xref: /openbmc/linux/lib/maple_tree.c (revision 4981b8a2d9fafa0d8060c83ffb19cd55c6798046)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  */
8 
9 /*
10  * DOC: Interesting implementation details of the Maple Tree
11  *
12  * Each node type has a number of slots for entries and a number of slots for
13  * pivots.  In the case of dense nodes, the pivots are implied by the position
14  * and are simply the slot index + the minimum of the node.
15  *
16  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
17  * indicate that the tree is specifying ranges,  Pivots may appear in the
18  * subtree with an entry attached to the value where as keys are unique to a
19  * specific position of a B-tree.  Pivot values are inclusive of the slot with
20  * the same index.
21  *
22  *
23  * The following illustrates the layout of a range64 nodes slots and pivots.
24  *
25  *
26  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
28  *           │   │   │   │     │    │    │    │    └─ Implied maximum
29  *           │   │   │   │     │    │    │    └─ Pivot 14
30  *           │   │   │   │     │    │    └─ Pivot 13
31  *           │   │   │   │     │    └─ Pivot 12
32  *           │   │   │   │     └─ Pivot 11
33  *           │   │   │   └─ Pivot 2
34  *           │   │   └─ Pivot 1
35  *           │   └─ Pivot 0
36  *           └─  Implied minimum
37  *
38  * Slot contents:
39  *  Internal (non-leaf) nodes contain pointers to other nodes.
40  *  Leaf nodes contain entries.
41  *
42  * The location of interest is often referred to as an offset.  All offsets have
43  * a slot, but the last offset has an implied pivot from the node above (or
44  * UINT_MAX for the root node.
45  *
46  * Ranges complicate certain write activities.  When modifying any of
47  * the B-tree variants, it is known that one entry will either be added or
48  * deleted.  When modifying the Maple Tree, one store operation may overwrite
49  * the entire data set, or one half of the tree, or the middle half of the tree.
50  *
51  */
52 
53 
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
64 
65 #define MA_ROOT_PARENT 1
66 
67 /*
68  * Maple state flags
69  * * MA_STATE_BULK		- Bulk insert mode
70  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
71  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
72  */
73 #define MA_STATE_BULK		1
74 #define MA_STATE_REBALANCE	2
75 #define MA_STATE_PREALLOC	4
76 
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
79 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
80 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
81 static struct kmem_cache *maple_node_cache;
82 
83 #ifdef CONFIG_DEBUG_MAPLE_TREE
84 static const unsigned long mt_max[] = {
85 	[maple_dense]		= MAPLE_NODE_SLOTS,
86 	[maple_leaf_64]		= ULONG_MAX,
87 	[maple_range_64]	= ULONG_MAX,
88 	[maple_arange_64]	= ULONG_MAX,
89 };
90 #define mt_node_max(x) mt_max[mte_node_type(x)]
91 #endif
92 
93 static const unsigned char mt_slots[] = {
94 	[maple_dense]		= MAPLE_NODE_SLOTS,
95 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
96 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
97 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
98 };
99 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
100 
101 static const unsigned char mt_pivots[] = {
102 	[maple_dense]		= 0,
103 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
104 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
105 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
106 };
107 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
108 
109 static const unsigned char mt_min_slots[] = {
110 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
111 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
112 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
113 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
114 };
115 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
116 
117 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
118 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
119 
120 struct maple_big_node {
121 	struct maple_pnode *parent;
122 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
123 	union {
124 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
125 		struct {
126 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
127 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
128 		};
129 	};
130 	unsigned char b_end;
131 	enum maple_type type;
132 };
133 
134 /*
135  * The maple_subtree_state is used to build a tree to replace a segment of an
136  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
137  * dead node and restart on updates.
