte_parent(mas->node),
1708 				 mas_parent_enum(mas, mas->node));
1709 		old_enode = mas_slot_locked(mas, slots, offset);
1710 	}
1711 
1712 	if (!advanced && !mte_is_leaf(mas->node))
1713 		mas_adopt_children(mas, mas->node);
1714 
1715 	if (mte_is_root(mas->node)) {
1716 		mn->parent = ma_parent_ptr(
1717 			      ((unsigned long)mas->tree | MA_ROOT_PARENT));
1718 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1719 		mas_set_height(mas);
1720 	} else {
1721 		rcu_assign_pointer(slots[offset], mas->node);
1722 	}
1723 
1724 	if (!advanced)
1725 		mas_free(mas, old_enode);
1726 }
1727 
1728 /*
1729  * mas_new_child() - Find the new child of a node.
1730  * @mas: the maple state
1731  * @child: the maple state to store the child.
1732  */
1733 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1734 	__must_hold(mas->tree->lock)
1735 {
1736 	enum maple_type mt;
1737 	unsigned char offset;
1738 	unsigned char end;
1739 	unsigned long *pivots;
1740 	struct maple_enode *entry;
1741 	struct maple_node *node;
1742 	void __rcu **slots;
1743 
1744 	mt = mte_node_type(mas->node);
1745 	node = mas_mn(mas);
1746 	slots = ma_slots(node, mt);
1747 	pivots = ma_pivots(node, mt);
1748 	end = ma_data_end(node, mt, pivots, mas->max);
1749 	for (offset = mas->offset; offset <= end; offset++) {
1750 		entry = mas_slot_locked(mas, slots, offset);
1751 		if (mte_parent(entry) == node) {
1752 			*child = *mas;
1753 			mas->offset = offset + 1;
1754 			child->offset = offset;
1755 			mas_descend(child);
1756 			child->offset = 0;
1757 			return true;
1758 		}
1759 	}
1760 	return false;
1761 }
1762 
1763 /*
1764  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1765  * old data or set b_node->b_end.
1766  * @b_node: the maple_big_node
1767  * @shift: the shift count
1768  */
1769 static inline void mab_shift_right(struct maple_big_node *b_node,
1770 				 unsigned char shift)
1771 {
1772 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1773 
1774 	memmove(b_node->pivot + shift, b_node->pivot, size);
1775 	memmove(b_node->slot + shift, b_node->slot, size);
1776 	if (b_node->type == maple_arange_64)
1777 		memmove(b_node->gap + shift, b_node->gap, size);
1778 }
1779 
1780 /*
1781  * mab_middle_node() - Check if a middle node is needed (unlikely)
1782  * @b_node: the maple_big_node that contains the data.
1783  * @size: the amount of data in the b_node
1784  * @split: the potential split location
1785  * @slot_count: the size that can be stored in a single node being considered.
1786  *
1787  * Return: true if a middle node is required.
1788  */
1789 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1790 				   unsigned char slot_count)
1791 {
1792 	unsigned char size = b_node->b_end;
1793 
1794 	if (size >= 2 * slot_count)
1795 		return true;
1796 
1797 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1798 		return true;
1799 
1800 	return false;
1801 }
1802 
1803 /*
1804  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1805  * @b_node: the maple_big_node with the data
1806  * @split: the suggested split location
1807  * @slot_count: the number of slots in the node being considered.
1808  *
1809  * Return: the split location.
1810  */
1811 static inline int mab_no_null_split(struct maple_big_node *b_node,
1812 				    unsigned char split, unsigned char slot_count)
1813 {
1814 	if (!b_node->slot[split]) {
1815 		/*
1816 		 * If the split is less than the max slot && the right side will
1817 		 * still be sufficient, then increment the split on NULL.
1818 		 */
1819 		if ((split < slot_count - 1) &&
1820 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1821 			split++;
1822 		else
1823 			split--;
1824 	}
1825 	return split;
1826 }
1827 
1828 /*
1829  * mab_calc_split() - Calculate the split location and if there needs to be two
1830  * splits.
1831  * @bn: The maple_big_node with the data
1832  * @mid_split: The second split, if required.  0 otherwise.
1833  *
1834  * Return: The first split location.  The middle split is set in @mid_split.
1835  */
1836 static inline int mab_calc_split(struct ma_state *mas,
1837 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1838 {
1839 	unsigned char b_end = bn->b_end;
1840 	int split = b_end / 2; /* Assume equal split. */
1841 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1842 
1843 	/*
1844 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1845 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1846 	 * limitation means that the split of a node must be checked for this condition
1847 	 * and be able to put more data in one direction or the other.
1848 	 */
1849 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1850 		*mid_split = 0;
1851 		split = b_end - mt_min_slots[bn->type];
1852 
1853 		if (!ma_is_leaf(bn->type))
1854 			return split;
1855 
1856 		mas->mas_flags |= MA_STATE_REBALANCE;
1857 		if (!bn->slot[split])
1858 			split--;
1859 		return split;
1860 	}
1861 
1862 	/*
1863 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1864 	 * split scenario.  The 3-way split comes about by means of a store of a range
1865 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1866 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1867 	 * also be located in different parent nodes which are also full.  This can
1868 	 * carry upwards all the way to the root in the worst case.
1869 	 */
1870 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1871 		split = b_end / 3;
1872 		*mid_split = split * 2;
1873 	} else {
1874 		slot_min = mt_min_slots[bn->type];
1875 
1876 		*mid_split = 0;
1877 		/*
1878 		 * Avoid having a range less than the slot count unless it
1879 		 * causes one node to be deficient.
1880 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1881 		 */
1882 		while (((bn->pivot[split] - min) < slot_count - 1) &&
1883 		       (split < slot_count - 1) && (b_end - split > slot_min))
1884 			split++;
1885 	}
1886 
1887 	/* Avoid ending a node on a NULL entry */
1888 	split = mab_no_null_split(bn, split, slot_count);
1889 	if (!(*mid_split))
1890 		return split;
1891 
1892 	*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1893 
1894 	return split;
1895 }
1896 
1897 /*
1898  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1899  * and set @b_node->b_end to the next free slot.
1900  * @mas: The maple state
1901  * @mas_start: The starting slot to copy
1902  * @mas_end: The end slot to copy (inclusively)
1903  * @b_node: The maple_big_node to place the data
1904  * @mab_start: The starting location in maple_big_node to store the data.
1905  */
1906 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1907 			unsigned char mas_end, struct maple_big_node *b_node,
1908 			unsigned char mab_start)
1909 {
1910 	enum maple_type mt;
1911 	struct maple_node *node;
1912 	void __rcu **slots;
1913 	unsigned long *pivots, *gaps;
1914 	int i = mas_start, j = mab_start;
1915 	unsigned char piv_end;
1916 
1917 	node = mas_mn(mas);
1918 	mt = mte_node_type(mas->node);
1919 	pivots = ma_pivots(node, mt);
1920 	if (!i) {
1921 		b_node->pivot[j] = pivots[i++];
1922 		if (unlikely(i > mas_end))
1923 			goto complete;
1924 		j++;
1925 	}
1926 
1927 	piv_end = min(mas_end, mt_pivots[mt]);
1928 	for (; i < piv_end; i++, j++) {
1929 		b_node->pivot[j] = pivots[i];
1930 		if (unlikely(!b_node->pivot[j]))
1931 			break;
1932 
1933 		if (unlikely(mas->max == b_node->pivot[j]))
1934 			goto complete;
1935 	}
1936 
1937 	if (likely(i <= mas_end))
1938 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1939 
1940 complete:
1941 	b_node->b_end = ++j;
1942 	j -= mab_start;
1943 	slots = ma_slots(node, mt);
1944 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1945 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1946 		gaps = ma_gaps(node, mt);
1947 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1948 		       sizeof(unsigned long) * j);
1949 	}
1950 }
1951 
1952 /*
1953  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1954  * @mas: The maple state
1955  * @node: The maple node
1956  * @pivots: pointer to the maple node pivots
1957  * @mt: The maple type
1958  * @end: The assumed end
1959  *
1960  * Note, end may be incremented within this function but not modified at the
1961  * source.  This is fine since the metadata is the last thing to be stored in a
1962  * node during a write.
1963  */
1964 static inline void mas_leaf_set_meta(struct ma_state *mas,
1965 		struct maple_node *node, unsigned long *pivots,
1966 		enum maple_type mt, unsigned char end)
1967 {
1968 	/* There is no room for metadata already */
1969 	if (mt_pivots[mt] <= end)
1970 		return;
1971 
1972 	if (pivots[end] && pivots[end] < mas->max)
1973 		end++;
1974 
1975 	if (end < mt_slots[mt] - 1)
1976 		ma_set_meta(node, mt, 0, end);
1977 }
1978 
1979 /*
1980  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1981  * @b_node: the maple_big_node that has the data
1982  * @mab_start: the start location in @b_node.
1983  * @mab_end: The end location in @b_node (inclusively)
1984  * @mas: The maple state with the maple encoded node.
1985  */
1986 static inline void mab_mas_cp(struct maple_big_node *b_node,
1987 			      unsigned char mab_start, unsigned char mab_end,
1988 			      struct ma_state *mas, bool new_max)
1989 {
1990 	int i, j = 0;
1991 	enum maple_type mt = mte_node_type(mas->node);
1992 	struct maple_node *node = mte_to_node(mas->node);
1993 	void __rcu **slots = ma_slots(node, mt);
1994 	unsigned long *pivots = ma_pivots(node, mt);
1995 	unsigned long *gaps = NULL;
1996 	unsigned char end;
1997 
1998 	if (mab_end - mab_start > mt_pivots[mt])
1999 		mab_end--;
2000 
2001 	if (!pivots[mt_pivots[mt] - 1])
2002 		slots[mt_pivots[mt]] = NULL;
2003 
2004 	i = mab_start;
2005 	do {
2006 		pivots[j++] = b_node->pivot[i++];
2007 	} while (i <= mab_end && likely(b_node->pivot[i]));
2008 
2009 	memcpy(slots, b_node->slot + mab_start,
2010 	       sizeof(void *) * (i - mab_start));
2011 
2012 	if (new_max)
2013 		mas->max = b_node->pivot[i - 1];
2014 
2015 	end = j - 1;
2016 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2017 		unsigned long max_gap = 0;
2018 		unsigned char offset = 15;
2019 
2020 		gaps = ma_gaps(node, mt);
2021 		do {
2022 			gaps[--j] = b_node->gap[--i];
2023 			if (gaps[j] > max_gap) {
2024 				offset = j;
2025 				max_gap = gaps[j];
2026 			}
2027 		} while (j);
2028 
2029 		ma_set_meta(node, mt, offset, end);
2030 	} else {
2031 		mas_leaf_set_meta(mas, node, pivots, mt, end);
2032 	}
2033 }
2034 
2035 /*
2036  * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2037  * @mas: the maple state with the maple encoded node of the sub-tree.
2038  *
2039  * Descend through a sub-tree and adopt children who do not have the correct
2040  * parents set.  Follow the parents which have the correct parents as they are
2041  * the new entries which need to be followed to find other incorrectly set
2042  * parents.
2043  */
2044 static inline void mas_descend_adopt(struct ma_state *mas)
2045 {
2046 	struct ma_state list[3], next[3];
2047 	int i, n;
2048 
2049 	/*
2050 	 * At each level there may be up to 3 correct parent pointers which indicates
2051 	 * the new nodes which need to be walked to find any new nodes at a lower level.
2052 	 */
2053 
2054 	for (i = 0; i < 3; i++) {
2055 		list[i] = *mas;
2056 		list[i].offset = 0;
2057 		next[i].offset = 0;
2058 	}
2059 	next[0] = *mas;
2060 
2061 	while (!mte_is_leaf(list[0].node)) {
2062 		n = 0;
2063 		for (i = 0; i < 3; i++) {
2064 			if (mas_is_none(&list[i]))
2065 				continue;
2066 
2067 			if (i && list[i-1].node == list[i].node)
2068 				continue;
2069 
2070 			while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2071 				n++;
2072 
2073 			mas_adopt_children(&list[i], list[i].node);
2074 		}
2075 
2076 		while (n < 3)
2077 			next[n++].node = MAS_NONE;
2078 
2079 		/* descend by setting the list to the children */
2080 		for (i = 0; i < 3; i++)
2081 			list[i] = next[i];
2082 	}
2083 }
2084 
2085 /*
2086  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2087  * @mas: The maple state
2088  * @end: The maple node end
2089  * @mt: The maple node type
2090  */
2091 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2092 				      enum maple_type mt)
2093 {
2094 	if (!(mas->mas_flags & MA_STATE_BULK))
2095 		return;
2096 
2097 	if (mte_is_root(mas->node))
2098 		return;
2099 
2100 	if (end > mt_min_slots[mt]) {
2101 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2102 		return;
2103 	}
2104 }
2105 
2106 /*
2107  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2108  * data from a maple encoded node.
2109  * @wr_mas: the maple write state
2110  * @b_node: the maple_big_node to fill with data
2111  * @offset_end: the offset to end copying
2112  *
2113  * Return: The actual end of the data stored in @b_node
2114  */
2115 static inline void mas_store_b_node(struct ma_wr_state *wr_mas,
2116 		struct maple_big_node *b_node, unsigned char offset_end)
2117 {
2118 	unsigned char slot;
2119 	unsigned char b_end;
2120 	/* Possible underflow of piv will wrap back to 0 before use. */
2121 	unsigned long piv;
2122 	struct ma_state *mas = wr_mas->mas;
2123 
2124 	b_node->type = wr_mas->type;
2125 	b_end = 0;
2126 	slot = mas->offset;
2127 	if (slot) {
2128 		/* Copy start data up to insert. */
2129 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2130 		b_end = b_node->b_end;
2131 		piv = b_node->pivot[b_end - 1];
2132 	} else
2133 		piv = mas->min - 1;
2134 
2135 	if (piv + 1 < mas->index) {
2136 		/* Handle range starting after old range */
2137 		b_node->slot[b_end] = wr_mas->content;
2138 		if (!wr_mas->content)
2139 			b_node->gap[b_end] = mas->index - 1 - piv;
2140 		b_node->pivot[b_end++] = mas->index - 1;
2141 	}
2142 
2143 	/* Store the new entry. */
2144 	mas->offset = b_end;
2145 	b_node->slot[b_end] = wr_mas->entry;
2146 	b_node->pivot[b_end] = mas->last;
2147 
2148 	/* Appended. */
2149 	if (mas->last >= mas->max)
2150 		goto b_end;
2151 
2152 	/* Handle new range ending before old range ends */
2153 	piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2154 	if (piv > mas->last) {
2155 		if (piv == ULONG_MAX)
2156 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2157 
2158 		if (offset_end != slot)
2159 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2160 							  offset_end);
2161 
2162 		b_node->slot[++b_end] = wr_mas->content;
2163 		if (!wr_mas->content)
2164 			b_node->gap[b_end] = piv - mas->last + 1;
2165 		b_node->pivot[b_end] = piv;
2166 	}
2167 
2168 	slot = offset_end + 1;
2169 	if (slot > wr_mas->node_end)
2170 		goto b_end;
2171 
2172 	/* Copy end data to the end of the node. */
2173 	mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2174 	b_node->b_end--;
2175 	return;
2176 
2177 b_end:
2178 	b_node->b_end = b_end;
2179 }
2180 
2181 /*
2182  * mas_prev_sibling() - Find the previous node with the same parent.
2183  * @mas: the maple state
2184  *
2185  * Return: True if there is a previous sibling, false otherwise.
2186  */
2187 static inline bool mas_prev_sibling(struct ma_state *mas)
2188 {
2189 	unsigned int p_slot = mte_parent_slot(mas->node);
2190 
2191 	if (mte_is_root(mas->node))
2192 		return false;
2193 
2194 	if (!p_slot)
2195 		return false;
2196 
2197 	mas_ascend(mas);
2198 	mas->offset = p_slot - 1;
2199 	mas_descend(mas);
2200 	return true;
2201 }
2202 
2203 /*
2204  * mas_next_sibling() - Find the next node with the same parent.
2205  * @mas: the maple state
2206  *
2207  * Return: true if there is a next sibling, false otherwise.
2208  */
2209 static inline bool mas_next_sibling(struct ma_state *mas)
2210 {
2211 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2212 
2213 	if (mte_is_root(mas->node))
2214 		return false;
2215 
2216 	parent = *mas;
2217 	mas_ascend(&parent);
2218 	parent.offset = mte_parent_slot(mas->node) + 1;
2219 	if (parent.offset > mas_data_end(&parent))
2220 		return false;
2221 
2222 	*mas = parent;
2223 	mas_descend(mas);
2224 	return true;
2225 }
2226 
2227 /*
2228  * mte_node_or_node() - Return the encoded node or MAS_NONE.
2229  * @enode: The encoded maple node.
2230  *
2231  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2232  *
2233  * Return: @enode or MAS_NONE
2234  */
2235 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2236 {
2237 	if (enode)
2238 		return enode;
2239 
2240 	return ma_enode_ptr(MAS_NONE);
2241 }
2242 
2243 /*
2244  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2245  * @wr_mas: The maple write state
2246  *
2247  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2248  */
2249 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2250 {
2251 	struct ma_state *mas = wr_mas->mas;
2252 	unsigned char count;
2253 	unsigned char offset;
2254 	unsigned long index, min, max;
2255 
2256 	if (unlikely(ma_is_dense(wr_mas->type))) {
2257 		wr_mas->r_max = wr_mas->r_min = mas->index;
2258 		mas->offset = mas->index = mas->min;
2259 		return;
2260 	}
2261 
2262 	wr_mas->node = mas_mn(wr_mas->mas);
2263 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2264 	count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2265 					       wr_mas->pivots, mas->max);
2266 	offset = mas->offset;
2267 	min = mas_safe_min(mas, wr_mas->pivots, offset);
2268 	if (unlikely(offset == count))
2269 		goto max;
2270 
2271 	max = wr_mas->pivots[offset];
2272 	index = mas->index;
2273 	if (unlikely(index <= max))
2274 		goto done;
2275 
2276 	if (unlikely(!max && offset))
2277 		goto max;
2278 
2279 	min = max + 1;
2280 	while (++offset < count) {
2281 		max = wr_mas->pivots[offset];
2282 		if (index <= max)
2283 			goto done;
2284 		else if (unlikely(!max))
2285 			break;
2286 
2287 		min = max + 1;
2288 	}
2289 
2290 max:
2291 	max = mas->max;
2292 done:
2293 	wr_mas->r_max = max;
2294 	wr_mas->r_min = min;
2295 	wr_mas->offset_end = mas->offset = offset;
2296 }
2297 
2298 /*
2299  * mas_topiary_range() - Add a range of slots to the topiary.
2300  * @mas: The maple state
2301  * @destroy: The topiary to add the slots (usually destroy)
2302  * @start: The starting slot inclusively
2303  * @end: The end slot inclusively
2304  */
2305 static inline void mas_topiary_range(struct ma_state *mas,
2306 	struct ma_topiary *destroy, unsigned char start, unsigned char end)
2307 {
2308 	void __rcu **slots;
2309 	unsigned char offset;
2310 
2311 	MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2312 	slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2313 	for (offset = start; offset <= end; offset++) {
2314 		struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2315 
2316 		if (mte_dead_node(enode))
2317 			continue;
2318 
2319 		mat_add(destroy, enode);
2320 	}
2321 }
2322 
2323 /*
2324  * mast_topiary() - Add the portions of the tree to the removal list; either to
2325  * be freed or discarded (destroy walk).
2326  * @mast: The maple_subtree_state.
2327  */
2328 static inline void mast_topiary(struct maple_subtree_state *mast)
2329 {
2330 	MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2331 	unsigned char r_start, r_end;
2332 	unsigned char l_start, l_end;
2333 	void __rcu **l_slots, **r_slots;
2334 
2335 	wr_mas.type = mte_node_type(mast->orig_l->node);
2336 	mast->orig_l->index = mast->orig_l->last;
2337 	mas_wr_node_walk(&wr_mas);
2338 	l_start = mast->orig_l->offset + 1;
2339 	l_end = mas_data_end(mast->orig_l);
2340 	r_start = 0;
2341 	r_end = mast->orig_r->offset;
2342 
2343 	if (r_end)
2344 		r_end--;
2345 
2346 	l_slots = ma_slots(mas_mn(mast->orig_l),
2347 			   mte_node_type(mast->orig_l->node));
2348 
2349 	r_slots = ma_slots(mas_mn(mast->orig_r),
2350 			   mte_node_type(mast->orig_r->node));
2351 
2352 	if ((l_start < l_end) &&
2353 	    mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2354 		l_start++;
2355 	}
2356 
2357 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2358 		if (r_end)
2359 			r_end--;
2360 	}
2361 
2362 	if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2363 		return;
2364 
2365 	/* At the node where left and right sides meet, add the parts between */
2366 	if (mast->orig_l->node == mast->orig_r->node) {
2367 		return mas_topiary_range(mast->orig_l, mast->destroy,
2368 					     l_start, r_end);
2369 	}
2370 
2371 	/* mast->orig_r is different and consumed. */
2372 	if (mte_is_leaf(mast->orig_r->node))
2373 		return;
2374 
2375 	if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2376 		l_end--;
2377 
2378 
2379 	if (l_start <= l_end)
2380 		mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2381 
2382 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2383 		r_start++;
2384 
2385 	if (r_start <= r_end)
2386 		mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2387 }
2388 
2389 /*
2390  * mast_rebalance_next() - Rebalance against the next node
2391  * @mast: The maple subtree state
2392  * @old_r: The encoded maple node to the right (next node).
