1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 */ 8 9 /* 10 * DOC: Interesting implementation details of the Maple Tree 11 * 12 * Each node type has a number of slots for entries and a number of slots for 13 * pivots. In the case of dense nodes, the pivots are implied by the position 14 * and are simply the slot index + the minimum of the node. 15 * 16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 17 * indicate that the tree is specifying ranges, Pivots may appear in the 18 * subtree with an entry attached to the value where as keys are unique to a 19 * specific position of a B-tree. Pivot values are inclusive of the slot with 20 * the same index. 21 * 22 * 23 * The following illustrates the layout of a range64 nodes slots and pivots. 24 * 25 * 26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 28 * │ │ │ │ │ │ │ │ └─ Implied maximum 29 * │ │ │ │ │ │ │ └─ Pivot 14 30 * │ │ │ │ │ │ └─ Pivot 13 31 * │ │ │ │ │ └─ Pivot 12 32 * │ │ │ │ └─ Pivot 11 33 * │ │ │ └─ Pivot 2 34 * │ │ └─ Pivot 1 35 * │ └─ Pivot 0 36 * └─ Implied minimum 37 * 38 * Slot contents: 39 * Internal (non-leaf) nodes contain pointers to other nodes. 40 * Leaf nodes contain entries. 41 * 42 * The location of interest is often referred to as an offset. All offsets have 43 * a slot, but the last offset has an implied pivot from the node above (or 44 * UINT_MAX for the root node. 45 * 46 * Ranges complicate certain write activities. When modifying any of 47 * the B-tree variants, it is known that one entry will either be added or 48 * deleted. When modifying the Maple Tree, one store operation may overwrite 49 * the entire data set, or one half of the tree, or the middle half of the tree. 50 * 51 */ 52 53 54 #include <linux/maple_tree.h> 55 #include <linux/xarray.h> 56 #include <linux/types.h> 57 #include <linux/export.h> 58 #include <linux/slab.h> 59 #include <linux/limits.h> 60 #include <asm/barrier.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/maple_tree.h> 64 65 #define MA_ROOT_PARENT 1 66 67 /* 68 * Maple state flags 69 * * MA_STATE_BULK - Bulk insert mode 70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 72 */ 73 #define MA_STATE_BULK 1 74 #define MA_STATE_REBALANCE 2 75 #define MA_STATE_PREALLOC 4 76 77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 78 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 79 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 80 static struct kmem_cache *maple_node_cache; 81 82 #ifdef CONFIG_DEBUG_MAPLE_TREE 83 static const unsigned long mt_max[] = { 84 [maple_dense] = MAPLE_NODE_SLOTS, 85 [maple_leaf_64] = ULONG_MAX, 86 [maple_range_64] = ULONG_MAX, 87 [maple_arange_64] = ULONG_MAX, 88 }; 89 #define mt_node_max(x) mt_max[mte_node_type(x)] 90 #endif 91 92 static const unsigned char mt_slots[] = { 93 [maple_dense] = MAPLE_NODE_SLOTS, 94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 95 [maple_range_64] = MAPLE_RANGE64_SLOTS, 96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 97 }; 98 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 99 100 static const unsigned char mt_pivots[] = { 101 [maple_dense] = 0, 102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 105 }; 106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 107 108 static const unsigned char mt_min_slots[] = { 109 [maple_dense] = MAPLE_NODE_SLOTS / 2, 110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 113 }; 114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 115 116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 118 119 struct maple_big_node { 120 struct maple_pnode *parent; 121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 122 union { 123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 124 struct { 125 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 126 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 127 }; 128 }; 129 unsigned char b_end; 130 enum maple_type type; 131 }; 132 133 /* 134 * The maple_subtree_state is used to build a tree to replace a segment of an 135 * existing tree in a more atomic way. Any walkers of the older tree will hit a 136 * dead node and restart on updates. 137 */ 138 struct maple_subtree_state { 139 struct ma_state *orig_l; /* Original left side of subtree */ 140 struct ma_state *orig_r; /* Original right side of subtree */ 141 struct ma_state *l; /* New left side of subtree */ 142 struct ma_state *m; /* New middle of subtree (rare) */ 143 struct ma_state *r; /* New right side of subtree */ 144 struct ma_topiary *free; /* nodes to be freed */ 145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 146 struct maple_big_node *bn; 147 }; 148 149 /* Functions */ 150 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 151 { 152 return kmem_cache_alloc(maple_node_cache, gfp | __GFP_ZERO); 153 } 154 155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 156 { 157 return kmem_cache_alloc_bulk(maple_node_cache, gfp | __GFP_ZERO, size, 158 nodes); 159 } 160 161 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 162 { 163 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 164 } 165 166 static void mt_free_rcu(struct rcu_head *head) 167 { 168 struct maple_node *node = container_of(head, struct maple_node, rcu); 169 170 kmem_cache_free(maple_node_cache, node); 171 } 172 173 /* 174 * ma_free_rcu() - Use rcu callback to free a maple node 175 * @node: The node to free 176 * 177 * The maple tree uses the parent pointer to indicate this node is no longer in 178 * use and will be freed. 179 */ 180 static void ma_free_rcu(struct maple_node *node) 181 { 182 node->parent = ma_parent_ptr(node); 183 call_rcu(&node->rcu, mt_free_rcu); 184 } 185 186 187 static void mas_set_height(struct ma_state *mas) 188 { 189 unsigned int new_flags = mas->tree->ma_flags; 190 191 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 192 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX); 193 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 194 mas->tree->ma_flags = new_flags; 195 } 196 197 static unsigned int mas_mt_height(struct ma_state *mas) 198 { 199 return mt_height(mas->tree); 200 } 201 202 static inline enum maple_type mte_node_type(const struct maple_enode *entry) 203 { 204 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 205 MAPLE_NODE_TYPE_MASK; 206 } 207 208 static inline bool ma_is_dense(const enum maple_type type) 209 { 210 return type < maple_leaf_64; 211 } 212 213 static inline bool ma_is_leaf(const enum maple_type type) 214 { 215 return type < maple_range_64; 216 } 217 218 static inline bool mte_is_leaf(const struct maple_enode *entry) 219 { 220 return ma_is_leaf(mte_node_type(entry)); 221 } 222 223 /* 224 * We also reserve values with the bottom two bits set to '10' which are 225 * below 4096 226 */ 227 static inline bool mt_is_reserved(const void *entry) 228 { 229 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 230 xa_is_internal(entry); 231 } 232 233 static inline void mas_set_err(struct ma_state *mas, long err) 234 { 235 mas->node = MA_ERROR(err); 236 } 237 238 static inline bool mas_is_ptr(struct ma_state *mas) 239 { 240 return mas->node == MAS_ROOT; 241 } 242 243 static inline bool mas_is_start(struct ma_state *mas) 244 { 245 return mas->node == MAS_START; 246 } 247 248 bool mas_is_err(struct ma_state *mas) 249 { 250 return xa_is_err(mas->node); 251 } 252 253 static inline bool mas_searchable(struct ma_state *mas) 254 { 255 if (mas_is_none(mas)) 256 return false; 257 258 if (mas_is_ptr(mas)) 259 return false; 260 261 return true; 262 } 263 264 static inline struct maple_node *mte_to_node(const struct maple_enode *entry) 265 { 266 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 267 } 268 269 /* 270 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 271 * @entry: The maple encoded node 272 * 273 * Return: a maple topiary pointer 274 */ 275 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 276 { 277 return (struct maple_topiary *) 278 ((unsigned long)entry & ~MAPLE_NODE_MASK); 279 } 280 281 /* 282 * mas_mn() - Get the maple state node. 283 * @mas: The maple state 284 * 285 * Return: the maple node (not encoded - bare pointer). 286 */ 287 static inline struct maple_node *mas_mn(const struct ma_state *mas) 288 { 289 return mte_to_node(mas->node); 290 } 291 292 /* 293 * mte_set_node_dead() - Set a maple encoded node as dead. 294 * @mn: The maple encoded node. 295 */ 296 static inline void mte_set_node_dead(struct maple_enode *mn) 297 { 298 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 299 smp_wmb(); /* Needed for RCU */ 300 } 301 302 /* Bit 1 indicates the root is a node */ 303 #define MAPLE_ROOT_NODE 0x02 304 /* maple_type stored bit 3-6 */ 305 #define MAPLE_ENODE_TYPE_SHIFT 0x03 306 /* Bit 2 means a NULL somewhere below */ 307 #define MAPLE_ENODE_NULL 0x04 308 309 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 310 enum maple_type type) 311 { 312 return (void *)((unsigned long)node | 313 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 314 } 315 316 static inline void *mte_mk_root(const struct maple_enode *node) 317 { 318 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 319 } 320 321 static inline void *mte_safe_root(const struct maple_enode *node) 322 { 323 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 324 } 325 326 static inline void *mte_set_full(const struct maple_enode *node) 327 { 328 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 329 } 330 331 static inline void *mte_clear_full(const struct maple_enode *node) 332 { 333 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 334 } 335 336 static inline bool mte_has_null(const struct maple_enode *node) 337 { 338 return (unsigned long)node & MAPLE_ENODE_NULL; 339 } 340 341 static inline bool ma_is_root(struct maple_node *node) 342 { 343 return ((unsigned long)node->parent & MA_ROOT_PARENT); 344 } 345 346 static inline bool mte_is_root(const struct maple_enode *node) 347 { 348 return ma_is_root(mte_to_node(node)); 349 } 350 351 static inline bool mas_is_root_limits(const struct ma_state *mas) 352 { 353 return !mas->min && mas->max == ULONG_MAX; 354 } 355 356 static inline bool mt_is_alloc(struct maple_tree *mt) 357 { 358 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 359 } 360 361 /* 362 * The Parent Pointer 363 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 364 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 365 * bit values need an extra bit to store the offset. This extra bit comes from 366 * a reuse of the last bit in the node type. This is possible by using bit 1 to 367 * indicate if bit 2 is part of the type or the slot. 368 * 369 * Note types: 370 * 0x??1 = Root 371 * 0x?00 = 16 bit nodes 372 * 0x010 = 32 bit nodes 373 * 0x110 = 64 bit nodes 374 * 375 * Slot size and alignment 376 * 0b??1 : Root 377 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 378 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 379 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 380 */ 381 382 #define MAPLE_PARENT_ROOT 0x01 383 384 #define MAPLE_PARENT_SLOT_SHIFT 0x03 385 #define MAPLE_PARENT_SLOT_MASK 0xF8 386 387 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 388 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 389 390 #define MAPLE_PARENT_RANGE64 0x06 391 #define MAPLE_PARENT_RANGE32 0x04 392 #define MAPLE_PARENT_NOT_RANGE16 0x02 393 394 /* 395 * mte_parent_shift() - Get the parent shift for the slot storage. 396 * @parent: The parent pointer cast as an unsigned long 397 * Return: The shift into that pointer to the star to of the slot 398 */ 399 static inline unsigned long mte_parent_shift(unsigned long parent) 400 { 401 /* Note bit 1 == 0 means 16B */ 402 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 403 return MAPLE_PARENT_SLOT_SHIFT; 404 405 return MAPLE_PARENT_16B_SLOT_SHIFT; 406 } 407 408 /* 409 * mte_parent_slot_mask() - Get the slot mask for the parent. 410 * @parent: The parent pointer cast as an unsigned long. 411 * Return: The slot mask for that parent. 412 */ 413 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 414 { 415 /* Note bit 1 == 0 means 16B */ 416 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 417 return MAPLE_PARENT_SLOT_MASK; 418 419 return MAPLE_PARENT_16B_SLOT_MASK; 420 } 421 422 /* 423 * mas_parent_enum() - Return the maple_type of the parent from the stored 424 * parent type. 425 * @mas: The maple state 426 * @node: The maple_enode to extract the parent's enum 427 * Return: The node->parent maple_type 428 */ 429 static inline 430 enum maple_type mte_parent_enum(struct maple_enode *p_enode, 431 struct maple_tree *mt) 432 { 433 unsigned long p_type; 434 435 p_type = (unsigned long)p_enode; 436 if (p_type & MAPLE_PARENT_ROOT) 437 return 0; /* Validated in the caller. */ 438 439 p_type &= MAPLE_NODE_MASK; 440 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type)); 441 442 switch (p_type) { 443 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 444 if (mt_is_alloc(mt)) 445 return maple_arange_64; 446 return maple_range_64; 447 } 448 449 return 0; 450 } 451 452 static inline 453 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode) 454 { 455 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree); 456 } 457 458 /* 459 * mte_set_parent() - Set the parent node and encode the slot 460 * @enode: The encoded maple node. 461 * @parent: The encoded maple node that is the parent of @enode. 462 * @slot: The slot that @enode resides in @parent. 463 * 464 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 465 * parent type. 466 */ 467 static inline 468 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent, 469 unsigned char slot) 470 { 471 unsigned long val = (unsigned long) parent; 472 unsigned long shift; 473 unsigned long type; 474 enum maple_type p_type = mte_node_type(parent); 475 476 BUG_ON(p_type == maple_dense); 477 BUG_ON(p_type == maple_leaf_64); 478 479 switch (p_type) { 480 case maple_range_64: 481 case maple_arange_64: 482 shift = MAPLE_PARENT_SLOT_SHIFT; 483 type = MAPLE_PARENT_RANGE64; 484 break; 485 default: 486 case maple_dense: 487 case maple_leaf_64: 488 shift = type = 0; 489 break; 490 } 491 492 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 493 val |= (slot << shift) | type; 494 mte_to_node(enode)->parent = ma_parent_ptr(val); 495 } 496 497 /* 498 * mte_parent_slot() - get the parent slot of @enode. 499 * @enode: The encoded maple node. 500 * 501 * Return: The slot in the parent node where @enode resides. 502 */ 503 static inline unsigned int mte_parent_slot(const struct maple_enode *enode) 504 { 505 unsigned long val = (unsigned long) mte_to_node(enode)->parent; 506 507 /* Root. */ 508 if (val & 1) 509 return 0; 510 511 /* 512 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 513 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 514 */ 515 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 516 } 517 518 /* 519 * mte_parent() - Get the parent of @node. 520 * @node: The encoded maple node. 521 * 522 * Return: The parent maple node. 523 */ 524 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 525 { 526 return (void *)((unsigned long) 527 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 528 } 529 530 /* 531 * ma_dead_node() - check if the @enode is dead. 532 * @enode: The encoded maple node 533 * 534 * Return: true if dead, false otherwise. 535 */ 536 static inline bool ma_dead_node(const struct maple_node *node) 537 { 538 struct maple_node *parent = (void *)((unsigned long) 539 node->parent & ~MAPLE_NODE_MASK); 540 541 return (parent == node); 542 } 543 /* 544 * mte_dead_node() - check if the @enode is dead. 545 * @enode: The encoded maple node 546 * 547 * Return: true if dead, false otherwise. 548 */ 549 static inline bool mte_dead_node(const struct maple_enode *enode) 550 { 551 struct maple_node *parent, *node; 552 553 node = mte_to_node(enode); 554 parent = mte_parent(enode); 555 return (parent == node); 556 } 557 558 /* 559 * mas_allocated() - Get the number of nodes allocated in a maple state. 560 * @mas: The maple state 561 * 562 * The ma_state alloc member is overloaded to hold a pointer to the first 563 * allocated node or to the number of requested nodes to allocate. If bit 0 is 564 * set, then the alloc contains the number of requested nodes. If there is an 565 * allocated node, then the total allocated nodes is in that node. 566 * 567 * Return: The total number of nodes allocated 568 */ 569 static inline unsigned long mas_allocated(const struct ma_state *mas) 570 { 571 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 572 return 0; 573 574 return mas->alloc->total; 575 } 576 577 /* 578 * mas_set_alloc_req() - Set the requested number of allocations. 579 * @mas: the maple state 580 * @count: the number of allocations. 581 * 582 * The requested number of allocations is either in the first allocated node, 583 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 584 * no allocated node. Set the request either in the node or do the necessary 585 * encoding to store in @mas->alloc directly. 586 */ 587 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 588 { 589 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 590 if (!count) 591 mas->alloc = NULL; 592 else 593 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 594 return; 595 } 596 597 mas->alloc->request_count = count; 598 } 599 600 /* 601 * mas_alloc_req() - get the requested number of allocations. 602 * @mas: The maple state 603 * 604 * The alloc count is either stored directly in @mas, or in 605 * @mas->alloc->request_count if there is at least one node allocated. Decode 606 * the request count if it's stored directly in @mas->alloc. 607 * 608 * Return: The allocation request count. 609 */ 610 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 611 { 612 if ((unsigned long)mas->alloc & 0x1) 613 return (unsigned long)(mas->alloc) >> 1; 614 else if (mas->alloc) 615 return mas->alloc->request_count; 616 return 0; 617 } 618 619 /* 620 * ma_pivots() - Get a pointer to the maple node pivots. 621 * @node - the maple node 622 * @type - the node type 623 * 624 * Return: A pointer to the maple node pivots 625 */ 626 static inline unsigned long *ma_pivots(struct maple_node *node, 627 enum maple_type type) 628 { 629 switch (type) { 630 case maple_arange_64: 631 return node->ma64.pivot; 632 case maple_range_64: 633 case maple_leaf_64: 634 return node->mr64.pivot; 635 case maple_dense: 636 return NULL; 637 } 638 return NULL; 639 } 640 641 /* 642 * ma_gaps() - Get a pointer to the maple node gaps. 643 * @node - the maple node 644 * @type - the node type 645 * 646 * Return: A pointer to the maple node gaps 647 */ 648 static inline unsigned long *ma_gaps(struct maple_node *node, 649 enum maple_type type) 650 { 651 switch (type) { 652 case maple_arange_64: 653 return node->ma64.gap; 654 case maple_range_64: 655 case maple_leaf_64: 656 case maple_dense: 657 return NULL; 658 } 659 return NULL; 660 } 661 662 /* 663 * mte_pivot() - Get the pivot at @piv of the maple encoded node. 664 * @mn: The maple encoded node. 665 * @piv: The pivot. 666 * 667 * Return: the pivot at @piv of @mn. 668 */ 669 static inline unsigned long mte_pivot(const struct maple_enode *mn, 670 unsigned char piv) 671 { 672 struct maple_node *node = mte_to_node(mn); 673 674 if (piv >= mt_pivots[piv]) { 675 WARN_ON(1); 676 return 0; 677 } 678 switch (mte_node_type(mn)) { 679 case maple_arange_64: 680 return node->ma64.pivot[piv]; 681 case maple_range_64: 682 case maple_leaf_64: 683 return node->mr64.pivot[piv]; 684 case maple_dense: 685 return 0; 686 } 687 return 0; 688 } 689 690 /* 691 * mas_safe_pivot() - get the pivot at @piv or mas->max. 692 * @mas: The maple state 693 * @pivots: The pointer to the maple node pivots 694 * @piv: The pivot to fetch 695 * @type: The maple node type 696 * 697 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 698 * otherwise. 699 */ 700 static inline unsigned long 701 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 702 unsigned char piv, enum maple_type type) 703 { 704 if (piv >= mt_pivots[type]) 705 return mas->max; 706 707 return pivots[piv]; 708 } 709 710 /* 711 * mas_safe_min() - Return the minimum for a given offset. 712 * @mas: The maple state 713 * @pivots: The pointer to the maple node pivots 714 * @offset: The offset into the pivot array 715 * 716 * Return: The minimum range value that is contained in @offset. 717 */ 718 static inline unsigned long 719 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 720 { 721 if (likely(offset)) 722 return pivots[offset - 1] + 1; 723 724 return mas->min; 725 } 726 727 /* 728 * mas_logical_pivot() - Get the logical pivot of a given offset. 729 * @mas: The maple state 730 * @pivots: The pointer to the maple node pivots 731 * @offset: The offset into the pivot array 732 * @type: The maple node type 733 * 734 * When there is no value at a pivot (beyond the end of the data), then the 735 * pivot is actually @mas->max. 736 * 737 * Return: the logical pivot of a given @offset. 738 */ 739 static inline unsigned long 740 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots, 741 unsigned char offset, enum maple_type type) 742 { 743 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type); 744 745 if (likely(lpiv)) 746 return lpiv; 747 748 if (likely(offset)) 749 return mas->max; 750 751 return lpiv; 752 } 753 754 /* 755 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 756 * @mn: The encoded maple node 757 * @piv: The pivot offset 758 * @val: The value of the pivot 759 */ 760 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 761 unsigned long val) 762 { 763 struct maple_node *node = mte_to_node(mn); 764 enum maple_type type = mte_node_type(mn); 765 766 BUG_ON(piv >= mt_pivots[type]); 767 switch (type) { 768 default: 769 case maple_range_64: 770 case maple_leaf_64: 771 node->mr64.pivot[piv] = val; 772 break; 773 case maple_arange_64: 774 node->ma64.pivot[piv] = val; 775 break; 776 case maple_dense: 777 break; 778 } 779 780 } 781 782 /* 783 * ma_slots() - Get a pointer to the maple node slots. 784 * @mn: The maple node 785 * @mt: The maple node type 786 * 787 * Return: A pointer to the maple node slots 788 */ 789 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 790 { 791 switch (mt) { 792 default: 793 case maple_arange_64: 794 return mn->ma64.slot; 795 case maple_range_64: 796 case maple_leaf_64: 797 return mn->mr64.slot; 798 case maple_dense: 799 return mn->slot; 800 } 801 } 802 803 static inline bool mt_locked(const struct maple_tree *mt) 804 { 805 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 806 lockdep_is_held(&mt->ma_lock); 807 } 808 809 static inline void *mt_slot(const struct maple_tree *mt, 810 void __rcu **slots, unsigned char offset) 811 { 812 return rcu_dereference_check(slots[offset], mt_locked(mt)); 813 } 814 815 /* 816 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 817 * @mas: The maple state 818 * @slots: The pointer to the slots 819 * @offset: The offset into the slots array to fetch 820 * 821 * Return: The entry stored in @slots at the @offset. 822 */ 823 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots, 824 unsigned char offset) 825 { 826 return rcu_dereference_protected(slots[offset], mt_locked(mas->tree)); 827 } 828 829 /* 830 * mas_slot() - Get the slot value when not holding the maple tree lock. 831 * @mas: The maple state 832 * @slots: The pointer to the slots 833 * @offset: The offset into the slots array to fetch 834 * 835 * Return: The entry stored in @slots at the @offset 836 */ 837 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 838 unsigned char offset) 839 { 840 return mt_slot(mas->tree, slots, offset); 841 } 842 843 /* 844 * mas_root() - Get the maple tree root. 845 * @mas: The maple state. 846 * 847 * Return: The pointer to the root of the tree 848 */ 849 static inline void *mas_root(struct ma_state *mas) 850 { 851 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 852 } 853 854 static inline void *mt_root_locked(struct maple_tree *mt) 855 { 856 return rcu_dereference_protected(mt->ma_root, mt_locked(mt)); 857 } 858 859 /* 860 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 861 * @mas: The maple state. 862 * 863 * Return: The pointer to the root of the tree 864 */ 865 static inline void *mas_root_locked(struct ma_state *mas) 866 { 867 return mt_root_locked(mas->tree); 868 } 869 870 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 871 enum maple_type mt) 872 { 873 switch (mt) { 874 case maple_arange_64: 875 return &mn->ma64.meta; 876 default: 877 return &mn->mr64.meta; 878 } 879 } 880 881 /* 882 * ma_set_meta() - Set the metadata information of a node. 883 * @mn: The maple node 884 * @mt: The maple node type 885 * @offset: The offset of the highest sub-gap in this node. 886 * @end: The end of the data in this node. 887 */ 888 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 889 unsigned char offset, unsigned char end) 890 { 891 struct maple_metadata *meta = ma_meta(mn, mt); 892 893 meta->gap = offset; 894 meta->end = end; 895 } 896 897 /* 898 * ma_meta_end() - Get the data end of a node from the metadata 899 * @mn: The maple node 900 * @mt: The maple node type 901 */ 902 static inline unsigned char ma_meta_end(struct maple_node *mn, 903 enum maple_type mt) 904 { 905 struct maple_metadata *meta = ma_meta(mn, mt); 906 907 return meta->end; 908 } 909 910 /* 911 * ma_meta_gap() - Get the largest gap location of a node from the metadata 912 * @mn: The maple node 913 * @mt: The maple node type 914 */ 915 static inline unsigned char ma_meta_gap(struct maple_node *mn, 916 enum maple_type mt) 917 { 918 BUG_ON(mt != maple_arange_64); 919 920 return mn->ma64.meta.gap; 921 } 922 923 /* 924 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 925 * @mn: The maple node 926 * @mn: The maple node type 927 * @offset: The location of the largest gap. 928 */ 929 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 930 unsigned char offset) 931 { 932 933 struct maple_metadata *meta = ma_meta(mn, mt); 934 935 meta->gap = offset; 936 } 937 938 /* 939 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 940 * @mat - the ma_topiary, a linked list of dead nodes. 