138  */
139 struct maple_subtree_state {
140 	struct ma_state *orig_l;	/* Original left side of subtree */
141 	struct ma_state *orig_r;	/* Original right side of subtree */
142 	struct ma_state *l;		/* New left side of subtree */
143 	struct ma_state *m;		/* New middle of subtree (rare) */
144 	struct ma_state *r;		/* New right side of subtree */
145 	struct ma_topiary *free;	/* nodes to be freed */
146 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
147 	struct maple_big_node *bn;
148 };
149 
150 #ifdef CONFIG_KASAN_STACK
151 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
152 #define noinline_for_kasan noinline_for_stack
153 #else
154 #define noinline_for_kasan inline
155 #endif
156 
157 /* Functions */
158 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
159 {
160 	return kmem_cache_alloc(maple_node_cache, gfp);
161 }
162 
163 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
164 {
165 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
166 }
167 
168 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
169 {
170 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
171 }
172 
173 static void mt_free_rcu(struct rcu_head *head)
174 {
175 	struct maple_node *node = container_of(head, struct maple_node, rcu);
176 
177 	kmem_cache_free(maple_node_cache, node);
178 }
179 
180 /*
181  * ma_free_rcu() - Use rcu callback to free a maple node
182  * @node: The node to free
183  *
184  * The maple tree uses the parent pointer to indicate this node is no longer in
185  * use and will be freed.
186  */
187 static void ma_free_rcu(struct maple_node *node)
188 {
189 	WARN_ON(node->parent != ma_parent_ptr(node));
190 	call_rcu(&node->rcu, mt_free_rcu);
191 }
192 
193 static void mas_set_height(struct ma_state *mas)
194 {
195 	unsigned int new_flags = mas->tree->ma_flags;
196 
197 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
198 	MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
199 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
200 	mas->tree->ma_flags = new_flags;
201 }
202 
203 static unsigned int mas_mt_height(struct ma_state *mas)
204 {
205 	return mt_height(mas->tree);
206 }
207 
208 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
209 {
210 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
211 		MAPLE_NODE_TYPE_MASK;
212 }
213 
214 static inline bool ma_is_dense(const enum maple_type type)
215 {
216 	return type < maple_leaf_64;
217 }
218 
219 static inline bool ma_is_leaf(const enum maple_type type)
220 {
221 	return type < maple_range_64;
222 }
223 
224 static inline bool mte_is_leaf(const struct maple_enode *entry)
225 {
226 	return ma_is_leaf(mte_node_type(entry));
227 }
228 
229 /*
230  * We also reserve values with the bottom two bits set to '10' which are
231  * below 4096
232  */
233 static inline bool mt_is_reserved(const void *entry)
234 {
235 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
236 		xa_is_internal(entry);
237 }
238 
239 static inline void mas_set_err(struct ma_state *mas, long err)
240 {
241 	mas->node = MA_ERROR(err);
242 }
243 
244 static inline bool mas_is_ptr(const struct ma_state *mas)
245 {
246 	return mas->node == MAS_ROOT;
247 }
248 
249 static inline bool mas_is_start(const struct ma_state *mas)
250 {
251 	return mas->node == MAS_START;
252 }
253 
254 bool mas_is_err(struct ma_state *mas)
255 {
256 	return xa_is_err(mas->node);
257 }
258 
259 static __always_inline bool mas_is_overflow(struct ma_state *mas)
260 {
261 	if (unlikely(mas->node == MAS_OVERFLOW))
262 		return true;
263 
264 	return false;
265 }
266 
267 static __always_inline bool mas_is_underflow(struct ma_state *mas)
268 {
269 	if (unlikely(mas->node == MAS_UNDERFLOW))
270 		return true;
271 
272 	return false;
273 }
274 
275 static inline bool mas_searchable(struct ma_state *mas)
276 {
277 	if (mas_is_none(mas))
278 		return false;
279 
280 	if (mas_is_ptr(mas))
281 		return false;
282 
283 	return true;
284 }
285 
286 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
287 {
288 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
289 }
290 
291 /*
292  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
293  * @entry: The maple encoded node
294  *
295  * Return: a maple topiary pointer
296  */
297 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
298 {
299 	return (struct maple_topiary *)
300 		((unsigned long)entry & ~MAPLE_NODE_MASK);
301 }
302 
303 /*
304  * mas_mn() - Get the maple state node.
305  * @mas: The maple state
306  *
307  * Return: the maple node (not encoded - bare pointer).