2393  */
2394 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2395 {
2396 	unsigned char b_end = mast->bn->b_end;
2397 
2398 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2399 		   mast->bn, b_end);
2400 	mast->orig_r->last = mast->orig_r->max;
2401 }
2402 
2403 /*
2404  * mast_rebalance_prev() - Rebalance against the previous node
2405  * @mast: The maple subtree state
2406  * @old_l: The encoded maple node to the left (previous node)
2407  */
2408 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2409 {
2410 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2411 	unsigned char b_end = mast->bn->b_end;
2412 
2413 	mab_shift_right(mast->bn, end);
2414 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2415 	mast->l->min = mast->orig_l->min;
2416 	mast->orig_l->index = mast->orig_l->min;
2417 	mast->bn->b_end = end + b_end;
2418 	mast->l->offset += end;
2419 }
2420 
2421 /*
2422  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2423  * the node to the right.  Checking the nodes to the right then the left at each
2424  * level upwards until root is reached.  Free and destroy as needed.
2425  * Data is copied into the @mast->bn.
2426  * @mast: The maple_subtree_state.
2427  */
2428 static inline
2429 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2430 {
2431 	struct ma_state r_tmp = *mast->orig_r;
2432 	struct ma_state l_tmp = *mast->orig_l;
2433 	struct maple_enode *ancestor = NULL;
2434 	unsigned char start, end;
2435 	unsigned char depth = 0;
2436 
2437 	r_tmp = *mast->orig_r;
2438 	l_tmp = *mast->orig_l;
2439 	do {
2440 		mas_ascend(mast->orig_r);
2441 		mas_ascend(mast->orig_l);
2442 		depth++;
2443 		if (!ancestor &&
2444 		    (mast->orig_r->node == mast->orig_l->node)) {
2445 			ancestor = mast->orig_r->node;
2446 			end = mast->orig_r->offset - 1;
2447 			start = mast->orig_l->offset + 1;
2448 		}
2449 
2450 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2451 			if (!ancestor) {
2452 				ancestor = mast->orig_r->node;
2453 				start = 0;
2454 			}
2455 
2456 			mast->orig_r->offset++;
2457 			do {
2458 				mas_descend(mast->orig_r);
2459 				mast->orig_r->offset = 0;
2460 				depth--;
2461 			} while (depth);
2462 
2463 			mast_rebalance_next(mast);
2464 			do {
2465 				unsigned char l_off = 0;
2466 				struct maple_enode *child = r_tmp.node;
2467 
2468 				mas_ascend(&r_tmp);
2469 				if (ancestor == r_tmp.node)
2470 					l_off = start;
2471 
2472 				if (r_tmp.offset)
2473 					r_tmp.offset--;
2474 
2475 				if (l_off < r_tmp.offset)
2476 					mas_topiary_range(&r_tmp, mast->destroy,
2477 							  l_off, r_tmp.offset);
2478 
2479 				if (l_tmp.node != child)
2480 					mat_add(mast->free, child);
2481 
2482 			} while (r_tmp.node != ancestor);
2483 
2484 			*mast->orig_l = l_tmp;
2485 			return true;
2486 
2487 		} else if (mast->orig_l->offset != 0) {
2488 			if (!ancestor) {
2489 				ancestor = mast->orig_l->node;
2490 				end = mas_data_end(mast->orig_l);
2491 			}
2492 
2493 			mast->orig_l->offset--;
2494 			do {
2495 				mas_descend(mast->orig_l);
2496 				mast->orig_l->offset =
2497 					mas_data_end(mast->orig_l);
2498 				depth--;
2499 			} while (depth);
2500 
2501 			mast_rebalance_prev(mast);
2502 			do {
2503 				unsigned char r_off;
2504 				struct maple_enode *child = l_tmp.node;
2505 
2506 				mas_ascend(&l_tmp);
2507 				if (ancestor == l_tmp.node)
2508 					r_off = end;
2509 				else
2510 					r_off = mas_data_end(&l_tmp);
2511 
2512 				if (l_tmp.offset < r_off)
2513 					l_tmp.offset++;
2514 
2515 				if (l_tmp.offset < r_off)
2516 					mas_topiary_range(&l_tmp, mast->destroy,
2517 							  l_tmp.offset, r_off);
2518 
2519 				if (r_tmp.node != child)
2520 					mat_add(mast->free, child);
2521 
2522 			} while (l_tmp.node != ancestor);
2523 
2524 			*mast->orig_r = r_tmp;
2525 			return true;
2526 		}
2527 	} while (!mte_is_root(mast->orig_r->node));
2528 
2529 	*mast->orig_r = r_tmp;
2530 	*mast->orig_l = l_tmp;
2531 	return false;
2532 }
2533 
2534 /*
2535  * mast_ascend_free() - Add current original maple state nodes to the free list
2536  * and ascend.
2537  * @mast: the maple subtree state.
2538  *
2539  * Ascend the original left and right sides and add the previous nodes to the
2540  * free list.  Set the slots to point to the correct location in the new nodes.
2541  */
2542 static inline void
2543 mast_ascend_free(struct maple_subtree_state *mast)
2544 {
2545 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2546 	struct maple_enode *left = mast->orig_l->node;
2547 	struct maple_enode *right = mast->orig_r->node;
2548 
2549 	mas_ascend(mast->orig_l);
2550 	mas_ascend(mast->orig_r);
2551 	mat_add(mast->free, left);
2552 
2553 	if (left != right)
2554 		mat_add(mast->free, right);
2555 
2556 	mast->orig_r->offset = 0;
2557 	mast->orig_r->index = mast->r->max;
2558 	/* last should be larger than or equal to index */
2559 	if (mast->orig_r->last < mast->orig_r->index)
2560 		mast->orig_r->last = mast->orig_r->index;
2561 	/*
2562 	 * The node may not contain the value so set slot to ensure all
2563 	 * of the nodes contents are freed or destroyed.
2564 	 */
2565 	wr_mas.type = mte_node_type(mast->orig_r->node);
2566 	mas_wr_node_walk(&wr_mas);
2567 	/* Set up the left side of things */
2568 	mast->orig_l->offset = 0;
2569 	mast->orig_l->index = mast->l->min;
2570 	wr_mas.mas = mast->orig_l;
2571 	wr_mas.type = mte_node_type(mast->orig_l->node);
2572 	mas_wr_node_walk(&wr_mas);
2573 
2574 	mast->bn->type = wr_mas.type;
2575 }
2576 
2577 /*
2578  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2579  * @mas: the maple state with the allocations.
2580  * @b_node: the maple_big_node with the type encoding.
2581  *
2582  * Use the node type from the maple_big_node to allocate a new node from the
2583  * ma_state.  This function exists mainly for code readability.
2584  *
2585  * Return: A new maple encoded node
2586  */
2587 static inline struct maple_enode
2588 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2589 {
2590 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2591 }
2592 
2593 /*
2594  * mas_mab_to_node() - Set up right and middle nodes
2595  *
2596  * @mas: the maple state that contains the allocations.
2597  * @b_node: the node which contains the data.
2598  * @left: The pointer which will have the left node
2599  * @right: The pointer which may have the right node
2600  * @middle: the pointer which may have the middle node (rare)
2601  * @mid_split: the split location for the middle node
2602  *
2603  * Return: the split of left.
2604  */
2605 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2606 	struct maple_big_node *b_node, struct maple_enode **left,
2607 	struct maple_enode **right, struct maple_enode **middle,
2608 	unsigned char *mid_split, unsigned long min)
2609 {
2610 	unsigned char split = 0;
2611 	unsigned char slot_count = mt_slots[b_node->type];
2612 
2613 	*left = mas_new_ma_node(mas, b_node);
2614 	*right = NULL;
2615 	*middle = NULL;
2616 	*mid_split = 0;
2617 
2618 	if (b_node->b_end < slot_count) {
2619 		split = b_node->b_end;
2620 	} else {
2621 		split = mab_calc_split(mas, b_node, mid_split, min);
2622 		*right = mas_new_ma_node(mas, b_node);
2623 	}
2624 
2625 	if (*mid_split)
2626 		*middle = mas_new_ma_node(mas, b_node);
2627 
2628 	return split;
2629 
2630 }
2631 
2632 /*
2633  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2634  * pointer.
2635  * @b_node - the big node to add the entry
2636  * @mas - the maple state to get the pivot (mas->max)
2637  * @entry - the entry to add, if NULL nothing happens.
2638  */
2639 static inline void mab_set_b_end(struct maple_big_node *b_node,
2640 				 struct ma_state *mas,
2641 				 void *entry)
2642 {
2643 	if (!entry)
2644 		return;
2645 
2646 	b_node->slot[b_node->b_end] = entry;
2647 	if (mt_is_alloc(mas->tree))
2648 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2649 	b_node->pivot[b_node->b_end++] = mas->max;
2650 }
2651 
2652 /*
2653  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2654  * of @mas->node to either @left or @right, depending on @slot and @split
2655  *
2656  * @mas - the maple state with the node that needs a parent
2657  * @left - possible parent 1
2658  * @right - possible parent 2
2659  * @slot - the slot the mas->node was placed
2660  * @split - the split location between @left and @right
2661  */
2662 static inline void mas_set_split_parent(struct ma_state *mas,
2663 					struct maple_enode *left,
2664 					struct maple_enode *right,
2665 					unsigned char *slot, unsigned char split)
2666 {
2667 	if (mas_is_none(mas))
2668 		return;
2669 
2670 	if ((*slot) <= split)
2671 		mte_set_parent(mas->node, left, *slot);
2672 	else if (right)
2673 		mte_set_parent(mas->node, right, (*slot) - split - 1);
2674 
2675 	(*slot)++;
2676 }
2677 
2678 /*
2679  * mte_mid_split_check() - Check if the next node passes the mid-split
2680  * @**l: Pointer to left encoded maple node.
2681  * @**m: Pointer to middle encoded maple node.
2682  * @**r: Pointer to right encoded maple node.
2683  * @slot: The offset
2684  * @*split: The split location.
2685  * @mid_split: The middle split.
2686  */
2687 static inline void mte_mid_split_check(struct maple_enode **l,
2688 				       struct maple_enode **r,
2689 				       struct maple_enode *right,
2690 				       unsigned char slot,
2691 				       unsigned char *split,
2692 				       unsigned char mid_split)
2693 {
2694 	if (*r == right)
2695 		return;
2696 
2697 	if (slot < mid_split)
2698 		return;
2699 
2700 	*l = *r;
2701 	*r = right;
2702 	*split = mid_split;
2703 }
2704 
2705 /*
2706  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2707  * is taken from @mast->l.
2708  * @mast - the maple subtree state
2709  * @left - the left node
2710  * @right - the right node
2711  * @split - the split location.
2712  */
2713 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2714 					  struct maple_enode *left,
2715 					  struct maple_enode *middle,
2716 					  struct maple_enode *right,
2717 					  unsigned char split,
2718 					  unsigned char mid_split)
2719 {
2720 	unsigned char slot;
2721 	struct maple_enode *l = left;
2722 	struct maple_enode *r = right;
2723 
2724 	if (mas_is_none(mast->l))
2725 		return;
2726 
2727 	if (middle)
2728 		r = middle;
2729 
2730 	slot = mast->l->offset;
2731 
2732 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2733 	mas_set_split_parent(mast->l, l, r, &slot, split);
2734 
2735 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2736 	mas_set_split_parent(mast->m, l, r, &slot, split);
2737 
2738 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2739 	mas_set_split_parent(mast->r, l, r, &slot, split);
2740 }
2741 
2742 /*
2743  * mas_wmb_replace() - Write memory barrier and replace
2744  * @mas: The maple state
2745  * @free: the maple topiary list of nodes to free
2746  * @destroy: The maple topiary list of nodes to destroy (walk and free)
2747  *
2748  * Updates gap as necessary.
2749  */
2750 static inline void mas_wmb_replace(struct ma_state *mas,
2751 				   struct ma_topiary *free,
2752 				   struct ma_topiary *destroy)
2753 {
2754 	/* All nodes must see old data as dead prior to replacing that data */
2755 	smp_wmb(); /* Needed for RCU */
2756 
2757 	/* Insert the new data in the tree */
2758 	mas_replace(mas, true);
2759 
2760 	if (!mte_is_leaf(mas->node))
2761 		mas_descend_adopt(mas);
2762 
2763 	mas_mat_free(mas, free);
2764 
2765 	if (destroy)
2766 		mas_mat_destroy(mas, destroy);
2767 
2768 	if (mte_is_leaf(mas->node))
2769 		return;
2770 
2771 	mas_update_gap(mas);
2772 }
2773 
2774 /*
2775  * mast_new_root() - Set a new tree root during subtree creation
2776  * @mast: The maple subtree state
2777  * @mas: The maple state
2778  */
2779 static inline void mast_new_root(struct maple_subtree_state *mast,
2780 				 struct ma_state *mas)
2781 {
2782 	mas_mn(mast->l)->parent =
2783 		ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2784 	if (!mte_dead_node(mast->orig_l->node) &&
2785 	    !mte_is_root(mast->orig_l->node)) {
2786 		do {
2787 			mast_ascend_free(mast);
2788 			mast_topiary(mast);
2789 		} while (!mte_is_root(mast->orig_l->node));
2790 	}
2791 	if ((mast->orig_l->node != mas->node) &&
2792 		   (mast->l->depth > mas_mt_height(mas))) {
2793 		mat_add(mast->free, mas->node);
2794 	}
2795 }
2796 
2797 /*
2798  * mast_cp_to_nodes() - Copy data out to nodes.
2799  * @mast: The maple subtree state
2800  * @left: The left encoded maple node
2801  * @middle: The middle encoded maple node
2802  * @right: The right encoded maple node
2803  * @split: The location to split between left and (middle ? middle : right)
2804  * @mid_split: The location to split between middle and right.
2805  */
2806 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2807 	struct maple_enode *left, struct maple_enode *middle,
2808 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2809 {
2810 	bool new_lmax = true;
2811 
2812 	mast->l->node = mte_node_or_none(left);
2813 	mast->m->node = mte_node_or_none(middle);
2814 	mast->r->node = mte_node_or_none(right);
2815 
2816 	mast->l->min = mast->orig_l->min;
2817 	if (split == mast->bn->b_end) {
2818 		mast->l->max = mast->orig_r->max;
2819 		new_lmax = false;
2820 	}
2821 
2822 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2823 
2824 	if (middle) {
2825 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2826 		mast->m->min = mast->bn->pivot[split] + 1;
2827 		split = mid_split;
2828 	}
2829 
2830 	mast->r->max = mast->orig_r->max;
2831 	if (right) {
2832 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2833 		mast->r->min = mast->bn->pivot[split] + 1;
2834 	}
2835 }
2836 
2837 /*
2838  * mast_combine_cp_left - Copy in the original left side of the tree into the
2839  * combined data set in the maple subtree state big node.
2840  * @mast: The maple subtree state
2841  */
2842 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2843 {
2844 	unsigned char l_slot = mast->orig_l->offset;
2845 
2846 	if (!l_slot)
2847 		return;
2848 
2849 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2850 }
2851 
2852 /*
2853  * mast_combine_cp_right: Copy in the original right side of the tree into the
2854  * combined data set in the maple subtree state big node.
2855  * @mast: The maple subtree state
2856  */
2857 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2858 {
2859 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2860 		return;
2861 
2862 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2863 		   mt_slot_count(mast->orig_r->node), mast->bn,
2864 		   mast->bn->b_end);
2865 	mast->orig_r->last = mast->orig_r->max;
2866 }
2867 
2868 /*
2869  * mast_sufficient: Check if the maple subtree state has enough data in the big
2870  * node to create at least one sufficient node
2871  * @mast: the maple subtree state
2872  */
2873 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2874 {
2875 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2876 		return true;
2877 
2878 	return false;
2879 }
2880 
2881 /*
2882  * mast_overflow: Check if there is too much data in the subtree state for a
2883  * single node.
2884  * @mast: The maple subtree state
2885  */
2886 static inline bool mast_overflow(struct maple_subtree_state *mast)
2887 {
2888 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2889 		return true;
2890 
2891 	return false;
2892 }
2893 
2894 static inline void *mtree_range_walk(struct ma_state *mas)
2895 {
2896 	unsigned long *pivots;
2897 	unsigned char offset;
2898 	struct maple_node *node;
2899 	struct maple_enode *next, *last;
2900 	enum maple_type type;
2901 	void __rcu **slots;
2902 	unsigned char end;
2903 	unsigned long max, min;
2904 	unsigned long prev_max, prev_min;
2905 
2906 	next = mas->node;
2907 	min = mas->min;
2908 	max = mas->max;
2909 	do {
2910 		offset = 0;
2911 		last = next;
2912 		node = mte_to_node(next);
2913 		type = mte_node_type(next);
2914 		pivots = ma_pivots(node, type);
2915 		end = ma_data_end(node, type, pivots, max);
2916 		if (unlikely(ma_dead_node(node)))
2917 			goto dead_node;
2918 
2919 		if (pivots[offset] >= mas->index) {
2920 			prev_max = max;
2921 			prev_min = min;
2922 			max = pivots[offset];
2923 			goto next;
2924 		}
2925 
2926 		do {
2927 			offset++;
2928 		} while ((offset < end) && (pivots[offset] < mas->index));
2929 
2930 		prev_min = min;
2931 		min = pivots[offset - 1] + 1;
2932 		prev_max = max;
2933 		if (likely(offset < end && pivots[offset]))
2934 			max = pivots[offset];
2935 
2936 next:
2937 		slots = ma_slots(node, type);
2938 		next = mt_slot(mas->tree, slots, offset);
2939 		if (unlikely(ma_dead_node(node)))
2940 			goto dead_node;
2941 	} while (!ma_is_leaf(type));
2942 
2943 	mas->offset = offset;
2944 	mas->index = min;
2945 	mas->last = max;
2946 	mas->min = prev_min;
2947 	mas->max = prev_max;
2948 	mas->node = last;
2949 	return (void *) next;
2950 
2951 dead_node:
2952 	mas_reset(mas);
2953 	return NULL;
2954 }
2955 
2956 /*
2957  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2958  * @mas: The starting maple state
2959  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2960  * @count: The estimated count of iterations needed.
2961  *
2962  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2963  * is hit.  First @b_node is split into two entries which are inserted into the
2964  * next iteration of the loop.  @b_node is returned populated with the final
2965  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2966  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2967  * to account of what has been copied into the new sub-tree.  The update of
2968  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2969  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2970  * the new sub-tree in case the sub-tree becomes the full tree.
2971  *
2972  * Return: the number of elements in b_node during the last loop.
2973  */
2974 static int mas_spanning_rebalance(struct ma_state *mas,
2975 		struct maple_subtree_state *mast, unsigned char count)
2976 {
2977 	unsigned char split, mid_split;
2978 	unsigned char slot = 0;
2979 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2980 
2981 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2982 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2983 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2984 	MA_TOPIARY(free, mas->tree);
2985 	MA_TOPIARY(destroy, mas->tree);
2986 
2987 	/*
2988 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2989 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2990 	 */
2991 	mast->l = &l_mas;
2992 	mast->m = &m_mas;
2993 	mast->r = &r_mas;
2994 	mast->free = &free;
2995 	mast->destroy = &destroy;
2996 	l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2997 	if (!(mast->orig_l->min && mast->orig_r->max == ULONG_MAX) &&
2998 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2999 		mast_spanning_rebalance(mast);
3000 
3001 	mast->orig_l->depth = 0;
3002 
3003 	/*
3004 	 * Each level of the tree is examined and balanced, pushing data to the left or
3005 	 * right, or rebalancing against left or right nodes is employed to avoid
3006 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
3007 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
3008 	 * will have the incorrect parent pointers and currently be in two trees: the
3009 	 * original tree and the partially new tree.  To remedy the parent pointers in
3010 	 * the old tree, the new data is swapped into the active tree and a walk down
3011 	 * the tree is performed and the parent pointers are updated.
3012 	 * See mas_descend_adopt() for more information..
3013 	 */
3014 	while (count--) {
3015 		mast->bn->b_end--;
3016 		mast->bn->type = mte_node_type(mast->orig_l->node);
3017 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3018 					&mid_split, mast->orig_l->min);
3019 		mast_set_split_parents(mast, left, middle, right, split,
3020 				       mid_split);
3021 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3022 
3023 		/*
3024 		 * Copy data from next level in the tree to mast->bn from next
3025 		 * iteration
3026 		 */
3027 		memset(mast->bn, 0, sizeof(struct maple_big_node));
3028 		mast->bn->type = mte_node_type(left);
3029 		mast->orig_l->depth++;
3030 
3031 		/* Root already stored in l->node. */
3032 		if (mas_is_root_limits(mast->l))
3033 			goto new_root;
3034 
3035 		mast_ascend_free(mast);
3036 		mast_combine_cp_left(mast);
3037 		l_mas.offset = mast->bn->b_end;
3038 		mab_set_b_end(mast->bn, &l_mas, left);
3039 		mab_set_b_end(mast->bn, &m_mas, middle);
3040 		mab_set_b_end(mast->bn, &r_mas, right);
3041 
3042 		/* Copy anything necessary out of the right node. */
3043 		mast_combine_cp_right(mast);
3044 		mast_topiary(mast);
3045 		mast->orig_l->last = mast->orig_l->max;
3046 
3047 		if (mast_sufficient(mast))
3048 			continue;
3049 
3050 		if (mast_overflow(mast))
3051 			continue;
3052 
3053 		/* May be a new root stored in mast->bn */
3054 		if (mas_is_root_limits(mast->orig_l))
3055 			break;
3056 
3057 		mast_spanning_rebalance(mast);
3058 
3059 		/* rebalancing from other nodes may require another loop. */
3060 		if (!count)
3061 			count++;
3062 	}
3063 
3064 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3065 				mte_node_type(mast->orig_l->node));
3066 	mast->orig_l->depth++;
3067 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3068 	mte_set_parent(left, l_mas.node, slot);
3069 	if (middle)
3070 		mte_set_parent(middle, l_mas.node, ++slot);
3071 
3072 	if (right)
3073 		mte_set_parent(right, l_mas.node, ++slot);
3074 
3075 	if (mas_is_root_limits(mast->l)) {
3076 new_root:
3077 		mast_new_root(mast, mas);
3078 	} else {
3079 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3080 	}
3081 
3082 	if (!mte_dead_node(mast->orig_l->node))
3083 		mat_add(&free, mast->orig_l->node);
3084 
3085 	mas->depth = mast->orig_l->depth;
3086 	*mast->orig_l = l_mas;
3087 	mte_set_node_dead(mas->node);
3088 
3089 	/* Set up mas for insertion. */
3090 	mast->orig_l->depth = mas->depth;
3091 	mast->orig_l->alloc = mas->alloc;
3092 	*mas = *mast->orig_l;
3093 	mas_wmb_replace(mas, &free, &destroy);
3094 	mtree_range_walk(mas);
3095 	return mast->bn->b_end;
3096 }
3097 
3098 /*
3099  * mas_rebalance() - Rebalance a given node.