941 * @dead_enode - the node to be marked as dead and added to the tail of the list 942 * 943 * Add the @dead_enode to the linked list in @mat. 944 */ 945 static inline void mat_add(struct ma_topiary *mat, 946 struct maple_enode *dead_enode) 947 { 948 mte_set_node_dead(dead_enode); 949 mte_to_mat(dead_enode)->next = NULL; 950 if (!mat->tail) { 951 mat->tail = mat->head = dead_enode; 952 return; 953 } 954 955 mte_to_mat(mat->tail)->next = dead_enode; 956 mat->tail = dead_enode; 957 } 958 959 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 960 static inline void mas_free(struct ma_state *mas, struct maple_enode *used); 961 962 /* 963 * mas_mat_free() - Free all nodes in a dead list. 964 * @mas - the maple state 965 * @mat - the ma_topiary linked list of dead nodes to free. 966 * 967 * Free walk a dead list. 968 */ 969 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat) 970 { 971 struct maple_enode *next; 972 973 while (mat->head) { 974 next = mte_to_mat(mat->head)->next; 975 mas_free(mas, mat->head); 976 mat->head = next; 977 } 978 } 979 980 /* 981 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 982 * @mas - the maple state 983 * @mat - the ma_topiary linked list of dead nodes to free. 984 * 985 * Destroy walk a dead list. 986 */ 987 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 988 { 989 struct maple_enode *next; 990 991 while (mat->head) { 992 next = mte_to_mat(mat->head)->next; 993 mte_destroy_walk(mat->head, mat->mtree); 994 mat->head = next; 995 } 996 } 997 /* 998 * mas_descend() - Descend into the slot stored in the ma_state. 999 * @mas - the maple state. 1000 * 1001 * Note: Not RCU safe, only use in write side or debug code. 1002 */ 1003 static inline void mas_descend(struct ma_state *mas) 1004 { 1005 enum maple_type type; 1006 unsigned long *pivots; 1007 struct maple_node *node; 1008 void __rcu **slots; 1009 1010 node = mas_mn(mas); 1011 type = mte_node_type(mas->node); 1012 pivots = ma_pivots(node, type); 1013 slots = ma_slots(node, type); 1014 1015 if (mas->offset) 1016 mas->min = pivots[mas->offset - 1] + 1; 1017 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1018 mas->node = mas_slot(mas, slots, mas->offset); 1019 } 1020 1021 /* 1022 * mte_set_gap() - Set a maple node gap. 1023 * @mn: The encoded maple node 1024 * @gap: The offset of the gap to set 1025 * @val: The gap value 1026 */ 1027 static inline void mte_set_gap(const struct maple_enode *mn, 1028 unsigned char gap, unsigned long val) 1029 { 1030 switch (mte_node_type(mn)) { 1031 default: 1032 break; 1033 case maple_arange_64: 1034 mte_to_node(mn)->ma64.gap[gap] = val; 1035 break; 1036 } 1037 } 1038 1039 /* 1040 * mas_ascend() - Walk up a level of the tree. 1041 * @mas: The maple state 1042 * 1043 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1044 * may cause several levels of walking up to find the correct min and max. 1045 * May find a dead node which will cause a premature return. 1046 * Return: 1 on dead node, 0 otherwise 1047 */ 1048 static int mas_ascend(struct ma_state *mas) 1049 { 1050 struct maple_enode *p_enode; /* parent enode. */ 1051 struct maple_enode *a_enode; /* ancestor enode. */ 1052 struct maple_node *a_node; /* ancestor node. */ 1053 struct maple_node *p_node; /* parent node. */ 1054 unsigned char a_slot; 1055 enum maple_type a_type; 1056 unsigned long min, max; 1057 unsigned long *pivots; 1058 unsigned char offset; 1059 bool set_max = false, set_min = false; 1060 1061 a_node = mas_mn(mas); 1062 if (ma_is_root(a_node)) { 1063 mas->offset = 0; 1064 return 0; 1065 } 1066 1067 p_node = mte_parent(mas->node); 1068 if (unlikely(a_node == p_node)) 1069 return 1; 1070 a_type = mas_parent_enum(mas, mas->node); 1071 offset = mte_parent_slot(mas->node); 1072 a_enode = mt_mk_node(p_node, a_type); 1073 1074 /* Check to make sure all parent information is still accurate */ 1075 if (p_node != mte_parent(mas->node)) 1076 return 1; 1077 1078 mas->node = a_enode; 1079 mas->offset = offset; 1080 1081 if (mte_is_root(a_enode)) { 1082 mas->max = ULONG_MAX; 1083 mas->min = 0; 1084 return 0; 1085 } 1086 1087 min = 0; 1088 max = ULONG_MAX; 1089 do { 1090 p_enode = a_enode; 1091 a_type = mas_parent_enum(mas, p_enode); 1092 a_node = mte_parent(p_enode); 1093 a_slot = mte_parent_slot(p_enode); 1094 pivots = ma_pivots(a_node, a_type); 1095 a_enode = mt_mk_node(a_node, a_type); 1096 1097 if (!set_min && a_slot) { 1098 set_min = true; 1099 min = pivots[a_slot - 1] + 1; 1100 } 1101 1102 if (!set_max && a_slot < mt_pivots[a_type]) { 1103 set_max = true; 1104 max = pivots[a_slot]; 1105 } 1106 1107 if (unlikely(ma_dead_node(a_node))) 1108 return 1; 1109 1110 if (unlikely(ma_is_root(a_node))) 1111 break; 1112 1113 } while (!set_min || !set_max); 1114 1115 mas->max = max; 1116 mas->min = min; 1117 return 0; 1118 } 1119 1120 /* 1121 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1122 * @mas: The maple state 1123 * 1124 * Return: A pointer to a maple node. 1125 */ 1126 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1127 { 1128 struct maple_alloc *ret, *node = mas->alloc; 1129 unsigned long total = mas_allocated(mas); 1130 1131 /* nothing or a request pending. */ 1132 if (unlikely(!total)) 1133 return NULL; 1134 1135 if (total == 1) { 1136 /* single allocation in this ma_state */ 1137 mas->alloc = NULL; 1138 ret = node; 1139 goto single_node; 1140 } 1141 1142 if (!node->node_count) { 1143 /* Single allocation in this node. */ 1144 mas->alloc = node->slot[0]; 1145 node->slot[0] = NULL; 1146 mas->alloc->total = node->total - 1; 1147 ret = node; 1148 goto new_head; 1149 } 1150 1151 node->total--; 1152 ret = node->slot[node->node_count]; 1153 node->slot[node->node_count--] = NULL; 1154 1155 single_node: 1156 new_head: 1157 ret->total = 0; 1158 ret->node_count = 0; 1159 if (ret->request_count) { 1160 mas_set_alloc_req(mas, ret->request_count + 1); 1161 ret->request_count = 0; 1162 } 1163 return (struct maple_node *)ret; 1164 } 1165 1166 /* 1167 * mas_push_node() - Push a node back on the maple state allocation. 1168 * @mas: The maple state 1169 * @used: The used maple node 1170 * 1171 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1172 * requested node count as necessary. 1173 */ 1174 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1175 { 1176 struct maple_alloc *reuse = (struct maple_alloc *)used; 1177 struct maple_alloc *head = mas->alloc; 1178 unsigned long count; 1179 unsigned int requested = mas_alloc_req(mas); 1180 1181 memset(reuse, 0, sizeof(*reuse)); 1182 count = mas_allocated(mas); 1183 1184 if (count && (head->node_count < MAPLE_ALLOC_SLOTS - 1)) { 1185 if (head->slot[0]) 1186 head->node_count++; 1187 head->slot[head->node_count] = reuse; 1188 head->total++; 1189 goto done; 1190 } 1191 1192 reuse->total = 1; 1193 if ((head) && !((unsigned long)head & 0x1)) { 1194 head->request_count = 0; 1195 reuse->slot[0] = head; 1196 reuse->total += head->total; 1197 } 1198 1199 mas->alloc = reuse; 1200 done: 1201 if (requested > 1) 1202 mas_set_alloc_req(mas, requested - 1); 1203 } 1204 1205 /* 1206 * mas_alloc_nodes() - Allocate nodes into a maple state 1207 * @mas: The maple state 1208 * @gfp: The GFP Flags 1209 */ 1210 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1211 { 1212 struct maple_alloc *node; 1213 unsigned long allocated = mas_allocated(mas); 1214 unsigned long success = allocated; 1215 unsigned int requested = mas_alloc_req(mas); 1216 unsigned int count; 1217 void **slots = NULL; 1218 unsigned int max_req = 0; 1219 1220 if (!requested) 1221 return; 1222 1223 mas_set_alloc_req(mas, 0); 1224 if (mas->mas_flags & MA_STATE_PREALLOC) { 1225 if (allocated) 1226 return; 1227 WARN_ON(!allocated); 1228 } 1229 1230 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS - 1) { 1231 node = (struct maple_alloc *)mt_alloc_one(gfp); 1232 if (!node) 1233 goto nomem_one; 1234 1235 if (allocated) 1236 node->slot[0] = mas->alloc; 1237 1238 success++; 1239 mas->alloc = node; 1240 requested--; 1241 } 1242 1243 node = mas->alloc; 1244 while (requested) { 1245 max_req = MAPLE_ALLOC_SLOTS; 1246 if (node->slot[0]) { 1247 unsigned int offset = node->node_count + 1; 1248 1249 slots = (void **)&node->slot[offset]; 1250 max_req -= offset; 1251 } else { 1252 slots = (void **)&node->slot; 1253 } 1254 1255 max_req = min(requested, max_req); 1256 count = mt_alloc_bulk(gfp, max_req, slots); 1257 if (!count) 1258 goto nomem_bulk; 1259 1260 node->node_count += count; 1261 /* zero indexed. */ 1262 if (slots == (void **)&node->slot) 1263 node->node_count--; 1264 1265 success += count; 1266 node = node->slot[0]; 1267 requested -= count; 1268 } 1269 mas->alloc->total = success; 1270 return; 1271 1272 nomem_bulk: 1273 /* Clean up potential freed allocations on bulk failure */ 1274 memset(slots, 0, max_req * sizeof(unsigned long)); 1275 nomem_one: 1276 mas_set_alloc_req(mas, requested); 1277 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1278 mas->alloc->total = success; 1279 mas_set_err(mas, -ENOMEM); 1280 return; 1281 1282 } 1283 1284 /* 1285 * mas_free() - Free an encoded maple node 1286 * @mas: The maple state 1287 * @used: The encoded maple node to free. 1288 * 1289 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1290 * otherwise. 1291 */ 1292 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1293 { 1294 struct maple_node *tmp = mte_to_node(used); 1295 1296 if (mt_in_rcu(mas->tree)) 1297 ma_free_rcu(tmp); 1298 else 1299 mas_push_node(mas, tmp); 1300 } 1301 1302 /* 1303 * mas_node_count() - Check if enough nodes are allocated and request more if 1304 * there is not enough nodes. 1305 * @mas: The maple state 1306 * @count: The number of nodes needed 1307 * @gfp: the gfp flags 1308 */ 1309 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1310 { 1311 unsigned long allocated = mas_allocated(mas); 1312 1313 if (allocated < count) { 1314 mas_set_alloc_req(mas, count - allocated); 1315 mas_alloc_nodes(mas, gfp); 1316 } 1317 } 1318 1319 /* 1320 * mas_node_count() - Check if enough nodes are allocated and request more if 1321 * there is not enough nodes. 1322 * @mas: The maple state 1323 * @count: The number of nodes needed 1324 * 1325 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1326 */ 1327 static void mas_node_count(struct ma_state *mas, int count) 1328 { 1329 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1330 } 1331 1332 /* 1333 * mas_start() - Sets up maple state for operations. 1334 * @mas: The maple state. 1335 * 1336 * If mas->node == MAS_START, then set the min, max, depth, and offset to 1337 * defaults. 1338 * 1339 * Return: 1340 * - If mas->node is an error or not MAS_START, return NULL. 1341 * - If it's an empty tree: NULL & mas->node == MAS_NONE 1342 * - If it's a single entry: The entry & mas->node == MAS_ROOT 1343 * - If it's a tree: NULL & mas->node == safe root node. 1344 */ 1345 static inline struct maple_enode *mas_start(struct ma_state *mas) 1346 { 1347 if (likely(mas_is_start(mas))) { 1348 struct maple_enode *root; 1349 1350 mas->node = MAS_NONE; 1351 mas->min = 0; 1352 mas->max = ULONG_MAX; 1353 mas->depth = 0; 1354 mas->offset = 0; 1355 1356 root = mas_root(mas); 1357 /* Tree with nodes */ 1358 if (likely(xa_is_node(root))) { 1359 mas->depth = 1; 1360 mas->node = mte_safe_root(root); 1361 return NULL; 1362 } 1363 1364 /* empty tree */ 1365 if (unlikely(!root)) { 1366 mas->offset = MAPLE_NODE_SLOTS; 1367 return NULL; 1368 } 1369 1370 /* Single entry tree */ 1371 mas->node = MAS_ROOT; 1372 mas->offset = MAPLE_NODE_SLOTS; 1373 1374 /* Single entry tree. */ 1375 if (mas->index > 0) 1376 return NULL; 1377 1378 return root; 1379 } 1380 1381 return NULL; 1382 } 1383 1384 /* 1385 * ma_data_end() - Find the end of the data in a node. 1386 * @node: The maple node 1387 * @type: The maple node type 1388 * @pivots: The array of pivots in the node 1389 * @max: The maximum value in the node 1390 * 1391 * Uses metadata to find the end of the data when possible. 1392 * Return: The zero indexed last slot with data (may be null). 1393 */ 1394 static inline unsigned char ma_data_end(struct maple_node *node, 1395 enum maple_type type, 1396 unsigned long *pivots, 1397 unsigned long max) 1398 { 1399 unsigned char offset; 1400 1401 if (type == maple_arange_64) 1402 return ma_meta_end(node, type); 1403 1404 offset = mt_pivots[type] - 1; 1405 if (likely(!pivots[offset])) 1406 return ma_meta_end(node, type); 1407 1408 if (likely(pivots[offset] == max)) 1409 return offset; 1410 1411 return mt_pivots[type]; 1412 } 1413 1414 /* 1415 * mas_data_end() - Find the end of the data (slot). 1416 * @mas: the maple state 1417 * 1418 * This method is optimized to check the metadata of a node if the node type 1419 * supports data end metadata. 1420 * 1421 * Return: The zero indexed last slot with data (may be null). 1422 */ 1423 static inline unsigned char mas_data_end(struct ma_state *mas) 1424 { 1425 enum maple_type type; 1426 struct maple_node *node; 1427 unsigned char offset; 1428 unsigned long *pivots; 1429 1430 type = mte_node_type(mas->node); 1431 node = mas_mn(mas); 1432 if (type == maple_arange_64) 1433 return ma_meta_end(node, type); 1434 1435 pivots = ma_pivots(node, type); 1436 offset = mt_pivots[type] - 1; 1437 if (likely(!pivots[offset])) 1438 return ma_meta_end(node, type); 1439 1440 if (likely(pivots[offset] == mas->max)) 1441 return offset; 1442 1443 return mt_pivots[type]; 1444 } 1445 1446 /* 1447 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1448 * @mas - the maple state 1449 * 1450 * Return: The maximum gap in the leaf. 1451 */ 1452 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1453 { 1454 enum maple_type mt; 1455 unsigned long pstart, gap, max_gap; 1456 struct maple_node *mn; 1457 unsigned long *pivots; 1458 void __rcu **slots; 1459 unsigned char i; 1460 unsigned char max_piv; 1461 1462 mt = mte_node_type(mas->node); 1463 mn = mas_mn(mas); 1464 slots = ma_slots(mn, mt); 1465 max_gap = 0; 1466 if (unlikely(ma_is_dense(mt))) { 1467 gap = 0; 1468 for (i = 0; i < mt_slots[mt]; i++) { 1469 if (slots[i]) { 1470 if (gap > max_gap) 1471 max_gap = gap; 1472 gap = 0; 1473 } else { 1474 gap++; 1475 } 1476 } 1477 if (gap > max_gap) 1478 max_gap = gap; 1479 return max_gap; 1480 } 1481 1482 /* 1483 * Check the first implied pivot optimizes the loop below and slot 1 may 1484 * be skipped if there is a gap in slot 0. 1485 */ 1486 pivots = ma_pivots(mn, mt); 1487 if (likely(!slots[0])) { 1488 max_gap = pivots[0] - mas->min + 1; 1489 i = 2; 1490 } else { 1491 i = 1; 1492 } 1493 1494 /* reduce max_piv as the special case is checked before the loop */ 1495 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1496 /* 1497 * Check end implied pivot which can only be a gap on the right most 1498 * node. 1499 */ 1500 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1501 gap = ULONG_MAX - pivots[max_piv]; 1502 if (gap > max_gap) 1503 max_gap = gap; 1504 } 1505 1506 for (; i <= max_piv; i++) { 1507 /* data == no gap. */ 1508 if (likely(slots[i])) 1509 continue; 1510 1511 pstart = pivots[i - 1]; 1512 gap = pivots[i] - pstart; 1513 if (gap > max_gap) 1514 max_gap = gap; 1515 1516 /* There cannot be two gaps in a row. */ 1517 i++; 1518 } 1519 return max_gap; 1520 } 1521 1522 /* 1523 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1524 * @node: The maple node 1525 * @gaps: The pointer to the gaps 1526 * @mt: The maple node type 1527 * @*off: Pointer to store the offset location of the gap. 1528 * 1529 * Uses the metadata data end to scan backwards across set gaps. 1530 * 1531 * Return: The maximum gap value 1532 */ 1533 static inline unsigned long 1534 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1535 unsigned char *off) 1536 { 1537 unsigned char offset, i; 1538 unsigned long max_gap = 0; 1539 1540 i = offset = ma_meta_end(node, mt); 1541 do { 1542 if (gaps[i] > max_gap) { 1543 max_gap = gaps[i]; 1544 offset = i; 1545 } 1546 } while (i--); 1547 1548 *off = offset; 1549 return max_gap; 1550 } 1551 1552 /* 1553 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1554 * @mas: The maple state. 1555 * 1556 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap. 1557 * 1558 * Return: The gap value. 1559 */ 1560 static inline unsigned long mas_max_gap(struct ma_state *mas) 1561 { 1562 unsigned long *gaps; 1563 unsigned char offset; 1564 enum maple_type mt; 1565 struct maple_node *node; 1566 1567 mt = mte_node_type(mas->node); 1568 if (ma_is_leaf(mt)) 1569 return mas_leaf_max_gap(mas); 1570 1571 node = mas_mn(mas); 1572 offset = ma_meta_gap(node, mt); 1573 if (offset == MAPLE_ARANGE64_META_MAX) 1574 return 0; 1575 1576 gaps = ma_gaps(node, mt); 1577 return gaps[offset]; 1578 } 1579 1580 /* 1581 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1582 * @mas: The maple state 1583 * @offset: The gap offset in the parent to set 1584 * @new: The new gap value. 1585 * 1586 * Set the parent gap then continue to set the gap upwards, using the metadata 1587 * of the parent to see if it is necessary to check the node above. 1588 */ 1589 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1590 unsigned long new) 1591 { 1592 unsigned long meta_gap = 0; 1593 struct maple_node *pnode; 1594 struct maple_enode *penode; 1595 unsigned long *pgaps; 1596 unsigned char meta_offset; 1597 enum maple_type pmt; 1598 1599 pnode = mte_parent(mas->node); 1600 pmt = mas_parent_enum(mas, mas->node); 1601 penode = mt_mk_node(pnode, pmt); 1602 pgaps = ma_gaps(pnode, pmt); 1603 1604 ascend: 1605 meta_offset = ma_meta_gap(pnode, pmt); 1606 if (meta_offset == MAPLE_ARANGE64_META_MAX) 1607 meta_gap = 0; 1608 else 1609 meta_gap = pgaps[meta_offset]; 1610 1611 pgaps[offset] = new; 1612 1613 if (meta_gap == new) 1614 return; 1615 1616 if (offset != meta_offset) { 1617 if (meta_gap > new) 1618 return; 1619 1620 ma_set_meta_gap(pnode, pmt, offset); 1621 } else if (new < meta_gap) { 1622 meta_offset = 15; 1623 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1624 ma_set_meta_gap(pnode, pmt, meta_offset); 1625 } 1626 1627 if (ma_is_root(pnode)) 1628 return; 1629 1630 /* Go to the parent node. */ 1631 pnode = mte_parent(penode); 1632 pmt = mas_parent_enum(mas, penode); 1633 pgaps = ma_gaps(pnode, pmt); 1634 offset = mte_parent_slot(penode); 1635 penode = mt_mk_node(pnode, pmt); 1636 goto ascend; 1637 } 1638 1639 /* 1640 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1641 * @mas - the maple state. 1642 */ 1643 static inline void mas_update_gap(struct ma_state *mas) 1644 { 1645 unsigned char pslot; 1646 unsigned long p_gap; 1647 unsigned long max_gap; 1648 1649 if (!mt_is_alloc(mas->tree)) 1650 return; 1651 1652 if (mte_is_root(mas->node)) 1653 return; 1654 1655 max_gap = mas_max_gap(mas); 1656 1657 pslot = mte_parent_slot(mas->node); 1658 p_gap = ma_gaps(mte_parent(mas->node), 1659 mas_parent_enum(mas, mas->node))[pslot]; 1660 1661 if (p_gap != max_gap) 1662 mas_parent_gap(mas, pslot, max_gap); 1663 } 1664 1665 /* 1666 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1667 * @parent with the slot encoded. 1668 * @mas - the maple state (for the tree) 1669 * @parent - the maple encoded node containing the children. 1670 */ 1671 static inline void mas_adopt_children(struct ma_state *mas, 1672 struct maple_enode *parent) 1673 { 1674 enum maple_type type = mte_node_type(parent); 1675 struct maple_node *node = mas_mn(mas); 1676 void __rcu **slots = ma_slots(node, type); 1677 unsigned long *pivots = ma_pivots(node, type); 1678 struct maple_enode *child; 1679 unsigned char offset; 1680 1681 offset = ma_data_end(node, type, pivots, mas->max); 1682 do { 1683 child = mas_slot_locked(mas, slots, offset); 1684 mte_set_parent(child, parent, offset); 1685 } while (offset--); 1686 } 1687 1688 /* 1689 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the 1690 * parent encoding to locate the maple node in the tree. 1691 * @mas - the ma_state to use for operations. 1692 * @advanced - boolean to adopt the child nodes and free the old node (false) or 1693 * leave the node (true) and handle the adoption and free elsewhere. 1694 */ 1695 static inline void mas_replace(struct ma_state *mas, bool advanced) 1696 __must_hold(mas->tree->lock) 1697 { 1698 struct maple_node *mn = mas_mn(mas); 1699 struct maple_enode *old_enode; 1700 unsigned char offset = 0; 1701 void __rcu **slots = NULL; 1702 1703 if (ma_is_root(mn)) { 1704 old_enode = mas_root_locked(mas); 1705 } else { 1706 offset = mte_parent_slot(mas->node); 1707 slots = ma_slots(mte_parent(mas->node), 1708 mas_parent_enum(mas, mas->node)); 1709 old_enode = mas_slot_locked(mas, slots, offset); 1710 } 1711 1712 if (!advanced && !mte_is_leaf(mas->node)) 1713 mas_adopt_children(mas, mas->node); 1714 1715 if (mte_is_root(mas->node)) { 1716 mn->parent = ma_parent_ptr( 1717 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 1718 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1719 mas_set_height(mas); 1720 } else { 1721 rcu_assign_pointer(slots[offset], mas->node); 1722 } 1723 1724 if (!advanced) 1725 mas_free(mas, old_enode); 1726 } 1727 1728 /* 1729 * mas_new_child() - Find the new child of a node. 1730 * @mas: the maple state 1731 * @child: the maple state to store the child. 1732 */ 1733 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child) 1734 __must_hold(mas->tree->lock) 1735 { 1736 enum maple_type mt; 1737 unsigned char offset; 1738 unsigned char end; 1739 unsigned long *pivots; 1740 struct maple_enode *entry; 1741 struct maple_node *node; 1742 void __rcu **slots; 1743 1744 mt = mte_node_type(mas->node); 1745 node = mas_mn(mas); 1746 slots = ma_slots(node, mt); 1747 pivots = ma_pivots(node, mt); 1748 end = ma_data_end(node, mt, pivots, mas->max); 1749 for (offset = mas->offset; offset <= end; offset++) { 1750 entry = mas_slot_locked(mas, slots, offset); 1751 if (mte_parent(entry) == node) { 1752 *child = *mas; 1753 mas->offset = offset + 1; 1754 child->offset = offset; 1755 mas_descend(child); 1756 child->offset = 0; 1757 return true; 1758 } 1759 } 1760 return false; 1761 } 1762 1763 /* 1764 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1765 * old data or set b_node->b_end. 1766 * @b_node: the maple_big_node 1767 * @shift: the shift count 1768 */ 1769 static inline void mab_shift_right(struct maple_big_node *b_node, 1770 unsigned char shift) 1771 { 1772 unsigned long size = b_node->b_end * sizeof(unsigned long); 1773 1774 memmove(b_node->pivot + shift, b_node->pivot, size); 1775 memmove(b_node->slot + shift, b_node->slot, size); 1776 if (b_node->type == maple_arange_64) 1777 memmove(b_node->gap + shift, b_node->gap, size); 1778 } 1779 1780 /* 1781 * mab_middle_node() - Check if a middle node is needed (unlikely) 1782 * @b_node: the maple_big_node that contains the data. 1783 * @size: the amount of data in the b_node 1784 * @split: the potential split location 1785 * @slot_count: the size that can be stored in a single node being considered. 1786 * 1787 * Return: true if a middle node is required. 1788 */ 1789 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1790 unsigned char slot_count) 1791 { 1792 unsigned char size = b_node->b_end; 1793 1794 if (size >= 2 * slot_count) 1795 return true; 1796 1797 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1798 return true; 1799 1800 return false; 1801 } 1802 1803 /* 1804 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1805 * @b_node: the maple_big_node with the data 1806 * @split: the suggested split location 1807 * @slot_count: the number of slots in the node being considered. 1808 * 1809 * Return: the split location. 1810 */ 1811 static inline int mab_no_null_split(struct maple_big_node *b_node, 1812 unsigned char split, unsigned char slot_count) 1813 { 1814 if (!b_node->slot[split]) { 1815 /* 1816 * If the split is less than the max slot && the right side will 1817 * still be sufficient, then increment the split on NULL. 1818 */ 1819 if ((split < slot_count - 1) && 1820 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1821 split++; 1822 else 1823 split--; 1824 } 1825 return split; 1826 } 1827 1828 /* 1829 * mab_calc_split() - Calculate the split location and if there needs to be two 1830 * splits. 1831 * @bn: The maple_big_node with the data 1832 * @mid_split: The second split, if required. 0 otherwise. 1833 * 1834 * Return: The first split location. The middle split is set in @mid_split. 