308  */
309 static inline struct maple_node *mas_mn(const struct ma_state *mas)
310 {
311 	return mte_to_node(mas->node);
312 }
313 
314 /*
315  * mte_set_node_dead() - Set a maple encoded node as dead.
316  * @mn: The maple encoded node.
317  */
318 static inline void mte_set_node_dead(struct maple_enode *mn)
319 {
320 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
321 	smp_wmb(); /* Needed for RCU */
322 }
323 
324 /* Bit 1 indicates the root is a node */
325 #define MAPLE_ROOT_NODE			0x02
326 /* maple_type stored bit 3-6 */
327 #define MAPLE_ENODE_TYPE_SHIFT		0x03
328 /* Bit 2 means a NULL somewhere below */
329 #define MAPLE_ENODE_NULL		0x04
330 
331 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
332 					     enum maple_type type)
333 {
334 	return (void *)((unsigned long)node |
335 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
336 }
337 
338 static inline void *mte_mk_root(const struct maple_enode *node)
339 {
340 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
341 }
342 
343 static inline void *mte_safe_root(const struct maple_enode *node)
344 {
345 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
346 }
347 
348 static inline void *mte_set_full(const struct maple_enode *node)
349 {
350 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
351 }
352 
353 static inline void *mte_clear_full(const struct maple_enode *node)
354 {
355 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
356 }
357 
358 static inline bool mte_has_null(const struct maple_enode *node)
359 {
360 	return (unsigned long)node & MAPLE_ENODE_NULL;
361 }
362 
363 static inline bool ma_is_root(struct maple_node *node)
364 {
365 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
366 }
367 
368 static inline bool mte_is_root(const struct maple_enode *node)
369 {
370 	return ma_is_root(mte_to_node(node));
371 }
372 
373 static inline bool mas_is_root_limits(const struct ma_state *mas)
374 {
375 	return !mas->min && mas->max == ULONG_MAX;
376 }
377 
378 static inline bool mt_is_alloc(struct maple_tree *mt)
379 {
380 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
381 }
382 
383 /*
384  * The Parent Pointer
385  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
386  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
387  * bit values need an extra bit to store the offset.  This extra bit comes from
388  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
389  * indicate if bit 2 is part of the type or the slot.
390  *
391  * Note types:
392  *  0x??1 = Root
393  *  0x?00 = 16 bit nodes
394  *  0x010 = 32 bit nodes
395  *  0x110 = 64 bit nodes
396  *
397  * Slot size and alignment
398  *  0b??1 : Root
399  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
400  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
401  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
402  */
403 
404 #define MAPLE_PARENT_ROOT		0x01
405 
406 #define MAPLE_PARENT_SLOT_SHIFT		0x03
407 #define MAPLE_PARENT_SLOT_MASK		0xF8
408 
409 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
410 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
411 
412 #define MAPLE_PARENT_RANGE64		0x06
413 #define MAPLE_PARENT_RANGE32		0x04
414 #define MAPLE_PARENT_NOT_RANGE16	0x02
415 
416 /*
417  * mte_parent_shift() - Get the parent shift for the slot storage.
418  * @parent: The parent pointer cast as an unsigned long
419  * Return: The shift into that pointer to the star to of the slot
420  */
421 static inline unsigned long mte_parent_shift(unsigned long parent)
422 {
423 	/* Note bit 1 == 0 means 16B */
424 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
425 		return MAPLE_PARENT_SLOT_SHIFT;
426 
427 	return MAPLE_PARENT_16B_SLOT_SHIFT;
428 }
429 
430 /*
431  * mte_parent_slot_mask() - Get the slot mask for the parent.
432  * @parent: The parent pointer cast as an unsigned long.
433  * Return: The slot mask for that parent.
434  */
435 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
436 {
437 	/* Note bit 1 == 0 means 16B */
438 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
439 		return MAPLE_PARENT_SLOT_MASK;
440 
441 	return MAPLE_PARENT_16B_SLOT_MASK;
442 }
443 
444 /*
445  * mas_parent_type() - Return the maple_type of the parent from the stored
446  * parent type.