3100  * @mas: The maple state
3101  * @b_node: The big maple node.
3102  *
3103  * Rebalance two nodes into a single node or two new nodes that are sufficient.
3104  * Continue upwards until tree is sufficient.
3105  *
3106  * Return: the number of elements in b_node during the last loop.
3107  */
3108 static inline int mas_rebalance(struct ma_state *mas,
3109 				struct maple_big_node *b_node)
3110 {
3111 	char empty_count = mas_mt_height(mas);
3112 	struct maple_subtree_state mast;
3113 	unsigned char shift, b_end = ++b_node->b_end;
3114 
3115 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3116 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3117 
3118 	trace_ma_op(__func__, mas);
3119 
3120 	/*
3121 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
3122 	 * against the node to the right if it exists, otherwise the node to the
3123 	 * left of this node is rebalanced against this node.  If rebalancing
3124 	 * causes just one node to be produced instead of two, then the parent
3125 	 * is also examined and rebalanced if it is insufficient.  Every level
3126 	 * tries to combine the data in the same way.  If one node contains the
3127 	 * entire range of the tree, then that node is used as a new root node.
3128 	 */
3129 	mas_node_count(mas, 1 + empty_count * 3);
3130 	if (mas_is_err(mas))
3131 		return 0;
3132 
3133 	mast.orig_l = &l_mas;
3134 	mast.orig_r = &r_mas;
3135 	mast.bn = b_node;
3136 	mast.bn->type = mte_node_type(mas->node);
3137 
3138 	l_mas = r_mas = *mas;
3139 
3140 	if (mas_next_sibling(&r_mas)) {
3141 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3142 		r_mas.last = r_mas.index = r_mas.max;
3143 	} else {
3144 		mas_prev_sibling(&l_mas);
3145 		shift = mas_data_end(&l_mas) + 1;
3146 		mab_shift_right(b_node, shift);
3147 		mas->offset += shift;
3148 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3149 		b_node->b_end = shift + b_end;
3150 		l_mas.index = l_mas.last = l_mas.min;
3151 	}
3152 
3153 	return mas_spanning_rebalance(mas, &mast, empty_count);
3154 }
3155 
3156 /*
3157  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3158  * state.
3159  * @mas: The maple state
3160  * @end: The end of the left-most node.
3161  *
3162  * During a mass-insert event (such as forking), it may be necessary to
3163  * rebalance the left-most node when it is not sufficient.
3164  */
3165 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3166 {
3167 	enum maple_type mt = mte_node_type(mas->node);
3168 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3169 	struct maple_enode *eparent;
3170 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3171 	void __rcu **l_slots, **slots;
3172 	unsigned long *l_pivs, *pivs, gap;
3173 	bool in_rcu = mt_in_rcu(mas->tree);
3174 
3175 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3176 
3177 	l_mas = *mas;
3178 	mas_prev_sibling(&l_mas);
3179 
3180 	/* set up node. */
3181 	if (in_rcu) {
3182 		/* Allocate for both left and right as well as parent. */
3183 		mas_node_count(mas, 3);
3184 		if (mas_is_err(mas))
3185 			return;
3186 
3187 		newnode = mas_pop_node(mas);
3188 	} else {
3189 		newnode = &reuse;
3190 	}
3191 
3192 	node = mas_mn(mas);
3193 	newnode->parent = node->parent;
3194 	slots = ma_slots(newnode, mt);
3195 	pivs = ma_pivots(newnode, mt);
3196 	left = mas_mn(&l_mas);
3197 	l_slots = ma_slots(left, mt);
3198 	l_pivs = ma_pivots(left, mt);
3199 	if (!l_slots[split])
3200 		split++;
3201 	tmp = mas_data_end(&l_mas) - split;
3202 
3203 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3204 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3205 	pivs[tmp] = l_mas.max;
3206 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3207 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3208 
3209 	l_mas.max = l_pivs[split];
3210 	mas->min = l_mas.max + 1;
3211 	eparent = mt_mk_node(mte_parent(l_mas.node),
3212 			     mas_parent_enum(&l_mas, l_mas.node));
3213 	tmp += end;
3214 	if (!in_rcu) {
3215 		unsigned char max_p = mt_pivots[mt];
3216 		unsigned char max_s = mt_slots[mt];
3217 
3218 		if (tmp < max_p)
3219 			memset(pivs + tmp, 0,
3220 			       sizeof(unsigned long *) * (max_p - tmp));
3221 
3222 		if (tmp < mt_slots[mt])
3223 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3224 
3225 		memcpy(node, newnode, sizeof(struct maple_node));
3226 		ma_set_meta(node, mt, 0, tmp - 1);
3227 		mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3228 			      l_pivs[split]);
3229 
3230 		/* Remove data from l_pivs. */
3231 		tmp = split + 1;
3232 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3233 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3234 		ma_set_meta(left, mt, 0, split);
3235 
3236 		goto done;
3237 	}
3238 
3239 	/* RCU requires replacing both l_mas, mas, and parent. */
3240 	mas->node = mt_mk_node(newnode, mt);
3241 	ma_set_meta(newnode, mt, 0, tmp);
3242 
3243 	new_left = mas_pop_node(mas);
3244 	new_left->parent = left->parent;
3245 	mt = mte_node_type(l_mas.node);
3246 	slots = ma_slots(new_left, mt);
3247 	pivs = ma_pivots(new_left, mt);
3248 	memcpy(slots, l_slots, sizeof(void *) * split);
3249 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3250 	ma_set_meta(new_left, mt, 0, split);
3251 	l_mas.node = mt_mk_node(new_left, mt);
3252 
3253 	/* replace parent. */
3254 	offset = mte_parent_slot(mas->node);
3255 	mt = mas_parent_enum(&l_mas, l_mas.node);
3256 	parent = mas_pop_node(mas);
3257 	slots = ma_slots(parent, mt);
3258 	pivs = ma_pivots(parent, mt);
3259 	memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3260 	rcu_assign_pointer(slots[offset], mas->node);
3261 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3262 	pivs[offset - 1] = l_mas.max;
3263 	eparent = mt_mk_node(parent, mt);
3264 done:
3265 	gap = mas_leaf_max_gap(mas);
3266 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3267 	gap = mas_leaf_max_gap(&l_mas);
3268 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3269 	mas_ascend(mas);
3270 
3271 	if (in_rcu)
3272 		mas_replace(mas, false);
3273 
3274 	mas_update_gap(mas);
3275 }
3276 
3277 /*
3278  * mas_split_final_node() - Split the final node in a subtree operation.
3279  * @mast: the maple subtree state
3280  * @mas: The maple state
3281  * @height: The height of the tree in case it's a new root.
3282  */
3283 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3284 					struct ma_state *mas, int height)
3285 {
3286 	struct maple_enode *ancestor;
3287 
3288 	if (mte_is_root(mas->node)) {
3289 		if (mt_is_alloc(mas->tree))
3290 			mast->bn->type = maple_arange_64;
3291 		else
3292 			mast->bn->type = maple_range_64;
3293 		mas->depth = height;
3294 	}
3295 	/*
3296 	 * Only a single node is used here, could be root.
3297 	 * The Big_node data should just fit in a single node.
3298 	 */
3299 	ancestor = mas_new_ma_node(mas, mast->bn);
3300 	mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3301 	mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3302 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3303 
3304 	mast->l->node = ancestor;
3305 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3306 	mas->offset = mast->bn->b_end - 1;
3307 	return true;
3308 }
3309 
3310 /*
3311  * mast_fill_bnode() - Copy data into the big node in the subtree state
3312  * @mast: The maple subtree state
3313  * @mas: the maple state
3314  * @skip: The number of entries to skip for new nodes insertion.
3315  */
3316 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3317 					 struct ma_state *mas,
3318 					 unsigned char skip)
3319 {
3320 	bool cp = true;
3321 	struct maple_enode *old = mas->node;
3322 	unsigned char split;
3323 
3324 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3325 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3326 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3327 	mast->bn->b_end = 0;
3328 
3329 	if (mte_is_root(mas->node)) {
3330 		cp = false;
3331 	} else {
3332 		mas_ascend(mas);
3333 		mat_add(mast->free, old);
3334 		mas->offset = mte_parent_slot(mas->node);
3335 	}
3336 
3337 	if (cp && mast->l->offset)
3338 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3339 
3340 	split = mast->bn->b_end;
3341 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3342 	mast->r->offset = mast->bn->b_end;
3343 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3344 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3345 		cp = false;
3346 
3347 	if (cp)
3348 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3349 			   mast->bn, mast->bn->b_end);
3350 
3351 	mast->bn->b_end--;
3352 	mast->bn->type = mte_node_type(mas->node);
3353 }
3354 
3355 /*
3356  * mast_split_data() - Split the data in the subtree state big node into regular
3357  * nodes.
3358  * @mast: The maple subtree state
3359  * @mas: The maple state
3360  * @split: The location to split the big node
3361  */
3362 static inline void mast_split_data(struct maple_subtree_state *mast,
3363 	   struct ma_state *mas, unsigned char split)
3364 {
3365 	unsigned char p_slot;
3366 
3367 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3368 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3369 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3370 	mast->l->offset = mte_parent_slot(mas->node);
3371 	mast->l->max = mast->bn->pivot[split];
3372 	mast->r->min = mast->l->max + 1;
3373 	if (mte_is_leaf(mas->node))
3374 		return;
3375 
3376 	p_slot = mast->orig_l->offset;
3377 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3378 			     &p_slot, split);
3379 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3380 			     &p_slot, split);
3381 }
3382 
3383 /*
3384  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3385  * data to the right or left node if there is room.
3386  * @mas: The maple state
3387  * @height: The current height of the maple state
3388  * @mast: The maple subtree state
3389  * @left: Push left or not.
3390  *
3391  * Keeping the height of the tree low means faster lookups.
3392  *
3393  * Return: True if pushed, false otherwise.
3394  */
3395 static inline bool mas_push_data(struct ma_state *mas, int height,
3396 				 struct maple_subtree_state *mast, bool left)
3397 {
3398 	unsigned char slot_total = mast->bn->b_end;
3399 	unsigned char end, space, split;
3400 
3401 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3402 	tmp_mas = *mas;
3403 	tmp_mas.depth = mast->l->depth;
3404 
3405 	if (left && !mas_prev_sibling(&tmp_mas))
3406 		return false;
3407 	else if (!left && !mas_next_sibling(&tmp_mas))
3408 		return false;
3409 
3410 	end = mas_data_end(&tmp_mas);
3411 	slot_total += end;
3412 	space = 2 * mt_slot_count(mas->node) - 2;
3413 	/* -2 instead of -1 to ensure there isn't a triple split */
3414 	if (ma_is_leaf(mast->bn->type))
3415 		space--;
3416 
3417 	if (mas->max == ULONG_MAX)
3418 		space--;
3419 
3420 	if (slot_total >= space)
3421 		return false;
3422 
3423 	/* Get the data; Fill mast->bn */
3424 	mast->bn->b_end++;
3425 	if (left) {
3426 		mab_shift_right(mast->bn, end + 1);
3427 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3428 		mast->bn->b_end = slot_total + 1;
3429 	} else {
3430 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3431 	}
3432 
3433 	/* Configure mast for splitting of mast->bn */
3434 	split = mt_slots[mast->bn->type] - 2;
3435 	if (left) {
3436 		/*  Switch mas to prev node  */
3437 		mat_add(mast->free, mas->node);
3438 		*mas = tmp_mas;
3439 		/* Start using mast->l for the left side. */
3440 		tmp_mas.node = mast->l->node;
3441 		*mast->l = tmp_mas;
3442 	} else {
3443 		mat_add(mast->free, tmp_mas.node);
3444 		tmp_mas.node = mast->r->node;
3445 		*mast->r = tmp_mas;
3446 		split = slot_total - split;
3447 	}
3448 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3449 	/* Update parent slot for split calculation. */
3450 	if (left)
3451 		mast->orig_l->offset += end + 1;
3452 
3453 	mast_split_data(mast, mas, split);
3454 	mast_fill_bnode(mast, mas, 2);
3455 	mas_split_final_node(mast, mas, height + 1);
3456 	return true;
3457 }
3458 
3459 /*
3460  * mas_split() - Split data that is too big for one node into two.
3461  * @mas: The maple state
3462  * @b_node: The maple big node
3463  * Return: 1 on success, 0 on failure.
3464  */
3465 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3466 {
3467 
3468 	struct maple_subtree_state mast;
3469 	int height = 0;
3470 	unsigned char mid_split, split = 0;
3471 
3472 	/*
3473 	 * Splitting is handled differently from any other B-tree; the Maple
3474 	 * Tree splits upwards.  Splitting up means that the split operation
3475 	 * occurs when the walk of the tree hits the leaves and not on the way
3476 	 * down.  The reason for splitting up is that it is impossible to know
3477 	 * how much space will be needed until the leaf is (or leaves are)
3478 	 * reached.  Since overwriting data is allowed and a range could
3479 	 * overwrite more than one range or result in changing one entry into 3
3480 	 * entries, it is impossible to know if a split is required until the
3481 	 * data is examined.
3482 	 *
3483 	 * Splitting is a balancing act between keeping allocations to a minimum
3484 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3485 	 * for an entry followed by a contraction when the entry is removed.  To
3486 	 * accomplish the balance, there are empty slots remaining in both left
3487 	 * and right nodes after a split.
3488 	 */
3489 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3490 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3491 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3492 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3493 	MA_TOPIARY(mat, mas->tree);
3494 
3495 	trace_ma_op(__func__, mas);
3496 	mas->depth = mas_mt_height(mas);
3497 	/* Allocation failures will happen early. */
3498 	mas_node_count(mas, 1 + mas->depth * 2);
3499 	if (mas_is_err(mas))
3500 		return 0;
3501 
3502 	mast.l = &l_mas;
3503 	mast.r = &r_mas;
3504 	mast.orig_l = &prev_l_mas;
3505 	mast.orig_r = &prev_r_mas;
3506 	mast.free = &mat;
3507 	mast.bn = b_node;
3508 
3509 	while (height++ <= mas->depth) {
3510 		if (mt_slots[b_node->type] > b_node->b_end) {
3511 			mas_split_final_node(&mast, mas, height);
3512 			break;
3513 		}
3514 
3515 		l_mas = r_mas = *mas;
3516 		l_mas.node = mas_new_ma_node(mas, b_node);
3517 		r_mas.node = mas_new_ma_node(mas, b_node);
3518 		/*
3519 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3520 		 * left or right node has space to spare.  This is referred to as "pushing left"
3521 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3522 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3523 		 * is a significant savings.
3524 		 */
3525 		/* Try to push left. */
3526 		if (mas_push_data(mas, height, &mast, true))
3527 			break;
3528 
3529 		/* Try to push right. */
3530 		if (mas_push_data(mas, height, &mast, false))
3531 			break;
3532 
3533 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3534 		mast_split_data(&mast, mas, split);
3535 		/*
3536 		 * Usually correct, mab_mas_cp in the above call overwrites
3537 		 * r->max.
3538 		 */
3539 		mast.r->max = mas->max;
3540 		mast_fill_bnode(&mast, mas, 1);
3541 		prev_l_mas = *mast.l;
3542 		prev_r_mas = *mast.r;
3543 	}
3544 
3545 	/* Set the original node as dead */
3546 	mat_add(mast.free, mas->node);
3547 	mas->node = l_mas.node;
3548 	mas_wmb_replace(mas, mast.free, NULL);
3549 	mtree_range_walk(mas);
3550 	return 1;
3551 }
3552 
3553 /*
3554  * mas_reuse_node() - Reuse the node to store the data.
3555  * @wr_mas: The maple write state
3556  * @bn: The maple big node
3557  * @end: The end of the data.
3558  *
3559  * Will always return false in RCU mode.
3560  *
3561  * Return: True if node was reused, false otherwise.
3562  */
3563 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3564 			  struct maple_big_node *bn, unsigned char end)
3565 {
3566 	/* Need to be rcu safe. */
3567 	if (mt_in_rcu(wr_mas->mas->tree))
3568 		return false;
3569 
3570 	if (end > bn->b_end) {
3571 		int clear = mt_slots[wr_mas->type] - bn->b_end;
3572 
3573 		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3574 		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3575 	}
3576 	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3577 	return true;
3578 }
3579 
3580 /*
3581  * mas_commit_b_node() - Commit the big node into the tree.
3582  * @wr_mas: The maple write state
3583  * @b_node: The maple big node
3584  * @end: The end of the data.
3585  */
3586 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas,
3587 			    struct maple_big_node *b_node, unsigned char end)
3588 {
3589 	struct maple_node *node;
3590 	unsigned char b_end = b_node->b_end;
3591 	enum maple_type b_type = b_node->type;
3592 
3593 	if ((b_end < mt_min_slots[b_type]) &&
3594 	    (!mte_is_root(wr_mas->mas->node)) &&
3595 	    (mas_mt_height(wr_mas->mas) > 1))
3596 		return mas_rebalance(wr_mas->mas, b_node);
3597 
3598 	if (b_end >= mt_slots[b_type])
3599 		return mas_split(wr_mas->mas, b_node);
3600 
3601 	if (mas_reuse_node(wr_mas, b_node, end))
3602 		goto reuse_node;
3603 
3604 	mas_node_count(wr_mas->mas, 1);
3605 	if (mas_is_err(wr_mas->mas))
3606 		return 0;
3607 
3608 	node = mas_pop_node(wr_mas->mas);
3609 	node->parent = mas_mn(wr_mas->mas)->parent;
3610 	wr_mas->mas->node = mt_mk_node(node, b_type);
3611 	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3612 	mas_replace(wr_mas->mas, false);
3613 reuse_node:
3614 	mas_update_gap(wr_mas->mas);
3615 	return 1;
3616 }
3617 
3618 /*
3619  * mas_root_expand() - Expand a root to a node
3620  * @mas: The maple state
3621  * @entry: The entry to store into the tree
3622  */
3623 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3624 {
3625 	void *contents = mas_root_locked(mas);
3626 	enum maple_type type = maple_leaf_64;
3627 	struct maple_node *node;
3628 	void __rcu **slots;
3629 	unsigned long *pivots;
3630 	int slot = 0;
3631 
3632 	mas_node_count(mas, 1);
3633 	if (unlikely(mas_is_err(mas)))
3634 		return 0;
3635 
3636 	node = mas_pop_node(mas);
3637 	pivots = ma_pivots(node, type);
3638 	slots = ma_slots(node, type);
3639 	node->parent = ma_parent_ptr(
3640 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3641 	mas->node = mt_mk_node(node, type);
3642 
3643 	if (mas->index) {
3644 		if (contents) {
3645 			rcu_assign_pointer(slots[slot], contents);
3646 			if (likely(mas->index > 1))
3647 				slot++;
3648 		}
3649 		pivots[slot++] = mas->index - 1;
3650 	}
3651 
3652 	rcu_assign_pointer(slots[slot], entry);
3653 	mas->offset = slot;
3654 	pivots[slot] = mas->last;
3655 	if (mas->last != ULONG_MAX)
3656 		slot++;
3657 	mas->depth = 1;
3658 	mas_set_height(mas);
3659 
3660 	/* swap the new root into the tree */
3661 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3662 	ma_set_meta(node, maple_leaf_64, 0, slot);
3663 	return slot;
3664 }
3665 
3666 static inline void mas_store_root(struct ma_state *mas, void *entry)
3667 {
3668 	if (likely((mas->last != 0) || (mas->index != 0)))
3669 		mas_root_expand(mas, entry);
3670 	else if (((unsigned long) (entry) & 3) == 2)
3671 		mas_root_expand(mas, entry);
3672 	else {
3673 		rcu_assign_pointer(mas->tree->ma_root, entry);
3674 		mas->node = MAS_START;
3675 	}
3676 }
3677 
3678 /*
3679  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3680  * spans the node.
3681  * @mas: The maple state
3682  * @piv: The pivot value being written
3683  * @type: The maple node type
3684  * @entry: The data to write
3685  *
3686  * Spanning writes are writes that start in one node and end in another OR if
3687  * the write of a %NULL will cause the node to end with a %NULL.
3688  *
3689  * Return: True if this is a spanning write, false otherwise.