1835 */ 1836 static inline int mab_calc_split(struct ma_state *mas, 1837 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1838 { 1839 unsigned char b_end = bn->b_end; 1840 int split = b_end / 2; /* Assume equal split. */ 1841 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1842 1843 /* 1844 * To support gap tracking, all NULL entries are kept together and a node cannot 1845 * end on a NULL entry, with the exception of the left-most leaf. The 1846 * limitation means that the split of a node must be checked for this condition 1847 * and be able to put more data in one direction or the other. 1848 */ 1849 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1850 *mid_split = 0; 1851 split = b_end - mt_min_slots[bn->type]; 1852 1853 if (!ma_is_leaf(bn->type)) 1854 return split; 1855 1856 mas->mas_flags |= MA_STATE_REBALANCE; 1857 if (!bn->slot[split]) 1858 split--; 1859 return split; 1860 } 1861 1862 /* 1863 * Although extremely rare, it is possible to enter what is known as the 3-way 1864 * split scenario. The 3-way split comes about by means of a store of a range 1865 * that overwrites the end and beginning of two full nodes. The result is a set 1866 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1867 * also be located in different parent nodes which are also full. This can 1868 * carry upwards all the way to the root in the worst case. 1869 */ 1870 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1871 split = b_end / 3; 1872 *mid_split = split * 2; 1873 } else { 1874 slot_min = mt_min_slots[bn->type]; 1875 1876 *mid_split = 0; 1877 /* 1878 * Avoid having a range less than the slot count unless it 1879 * causes one node to be deficient. 1880 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1881 */ 1882 while (((bn->pivot[split] - min) < slot_count - 1) && 1883 (split < slot_count - 1) && (b_end - split > slot_min)) 1884 split++; 1885 } 1886 1887 /* Avoid ending a node on a NULL entry */ 1888 split = mab_no_null_split(bn, split, slot_count); 1889 if (!(*mid_split)) 1890 return split; 1891 1892 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1893 1894 return split; 1895 } 1896 1897 /* 1898 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1899 * and set @b_node->b_end to the next free slot. 1900 * @mas: The maple state 1901 * @mas_start: The starting slot to copy 1902 * @mas_end: The end slot to copy (inclusively) 1903 * @b_node: The maple_big_node to place the data 1904 * @mab_start: The starting location in maple_big_node to store the data. 1905 */ 1906 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1907 unsigned char mas_end, struct maple_big_node *b_node, 1908 unsigned char mab_start) 1909 { 1910 enum maple_type mt; 1911 struct maple_node *node; 1912 void __rcu **slots; 1913 unsigned long *pivots, *gaps; 1914 int i = mas_start, j = mab_start; 1915 unsigned char piv_end; 1916 1917 node = mas_mn(mas); 1918 mt = mte_node_type(mas->node); 1919 pivots = ma_pivots(node, mt); 1920 if (!i) { 1921 b_node->pivot[j] = pivots[i++]; 1922 if (unlikely(i > mas_end)) 1923 goto complete; 1924 j++; 1925 } 1926 1927 piv_end = min(mas_end, mt_pivots[mt]); 1928 for (; i < piv_end; i++, j++) { 1929 b_node->pivot[j] = pivots[i]; 1930 if (unlikely(!b_node->pivot[j])) 1931 break; 1932 1933 if (unlikely(mas->max == b_node->pivot[j])) 1934 goto complete; 1935 } 1936 1937 if (likely(i <= mas_end)) 1938 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1939 1940 complete: 1941 b_node->b_end = ++j; 1942 j -= mab_start; 1943 slots = ma_slots(node, mt); 1944 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1945 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1946 gaps = ma_gaps(node, mt); 1947 memcpy(b_node->gap + mab_start, gaps + mas_start, 1948 sizeof(unsigned long) * j); 1949 } 1950 } 1951 1952 /* 1953 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1954 * @mas: The maple state 1955 * @node: The maple node 1956 * @pivots: pointer to the maple node pivots 1957 * @mt: The maple type 1958 * @end: The assumed end 1959 * 1960 * Note, end may be incremented within this function but not modified at the 1961 * source. This is fine since the metadata is the last thing to be stored in a 1962 * node during a write. 1963 */ 1964 static inline void mas_leaf_set_meta(struct ma_state *mas, 1965 struct maple_node *node, unsigned long *pivots, 1966 enum maple_type mt, unsigned char end) 1967 { 1968 /* There is no room for metadata already */ 1969 if (mt_pivots[mt] <= end) 1970 return; 1971 1972 if (pivots[end] && pivots[end] < mas->max) 1973 end++; 1974 1975 if (end < mt_slots[mt] - 1) 1976 ma_set_meta(node, mt, 0, end); 1977 } 1978 1979 /* 1980 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 1981 * @b_node: the maple_big_node that has the data 1982 * @mab_start: the start location in @b_node. 1983 * @mab_end: The end location in @b_node (inclusively) 1984 * @mas: The maple state with the maple encoded node. 1985 */ 1986 static inline void mab_mas_cp(struct maple_big_node *b_node, 1987 unsigned char mab_start, unsigned char mab_end, 1988 struct ma_state *mas, bool new_max) 1989 { 1990 int i, j = 0; 1991 enum maple_type mt = mte_node_type(mas->node); 1992 struct maple_node *node = mte_to_node(mas->node); 1993 void __rcu **slots = ma_slots(node, mt); 1994 unsigned long *pivots = ma_pivots(node, mt); 1995 unsigned long *gaps = NULL; 1996 unsigned char end; 1997 1998 if (mab_end - mab_start > mt_pivots[mt]) 1999 mab_end--; 2000 2001 if (!pivots[mt_pivots[mt] - 1]) 2002 slots[mt_pivots[mt]] = NULL; 2003 2004 i = mab_start; 2005 do { 2006 pivots[j++] = b_node->pivot[i++]; 2007 } while (i <= mab_end && likely(b_node->pivot[i])); 2008 2009 memcpy(slots, b_node->slot + mab_start, 2010 sizeof(void *) * (i - mab_start)); 2011 2012 if (new_max) 2013 mas->max = b_node->pivot[i - 1]; 2014 2015 end = j - 1; 2016 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2017 unsigned long max_gap = 0; 2018 unsigned char offset = 15; 2019 2020 gaps = ma_gaps(node, mt); 2021 do { 2022 gaps[--j] = b_node->gap[--i]; 2023 if (gaps[j] > max_gap) { 2024 offset = j; 2025 max_gap = gaps[j]; 2026 } 2027 } while (j); 2028 2029 ma_set_meta(node, mt, offset, end); 2030 } else { 2031 mas_leaf_set_meta(mas, node, pivots, mt, end); 2032 } 2033 } 2034 2035 /* 2036 * mas_descend_adopt() - Descend through a sub-tree and adopt children. 2037 * @mas: the maple state with the maple encoded node of the sub-tree. 2038 * 2039 * Descend through a sub-tree and adopt children who do not have the correct 2040 * parents set. Follow the parents which have the correct parents as they are 2041 * the new entries which need to be followed to find other incorrectly set 2042 * parents. 2043 */ 2044 static inline void mas_descend_adopt(struct ma_state *mas) 2045 { 2046 struct ma_state list[3], next[3]; 2047 int i, n; 2048 2049 /* 2050 * At each level there may be up to 3 correct parent pointers which indicates 2051 * the new nodes which need to be walked to find any new nodes at a lower level. 2052 */ 2053 2054 for (i = 0; i < 3; i++) { 2055 list[i] = *mas; 2056 list[i].offset = 0; 2057 next[i].offset = 0; 2058 } 2059 next[0] = *mas; 2060 2061 while (!mte_is_leaf(list[0].node)) { 2062 n = 0; 2063 for (i = 0; i < 3; i++) { 2064 if (mas_is_none(&list[i])) 2065 continue; 2066 2067 if (i && list[i-1].node == list[i].node) 2068 continue; 2069 2070 while ((n < 3) && (mas_new_child(&list[i], &next[n]))) 2071 n++; 2072 2073 mas_adopt_children(&list[i], list[i].node); 2074 } 2075 2076 while (n < 3) 2077 next[n++].node = MAS_NONE; 2078 2079 /* descend by setting the list to the children */ 2080 for (i = 0; i < 3; i++) 2081 list[i] = next[i]; 2082 } 2083 } 2084 2085 /* 2086 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2087 * @mas: The maple state 2088 * @end: The maple node end 2089 * @mt: The maple node type 2090 */ 2091 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2092 enum maple_type mt) 2093 { 2094 if (!(mas->mas_flags & MA_STATE_BULK)) 2095 return; 2096 2097 if (mte_is_root(mas->node)) 2098 return; 2099 2100 if (end > mt_min_slots[mt]) { 2101 mas->mas_flags &= ~MA_STATE_REBALANCE; 2102 return; 2103 } 2104 } 2105 2106 /* 2107 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2108 * data from a maple encoded node. 2109 * @wr_mas: the maple write state 2110 * @b_node: the maple_big_node to fill with data 2111 * @offset_end: the offset to end copying 2112 * 2113 * Return: The actual end of the data stored in @b_node 2114 */ 2115 static inline void mas_store_b_node(struct ma_wr_state *wr_mas, 2116 struct maple_big_node *b_node, unsigned char offset_end) 2117 { 2118 unsigned char slot; 2119 unsigned char b_end; 2120 /* Possible underflow of piv will wrap back to 0 before use. */ 2121 unsigned long piv; 2122 struct ma_state *mas = wr_mas->mas; 2123 2124 b_node->type = wr_mas->type; 2125 b_end = 0; 2126 slot = mas->offset; 2127 if (slot) { 2128 /* Copy start data up to insert. */ 2129 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2130 b_end = b_node->b_end; 2131 piv = b_node->pivot[b_end - 1]; 2132 } else 2133 piv = mas->min - 1; 2134 2135 if (piv + 1 < mas->index) { 2136 /* Handle range starting after old range */ 2137 b_node->slot[b_end] = wr_mas->content; 2138 if (!wr_mas->content) 2139 b_node->gap[b_end] = mas->index - 1 - piv; 2140 b_node->pivot[b_end++] = mas->index - 1; 2141 } 2142 2143 /* Store the new entry. */ 2144 mas->offset = b_end; 2145 b_node->slot[b_end] = wr_mas->entry; 2146 b_node->pivot[b_end] = mas->last; 2147 2148 /* Appended. */ 2149 if (mas->last >= mas->max) 2150 goto b_end; 2151 2152 /* Handle new range ending before old range ends */ 2153 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2154 if (piv > mas->last) { 2155 if (piv == ULONG_MAX) 2156 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2157 2158 if (offset_end != slot) 2159 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2160 offset_end); 2161 2162 b_node->slot[++b_end] = wr_mas->content; 2163 if (!wr_mas->content) 2164 b_node->gap[b_end] = piv - mas->last + 1; 2165 b_node->pivot[b_end] = piv; 2166 } 2167 2168 slot = offset_end + 1; 2169 if (slot > wr_mas->node_end) 2170 goto b_end; 2171 2172 /* Copy end data to the end of the node. */ 2173 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end); 2174 b_node->b_end--; 2175 return; 2176 2177 b_end: 2178 b_node->b_end = b_end; 2179 } 2180 2181 /* 2182 * mas_prev_sibling() - Find the previous node with the same parent. 2183 * @mas: the maple state 2184 * 2185 * Return: True if there is a previous sibling, false otherwise. 2186 */ 2187 static inline bool mas_prev_sibling(struct ma_state *mas) 2188 { 2189 unsigned int p_slot = mte_parent_slot(mas->node); 2190 2191 if (mte_is_root(mas->node)) 2192 return false; 2193 2194 if (!p_slot) 2195 return false; 2196 2197 mas_ascend(mas); 2198 mas->offset = p_slot - 1; 2199 mas_descend(mas); 2200 return true; 2201 } 2202 2203 /* 2204 * mas_next_sibling() - Find the next node with the same parent. 2205 * @mas: the maple state 2206 * 2207 * Return: true if there is a next sibling, false otherwise. 2208 */ 2209 static inline bool mas_next_sibling(struct ma_state *mas) 2210 { 2211 MA_STATE(parent, mas->tree, mas->index, mas->last); 2212 2213 if (mte_is_root(mas->node)) 2214 return false; 2215 2216 parent = *mas; 2217 mas_ascend(&parent); 2218 parent.offset = mte_parent_slot(mas->node) + 1; 2219 if (parent.offset > mas_data_end(&parent)) 2220 return false; 2221 2222 *mas = parent; 2223 mas_descend(mas); 2224 return true; 2225 } 2226 2227 /* 2228 * mte_node_or_node() - Return the encoded node or MAS_NONE. 2229 * @enode: The encoded maple node. 2230 * 2231 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state. 2232 * 2233 * Return: @enode or MAS_NONE 2234 */ 2235 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode) 2236 { 2237 if (enode) 2238 return enode; 2239 2240 return ma_enode_ptr(MAS_NONE); 2241 } 2242 2243 /* 2244 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2245 * @wr_mas: The maple write state 2246 * 2247 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2248 */ 2249 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2250 { 2251 struct ma_state *mas = wr_mas->mas; 2252 unsigned char count; 2253 unsigned char offset; 2254 unsigned long index, min, max; 2255 2256 if (unlikely(ma_is_dense(wr_mas->type))) { 2257 wr_mas->r_max = wr_mas->r_min = mas->index; 2258 mas->offset = mas->index = mas->min; 2259 return; 2260 } 2261 2262 wr_mas->node = mas_mn(wr_mas->mas); 2263 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2264 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type, 2265 wr_mas->pivots, mas->max); 2266 offset = mas->offset; 2267 min = mas_safe_min(mas, wr_mas->pivots, offset); 2268 if (unlikely(offset == count)) 2269 goto max; 2270 2271 max = wr_mas->pivots[offset]; 2272 index = mas->index; 2273 if (unlikely(index <= max)) 2274 goto done; 2275 2276 if (unlikely(!max && offset)) 2277 goto max; 2278 2279 min = max + 1; 2280 while (++offset < count) { 2281 max = wr_mas->pivots[offset]; 2282 if (index <= max) 2283 goto done; 2284 else if (unlikely(!max)) 2285 break; 2286 2287 min = max + 1; 2288 } 2289 2290 max: 2291 max = mas->max; 2292 done: 2293 wr_mas->r_max = max; 2294 wr_mas->r_min = min; 2295 wr_mas->offset_end = mas->offset = offset; 2296 } 2297 2298 /* 2299 * mas_topiary_range() - Add a range of slots to the topiary. 2300 * @mas: The maple state 2301 * @destroy: The topiary to add the slots (usually destroy) 2302 * @start: The starting slot inclusively 2303 * @end: The end slot inclusively 2304 */ 2305 static inline void mas_topiary_range(struct ma_state *mas, 2306 struct ma_topiary *destroy, unsigned char start, unsigned char end) 2307 { 2308 void __rcu **slots; 2309 unsigned char offset; 2310 2311 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node)); 2312 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node)); 2313 for (offset = start; offset <= end; offset++) { 2314 struct maple_enode *enode = mas_slot_locked(mas, slots, offset); 2315 2316 if (mte_dead_node(enode)) 2317 continue; 2318 2319 mat_add(destroy, enode); 2320 } 2321 } 2322 2323 /* 2324 * mast_topiary() - Add the portions of the tree to the removal list; either to 2325 * be freed or discarded (destroy walk). 2326 * @mast: The maple_subtree_state. 2327 */ 2328 static inline void mast_topiary(struct maple_subtree_state *mast) 2329 { 2330 MA_WR_STATE(wr_mas, mast->orig_l, NULL); 2331 unsigned char r_start, r_end; 2332 unsigned char l_start, l_end; 2333 void __rcu **l_slots, **r_slots; 2334 2335 wr_mas.type = mte_node_type(mast->orig_l->node); 2336 mast->orig_l->index = mast->orig_l->last; 2337 mas_wr_node_walk(&wr_mas); 2338 l_start = mast->orig_l->offset + 1; 2339 l_end = mas_data_end(mast->orig_l); 2340 r_start = 0; 2341 r_end = mast->orig_r->offset; 2342 2343 if (r_end) 2344 r_end--; 2345 2346 l_slots = ma_slots(mas_mn(mast->orig_l), 2347 mte_node_type(mast->orig_l->node)); 2348 2349 r_slots = ma_slots(mas_mn(mast->orig_r), 2350 mte_node_type(mast->orig_r->node)); 2351 2352 if ((l_start < l_end) && 2353 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) { 2354 l_start++; 2355 } 2356 2357 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) { 2358 if (r_end) 2359 r_end--; 2360 } 2361 2362 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node)) 2363 return; 2364 2365 /* At the node where left and right sides meet, add the parts between */ 2366 if (mast->orig_l->node == mast->orig_r->node) { 2367 return mas_topiary_range(mast->orig_l, mast->destroy, 2368 l_start, r_end); 2369 } 2370 2371 /* mast->orig_r is different and consumed. */ 2372 if (mte_is_leaf(mast->orig_r->node)) 2373 return; 2374 2375 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end))) 2376 l_end--; 2377 2378 2379 if (l_start <= l_end) 2380 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end); 2381 2382 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start))) 2383 r_start++; 2384 2385 if (r_start <= r_end) 2386 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end); 2387 } 2388 2389 /* 2390 * mast_rebalance_next() - Rebalance against the next node 2391 * @mast: The maple subtree state 2392 * @old_r: The encoded maple node to the right (next node). 2393 */ 2394 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2395 { 2396 unsigned char b_end = mast->bn->b_end; 2397 2398 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2399 mast->bn, b_end); 2400 mast->orig_r->last = mast->orig_r->max; 2401 } 2402 2403 /* 2404 * mast_rebalance_prev() - Rebalance against the previous node 2405 * @mast: The maple subtree state 2406 * @old_l: The encoded maple node to the left (previous node) 2407 */ 2408 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2409 { 2410 unsigned char end = mas_data_end(mast->orig_l) + 1; 2411 unsigned char b_end = mast->bn->b_end; 2412 2413 mab_shift_right(mast->bn, end); 2414 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2415 mast->l->min = mast->orig_l->min; 2416 mast->orig_l->index = mast->orig_l->min; 2417 mast->bn->b_end = end + b_end; 2418 mast->l->offset += end; 2419 } 2420 2421 /* 2422 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2423 * the node to the right. Checking the nodes to the right then the left at each 2424 * level upwards until root is reached. Free and destroy as needed. 2425 * Data is copied into the @mast->bn. 2426 * @mast: The maple_subtree_state. 2427 */ 2428 static inline 2429 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2430 { 2431 struct ma_state r_tmp = *mast->orig_r; 2432 struct ma_state l_tmp = *mast->orig_l; 2433 struct maple_enode *ancestor = NULL; 2434 unsigned char start, end; 2435 unsigned char depth = 0; 2436 2437 r_tmp = *mast->orig_r; 2438 l_tmp = *mast->orig_l; 2439 do { 2440 mas_ascend(mast->orig_r); 2441 mas_ascend(mast->orig_l); 2442 depth++; 2443 if (!ancestor && 2444 (mast->orig_r->node == mast->orig_l->node)) { 2445 ancestor = mast->orig_r->node; 2446 end = mast->orig_r->offset - 1; 2447 start = mast->orig_l->offset + 1; 2448 } 2449 2450 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2451 if (!ancestor) { 2452 ancestor = mast->orig_r->node; 2453 start = 0; 2454 } 2455 2456 mast->orig_r->offset++; 2457 do { 2458 mas_descend(mast->orig_r); 2459 mast->orig_r->offset = 0; 2460 depth--; 2461 } while (depth); 2462 2463 mast_rebalance_next(mast); 2464 do { 2465 unsigned char l_off = 0; 2466 struct maple_enode *child = r_tmp.node; 2467 2468 mas_ascend(&r_tmp); 2469 if (ancestor == r_tmp.node) 2470 l_off = start; 2471 2472 if (r_tmp.offset) 2473 r_tmp.offset--; 2474 2475 if (l_off < r_tmp.offset) 2476 mas_topiary_range(&r_tmp, mast->destroy, 2477 l_off, r_tmp.offset); 2478 2479 if (l_tmp.node != child) 2480 mat_add(mast->free, child); 2481 2482 } while (r_tmp.node != ancestor); 2483 2484 *mast->orig_l = l_tmp; 2485 return true; 2486 2487 } else if (mast->orig_l->offset != 0) { 2488 if (!ancestor) { 2489 ancestor = mast->orig_l->node; 2490 end = mas_data_end(mast->orig_l); 2491 } 2492 2493 mast->orig_l->offset--; 2494 do { 2495 mas_descend(mast->orig_l); 2496 mast->orig_l->offset = 2497 mas_data_end(mast->orig_l); 2498 depth--; 2499 } while (depth); 2500 2501 mast_rebalance_prev(mast); 2502 do { 2503 unsigned char r_off; 2504 struct maple_enode *child = l_tmp.node; 2505 2506 mas_ascend(&l_tmp); 2507 if (ancestor == l_tmp.node) 2508 r_off = end; 2509 else 2510 r_off = mas_data_end(&l_tmp); 2511 2512 if (l_tmp.offset < r_off) 2513 l_tmp.offset++; 2514 2515 if (l_tmp.offset < r_off) 2516 mas_topiary_range(&l_tmp, mast->destroy, 2517 l_tmp.offset, r_off); 2518 2519 if (r_tmp.node != child) 2520 mat_add(mast->free, child); 2521 2522 } while (l_tmp.node != ancestor); 2523 2524 *mast->orig_r = r_tmp; 2525 return true; 2526 } 2527 } while (!mte_is_root(mast->orig_r->node)); 2528 2529 *mast->orig_r = r_tmp; 2530 *mast->orig_l = l_tmp; 2531 return false; 2532 } 2533 2534 /* 2535 * mast_ascend_free() - Add current original maple state nodes to the free list 2536 * and ascend. 2537 * @mast: the maple subtree state. 2538 * 2539 * Ascend the original left and right sides and add the previous nodes to the 2540 * free list. Set the slots to point to the correct location in the new nodes. 2541 */ 2542 static inline void 2543 mast_ascend_free(struct maple_subtree_state *mast) 2544 { 2545 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2546 struct maple_enode *left = mast->orig_l->node; 2547 struct maple_enode *right = mast->orig_r->node; 2548 2549 mas_ascend(mast->orig_l); 2550 mas_ascend(mast->orig_r); 2551 mat_add(mast->free, left); 2552 2553 if (left != right) 2554 mat_add(mast->free, right); 2555 2556 mast->orig_r->offset = 0; 2557 mast->orig_r->index = mast->r->max; 2558 /* last should be larger than or equal to index */ 2559 if (mast->orig_r->last < mast->orig_r->index) 2560 mast->orig_r->last = mast->orig_r->index; 2561 /* 2562 * The node may not contain the value so set slot to ensure all 2563 * of the nodes contents are freed or destroyed. 2564 */ 2565 wr_mas.type = mte_node_type(mast->orig_r->node); 2566 mas_wr_node_walk(&wr_mas); 2567 /* Set up the left side of things */ 2568 mast->orig_l->offset = 0; 2569 mast->orig_l->index = mast->l->min; 2570 wr_mas.mas = mast->orig_l; 2571 wr_mas.type = mte_node_type(mast->orig_l->node); 2572 mas_wr_node_walk(&wr_mas); 2573 2574 mast->bn->type = wr_mas.type; 2575 } 2576 2577 /* 2578 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2579 * @mas: the maple state with the allocations. 2580 * @b_node: the maple_big_node with the type encoding. 2581 * 2582 * Use the node type from the maple_big_node to allocate a new node from the 2583 * ma_state. This function exists mainly for code readability. 2584 * 2585 * Return: A new maple encoded node 2586 */ 2587 static inline struct maple_enode 2588 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2589 { 2590 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2591 } 2592 2593 /* 2594 * mas_mab_to_node() - Set up right and middle nodes 2595 * 2596 * @mas: the maple state that contains the allocations. 2597 * @b_node: the node which contains the data. 2598 * @left: The pointer which will have the left node 2599 * @right: The pointer which may have the right node 2600 * @middle: the pointer which may have the middle node (rare) 2601 * @mid_split: the split location for the middle node 2602 * 2603 * Return: the split of left. 2604 */ 2605 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2606 struct maple_big_node *b_node, struct maple_enode **left, 2607 struct maple_enode **right, struct maple_enode **middle, 2608 unsigned char *mid_split, unsigned long min) 2609 { 2610 unsigned char split = 0; 2611 unsigned char slot_count = mt_slots[b_node->type]; 2612 2613 *left = mas_new_ma_node(mas, b_node); 2614 *right = NULL; 2615 *middle = NULL; 2616 *mid_split = 0; 2617 2618 if (b_node->b_end < slot_count) { 2619 split = b_node->b_end; 2620 } else { 2621 split = mab_calc_split(mas, b_node, mid_split, min); 2622 *right = mas_new_ma_node(mas, b_node); 2623 } 2624 2625 if (*mid_split) 2626 *middle = mas_new_ma_node(mas, b_node); 2627 2628 return split; 2629 2630 } 2631 2632 /* 2633 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2634 * pointer. 2635 * @b_node - the big node to add the entry 2636 * @mas - the maple state to get the pivot (mas->max) 2637 * @entry - the entry to add, if NULL nothing happens. 2638 */ 2639 static inline void mab_set_b_end(struct maple_big_node *b_node, 2640 struct ma_state *mas, 2641 void *entry) 2642 { 2643 if (!entry) 2644 return; 2645 2646 b_node->slot[b_node->b_end] = entry; 2647 if (mt_is_alloc(mas->tree)) 2648 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2649 b_node->pivot[b_node->b_end++] = mas->max; 2650 } 2651 2652 /* 2653 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2654 * of @mas->node to either @left or @right, depending on @slot and @split 2655 * 2656 * @mas - the maple state with the node that needs a parent 2657 * @left - possible parent 1 2658 * @right - possible parent 2 2659 * @slot - the slot the mas->node was placed 2660 * @split - the split location between @left and @right 2661 */ 2662 static inline void mas_set_split_parent(struct ma_state *mas, 2663 struct maple_enode *left, 2664 struct maple_enode *right, 2665 unsigned char *slot, unsigned char split) 2666 { 2667 if (mas_is_none(mas)) 2668 return; 2669 2670 if ((*slot) <= split) 2671 mte_set_parent(mas->node, left, *slot); 2672 else if (right) 2673 mte_set_parent(mas->node, right, (*slot) - split - 1); 2674 2675 (*slot)++; 2676 } 2677 2678 /* 2679 * mte_mid_split_check() - Check if the next node passes the mid-split 2680 * @**l: Pointer to left encoded maple node. 2681 * @**m: Pointer to middle encoded maple node. 2682 * @**r: Pointer to right encoded maple node. 2683 * @slot: The offset 2684 * @*split: The split location. 2685 * @mid_split: The middle split. 2686 */ 2687 static inline void mte_mid_split_check(struct maple_enode **l, 2688 struct maple_enode **r, 2689 struct maple_enode *right, 2690 unsigned char slot, 2691 unsigned char *split, 2692 unsigned char mid_split) 2693 { 2694 if (*r == right) 2695 return; 2696 2697 if (slot < mid_split) 2698 return; 2699 2700 *l = *r; 2701 *r = right; 2702 *split = mid_split; 2703 } 2704 2705 /* 2706 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2707 * is taken from @mast->l. 2708 * @mast - the maple subtree state 2709 * @left - the left node 2710 * @right - the right node 2711 * @split - the split location. 