447  * @mas: The maple state
448  * @enode: The maple_enode to extract the parent's enum
449  * Return: The node->parent maple_type
450  */
451 static inline
452 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
453 {
454 	unsigned long p_type;
455 
456 	p_type = (unsigned long)mte_to_node(enode)->parent;
457 	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
458 		return 0;
459 
460 	p_type &= MAPLE_NODE_MASK;
461 	p_type &= ~mte_parent_slot_mask(p_type);
462 	switch (p_type) {
463 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
464 		if (mt_is_alloc(mas->tree))
465 			return maple_arange_64;
466 		return maple_range_64;
467 	}
468 
469 	return 0;
470 }
471 
472 /*
473  * mas_set_parent() - Set the parent node and encode the slot
474  * @enode: The encoded maple node.
475  * @parent: The encoded maple node that is the parent of @enode.
476  * @slot: The slot that @enode resides in @parent.
477  *
478  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
479  * parent type.
480  */
481 static inline
482 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
483 		    const struct maple_enode *parent, unsigned char slot)
484 {
485 	unsigned long val = (unsigned long)parent;
486 	unsigned long shift;
487 	unsigned long type;
488 	enum maple_type p_type = mte_node_type(parent);
489 
490 	MAS_BUG_ON(mas, p_type == maple_dense);
491 	MAS_BUG_ON(mas, p_type == maple_leaf_64);
492 
493 	switch (p_type) {
494 	case maple_range_64:
495 	case maple_arange_64:
496 		shift = MAPLE_PARENT_SLOT_SHIFT;
497 		type = MAPLE_PARENT_RANGE64;
498 		break;
499 	default:
500 	case maple_dense:
501 	case maple_leaf_64:
502 		shift = type = 0;
503 		break;
504 	}
505 
506 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
507 	val |= (slot << shift) | type;
508 	mte_to_node(enode)->parent = ma_parent_ptr(val);
509 }
510 
511 /*
512  * mte_parent_slot() - get the parent slot of @enode.
513  * @enode: The encoded maple node.
514  *
515  * Return: The slot in the parent node where @enode resides.
516  */
517 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
518 {
519 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
520 
521 	if (val & MA_ROOT_PARENT)
522 		return 0;
523 
524 	/*
525 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
526 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
527 	 */
528 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
529 }
530 
531 /*
532  * mte_parent() - Get the parent of @node.
533  * @node: The encoded maple node.
534  *
535  * Return: The parent maple node.
536  */
537 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
538 {
539 	return (void *)((unsigned long)
540 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
541 }
542 
543 /*
544  * ma_dead_node() - check if the @enode is dead.
545  * @enode: The encoded maple node
546  *
547  * Return: true if dead, false otherwise.
548  */
549 static inline bool ma_dead_node(const struct maple_node *node)
550 {
551 	struct maple_node *parent;
552 
553 	/* Do not reorder reads from the node prior to the parent check */
554 	smp_rmb();
555 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
556 	return (parent == node);
557 }
558 
559 /*
560  * mte_dead_node() - check if the @enode is dead.
561  * @enode: The encoded maple node
562  *
563  * Return: true if dead, false otherwise.
564  */
565 static inline bool mte_dead_node(const struct maple_enode *enode)
566 {
567 	struct maple_node *parent, *node;
568 
569 	node = mte_to_node(enode);
570 	/* Do not reorder reads from the node prior to the parent check */
571 	smp_rmb();
572 	parent = mte_parent(enode);
573 	return (parent == node);
574 }
575 
576 /*
577  * mas_allocated() - Get the number of nodes allocated in a maple state.
578  * @mas: The maple state
579  *
580  * The ma_state alloc member is overloaded to hold a pointer to the first
581  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
582  * set, then the alloc contains the number of requested nodes.  If there is an
583  * allocated node, then the total allocated nodes is in that node.
584  *
585  * Return: The total number of nodes allocated
586  */
587 static inline unsigned long mas_allocated(const struct ma_state *mas)
588 {
589 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
590 		return 0;
591 
592 	return mas->alloc->total;
593 }
594 
595 /*
596  * mas_set_alloc_req() - Set the requested number of allocations.
597  * @mas: the maple state
598  * @count: the number of allocations.