3690  */
3691 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3692 {
3693 	unsigned long max;
3694 	unsigned long last = wr_mas->mas->last;
3695 	unsigned long piv = wr_mas->r_max;
3696 	enum maple_type type = wr_mas->type;
3697 	void *entry = wr_mas->entry;
3698 
3699 	/* Contained in this pivot */
3700 	if (piv > last)
3701 		return false;
3702 
3703 	max = wr_mas->mas->max;
3704 	if (unlikely(ma_is_leaf(type))) {
3705 		/* Fits in the node, but may span slots. */
3706 		if (last < max)
3707 			return false;
3708 
3709 		/* Writes to the end of the node but not null. */
3710 		if ((last == max) && entry)
3711 			return false;
3712 
3713 		/*
3714 		 * Writing ULONG_MAX is not a spanning write regardless of the
3715 		 * value being written as long as the range fits in the node.
3716 		 */
3717 		if ((last == ULONG_MAX) && (last == max))
3718 			return false;
3719 	} else if (piv == last) {
3720 		if (entry)
3721 			return false;
3722 
3723 		/* Detect spanning store wr walk */
3724 		if (last == ULONG_MAX)
3725 			return false;
3726 	}
3727 
3728 	trace_ma_write(__func__, wr_mas->mas, piv, entry);
3729 
3730 	return true;
3731 }
3732 
3733 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3734 {
3735 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3736 	mas_wr_node_walk(wr_mas);
3737 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3738 }
3739 
3740 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3741 {
3742 	wr_mas->mas->max = wr_mas->r_max;
3743 	wr_mas->mas->min = wr_mas->r_min;
3744 	wr_mas->mas->node = wr_mas->content;
3745 	wr_mas->mas->offset = 0;
3746 	wr_mas->mas->depth++;
3747 }
3748 /*
3749  * mas_wr_walk() - Walk the tree for a write.
3750  * @wr_mas: The maple write state
3751  *
3752  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3753  *
3754  * Return: True if it's contained in a node, false on spanning write.
3755  */
3756 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3757 {
3758 	struct ma_state *mas = wr_mas->mas;
3759 
3760 	while (true) {
3761 		mas_wr_walk_descend(wr_mas);
3762 		if (unlikely(mas_is_span_wr(wr_mas)))
3763 			return false;
3764 
3765 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3766 						  mas->offset);
3767 		if (ma_is_leaf(wr_mas->type))
3768 			return true;
3769 
3770 		mas_wr_walk_traverse(wr_mas);
3771 	}
3772 
3773 	return true;
3774 }
3775 
3776 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3777 {
3778 	struct ma_state *mas = wr_mas->mas;
3779 
3780 	while (true) {
3781 		mas_wr_walk_descend(wr_mas);
3782 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3783 						  mas->offset);
3784 		if (ma_is_leaf(wr_mas->type))
3785 			return true;
3786 		mas_wr_walk_traverse(wr_mas);
3787 
3788 	}
3789 	return true;
3790 }
3791 /*
3792  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3793  * @l_wr_mas: The left maple write state
3794  * @r_wr_mas: The right maple write state
3795  */
3796 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3797 					    struct ma_wr_state *r_wr_mas)
3798 {
3799 	struct ma_state *r_mas = r_wr_mas->mas;
3800 	struct ma_state *l_mas = l_wr_mas->mas;
3801 	unsigned char l_slot;
3802 
3803 	l_slot = l_mas->offset;
3804 	if (!l_wr_mas->content)
3805 		l_mas->index = l_wr_mas->r_min;
3806 
3807 	if ((l_mas->index == l_wr_mas->r_min) &&
3808 		 (l_slot &&
3809 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3810 		if (l_slot > 1)
3811 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3812 		else
3813 			l_mas->index = l_mas->min;
3814 
3815 		l_mas->offset = l_slot - 1;
3816 	}
3817 
3818 	if (!r_wr_mas->content) {
3819 		if (r_mas->last < r_wr_mas->r_max)
3820 			r_mas->last = r_wr_mas->r_max;
3821 		r_mas->offset++;
3822 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3823 	    (r_mas->last < r_mas->max) &&
3824 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3825 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3826 					     r_wr_mas->type, r_mas->offset + 1);
3827 		r_mas->offset++;
3828 	}
3829 }
3830 
3831 static inline void *mas_state_walk(struct ma_state *mas)
3832 {
3833 	void *entry;
3834 
3835 	entry = mas_start(mas);
3836 	if (mas_is_none(mas))
3837 		return NULL;
3838 
3839 	if (mas_is_ptr(mas))
3840 		return entry;
3841 
3842 	return mtree_range_walk(mas);
3843 }
3844 
3845 /*
3846  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3847  * to date.
3848  *
3849  * @mas: The maple state.
3850  *
3851  * Note: Leaves mas in undesirable state.
3852  * Return: The entry for @mas->index or %NULL on dead node.
3853  */
3854 static inline void *mtree_lookup_walk(struct ma_state *mas)
3855 {
3856 	unsigned long *pivots;
3857 	unsigned char offset;
3858 	struct maple_node *node;
3859 	struct maple_enode *next;
3860 	enum maple_type type;
3861 	void __rcu **slots;
3862 	unsigned char end;
3863 	unsigned long max;
3864 
3865 	next = mas->node;
3866 	max = ULONG_MAX;
3867 	do {
3868 		offset = 0;
3869 		node = mte_to_node(next);
3870 		type = mte_node_type(next);
3871 		pivots = ma_pivots(node, type);
3872 		end = ma_data_end(node, type, pivots, max);
3873 		if (unlikely(ma_dead_node(node)))
3874 			goto dead_node;
3875 
3876 		if (pivots[offset] >= mas->index)
3877 			goto next;
3878 
3879 		do {
3880 			offset++;
3881 		} while ((offset < end) && (pivots[offset] < mas->index));
3882 
3883 		if (likely(offset > end))
3884 			max = pivots[offset];
3885 
3886 next:
3887 		slots = ma_slots(node, type);
3888 		next = mt_slot(mas->tree, slots, offset);
3889 		if (unlikely(ma_dead_node(node)))
3890 			goto dead_node;
3891 	} while (!ma_is_leaf(type));
3892 
3893 	return (void *) next;
3894 
3895 dead_node:
3896 	mas_reset(mas);
3897 	return NULL;
3898 }
3899 
3900 /*
3901  * mas_new_root() - Create a new root node that only contains the entry passed
3902  * in.
3903  * @mas: The maple state
3904  * @entry: The entry to store.
3905  *
3906  * Only valid when the index == 0 and the last == ULONG_MAX
3907  *
3908  * Return 0 on error, 1 on success.
3909  */
3910 static inline int mas_new_root(struct ma_state *mas, void *entry)
3911 {
3912 	struct maple_enode *root = mas_root_locked(mas);
3913 	enum maple_type type = maple_leaf_64;
3914 	struct maple_node *node;
3915 	void __rcu **slots;
3916 	unsigned long *pivots;
3917 
3918 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3919 		mas->depth = 0;
3920 		mas_set_height(mas);
3921 		rcu_assign_pointer(mas->tree->ma_root, entry);
3922 		mas->node = MAS_START;
3923 		goto done;
3924 	}
3925 
3926 	mas_node_count(mas, 1);
3927 	if (mas_is_err(mas))
3928 		return 0;
3929 
3930 	node = mas_pop_node(mas);
3931 	pivots = ma_pivots(node, type);
3932 	slots = ma_slots(node, type);
3933 	node->parent = ma_parent_ptr(
3934 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3935 	mas->node = mt_mk_node(node, type);
3936 	rcu_assign_pointer(slots[0], entry);
3937 	pivots[0] = mas->last;
3938 	mas->depth = 1;
3939 	mas_set_height(mas);
3940 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3941 
3942 done:
3943 	if (xa_is_node(root))
3944 		mte_destroy_walk(root, mas->tree);
3945 
3946 	return 1;
3947 }
3948 /*
3949  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3950  * and new nodes where necessary, then place the sub-tree in the actual tree.
3951  * Note that mas is expected to point to the node which caused the store to
3952  * span.
3953  * @wr_mas: The maple write state
3954  *
3955  * Return: 0 on error, positive on success.
3956  */
3957 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3958 {
3959 	struct maple_subtree_state mast;
3960 	struct maple_big_node b_node;
3961 	struct ma_state *mas;
3962 	unsigned char height;
3963 
3964 	/* Left and Right side of spanning store */
3965 	MA_STATE(l_mas, NULL, 0, 0);
3966 	MA_STATE(r_mas, NULL, 0, 0);
3967 
3968 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3969 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3970 
3971 	/*
3972 	 * A store operation that spans multiple nodes is called a spanning
3973 	 * store and is handled early in the store call stack by the function
3974 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3975 	 * state is duplicated.  The first maple state walks the left tree path
3976 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3977 	 * The data in the two nodes are combined into a single node, two nodes,
3978 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3979 	 * written to the last entry of a node is considered a spanning store as
3980 	 * a rebalance is required for the operation to complete and an overflow
3981 	 * of data may happen.
3982 	 */
3983 	mas = wr_mas->mas;
3984 	trace_ma_op(__func__, mas);
3985 
3986 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3987 		return mas_new_root(mas, wr_mas->entry);
3988 	/*
3989 	 * Node rebalancing may occur due to this store, so there may be three new
3990 	 * entries per level plus a new root.
3991 	 */
3992 	height = mas_mt_height(mas);
3993 	mas_node_count(mas, 1 + height * 3);
3994 	if (mas_is_err(mas))
3995 		return 0;
3996 
3997 	/*
3998 	 * Set up right side.  Need to get to the next offset after the spanning
3999 	 * store to ensure it's not NULL and to combine both the next node and
4000 	 * the node with the start together.
4001 	 */
4002 	r_mas = *mas;
4003 	/* Avoid overflow, walk to next slot in the tree. */
4004 	if (r_mas.last + 1)
4005 		r_mas.last++;
4006 
4007 	r_mas.index = r_mas.last;
4008 	mas_wr_walk_index(&r_wr_mas);
4009 	r_mas.last = r_mas.index = mas->last;
4010 
4011 	/* Set up left side. */
4012 	l_mas = *mas;
4013 	mas_wr_walk_index(&l_wr_mas);
4014 
4015 	if (!wr_mas->entry) {
4016 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4017 		mas->offset = l_mas.offset;
4018 		mas->index = l_mas.index;
4019 		mas->last = l_mas.last = r_mas.last;
4020 	}
4021 
4022 	/* expanding NULLs may make this cover the entire range */
4023 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
4024 		mas_set_range(mas, 0, ULONG_MAX);
4025 		return mas_new_root(mas, wr_mas->entry);
4026 	}
4027 
4028 	memset(&b_node, 0, sizeof(struct maple_big_node));
4029 	/* Copy l_mas and store the value in b_node. */
4030 	mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4031 	/* Copy r_mas into b_node. */
4032 	if (r_mas.offset <= r_wr_mas.node_end)
4033 		mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4034 			   &b_node, b_node.b_end + 1);
4035 	else
4036 		b_node.b_end++;
4037 
4038 	/* Stop spanning searches by searching for just index. */
4039 	l_mas.index = l_mas.last = mas->index;
4040 
4041 	mast.bn = &b_node;
4042 	mast.orig_l = &l_mas;
4043 	mast.orig_r = &r_mas;
4044 	/* Combine l_mas and r_mas and split them up evenly again. */
4045 	return mas_spanning_rebalance(mas, &mast, height + 1);
4046 }
4047 
4048 /*
4049  * mas_wr_node_store() - Attempt to store the value in a node
4050  * @wr_mas: The maple write state
4051  *
4052  * Attempts to reuse the node, but may allocate.
4053  *
4054  * Return: True if stored, false otherwise
4055  */
4056 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4057 {
4058 	struct ma_state *mas = wr_mas->mas;
4059 	void __rcu **dst_slots;
4060 	unsigned long *dst_pivots;
4061 	unsigned char dst_offset;
4062 	unsigned char new_end = wr_mas->node_end;
4063 	unsigned char offset;
4064 	unsigned char node_slots = mt_slots[wr_mas->type];
4065 	struct maple_node reuse, *newnode;
4066 	unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4067 	bool in_rcu = mt_in_rcu(mas->tree);
4068 
4069 	offset = mas->offset;
4070 	if (mas->last == wr_mas->r_max) {
4071 		/* runs right to the end of the node */
4072 		if (mas->last == mas->max)
4073 			new_end = offset;
4074 		/* don't copy this offset */
4075 		wr_mas->offset_end++;
4076 	} else if (mas->last < wr_mas->r_max) {
4077 		/* new range ends in this range */
4078 		if (unlikely(wr_mas->r_max == ULONG_MAX))
4079 			mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4080 
4081 		new_end++;
4082 	} else {
4083 		if (wr_mas->end_piv == mas->last)
4084 			wr_mas->offset_end++;
4085 
4086 		new_end -= wr_mas->offset_end - offset - 1;
4087 	}
4088 
4089 	/* new range starts within a range */
4090 	if (wr_mas->r_min < mas->index)
4091 		new_end++;
4092 
4093 	/* Not enough room */
4094 	if (new_end >= node_slots)
4095 		return false;
4096 
4097 	/* Not enough data. */
4098 	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4099 	    !(mas->mas_flags & MA_STATE_BULK))
4100 		return false;
4101 
4102 	/* set up node. */
4103 	if (in_rcu) {
4104 		mas_node_count(mas, 1);
4105 		if (mas_is_err(mas))
4106 			return false;
4107 
4108 		newnode = mas_pop_node(mas);
4109 	} else {
4110 		memset(&reuse, 0, sizeof(struct maple_node));
4111 		newnode = &reuse;
4112 	}
4113 
4114 	newnode->parent = mas_mn(mas)->parent;
4115 	dst_pivots = ma_pivots(newnode, wr_mas->type);
4116 	dst_slots = ma_slots(newnode, wr_mas->type);
4117 	/* Copy from start to insert point */
4118 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4119 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4120 	dst_offset = offset;
4121 
4122 	/* Handle insert of new range starting after old range */
4123 	if (wr_mas->r_min < mas->index) {
4124 		mas->offset++;
4125 		rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4126 		dst_pivots[dst_offset++] = mas->index - 1;
4127 	}
4128 
4129 	/* Store the new entry and range end. */
4130 	if (dst_offset < max_piv)
4131 		dst_pivots[dst_offset] = mas->last;
4132 	mas->offset = dst_offset;
4133 	rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4134 
4135 	/*
4136 	 * this range wrote to the end of the node or it overwrote the rest of
4137 	 * the data
4138 	 */
4139 	if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4140 		new_end = dst_offset;
4141 		goto done;
4142 	}
4143 
4144 	dst_offset++;
4145 	/* Copy to the end of node if necessary. */
4146 	copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4147 	memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4148 	       sizeof(void *) * copy_size);
4149 	if (dst_offset < max_piv) {
4150 		if (copy_size > max_piv - dst_offset)
4151 			copy_size = max_piv - dst_offset;
4152 
4153 		memcpy(dst_pivots + dst_offset,
4154 		       wr_mas->pivots + wr_mas->offset_end,
4155 		       sizeof(unsigned long) * copy_size);
4156 	}
4157 
4158 	if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4159 		dst_pivots[new_end] = mas->max;
4160 
4161 done:
4162 	mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4163 	if (in_rcu) {
4164 		mas->node = mt_mk_node(newnode, wr_mas->type);
4165 		mas_replace(mas, false);
4166 	} else {
4167 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4168 	}
4169 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4170 	mas_update_gap(mas);
4171 	return true;
4172 }
4173 
4174 /*
4175  * mas_wr_slot_store: Attempt to store a value in a slot.
4176  * @wr_mas: the maple write state
4177  *
4178  * Return: True if stored, false otherwise
4179  */
4180 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4181 {
4182 	struct ma_state *mas = wr_mas->mas;
4183 	unsigned long lmax; /* Logical max. */
4184 	unsigned char offset = mas->offset;
4185 
4186 	if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4187 				  (offset != wr_mas->node_end)))
4188 		return false;
4189 
4190 	if (offset == wr_mas->node_end - 1)
4191 		lmax = mas->max;
4192 	else
4193 		lmax = wr_mas->pivots[offset + 1];
4194 
4195 	/* going to overwrite too many slots. */
4196 	if (lmax < mas->last)
4197 		return false;
4198 
4199 	if (wr_mas->r_min == mas->index) {
4200 		/* overwriting two or more ranges with one. */
4201 		if (lmax == mas->last)
4202 			return false;
4203 
4204 		/* Overwriting all of offset and a portion of offset + 1. */
4205 		rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4206 		wr_mas->pivots[offset] = mas->last;
4207 		goto done;
4208 	}
4209 
4210 	/* Doesn't end on the next range end. */
4211 	if (lmax != mas->last)
4212 		return false;
4213 
4214 	/* Overwriting a portion of offset and all of offset + 1 */
4215 	if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4216 	    (wr_mas->entry || wr_mas->pivots[offset + 1]))
4217 		wr_mas->pivots[offset + 1] = mas->last;
4218 
4219 	rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4220 	wr_mas->pivots[offset] = mas->index - 1;
4221 	mas->offset++; /* Keep mas accurate. */
4222 
4223 done:
4224 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4225 	mas_update_gap(mas);
4226 	return true;
4227 }
4228 
4229 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4230 {
4231 	while ((wr_mas->mas->last > wr_mas->end_piv) &&
4232 	       (wr_mas->offset_end < wr_mas->node_end))
4233 		wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4234 
4235 	if (wr_mas->mas->last > wr_mas->end_piv)
4236 		wr_mas->end_piv = wr_mas->mas->max;
4237 }
4238 
4239 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4240 {
4241 	struct ma_state *mas = wr_mas->mas;
4242 
4243 	if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4244 		mas->last = wr_mas->end_piv;
4245 
4246 	/* Check next slot(s) if we are overwriting the end */
4247 	if ((mas->last == wr_mas->end_piv) &&
4248 	    (wr_mas->node_end != wr_mas->offset_end) &&
4249 	    !wr_mas->slots[wr_mas->offset_end + 1]) {
4250 		wr_mas->offset_end++;
4251 		if (wr_mas->offset_end == wr_mas->node_end)
4252 			mas->last = mas->max;
4253 		else
4254 			mas->last = wr_mas->pivots[wr_mas->offset_end];
4255 		wr_mas->end_piv = mas->last;
4256 	}
4257 
4258 	if (!wr_mas->content) {
4259 		/* If this one is null, the next and prev are not */
4260 		mas->index = wr_mas->r_min;
4261 	} else {
4262 		/* Check prev slot if we are overwriting the start */
4263 		if (mas->index == wr_mas->r_min && mas->offset &&
4264 		    !wr_mas->slots[mas->offset - 1]) {
4265 			mas->offset--;
4266 			wr_mas->r_min = mas->index =
4267 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4268 			wr_mas->r_max = wr_mas->pivots[mas->offset];
4269 		}
4270 	}
4271 }
4272 
4273 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4274 {
4275 	unsigned char end = wr_mas->node_end;
4276 	unsigned char new_end = end + 1;
4277 	struct ma_state *mas = wr_mas->mas;
4278 	unsigned char node_pivots = mt_pivots[wr_mas->type];
4279 
4280 	if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4281 		if (new_end < node_pivots)
4282 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4283 
4284 		if (new_end < node_pivots)
4285 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4286 
4287 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4288 		mas->offset = new_end;
4289 		wr_mas->pivots[end] = mas->index - 1;
4290 
4291 		return true;
4292 	}
4293 
4294 	if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4295 		if (new_end < node_pivots)
4296 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4297 
4298 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4299 		if (new_end < node_pivots)
4300 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4301 
4302 		wr_mas->pivots[end] = mas->last;
4303 		rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4304 		return true;
4305 	}
4306 
4307 	return false;
4308 }
4309 
4310 /*
4311  * mas_wr_bnode() - Slow path for a modification.
4312  * @wr_mas: The write maple state
4313  *
4314  * This is where split, rebalance end up.
4315  */
4316 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4317 {
4318 	struct maple_big_node b_node;
4319 
4320 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4321 	memset(&b_node, 0, sizeof(struct maple_big_node));
4322 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4323 	mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4324 }
4325 
4326 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4327 {
4328 	unsigned char node_slots;
4329 	unsigned char node_size;
4330 	struct ma_state *mas = wr_mas->mas;
4331 
4332 	/* Direct replacement */
4333 	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4334 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4335 		if (!!wr_mas->entry ^ !!wr_mas->content)
4336 			mas_update_gap(mas);
4337 		return;
4338 	}
4339 
4340 	/* Attempt to append */
4341 	node_slots = mt_slots[wr_mas->type];
4342 	node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4343 	if (mas->max == ULONG_MAX)
4344 		node_size++;
4345 
4346 	/* slot and node store will not fit, go to the slow path */
4347 	if (unlikely(node_size >= node_slots))
4348 		goto slow_path;
4349 
4350 	if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4351 	    (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4352 		if (!wr_mas->content || !wr_mas->entry)
4353 			mas_update_gap(mas);
4354 		return;
4355 	}
4356 
4357 	if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4358 		return;
4359 	else if (mas_wr_node_store(wr_mas))
4360 		return;
4361 
4362 	if (mas_is_err(mas))
4363 		return;
4364 
4365 slow_path:
4366 	mas_wr_bnode(wr_mas);
4367 }
4368 
4369 /*
4370  * mas_wr_store_entry() - Internal call to store a value
4371  * @mas: The maple state
4372  * @entry: The entry to store.
4373  *
4374  * Return: The contents that was stored at the index.