2712 */ 2713 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2714 struct maple_enode *left, 2715 struct maple_enode *middle, 2716 struct maple_enode *right, 2717 unsigned char split, 2718 unsigned char mid_split) 2719 { 2720 unsigned char slot; 2721 struct maple_enode *l = left; 2722 struct maple_enode *r = right; 2723 2724 if (mas_is_none(mast->l)) 2725 return; 2726 2727 if (middle) 2728 r = middle; 2729 2730 slot = mast->l->offset; 2731 2732 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2733 mas_set_split_parent(mast->l, l, r, &slot, split); 2734 2735 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2736 mas_set_split_parent(mast->m, l, r, &slot, split); 2737 2738 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2739 mas_set_split_parent(mast->r, l, r, &slot, split); 2740 } 2741 2742 /* 2743 * mas_wmb_replace() - Write memory barrier and replace 2744 * @mas: The maple state 2745 * @free: the maple topiary list of nodes to free 2746 * @destroy: The maple topiary list of nodes to destroy (walk and free) 2747 * 2748 * Updates gap as necessary. 2749 */ 2750 static inline void mas_wmb_replace(struct ma_state *mas, 2751 struct ma_topiary *free, 2752 struct ma_topiary *destroy) 2753 { 2754 /* All nodes must see old data as dead prior to replacing that data */ 2755 smp_wmb(); /* Needed for RCU */ 2756 2757 /* Insert the new data in the tree */ 2758 mas_replace(mas, true); 2759 2760 if (!mte_is_leaf(mas->node)) 2761 mas_descend_adopt(mas); 2762 2763 mas_mat_free(mas, free); 2764 2765 if (destroy) 2766 mas_mat_destroy(mas, destroy); 2767 2768 if (mte_is_leaf(mas->node)) 2769 return; 2770 2771 mas_update_gap(mas); 2772 } 2773 2774 /* 2775 * mast_new_root() - Set a new tree root during subtree creation 2776 * @mast: The maple subtree state 2777 * @mas: The maple state 2778 */ 2779 static inline void mast_new_root(struct maple_subtree_state *mast, 2780 struct ma_state *mas) 2781 { 2782 mas_mn(mast->l)->parent = 2783 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT)); 2784 if (!mte_dead_node(mast->orig_l->node) && 2785 !mte_is_root(mast->orig_l->node)) { 2786 do { 2787 mast_ascend_free(mast); 2788 mast_topiary(mast); 2789 } while (!mte_is_root(mast->orig_l->node)); 2790 } 2791 if ((mast->orig_l->node != mas->node) && 2792 (mast->l->depth > mas_mt_height(mas))) { 2793 mat_add(mast->free, mas->node); 2794 } 2795 } 2796 2797 /* 2798 * mast_cp_to_nodes() - Copy data out to nodes. 2799 * @mast: The maple subtree state 2800 * @left: The left encoded maple node 2801 * @middle: The middle encoded maple node 2802 * @right: The right encoded maple node 2803 * @split: The location to split between left and (middle ? middle : right) 2804 * @mid_split: The location to split between middle and right. 2805 */ 2806 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2807 struct maple_enode *left, struct maple_enode *middle, 2808 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2809 { 2810 bool new_lmax = true; 2811 2812 mast->l->node = mte_node_or_none(left); 2813 mast->m->node = mte_node_or_none(middle); 2814 mast->r->node = mte_node_or_none(right); 2815 2816 mast->l->min = mast->orig_l->min; 2817 if (split == mast->bn->b_end) { 2818 mast->l->max = mast->orig_r->max; 2819 new_lmax = false; 2820 } 2821 2822 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2823 2824 if (middle) { 2825 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2826 mast->m->min = mast->bn->pivot[split] + 1; 2827 split = mid_split; 2828 } 2829 2830 mast->r->max = mast->orig_r->max; 2831 if (right) { 2832 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2833 mast->r->min = mast->bn->pivot[split] + 1; 2834 } 2835 } 2836 2837 /* 2838 * mast_combine_cp_left - Copy in the original left side of the tree into the 2839 * combined data set in the maple subtree state big node. 2840 * @mast: The maple subtree state 2841 */ 2842 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2843 { 2844 unsigned char l_slot = mast->orig_l->offset; 2845 2846 if (!l_slot) 2847 return; 2848 2849 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2850 } 2851 2852 /* 2853 * mast_combine_cp_right: Copy in the original right side of the tree into the 2854 * combined data set in the maple subtree state big node. 2855 * @mast: The maple subtree state 2856 */ 2857 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2858 { 2859 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2860 return; 2861 2862 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2863 mt_slot_count(mast->orig_r->node), mast->bn, 2864 mast->bn->b_end); 2865 mast->orig_r->last = mast->orig_r->max; 2866 } 2867 2868 /* 2869 * mast_sufficient: Check if the maple subtree state has enough data in the big 2870 * node to create at least one sufficient node 2871 * @mast: the maple subtree state 2872 */ 2873 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2874 { 2875 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2876 return true; 2877 2878 return false; 2879 } 2880 2881 /* 2882 * mast_overflow: Check if there is too much data in the subtree state for a 2883 * single node. 2884 * @mast: The maple subtree state 2885 */ 2886 static inline bool mast_overflow(struct maple_subtree_state *mast) 2887 { 2888 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2889 return true; 2890 2891 return false; 2892 } 2893 2894 static inline void *mtree_range_walk(struct ma_state *mas) 2895 { 2896 unsigned long *pivots; 2897 unsigned char offset; 2898 struct maple_node *node; 2899 struct maple_enode *next, *last; 2900 enum maple_type type; 2901 void __rcu **slots; 2902 unsigned char end; 2903 unsigned long max, min; 2904 unsigned long prev_max, prev_min; 2905 2906 next = mas->node; 2907 min = mas->min; 2908 max = mas->max; 2909 do { 2910 offset = 0; 2911 last = next; 2912 node = mte_to_node(next); 2913 type = mte_node_type(next); 2914 pivots = ma_pivots(node, type); 2915 end = ma_data_end(node, type, pivots, max); 2916 if (unlikely(ma_dead_node(node))) 2917 goto dead_node; 2918 2919 if (pivots[offset] >= mas->index) { 2920 prev_max = max; 2921 prev_min = min; 2922 max = pivots[offset]; 2923 goto next; 2924 } 2925 2926 do { 2927 offset++; 2928 } while ((offset < end) && (pivots[offset] < mas->index)); 2929 2930 prev_min = min; 2931 min = pivots[offset - 1] + 1; 2932 prev_max = max; 2933 if (likely(offset < end && pivots[offset])) 2934 max = pivots[offset]; 2935 2936 next: 2937 slots = ma_slots(node, type); 2938 next = mt_slot(mas->tree, slots, offset); 2939 if (unlikely(ma_dead_node(node))) 2940 goto dead_node; 2941 } while (!ma_is_leaf(type)); 2942 2943 mas->offset = offset; 2944 mas->index = min; 2945 mas->last = max; 2946 mas->min = prev_min; 2947 mas->max = prev_max; 2948 mas->node = last; 2949 return (void *) next; 2950 2951 dead_node: 2952 mas_reset(mas); 2953 return NULL; 2954 } 2955 2956 /* 2957 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2958 * @mas: The starting maple state 2959 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2960 * @count: The estimated count of iterations needed. 2961 * 2962 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2963 * is hit. First @b_node is split into two entries which are inserted into the 2964 * next iteration of the loop. @b_node is returned populated with the final 2965 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2966 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2967 * to account of what has been copied into the new sub-tree. The update of 2968 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2969 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2970 * the new sub-tree in case the sub-tree becomes the full tree. 2971 * 2972 * Return: the number of elements in b_node during the last loop. 2973 */ 2974 static int mas_spanning_rebalance(struct ma_state *mas, 2975 struct maple_subtree_state *mast, unsigned char count) 2976 { 2977 unsigned char split, mid_split; 2978 unsigned char slot = 0; 2979 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2980 2981 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 2982 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2983 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 2984 MA_TOPIARY(free, mas->tree); 2985 MA_TOPIARY(destroy, mas->tree); 2986 2987 /* 2988 * The tree needs to be rebalanced and leaves need to be kept at the same level. 2989 * Rebalancing is done by use of the ``struct maple_topiary``. 2990 */ 2991 mast->l = &l_mas; 2992 mast->m = &m_mas; 2993 mast->r = &r_mas; 2994 mast->free = &free; 2995 mast->destroy = &destroy; 2996 l_mas.node = r_mas.node = m_mas.node = MAS_NONE; 2997 if (!(mast->orig_l->min && mast->orig_r->max == ULONG_MAX) && 2998 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 2999 mast_spanning_rebalance(mast); 3000 3001 mast->orig_l->depth = 0; 3002 3003 /* 3004 * Each level of the tree is examined and balanced, pushing data to the left or 3005 * right, or rebalancing against left or right nodes is employed to avoid 3006 * rippling up the tree to limit the amount of churn. Once a new sub-section of 3007 * the tree is created, there may be a mix of new and old nodes. The old nodes 3008 * will have the incorrect parent pointers and currently be in two trees: the 3009 * original tree and the partially new tree. To remedy the parent pointers in 3010 * the old tree, the new data is swapped into the active tree and a walk down 3011 * the tree is performed and the parent pointers are updated. 3012 * See mas_descend_adopt() for more information.. 3013 */ 3014 while (count--) { 3015 mast->bn->b_end--; 3016 mast->bn->type = mte_node_type(mast->orig_l->node); 3017 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 3018 &mid_split, mast->orig_l->min); 3019 mast_set_split_parents(mast, left, middle, right, split, 3020 mid_split); 3021 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 3022 3023 /* 3024 * Copy data from next level in the tree to mast->bn from next 3025 * iteration 3026 */ 3027 memset(mast->bn, 0, sizeof(struct maple_big_node)); 3028 mast->bn->type = mte_node_type(left); 3029 mast->orig_l->depth++; 3030 3031 /* Root already stored in l->node. */ 3032 if (mas_is_root_limits(mast->l)) 3033 goto new_root; 3034 3035 mast_ascend_free(mast); 3036 mast_combine_cp_left(mast); 3037 l_mas.offset = mast->bn->b_end; 3038 mab_set_b_end(mast->bn, &l_mas, left); 3039 mab_set_b_end(mast->bn, &m_mas, middle); 3040 mab_set_b_end(mast->bn, &r_mas, right); 3041 3042 /* Copy anything necessary out of the right node. */ 3043 mast_combine_cp_right(mast); 3044 mast_topiary(mast); 3045 mast->orig_l->last = mast->orig_l->max; 3046 3047 if (mast_sufficient(mast)) 3048 continue; 3049 3050 if (mast_overflow(mast)) 3051 continue; 3052 3053 /* May be a new root stored in mast->bn */ 3054 if (mas_is_root_limits(mast->orig_l)) 3055 break; 3056 3057 mast_spanning_rebalance(mast); 3058 3059 /* rebalancing from other nodes may require another loop. */ 3060 if (!count) 3061 count++; 3062 } 3063 3064 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 3065 mte_node_type(mast->orig_l->node)); 3066 mast->orig_l->depth++; 3067 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 3068 mte_set_parent(left, l_mas.node, slot); 3069 if (middle) 3070 mte_set_parent(middle, l_mas.node, ++slot); 3071 3072 if (right) 3073 mte_set_parent(right, l_mas.node, ++slot); 3074 3075 if (mas_is_root_limits(mast->l)) { 3076 new_root: 3077 mast_new_root(mast, mas); 3078 } else { 3079 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 3080 } 3081 3082 if (!mte_dead_node(mast->orig_l->node)) 3083 mat_add(&free, mast->orig_l->node); 3084 3085 mas->depth = mast->orig_l->depth; 3086 *mast->orig_l = l_mas; 3087 mte_set_node_dead(mas->node); 3088 3089 /* Set up mas for insertion. */ 3090 mast->orig_l->depth = mas->depth; 3091 mast->orig_l->alloc = mas->alloc; 3092 *mas = *mast->orig_l; 3093 mas_wmb_replace(mas, &free, &destroy); 3094 mtree_range_walk(mas); 3095 return mast->bn->b_end; 3096 } 3097 3098 /* 3099 * mas_rebalance() - Rebalance a given node. 3100 * @mas: The maple state 3101 * @b_node: The big maple node. 3102 * 3103 * Rebalance two nodes into a single node or two new nodes that are sufficient. 3104 * Continue upwards until tree is sufficient. 3105 * 3106 * Return: the number of elements in b_node during the last loop. 3107 */ 3108 static inline int mas_rebalance(struct ma_state *mas, 3109 struct maple_big_node *b_node) 3110 { 3111 char empty_count = mas_mt_height(mas); 3112 struct maple_subtree_state mast; 3113 unsigned char shift, b_end = ++b_node->b_end; 3114 3115 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3116 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3117 3118 trace_ma_op(__func__, mas); 3119 3120 /* 3121 * Rebalancing occurs if a node is insufficient. Data is rebalanced 3122 * against the node to the right if it exists, otherwise the node to the 3123 * left of this node is rebalanced against this node. If rebalancing 3124 * causes just one node to be produced instead of two, then the parent 3125 * is also examined and rebalanced if it is insufficient. Every level 3126 * tries to combine the data in the same way. If one node contains the 3127 * entire range of the tree, then that node is used as a new root node. 3128 */ 3129 mas_node_count(mas, 1 + empty_count * 3); 3130 if (mas_is_err(mas)) 3131 return 0; 3132 3133 mast.orig_l = &l_mas; 3134 mast.orig_r = &r_mas; 3135 mast.bn = b_node; 3136 mast.bn->type = mte_node_type(mas->node); 3137 3138 l_mas = r_mas = *mas; 3139 3140 if (mas_next_sibling(&r_mas)) { 3141 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 3142 r_mas.last = r_mas.index = r_mas.max; 3143 } else { 3144 mas_prev_sibling(&l_mas); 3145 shift = mas_data_end(&l_mas) + 1; 3146 mab_shift_right(b_node, shift); 3147 mas->offset += shift; 3148 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3149 b_node->b_end = shift + b_end; 3150 l_mas.index = l_mas.last = l_mas.min; 3151 } 3152 3153 return mas_spanning_rebalance(mas, &mast, empty_count); 3154 } 3155 3156 /* 3157 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3158 * state. 3159 * @mas: The maple state 3160 * @end: The end of the left-most node. 3161 * 3162 * During a mass-insert event (such as forking), it may be necessary to 3163 * rebalance the left-most node when it is not sufficient. 3164 */ 3165 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3166 { 3167 enum maple_type mt = mte_node_type(mas->node); 3168 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3169 struct maple_enode *eparent; 3170 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3171 void __rcu **l_slots, **slots; 3172 unsigned long *l_pivs, *pivs, gap; 3173 bool in_rcu = mt_in_rcu(mas->tree); 3174 3175 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3176 3177 l_mas = *mas; 3178 mas_prev_sibling(&l_mas); 3179 3180 /* set up node. */ 3181 if (in_rcu) { 3182 /* Allocate for both left and right as well as parent. */ 3183 mas_node_count(mas, 3); 3184 if (mas_is_err(mas)) 3185 return; 3186 3187 newnode = mas_pop_node(mas); 3188 } else { 3189 newnode = &reuse; 3190 } 3191 3192 node = mas_mn(mas); 3193 newnode->parent = node->parent; 3194 slots = ma_slots(newnode, mt); 3195 pivs = ma_pivots(newnode, mt); 3196 left = mas_mn(&l_mas); 3197 l_slots = ma_slots(left, mt); 3198 l_pivs = ma_pivots(left, mt); 3199 if (!l_slots[split]) 3200 split++; 3201 tmp = mas_data_end(&l_mas) - split; 3202 3203 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3204 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3205 pivs[tmp] = l_mas.max; 3206 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3207 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3208 3209 l_mas.max = l_pivs[split]; 3210 mas->min = l_mas.max + 1; 3211 eparent = mt_mk_node(mte_parent(l_mas.node), 3212 mas_parent_enum(&l_mas, l_mas.node)); 3213 tmp += end; 3214 if (!in_rcu) { 3215 unsigned char max_p = mt_pivots[mt]; 3216 unsigned char max_s = mt_slots[mt]; 3217 3218 if (tmp < max_p) 3219 memset(pivs + tmp, 0, 3220 sizeof(unsigned long *) * (max_p - tmp)); 3221 3222 if (tmp < mt_slots[mt]) 3223 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3224 3225 memcpy(node, newnode, sizeof(struct maple_node)); 3226 ma_set_meta(node, mt, 0, tmp - 1); 3227 mte_set_pivot(eparent, mte_parent_slot(l_mas.node), 3228 l_pivs[split]); 3229 3230 /* Remove data from l_pivs. */ 3231 tmp = split + 1; 3232 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3233 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3234 ma_set_meta(left, mt, 0, split); 3235 3236 goto done; 3237 } 3238 3239 /* RCU requires replacing both l_mas, mas, and parent. */ 3240 mas->node = mt_mk_node(newnode, mt); 3241 ma_set_meta(newnode, mt, 0, tmp); 3242 3243 new_left = mas_pop_node(mas); 3244 new_left->parent = left->parent; 3245 mt = mte_node_type(l_mas.node); 3246 slots = ma_slots(new_left, mt); 3247 pivs = ma_pivots(new_left, mt); 3248 memcpy(slots, l_slots, sizeof(void *) * split); 3249 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3250 ma_set_meta(new_left, mt, 0, split); 3251 l_mas.node = mt_mk_node(new_left, mt); 3252 3253 /* replace parent. */ 3254 offset = mte_parent_slot(mas->node); 3255 mt = mas_parent_enum(&l_mas, l_mas.node); 3256 parent = mas_pop_node(mas); 3257 slots = ma_slots(parent, mt); 3258 pivs = ma_pivots(parent, mt); 3259 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node)); 3260 rcu_assign_pointer(slots[offset], mas->node); 3261 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3262 pivs[offset - 1] = l_mas.max; 3263 eparent = mt_mk_node(parent, mt); 3264 done: 3265 gap = mas_leaf_max_gap(mas); 3266 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3267 gap = mas_leaf_max_gap(&l_mas); 3268 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3269 mas_ascend(mas); 3270 3271 if (in_rcu) 3272 mas_replace(mas, false); 3273 3274 mas_update_gap(mas); 3275 } 3276 3277 /* 3278 * mas_split_final_node() - Split the final node in a subtree operation. 3279 * @mast: the maple subtree state 3280 * @mas: The maple state 3281 * @height: The height of the tree in case it's a new root. 3282 */ 3283 static inline bool mas_split_final_node(struct maple_subtree_state *mast, 3284 struct ma_state *mas, int height) 3285 { 3286 struct maple_enode *ancestor; 3287 3288 if (mte_is_root(mas->node)) { 3289 if (mt_is_alloc(mas->tree)) 3290 mast->bn->type = maple_arange_64; 3291 else 3292 mast->bn->type = maple_range_64; 3293 mas->depth = height; 3294 } 3295 /* 3296 * Only a single node is used here, could be root. 3297 * The Big_node data should just fit in a single node. 3298 */ 3299 ancestor = mas_new_ma_node(mas, mast->bn); 3300 mte_set_parent(mast->l->node, ancestor, mast->l->offset); 3301 mte_set_parent(mast->r->node, ancestor, mast->r->offset); 3302 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3303 3304 mast->l->node = ancestor; 3305 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3306 mas->offset = mast->bn->b_end - 1; 3307 return true; 3308 } 3309 3310 /* 3311 * mast_fill_bnode() - Copy data into the big node in the subtree state 3312 * @mast: The maple subtree state 3313 * @mas: the maple state 3314 * @skip: The number of entries to skip for new nodes insertion. 3315 */ 3316 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3317 struct ma_state *mas, 3318 unsigned char skip) 3319 { 3320 bool cp = true; 3321 struct maple_enode *old = mas->node; 3322 unsigned char split; 3323 3324 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3325 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3326 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3327 mast->bn->b_end = 0; 3328 3329 if (mte_is_root(mas->node)) { 3330 cp = false; 3331 } else { 3332 mas_ascend(mas); 3333 mat_add(mast->free, old); 3334 mas->offset = mte_parent_slot(mas->node); 3335 } 3336 3337 if (cp && mast->l->offset) 3338 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3339 3340 split = mast->bn->b_end; 3341 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3342 mast->r->offset = mast->bn->b_end; 3343 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3344 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3345 cp = false; 3346 3347 if (cp) 3348 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3349 mast->bn, mast->bn->b_end); 3350 3351 mast->bn->b_end--; 3352 mast->bn->type = mte_node_type(mas->node); 3353 } 3354 3355 /* 3356 * mast_split_data() - Split the data in the subtree state big node into regular 3357 * nodes. 3358 * @mast: The maple subtree state 3359 * @mas: The maple state 3360 * @split: The location to split the big node 3361 */ 3362 static inline void mast_split_data(struct maple_subtree_state *mast, 3363 struct ma_state *mas, unsigned char split) 3364 { 3365 unsigned char p_slot; 3366 3367 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3368 mte_set_pivot(mast->r->node, 0, mast->r->max); 3369 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3370 mast->l->offset = mte_parent_slot(mas->node); 3371 mast->l->max = mast->bn->pivot[split]; 3372 mast->r->min = mast->l->max + 1; 3373 if (mte_is_leaf(mas->node)) 3374 return; 3375 3376 p_slot = mast->orig_l->offset; 3377 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3378 &p_slot, split); 3379 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3380 &p_slot, split); 3381 } 3382 3383 /* 3384 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3385 * data to the right or left node if there is room. 3386 * @mas: The maple state 3387 * @height: The current height of the maple state 3388 * @mast: The maple subtree state 3389 * @left: Push left or not. 3390 * 3391 * Keeping the height of the tree low means faster lookups. 3392 * 3393 * Return: True if pushed, false otherwise. 3394 */ 3395 static inline bool mas_push_data(struct ma_state *mas, int height, 3396 struct maple_subtree_state *mast, bool left) 3397 { 3398 unsigned char slot_total = mast->bn->b_end; 3399 unsigned char end, space, split; 3400 3401 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3402 tmp_mas = *mas; 3403 tmp_mas.depth = mast->l->depth; 3404 3405 if (left && !mas_prev_sibling(&tmp_mas)) 3406 return false; 3407 else if (!left && !mas_next_sibling(&tmp_mas)) 3408 return false; 3409 3410 end = mas_data_end(&tmp_mas); 3411 slot_total += end; 3412 space = 2 * mt_slot_count(mas->node) - 2; 3413 /* -2 instead of -1 to ensure there isn't a triple split */ 3414 if (ma_is_leaf(mast->bn->type)) 3415 space--; 3416 3417 if (mas->max == ULONG_MAX) 3418 space--; 3419 3420 if (slot_total >= space) 3421 return false; 3422 3423 /* Get the data; Fill mast->bn */ 3424 mast->bn->b_end++; 3425 if (left) { 3426 mab_shift_right(mast->bn, end + 1); 3427 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3428 mast->bn->b_end = slot_total + 1; 3429 } else { 3430 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3431 } 3432 3433 /* Configure mast for splitting of mast->bn */ 3434 split = mt_slots[mast->bn->type] - 2; 3435 if (left) { 3436 /* Switch mas to prev node */ 3437 mat_add(mast->free, mas->node); 3438 *mas = tmp_mas; 3439 /* Start using mast->l for the left side. */ 3440 tmp_mas.node = mast->l->node; 3441 *mast->l = tmp_mas; 3442 } else { 3443 mat_add(mast->free, tmp_mas.node); 3444 tmp_mas.node = mast->r->node; 3445 *mast->r = tmp_mas; 3446 split = slot_total - split; 3447 } 3448 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3449 /* Update parent slot for split calculation. */ 3450 if (left) 3451 mast->orig_l->offset += end + 1; 3452 3453 mast_split_data(mast, mas, split); 3454 mast_fill_bnode(mast, mas, 2); 3455 mas_split_final_node(mast, mas, height + 1); 3456 return true; 3457 } 3458 3459 /* 3460 * mas_split() - Split data that is too big for one node into two. 3461 * @mas: The maple state 3462 * @b_node: The maple big node 3463 * Return: 1 on success, 0 on failure. 3464 */ 3465 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3466 { 3467 3468 struct maple_subtree_state mast; 3469 int height = 0; 3470 unsigned char mid_split, split = 0; 3471 3472 /* 3473 * Splitting is handled differently from any other B-tree; the Maple 3474 * Tree splits upwards. Splitting up means that the split operation 3475 * occurs when the walk of the tree hits the leaves and not on the way 3476 * down. The reason for splitting up is that it is impossible to know 3477 * how much space will be needed until the leaf is (or leaves are) 3478 * reached. Since overwriting data is allowed and a range could 3479 * overwrite more than one range or result in changing one entry into 3 3480 * entries, it is impossible to know if a split is required until the 3481 * data is examined. 3482 * 3483 * Splitting is a balancing act between keeping allocations to a minimum 3484 * and avoiding a 'jitter' event where a tree is expanded to make room 3485 * for an entry followed by a contraction when the entry is removed. To 3486 * accomplish the balance, there are empty slots remaining in both left 3487 * and right nodes after a split. 