599  *
600  * The requested number of allocations is either in the first allocated node,
601  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
602  * no allocated node.  Set the request either in the node or do the necessary
603  * encoding to store in @mas->alloc directly.
604  */
605 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
606 {
607 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
608 		if (!count)
609 			mas->alloc = NULL;
610 		else
611 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
612 		return;
613 	}
614 
615 	mas->alloc->request_count = count;
616 }
617 
618 /*
619  * mas_alloc_req() - get the requested number of allocations.
620  * @mas: The maple state
621  *
622  * The alloc count is either stored directly in @mas, or in
623  * @mas->alloc->request_count if there is at least one node allocated.  Decode
624  * the request count if it's stored directly in @mas->alloc.
625  *
626  * Return: The allocation request count.
627  */
628 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
629 {
630 	if ((unsigned long)mas->alloc & 0x1)
631 		return (unsigned long)(mas->alloc) >> 1;
632 	else if (mas->alloc)
633 		return mas->alloc->request_count;
634 	return 0;
635 }
636 
637 /*
638  * ma_pivots() - Get a pointer to the maple node pivots.
639  * @node - the maple node
640  * @type - the node type
641  *
642  * In the event of a dead node, this array may be %NULL
643  *
644  * Return: A pointer to the maple node pivots
645  */
646 static inline unsigned long *ma_pivots(struct maple_node *node,
647 					   enum maple_type type)
648 {
649 	switch (type) {
650 	case maple_arange_64:
651 		return node->ma64.pivot;
652 	case maple_range_64:
653 	case maple_leaf_64:
654 		return node->mr64.pivot;
655 	case maple_dense:
656 		return NULL;
657 	}
658 	return NULL;
659 }
660 
661 /*
662  * ma_gaps() - Get a pointer to the maple node gaps.
663  * @node - the maple node
664  * @type - the node type
665  *
666  * Return: A pointer to the maple node gaps
667  */
668 static inline unsigned long *ma_gaps(struct maple_node *node,
669 				     enum maple_type type)
670 {
671 	switch (type) {
672 	case maple_arange_64:
673 		return node->ma64.gap;
674 	case maple_range_64:
675 	case maple_leaf_64:
676 	case maple_dense:
677 		return NULL;
678 	}
679 	return NULL;
680 }
681 
682 /*
683  * mas_pivot() - Get the pivot at @piv of the maple encoded node.
684  * @mas: The maple state.
685  * @piv: The pivot.
686  *
687  * Return: the pivot at @piv of @mn.
688  */
689 static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv)
690 {
691 	struct maple_node *node = mas_mn(mas);
692 	enum maple_type type = mte_node_type(mas->node);
693 
694 	if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) {
695 		mas_set_err(mas, -EIO);
696 		return 0;
697 	}
698 
699 	switch (type) {
700 	case maple_arange_64:
701 		return node->ma64.pivot[piv];
702 	case maple_range_64:
703 	case maple_leaf_64:
704 		return node->mr64.pivot[piv];
705 	case maple_dense:
706 		return 0;
707 	}
708 	return 0;
709 }
710 
711 /*
712  * mas_safe_pivot() - get the pivot at @piv or mas->max.
713  * @mas: The maple state
714  * @pivots: The pointer to the maple node pivots
715  * @piv: The pivot to fetch
716  * @type: The maple node type
717  *
718  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
719  * otherwise.
720  */
721 static inline unsigned long
722 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
723 	       unsigned char piv, enum maple_type type)
724 {
725 	if (piv >= mt_pivots[type])
726 		return mas->max;
727 
728 	return pivots[piv];
729 }
730 
731 /*
732  * mas_safe_min() - Return the minimum for a given offset.
733  * @mas: The maple state
734  * @pivots: The pointer to the maple node pivots
735  * @offset: The offset into the pivot array
736  *
737  * Return: The minimum range value that is contained in @offset.