4375  */
4376 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4377 {
4378 	struct ma_state *mas = wr_mas->mas;
4379 
4380 	wr_mas->content = mas_start(mas);
4381 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4382 		mas_store_root(mas, wr_mas->entry);
4383 		return wr_mas->content;
4384 	}
4385 
4386 	if (unlikely(!mas_wr_walk(wr_mas))) {
4387 		mas_wr_spanning_store(wr_mas);
4388 		return wr_mas->content;
4389 	}
4390 
4391 	/* At this point, we are at the leaf node that needs to be altered. */
4392 	wr_mas->end_piv = wr_mas->r_max;
4393 	mas_wr_end_piv(wr_mas);
4394 
4395 	if (!wr_mas->entry)
4396 		mas_wr_extend_null(wr_mas);
4397 
4398 	/* New root for a single pointer */
4399 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4400 		mas_new_root(mas, wr_mas->entry);
4401 		return wr_mas->content;
4402 	}
4403 
4404 	mas_wr_modify(wr_mas);
4405 	return wr_mas->content;
4406 }
4407 
4408 /**
4409  * mas_insert() - Internal call to insert a value
4410  * @mas: The maple state
4411  * @entry: The entry to store
4412  *
4413  * Return: %NULL or the contents that already exists at the requested index
4414  * otherwise.  The maple state needs to be checked for error conditions.
4415  */
4416 static inline void *mas_insert(struct ma_state *mas, void *entry)
4417 {
4418 	MA_WR_STATE(wr_mas, mas, entry);
4419 
4420 	/*
4421 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4422 	 * tree.  If the insert fits exactly into an existing gap with a value
4423 	 * of NULL, then the slot only needs to be written with the new value.
4424 	 * If the range being inserted is adjacent to another range, then only a
4425 	 * single pivot needs to be inserted (as well as writing the entry).  If
4426 	 * the new range is within a gap but does not touch any other ranges,
4427 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4428 	 * usual, the entry must be written.  Most operations require a new node
4429 	 * to be allocated and replace an existing node to ensure RCU safety,
4430 	 * when in RCU mode.  The exception to requiring a newly allocated node
4431 	 * is when inserting at the end of a node (appending).  When done
4432 	 * carefully, appending can reuse the node in place.
4433 	 */
4434 	wr_mas.content = mas_start(mas);
4435 	if (wr_mas.content)
4436 		goto exists;
4437 
4438 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4439 		mas_store_root(mas, entry);
4440 		return NULL;
4441 	}
4442 
4443 	/* spanning writes always overwrite something */
4444 	if (!mas_wr_walk(&wr_mas))
4445 		goto exists;
4446 
4447 	/* At this point, we are at the leaf node that needs to be altered. */
4448 	wr_mas.offset_end = mas->offset;
4449 	wr_mas.end_piv = wr_mas.r_max;
4450 
4451 	if (wr_mas.content || (mas->last > wr_mas.r_max))
4452 		goto exists;
4453 
4454 	if (!entry)
4455 		return NULL;
4456 
4457 	mas_wr_modify(&wr_mas);
4458 	return wr_mas.content;
4459 
4460 exists:
4461 	mas_set_err(mas, -EEXIST);
4462 	return wr_mas.content;
4463 
4464 }
4465 
4466 /*
4467  * mas_prev_node() - Find the prev non-null entry at the same level in the
4468  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
4469  * @mas: The maple state
4470  * @min: The lower limit to search
4471  *
4472  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4473  * Return: 1 if the node is dead, 0 otherwise.
4474  */
4475 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4476 {
4477 	enum maple_type mt;
4478 	int offset, level;
4479 	void __rcu **slots;
4480 	struct maple_node *node;
4481 	struct maple_enode *enode;
4482 	unsigned long *pivots;
4483 
4484 	if (mas_is_none(mas))
4485 		return 0;
4486 
4487 	level = 0;
4488 	do {
4489 		node = mas_mn(mas);
4490 		if (ma_is_root(node))
4491 			goto no_entry;
4492 
4493 		/* Walk up. */
4494 		if (unlikely(mas_ascend(mas)))
4495 			return 1;
4496 		offset = mas->offset;
4497 		level++;
4498 	} while (!offset);
4499 
4500 	offset--;
4501 	mt = mte_node_type(mas->node);
4502 	node = mas_mn(mas);
4503 	slots = ma_slots(node, mt);
4504 	pivots = ma_pivots(node, mt);
4505 	mas->max = pivots[offset];
4506 	if (offset)
4507 		mas->min = pivots[offset - 1] + 1;
4508 	if (unlikely(ma_dead_node(node)))
4509 		return 1;
4510 
4511 	if (mas->max < min)
4512 		goto no_entry_min;
4513 
4514 	while (level > 1) {
4515 		level--;
4516 		enode = mas_slot(mas, slots, offset);
4517 		if (unlikely(ma_dead_node(node)))
4518 			return 1;
4519 
4520 		mas->node = enode;
4521 		mt = mte_node_type(mas->node);
4522 		node = mas_mn(mas);
4523 		slots = ma_slots(node, mt);
4524 		pivots = ma_pivots(node, mt);
4525 		offset = ma_data_end(node, mt, pivots, mas->max);
4526 		if (offset)
4527 			mas->min = pivots[offset - 1] + 1;
4528 
4529 		if (offset < mt_pivots[mt])
4530 			mas->max = pivots[offset];
4531 
4532 		if (mas->max < min)
4533 			goto no_entry;
4534 	}
4535 
4536 	mas->node = mas_slot(mas, slots, offset);
4537 	if (unlikely(ma_dead_node(node)))
4538 		return 1;
4539 
4540 	mas->offset = mas_data_end(mas);
4541 	if (unlikely(mte_dead_node(mas->node)))
4542 		return 1;
4543 
4544 	return 0;
4545 
4546 no_entry_min:
4547 	mas->offset = offset;
4548 	if (offset)
4549 		mas->min = pivots[offset - 1] + 1;
4550 no_entry:
4551 	if (unlikely(ma_dead_node(node)))
4552 		return 1;
4553 
4554 	mas->node = MAS_NONE;
4555 	return 0;
4556 }
4557 
4558 /*
4559  * mas_next_node() - Get the next node at the same level in the tree.
4560  * @mas: The maple state
4561  * @max: The maximum pivot value to check.
4562  *
4563  * The next value will be mas->node[mas->offset] or MAS_NONE.
4564  * Return: 1 on dead node, 0 otherwise.
4565  */
4566 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4567 				unsigned long max)
4568 {
4569 	unsigned long min, pivot;
4570 	unsigned long *pivots;
4571 	struct maple_enode *enode;
4572 	int level = 0;
4573 	unsigned char offset;
4574 	enum maple_type mt;
4575 	void __rcu **slots;
4576 
4577 	if (mas->max >= max)
4578 		goto no_entry;
4579 
4580 	level = 0;
4581 	do {
4582 		if (ma_is_root(node))
4583 			goto no_entry;
4584 
4585 		min = mas->max + 1;
4586 		if (min > max)
4587 			goto no_entry;
4588 
4589 		if (unlikely(mas_ascend(mas)))
4590 			return 1;
4591 
4592 		offset = mas->offset;
4593 		level++;
4594 		node = mas_mn(mas);
4595 		mt = mte_node_type(mas->node);
4596 		pivots = ma_pivots(node, mt);
4597 	} while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4598 
4599 	slots = ma_slots(node, mt);
4600 	pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4601 	while (unlikely(level > 1)) {
4602 		/* Descend, if necessary */
4603 		enode = mas_slot(mas, slots, offset);
4604 		if (unlikely(ma_dead_node(node)))
4605 			return 1;
4606 
4607 		mas->node = enode;
4608 		level--;
4609 		node = mas_mn(mas);
4610 		mt = mte_node_type(mas->node);
4611 		slots = ma_slots(node, mt);
4612 		pivots = ma_pivots(node, mt);
4613 		offset = 0;
4614 		pivot = pivots[0];
4615 	}
4616 
4617 	enode = mas_slot(mas, slots, offset);
4618 	if (unlikely(ma_dead_node(node)))
4619 		return 1;
4620 
4621 	mas->node = enode;
4622 	mas->min = min;
4623 	mas->max = pivot;
4624 	return 0;
4625 
4626 no_entry:
4627 	if (unlikely(ma_dead_node(node)))
4628 		return 1;
4629 
4630 	mas->node = MAS_NONE;
4631 	return 0;
4632 }
4633 
4634 /*
4635  * mas_next_nentry() - Get the next node entry
4636  * @mas: The maple state
4637  * @max: The maximum value to check
4638  * @*range_start: Pointer to store the start of the range.
4639  *
4640  * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4641  * pivot of the entry.
4642  *
4643  * Return: The next entry, %NULL otherwise
4644  */
4645 static inline void *mas_next_nentry(struct ma_state *mas,
4646 	    struct maple_node *node, unsigned long max, enum maple_type type)
4647 {
4648 	unsigned char count;
4649 	unsigned long pivot;
4650 	unsigned long *pivots;
4651 	void __rcu **slots;
4652 	void *entry;
4653 
4654 	if (mas->last == mas->max) {
4655 		mas->index = mas->max;
4656 		return NULL;
4657 	}
4658 
4659 	pivots = ma_pivots(node, type);
4660 	slots = ma_slots(node, type);
4661 	mas->index = mas_safe_min(mas, pivots, mas->offset);
4662 	if (ma_dead_node(node))
4663 		return NULL;
4664 
4665 	if (mas->index > max)
4666 		return NULL;
4667 
4668 	count = ma_data_end(node, type, pivots, mas->max);
4669 	if (mas->offset > count)
4670 		return NULL;
4671 
4672 	while (mas->offset < count) {
4673 		pivot = pivots[mas->offset];
4674 		entry = mas_slot(mas, slots, mas->offset);
4675 		if (ma_dead_node(node))
4676 			return NULL;
4677 
4678 		if (entry)
4679 			goto found;
4680 
4681 		if (pivot >= max)
4682 			return NULL;
4683 
4684 		mas->index = pivot + 1;
4685 		mas->offset++;
4686 	}
4687 
4688 	if (mas->index > mas->max) {
4689 		mas->index = mas->last;
4690 		return NULL;
4691 	}
4692 
4693 	pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4694 	entry = mas_slot(mas, slots, mas->offset);
4695 	if (ma_dead_node(node))
4696 		return NULL;
4697 
4698 	if (!pivot)
4699 		return NULL;
4700 
4701 	if (!entry)
4702 		return NULL;
4703 
4704 found:
4705 	mas->last = pivot;
4706 	return entry;
4707 }
4708 
4709 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4710 {
4711 
4712 retry:
4713 	mas_set(mas, index);
4714 	mas_state_walk(mas);
4715 	if (mas_is_start(mas))
4716 		goto retry;
4717 
4718 	return;
4719 
4720 }
4721 
4722 /*
4723  * mas_next_entry() - Internal function to get the next entry.
4724  * @mas: The maple state
4725  * @limit: The maximum range start.
4726  *
4727  * Set the @mas->node to the next entry and the range_start to
4728  * the beginning value for the entry.  Does not check beyond @limit.
4729  * Sets @mas->index and @mas->last to the limit if it is hit.
4730  * Restarts on dead nodes.
4731  *
4732  * Return: the next entry or %NULL.
4733  */
4734 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4735 {
4736 	void *entry = NULL;
4737 	struct maple_enode *prev_node;
4738 	struct maple_node *node;
4739 	unsigned char offset;
4740 	unsigned long last;
4741 	enum maple_type mt;
4742 
4743 	last = mas->last;
4744 retry:
4745 	offset = mas->offset;
4746 	prev_node = mas->node;
4747 	node = mas_mn(mas);
4748 	mt = mte_node_type(mas->node);
4749 	mas->offset++;
4750 	if (unlikely(mas->offset >= mt_slots[mt])) {
4751 		mas->offset = mt_slots[mt] - 1;
4752 		goto next_node;
4753 	}
4754 
4755 	while (!mas_is_none(mas)) {
4756 		entry = mas_next_nentry(mas, node, limit, mt);
4757 		if (unlikely(ma_dead_node(node))) {
4758 			mas_rewalk(mas, last);
4759 			goto retry;
4760 		}
4761 
4762 		if (likely(entry))
4763 			return entry;
4764 
4765 		if (unlikely((mas->index > limit)))
4766 			break;
4767 
4768 next_node:
4769 		prev_node = mas->node;
4770 		offset = mas->offset;
4771 		if (unlikely(mas_next_node(mas, node, limit))) {
4772 			mas_rewalk(mas, last);
4773 			goto retry;
4774 		}
4775 		mas->offset = 0;
4776 		node = mas_mn(mas);
4777 		mt = mte_node_type(mas->node);
4778 	}
4779 
4780 	mas->index = mas->last = limit;
4781 	mas->offset = offset;
4782 	mas->node = prev_node;
4783 	return NULL;
4784 }
4785 
4786 /*
4787  * mas_prev_nentry() - Get the previous node entry.
4788  * @mas: The maple state.
4789  * @limit: The lower limit to check for a value.
4790  *
4791  * Return: the entry, %NULL otherwise.
4792  */
4793 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4794 				    unsigned long index)
4795 {
4796 	unsigned long pivot, min;
4797 	unsigned char offset;
4798 	struct maple_node *mn;
4799 	enum maple_type mt;
4800 	unsigned long *pivots;
4801 	void __rcu **slots;
4802 	void *entry;
4803 
4804 retry:
4805 	if (!mas->offset)
4806 		return NULL;
4807 
4808 	mn = mas_mn(mas);
4809 	mt = mte_node_type(mas->node);
4810 	offset = mas->offset - 1;
4811 	if (offset >= mt_slots[mt])
4812 		offset = mt_slots[mt] - 1;
4813 
4814 	slots = ma_slots(mn, mt);
4815 	pivots = ma_pivots(mn, mt);
4816 	if (offset == mt_pivots[mt])
4817 		pivot = mas->max;
4818 	else
4819 		pivot = pivots[offset];
4820 
4821 	if (unlikely(ma_dead_node(mn))) {
4822 		mas_rewalk(mas, index);
4823 		goto retry;
4824 	}
4825 
4826 	while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4827 	       !pivot))
4828 		pivot = pivots[--offset];
4829 
4830 	min = mas_safe_min(mas, pivots, offset);
4831 	entry = mas_slot(mas, slots, offset);
4832 	if (unlikely(ma_dead_node(mn))) {
4833 		mas_rewalk(mas, index);
4834 		goto retry;
4835 	}
4836 
4837 	if (likely(entry)) {
4838 		mas->offset = offset;
4839 		mas->last = pivot;
4840 		mas->index = min;
4841 	}
4842 	return entry;
4843 }
4844 
4845 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4846 {
4847 	void *entry;
4848 
4849 retry:
4850 	while (likely(!mas_is_none(mas))) {
4851 		entry = mas_prev_nentry(mas, min, mas->index);
4852 		if (unlikely(mas->last < min))
4853 			goto not_found;
4854 
4855 		if (likely(entry))
4856 			return entry;
4857 
4858 		if (unlikely(mas_prev_node(mas, min))) {
4859 			mas_rewalk(mas, mas->index);
4860 			goto retry;
4861 		}
4862 
4863 		mas->offset++;
4864 	}
4865 
4866 	mas->offset--;
4867 not_found:
4868 	mas->index = mas->last = min;
4869 	return NULL;
4870 }
4871 
4872 /*
4873  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4874  * highest gap address of a given size in a given node and descend.
4875  * @mas: The maple state
4876  * @size: The needed size.
4877  *
4878  * Return: True if found in a leaf, false otherwise.
4879  *
4880  */
4881 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4882 {
4883 	enum maple_type type = mte_node_type(mas->node);
4884 	struct maple_node *node = mas_mn(mas);
4885 	unsigned long *pivots, *gaps;
4886 	void __rcu **slots;
4887 	unsigned long gap = 0;
4888 	unsigned long max, min, index;
4889 	unsigned char offset;
4890 
4891 	if (unlikely(mas_is_err(mas)))
4892 		return true;
4893 
4894 	if (ma_is_dense(type)) {
4895 		/* dense nodes. */
4896 		mas->offset = (unsigned char)(mas->index - mas->min);
4897 		return true;
4898 	}
4899 
4900 	pivots = ma_pivots(node, type);
4901 	slots = ma_slots(node, type);
4902 	gaps = ma_gaps(node, type);
4903 	offset = mas->offset;
4904 	min = mas_safe_min(mas, pivots, offset);
4905 	/* Skip out of bounds. */
4906 	while (mas->last < min)
4907 		min = mas_safe_min(mas, pivots, --offset);
4908 
4909 	max = mas_safe_pivot(mas, pivots, offset, type);
4910 	index = mas->index;
4911 	while (index <= max) {
4912 		gap = 0;
4913 		if (gaps)
4914 			gap = gaps[offset];
4915 		else if (!mas_slot(mas, slots, offset))
4916 			gap = max - min + 1;
4917 
4918 		if (gap) {
4919 			if ((size <= gap) && (size <= mas->last - min + 1))
4920 				break;
4921 
4922 			if (!gaps) {
4923 				/* Skip the next slot, it cannot be a gap. */
4924 				if (offset < 2)
4925 					goto ascend;
4926 
4927 				offset -= 2;
4928 				max = pivots[offset];
4929 				min = mas_safe_min(mas, pivots, offset);
4930 				continue;
4931 			}
4932 		}
4933 
4934 		if (!offset)
4935 			goto ascend;
4936 
4937 		offset--;
4938 		max = min - 1;
4939 		min = mas_safe_min(mas, pivots, offset);
4940 	}
4941 
4942 	if (unlikely(index > max)) {
4943 		mas_set_err(mas, -EBUSY);
4944 		return false;
4945 	}
4946 
4947 	if (unlikely(ma_is_leaf(type))) {
4948 		mas->offset = offset;
4949 		mas->min = min;
4950 		mas->max = min + gap - 1;
4951 		return true;
4952 	}
4953 
4954 	/* descend, only happens under lock. */
4955 	mas->node = mas_slot(mas, slots, offset);
4956 	mas->min = min;
4957 	mas->max = max;
4958 	mas->offset = mas_data_end(mas);
4959 	return false;
4960 
4961 ascend:
4962 	if (mte_is_root(mas->node))
4963 		mas_set_err(mas, -EBUSY);
4964 
4965 	return false;
4966 }
4967 
4968 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4969 {
4970 	enum maple_type type = mte_node_type(mas->node);
4971 	unsigned long pivot, min, gap = 0;
4972 	unsigned char offset;
4973 	unsigned long *gaps;
4974 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
4975 	void __rcu **slots = ma_slots(mas_mn(mas), type);
4976 	bool found = false;
4977 
4978 	if (ma_is_dense(type)) {
4979 		mas->offset = (unsigned char)(mas->index - mas->min);
4980 		return true;
4981 	}
4982 
4983 	gaps = ma_gaps(mte_to_node(mas->node), type);
4984 	offset = mas->offset;
4985 	min = mas_safe_min(mas, pivots, offset);
4986 	for (; offset < mt_slots[type]; offset++) {
4987 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4988 		if (offset && !pivot)
4989 			break;
4990 
4991 		/* Not within lower bounds */
4992 		if (mas->index > pivot)
4993 			goto next_slot;
4994 
4995 		if (gaps)
4996 			gap = gaps[offset];
4997 		else if (!mas_slot(mas, slots, offset))
4998 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4999 		else
5000 			goto next_slot;
5001 
5002 		if (gap >= size) {
5003 			if (ma_is_leaf(type)) {
5004 				found = true;
5005 				goto done;
5006 			}
5007 			if (mas->index <= pivot) {
5008 				mas->node = mas_slot(mas, slots, offset);
5009 				mas->min = min;
5010 				mas->max = pivot;
5011 				offset = 0;
5012 				break;
5013 			}
5014 		}
5015 next_slot:
5016 		min = pivot + 1;
5017 		if (mas->last <= pivot) {
5018 			mas_set_err(mas, -EBUSY);
5019 			return true;
5020 		}
5021 	}
5022 
5023 	if (mte_is_root(mas->node))
5024 		found = true;
5025 done:
5026 	mas->offset = offset;
5027 	return found;
5028 }
5029 
5030 /**
5031  * mas_walk() - Search for @mas->index in the tree.
5032  * @mas: The maple state.
5033  *
5034  * mas->index and mas->last will be set to the range if there is a value.  If
5035  * mas->node is MAS_NONE, reset to MAS_START.
5036  *
5037  * Return: the entry at the location or %NULL.
5038  */
5039 void *mas_walk(struct ma_state *mas)
5040 {
5041 	void *entry;
5042 
5043 retry:
5044 	entry = mas_state_walk(mas);
5045 	if (mas_is_start(mas))
5046 		goto retry;
5047 
5048 	if (mas_is_ptr(mas)) {
5049 		if (!mas->index) {
5050 			mas->last = 0;
5051 		} else {
5052 			mas->index = 1;
5053 			mas->last = ULONG_MAX;
5054 		}
5055 		return entry;
5056 	}
5057 
5058 	if (mas_is_none(mas)) {
5059 		mas->index = 0;
5060 		mas->last = ULONG_MAX;
5061 	}
5062 
5063 	return entry;
5064 }
5065 EXPORT_SYMBOL_GPL(mas_walk);
5066 
5067 static inline bool mas_rewind_node(struct ma_state *mas)
5068 {
5069 	unsigned char slot;
5070 
5071 	do {
5072 		if (mte_is_root(mas->node)) {
5073 			slot = mas->offset;
5074 			if (!slot)
5075 				return false;
5076 		} else {
5077 			mas_ascend(mas);
5078 			slot = mas->offset;
5079 		}
5080 	} while (!slot);
5081 
5082 	mas->offset = --slot;
5083 	return true;
5084 }
5085 
5086 /*
5087  * mas_skip_node() - Internal function.  Skip over a node.