3488 */ 3489 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3490 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3491 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3492 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3493 MA_TOPIARY(mat, mas->tree); 3494 3495 trace_ma_op(__func__, mas); 3496 mas->depth = mas_mt_height(mas); 3497 /* Allocation failures will happen early. */ 3498 mas_node_count(mas, 1 + mas->depth * 2); 3499 if (mas_is_err(mas)) 3500 return 0; 3501 3502 mast.l = &l_mas; 3503 mast.r = &r_mas; 3504 mast.orig_l = &prev_l_mas; 3505 mast.orig_r = &prev_r_mas; 3506 mast.free = &mat; 3507 mast.bn = b_node; 3508 3509 while (height++ <= mas->depth) { 3510 if (mt_slots[b_node->type] > b_node->b_end) { 3511 mas_split_final_node(&mast, mas, height); 3512 break; 3513 } 3514 3515 l_mas = r_mas = *mas; 3516 l_mas.node = mas_new_ma_node(mas, b_node); 3517 r_mas.node = mas_new_ma_node(mas, b_node); 3518 /* 3519 * Another way that 'jitter' is avoided is to terminate a split up early if the 3520 * left or right node has space to spare. This is referred to as "pushing left" 3521 * or "pushing right" and is similar to the B* tree, except the nodes left or 3522 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3523 * is a significant savings. 3524 */ 3525 /* Try to push left. */ 3526 if (mas_push_data(mas, height, &mast, true)) 3527 break; 3528 3529 /* Try to push right. */ 3530 if (mas_push_data(mas, height, &mast, false)) 3531 break; 3532 3533 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3534 mast_split_data(&mast, mas, split); 3535 /* 3536 * Usually correct, mab_mas_cp in the above call overwrites 3537 * r->max. 3538 */ 3539 mast.r->max = mas->max; 3540 mast_fill_bnode(&mast, mas, 1); 3541 prev_l_mas = *mast.l; 3542 prev_r_mas = *mast.r; 3543 } 3544 3545 /* Set the original node as dead */ 3546 mat_add(mast.free, mas->node); 3547 mas->node = l_mas.node; 3548 mas_wmb_replace(mas, mast.free, NULL); 3549 mtree_range_walk(mas); 3550 return 1; 3551 } 3552 3553 /* 3554 * mas_reuse_node() - Reuse the node to store the data. 3555 * @wr_mas: The maple write state 3556 * @bn: The maple big node 3557 * @end: The end of the data. 3558 * 3559 * Will always return false in RCU mode. 3560 * 3561 * Return: True if node was reused, false otherwise. 3562 */ 3563 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3564 struct maple_big_node *bn, unsigned char end) 3565 { 3566 /* Need to be rcu safe. */ 3567 if (mt_in_rcu(wr_mas->mas->tree)) 3568 return false; 3569 3570 if (end > bn->b_end) { 3571 int clear = mt_slots[wr_mas->type] - bn->b_end; 3572 3573 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3574 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3575 } 3576 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3577 return true; 3578 } 3579 3580 /* 3581 * mas_commit_b_node() - Commit the big node into the tree. 3582 * @wr_mas: The maple write state 3583 * @b_node: The maple big node 3584 * @end: The end of the data. 3585 */ 3586 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas, 3587 struct maple_big_node *b_node, unsigned char end) 3588 { 3589 struct maple_node *node; 3590 unsigned char b_end = b_node->b_end; 3591 enum maple_type b_type = b_node->type; 3592 3593 if ((b_end < mt_min_slots[b_type]) && 3594 (!mte_is_root(wr_mas->mas->node)) && 3595 (mas_mt_height(wr_mas->mas) > 1)) 3596 return mas_rebalance(wr_mas->mas, b_node); 3597 3598 if (b_end >= mt_slots[b_type]) 3599 return mas_split(wr_mas->mas, b_node); 3600 3601 if (mas_reuse_node(wr_mas, b_node, end)) 3602 goto reuse_node; 3603 3604 mas_node_count(wr_mas->mas, 1); 3605 if (mas_is_err(wr_mas->mas)) 3606 return 0; 3607 3608 node = mas_pop_node(wr_mas->mas); 3609 node->parent = mas_mn(wr_mas->mas)->parent; 3610 wr_mas->mas->node = mt_mk_node(node, b_type); 3611 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3612 mas_replace(wr_mas->mas, false); 3613 reuse_node: 3614 mas_update_gap(wr_mas->mas); 3615 return 1; 3616 } 3617 3618 /* 3619 * mas_root_expand() - Expand a root to a node 3620 * @mas: The maple state 3621 * @entry: The entry to store into the tree 3622 */ 3623 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3624 { 3625 void *contents = mas_root_locked(mas); 3626 enum maple_type type = maple_leaf_64; 3627 struct maple_node *node; 3628 void __rcu **slots; 3629 unsigned long *pivots; 3630 int slot = 0; 3631 3632 mas_node_count(mas, 1); 3633 if (unlikely(mas_is_err(mas))) 3634 return 0; 3635 3636 node = mas_pop_node(mas); 3637 pivots = ma_pivots(node, type); 3638 slots = ma_slots(node, type); 3639 node->parent = ma_parent_ptr( 3640 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3641 mas->node = mt_mk_node(node, type); 3642 3643 if (mas->index) { 3644 if (contents) { 3645 rcu_assign_pointer(slots[slot], contents); 3646 if (likely(mas->index > 1)) 3647 slot++; 3648 } 3649 pivots[slot++] = mas->index - 1; 3650 } 3651 3652 rcu_assign_pointer(slots[slot], entry); 3653 mas->offset = slot; 3654 pivots[slot] = mas->last; 3655 if (mas->last != ULONG_MAX) 3656 slot++; 3657 mas->depth = 1; 3658 mas_set_height(mas); 3659 3660 /* swap the new root into the tree */ 3661 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3662 ma_set_meta(node, maple_leaf_64, 0, slot); 3663 return slot; 3664 } 3665 3666 static inline void mas_store_root(struct ma_state *mas, void *entry) 3667 { 3668 if (likely((mas->last != 0) || (mas->index != 0))) 3669 mas_root_expand(mas, entry); 3670 else if (((unsigned long) (entry) & 3) == 2) 3671 mas_root_expand(mas, entry); 3672 else { 3673 rcu_assign_pointer(mas->tree->ma_root, entry); 3674 mas->node = MAS_START; 3675 } 3676 } 3677 3678 /* 3679 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3680 * spans the node. 3681 * @mas: The maple state 3682 * @piv: The pivot value being written 3683 * @type: The maple node type 3684 * @entry: The data to write 3685 * 3686 * Spanning writes are writes that start in one node and end in another OR if 3687 * the write of a %NULL will cause the node to end with a %NULL. 3688 * 3689 * Return: True if this is a spanning write, false otherwise. 3690 */ 3691 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3692 { 3693 unsigned long max; 3694 unsigned long last = wr_mas->mas->last; 3695 unsigned long piv = wr_mas->r_max; 3696 enum maple_type type = wr_mas->type; 3697 void *entry = wr_mas->entry; 3698 3699 /* Contained in this pivot */ 3700 if (piv > last) 3701 return false; 3702 3703 max = wr_mas->mas->max; 3704 if (unlikely(ma_is_leaf(type))) { 3705 /* Fits in the node, but may span slots. */ 3706 if (last < max) 3707 return false; 3708 3709 /* Writes to the end of the node but not null. */ 3710 if ((last == max) && entry) 3711 return false; 3712 3713 /* 3714 * Writing ULONG_MAX is not a spanning write regardless of the 3715 * value being written as long as the range fits in the node. 3716 */ 3717 if ((last == ULONG_MAX) && (last == max)) 3718 return false; 3719 } else if (piv == last) { 3720 if (entry) 3721 return false; 3722 3723 /* Detect spanning store wr walk */ 3724 if (last == ULONG_MAX) 3725 return false; 3726 } 3727 3728 trace_ma_write(__func__, wr_mas->mas, piv, entry); 3729 3730 return true; 3731 } 3732 3733 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3734 { 3735 wr_mas->type = mte_node_type(wr_mas->mas->node); 3736 mas_wr_node_walk(wr_mas); 3737 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3738 } 3739 3740 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3741 { 3742 wr_mas->mas->max = wr_mas->r_max; 3743 wr_mas->mas->min = wr_mas->r_min; 3744 wr_mas->mas->node = wr_mas->content; 3745 wr_mas->mas->offset = 0; 3746 wr_mas->mas->depth++; 3747 } 3748 /* 3749 * mas_wr_walk() - Walk the tree for a write. 3750 * @wr_mas: The maple write state 3751 * 3752 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3753 * 3754 * Return: True if it's contained in a node, false on spanning write. 3755 */ 3756 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3757 { 3758 struct ma_state *mas = wr_mas->mas; 3759 3760 while (true) { 3761 mas_wr_walk_descend(wr_mas); 3762 if (unlikely(mas_is_span_wr(wr_mas))) 3763 return false; 3764 3765 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3766 mas->offset); 3767 if (ma_is_leaf(wr_mas->type)) 3768 return true; 3769 3770 mas_wr_walk_traverse(wr_mas); 3771 } 3772 3773 return true; 3774 } 3775 3776 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3777 { 3778 struct ma_state *mas = wr_mas->mas; 3779 3780 while (true) { 3781 mas_wr_walk_descend(wr_mas); 3782 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3783 mas->offset); 3784 if (ma_is_leaf(wr_mas->type)) 3785 return true; 3786 mas_wr_walk_traverse(wr_mas); 3787 3788 } 3789 return true; 3790 } 3791 /* 3792 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3793 * @l_wr_mas: The left maple write state 3794 * @r_wr_mas: The right maple write state 3795 */ 3796 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3797 struct ma_wr_state *r_wr_mas) 3798 { 3799 struct ma_state *r_mas = r_wr_mas->mas; 3800 struct ma_state *l_mas = l_wr_mas->mas; 3801 unsigned char l_slot; 3802 3803 l_slot = l_mas->offset; 3804 if (!l_wr_mas->content) 3805 l_mas->index = l_wr_mas->r_min; 3806 3807 if ((l_mas->index == l_wr_mas->r_min) && 3808 (l_slot && 3809 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3810 if (l_slot > 1) 3811 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3812 else 3813 l_mas->index = l_mas->min; 3814 3815 l_mas->offset = l_slot - 1; 3816 } 3817 3818 if (!r_wr_mas->content) { 3819 if (r_mas->last < r_wr_mas->r_max) 3820 r_mas->last = r_wr_mas->r_max; 3821 r_mas->offset++; 3822 } else if ((r_mas->last == r_wr_mas->r_max) && 3823 (r_mas->last < r_mas->max) && 3824 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3825 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3826 r_wr_mas->type, r_mas->offset + 1); 3827 r_mas->offset++; 3828 } 3829 } 3830 3831 static inline void *mas_state_walk(struct ma_state *mas) 3832 { 3833 void *entry; 3834 3835 entry = mas_start(mas); 3836 if (mas_is_none(mas)) 3837 return NULL; 3838 3839 if (mas_is_ptr(mas)) 3840 return entry; 3841 3842 return mtree_range_walk(mas); 3843 } 3844 3845 /* 3846 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3847 * to date. 3848 * 3849 * @mas: The maple state. 3850 * 3851 * Note: Leaves mas in undesirable state. 3852 * Return: The entry for @mas->index or %NULL on dead node. 3853 */ 3854 static inline void *mtree_lookup_walk(struct ma_state *mas) 3855 { 3856 unsigned long *pivots; 3857 unsigned char offset; 3858 struct maple_node *node; 3859 struct maple_enode *next; 3860 enum maple_type type; 3861 void __rcu **slots; 3862 unsigned char end; 3863 unsigned long max; 3864 3865 next = mas->node; 3866 max = ULONG_MAX; 3867 do { 3868 offset = 0; 3869 node = mte_to_node(next); 3870 type = mte_node_type(next); 3871 pivots = ma_pivots(node, type); 3872 end = ma_data_end(node, type, pivots, max); 3873 if (unlikely(ma_dead_node(node))) 3874 goto dead_node; 3875 3876 if (pivots[offset] >= mas->index) 3877 goto next; 3878 3879 do { 3880 offset++; 3881 } while ((offset < end) && (pivots[offset] < mas->index)); 3882 3883 if (likely(offset > end)) 3884 max = pivots[offset]; 3885 3886 next: 3887 slots = ma_slots(node, type); 3888 next = mt_slot(mas->tree, slots, offset); 3889 if (unlikely(ma_dead_node(node))) 3890 goto dead_node; 3891 } while (!ma_is_leaf(type)); 3892 3893 return (void *) next; 3894 3895 dead_node: 3896 mas_reset(mas); 3897 return NULL; 3898 } 3899 3900 /* 3901 * mas_new_root() - Create a new root node that only contains the entry passed 3902 * in. 3903 * @mas: The maple state 3904 * @entry: The entry to store. 3905 * 3906 * Only valid when the index == 0 and the last == ULONG_MAX 3907 * 3908 * Return 0 on error, 1 on success. 3909 */ 3910 static inline int mas_new_root(struct ma_state *mas, void *entry) 3911 { 3912 struct maple_enode *root = mas_root_locked(mas); 3913 enum maple_type type = maple_leaf_64; 3914 struct maple_node *node; 3915 void __rcu **slots; 3916 unsigned long *pivots; 3917 3918 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3919 mas->depth = 0; 3920 mas_set_height(mas); 3921 rcu_assign_pointer(mas->tree->ma_root, entry); 3922 mas->node = MAS_START; 3923 goto done; 3924 } 3925 3926 mas_node_count(mas, 1); 3927 if (mas_is_err(mas)) 3928 return 0; 3929 3930 node = mas_pop_node(mas); 3931 pivots = ma_pivots(node, type); 3932 slots = ma_slots(node, type); 3933 node->parent = ma_parent_ptr( 3934 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3935 mas->node = mt_mk_node(node, type); 3936 rcu_assign_pointer(slots[0], entry); 3937 pivots[0] = mas->last; 3938 mas->depth = 1; 3939 mas_set_height(mas); 3940 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3941 3942 done: 3943 if (xa_is_node(root)) 3944 mte_destroy_walk(root, mas->tree); 3945 3946 return 1; 3947 } 3948 /* 3949 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3950 * and new nodes where necessary, then place the sub-tree in the actual tree. 3951 * Note that mas is expected to point to the node which caused the store to 3952 * span. 3953 * @wr_mas: The maple write state 3954 * 3955 * Return: 0 on error, positive on success. 3956 */ 3957 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3958 { 3959 struct maple_subtree_state mast; 3960 struct maple_big_node b_node; 3961 struct ma_state *mas; 3962 unsigned char height; 3963 3964 /* Left and Right side of spanning store */ 3965 MA_STATE(l_mas, NULL, 0, 0); 3966 MA_STATE(r_mas, NULL, 0, 0); 3967 3968 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3969 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3970 3971 /* 3972 * A store operation that spans multiple nodes is called a spanning 3973 * store and is handled early in the store call stack by the function 3974 * mas_is_span_wr(). When a spanning store is identified, the maple 3975 * state is duplicated. The first maple state walks the left tree path 3976 * to ``index``, the duplicate walks the right tree path to ``last``. 3977 * The data in the two nodes are combined into a single node, two nodes, 3978 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3979 * written to the last entry of a node is considered a spanning store as 3980 * a rebalance is required for the operation to complete and an overflow 3981 * of data may happen. 3982 */ 3983 mas = wr_mas->mas; 3984 trace_ma_op(__func__, mas); 3985 3986 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3987 return mas_new_root(mas, wr_mas->entry); 3988 /* 3989 * Node rebalancing may occur due to this store, so there may be three new 3990 * entries per level plus a new root. 3991 */ 3992 height = mas_mt_height(mas); 3993 mas_node_count(mas, 1 + height * 3); 3994 if (mas_is_err(mas)) 3995 return 0; 3996 3997 /* 3998 * Set up right side. Need to get to the next offset after the spanning 3999 * store to ensure it's not NULL and to combine both the next node and 4000 * the node with the start together. 4001 */ 4002 r_mas = *mas; 4003 /* Avoid overflow, walk to next slot in the tree. */ 4004 if (r_mas.last + 1) 4005 r_mas.last++; 4006 4007 r_mas.index = r_mas.last; 4008 mas_wr_walk_index(&r_wr_mas); 4009 r_mas.last = r_mas.index = mas->last; 4010 4011 /* Set up left side. */ 4012 l_mas = *mas; 4013 mas_wr_walk_index(&l_wr_mas); 4014 4015 if (!wr_mas->entry) { 4016 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 4017 mas->offset = l_mas.offset; 4018 mas->index = l_mas.index; 4019 mas->last = l_mas.last = r_mas.last; 4020 } 4021 4022 /* expanding NULLs may make this cover the entire range */ 4023 if (!l_mas.index && r_mas.last == ULONG_MAX) { 4024 mas_set_range(mas, 0, ULONG_MAX); 4025 return mas_new_root(mas, wr_mas->entry); 4026 } 4027 4028 memset(&b_node, 0, sizeof(struct maple_big_node)); 4029 /* Copy l_mas and store the value in b_node. */ 4030 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end); 4031 /* Copy r_mas into b_node. */ 4032 if (r_mas.offset <= r_wr_mas.node_end) 4033 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end, 4034 &b_node, b_node.b_end + 1); 4035 else 4036 b_node.b_end++; 4037 4038 /* Stop spanning searches by searching for just index. */ 4039 l_mas.index = l_mas.last = mas->index; 4040 4041 mast.bn = &b_node; 4042 mast.orig_l = &l_mas; 4043 mast.orig_r = &r_mas; 4044 /* Combine l_mas and r_mas and split them up evenly again. */ 4045 return mas_spanning_rebalance(mas, &mast, height + 1); 4046 } 4047 4048 /* 4049 * mas_wr_node_store() - Attempt to store the value in a node 4050 * @wr_mas: The maple write state 4051 * 4052 * Attempts to reuse the node, but may allocate. 4053 * 4054 * Return: True if stored, false otherwise 4055 */ 4056 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas) 4057 { 4058 struct ma_state *mas = wr_mas->mas; 4059 void __rcu **dst_slots; 4060 unsigned long *dst_pivots; 4061 unsigned char dst_offset; 4062 unsigned char new_end = wr_mas->node_end; 4063 unsigned char offset; 4064 unsigned char node_slots = mt_slots[wr_mas->type]; 4065 struct maple_node reuse, *newnode; 4066 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type]; 4067 bool in_rcu = mt_in_rcu(mas->tree); 4068 4069 offset = mas->offset; 4070 if (mas->last == wr_mas->r_max) { 4071 /* runs right to the end of the node */ 4072 if (mas->last == mas->max) 4073 new_end = offset; 4074 /* don't copy this offset */ 4075 wr_mas->offset_end++; 4076 } else if (mas->last < wr_mas->r_max) { 4077 /* new range ends in this range */ 4078 if (unlikely(wr_mas->r_max == ULONG_MAX)) 4079 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type); 4080 4081 new_end++; 4082 } else { 4083 if (wr_mas->end_piv == mas->last) 4084 wr_mas->offset_end++; 4085 4086 new_end -= wr_mas->offset_end - offset - 1; 4087 } 4088 4089 /* new range starts within a range */ 4090 if (wr_mas->r_min < mas->index) 4091 new_end++; 4092 4093 /* Not enough room */ 4094 if (new_end >= node_slots) 4095 return false; 4096 4097 /* Not enough data. */ 4098 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 4099 !(mas->mas_flags & MA_STATE_BULK)) 4100 return false; 4101 4102 /* set up node. */ 4103 if (in_rcu) { 4104 mas_node_count(mas, 1); 4105 if (mas_is_err(mas)) 4106 return false; 4107 4108 newnode = mas_pop_node(mas); 4109 } else { 4110 memset(&reuse, 0, sizeof(struct maple_node)); 4111 newnode = &reuse; 4112 } 4113 4114 newnode->parent = mas_mn(mas)->parent; 4115 dst_pivots = ma_pivots(newnode, wr_mas->type); 4116 dst_slots = ma_slots(newnode, wr_mas->type); 4117 /* Copy from start to insert point */ 4118 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1)); 4119 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1)); 4120 dst_offset = offset; 4121 4122 /* Handle insert of new range starting after old range */ 4123 if (wr_mas->r_min < mas->index) { 4124 mas->offset++; 4125 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content); 4126 dst_pivots[dst_offset++] = mas->index - 1; 4127 } 4128 4129 /* Store the new entry and range end. */ 4130 if (dst_offset < max_piv) 4131 dst_pivots[dst_offset] = mas->last; 4132 mas->offset = dst_offset; 4133 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry); 4134 4135 /* 4136 * this range wrote to the end of the node or it overwrote the rest of 4137 * the data 4138 */ 4139 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) { 4140 new_end = dst_offset; 4141 goto done; 4142 } 4143 4144 dst_offset++; 4145 /* Copy to the end of node if necessary. */ 4146 copy_size = wr_mas->node_end - wr_mas->offset_end + 1; 4147 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end, 4148 sizeof(void *) * copy_size); 4149 if (dst_offset < max_piv) { 4150 if (copy_size > max_piv - dst_offset) 4151 copy_size = max_piv - dst_offset; 4152 4153 memcpy(dst_pivots + dst_offset, 4154 wr_mas->pivots + wr_mas->offset_end, 4155 sizeof(unsigned long) * copy_size); 4156 } 4157 4158 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1)) 4159 dst_pivots[new_end] = mas->max; 4160 4161 done: 4162 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end); 4163 if (in_rcu) { 4164 mas->node = mt_mk_node(newnode, wr_mas->type); 4165 mas_replace(mas, false); 4166 } else { 4167 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 4168 } 4169 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4170 mas_update_gap(mas); 4171 return true; 4172 } 4173 4174 /* 4175 * mas_wr_slot_store: Attempt to store a value in a slot. 4176 * @wr_mas: the maple write state 4177 * 4178 * Return: True if stored, false otherwise 4179 */ 4180 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 4181 { 4182 struct ma_state *mas = wr_mas->mas; 4183 unsigned long lmax; /* Logical max. */ 4184 unsigned char offset = mas->offset; 4185 4186 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) || 4187 (offset != wr_mas->node_end))) 4188 return false; 4189 4190 if (offset == wr_mas->node_end - 1) 4191 lmax = mas->max; 4192 else 4193 lmax = wr_mas->pivots[offset + 1]; 4194 4195 /* going to overwrite too many slots. */ 4196 if (lmax < mas->last) 4197 return false; 4198 4199 if (wr_mas->r_min == mas->index) { 4200 /* overwriting two or more ranges with one. */ 4201 if (lmax == mas->last) 4202 return false; 4203 4204 /* Overwriting all of offset and a portion of offset + 1. */ 4205 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry); 4206 wr_mas->pivots[offset] = mas->last; 4207 goto done; 4208 } 4209 4210 /* Doesn't end on the next range end. */ 4211 if (lmax != mas->last) 4212 return false; 4213 4214 /* Overwriting a portion of offset and all of offset + 1 */ 4215 if ((offset + 1 < mt_pivots[wr_mas->type]) && 4216 (wr_mas->entry || wr_mas->pivots[offset + 1])) 4217 wr_mas->pivots[offset + 1] = mas->last; 4218 4219 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry); 4220 wr_mas->pivots[offset] = mas->index - 1; 4221 mas->offset++; /* Keep mas accurate. */ 4222 4223 done: 4224 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4225 mas_update_gap(mas); 4226 return true; 4227 } 4228 4229 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4230 { 4231 while ((wr_mas->mas->last > wr_mas->end_piv) && 4232 (wr_mas->offset_end < wr_mas->node_end)) 4233 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end]; 4234 4235 if (wr_mas->mas->last > wr_mas->end_piv) 4236 wr_mas->end_piv = wr_mas->mas->max; 4237 } 4238 4239 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4240 { 4241 struct ma_state *mas = wr_mas->mas; 4242 4243 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end]) 4244 mas->last = wr_mas->end_piv; 4245 4246 /* Check next slot(s) if we are overwriting the end */ 4247 if ((mas->last == wr_mas->end_piv) && 4248 (wr_mas->node_end != wr_mas->offset_end) && 4249 !wr_mas->slots[wr_mas->offset_end + 1]) { 4250 wr_mas->offset_end++; 4251 if (wr_mas->offset_end == wr_mas->node_end) 4252 mas->last = mas->max; 4253 else 4254 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4255 wr_mas->end_piv = mas->last; 4256 } 4257 4258 if (!wr_mas->content) { 4259 /* If this one is null, the next and prev are not */ 4260 mas->index = wr_mas->r_min; 4261 } else { 4262 /* Check prev slot if we are overwriting the start */ 4263 if (mas->index == wr_mas->r_min && mas->offset && 4264 !wr_mas->slots[mas->offset - 1]) { 4265 mas->offset--; 4266 wr_mas->r_min = mas->index = 4267 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4268 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4269 } 4270 } 4271 } 4272 4273 static inline bool mas_wr_append(struct ma_wr_state *wr_mas) 4274 { 4275 unsigned char end = wr_mas->node_end; 4276 unsigned char new_end = end + 1; 4277 struct ma_state *mas = wr_mas->mas; 4278 unsigned char node_pivots = mt_pivots[wr_mas->type]; 4279 4280 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) { 4281 if (new_end < node_pivots) 4282 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4283 4284 if (new_end < node_pivots) 4285 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4286 4287 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry); 4288 mas->offset = new_end; 4289 wr_mas->pivots[end] = mas->index - 1; 4290 4291 return true; 4292 } 4293 4294 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) { 4295 if (new_end < node_pivots) 4296 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4297 4298 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content); 4299 if (new_end < node_pivots) 4300 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4301 4302 wr_mas->pivots[end] = mas->last; 4303 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry); 4304 return true; 4305 } 4306 4307 return false; 4308 } 4309 4310 /* 4311 * mas_wr_bnode() - Slow path for a modification. 