738  */
739 static inline unsigned long
740 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
741 {
742 	if (likely(offset))
743 		return pivots[offset - 1] + 1;
744 
745 	return mas->min;
746 }
747 
748 /*
749  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
750  * @mn: The encoded maple node
751  * @piv: The pivot offset
752  * @val: The value of the pivot
753  */
754 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
755 				unsigned long val)
756 {
757 	struct maple_node *node = mte_to_node(mn);
758 	enum maple_type type = mte_node_type(mn);
759 
760 	BUG_ON(piv >= mt_pivots[type]);
761 	switch (type) {
762 	default:
763 	case maple_range_64:
764 	case maple_leaf_64:
765 		node->mr64.pivot[piv] = val;
766 		break;
767 	case maple_arange_64:
768 		node->ma64.pivot[piv] = val;
769 		break;
770 	case maple_dense:
771 		break;
772 	}
773 
774 }
775 
776 /*
777  * ma_slots() - Get a pointer to the maple node slots.
778  * @mn: The maple node
779  * @mt: The maple node type
780  *
781  * Return: A pointer to the maple node slots
782  */
783 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
784 {
785 	switch (mt) {
786 	default:
787 	case maple_arange_64:
788 		return mn->ma64.slot;
789 	case maple_range_64:
790 	case maple_leaf_64:
791 		return mn->mr64.slot;
792 	case maple_dense:
793 		return mn->slot;
794 	}
795 }
796 
797 static inline bool mt_write_locked(const struct maple_tree *mt)
798 {
799 	return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
800 		lockdep_is_held(&mt->ma_lock);
801 }
802 
803 static inline bool mt_locked(const struct maple_tree *mt)
804 {
805 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
806 		lockdep_is_held(&mt->ma_lock);
807 }
808 
809 static inline void *mt_slot(const struct maple_tree *mt,
810 		void __rcu **slots, unsigned char offset)
811 {
812 	return rcu_dereference_check(slots[offset], mt_locked(mt));
813 }
814 
815 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
816 				   unsigned char offset)
817 {
818 	return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
819 }
820 /*
821  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
822  * @mas: The maple state
823  * @slots: The pointer to the slots
824  * @offset: The offset into the slots array to fetch
825  *
826  * Return: The entry stored in @slots at the @offset.
827  */
828 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
829 				       unsigned char offset)
830 {
831 	return mt_slot_locked(mas->tree, slots, offset);
832 }
833 
834 /*
835  * mas_slot() - Get the slot value when not holding the maple tree lock.
836  * @mas: The maple state
837  * @slots: The pointer to the slots
838  * @offset: The offset into the slots array to fetch
839  *
840  * Return: The entry stored in @slots at the @offset
841  */
842 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
843 			     unsigned char offset)
844 {
845 	return mt_slot(mas->tree, slots, offset);
846 }
847 
848 /*
849  * mas_root() - Get the maple tree root.
850  * @mas: The maple state.
851  *
852  * Return: The pointer to the root of the tree
853  */
854 static inline void *mas_root(struct ma_state *mas)
855 {
856 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
857 }
858 
859 static inline void *mt_root_locked(struct maple_tree *mt)
860 {
861 	return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
862 }
863 
864 /*
865  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
866  * @mas: The maple state.
867  *
868  * Return: The pointer to the root of the tree
869  */
870 static inline void *mas_root_locked(struct ma_state *mas)
871 {
872 	return mt_root_locked(mas->tree);
873 }
874 
875 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
876 					     enum maple_type mt)
877 {
878 	switch (mt) {
879 	case maple_arange_64:
880 		return &mn->ma64.meta;
881 	default:
882 		return &mn->mr64.meta;
883 	}
884 }
885 
886 /*
887  * ma_set_meta() - Set the metadata information of a node.
888  * @mn: The maple node
889  * @mt: The maple node type
890  * @offset: The offset of the highest sub-gap in this node.
891  * @end: The end of the data in this node.
892  */
893 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
894 			       unsigned char offset, unsigned char end)
895 {
896 	struct maple_metadata *meta = ma_meta(mn, mt);
897 
898 	meta->gap = offset;
899 	meta->end = end;
900 }
901 
902 /*
903  * mt_clear_meta() - clear the metadata information of a node, if it exists
904  * @mt: The maple tree
905  * @mn: The maple node
906  * @type: The maple node type
907  * @offset: The offset of the highest sub-gap in this node.