5088  * @mas: The maple state.
5089  *
5090  * Return: true if there is another node, false otherwise.
5091  */
5092 static inline bool mas_skip_node(struct ma_state *mas)
5093 {
5094 	unsigned char slot, slot_count;
5095 	unsigned long *pivots;
5096 	enum maple_type mt;
5097 
5098 	mt = mte_node_type(mas->node);
5099 	slot_count = mt_slots[mt] - 1;
5100 	do {
5101 		if (mte_is_root(mas->node)) {
5102 			slot = mas->offset;
5103 			if (slot > slot_count) {
5104 				mas_set_err(mas, -EBUSY);
5105 				return false;
5106 			}
5107 		} else {
5108 			mas_ascend(mas);
5109 			slot = mas->offset;
5110 			mt = mte_node_type(mas->node);
5111 			slot_count = mt_slots[mt] - 1;
5112 		}
5113 	} while (slot > slot_count);
5114 
5115 	mas->offset = ++slot;
5116 	pivots = ma_pivots(mas_mn(mas), mt);
5117 	if (slot > 0)
5118 		mas->min = pivots[slot - 1] + 1;
5119 
5120 	if (slot <= slot_count)
5121 		mas->max = pivots[slot];
5122 
5123 	return true;
5124 }
5125 
5126 /*
5127  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5128  * @size
5129  * @mas: The maple state
5130  * @size: The size of the gap required
5131  *
5132  * Search between @mas->index and @mas->last for a gap of @size.
5133  */
5134 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5135 {
5136 	struct maple_enode *last = NULL;
5137 
5138 	/*
5139 	 * There are 4 options:
5140 	 * go to child (descend)
5141 	 * go back to parent (ascend)
5142 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5143 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5144 	 */
5145 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5146 		if (last == mas->node)
5147 			mas_skip_node(mas);
5148 		else
5149 			last = mas->node;
5150 	}
5151 }
5152 
5153 /*
5154  * mas_fill_gap() - Fill a located gap with @entry.
5155  * @mas: The maple state
5156  * @entry: The value to store
5157  * @slot: The offset into the node to store the @entry
5158  * @size: The size of the entry
5159  * @index: The start location
5160  */
5161 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5162 		unsigned char slot, unsigned long size, unsigned long *index)
5163 {
5164 	MA_WR_STATE(wr_mas, mas, entry);
5165 	unsigned char pslot = mte_parent_slot(mas->node);
5166 	struct maple_enode *mn = mas->node;
5167 	unsigned long *pivots;
5168 	enum maple_type ptype;
5169 	/*
5170 	 * mas->index is the start address for the search
5171 	 *  which may no longer be needed.
5172 	 * mas->last is the end address for the search
5173 	 */
5174 
5175 	*index = mas->index;
5176 	mas->last = mas->index + size - 1;
5177 
5178 	/*
5179 	 * It is possible that using mas->max and mas->min to correctly
5180 	 * calculate the index and last will cause an issue in the gap
5181 	 * calculation, so fix the ma_state here
5182 	 */
5183 	mas_ascend(mas);
5184 	ptype = mte_node_type(mas->node);
5185 	pivots = ma_pivots(mas_mn(mas), ptype);
5186 	mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5187 	mas->min = mas_safe_min(mas, pivots, pslot);
5188 	mas->node = mn;
5189 	mas->offset = slot;
5190 	mas_wr_store_entry(&wr_mas);
5191 }
5192 
5193 /*
5194  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5195  * searching for a gap in an empty tree.
5196  * @mas: The maple state
5197  * @min: the minimum range
5198  * @max: The maximum range
5199  * @size: The size of the gap
5200  * @fwd: Searching forward or back
5201  */
5202 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5203 				unsigned long max, unsigned long size, bool fwd)
5204 {
5205 	unsigned long start = 0;
5206 
5207 	if (!unlikely(mas_is_none(mas)))
5208 		start++;
5209 	/* mas_is_ptr */
5210 
5211 	if (start < min)
5212 		start = min;
5213 
5214 	if (fwd) {
5215 		mas->index = start;
5216 		mas->last = start + size - 1;
5217 		return;
5218 	}
5219 
5220 	mas->index = max;
5221 }
5222 
5223 /*
5224  * mas_empty_area() - Get the lowest address within the range that is
5225  * sufficient for the size requested.
5226  * @mas: The maple state
5227  * @min: The lowest value of the range
5228  * @max: The highest value of the range
5229  * @size: The size needed
5230  */
5231 int mas_empty_area(struct ma_state *mas, unsigned long min,
5232 		unsigned long max, unsigned long size)
5233 {
5234 	unsigned char offset;
5235 	unsigned long *pivots;
5236 	enum maple_type mt;
5237 
5238 	if (mas_is_start(mas))
5239 		mas_start(mas);
5240 	else if (mas->offset >= 2)
5241 		mas->offset -= 2;
5242 	else if (!mas_skip_node(mas))
5243 		return -EBUSY;
5244 
5245 	/* Empty set */
5246 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5247 		mas_sparse_area(mas, min, max, size, true);
5248 		return 0;
5249 	}
5250 
5251 	/* The start of the window can only be within these values */
5252 	mas->index = min;
5253 	mas->last = max;
5254 	mas_awalk(mas, size);
5255 
5256 	if (unlikely(mas_is_err(mas)))
5257 		return xa_err(mas->node);
5258 
5259 	offset = mas->offset;
5260 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5261 		return -EBUSY;
5262 
5263 	mt = mte_node_type(mas->node);
5264 	pivots = ma_pivots(mas_mn(mas), mt);
5265 	if (offset)
5266 		mas->min = pivots[offset - 1] + 1;
5267 
5268 	if (offset < mt_pivots[mt])
5269 		mas->max = pivots[offset];
5270 
5271 	if (mas->index < mas->min)
5272 		mas->index = mas->min;
5273 
5274 	mas->last = mas->index + size - 1;
5275 	return 0;
5276 }
5277 EXPORT_SYMBOL_GPL(mas_empty_area);
5278 
5279 /*
5280  * mas_empty_area_rev() - Get the highest address within the range that is
5281  * sufficient for the size requested.
5282  * @mas: The maple state
5283  * @min: The lowest value of the range
5284  * @max: The highest value of the range
5285  * @size: The size needed
5286  */
5287 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5288 		unsigned long max, unsigned long size)
5289 {
5290 	struct maple_enode *last = mas->node;
5291 
5292 	if (mas_is_start(mas)) {
5293 		mas_start(mas);
5294 		mas->offset = mas_data_end(mas);
5295 	} else if (mas->offset >= 2) {
5296 		mas->offset -= 2;
5297 	} else if (!mas_rewind_node(mas)) {
5298 		return -EBUSY;
5299 	}
5300 
5301 	/* Empty set. */
5302 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5303 		mas_sparse_area(mas, min, max, size, false);
5304 		return 0;
5305 	}
5306 
5307 	/* The start of the window can only be within these values. */
5308 	mas->index = min;
5309 	mas->last = max;
5310 
5311 	while (!mas_rev_awalk(mas, size)) {
5312 		if (last == mas->node) {
5313 			if (!mas_rewind_node(mas))
5314 				return -EBUSY;
5315 		} else {
5316 			last = mas->node;
5317 		}
5318 	}
5319 
5320 	if (mas_is_err(mas))
5321 		return xa_err(mas->node);
5322 
5323 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5324 		return -EBUSY;
5325 
5326 	/*
5327 	 * mas_rev_awalk() has set mas->min and mas->max to the gap values.  If
5328 	 * the maximum is outside the window we are searching, then use the last
5329 	 * location in the search.
5330 	 * mas->max and mas->min is the range of the gap.
5331 	 * mas->index and mas->last are currently set to the search range.
5332 	 */
5333 
5334 	/* Trim the upper limit to the max. */
5335 	if (mas->max <= mas->last)
5336 		mas->last = mas->max;
5337 
5338 	mas->index = mas->last - size + 1;
5339 	return 0;
5340 }
5341 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5342 
5343 static inline int mas_alloc(struct ma_state *mas, void *entry,
5344 		unsigned long size, unsigned long *index)
5345 {
5346 	unsigned long min;
5347 
5348 	mas_start(mas);
5349 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5350 		mas_root_expand(mas, entry);
5351 		if (mas_is_err(mas))
5352 			return xa_err(mas->node);
5353 
5354 		if (!mas->index)
5355 			return mte_pivot(mas->node, 0);
5356 		return mte_pivot(mas->node, 1);
5357 	}
5358 
5359 	/* Must be walking a tree. */
5360 	mas_awalk(mas, size);
5361 	if (mas_is_err(mas))
5362 		return xa_err(mas->node);
5363 
5364 	if (mas->offset == MAPLE_NODE_SLOTS)
5365 		goto no_gap;
5366 
5367 	/*
5368 	 * At this point, mas->node points to the right node and we have an
5369 	 * offset that has a sufficient gap.
5370 	 */
5371 	min = mas->min;
5372 	if (mas->offset)
5373 		min = mte_pivot(mas->node, mas->offset - 1) + 1;
5374 
5375 	if (mas->index < min)
5376 		mas->index = min;
5377 
5378 	mas_fill_gap(mas, entry, mas->offset, size, index);
5379 	return 0;
5380 
5381 no_gap:
5382 	return -EBUSY;
5383 }
5384 
5385 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5386 				unsigned long max, void *entry,
5387 				unsigned long size, unsigned long *index)
5388 {
5389 	int ret = 0;
5390 
5391 	ret = mas_empty_area_rev(mas, min, max, size);
5392 	if (ret)
5393 		return ret;
5394 
5395 	if (mas_is_err(mas))
5396 		return xa_err(mas->node);
5397 
5398 	if (mas->offset == MAPLE_NODE_SLOTS)
5399 		goto no_gap;
5400 
5401 	mas_fill_gap(mas, entry, mas->offset, size, index);
5402 	return 0;
5403 
5404 no_gap:
5405 	return -EBUSY;
5406 }
5407 
5408 /*
5409  * mas_dead_leaves() - Mark all leaves of a node as dead.
5410  * @mas: The maple state
5411  * @slots: Pointer to the slot array
5412  *
5413  * Must hold the write lock.
5414  *
5415  * Return: The number of leaves marked as dead.
5416  */
5417 static inline
5418 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5419 {
5420 	struct maple_node *node;
5421 	enum maple_type type;
5422 	void *entry;
5423 	int offset;
5424 
5425 	for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5426 		entry = mas_slot_locked(mas, slots, offset);
5427 		type = mte_node_type(entry);
5428 		node = mte_to_node(entry);
5429 		/* Use both node and type to catch LE & BE metadata */
5430 		if (!node || !type)
5431 			break;
5432 
5433 		mte_set_node_dead(entry);
5434 		smp_wmb(); /* Needed for RCU */
5435 		node->type = type;
5436 		rcu_assign_pointer(slots[offset], node);
5437 	}
5438 
5439 	return offset;
5440 }
5441 
5442 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5443 {
5444 	struct maple_node *node, *next;
5445 	void __rcu **slots = NULL;
5446 
5447 	next = mas_mn(mas);
5448 	do {
5449 		mas->node = ma_enode_ptr(next);
5450 		node = mas_mn(mas);
5451 		slots = ma_slots(node, node->type);
5452 		next = mas_slot_locked(mas, slots, offset);
5453 		offset = 0;
5454 	} while (!ma_is_leaf(next->type));
5455 
5456 	return slots;
5457 }
5458 
5459 static void mt_free_walk(struct rcu_head *head)
5460 {
5461 	void __rcu **slots;
5462 	struct maple_node *node, *start;
5463 	struct maple_tree mt;
5464 	unsigned char offset;
5465 	enum maple_type type;
5466 	MA_STATE(mas, &mt, 0, 0);
5467 
5468 	node = container_of(head, struct maple_node, rcu);
5469 
5470 	if (ma_is_leaf(node->type))
5471 		goto free_leaf;
5472 
5473 	mt_init_flags(&mt, node->ma_flags);
5474 	mas_lock(&mas);
5475 	start = node;
5476 	mas.node = mt_mk_node(node, node->type);
5477 	slots = mas_dead_walk(&mas, 0);
5478 	node = mas_mn(&mas);
5479 	do {
5480 		mt_free_bulk(node->slot_len, slots);
5481 		offset = node->parent_slot + 1;
5482 		mas.node = node->piv_parent;
5483 		if (mas_mn(&mas) == node)
5484 			goto start_slots_free;
5485 
5486 		type = mte_node_type(mas.node);
5487 		slots = ma_slots(mte_to_node(mas.node), type);
5488 		if ((offset < mt_slots[type]) && (slots[offset]))
5489 			slots = mas_dead_walk(&mas, offset);
5490 
5491 		node = mas_mn(&mas);
5492 	} while ((node != start) || (node->slot_len < offset));
5493 
5494 	slots = ma_slots(node, node->type);
5495 	mt_free_bulk(node->slot_len, slots);
5496 
5497 start_slots_free:
5498 	mas_unlock(&mas);
5499 free_leaf:
5500 	mt_free_rcu(&node->rcu);
5501 }
5502 
5503 static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5504 			struct maple_enode *prev, unsigned char offset)
5505 {
5506 	struct maple_node *node;
5507 	struct maple_enode *next = mas->node;
5508 	void __rcu **slots = NULL;
5509 
5510 	do {
5511 		mas->node = next;
5512 		node = mas_mn(mas);
5513 		slots = ma_slots(node, mte_node_type(mas->node));
5514 		next = mas_slot_locked(mas, slots, 0);
5515 		if ((mte_dead_node(next)))
5516 			next = mas_slot_locked(mas, slots, 1);
5517 
5518 		mte_set_node_dead(mas->node);
5519 		node->type = mte_node_type(mas->node);
5520 		node->piv_parent = prev;
5521 		node->parent_slot = offset;
5522 		offset = 0;
5523 		prev = mas->node;
5524 	} while (!mte_is_leaf(next));
5525 
5526 	return slots;
5527 }
5528 
5529 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5530 			    bool free)
5531 {
5532 	void __rcu **slots;
5533 	struct maple_node *node = mte_to_node(enode);
5534 	struct maple_enode *start;
5535 	struct maple_tree mt;
5536 
5537 	MA_STATE(mas, &mt, 0, 0);
5538 
5539 	if (mte_is_leaf(enode))
5540 		goto free_leaf;
5541 
5542 	mt_init_flags(&mt, ma_flags);
5543 	mas_lock(&mas);
5544 
5545 	mas.node = start = enode;
5546 	slots = mas_destroy_descend(&mas, start, 0);
5547 	node = mas_mn(&mas);
5548 	do {
5549 		enum maple_type type;
5550 		unsigned char offset;
5551 		struct maple_enode *parent, *tmp;
5552 
5553 		node->slot_len = mas_dead_leaves(&mas, slots);
5554 		if (free)
5555 			mt_free_bulk(node->slot_len, slots);
5556 		offset = node->parent_slot + 1;
5557 		mas.node = node->piv_parent;
5558 		if (mas_mn(&mas) == node)
5559 			goto start_slots_free;
5560 
5561 		type = mte_node_type(mas.node);
5562 		slots = ma_slots(mte_to_node(mas.node), type);
5563 		if (offset >= mt_slots[type])
5564 			goto next;
5565 
5566 		tmp = mas_slot_locked(&mas, slots, offset);
5567 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5568 			parent = mas.node;
5569 			mas.node = tmp;
5570 			slots = mas_destroy_descend(&mas, parent, offset);
5571 		}
5572 next:
5573 		node = mas_mn(&mas);
5574 	} while (start != mas.node);
5575 
5576 	node = mas_mn(&mas);
5577 	node->slot_len = mas_dead_leaves(&mas, slots);
5578 	if (free)
5579 		mt_free_bulk(node->slot_len, slots);
5580 
5581 start_slots_free:
5582 	mas_unlock(&mas);
5583 
5584 free_leaf:
5585 	if (free)
5586 		mt_free_rcu(&node->rcu);
5587 }
5588 
5589 /*
5590  * mte_destroy_walk() - Free a tree or sub-tree.
5591  * @enode - the encoded maple node (maple_enode) to start
5592  * @mn - the tree to free - needed for node types.
5593  *
5594  * Must hold the write lock.
5595  */
5596 static inline void mte_destroy_walk(struct maple_enode *enode,
5597 				    struct maple_tree *mt)
5598 {
5599 	struct maple_node *node = mte_to_node(enode);
5600 
5601 	if (mt_in_rcu(mt)) {
5602 		mt_destroy_walk(enode, mt->ma_flags, false);
5603 		call_rcu(&node->rcu, mt_free_walk);
5604 	} else {
5605 		mt_destroy_walk(enode, mt->ma_flags, true);
5606 	}
5607 }
5608 
5609 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5610 {
5611 	if (!mas_is_start(wr_mas->mas)) {
5612 		if (mas_is_none(wr_mas->mas)) {
5613 			mas_reset(wr_mas->mas);
5614 		} else {
5615 			wr_mas->r_max = wr_mas->mas->max;
5616 			wr_mas->type = mte_node_type(wr_mas->mas->node);
5617 			if (mas_is_span_wr(wr_mas))
5618 				mas_reset(wr_mas->mas);
5619 		}
5620 	}
5621 
5622 }
5623 
5624 /* Interface */
5625 
5626 /**
5627  * mas_store() - Store an @entry.
5628  * @mas: The maple state.
5629  * @entry: The entry to store.
5630  *
5631  * The @mas->index and @mas->last is used to set the range for the @entry.
5632  * Note: The @mas should have pre-allocated entries to ensure there is memory to
5633  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5634  *
5635  * Return: the first entry between mas->index and mas->last or %NULL.
5636  */
5637 void *mas_store(struct ma_state *mas, void *entry)
5638 {
5639 	MA_WR_STATE(wr_mas, mas, entry);
5640 
5641 	trace_ma_write(__func__, mas, 0, entry);
5642 #ifdef CONFIG_DEBUG_MAPLE_TREE
5643 	if (mas->index > mas->last)
5644 		pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5645 	MT_BUG_ON(mas->tree, mas->index > mas->last);
5646 	if (mas->index > mas->last) {
5647 		mas_set_err(mas, -EINVAL);
5648 		return NULL;
5649 	}
5650 
5651 #endif
5652 
5653 	/*
5654 	 * Storing is the same operation as insert with the added caveat that it
5655 	 * can overwrite entries.  Although this seems simple enough, one may
5656 	 * want to examine what happens if a single store operation was to
5657 	 * overwrite multiple entries within a self-balancing B-Tree.
5658 	 */
5659 	mas_wr_store_setup(&wr_mas);
5660 	mas_wr_store_entry(&wr_mas);
5661 	return wr_mas.content;
5662 }
5663 EXPORT_SYMBOL_GPL(mas_store);
5664 
5665 /**
5666  * mas_store_gfp() - Store a value into the tree.
5667  * @mas: The maple state
5668  * @entry: The entry to store
5669  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5670  *
5671  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5672  * be allocated.
5673  */
5674 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5675 {
5676 	MA_WR_STATE(wr_mas, mas, entry);
5677 
5678 	mas_wr_store_setup(&wr_mas);
5679 	trace_ma_write(__func__, mas, 0, entry);
5680 retry:
5681 	mas_wr_store_entry(&wr_mas);
5682 	if (unlikely(mas_nomem(mas, gfp)))
5683 		goto retry;
5684 
5685 	if (unlikely(mas_is_err(mas)))
5686 		return xa_err(mas->node);
5687 
5688 	return 0;
5689 }
5690 EXPORT_SYMBOL_GPL(mas_store_gfp);
5691 
5692 /**
5693  * mas_store_prealloc() - Store a value into the tree using memory
5694  * preallocated in the maple state.
5695  * @mas: The maple state
5696  * @entry: The entry to store.
5697  */
5698 void mas_store_prealloc(struct ma_state *mas, void *entry)
5699 {
5700 	MA_WR_STATE(wr_mas, mas, entry);
5701 
5702 	mas_wr_store_setup(&wr_mas);
5703 	trace_ma_write(__func__, mas, 0, entry);
5704 	mas_wr_store_entry(&wr_mas);
5705 	BUG_ON(mas_is_err(mas));
5706 	mas_destroy(mas);
5707 }
5708 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5709 
5710 /**
5711  * mas_preallocate() - Preallocate enough nodes for a store operation
5712  * @mas: The maple state
5713  * @entry: The entry that will be stored
5714  * @gfp: The GFP_FLAGS to use for allocations.
5715  *
5716  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5717  */
5718 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5719 {
5720 	int ret;
5721 
5722 	mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5723 	mas->mas_flags |= MA_STATE_PREALLOC;
5724 	if (likely(!mas_is_err(mas)))
5725 		return 0;
5726 
5727 	mas_set_alloc_req(mas, 0);
5728 	ret = xa_err(mas->node);
5729 	mas_reset(mas);
5730 	mas_destroy(mas);
5731 	mas_reset(mas);
5732 	return ret;
5733 }
5734 
5735 /*
5736  * mas_destroy() - destroy a maple state.
5737  * @mas: The maple state
5738  *
5739  * Upon completion, check the left-most node and rebalance against the node to
5740  * the right if necessary.  Frees any allocated nodes associated with this maple
5741  * state.
5742  */
5743 void mas_destroy(struct ma_state *mas)
5744 {
5745 	struct maple_alloc *node;
5746 
5747 	/*
5748 	 * When using mas_for_each() to insert an expected number of elements,
5749 	 * it is possible that the number inserted is less than the expected
5750 	 * number.  To fix an invalid final node, a check is performed here to
5751 	 * rebalance the previous node with the final node.