4312 * @wr_mas: The write maple state 4313 * 4314 * This is where split, rebalance end up. 4315 */ 4316 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4317 { 4318 struct maple_big_node b_node; 4319 4320 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4321 memset(&b_node, 0, sizeof(struct maple_big_node)); 4322 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4323 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end); 4324 } 4325 4326 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4327 { 4328 unsigned char node_slots; 4329 unsigned char node_size; 4330 struct ma_state *mas = wr_mas->mas; 4331 4332 /* Direct replacement */ 4333 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4334 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4335 if (!!wr_mas->entry ^ !!wr_mas->content) 4336 mas_update_gap(mas); 4337 return; 4338 } 4339 4340 /* Attempt to append */ 4341 node_slots = mt_slots[wr_mas->type]; 4342 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2; 4343 if (mas->max == ULONG_MAX) 4344 node_size++; 4345 4346 /* slot and node store will not fit, go to the slow path */ 4347 if (unlikely(node_size >= node_slots)) 4348 goto slow_path; 4349 4350 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) && 4351 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) { 4352 if (!wr_mas->content || !wr_mas->entry) 4353 mas_update_gap(mas); 4354 return; 4355 } 4356 4357 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas)) 4358 return; 4359 else if (mas_wr_node_store(wr_mas)) 4360 return; 4361 4362 if (mas_is_err(mas)) 4363 return; 4364 4365 slow_path: 4366 mas_wr_bnode(wr_mas); 4367 } 4368 4369 /* 4370 * mas_wr_store_entry() - Internal call to store a value 4371 * @mas: The maple state 4372 * @entry: The entry to store. 4373 * 4374 * Return: The contents that was stored at the index. 4375 */ 4376 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4377 { 4378 struct ma_state *mas = wr_mas->mas; 4379 4380 wr_mas->content = mas_start(mas); 4381 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4382 mas_store_root(mas, wr_mas->entry); 4383 return wr_mas->content; 4384 } 4385 4386 if (unlikely(!mas_wr_walk(wr_mas))) { 4387 mas_wr_spanning_store(wr_mas); 4388 return wr_mas->content; 4389 } 4390 4391 /* At this point, we are at the leaf node that needs to be altered. */ 4392 wr_mas->end_piv = wr_mas->r_max; 4393 mas_wr_end_piv(wr_mas); 4394 4395 if (!wr_mas->entry) 4396 mas_wr_extend_null(wr_mas); 4397 4398 /* New root for a single pointer */ 4399 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4400 mas_new_root(mas, wr_mas->entry); 4401 return wr_mas->content; 4402 } 4403 4404 mas_wr_modify(wr_mas); 4405 return wr_mas->content; 4406 } 4407 4408 /** 4409 * mas_insert() - Internal call to insert a value 4410 * @mas: The maple state 4411 * @entry: The entry to store 4412 * 4413 * Return: %NULL or the contents that already exists at the requested index 4414 * otherwise. The maple state needs to be checked for error conditions. 4415 */ 4416 static inline void *mas_insert(struct ma_state *mas, void *entry) 4417 { 4418 MA_WR_STATE(wr_mas, mas, entry); 4419 4420 /* 4421 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4422 * tree. If the insert fits exactly into an existing gap with a value 4423 * of NULL, then the slot only needs to be written with the new value. 4424 * If the range being inserted is adjacent to another range, then only a 4425 * single pivot needs to be inserted (as well as writing the entry). If 4426 * the new range is within a gap but does not touch any other ranges, 4427 * then two pivots need to be inserted: the start - 1, and the end. As 4428 * usual, the entry must be written. Most operations require a new node 4429 * to be allocated and replace an existing node to ensure RCU safety, 4430 * when in RCU mode. The exception to requiring a newly allocated node 4431 * is when inserting at the end of a node (appending). When done 4432 * carefully, appending can reuse the node in place. 4433 */ 4434 wr_mas.content = mas_start(mas); 4435 if (wr_mas.content) 4436 goto exists; 4437 4438 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4439 mas_store_root(mas, entry); 4440 return NULL; 4441 } 4442 4443 /* spanning writes always overwrite something */ 4444 if (!mas_wr_walk(&wr_mas)) 4445 goto exists; 4446 4447 /* At this point, we are at the leaf node that needs to be altered. */ 4448 wr_mas.offset_end = mas->offset; 4449 wr_mas.end_piv = wr_mas.r_max; 4450 4451 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4452 goto exists; 4453 4454 if (!entry) 4455 return NULL; 4456 4457 mas_wr_modify(&wr_mas); 4458 return wr_mas.content; 4459 4460 exists: 4461 mas_set_err(mas, -EEXIST); 4462 return wr_mas.content; 4463 4464 } 4465 4466 /* 4467 * mas_prev_node() - Find the prev non-null entry at the same level in the 4468 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE. 4469 * @mas: The maple state 4470 * @min: The lower limit to search 4471 * 4472 * The prev node value will be mas->node[mas->offset] or MAS_NONE. 4473 * Return: 1 if the node is dead, 0 otherwise. 4474 */ 4475 static inline int mas_prev_node(struct ma_state *mas, unsigned long min) 4476 { 4477 enum maple_type mt; 4478 int offset, level; 4479 void __rcu **slots; 4480 struct maple_node *node; 4481 struct maple_enode *enode; 4482 unsigned long *pivots; 4483 4484 if (mas_is_none(mas)) 4485 return 0; 4486 4487 level = 0; 4488 do { 4489 node = mas_mn(mas); 4490 if (ma_is_root(node)) 4491 goto no_entry; 4492 4493 /* Walk up. */ 4494 if (unlikely(mas_ascend(mas))) 4495 return 1; 4496 offset = mas->offset; 4497 level++; 4498 } while (!offset); 4499 4500 offset--; 4501 mt = mte_node_type(mas->node); 4502 node = mas_mn(mas); 4503 slots = ma_slots(node, mt); 4504 pivots = ma_pivots(node, mt); 4505 mas->max = pivots[offset]; 4506 if (offset) 4507 mas->min = pivots[offset - 1] + 1; 4508 if (unlikely(ma_dead_node(node))) 4509 return 1; 4510 4511 if (mas->max < min) 4512 goto no_entry_min; 4513 4514 while (level > 1) { 4515 level--; 4516 enode = mas_slot(mas, slots, offset); 4517 if (unlikely(ma_dead_node(node))) 4518 return 1; 4519 4520 mas->node = enode; 4521 mt = mte_node_type(mas->node); 4522 node = mas_mn(mas); 4523 slots = ma_slots(node, mt); 4524 pivots = ma_pivots(node, mt); 4525 offset = ma_data_end(node, mt, pivots, mas->max); 4526 if (offset) 4527 mas->min = pivots[offset - 1] + 1; 4528 4529 if (offset < mt_pivots[mt]) 4530 mas->max = pivots[offset]; 4531 4532 if (mas->max < min) 4533 goto no_entry; 4534 } 4535 4536 mas->node = mas_slot(mas, slots, offset); 4537 if (unlikely(ma_dead_node(node))) 4538 return 1; 4539 4540 mas->offset = mas_data_end(mas); 4541 if (unlikely(mte_dead_node(mas->node))) 4542 return 1; 4543 4544 return 0; 4545 4546 no_entry_min: 4547 mas->offset = offset; 4548 if (offset) 4549 mas->min = pivots[offset - 1] + 1; 4550 no_entry: 4551 if (unlikely(ma_dead_node(node))) 4552 return 1; 4553 4554 mas->node = MAS_NONE; 4555 return 0; 4556 } 4557 4558 /* 4559 * mas_next_node() - Get the next node at the same level in the tree. 4560 * @mas: The maple state 4561 * @max: The maximum pivot value to check. 4562 * 4563 * The next value will be mas->node[mas->offset] or MAS_NONE. 4564 * Return: 1 on dead node, 0 otherwise. 4565 */ 4566 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node, 4567 unsigned long max) 4568 { 4569 unsigned long min, pivot; 4570 unsigned long *pivots; 4571 struct maple_enode *enode; 4572 int level = 0; 4573 unsigned char offset; 4574 enum maple_type mt; 4575 void __rcu **slots; 4576 4577 if (mas->max >= max) 4578 goto no_entry; 4579 4580 level = 0; 4581 do { 4582 if (ma_is_root(node)) 4583 goto no_entry; 4584 4585 min = mas->max + 1; 4586 if (min > max) 4587 goto no_entry; 4588 4589 if (unlikely(mas_ascend(mas))) 4590 return 1; 4591 4592 offset = mas->offset; 4593 level++; 4594 node = mas_mn(mas); 4595 mt = mte_node_type(mas->node); 4596 pivots = ma_pivots(node, mt); 4597 } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max))); 4598 4599 slots = ma_slots(node, mt); 4600 pivot = mas_safe_pivot(mas, pivots, ++offset, mt); 4601 while (unlikely(level > 1)) { 4602 /* Descend, if necessary */ 4603 enode = mas_slot(mas, slots, offset); 4604 if (unlikely(ma_dead_node(node))) 4605 return 1; 4606 4607 mas->node = enode; 4608 level--; 4609 node = mas_mn(mas); 4610 mt = mte_node_type(mas->node); 4611 slots = ma_slots(node, mt); 4612 pivots = ma_pivots(node, mt); 4613 offset = 0; 4614 pivot = pivots[0]; 4615 } 4616 4617 enode = mas_slot(mas, slots, offset); 4618 if (unlikely(ma_dead_node(node))) 4619 return 1; 4620 4621 mas->node = enode; 4622 mas->min = min; 4623 mas->max = pivot; 4624 return 0; 4625 4626 no_entry: 4627 if (unlikely(ma_dead_node(node))) 4628 return 1; 4629 4630 mas->node = MAS_NONE; 4631 return 0; 4632 } 4633 4634 /* 4635 * mas_next_nentry() - Get the next node entry 4636 * @mas: The maple state 4637 * @max: The maximum value to check 4638 * @*range_start: Pointer to store the start of the range. 4639 * 4640 * Sets @mas->offset to the offset of the next node entry, @mas->last to the 4641 * pivot of the entry. 4642 * 4643 * Return: The next entry, %NULL otherwise 4644 */ 4645 static inline void *mas_next_nentry(struct ma_state *mas, 4646 struct maple_node *node, unsigned long max, enum maple_type type) 4647 { 4648 unsigned char count; 4649 unsigned long pivot; 4650 unsigned long *pivots; 4651 void __rcu **slots; 4652 void *entry; 4653 4654 if (mas->last == mas->max) { 4655 mas->index = mas->max; 4656 return NULL; 4657 } 4658 4659 pivots = ma_pivots(node, type); 4660 slots = ma_slots(node, type); 4661 mas->index = mas_safe_min(mas, pivots, mas->offset); 4662 if (ma_dead_node(node)) 4663 return NULL; 4664 4665 if (mas->index > max) 4666 return NULL; 4667 4668 count = ma_data_end(node, type, pivots, mas->max); 4669 if (mas->offset > count) 4670 return NULL; 4671 4672 while (mas->offset < count) { 4673 pivot = pivots[mas->offset]; 4674 entry = mas_slot(mas, slots, mas->offset); 4675 if (ma_dead_node(node)) 4676 return NULL; 4677 4678 if (entry) 4679 goto found; 4680 4681 if (pivot >= max) 4682 return NULL; 4683 4684 mas->index = pivot + 1; 4685 mas->offset++; 4686 } 4687 4688 if (mas->index > mas->max) { 4689 mas->index = mas->last; 4690 return NULL; 4691 } 4692 4693 pivot = mas_safe_pivot(mas, pivots, mas->offset, type); 4694 entry = mas_slot(mas, slots, mas->offset); 4695 if (ma_dead_node(node)) 4696 return NULL; 4697 4698 if (!pivot) 4699 return NULL; 4700 4701 if (!entry) 4702 return NULL; 4703 4704 found: 4705 mas->last = pivot; 4706 return entry; 4707 } 4708 4709 static inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4710 { 4711 4712 retry: 4713 mas_set(mas, index); 4714 mas_state_walk(mas); 4715 if (mas_is_start(mas)) 4716 goto retry; 4717 4718 return; 4719 4720 } 4721 4722 /* 4723 * mas_next_entry() - Internal function to get the next entry. 4724 * @mas: The maple state 4725 * @limit: The maximum range start. 4726 * 4727 * Set the @mas->node to the next entry and the range_start to 4728 * the beginning value for the entry. Does not check beyond @limit. 4729 * Sets @mas->index and @mas->last to the limit if it is hit. 4730 * Restarts on dead nodes. 4731 * 4732 * Return: the next entry or %NULL. 4733 */ 4734 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4735 { 4736 void *entry = NULL; 4737 struct maple_enode *prev_node; 4738 struct maple_node *node; 4739 unsigned char offset; 4740 unsigned long last; 4741 enum maple_type mt; 4742 4743 last = mas->last; 4744 retry: 4745 offset = mas->offset; 4746 prev_node = mas->node; 4747 node = mas_mn(mas); 4748 mt = mte_node_type(mas->node); 4749 mas->offset++; 4750 if (unlikely(mas->offset >= mt_slots[mt])) { 4751 mas->offset = mt_slots[mt] - 1; 4752 goto next_node; 4753 } 4754 4755 while (!mas_is_none(mas)) { 4756 entry = mas_next_nentry(mas, node, limit, mt); 4757 if (unlikely(ma_dead_node(node))) { 4758 mas_rewalk(mas, last); 4759 goto retry; 4760 } 4761 4762 if (likely(entry)) 4763 return entry; 4764 4765 if (unlikely((mas->index > limit))) 4766 break; 4767 4768 next_node: 4769 prev_node = mas->node; 4770 offset = mas->offset; 4771 if (unlikely(mas_next_node(mas, node, limit))) { 4772 mas_rewalk(mas, last); 4773 goto retry; 4774 } 4775 mas->offset = 0; 4776 node = mas_mn(mas); 4777 mt = mte_node_type(mas->node); 4778 } 4779 4780 mas->index = mas->last = limit; 4781 mas->offset = offset; 4782 mas->node = prev_node; 4783 return NULL; 4784 } 4785 4786 /* 4787 * mas_prev_nentry() - Get the previous node entry. 4788 * @mas: The maple state. 4789 * @limit: The lower limit to check for a value. 4790 * 4791 * Return: the entry, %NULL otherwise. 4792 */ 4793 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit, 4794 unsigned long index) 4795 { 4796 unsigned long pivot, min; 4797 unsigned char offset; 4798 struct maple_node *mn; 4799 enum maple_type mt; 4800 unsigned long *pivots; 4801 void __rcu **slots; 4802 void *entry; 4803 4804 retry: 4805 if (!mas->offset) 4806 return NULL; 4807 4808 mn = mas_mn(mas); 4809 mt = mte_node_type(mas->node); 4810 offset = mas->offset - 1; 4811 if (offset >= mt_slots[mt]) 4812 offset = mt_slots[mt] - 1; 4813 4814 slots = ma_slots(mn, mt); 4815 pivots = ma_pivots(mn, mt); 4816 if (offset == mt_pivots[mt]) 4817 pivot = mas->max; 4818 else 4819 pivot = pivots[offset]; 4820 4821 if (unlikely(ma_dead_node(mn))) { 4822 mas_rewalk(mas, index); 4823 goto retry; 4824 } 4825 4826 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) || 4827 !pivot)) 4828 pivot = pivots[--offset]; 4829 4830 min = mas_safe_min(mas, pivots, offset); 4831 entry = mas_slot(mas, slots, offset); 4832 if (unlikely(ma_dead_node(mn))) { 4833 mas_rewalk(mas, index); 4834 goto retry; 4835 } 4836 4837 if (likely(entry)) { 4838 mas->offset = offset; 4839 mas->last = pivot; 4840 mas->index = min; 4841 } 4842 return entry; 4843 } 4844 4845 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min) 4846 { 4847 void *entry; 4848 4849 retry: 4850 while (likely(!mas_is_none(mas))) { 4851 entry = mas_prev_nentry(mas, min, mas->index); 4852 if (unlikely(mas->last < min)) 4853 goto not_found; 4854 4855 if (likely(entry)) 4856 return entry; 4857 4858 if (unlikely(mas_prev_node(mas, min))) { 4859 mas_rewalk(mas, mas->index); 4860 goto retry; 4861 } 4862 4863 mas->offset++; 4864 } 4865 4866 mas->offset--; 4867 not_found: 4868 mas->index = mas->last = min; 4869 return NULL; 4870 } 4871 4872 /* 4873 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4874 * highest gap address of a given size in a given node and descend. 4875 * @mas: The maple state 4876 * @size: The needed size. 4877 * 4878 * Return: True if found in a leaf, false otherwise. 4879 * 4880 */ 4881 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size) 4882 { 4883 enum maple_type type = mte_node_type(mas->node); 4884 struct maple_node *node = mas_mn(mas); 4885 unsigned long *pivots, *gaps; 4886 void __rcu **slots; 4887 unsigned long gap = 0; 4888 unsigned long max, min, index; 4889 unsigned char offset; 4890 4891 if (unlikely(mas_is_err(mas))) 4892 return true; 4893 4894 if (ma_is_dense(type)) { 4895 /* dense nodes. */ 4896 mas->offset = (unsigned char)(mas->index - mas->min); 4897 return true; 4898 } 4899 4900 pivots = ma_pivots(node, type); 4901 slots = ma_slots(node, type); 4902 gaps = ma_gaps(node, type); 4903 offset = mas->offset; 4904 min = mas_safe_min(mas, pivots, offset); 4905 /* Skip out of bounds. */ 4906 while (mas->last < min) 4907 min = mas_safe_min(mas, pivots, --offset); 4908 4909 max = mas_safe_pivot(mas, pivots, offset, type); 4910 index = mas->index; 4911 while (index <= max) { 4912 gap = 0; 4913 if (gaps) 4914 gap = gaps[offset]; 4915 else if (!mas_slot(mas, slots, offset)) 4916 gap = max - min + 1; 4917 4918 if (gap) { 4919 if ((size <= gap) && (size <= mas->last - min + 1)) 4920 break; 4921 4922 if (!gaps) { 4923 /* Skip the next slot, it cannot be a gap. */ 4924 if (offset < 2) 4925 goto ascend; 4926 4927 offset -= 2; 4928 max = pivots[offset]; 4929 min = mas_safe_min(mas, pivots, offset); 4930 continue; 4931 } 4932 } 4933 4934 if (!offset) 4935 goto ascend; 4936 4937 offset--; 4938 max = min - 1; 4939 min = mas_safe_min(mas, pivots, offset); 4940 } 4941 4942 if (unlikely(index > max)) { 4943 mas_set_err(mas, -EBUSY); 4944 return false; 4945 } 4946 4947 if (unlikely(ma_is_leaf(type))) { 4948 mas->offset = offset; 4949 mas->min = min; 4950 mas->max = min + gap - 1; 4951 return true; 4952 } 4953 4954 /* descend, only happens under lock. */ 4955 mas->node = mas_slot(mas, slots, offset); 4956 mas->min = min; 4957 mas->max = max; 4958 mas->offset = mas_data_end(mas); 4959 return false; 4960 4961 ascend: 4962 if (mte_is_root(mas->node)) 4963 mas_set_err(mas, -EBUSY); 4964 4965 return false; 4966 } 4967 4968 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4969 { 4970 enum maple_type type = mte_node_type(mas->node); 4971 unsigned long pivot, min, gap = 0; 4972 unsigned char offset; 4973 unsigned long *gaps; 4974 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 4975 void __rcu **slots = ma_slots(mas_mn(mas), type); 4976 bool found = false; 4977 4978 if (ma_is_dense(type)) { 4979 mas->offset = (unsigned char)(mas->index - mas->min); 4980 return true; 4981 } 4982 4983 gaps = ma_gaps(mte_to_node(mas->node), type); 4984 offset = mas->offset; 4985 min = mas_safe_min(mas, pivots, offset); 4986 for (; offset < mt_slots[type]; offset++) { 4987 pivot = mas_safe_pivot(mas, pivots, offset, type); 4988 if (offset && !pivot) 4989 break; 4990 4991 /* Not within lower bounds */ 4992 if (mas->index > pivot) 4993 goto next_slot; 4994 4995 if (gaps) 4996 gap = gaps[offset]; 4997 else if (!mas_slot(mas, slots, offset)) 4998 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 4999 else 5000 goto next_slot; 5001 5002 if (gap >= size) { 5003 if (ma_is_leaf(type)) { 5004 found = true; 5005 goto done; 5006 } 5007 if (mas->index <= pivot) { 5008 mas->node = mas_slot(mas, slots, offset); 5009 mas->min = min; 5010 mas->max = pivot; 5011 offset = 0; 5012 break; 5013 } 5014 } 5015 next_slot: 5016 min = pivot + 1; 5017 if (mas->last <= pivot) { 5018 mas_set_err(mas, -EBUSY); 5019 return true; 5020 } 5021 } 5022 5023 if (mte_is_root(mas->node)) 5024 found = true; 5025 done: 5026 mas->offset = offset; 5027 return found; 5028 } 5029 5030 /** 5031 * mas_walk() - Search for @mas->index in the tree. 5032 * @mas: The maple state. 5033 * 5034 * mas->index and mas->last will be set to the range if there is a value. If 5035 * mas->node is MAS_NONE, reset to MAS_START. 5036 * 5037 * Return: the entry at the location or %NULL. 5038 */ 5039 void *mas_walk(struct ma_state *mas) 5040 { 5041 void *entry; 5042 5043 retry: 5044 entry = mas_state_walk(mas); 5045 if (mas_is_start(mas)) 5046 goto retry; 5047 5048 if (mas_is_ptr(mas)) { 5049 if (!mas->index) { 5050 mas->last = 0; 5051 } else { 5052 mas->index = 1; 5053 mas->last = ULONG_MAX; 5054 } 5055 return entry; 5056 } 5057 5058 if (mas_is_none(mas)) { 5059 mas->index = 0; 5060 mas->last = ULONG_MAX; 5061 } 5062 5063 return entry; 5064 } 5065 EXPORT_SYMBOL_GPL(mas_walk); 5066 5067 static inline bool mas_rewind_node(struct ma_state *mas) 5068 { 5069 unsigned char slot; 5070 5071 do { 5072 if (mte_is_root(mas->node)) { 5073 slot = mas->offset; 5074 if (!slot) 5075 return false; 5076 } else { 5077 mas_ascend(mas); 5078 slot = mas->offset; 5079 } 5080 } while (!slot); 5081 5082 mas->offset = --slot; 5083 return true; 5084 } 5085 5086 /* 5087 * mas_skip_node() - Internal function. Skip over a node. 5088 * @mas: The maple state. 5089 * 5090 * Return: true if there is another node, false otherwise. 5091 */ 5092 static inline bool mas_skip_node(struct ma_state *mas) 5093 { 5094 unsigned char slot, slot_count; 5095 unsigned long *pivots; 5096 enum maple_type mt; 5097 5098 mt = mte_node_type(mas->node); 5099 slot_count = mt_slots[mt] - 1; 5100 do { 5101 if (mte_is_root(mas->node)) { 5102 slot = mas->offset; 5103 if (slot > slot_count) { 5104 mas_set_err(mas, -EBUSY); 5105 return false; 5106 } 5107 } else { 5108 mas_ascend(mas); 5109 slot = mas->offset; 5110 mt = mte_node_type(mas->node); 5111 slot_count = mt_slots[mt] - 1; 5112 } 5113 } while (slot > slot_count); 5114 5115 mas->offset = ++slot; 5116 pivots = ma_pivots(mas_mn(mas), mt); 5117 if (slot > 0) 5118 mas->min = pivots[slot - 1] + 1; 5119 5120 if (slot <= slot_count) 5121 mas->max = pivots[slot]; 5122 5123 return true; 5124 } 5125 5126 /* 5127 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5128 * @size 5129 * @mas: The maple state 5130 * @size: The size of the gap required 5131 * 5132 * Search between @mas->index and @mas->last for a gap of @size. 5133 */ 5134 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5135 { 5136 struct maple_enode *last = NULL; 5137 5138 /* 5139 * There are 4 options: 5140 * go to child (descend) 5141 * go back to parent (ascend) 5142 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5143 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5144 */ 5145 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5146 if (last == mas->node) 5147 mas_skip_node(mas); 5148 else 5149 last = mas->node; 5150 } 5151 } 5152 5153 /* 5154 * mas_fill_gap() - Fill a located gap with @entry. 5155 * @mas: The maple state 5156 * @entry: The value to store 5157 * @slot: The offset into the node to store the @entry 5158 * @size: The size of the entry 5159 * @index: The start location 5160 */ 5161 static inline void mas_fill_gap(struct ma_state *mas, void *entry, 5162 unsigned char slot, unsigned long size, unsigned long *index) 5163 { 5164 MA_WR_STATE(wr_mas, mas, entry); 5165 unsigned char pslot = mte_parent_slot(mas->node); 5166 struct maple_enode *mn = mas->node; 5167 unsigned long *pivots; 5168 enum maple_type ptype; 5169 /* 5170 * mas->index is the start address for the search 5171 * which may no longer be needed. 5172 * mas->last is the end address for the search 5173 */ 5174 5175 *index = mas->index; 5176 mas->last = mas->index + size - 1; 5177 5178 /* 5179 * It is possible that using mas->max and mas->min to correctly 5180 * calculate the index and last will cause an issue in the gap 5181 * calculation, so fix the ma_state here 5182 */ 5183 mas_ascend(mas); 5184 ptype = mte_node_type(mas->node); 5185 pivots = ma_pivots(mas_mn(mas), ptype); 5186 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype); 5187 mas->min = mas_safe_min(mas, pivots, pslot); 5188 mas->node = mn; 5189 mas->offset = slot; 5190 mas_wr_store_entry(&wr_mas); 5191 } 5192 5193 /* 5194 * mas_sparse_area() - Internal function. Return upper or lower limit when 5195 * searching for a gap in an empty tree. 5196 * @mas: The maple state 5197 * @min: the minimum range 5198 * @max: The maximum range 5199 * @size: The size of the gap 5200 * @fwd: Searching forward or back 5201 */ 5202 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min, 5203 unsigned long max, unsigned long size, bool fwd) 5204 { 5205 unsigned long start = 0; 5206 5207 if (!unlikely(mas_is_none(mas))) 5208 start++; 5209 /* mas_is_ptr */ 5210 5211 if (start < min) 5212 start = min; 5213 5214 if (fwd) { 5215 mas->index = start; 5216 mas->last = start + size - 1; 5217 return; 5218 } 5219 5220 mas->index = max; 5221 } 5222 5223 /* 5224 * mas_empty_area() - Get the lowest address within the range that is 5225 * sufficient for the size requested. 5226 * @mas: The maple state 5227 * @min: The lowest value of the range 5228 * @max: The highest value of the range 5229 * @size: The size needed 5230 */ 5231 int mas_empty_area(struct ma_state *mas, unsigned long min, 5232 unsigned long max, unsigned long size) 5233 { 5234 unsigned char offset; 5235 unsigned long *pivots; 5236 enum maple_type mt; 5237 5238 if (mas_is_start(mas)) 5239 mas_start(mas); 5240 else if (mas->offset >= 2) 5241 mas->offset -= 2; 5242 else if (!mas_skip_node(mas)) 5243 return -EBUSY; 5244 5245 /* Empty set */ 5246 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5247 mas_sparse_area(mas, min, max, size, true); 5248 return 0; 5249 } 5250 5251 /* The start of the window can only be within these values */ 5252 mas->index = min; 5253 mas->last = max; 5254 mas_awalk(mas, size); 5255 5256 if (unlikely(mas_is_err(mas))) 5257 return xa_err(mas->node); 5258 5259 offset = mas->offset; 5260 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5261 return -EBUSY; 5262 5263 mt = mte_node_type(mas->node); 5264 pivots = ma_pivots(mas_mn(mas), mt); 5265 if (offset) 5266 mas->min = pivots[offset - 1] + 1; 5267 5268 if (offset < mt_pivots[mt]) 5269 mas->max = pivots[offset]; 5270 5271 if (mas->index < mas->min) 5272 mas->index = mas->min; 5273 5274 mas->last = mas->index + size - 1; 5275 return 0; 5276 } 5277 EXPORT_SYMBOL_GPL(mas_empty_area); 5278 5279 /* 5280 * mas_empty_area_rev() - Get the highest address within the range that is 5281 * sufficient for the size requested. 5282 * @mas: The maple state 5283 * @min: The lowest value of the range 5284 * @max: The highest value of the range 5285 * @size: The size needed 5286 */ 5287 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5288 unsigned long max, unsigned long size) 5289 { 5290 struct maple_enode *last = mas->node; 5291 5292 if (mas_is_start(mas)) { 5293 mas_start(mas); 5294 mas->offset = mas_data_end(mas); 5295 } else if (mas->offset >= 2) { 5296 mas->offset -= 2; 5297 } else if (!mas_rewind_node(mas)) { 5298 return -EBUSY; 5299 } 5300 5301 /* Empty set. */ 5302 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5303 mas_sparse_area(mas, min, max, size, false); 5304 return 0; 5305 } 5306 5307 /* The start of the window can only be within these values. */ 5308 mas->index = min; 5309 mas->last = max; 5310 5311 while (!mas_rev_awalk(mas, size)) { 5312 if (last == mas->node) { 5313 if (!mas_rewind_node(mas)) 5314 return -EBUSY; 5315 } else { 5316 last = mas->node; 5317 } 5318 } 5319 5320 if (mas_is_err(mas)) 5321 return xa_err(mas->node); 5322 5323 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5324 return -EBUSY; 5325 5326 /* 5327 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If 5328 * the maximum is outside the window we are searching, then use the last 5329 * location in the search. 5330 * mas->max and mas->min is the range of the gap. 5331 * mas->index and mas->last are currently set to the search range. 5332 */ 5333 5334 /* Trim the upper limit to the max. */ 5335 if (mas->max <= mas->last) 5336 mas->last = mas->max; 5337 5338 mas->index = mas->last - size + 1; 5339 return 0; 5340 } 5341 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5342 5343 static inline int mas_alloc(struct ma_state *mas, void *entry, 5344 unsigned long size, unsigned long *index) 5345 { 5346 unsigned long min; 5347 5348 mas_start(mas); 5349 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5350 mas_root_expand(mas, entry); 5351 if (mas_is_err(mas)) 5352 return xa_err(mas->node); 5353 5354 if (!mas->index) 5355 return mte_pivot(mas->node, 0); 5356 return mte_pivot(mas->node, 1); 5357 } 5358 5359 /* Must be walking a tree. */ 5360 mas_awalk(mas, size); 5361 if (mas_is_err(mas)) 5362 return xa_err(mas->node); 5363 5364 if (mas->offset == MAPLE_NODE_SLOTS) 5365 goto no_gap; 5366 5367 /* 5368 * At this point, mas->node points to the right node and we have an 5369 * offset that has a sufficient gap. 5370 */ 5371 min = mas->min; 5372 if (mas->offset) 5373 min = mte_pivot(mas->node, mas->offset - 1) + 1; 5374 5375 if (mas->index < min) 5376 mas->index = min; 5377 5378 mas_fill_gap(mas, entry, mas->offset, size, index); 5379 return 0; 5380 5381 no_gap: 5382 return -EBUSY; 5383 } 5384 5385 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min, 5386 unsigned long max, void *entry, 5387 unsigned long size, unsigned long *index) 5388 { 5389 int ret = 0; 5390 5391 ret = mas_empty_area_rev(mas, min, max, size); 5392 if (ret) 5393 return ret; 5394 5395 if (mas_is_err(mas)) 5396 return xa_err(mas->node); 5397 5398 if (mas->offset == MAPLE_NODE_SLOTS) 5399 goto no_gap; 5400 5401 mas_fill_gap(mas, entry, mas->offset, size, index); 5402 return 0; 5403 5404 no_gap: 5405 return -EBUSY; 5406 } 5407 5408 /* 5409 * mas_dead_leaves() - Mark all leaves of a node as dead. 5410 * @mas: The maple state 5411 * @slots: Pointer to the slot array 5412 * 5413 * Must hold the write lock. 5414 * 5415 * Return: The number of leaves marked as dead. 5416 */ 5417 static inline 5418 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots) 5419 { 5420 struct maple_node *node; 5421 enum maple_type type; 5422 void *entry; 5423 int offset; 5424 5425 for (offset = 0; offset < mt_slot_count(mas->node); offset++) { 5426 entry = mas_slot_locked(mas, slots, offset); 5427 type = mte_node_type(entry); 5428 node = mte_to_node(entry); 5429 /* Use both node and type to catch LE & BE metadata */ 5430 if (!node || !type) 5431 break; 5432 5433 mte_set_node_dead(entry); 5434 smp_wmb(); /* Needed for RCU */ 5435 node->type = type; 5436 rcu_assign_pointer(slots[offset], node); 5437 } 5438 5439 return offset; 5440 } 5441 5442 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset) 5443 { 5444 struct maple_node *node, *next; 5445 void __rcu **slots = NULL; 5446 5447 next = mas_mn(mas); 5448 do { 5449 mas->node = ma_enode_ptr(next); 5450 node = mas_mn(mas); 5451 slots = ma_slots(node, node->type); 5452 next = mas_slot_locked(mas, slots, offset); 5453 offset = 0; 5454 } while (!ma_is_leaf(next->type)); 5455 5456 return slots; 5457 } 5458 5459 static void mt_free_walk(struct rcu_head *head) 5460 { 5461 void __rcu **slots; 5462 struct maple_node *node, *start; 5463 struct maple_tree mt; 5464 unsigned char offset; 5465 enum maple_type type; 5466 MA_STATE(mas, &mt, 0, 0); 5467 5468 node = container_of(head, struct maple_node, rcu); 5469 5470 if (ma_is_leaf(node->type)) 5471 goto free_leaf; 5472 5473 mt_init_flags(&mt, node->ma_flags); 5474 mas_lock(&mas); 5475 start = node; 5476 mas.node = mt_mk_node(node, node->type); 5477 slots = mas_dead_walk(&mas, 0); 5478 node = mas_mn(&mas); 5479 do { 5480 mt_free_bulk(node->slot_len, slots); 5481 offset = node->parent_slot + 1; 5482 mas.node = node->piv_parent; 5483 if (mas_mn(&mas) == node) 5484 goto start_slots_free; 5485 5486 type = mte_node_type(mas.node); 5487 slots = ma_slots(mte_to_node(mas.node), type); 5488 if ((offset < mt_slots[type]) && (slots[offset])) 5489 slots = mas_dead_walk(&mas, offset); 5490 5491 node = mas_mn(&mas); 5492 } while ((node != start) || (node->slot_len < offset)); 5493 5494 slots = ma_slots(node, node->type); 5495 mt_free_bulk(node->slot_len, slots); 5496 5497 start_slots_free: 5498 mas_unlock(&mas); 5499 free_leaf: 5500 mt_free_rcu(&node->rcu); 5501 } 5502 5503 static inline void __rcu **mas_destroy_descend(struct ma_state *mas, 5504 struct maple_enode *prev, unsigned char offset) 5505 { 5506 struct maple_node *node; 5507 struct maple_enode *next = mas->node; 5508 void __rcu **slots = NULL; 5509 5510 do { 5511 mas->node = next; 5512 node = mas_mn(mas); 5513 slots = ma_slots(node, mte_node_type(mas->node)); 5514 next = mas_slot_locked(mas, slots, 0); 5515 if ((mte_dead_node(next))) 5516 next = mas_slot_locked(mas, slots, 1); 5517 5518 mte_set_node_dead(mas->node); 5519 node->type = mte_node_type(mas->node); 5520 node->piv_parent = prev; 5521 node->parent_slot = offset; 5522 offset = 0; 5523 prev = mas->node; 5524 } while (!mte_is_leaf(next)); 5525 5526 return slots; 5527 } 5528 5529 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags, 5530 bool free) 5531 { 5532 void __rcu **slots; 5533 struct maple_node *node = mte_to_node(enode); 5534 struct maple_enode *start; 5535 struct maple_tree mt; 5536 5537 MA_STATE(mas, &mt, 0, 0); 5538 5539 if (mte_is_leaf(enode)) 5540 goto free_leaf; 5541 5542 mt_init_flags(&mt, ma_flags); 5543 mas_lock(&mas); 5544 5545 mas.node = start = enode; 5546 slots = mas_destroy_descend(&mas, start, 0); 5547 node = mas_mn(&mas); 5548 do { 5549 enum maple_type type; 5550 unsigned char offset; 5551 struct maple_enode *parent, *tmp; 5552 5553 node->slot_len = mas_dead_leaves(&mas, slots); 5554 if (free) 5555 mt_free_bulk(node->slot_len, slots); 5556 offset = node->parent_slot + 1; 5557 mas.node = node->piv_parent; 5558 if (mas_mn(&mas) == node) 5559 goto start_slots_free; 5560 5561 type = mte_node_type(mas.node); 5562 slots = ma_slots(mte_to_node(mas.node), type); 5563 if (offset >= mt_slots[type]) 5564 goto next; 5565 5566 tmp = mas_slot_locked(&mas, slots, offset); 5567 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5568 parent = mas.node; 5569 mas.node = tmp; 5570 slots = mas_destroy_descend(&mas, parent, offset); 5571 } 5572 next: 5573 node = mas_mn(&mas); 5574 } while (start != mas.node); 5575 5576 node = mas_mn(&mas); 5577 node->slot_len = mas_dead_leaves(&mas, slots); 5578 if (free) 5579 mt_free_bulk(node->slot_len, slots); 5580 5581 start_slots_free: 5582 mas_unlock(&mas); 5583 5584 free_leaf: 5585 if (free) 5586 mt_free_rcu(&node->rcu); 5587 } 5588 5589 /* 5590 * mte_destroy_walk() - Free a tree or sub-tree. 5591 * @enode - the encoded maple node (maple_enode) to start 5592 * @mn - the tree to free - needed for node types. 5593 * 5594 * Must hold the write lock. 5595 */ 5596 static inline void mte_destroy_walk(struct maple_enode *enode, 5597 struct maple_tree *mt) 5598 { 5599 struct maple_node *node = mte_to_node(enode); 5600 5601 if (mt_in_rcu(mt)) { 5602 mt_destroy_walk(enode, mt->ma_flags, false); 5603 call_rcu(&node->rcu, mt_free_walk); 5604 } else { 5605 mt_destroy_walk(enode, mt->ma_flags, true); 5606 } 5607 } 5608 5609 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5610 { 5611 if (!mas_is_start(wr_mas->mas)) { 5612 if (mas_is_none(wr_mas->mas)) { 5613 mas_reset(wr_mas->mas); 5614 } else { 5615 wr_mas->r_max = wr_mas->mas->max; 5616 wr_mas->type = mte_node_type(wr_mas->mas->node); 5617 if (mas_is_span_wr(wr_mas)) 5618 mas_reset(wr_mas->mas); 5619 } 5620 } 5621 5622 } 5623 5624 /* Interface */ 5625 5626 /** 5627 * mas_store() - Store an @entry. 5628 * @mas: The maple state. 5629 * @entry: The entry to store. 5630 * 5631 * The @mas->index and @mas->last is used to set the range for the @entry. 5632 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5633 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5634 * 5635 * Return: the first entry between mas->index and mas->last or %NULL. 5636 */ 5637 void *mas_store(struct ma_state *mas, void *entry) 5638 { 5639 MA_WR_STATE(wr_mas, mas, entry); 5640 5641 trace_ma_write(__func__, mas, 0, entry); 5642 #ifdef CONFIG_DEBUG_MAPLE_TREE 5643 if (mas->index > mas->last) 5644 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry); 5645 MT_BUG_ON(mas->tree, mas->index > mas->last); 5646 if (mas->index > mas->last) { 5647 mas_set_err(mas, -EINVAL); 5648 return NULL; 5649 } 5650 5651 #endif 5652 5653 /* 5654 * Storing is the same operation as insert with the added caveat that it 5655 * can overwrite entries. Although this seems simple enough, one may 5656 * want to examine what happens if a single store operation was to 5657 * overwrite multiple entries within a self-balancing B-Tree. 5658 */ 5659 mas_wr_store_setup(&wr_mas); 5660 mas_wr_store_entry(&wr_mas); 5661 return wr_mas.content; 5662 } 5663 EXPORT_SYMBOL_GPL(mas_store); 5664 5665 /** 5666 * mas_store_gfp() - Store a value into the tree. 5667 * @mas: The maple state 5668 * @entry: The entry to store 5669 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5670 * 5671 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5672 * be allocated. 5673 */ 5674 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5675 { 5676 MA_WR_STATE(wr_mas, mas, entry); 5677 5678 mas_wr_store_setup(&wr_mas); 5679 trace_ma_write(__func__, mas, 0, entry); 5680 retry: 5681 mas_wr_store_entry(&wr_mas); 5682 if (unlikely(mas_nomem(mas, gfp))) 5683 goto retry; 5684 5685 if (unlikely(mas_is_err(mas))) 5686 return xa_err(mas->node); 5687 5688 return 0; 5689 } 5690 EXPORT_SYMBOL_GPL(mas_store_gfp); 5691 5692 /** 5693 * mas_store_prealloc() - Store a value into the tree using memory 5694 * preallocated in the maple state. 5695 * @mas: The maple state 5696 * @entry: The entry to store. 5697 */ 5698 void mas_store_prealloc(struct ma_state *mas, void *entry) 5699 { 5700 MA_WR_STATE(wr_mas, mas, entry); 5701 5702 mas_wr_store_setup(&wr_mas); 5703 trace_ma_write(__func__, mas, 0, entry); 5704 mas_wr_store_entry(&wr_mas); 5705 BUG_ON(mas_is_err(mas)); 5706 mas_destroy(mas); 5707 } 5708 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5709 5710 /** 5711 * mas_preallocate() - Preallocate enough nodes for a store operation 5712 * @mas: The maple state 5713 * @entry: The entry that will be stored 5714 * @gfp: The GFP_FLAGS to use for allocations. 5715 * 5716 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5717 */ 5718 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) 5719 { 5720 int ret; 5721 5722 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp); 5723 mas->mas_flags |= MA_STATE_PREALLOC; 5724 if (likely(!mas_is_err(mas))) 5725 return 0; 5726 5727 mas_set_alloc_req(mas, 0); 5728 ret = xa_err(mas->node); 5729 mas_reset(mas); 5730 mas_destroy(mas); 5731 mas_reset(mas); 5732 return ret; 5733 } 5734 5735 /* 5736 * mas_destroy() - destroy a maple state. 5737 * @mas: The maple state 5738 * 5739 * Upon completion, check the left-most node and rebalance against the node to 5740 * the right if necessary. Frees any allocated nodes associated with this maple 5741 * state. 5742 */ 5743 void mas_destroy(struct ma_state *mas) 5744 { 5745 struct maple_alloc *node; 5746 5747 /* 5748 * When using mas_for_each() to insert an expected number of elements, 5749 * it is possible that the number inserted is less than the expected 5750 * number. To fix an invalid final node, a check is performed here to 5751 * rebalance the previous node with the final node. 5752 */ 5753 if (mas->mas_flags & MA_STATE_REBALANCE) { 5754 unsigned char end; 5755 5756 if (mas_is_start(mas)) 5757 mas_start(mas); 5758 5759 mtree_range_walk(mas); 5760 end = mas_data_end(mas) + 1; 5761 if (end < mt_min_slot_count(mas->node) - 1) 5762 mas_destroy_rebalance(mas, end); 5763 5764 mas->mas_flags &= ~MA_STATE_REBALANCE; 5765 } 5766 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5767 5768 while (mas->alloc && !((unsigned long)mas->alloc & 0x1)) { 5769 node = mas->alloc; 5770 mas->alloc = node->slot[0]; 5771 if (node->node_count > 0) 5772 mt_free_bulk(node->node_count, 5773 (void __rcu **)&node->slot[1]); 5774 kmem_cache_free(maple_node_cache, node); 5775 } 5776 mas->alloc = NULL; 5777 } 5778 EXPORT_SYMBOL_GPL(mas_destroy); 5779 5780 /* 5781 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5782 * @mas: The maple state 5783 * @nr_entries: The number of expected entries. 5784 * 5785 * This will attempt to pre-allocate enough nodes to store the expected number 5786 * of entries. The allocations will occur using the bulk allocator interface 5787 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5788 * to ensure any unused nodes are freed. 5789 * 5790 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5791 */ 5792 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5793 { 5794 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5795 struct maple_enode *enode = mas->node; 5796 int nr_nodes; 5797 int ret; 5798 5799 /* 5800 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5801 * forking a process and duplicating the VMAs from one tree to a new 5802 * tree. When such a situation arises, it is known that the new tree is 5803 * not going to be used until the entire tree is populated. For 5804 * performance reasons, it is best to use a bulk load with RCU disabled. 5805 * This allows for optimistic splitting that favours the left and reuse 5806 * of nodes during the operation. 5807 */ 5808 5809 /* Optimize splitting for bulk insert in-order */ 5810 mas->mas_flags |= MA_STATE_BULK; 5811 5812 /* 5813 * Avoid overflow, assume a gap between each entry and a trailing null. 5814 * If this is wrong, it just means allocation can happen during 5815 * insertion of entries. 5816 */ 5817 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5818 if (!mt_is_alloc(mas->tree)) 5819 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5820 5821 /* Leaves; reduce slots to keep space for expansion */ 5822 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5823 /* Internal nodes */ 5824 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5825 /* Add working room for split (2 nodes) + new parents */ 5826 mas_node_count(mas, nr_nodes + 3); 5827 5828 /* Detect if allocations run out */ 5829 mas->mas_flags |= MA_STATE_PREALLOC; 5830 5831 if (!mas_is_err(mas)) 5832 return 0; 5833 5834 ret = xa_err(mas->node); 5835 mas->node = enode; 5836 mas_destroy(mas); 5837 return ret; 5838 5839 } 5840 EXPORT_SYMBOL_GPL(mas_expected_entries); 5841 5842 /** 5843 * mas_next() - Get the next entry. 5844 * @mas: The maple state 5845 * @max: The maximum index to check. 5846 * 5847 * Returns the next entry after @mas->index. 5848 * Must hold rcu_read_lock or the write lock. 5849 * Can return the zero entry. 5850 * 5851 * Return: The next entry or %NULL 5852 */ 5853 void *mas_next(struct ma_state *mas, unsigned long max) 5854 { 5855 if (mas_is_none(mas) || mas_is_paused(mas)) 5856 mas->node = MAS_START; 5857 5858 if (mas_is_start(mas)) 5859 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5860 5861 if (mas_is_ptr(mas)) { 5862 if (!mas->index) { 5863 mas->index = 1; 5864 mas->last = ULONG_MAX; 5865 } 5866 return NULL; 5867 } 5868 5869 if (mas->last == ULONG_MAX) 5870 return NULL; 5871 5872 /* Retries on dead nodes handled by mas_next_entry */ 5873 return mas_next_entry(mas, max); 5874 } 5875 EXPORT_SYMBOL_GPL(mas_next); 5876 5877 /** 5878 * mt_next() - get the next value in the maple tree 5879 * @mt: The maple tree 5880 * @index: The start index 5881 * @max: The maximum index to check 5882 * 5883 * Return: The entry at @index or higher, or %NULL if nothing is found. 5884 */ 5885 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5886 { 5887 void *entry = NULL; 5888 MA_STATE(mas, mt, index, index); 5889 5890 rcu_read_lock(); 5891 entry = mas_next(&mas, max); 5892 rcu_read_unlock(); 5893 return entry; 5894 } 5895 EXPORT_SYMBOL_GPL(mt_next); 5896 5897 /** 5898 * mas_prev() - Get the previous entry 5899 * @mas: The maple state 5900 * @min: The minimum value to check. 5901 * 5902 * Must hold rcu_read_lock or the write lock. 5903 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5904 * searchable nodes. 5905 * 5906 * Return: the previous value or %NULL. 5907 */ 5908 void *mas_prev(struct ma_state *mas, unsigned long min) 5909 { 5910 if (!mas->index) { 5911 /* Nothing comes before 0 */ 5912 mas->last = 0; 5913 return NULL; 5914 } 5915 5916 if (unlikely(mas_is_ptr(mas))) 5917 return NULL; 5918 5919 if (mas_is_none(mas) || mas_is_paused(mas)) 5920 mas->node = MAS_START; 5921 5922 if (mas_is_start(mas)) { 5923 mas_walk(mas); 5924 if (!mas->index) 5925 return NULL; 5926 } 5927 5928 if (mas_is_ptr(mas)) { 5929 if (!mas->index) { 5930 mas->last = 0; 5931 return NULL; 5932 } 5933 5934 mas->index = mas->last = 0; 5935 return mas_root_locked(mas); 5936 } 5937 return mas_prev_entry(mas, min); 5938 } 5939 EXPORT_SYMBOL_GPL(mas_prev); 5940 5941 /** 5942 * mt_prev() - get the previous value in the maple tree 5943 * @mt: The maple tree 5944 * @index: The start index 5945 * @min: The minimum index to check 5946 * 5947 * Return: The entry at @index or lower, or %NULL if nothing is found. 5948 */ 5949 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5950 { 5951 void *entry = NULL; 5952 MA_STATE(mas, mt, index, index); 5953 5954 rcu_read_lock(); 5955 entry = mas_prev(&mas, min); 5956 rcu_read_unlock(); 5957 return entry; 5958 } 5959 EXPORT_SYMBOL_GPL(mt_prev); 5960 5961 /** 5962 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5963 * @mas: The maple state to pause 5964 * 5965 * Some users need to pause a walk and drop the lock they're holding in 5966 * order to yield to a higher priority thread or carry out an operation 5967 * on an entry. Those users should call this function before they drop 5968 * the lock. It resets the @mas to be suitable for the next iteration 5969 * of the loop after the user has reacquired the lock. If most entries 5970 * found during a walk require you to call mas_pause(), the mt_for_each() 5971 * iterator may be more appropriate. 5972 * 5973 */ 5974 void mas_pause(struct ma_state *mas) 5975 { 5976 mas->node = MAS_PAUSE; 5977 } 5978 EXPORT_SYMBOL_GPL(mas_pause); 5979 5980 /** 5981 * mas_find() - On the first call, find the entry at or after mas->index up to 5982 * %max. Otherwise, find the entry after mas->index. 5983 * @mas: The maple state 5984 * @max: The maximum value to check. 5985 * 5986 * Must hold rcu_read_lock or the write lock. 5987 * If an entry exists, last and index are updated accordingly. 5988 * May set @mas->node to MAS_NONE. 5989 * 5990 * Return: The entry or %NULL. 5991 */ 5992 void *mas_find(struct ma_state *mas, unsigned long max) 5993 { 5994 if (unlikely(mas_is_paused(mas))) { 5995 if (unlikely(mas->last == ULONG_MAX)) { 5996 mas->node = MAS_NONE; 5997 return NULL; 5998 } 5999 mas->node = MAS_START; 6000 mas->index = ++mas->last; 6001 } 6002 6003 if (unlikely(mas_is_start(mas))) { 6004 /* First run or continue */ 6005 void *entry; 6006 6007 if (mas->index > max) 6008 return NULL; 6009 6010 entry = mas_walk(mas); 6011 if (entry) 6012 return entry; 6013 } 6014 6015 if (unlikely(!mas_searchable(mas))) 6016 return NULL; 6017 6018 /* Retries on dead nodes handled by mas_next_entry */ 6019 return mas_next_entry(mas, max); 6020 } 6021 EXPORT_SYMBOL_GPL(mas_find); 6022 6023 /** 6024 * mas_find_rev: On the first call, find the first non-null entry at or below 6025 * mas->index down to %min. Otherwise find the first non-null entry below 6026 * mas->index down to %min. 6027 * @mas: The maple state 6028 * @min: The minimum value to check. 6029 * 6030 * Must hold rcu_read_lock or the write lock. 6031 * If an entry exists, last and index are updated accordingly. 6032 * May set @mas->node to MAS_NONE. 6033 * 6034 * Return: The entry or %NULL. 6035 */ 6036 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6037 { 6038 if (unlikely(mas_is_paused(mas))) { 6039 if (unlikely(mas->last == ULONG_MAX)) { 6040 mas->node = MAS_NONE; 6041 return NULL; 6042 } 6043 mas->node = MAS_START; 6044 mas->last = --mas->index; 6045 } 6046 6047 if (unlikely(mas_is_start(mas))) { 6048 /* First run or continue */ 6049 void *entry; 6050 6051 if (mas->index < min) 6052 return NULL; 6053 6054 entry = mas_walk(mas); 6055 if (entry) 6056 return entry; 6057 } 6058 6059 if (unlikely(!mas_searchable(mas))) 6060 return NULL; 6061 6062 if (mas->index < min) 6063 return NULL; 6064 6065 /* Retries on dead nodes handled by mas_prev_entry */ 6066 return mas_prev_entry(mas, min); 6067 } 6068 EXPORT_SYMBOL_GPL(mas_find_rev); 6069 6070 /** 6071 * mas_erase() - Find the range in which index resides and erase the entire 6072 * range. 6073 * @mas: The maple state 6074 * 6075 * Must hold the write lock. 6076 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6077 * erases that range. 6078 * 6079 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6080 */ 6081 void *mas_erase(struct ma_state *mas) 6082 { 6083 void *entry; 6084 MA_WR_STATE(wr_mas, mas, NULL); 6085 6086 if (mas_is_none(mas) || mas_is_paused(mas)) 6087 mas->node = MAS_START; 6088 6089 /* Retry unnecessary when holding the write lock. */ 6090 entry = mas_state_walk(mas); 6091 if (!entry) 6092 return NULL; 6093 6094 write_retry: 6095 /* Must reset to ensure spanning writes of last slot are detected */ 6096 mas_reset(mas); 6097 mas_wr_store_setup(&wr_mas); 6098 mas_wr_store_entry(&wr_mas); 6099 if (mas_nomem(mas, GFP_KERNEL)) 6100 goto write_retry; 6101 6102 return entry; 6103 } 6104 EXPORT_SYMBOL_GPL(mas_erase); 6105 6106 /** 6107 * mas_nomem() - Check if there was an error allocating and do the allocation 6108 * if necessary If there are allocations, then free them. 6109 * @mas: The maple state 6110 * @gfp: The GFP_FLAGS to use for allocations 6111 * Return: true on allocation, false otherwise. 6112 */ 6113 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6114 __must_hold(mas->tree->lock) 6115 { 6116 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6117 mas_destroy(mas); 6118 return false; 6119 } 6120 6121 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6122 mtree_unlock(mas->tree); 6123 mas_alloc_nodes(mas, gfp); 6124 mtree_lock(mas->tree); 6125 } else { 6126 mas_alloc_nodes(mas, gfp); 6127 } 6128 6129 if (!mas_allocated(mas)) 6130 return false; 6131 6132 mas->node = MAS_START; 6133 return true; 6134 } 6135 6136 void __init maple_tree_init(void) 6137 { 6138 maple_node_cache = kmem_cache_create("maple_node", 6139 sizeof(struct maple_node), sizeof(struct maple_node), 6140 SLAB_PANIC, NULL); 6141 } 6142 6143 /** 6144 * mtree_load() - Load a value stored in a maple tree 6145 * @mt: The maple tree 6146 * @index: The index to load 6147 * 6148 * Return: the entry or %NULL 6149 */ 6150 void *mtree_load(struct maple_tree *mt, unsigned long index) 6151 { 6152 MA_STATE(mas, mt, index, index); 6153 void *entry; 6154 6155 trace_ma_read(__func__, &mas); 6156 rcu_read_lock(); 6157 retry: 6158 entry = mas_start(&mas); 6159 if (unlikely(mas_is_none(&mas))) 6160 goto unlock; 6161 6162 if (unlikely(mas_is_ptr(&mas))) { 6163 if (index) 6164 entry = NULL; 6165 6166 goto unlock; 6167 } 6168 6169 entry = mtree_lookup_walk(&mas); 6170 if (!entry && unlikely(mas_is_start(&mas))) 6171 goto retry; 6172 unlock: 6173 rcu_read_unlock(); 6174 if (xa_is_zero(entry)) 6175 return NULL; 6176 6177 return entry; 6178 } 6179 EXPORT_SYMBOL(mtree_load); 6180 6181 /** 6182 * mtree_store_range() - Store an entry at a given range. 6183 * @mt: The maple tree 6184 * @index: The start of the range 6185 * @last: The end of the range 6186 * @entry: The entry to store 6187 * @gfp: The GFP_FLAGS to use for allocations 6188 * 6189 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6190 * be allocated. 6191 */ 6192 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6193 unsigned long last, void *entry, gfp_t gfp) 6194 { 6195 MA_STATE(mas, mt, index, last); 6196 MA_WR_STATE(wr_mas, &mas, entry); 6197 6198 trace_ma_write(__func__, &mas, 0, entry); 6199 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6200 return -EINVAL; 6201 6202 if (index > last) 6203 return -EINVAL; 6204 6205 mtree_lock(mt); 6206 retry: 6207 mas_wr_store_entry(&wr_mas); 6208 if (mas_nomem(&mas, gfp)) 6209 goto retry; 6210 6211 mtree_unlock(mt); 6212 if (mas_is_err(&mas)) 6213 return xa_err(mas.node); 6214 6215 return 0; 6216 } 6217 EXPORT_SYMBOL(mtree_store_range); 6218 6219 /** 6220 * mtree_store() - Store an entry at a given index. 