5752 	 */
5753 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5754 		unsigned char end;
5755 
5756 		if (mas_is_start(mas))
5757 			mas_start(mas);
5758 
5759 		mtree_range_walk(mas);
5760 		end = mas_data_end(mas) + 1;
5761 		if (end < mt_min_slot_count(mas->node) - 1)
5762 			mas_destroy_rebalance(mas, end);
5763 
5764 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5765 	}
5766 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5767 
5768 	while (mas->alloc && !((unsigned long)mas->alloc & 0x1)) {
5769 		node = mas->alloc;
5770 		mas->alloc = node->slot[0];
5771 		if (node->node_count > 0)
5772 			mt_free_bulk(node->node_count,
5773 				     (void __rcu **)&node->slot[1]);
5774 		kmem_cache_free(maple_node_cache, node);
5775 	}
5776 	mas->alloc = NULL;
5777 }
5778 EXPORT_SYMBOL_GPL(mas_destroy);
5779 
5780 /*
5781  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5782  * @mas: The maple state
5783  * @nr_entries: The number of expected entries.
5784  *
5785  * This will attempt to pre-allocate enough nodes to store the expected number
5786  * of entries.  The allocations will occur using the bulk allocator interface
5787  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5788  * to ensure any unused nodes are freed.
5789  *
5790  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5791  */
5792 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5793 {
5794 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5795 	struct maple_enode *enode = mas->node;
5796 	int nr_nodes;
5797 	int ret;
5798 
5799 	/*
5800 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5801 	 * forking a process and duplicating the VMAs from one tree to a new
5802 	 * tree.  When such a situation arises, it is known that the new tree is
5803 	 * not going to be used until the entire tree is populated.  For
5804 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5805 	 * This allows for optimistic splitting that favours the left and reuse
5806 	 * of nodes during the operation.
5807 	 */
5808 
5809 	/* Optimize splitting for bulk insert in-order */
5810 	mas->mas_flags |= MA_STATE_BULK;
5811 
5812 	/*
5813 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5814 	 * If this is wrong, it just means allocation can happen during
5815 	 * insertion of entries.
5816 	 */
5817 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5818 	if (!mt_is_alloc(mas->tree))
5819 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5820 
5821 	/* Leaves; reduce slots to keep space for expansion */
5822 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5823 	/* Internal nodes */
5824 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5825 	/* Add working room for split (2 nodes) + new parents */
5826 	mas_node_count(mas, nr_nodes + 3);
5827 
5828 	/* Detect if allocations run out */
5829 	mas->mas_flags |= MA_STATE_PREALLOC;
5830 
5831 	if (!mas_is_err(mas))
5832 		return 0;
5833 
5834 	ret = xa_err(mas->node);
5835 	mas->node = enode;
5836 	mas_destroy(mas);
5837 	return ret;
5838 
5839 }
5840 EXPORT_SYMBOL_GPL(mas_expected_entries);
5841 
5842 /**
5843  * mas_next() - Get the next entry.
5844  * @mas: The maple state
5845  * @max: The maximum index to check.
5846  *
5847  * Returns the next entry after @mas->index.
5848  * Must hold rcu_read_lock or the write lock.
5849  * Can return the zero entry.
5850  *
5851  * Return: The next entry or %NULL
5852  */
5853 void *mas_next(struct ma_state *mas, unsigned long max)
5854 {
5855 	if (mas_is_none(mas) || mas_is_paused(mas))
5856 		mas->node = MAS_START;
5857 
5858 	if (mas_is_start(mas))
5859 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5860 
5861 	if (mas_is_ptr(mas)) {
5862 		if (!mas->index) {
5863 			mas->index = 1;
5864 			mas->last = ULONG_MAX;
5865 		}
5866 		return NULL;
5867 	}
5868 
5869 	if (mas->last == ULONG_MAX)
5870 		return NULL;
5871 
5872 	/* Retries on dead nodes handled by mas_next_entry */
5873 	return mas_next_entry(mas, max);
5874 }
5875 EXPORT_SYMBOL_GPL(mas_next);
5876 
5877 /**
5878  * mt_next() - get the next value in the maple tree
5879  * @mt: The maple tree
5880  * @index: The start index
5881  * @max: The maximum index to check
5882  *
5883  * Return: The entry at @index or higher, or %NULL if nothing is found.
5884  */
5885 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5886 {
5887 	void *entry = NULL;
5888 	MA_STATE(mas, mt, index, index);
5889 
5890 	rcu_read_lock();
5891 	entry = mas_next(&mas, max);
5892 	rcu_read_unlock();
5893 	return entry;
5894 }
5895 EXPORT_SYMBOL_GPL(mt_next);
5896 
5897 /**
5898  * mas_prev() - Get the previous entry
5899  * @mas: The maple state
5900  * @min: The minimum value to check.
5901  *
5902  * Must hold rcu_read_lock or the write lock.
5903  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5904  * searchable nodes.
5905  *
5906  * Return: the previous value or %NULL.
5907  */
5908 void *mas_prev(struct ma_state *mas, unsigned long min)
5909 {
5910 	if (!mas->index) {
5911 		/* Nothing comes before 0 */
5912 		mas->last = 0;
5913 		return NULL;
5914 	}
5915 
5916 	if (unlikely(mas_is_ptr(mas)))
5917 		return NULL;
5918 
5919 	if (mas_is_none(mas) || mas_is_paused(mas))
5920 		mas->node = MAS_START;
5921 
5922 	if (mas_is_start(mas)) {
5923 		mas_walk(mas);
5924 		if (!mas->index)
5925 			return NULL;
5926 	}
5927 
5928 	if (mas_is_ptr(mas)) {
5929 		if (!mas->index) {
5930 			mas->last = 0;
5931 			return NULL;
5932 		}
5933 
5934 		mas->index = mas->last = 0;
5935 		return mas_root_locked(mas);
5936 	}
5937 	return mas_prev_entry(mas, min);
5938 }
5939 EXPORT_SYMBOL_GPL(mas_prev);
5940 
5941 /**
5942  * mt_prev() - get the previous value in the maple tree
5943  * @mt: The maple tree
5944  * @index: The start index
5945  * @min: The minimum index to check
5946  *
5947  * Return: The entry at @index or lower, or %NULL if nothing is found.
5948  */
5949 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5950 {
5951 	void *entry = NULL;
5952 	MA_STATE(mas, mt, index, index);
5953 
5954 	rcu_read_lock();
5955 	entry = mas_prev(&mas, min);
5956 	rcu_read_unlock();
5957 	return entry;
5958 }
5959 EXPORT_SYMBOL_GPL(mt_prev);
5960 
5961 /**
5962  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5963  * @mas: The maple state to pause
5964  *
5965  * Some users need to pause a walk and drop the lock they're holding in
5966  * order to yield to a higher priority thread or carry out an operation
5967  * on an entry.  Those users should call this function before they drop
5968  * the lock.  It resets the @mas to be suitable for the next iteration
5969  * of the loop after the user has reacquired the lock.  If most entries
5970  * found during a walk require you to call mas_pause(), the mt_for_each()
5971  * iterator may be more appropriate.
5972  *
5973  */
5974 void mas_pause(struct ma_state *mas)
5975 {
5976 	mas->node = MAS_PAUSE;
5977 }
5978 EXPORT_SYMBOL_GPL(mas_pause);
5979 
5980 /**
5981  * mas_find() - On the first call, find the entry at or after mas->index up to
5982  * %max.  Otherwise, find the entry after mas->index.
5983  * @mas: The maple state
5984  * @max: The maximum value to check.
5985  *
5986  * Must hold rcu_read_lock or the write lock.
5987  * If an entry exists, last and index are updated accordingly.
5988  * May set @mas->node to MAS_NONE.
5989  *
5990  * Return: The entry or %NULL.
5991  */
5992 void *mas_find(struct ma_state *mas, unsigned long max)
5993 {
5994 	if (unlikely(mas_is_paused(mas))) {
5995 		if (unlikely(mas->last == ULONG_MAX)) {
5996 			mas->node = MAS_NONE;
5997 			return NULL;
5998 		}
5999 		mas->node = MAS_START;
6000 		mas->index = ++mas->last;
6001 	}
6002 
6003 	if (unlikely(mas_is_start(mas))) {
6004 		/* First run or continue */
6005 		void *entry;
6006 
6007 		if (mas->index > max)
6008 			return NULL;
6009 
6010 		entry = mas_walk(mas);
6011 		if (entry)
6012 			return entry;
6013 	}
6014 
6015 	if (unlikely(!mas_searchable(mas)))
6016 		return NULL;
6017 
6018 	/* Retries on dead nodes handled by mas_next_entry */
6019 	return mas_next_entry(mas, max);
6020 }
6021 EXPORT_SYMBOL_GPL(mas_find);
6022 
6023 /**
6024  * mas_find_rev: On the first call, find the first non-null entry at or below
6025  * mas->index down to %min.  Otherwise find the first non-null entry below
6026  * mas->index down to %min.
6027  * @mas: The maple state
6028  * @min: The minimum value to check.
6029  *
6030  * Must hold rcu_read_lock or the write lock.
6031  * If an entry exists, last and index are updated accordingly.
6032  * May set @mas->node to MAS_NONE.
6033  *
6034  * Return: The entry or %NULL.
6035  */
6036 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6037 {
6038 	if (unlikely(mas_is_paused(mas))) {
6039 		if (unlikely(mas->last == ULONG_MAX)) {
6040 			mas->node = MAS_NONE;
6041 			return NULL;
6042 		}
6043 		mas->node = MAS_START;
6044 		mas->last = --mas->index;
6045 	}
6046 
6047 	if (unlikely(mas_is_start(mas))) {
6048 		/* First run or continue */
6049 		void *entry;
6050 
6051 		if (mas->index < min)
6052 			return NULL;
6053 
6054 		entry = mas_walk(mas);
6055 		if (entry)
6056 			return entry;
6057 	}
6058 
6059 	if (unlikely(!mas_searchable(mas)))
6060 		return NULL;
6061 
6062 	if (mas->index < min)
6063 		return NULL;
6064 
6065 	/* Retries on dead nodes handled by mas_prev_entry */
6066 	return mas_prev_entry(mas, min);
6067 }
6068 EXPORT_SYMBOL_GPL(mas_find_rev);
6069 
6070 /**
6071  * mas_erase() - Find the range in which index resides and erase the entire
6072  * range.
6073  * @mas: The maple state
6074  *
6075  * Must hold the write lock.
6076  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6077  * erases that range.
6078  *
6079  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6080  */
6081 void *mas_erase(struct ma_state *mas)
6082 {
6083 	void *entry;
6084 	MA_WR_STATE(wr_mas, mas, NULL);
6085 
6086 	if (mas_is_none(mas) || mas_is_paused(mas))
6087 		mas->node = MAS_START;
6088 
6089 	/* Retry unnecessary when holding the write lock. */
6090 	entry = mas_state_walk(mas);
6091 	if (!entry)
6092 		return NULL;
6093 
6094 write_retry:
6095 	/* Must reset to ensure spanning writes of last slot are detected */
6096 	mas_reset(mas);
6097 	mas_wr_store_setup(&wr_mas);
6098 	mas_wr_store_entry(&wr_mas);
6099 	if (mas_nomem(mas, GFP_KERNEL))
6100 		goto write_retry;
6101 
6102 	return entry;
6103 }
6104 EXPORT_SYMBOL_GPL(mas_erase);
6105 
6106 /**
6107  * mas_nomem() - Check if there was an error allocating and do the allocation
6108  * if necessary If there are allocations, then free them.
6109  * @mas: The maple state
6110  * @gfp: The GFP_FLAGS to use for allocations
6111  * Return: true on allocation, false otherwise.
6112  */
6113 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6114 	__must_hold(mas->tree->lock)
6115 {
6116 	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6117 		mas_destroy(mas);
6118 		return false;
6119 	}
6120 
6121 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6122 		mtree_unlock(mas->tree);
6123 		mas_alloc_nodes(mas, gfp);
6124 		mtree_lock(mas->tree);
6125 	} else {
6126 		mas_alloc_nodes(mas, gfp);
6127 	}
6128 
6129 	if (!mas_allocated(mas))
6130 		return false;
6131 
6132 	mas->node = MAS_START;
6133 	return true;
6134 }
6135 
6136 void __init maple_tree_init(void)
6137 {
6138 	maple_node_cache = kmem_cache_create("maple_node",
6139 			sizeof(struct maple_node), sizeof(struct maple_node),
6140 			SLAB_PANIC, NULL);
6141 }
6142 
6143 /**
6144  * mtree_load() - Load a value stored in a maple tree
6145  * @mt: The maple tree
6146  * @index: The index to load
6147  *
6148  * Return: the entry or %NULL
6149  */
6150 void *mtree_load(struct maple_tree *mt, unsigned long index)
6151 {
6152 	MA_STATE(mas, mt, index, index);
6153 	void *entry;
6154 
6155 	trace_ma_read(__func__, &mas);
6156 	rcu_read_lock();
6157 retry:
6158 	entry = mas_start(&mas);
6159 	if (unlikely(mas_is_none(&mas)))
6160 		goto unlock;
6161 
6162 	if (unlikely(mas_is_ptr(&mas))) {
6163 		if (index)
6164 			entry = NULL;
6165 
6166 		goto unlock;
6167 	}
6168 
6169 	entry = mtree_lookup_walk(&mas);
6170 	if (!entry && unlikely(mas_is_start(&mas)))
6171 		goto retry;
6172 unlock:
6173 	rcu_read_unlock();
6174 	if (xa_is_zero(entry))
6175 		return NULL;
6176 
6177 	return entry;
6178 }
6179 EXPORT_SYMBOL(mtree_load);
6180 
6181 /**
6182  * mtree_store_range() - Store an entry at a given range.
6183  * @mt: The maple tree
6184  * @index: The start of the range
6185  * @last: The end of the range
6186  * @entry: The entry to store
6187  * @gfp: The GFP_FLAGS to use for allocations
6188  *
6189  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6190  * be allocated.
6191  */
6192 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6193 		unsigned long last, void *entry, gfp_t gfp)
6194 {
6195 	MA_STATE(mas, mt, index, last);
6196 	MA_WR_STATE(wr_mas, &mas, entry);
6197 
6198 	trace_ma_write(__func__, &mas, 0, entry);
6199 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6200 		return -EINVAL;
6201 
6202 	if (index > last)
6203 		return -EINVAL;
6204 
6205 	mtree_lock(mt);
6206 retry:
6207 	mas_wr_store_entry(&wr_mas);
6208 	if (mas_nomem(&mas, gfp))
6209 		goto retry;
6210 
6211 	mtree_unlock(mt);
6212 	if (mas_is_err(&mas))
6213 		return xa_err(mas.node);
6214 
6215 	return 0;
6216 }
6217 EXPORT_SYMBOL(mtree_store_range);
6218 
6219 /**
6220  * mtree_store() - Store an entry at a given index.
6221  * @mt: The maple tree
6222  * @index: The index to store the value
6223  * @entry: The entry to store
6224  * @gfp: The GFP_FLAGS to use for allocations
6225  *
6226  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6227  * be allocated.
6228  */
6229 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6230 		 gfp_t gfp)
6231 {
6232 	return mtree_store_range(mt, index, index, entry, gfp);
6233 }
6234 EXPORT_SYMBOL(mtree_store);
6235 
6236 /**
6237  * mtree_insert_range() - Insert an entry at a give range if there is no value.
6238  * @mt: The maple tree
6239  * @first: The start of the range
6240  * @last: The end of the range
6241  * @entry: The entry to store
6242  * @gfp: The GFP_FLAGS to use for allocations.
6243  *
6244  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6245  * request, -ENOMEM if memory could not be allocated.
6246  */
6247 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6248 		unsigned long last, void *entry, gfp_t gfp)
6249 {
6250 	MA_STATE(ms, mt, first, last);
6251 
6252 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6253 		return -EINVAL;
6254 
6255 	if (first > last)
6256 		return -EINVAL;
6257 
6258 	mtree_lock(mt);
6259 retry:
6260 	mas_insert(&ms, entry);
6261 	if (mas_nomem(&ms, gfp))
6262 		goto retry;
6263 
6264 	mtree_unlock(mt);
6265 	if (mas_is_err(&ms))
6266 		return xa_err(ms.node);
6267 
6268 	return 0;
6269 }
6270 EXPORT_SYMBOL(mtree_insert_range);
6271 
6272 /**
6273  * mtree_insert() - Insert an entry at a give index if there is no value.
6274  * @mt: The maple tree
6275  * @index : The index to store the value
6276  * @entry: The entry to store
6277  * @gfp: The FGP_FLAGS to use for allocations.
6278  *
6279  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6280  * request, -ENOMEM if memory could not be allocated.
6281  */
6282 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6283 		 gfp_t gfp)
6284 {
6285 	return mtree_insert_range(mt, index, index, entry, gfp);
6286 }
6287 EXPORT_SYMBOL(mtree_insert);
6288 
6289 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6290 		void *entry, unsigned long size, unsigned long min,
6291 		unsigned long max, gfp_t gfp)
6292 {
6293 	int ret = 0;
6294 
6295 	MA_STATE(mas, mt, min, max - size);
6296 	if (!mt_is_alloc(mt))
6297 		return -EINVAL;
6298 
6299 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6300 		return -EINVAL;
6301 
6302 	if (min > max)
6303 		return -EINVAL;
6304 
6305 	if (max < size)
6306 		return -EINVAL;
6307 
6308 	if (!size)
6309 		return -EINVAL;
6310 
6311 	mtree_lock(mt);
6312 retry:
6313 	mas.offset = 0;
6314 	mas.index = min;
6315 	mas.last = max - size;
6316 	ret = mas_alloc(&mas, entry, size, startp);
6317 	if (mas_nomem(&mas, gfp))
6318 		goto retry;
6319 
6320 	mtree_unlock(mt);
6321 	return ret;
6322 }
6323 EXPORT_SYMBOL(mtree_alloc_range);
6324 
6325 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6326 		void *entry, unsigned long size, unsigned long min,
6327 		unsigned long max, gfp_t gfp)
6328 {
6329 	int ret = 0;
6330 
6331 	MA_STATE(mas, mt, min, max - size);
6332 	if (!mt_is_alloc(mt))
6333 		return -EINVAL;
6334 
6335 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6336 		return -EINVAL;
6337 
6338 	if (min >= max)
6339 		return -EINVAL;
6340 
6341 	if (max < size - 1)
6342 		return -EINVAL;
6343 
6344 	if (!size)
6345 		return -EINVAL;
6346 
6347 	mtree_lock(mt);
6348 retry:
6349 	ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6350 	if (mas_nomem(&mas, gfp))
6351 		goto retry;
6352 
6353 	mtree_unlock(mt);
6354 	return ret;
6355 }
6356 EXPORT_SYMBOL(mtree_alloc_rrange);
6357 
6358 /**
6359  * mtree_erase() - Find an index and erase the entire range.
6360  * @mt: The maple tree
6361  * @index: The index to erase
6362  *
6363  * Erasing is the same as a walk to an entry then a store of a NULL to that
6364  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6365  *
6366  * Return: The entry stored at the @index or %NULL
6367  */
6368 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6369 {
6370 	void *entry = NULL;
6371 
6372 	MA_STATE(mas, mt, index, index);
6373 	trace_ma_op(__func__, &mas);
6374 
6375 	mtree_lock(mt);
6376 	entry = mas_erase(&mas);
6377 	mtree_unlock(mt);
6378 
6379 	return entry;
6380 }
6381 EXPORT_SYMBOL(mtree_erase);
6382 
6383 /**
6384  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6385  * @mt: The maple tree
6386  *
6387  * Note: Does not handle locking.
6388  */
6389 void __mt_destroy(struct maple_tree *mt)
6390 {
6391 	void *root = mt_root_locked(mt);
6392 
6393 	rcu_assign_pointer(mt->ma_root, NULL);
6394 	if (xa_is_node(root))
6395 		mte_destroy_walk(root, mt);
6396 
6397 	mt->ma_flags = 0;
6398 }
6399 EXPORT_SYMBOL_GPL(__mt_destroy);
6400 
6401 /**
6402  * mtree_destroy() - Destroy a maple tree
6403  * @mt: The maple tree
6404  *
6405  * Frees all resources used by the tree.  Handles locking.
6406  */
6407 void mtree_destroy(struct maple_tree *mt)
6408 {
6409 	mtree_lock(mt);
6410 	__mt_destroy(mt);
6411 	mtree_unlock(mt);
6412 }
6413 EXPORT_SYMBOL(mtree_destroy);
6414 
6415 /**
6416  * mt_find() - Search from the start up until an entry is found.
6417  * @mt: The maple tree
6418  * @index: Pointer which contains the start location of the search
6419  * @max: The maximum value to check
6420  *
6421  * Handles locking.  @index will be incremented to one beyond the range.
6422  *
6423  * Return: The entry at or after the @index or %NULL
6424  */
6425 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6426 {
6427 	MA_STATE(mas, mt, *index, *index);
6428 	void *entry;
6429 #ifdef CONFIG_DEBUG_MAPLE_TREE
6430 	unsigned long copy = *index;
6431 #endif
6432 
6433 	trace_ma_read(__func__, &mas);
6434 
6435 	if ((*index) > max)
6436 		return NULL;
6437 
6438 	rcu_read_lock();
6439 retry:
6440 	entry = mas_state_walk(&mas);
6441 	if (mas_is_start(&mas))
6442 		goto retry;
6443 
6444 	if (unlikely(xa_is_zero(entry)))
6445 		entry = NULL;
6446 
6447 	if (entry)
6448 		goto unlock;
6449 
6450 	while (mas_searchable(&mas) && (mas.index < max)) {
6451 		entry = mas_next_entry(&mas, max);
6452 		if (likely(entry && !xa_is_zero(entry)))
6453 			break;
6454 	}
6455 
6456 	if (unlikely(xa_is_zero(entry)))
6457 		entry = NULL;
6458 unlock:
6459 	rcu_read_unlock();
6460 	if (likely(entry)) {
6461 		*index = mas.last + 1;
6462 #ifdef CONFIG_DEBUG_MAPLE_TREE
6463 		if ((*index) && (*index) <= copy)
6464 			pr_err("index not increased! %lx <= %lx\n",
6465 			       *index, copy);
6466 		MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6467 #endif
6468 	}
6469 
6470 	return entry;
6471 }
6472 EXPORT_SYMBOL(mt_find);
6473 
6474 /**
6475  * mt_find_after() - Search from the start up until an entry is found.
6476  * @mt: The maple tree
6477  * @index: Pointer which contains the start location of the search
6478  * @max: The maximum value to check
6479  *
6480  * Handles locking, detects wrapping on index == 0
6481  *
6482  * Return: The entry at or after the @index or %NULL
6483  */
6484 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6485 		    unsigned long max)
6486 {
6487 	if (!(*index))
6488 		return NULL;
6489 
6490 	return mt_find(mt, index, max);
6491 }
6492 EXPORT_SYMBOL(mt_find_after);
6493 
6494 #ifdef CONFIG_DEBUG_MAPLE_TREE
6495 atomic_t maple_tree_tests_run;
6496 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6497 atomic_t maple_tree_tests_passed;
6498 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6499 
6500 #ifndef __KERNEL__
6501 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6502 void mt_set_non_kernel(unsigned int val)
6503 {
6504 	kmem_cache_set_non_kernel(maple_node_cache, val);
6505 }
6506 
6507 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6508 unsigned long mt_get_alloc_size(void)
6509 {
6510 	return kmem_cache_get_alloc(maple_node_cache);
6511 }
6512 
6513 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6514 void mt_zero_nr_tallocated(void)
6515 {
6516 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6517 }
6518 
6519 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6520 unsigned int mt_nr_tallocated(void)
6521 {
6522 	return kmem_cache_nr_tallocated(maple_node_cache);
6523 }
6524 
6525 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6526 unsigned int mt_nr_allocated(void)
6527 {
6528 	return kmem_cache_nr_allocated(maple_node_cache);
6529 }
6530 
6531 /*
6532  * mas_dead_node() - Check if the maple state is pointing to a dead node.
6533  * @mas: The maple state
6534  * @index: The index to restore in @mas.
6535  *
6536  * Used in test code.
6537  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6538  */
6539 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6540 {
6541 	if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6542 		return 0;
6543 
6544 	if (likely(!mte_dead_node(mas->node)))
6545 		return 0;
6546 
6547 	mas_rewalk(mas, index);
6548 	return 1;
6549 }
6550 
6551 void mt_cache_shrink(void)
6552 {
6553 }
6554 #else
6555 /*
6556  * mt_cache_shrink() - For testing, don't use this.
6557  *
6558  * Certain testcases can trigger an OOM when combined with other memory
6559  * debugging configuration options.  This function is used to reduce the
6560  * possibility of an out of memory even due to kmem_cache objects remaining
6561  * around for longer than usual.
6562  */
6563 void mt_cache_shrink(void)
6564 {
6565 	kmem_cache_shrink(maple_node_cache);
6566 
6567 }
6568 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6569 
6570 #endif /* not defined __KERNEL__ */
6571 /*
6572  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6573  * @mas: The maple state
6574  * @offset: The offset into the slot array to fetch.
6575  *
6576  * Return: The entry stored at @offset.
6577  */
6578 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6579 		unsigned char offset)
6580 {
6581 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6582 			offset);
6583 }
6584 
6585 
6586 /*
6587  * mas_first_entry() - Go the first leaf and find the first entry.
6588  * @mas: the maple state.
6589  * @limit: the maximum index to check.
6590  * @*r_start: Pointer to set to the range start.
6591  *
6592  * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6593  *
6594  * Return: The first entry or MAS_NONE.
6595  */
6596 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6597 		unsigned long limit, enum maple_type mt)
6598 
6599 {
6600 	unsigned long max;
6601 	unsigned long *pivots;
6602 	void __rcu **slots;
6603 	void *entry = NULL;
6604 
6605 	mas->index = mas->min;
6606 	if (mas->index > limit)
6607 		goto none;
6608 
6609 	max = mas->max;
6610 	mas->offset = 0;
6611 	while (likely(!ma_is_leaf(mt))) {
6612 		MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6613 		slots = ma_slots(mn, mt);
6614 		pivots = ma_pivots(mn, mt);
6615 		max = pivots[0];
6616 		entry = mas_slot(mas, slots, 0);
6617 		if (unlikely(ma_dead_node(mn)))
6618 			return NULL;
6619 		mas->node = entry;
6620 		mn = mas_mn(mas);
6621 		mt = mte_node_type(mas->node);
6622 	}
6623 	MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6624 
6625 	mas->max = max;
6626 	slots = ma_slots(mn, mt);
6627 	entry = mas_slot(mas, slots, 0);
6628 	if (unlikely(ma_dead_node(mn)))
6629 		return NULL;
6630 
6631 	/* Slot 0 or 1 must be set */
6632 	if (mas->index > limit)
6633 		goto none;
6634 
6635 	if (likely(entry))
6636 		return entry;
6637 
6638 	pivots = ma_pivots(mn, mt);
6639 	mas->index = pivots[0] + 1;
6640 	mas->offset = 1;
6641 	entry = mas_slot(mas, slots, 1);
6642 	if (unlikely(ma_dead_node(mn)))
6643 		return NULL;
6644 
6645 	if (mas->index > limit)
6646 		goto none;
6647 
6648 	if (likely(entry))
6649 		return entry;
6650 
6651 none:
6652 	if (likely(!ma_dead_node(mn)))
6653 		mas->node = MAS_NONE;
6654 	return NULL;
6655 }
6656 
6657 /* Depth first search, post-order */
6658 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6659 {
6660 
6661 	struct maple_enode *p = MAS_NONE, *mn = mas->node;
6662 	unsigned long p_min, p_max;
6663 
6664 	mas_next_node(mas, mas_mn(mas), max);
6665 	if (!mas_is_none(mas))
6666 		return;
6667 
6668 	if (mte_is_root(mn))
6669 		return;
6670 
6671 	mas->node = mn;
6672 	mas_ascend(mas);
6673 	while (mas->node != MAS_NONE) {
6674 		p = mas->node;
6675 		p_min = mas->min;
6676 		p_max = mas->max;
6677 		mas_prev_node(mas, 0);
6678 	}
6679 
6680 	if (p == MAS_NONE)
6681 		return;
6682 
6683 	mas->node = p;
6684 	mas->max = p_max;
6685 	mas->min = p_min;
6686 }
6687 
6688 /* Tree validations */
6689 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6690 		unsigned long min, unsigned long max, unsigned int depth);
6691 static void mt_dump_range(unsigned long min, unsigned long max,
6692 			  unsigned int depth)
6693 {
6694 	static const char spaces[] = "                                ";
6695 
6696 	if (min == max)
6697 		pr_info("%.*s%lu: ", depth * 2, spaces, min);
6698 	else
6699 		pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6700 }
6701 
6702 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6703 			  unsigned int depth)
6704 {
6705 	mt_dump_range(min, max, depth);
6706 
6707 	if (xa_is_value(entry))
6708 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6709 				xa_to_value(entry), entry);
6710 	else if (xa_is_zero(entry))
6711 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
6712 	else if (mt_is_reserved(entry))
6713 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6714 	else
6715 		pr_cont("%p\n", entry);
6716 }
6717 
6718 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6719 			unsigned long min, unsigned long max, unsigned int depth)
6720 {
6721 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6722 	bool leaf = mte_is_leaf(entry);
6723 	unsigned long first = min;
6724 	int i;
6725 
6726 	pr_cont(" contents: ");
6727 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6728 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6729 	pr_cont("%p\n", node->slot[i]);
6730 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6731 		unsigned long last = max;
6732 
6733 		if (i < (MAPLE_RANGE64_SLOTS - 1))
6734 			last = node->pivot[i];
6735 		else if (!node->slot[i] && max != mt_max[mte_node_type(entry)])
6736 			break;
6737 		if (last == 0 && i > 0)
6738 			break;
6739 		if (leaf)
6740 			mt_dump_entry(mt_slot(mt, node->slot, i),
6741 					first, last, depth + 1);
6742 		else if (node->slot[i])
6743 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6744 					first, last, depth + 1);
6745 
6746 		if (last == max)
6747 			break;
6748 		if (last > max) {
6749 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6750 					node, last, max, i);
6751 			break;
6752 		}
6753 		first = last + 1;
6754 	}
6755 }
6756 
6757 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6758 			unsigned long min, unsigned long max, unsigned int depth)
6759 {
6760 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6761 	bool leaf = mte_is_leaf(entry);
6762 	unsigned long first = min;
6763 	int i;
6764 
6765 	pr_cont(" contents: ");
6766 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6767 		pr_cont("%lu ", node->gap[i]);
6768 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6769 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6770 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6771 	pr_cont("%p\n", node->slot[i]);
6772 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6773 		unsigned long last = max;
6774 
6775 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
6776 			last = node->pivot[i];
6777 		else if (!node->slot[i])
6778 			break;
6779 		if (last == 0 && i > 0)
6780 			break;
6781 		if (leaf)
6782 			mt_dump_entry(mt_slot(mt, node->slot, i),
6783 					first, last, depth + 1);
6784 		else if (node->slot[i])
6785 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6786 					first, last, depth + 1);
6787 
6788 		if (last == max)
6789 			break;
6790 		if (last > max) {
6791 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6792 					node, last, max, i);
6793 			break;
6794 		}
6795 		first = last + 1;
6796 	}
6797 }
6798 
6799 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6800 		unsigned long min, unsigned long max, unsigned int depth)
6801 {
6802 	struct maple_node *node = mte_to_node(entry);
6803 	unsigned int type = mte_node_type(entry);
6804 	unsigned int i;
6805 
6806 	mt_dump_range(min, max, depth);
6807 
6808 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6809 			node ? node->parent : NULL);
6810 	switch (type) {
6811 	case maple_dense:
6812 		pr_cont("\n");
6813 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6814 			if (min + i > max)
6815 				pr_cont("OUT OF RANGE: ");
6816 			mt_dump_entry(mt_slot(mt, node->slot, i),
6817 					min + i, min + i, depth);
6818 		}
6819 		break;
6820 	case maple_leaf_64:
6821 	case maple_range_64:
6822 		mt_dump_range64(mt, entry, min, max, depth);
6823 		break;
6824 	case maple_arange_64:
6825 		mt_dump_arange64(mt, entry, min, max, depth);
6826 		break;
6827 
6828 	default:
6829 		pr_cont(" UNKNOWN TYPE\n");
6830 	}
6831 }
6832 
6833 void mt_dump(const struct maple_tree *mt)
6834 {
6835 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6836 
6837 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6838 		 mt, mt->ma_flags, mt_height(mt), entry);
6839 	if (!xa_is_node(entry))
6840 		mt_dump_entry(entry, 0, 0, 0);
6841 	else if (entry)
6842 		mt_dump_node(mt, entry, 0, mt_max[mte_node_type(entry)], 0);
6843 }
6844 EXPORT_SYMBOL_GPL(mt_dump);
6845 
6846 /*
6847  * Calculate the maximum gap in a node and check if that's what is reported in
6848  * the parent (unless root).
6849  */
6850 static void mas_validate_gaps(struct ma_state *mas)
6851 {
6852 	struct maple_enode *mte = mas->node;
6853 	struct maple_node *p_mn;
6854 	unsigned long gap = 0, max_gap = 0;
6855 	unsigned long p_end, p_start = mas->min;
6856 	unsigned char p_slot;
6857 	unsigned long *gaps = NULL;
6858 	unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6859 	int i;
6860 
6861 	if (ma_is_dense(mte_node_type(mte))) {
6862 		for (i = 0; i < mt_slot_count(mte); i++) {
6863 			if (mas_get_slot(mas, i)) {
6864 				if (gap > max_gap)
6865 					max_gap = gap;
6866 				gap = 0;
6867 				continue;
6868 			}
6869 			gap++;
6870 		}
6871 		goto counted;
6872 	}
6873 
6874 	gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6875 	for (i = 0; i < mt_slot_count(mte); i++) {
6876 		p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6877 
6878 		if (!gaps) {
6879 			if (mas_get_slot(mas, i)) {
6880 				gap = 0;
6881 				goto not_empty;
6882 			}
6883 
6884 			gap += p_end - p_start + 1;
6885 		} else {
6886 			void *entry = mas_get_slot(mas, i);
6887 
6888 			gap = gaps[i];
6889 			if (!entry) {
6890 				if (gap != p_end - p_start + 1) {
6891 					pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6892 						mas_mn(mas), i,
6893 						mas_get_slot(mas, i), gap,
6894 						p_end, p_start);
6895 					mt_dump(mas->tree);
6896 
6897 					MT_BUG_ON(mas->tree,
6898 						gap != p_end - p_start + 1);
6899 				}
6900 			} else {
6901 				if (gap > p_end - p_start + 1) {
6902 					pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6903 					mas_mn(mas), i, gap, p_end, p_start,
6904 					p_end - p_start + 1);
6905 					MT_BUG_ON(mas->tree,
6906 						gap > p_end - p_start + 1);
6907 				}
6908 			}
6909 		}
6910 
6911 		if (gap > max_gap)
6912 			max_gap = gap;
6913 not_empty:
6914 		p_start = p_end + 1;
6915 		if (p_end >= mas->max)
6916 			break;
6917 	}
6918 
6919 counted:
6920 	if (mte_is_root(mte))
6921 		return;
6922 
6923 	p_slot = mte_parent_slot(mas->node);
6924 	p_mn = mte_parent(mte);
6925 	MT_BUG_ON(mas->tree, max_gap > mas->max);
6926 	if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6927 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6928 		mt_dump(mas->tree);
6929 	}
6930 
6931 	MT_BUG_ON(mas->tree,
6932 		  ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6933 }
6934 
6935 static void mas_validate_parent_slot(struct ma_state *mas)
6936 {
6937 	struct maple_node *parent;
6938 	struct maple_enode *node;
6939 	enum maple_type p_type = mas_parent_enum(mas, mas->node);
6940 	unsigned char p_slot = mte_parent_slot(mas->node);
6941 	void __rcu **slots;
6942 	int i;
6943 
6944 	if (mte_is_root(mas->node))
6945 		return;
6946 
6947 	parent = mte_parent(mas->node);
6948 	slots = ma_slots(parent, p_type);
6949 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6950 
6951 	/* Check prev/next parent slot for duplicate node entry */
6952 
6953 	for (i = 0; i < mt_slots[p_type]; i++) {
6954 		node = mas_slot(mas, slots, i);
6955 		if (i == p_slot) {
6956 			if (node != mas->node)
6957 				pr_err("parent %p[%u] does not have %p\n",
6958 					parent, i, mas_mn(mas));
6959 			MT_BUG_ON(mas->tree, node != mas->node);
6960 		} else if (node == mas->node) {
6961 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6962 			       mas_mn(mas), parent, i, p_slot);
6963 			MT_BUG_ON(mas->tree, node == mas->node);
6964 		}
6965 	}
6966 }
6967 
6968 static void mas_validate_child_slot(struct ma_state *mas)
6969 {
6970 	enum maple_type type = mte_node_type(mas->node);
6971 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6972 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6973 	struct maple_enode *child;
6974 	unsigned char i;
6975 
6976 	if (mte_is_leaf(mas->node))
6977 		return;
6978 
6979 	for (i = 0; i < mt_slots[type]; i++) {
6980 		child = mas_slot(mas, slots, i);
6981 		if (!pivots[i] || pivots[i] == mas->max)
6982 			break;
6983 
6984 		if (!child)
6985 			break;
6986 
6987 		if (mte_parent_slot(child) != i) {
6988 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
6989 			       mas_mn(mas), i, mte_to_node(child),
6990 			       mte_parent_slot(child));
6991 			MT_BUG_ON(mas->tree, 1);
6992 		}
6993 
6994 		if (mte_parent(child) != mte_to_node(mas->node)) {
6995 			pr_err("child %p has parent %p not %p\n",
6996 			       mte_to_node(child), mte_parent(child),
6997 			       mte_to_node(mas->node));
6998 			MT_BUG_ON(mas->tree, 1);
6999 		}
7000 	}
7001 }
7002 
7003 /*
7004  * Validate all pivots are within mas->min and mas->max.
7005  */
7006 static void mas_validate_limits(struct ma_state *mas)
7007 {
7008 	int i;
7009 	unsigned long prev_piv = 0;
7010 	enum maple_type type = mte_node_type(mas->node);
7011 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7012 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7013 
7014 	/* all limits are fine here. */
7015 	if (mte_is_root(mas->node))
7016 		return;
7017 
7018 	for (i = 0; i < mt_slots[type]; i++) {
7019 		unsigned long piv;
7020 
7021 		piv = mas_safe_pivot(mas, pivots, i, type);
7022 
7023 		if (!piv && (i != 0))
7024 			break;
7025 
7026 		if (!mte_is_leaf(mas->node)) {
7027 			void *entry = mas_slot(mas, slots, i);
7028 
7029 			if (!entry)
7030 				pr_err("%p[%u] cannot be null\n",
7031 				       mas_mn(mas), i);
7032 
7033 			MT_BUG_ON(mas->tree, !entry);
7034 		}
7035 
7036 		if (prev_piv > piv) {
7037 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7038 				mas_mn(mas), i, piv, prev_piv);
7039 			MT_BUG_ON(mas->tree, piv < prev_piv);
7040 		}
7041 
7042 		if (piv < mas->min) {
7043 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7044 				piv, mas->min);
7045 			MT_BUG_ON(mas->tree, piv < mas->min);
7046 		}
7047 		if (piv > mas->max) {
7048 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7049 				piv, mas->max);
7050 			MT_BUG_ON(mas->tree, piv > mas->max);
7051 		}
7052 		prev_piv = piv;
7053 		if (piv == mas->max)
7054 			break;
7055 	}
7056 	for (i += 1; i < mt_slots[type]; i++) {
7057 		void *entry = mas_slot(mas, slots, i);
7058 
7059 		if (entry && (i != mt_slots[type] - 1)) {
7060 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7061 			       i, entry);
7062 			MT_BUG_ON(mas->tree, entry != NULL);
7063 		}
7064 
7065 		if (i < mt_pivots[type]) {
7066 			unsigned long piv = pivots[i];
7067 
7068 			if (!piv)
7069 				continue;
7070 
7071 			pr_err("%p[%u] should not have piv %lu\n",
7072 			       mas_mn(mas), i, piv);
7073 			MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7074 		}
7075 	}
7076 }
7077 
7078 static void mt_validate_nulls(struct maple_tree *mt)
7079 {
7080 	void *entry, *last = (void *)1;
7081 	unsigned char offset = 0;
7082 	void __rcu **slots;
7083 	MA_STATE(mas, mt, 0, 0);
7084 
7085 	mas_start(&mas);
7086 	if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7087 		return;
7088 
7089 	while (!mte_is_leaf(mas.node))
7090 		mas_descend(&mas);
7091 
7092 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7093 	do {
7094 		entry = mas_slot(&mas, slots, offset);
7095 		if (!last && !entry) {
7096 			pr_err("Sequential nulls end at %p[%u]\n",
7097 				mas_mn(&mas), offset);
7098 		}
7099 		MT_BUG_ON(mt, !last && !entry);
7100 		last = entry;
7101 		if (offset == mas_data_end(&mas)) {
7102 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7103 			if (mas_is_none(&mas))
7104 				return;
7105 			offset = 0;
7106 			slots = ma_slots(mte_to_node(mas.node),
7107 					 mte_node_type(mas.node));
7108 		} else {
7109 			offset++;
7110 		}
7111 
7112 	} while (!mas_is_none(&mas));
7113 }
7114 
7115 /*
7116  * validate a maple tree by checking:
7117  * 1. The limits (pivots are within mas->min to mas->max)
7118  * 2. The gap is correctly set in the parents
7119  */
7120 void mt_validate(struct maple_tree *mt)
7121 {
7122 	unsigned char end;
7123 
7124 	MA_STATE(mas, mt, 0, 0);
7125 	rcu_read_lock();
7126 	mas_start(&mas);
7127 	if (!mas_searchable(&mas))
7128 		goto done;
7129 
7130 	mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7131 	while (!mas_is_none(&mas)) {
7132 		MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7133 		if (!mte_is_root(mas.node)) {
7134 			end = mas_data_end(&mas);
7135 			if ((end < mt_min_slot_count(mas.node)) &&
7136 			    (mas.max != ULONG_MAX)) {
7137 				pr_err("Invalid size %u of %p\n", end,
7138 				mas_mn(&mas));
7139 				MT_BUG_ON(mas.tree, 1);
7140 			}
7141 
7142 		}
7143 		mas_validate_parent_slot(&mas);
7144 		mas_validate_child_slot(&mas);
7145 		mas_validate_limits(&mas);
7146 		if (mt_is_alloc(mt))
7147 			mas_validate_gaps(&mas);
7148 		mas_dfs_postorder(&mas, ULONG_MAX);
7149 	}
7150 	mt_validate_nulls(mt);
7151 done:
7152 	rcu_read_unlock();
7153 
7154 }
7155 EXPORT_SYMBOL_GPL(mt_validate);
7156 
7157 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7158