6221 * @mt: The maple tree 6222 * @index: The index to store the value 6223 * @entry: The entry to store 6224 * @gfp: The GFP_FLAGS to use for allocations 6225 * 6226 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6227 * be allocated. 6228 */ 6229 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6230 gfp_t gfp) 6231 { 6232 return mtree_store_range(mt, index, index, entry, gfp); 6233 } 6234 EXPORT_SYMBOL(mtree_store); 6235 6236 /** 6237 * mtree_insert_range() - Insert an entry at a give range if there is no value. 6238 * @mt: The maple tree 6239 * @first: The start of the range 6240 * @last: The end of the range 6241 * @entry: The entry to store 6242 * @gfp: The GFP_FLAGS to use for allocations. 6243 * 6244 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6245 * request, -ENOMEM if memory could not be allocated. 6246 */ 6247 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6248 unsigned long last, void *entry, gfp_t gfp) 6249 { 6250 MA_STATE(ms, mt, first, last); 6251 6252 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6253 return -EINVAL; 6254 6255 if (first > last) 6256 return -EINVAL; 6257 6258 mtree_lock(mt); 6259 retry: 6260 mas_insert(&ms, entry); 6261 if (mas_nomem(&ms, gfp)) 6262 goto retry; 6263 6264 mtree_unlock(mt); 6265 if (mas_is_err(&ms)) 6266 return xa_err(ms.node); 6267 6268 return 0; 6269 } 6270 EXPORT_SYMBOL(mtree_insert_range); 6271 6272 /** 6273 * mtree_insert() - Insert an entry at a give index if there is no value. 6274 * @mt: The maple tree 6275 * @index : The index to store the value 6276 * @entry: The entry to store 6277 * @gfp: The FGP_FLAGS to use for allocations. 6278 * 6279 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6280 * request, -ENOMEM if memory could not be allocated. 6281 */ 6282 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6283 gfp_t gfp) 6284 { 6285 return mtree_insert_range(mt, index, index, entry, gfp); 6286 } 6287 EXPORT_SYMBOL(mtree_insert); 6288 6289 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6290 void *entry, unsigned long size, unsigned long min, 6291 unsigned long max, gfp_t gfp) 6292 { 6293 int ret = 0; 6294 6295 MA_STATE(mas, mt, min, max - size); 6296 if (!mt_is_alloc(mt)) 6297 return -EINVAL; 6298 6299 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6300 return -EINVAL; 6301 6302 if (min > max) 6303 return -EINVAL; 6304 6305 if (max < size) 6306 return -EINVAL; 6307 6308 if (!size) 6309 return -EINVAL; 6310 6311 mtree_lock(mt); 6312 retry: 6313 mas.offset = 0; 6314 mas.index = min; 6315 mas.last = max - size; 6316 ret = mas_alloc(&mas, entry, size, startp); 6317 if (mas_nomem(&mas, gfp)) 6318 goto retry; 6319 6320 mtree_unlock(mt); 6321 return ret; 6322 } 6323 EXPORT_SYMBOL(mtree_alloc_range); 6324 6325 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6326 void *entry, unsigned long size, unsigned long min, 6327 unsigned long max, gfp_t gfp) 6328 { 6329 int ret = 0; 6330 6331 MA_STATE(mas, mt, min, max - size); 6332 if (!mt_is_alloc(mt)) 6333 return -EINVAL; 6334 6335 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6336 return -EINVAL; 6337 6338 if (min >= max) 6339 return -EINVAL; 6340 6341 if (max < size - 1) 6342 return -EINVAL; 6343 6344 if (!size) 6345 return -EINVAL; 6346 6347 mtree_lock(mt); 6348 retry: 6349 ret = mas_rev_alloc(&mas, min, max, entry, size, startp); 6350 if (mas_nomem(&mas, gfp)) 6351 goto retry; 6352 6353 mtree_unlock(mt); 6354 return ret; 6355 } 6356 EXPORT_SYMBOL(mtree_alloc_rrange); 6357 6358 /** 6359 * mtree_erase() - Find an index and erase the entire range. 6360 * @mt: The maple tree 6361 * @index: The index to erase 6362 * 6363 * Erasing is the same as a walk to an entry then a store of a NULL to that 6364 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6365 * 6366 * Return: The entry stored at the @index or %NULL 6367 */ 6368 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6369 { 6370 void *entry = NULL; 6371 6372 MA_STATE(mas, mt, index, index); 6373 trace_ma_op(__func__, &mas); 6374 6375 mtree_lock(mt); 6376 entry = mas_erase(&mas); 6377 mtree_unlock(mt); 6378 6379 return entry; 6380 } 6381 EXPORT_SYMBOL(mtree_erase); 6382 6383 /** 6384 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6385 * @mt: The maple tree 6386 * 6387 * Note: Does not handle locking. 6388 */ 6389 void __mt_destroy(struct maple_tree *mt) 6390 { 6391 void *root = mt_root_locked(mt); 6392 6393 rcu_assign_pointer(mt->ma_root, NULL); 6394 if (xa_is_node(root)) 6395 mte_destroy_walk(root, mt); 6396 6397 mt->ma_flags = 0; 6398 } 6399 EXPORT_SYMBOL_GPL(__mt_destroy); 6400 6401 /** 6402 * mtree_destroy() - Destroy a maple tree 6403 * @mt: The maple tree 6404 * 6405 * Frees all resources used by the tree. Handles locking. 6406 */ 6407 void mtree_destroy(struct maple_tree *mt) 6408 { 6409 mtree_lock(mt); 6410 __mt_destroy(mt); 6411 mtree_unlock(mt); 6412 } 6413 EXPORT_SYMBOL(mtree_destroy); 6414 6415 /** 6416 * mt_find() - Search from the start up until an entry is found. 6417 * @mt: The maple tree 6418 * @index: Pointer which contains the start location of the search 6419 * @max: The maximum value to check 6420 * 6421 * Handles locking. @index will be incremented to one beyond the range. 6422 * 6423 * Return: The entry at or after the @index or %NULL 6424 */ 6425 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6426 { 6427 MA_STATE(mas, mt, *index, *index); 6428 void *entry; 6429 #ifdef CONFIG_DEBUG_MAPLE_TREE 6430 unsigned long copy = *index; 6431 #endif 6432 6433 trace_ma_read(__func__, &mas); 6434 6435 if ((*index) > max) 6436 return NULL; 6437 6438 rcu_read_lock(); 6439 retry: 6440 entry = mas_state_walk(&mas); 6441 if (mas_is_start(&mas)) 6442 goto retry; 6443 6444 if (unlikely(xa_is_zero(entry))) 6445 entry = NULL; 6446 6447 if (entry) 6448 goto unlock; 6449 6450 while (mas_searchable(&mas) && (mas.index < max)) { 6451 entry = mas_next_entry(&mas, max); 6452 if (likely(entry && !xa_is_zero(entry))) 6453 break; 6454 } 6455 6456 if (unlikely(xa_is_zero(entry))) 6457 entry = NULL; 6458 unlock: 6459 rcu_read_unlock(); 6460 if (likely(entry)) { 6461 *index = mas.last + 1; 6462 #ifdef CONFIG_DEBUG_MAPLE_TREE 6463 if ((*index) && (*index) <= copy) 6464 pr_err("index not increased! %lx <= %lx\n", 6465 *index, copy); 6466 MT_BUG_ON(mt, (*index) && ((*index) <= copy)); 6467 #endif 6468 } 6469 6470 return entry; 6471 } 6472 EXPORT_SYMBOL(mt_find); 6473 6474 /** 6475 * mt_find_after() - Search from the start up until an entry is found. 6476 * @mt: The maple tree 6477 * @index: Pointer which contains the start location of the search 6478 * @max: The maximum value to check 6479 * 6480 * Handles locking, detects wrapping on index == 0 6481 * 6482 * Return: The entry at or after the @index or %NULL 6483 */ 6484 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6485 unsigned long max) 6486 { 6487 if (!(*index)) 6488 return NULL; 6489 6490 return mt_find(mt, index, max); 6491 } 6492 EXPORT_SYMBOL(mt_find_after); 6493 6494 #ifdef CONFIG_DEBUG_MAPLE_TREE 6495 atomic_t maple_tree_tests_run; 6496 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6497 atomic_t maple_tree_tests_passed; 6498 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6499 6500 #ifndef __KERNEL__ 6501 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6502 void mt_set_non_kernel(unsigned int val) 6503 { 6504 kmem_cache_set_non_kernel(maple_node_cache, val); 6505 } 6506 6507 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 6508 unsigned long mt_get_alloc_size(void) 6509 { 6510 return kmem_cache_get_alloc(maple_node_cache); 6511 } 6512 6513 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 6514 void mt_zero_nr_tallocated(void) 6515 { 6516 kmem_cache_zero_nr_tallocated(maple_node_cache); 6517 } 6518 6519 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 6520 unsigned int mt_nr_tallocated(void) 6521 { 6522 return kmem_cache_nr_tallocated(maple_node_cache); 6523 } 6524 6525 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 6526 unsigned int mt_nr_allocated(void) 6527 { 6528 return kmem_cache_nr_allocated(maple_node_cache); 6529 } 6530 6531 /* 6532 * mas_dead_node() - Check if the maple state is pointing to a dead node. 6533 * @mas: The maple state 6534 * @index: The index to restore in @mas. 6535 * 6536 * Used in test code. 6537 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise. 6538 */ 6539 static inline int mas_dead_node(struct ma_state *mas, unsigned long index) 6540 { 6541 if (unlikely(!mas_searchable(mas) || mas_is_start(mas))) 6542 return 0; 6543 6544 if (likely(!mte_dead_node(mas->node))) 6545 return 0; 6546 6547 mas_rewalk(mas, index); 6548 return 1; 6549 } 6550 6551 void mt_cache_shrink(void) 6552 { 6553 } 6554 #else 6555 /* 6556 * mt_cache_shrink() - For testing, don't use this. 6557 * 6558 * Certain testcases can trigger an OOM when combined with other memory 6559 * debugging configuration options. This function is used to reduce the 6560 * possibility of an out of memory even due to kmem_cache objects remaining 6561 * around for longer than usual. 6562 */ 6563 void mt_cache_shrink(void) 6564 { 6565 kmem_cache_shrink(maple_node_cache); 6566 6567 } 6568 EXPORT_SYMBOL_GPL(mt_cache_shrink); 6569 6570 #endif /* not defined __KERNEL__ */ 6571 /* 6572 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 6573 * @mas: The maple state 6574 * @offset: The offset into the slot array to fetch. 6575 * 6576 * Return: The entry stored at @offset. 6577 */ 6578 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 6579 unsigned char offset) 6580 { 6581 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 6582 offset); 6583 } 6584 6585 6586 /* 6587 * mas_first_entry() - Go the first leaf and find the first entry. 6588 * @mas: the maple state. 6589 * @limit: the maximum index to check. 6590 * @*r_start: Pointer to set to the range start. 6591 * 6592 * Sets mas->offset to the offset of the entry, r_start to the range minimum. 6593 * 6594 * Return: The first entry or MAS_NONE. 6595 */ 6596 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn, 6597 unsigned long limit, enum maple_type mt) 6598 6599 { 6600 unsigned long max; 6601 unsigned long *pivots; 6602 void __rcu **slots; 6603 void *entry = NULL; 6604 6605 mas->index = mas->min; 6606 if (mas->index > limit) 6607 goto none; 6608 6609 max = mas->max; 6610 mas->offset = 0; 6611 while (likely(!ma_is_leaf(mt))) { 6612 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6613 slots = ma_slots(mn, mt); 6614 pivots = ma_pivots(mn, mt); 6615 max = pivots[0]; 6616 entry = mas_slot(mas, slots, 0); 6617 if (unlikely(ma_dead_node(mn))) 6618 return NULL; 6619 mas->node = entry; 6620 mn = mas_mn(mas); 6621 mt = mte_node_type(mas->node); 6622 } 6623 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6624 6625 mas->max = max; 6626 slots = ma_slots(mn, mt); 6627 entry = mas_slot(mas, slots, 0); 6628 if (unlikely(ma_dead_node(mn))) 6629 return NULL; 6630 6631 /* Slot 0 or 1 must be set */ 6632 if (mas->index > limit) 6633 goto none; 6634 6635 if (likely(entry)) 6636 return entry; 6637 6638 pivots = ma_pivots(mn, mt); 6639 mas->index = pivots[0] + 1; 6640 mas->offset = 1; 6641 entry = mas_slot(mas, slots, 1); 6642 if (unlikely(ma_dead_node(mn))) 6643 return NULL; 6644 6645 if (mas->index > limit) 6646 goto none; 6647 6648 if (likely(entry)) 6649 return entry; 6650 6651 none: 6652 if (likely(!ma_dead_node(mn))) 6653 mas->node = MAS_NONE; 6654 return NULL; 6655 } 6656 6657 /* Depth first search, post-order */ 6658 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 6659 { 6660 6661 struct maple_enode *p = MAS_NONE, *mn = mas->node; 6662 unsigned long p_min, p_max; 6663 6664 mas_next_node(mas, mas_mn(mas), max); 6665 if (!mas_is_none(mas)) 6666 return; 6667 6668 if (mte_is_root(mn)) 6669 return; 6670 6671 mas->node = mn; 6672 mas_ascend(mas); 6673 while (mas->node != MAS_NONE) { 6674 p = mas->node; 6675 p_min = mas->min; 6676 p_max = mas->max; 6677 mas_prev_node(mas, 0); 6678 } 6679 6680 if (p == MAS_NONE) 6681 return; 6682 6683 mas->node = p; 6684 mas->max = p_max; 6685 mas->min = p_min; 6686 } 6687 6688 /* Tree validations */ 6689 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6690 unsigned long min, unsigned long max, unsigned int depth); 6691 static void mt_dump_range(unsigned long min, unsigned long max, 6692 unsigned int depth) 6693 { 6694 static const char spaces[] = " "; 6695 6696 if (min == max) 6697 pr_info("%.*s%lu: ", depth * 2, spaces, min); 6698 else 6699 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 6700 } 6701 6702 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 6703 unsigned int depth) 6704 { 6705 mt_dump_range(min, max, depth); 6706 6707 if (xa_is_value(entry)) 6708 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 6709 xa_to_value(entry), entry); 6710 else if (xa_is_zero(entry)) 6711 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 6712 else if (mt_is_reserved(entry)) 6713 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 6714 else 6715 pr_cont("%p\n", entry); 6716 } 6717 6718 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 6719 unsigned long min, unsigned long max, unsigned int depth) 6720 { 6721 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 6722 bool leaf = mte_is_leaf(entry); 6723 unsigned long first = min; 6724 int i; 6725 6726 pr_cont(" contents: "); 6727 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) 6728 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6729 pr_cont("%p\n", node->slot[i]); 6730 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 6731 unsigned long last = max; 6732 6733 if (i < (MAPLE_RANGE64_SLOTS - 1)) 6734 last = node->pivot[i]; 6735 else if (!node->slot[i] && max != mt_max[mte_node_type(entry)]) 6736 break; 6737 if (last == 0 && i > 0) 6738 break; 6739 if (leaf) 6740 mt_dump_entry(mt_slot(mt, node->slot, i), 6741 first, last, depth + 1); 6742 else if (node->slot[i]) 6743 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6744 first, last, depth + 1); 6745 6746 if (last == max) 6747 break; 6748 if (last > max) { 6749 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6750 node, last, max, i); 6751 break; 6752 } 6753 first = last + 1; 6754 } 6755 } 6756 6757 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 6758 unsigned long min, unsigned long max, unsigned int depth) 6759 { 6760 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 6761 bool leaf = mte_is_leaf(entry); 6762 unsigned long first = min; 6763 int i; 6764 6765 pr_cont(" contents: "); 6766 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) 6767 pr_cont("%lu ", node->gap[i]); 6768 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 6769 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) 6770 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6771 pr_cont("%p\n", node->slot[i]); 6772 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 6773 unsigned long last = max; 6774 6775 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 6776 last = node->pivot[i]; 6777 else if (!node->slot[i]) 6778 break; 6779 if (last == 0 && i > 0) 6780 break; 6781 if (leaf) 6782 mt_dump_entry(mt_slot(mt, node->slot, i), 6783 first, last, depth + 1); 6784 else if (node->slot[i]) 6785 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6786 first, last, depth + 1); 6787 6788 if (last == max) 6789 break; 6790 if (last > max) { 6791 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6792 node, last, max, i); 6793 break; 6794 } 6795 first = last + 1; 6796 } 6797 } 6798 6799 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6800 unsigned long min, unsigned long max, unsigned int depth) 6801 { 6802 struct maple_node *node = mte_to_node(entry); 6803 unsigned int type = mte_node_type(entry); 6804 unsigned int i; 6805 6806 mt_dump_range(min, max, depth); 6807 6808 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 6809 node ? node->parent : NULL); 6810 switch (type) { 6811 case maple_dense: 6812 pr_cont("\n"); 6813 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 6814 if (min + i > max) 6815 pr_cont("OUT OF RANGE: "); 6816 mt_dump_entry(mt_slot(mt, node->slot, i), 6817 min + i, min + i, depth); 6818 } 6819 break; 6820 case maple_leaf_64: 6821 case maple_range_64: 6822 mt_dump_range64(mt, entry, min, max, depth); 6823 break; 6824 case maple_arange_64: 6825 mt_dump_arange64(mt, entry, min, max, depth); 6826 break; 6827 6828 default: 6829 pr_cont(" UNKNOWN TYPE\n"); 6830 } 6831 } 6832 6833 void mt_dump(const struct maple_tree *mt) 6834 { 6835 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 6836 6837 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 6838 mt, mt->ma_flags, mt_height(mt), entry); 6839 if (!xa_is_node(entry)) 6840 mt_dump_entry(entry, 0, 0, 0); 6841 else if (entry) 6842 mt_dump_node(mt, entry, 0, mt_max[mte_node_type(entry)], 0); 6843 } 6844 EXPORT_SYMBOL_GPL(mt_dump); 6845 6846 /* 6847 * Calculate the maximum gap in a node and check if that's what is reported in 6848 * the parent (unless root). 6849 */ 6850 static void mas_validate_gaps(struct ma_state *mas) 6851 { 6852 struct maple_enode *mte = mas->node; 6853 struct maple_node *p_mn; 6854 unsigned long gap = 0, max_gap = 0; 6855 unsigned long p_end, p_start = mas->min; 6856 unsigned char p_slot; 6857 unsigned long *gaps = NULL; 6858 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte)); 6859 int i; 6860 6861 if (ma_is_dense(mte_node_type(mte))) { 6862 for (i = 0; i < mt_slot_count(mte); i++) { 6863 if (mas_get_slot(mas, i)) { 6864 if (gap > max_gap) 6865 max_gap = gap; 6866 gap = 0; 6867 continue; 6868 } 6869 gap++; 6870 } 6871 goto counted; 6872 } 6873 6874 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte)); 6875 for (i = 0; i < mt_slot_count(mte); i++) { 6876 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte)); 6877 6878 if (!gaps) { 6879 if (mas_get_slot(mas, i)) { 6880 gap = 0; 6881 goto not_empty; 6882 } 6883 6884 gap += p_end - p_start + 1; 6885 } else { 6886 void *entry = mas_get_slot(mas, i); 6887 6888 gap = gaps[i]; 6889 if (!entry) { 6890 if (gap != p_end - p_start + 1) { 6891 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n", 6892 mas_mn(mas), i, 6893 mas_get_slot(mas, i), gap, 6894 p_end, p_start); 6895 mt_dump(mas->tree); 6896 6897 MT_BUG_ON(mas->tree, 6898 gap != p_end - p_start + 1); 6899 } 6900 } else { 6901 if (gap > p_end - p_start + 1) { 6902 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 6903 mas_mn(mas), i, gap, p_end, p_start, 6904 p_end - p_start + 1); 6905 MT_BUG_ON(mas->tree, 6906 gap > p_end - p_start + 1); 6907 } 6908 } 6909 } 6910 6911 if (gap > max_gap) 6912 max_gap = gap; 6913 not_empty: 6914 p_start = p_end + 1; 6915 if (p_end >= mas->max) 6916 break; 6917 } 6918 6919 counted: 6920 if (mte_is_root(mte)) 6921 return; 6922 6923 p_slot = mte_parent_slot(mas->node); 6924 p_mn = mte_parent(mte); 6925 MT_BUG_ON(mas->tree, max_gap > mas->max); 6926 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) { 6927 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 6928 mt_dump(mas->tree); 6929 } 6930 6931 MT_BUG_ON(mas->tree, 6932 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap); 6933 } 6934 6935 static void mas_validate_parent_slot(struct ma_state *mas) 6936 { 6937 struct maple_node *parent; 6938 struct maple_enode *node; 6939 enum maple_type p_type = mas_parent_enum(mas, mas->node); 6940 unsigned char p_slot = mte_parent_slot(mas->node); 6941 void __rcu **slots; 6942 int i; 6943 6944 if (mte_is_root(mas->node)) 6945 return; 6946 6947 parent = mte_parent(mas->node); 6948 slots = ma_slots(parent, p_type); 6949 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 6950 6951 /* Check prev/next parent slot for duplicate node entry */ 6952 6953 for (i = 0; i < mt_slots[p_type]; i++) { 6954 node = mas_slot(mas, slots, i); 6955 if (i == p_slot) { 6956 if (node != mas->node) 6957 pr_err("parent %p[%u] does not have %p\n", 6958 parent, i, mas_mn(mas)); 6959 MT_BUG_ON(mas->tree, node != mas->node); 6960 } else if (node == mas->node) { 6961 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 6962 mas_mn(mas), parent, i, p_slot); 6963 MT_BUG_ON(mas->tree, node == mas->node); 6964 } 6965 } 6966 } 6967 6968 static void mas_validate_child_slot(struct ma_state *mas) 6969 { 6970 enum maple_type type = mte_node_type(mas->node); 6971 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 6972 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 6973 struct maple_enode *child; 6974 unsigned char i; 6975 6976 if (mte_is_leaf(mas->node)) 6977 return; 6978 6979 for (i = 0; i < mt_slots[type]; i++) { 6980 child = mas_slot(mas, slots, i); 6981 if (!pivots[i] || pivots[i] == mas->max) 6982 break; 6983 6984 if (!child) 6985 break; 6986 6987 if (mte_parent_slot(child) != i) { 6988 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 6989 mas_mn(mas), i, mte_to_node(child), 6990 mte_parent_slot(child)); 6991 MT_BUG_ON(mas->tree, 1); 6992 } 6993 6994 if (mte_parent(child) != mte_to_node(mas->node)) { 6995 pr_err("child %p has parent %p not %p\n", 6996 mte_to_node(child), mte_parent(child), 6997 mte_to_node(mas->node)); 6998 MT_BUG_ON(mas->tree, 1); 6999 } 7000 } 7001 } 7002 7003 /* 7004 * Validate all pivots are within mas->min and mas->max. 7005 */ 7006 static void mas_validate_limits(struct ma_state *mas) 7007 { 7008 int i; 7009 unsigned long prev_piv = 0; 7010 enum maple_type type = mte_node_type(mas->node); 7011 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7012 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7013 7014 /* all limits are fine here. */ 7015 if (mte_is_root(mas->node)) 7016 return; 7017 7018 for (i = 0; i < mt_slots[type]; i++) { 7019 unsigned long piv; 7020 7021 piv = mas_safe_pivot(mas, pivots, i, type); 7022 7023 if (!piv && (i != 0)) 7024 break; 7025 7026 if (!mte_is_leaf(mas->node)) { 7027 void *entry = mas_slot(mas, slots, i); 7028 7029 if (!entry) 7030 pr_err("%p[%u] cannot be null\n", 7031 mas_mn(mas), i); 7032 7033 MT_BUG_ON(mas->tree, !entry); 7034 } 7035 7036 if (prev_piv > piv) { 7037 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7038 mas_mn(mas), i, piv, prev_piv); 7039 MT_BUG_ON(mas->tree, piv < prev_piv); 7040 } 7041 7042 if (piv < mas->min) { 7043 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7044 piv, mas->min); 7045 MT_BUG_ON(mas->tree, piv < mas->min); 7046 } 7047 if (piv > mas->max) { 7048 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7049 piv, mas->max); 7050 MT_BUG_ON(mas->tree, piv > mas->max); 7051 } 7052 prev_piv = piv; 7053 if (piv == mas->max) 7054 break; 7055 } 7056 for (i += 1; i < mt_slots[type]; i++) { 7057 void *entry = mas_slot(mas, slots, i); 7058 7059 if (entry && (i != mt_slots[type] - 1)) { 7060 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7061 i, entry); 7062 MT_BUG_ON(mas->tree, entry != NULL); 7063 } 7064 7065 if (i < mt_pivots[type]) { 7066 unsigned long piv = pivots[i]; 7067 7068 if (!piv) 7069 continue; 7070 7071 pr_err("%p[%u] should not have piv %lu\n", 7072 mas_mn(mas), i, piv); 7073 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1); 7074 } 7075 } 7076 } 7077 7078 static void mt_validate_nulls(struct maple_tree *mt) 7079 { 7080 void *entry, *last = (void *)1; 7081 unsigned char offset = 0; 7082 void __rcu **slots; 7083 MA_STATE(mas, mt, 0, 0); 7084 7085 mas_start(&mas); 7086 if (mas_is_none(&mas) || (mas.node == MAS_ROOT)) 7087 return; 7088 7089 while (!mte_is_leaf(mas.node)) 7090 mas_descend(&mas); 7091 7092 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7093 do { 7094 entry = mas_slot(&mas, slots, offset); 7095 if (!last && !entry) { 7096 pr_err("Sequential nulls end at %p[%u]\n", 7097 mas_mn(&mas), offset); 7098 } 7099 MT_BUG_ON(mt, !last && !entry); 7100 last = entry; 7101 if (offset == mas_data_end(&mas)) { 7102 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7103 if (mas_is_none(&mas)) 7104 return; 7105 offset = 0; 7106 slots = ma_slots(mte_to_node(mas.node), 7107 mte_node_type(mas.node)); 7108 } else { 7109 offset++; 7110 } 7111 7112 } while (!mas_is_none(&mas)); 7113 } 7114 7115 /* 7116 * validate a maple tree by checking: 7117 * 1. The limits (pivots are within mas->min to mas->max) 7118 * 2. The gap is correctly set in the parents 7119 */ 7120 void mt_validate(struct maple_tree *mt) 7121 { 7122 unsigned char end; 7123 7124 MA_STATE(mas, mt, 0, 0); 7125 rcu_read_lock(); 7126 mas_start(&mas); 7127 if (!mas_searchable(&mas)) 7128 goto done; 7129 7130 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node)); 7131 while (!mas_is_none(&mas)) { 7132 MT_BUG_ON(mas.tree, mte_dead_node(mas.node)); 7133 if (!mte_is_root(mas.node)) { 7134 end = mas_data_end(&mas); 7135 if ((end < mt_min_slot_count(mas.node)) && 7136 (mas.max != ULONG_MAX)) { 7137 pr_err("Invalid size %u of %p\n", end, 7138 mas_mn(&mas)); 7139 MT_BUG_ON(mas.tree, 1); 7140 } 7141 7142 } 7143 mas_validate_parent_slot(&mas); 7144 mas_validate_child_slot(&mas); 7145 mas_validate_limits(&mas); 7146 if (mt_is_alloc(mt)) 7147 mas_validate_gaps(&mas); 7148 mas_dfs_postorder(&mas, ULONG_MAX); 7149 } 7150 mt_validate_nulls(mt); 7151 done: 7152 rcu_read_unlock(); 7153 7154 } 7155 EXPORT_SYMBOL_GPL(mt_validate); 7156 7157 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7158