908  * @end: The end of the data in this node.
909  */
910 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
911 				  enum maple_type type)
912 {
913 	struct maple_metadata *meta;
914 	unsigned long *pivots;
915 	void __rcu **slots;
916 	void *next;
917 
918 	switch (type) {
919 	case maple_range_64:
920 		pivots = mn->mr64.pivot;
921 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
922 			slots = mn->mr64.slot;
923 			next = mt_slot_locked(mt, slots,
924 					      MAPLE_RANGE64_SLOTS - 1);
925 			if (unlikely((mte_to_node(next) &&
926 				      mte_node_type(next))))
927 				return; /* no metadata, could be node */
928 		}
929 		fallthrough;
930 	case maple_arange_64:
931 		meta = ma_meta(mn, type);
932 		break;
933 	default:
934 		return;
935 	}
936 
937 	meta->gap = 0;
938 	meta->end = 0;
939 }
940 
941 /*
942  * ma_meta_end() - Get the data end of a node from the metadata
943  * @mn: The maple node
944  * @mt: The maple node type
945  */
946 static inline unsigned char ma_meta_end(struct maple_node *mn,
947 					enum maple_type mt)
948 {
949 	struct maple_metadata *meta = ma_meta(mn, mt);
950 
951 	return meta->end;
952 }
953 
954 /*
955  * ma_meta_gap() - Get the largest gap location of a node from the metadata
956  * @mn: The maple node
957  * @mt: The maple node type
958  */
959 static inline unsigned char ma_meta_gap(struct maple_node *mn,
960 					enum maple_type mt)
961 {
962 	return mn->ma64.meta.gap;
963 }
964 
965 /*
966  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
967  * @mn: The maple node
968  * @mn: The maple node type
969  * @offset: The location of the largest gap.
970  */
971 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
972 				   unsigned char offset)
973 {
974 
975 	struct maple_metadata *meta = ma_meta(mn, mt);
976 
977 	meta->gap = offset;
978 }
979 
980 /*
981  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
982  * @mat - the ma_topiary, a linked list of dead nodes.
983  * @dead_enode - the node to be marked as dead and added to the tail of the list
984  *
985  * Add the @dead_enode to the linked list in @mat.
986  */
987 static inline void mat_add(struct ma_topiary *mat,
988 			   struct maple_enode *dead_enode)
989 {
990 	mte_set_node_dead(dead_enode);
991 	mte_to_mat(dead_enode)->next = NULL;
992 	if (!mat->tail) {
993 		mat->tail = mat->head = dead_enode;
994 		return;
995 	}
996 
997 	mte_to_mat(mat->tail)->next = dead_enode;
998 	mat->tail = dead_enode;
999 }
1000 
1001 static void mt_free_walk(struct rcu_head *head);
1002 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
1003 			    bool free);
1004 /*
1005  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1006  * @mas - the maple state
1007  * @mat - the ma_topiary linked list of dead nodes to free.
1008  *
1009  * Destroy walk a dead list.
1010  */
1011 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1012 {
1013 	struct maple_enode *next;
1014 	struct maple_node *node;
1015 	bool in_rcu = mt_in_rcu(mas->tree);
1016 
1017 	while (mat->head) {
1018 		next = mte_to_mat(mat->head)->next;
1019 		node = mte_to_node(mat->head);
1020 		mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1021 		if (in_rcu)
1022 			call_rcu(&node->rcu, mt_free_walk);
1023 		mat->head = next;
1024 	}
1025 }
1026 /*
1027  * mas_descend() - Descend into the slot stored in the ma_state.
1028  * @mas - the maple state.
1029  *
1030  * Note: Not RCU safe, only use in write side or debug code.
1031  */
1032 static inline void mas_descend(struct ma_state *mas)
1033 {
1034 	enum maple_type type;
1035 	unsigned long *pivots;
1036 	struct maple_node *node;
1037 	void __rcu **slots;
1038 
1039 	node = mas_mn(mas);
1040 	type = mte_node_type(mas->node);
1041 	pivots = ma_pivots(node, type);
1042 	slots = ma_slots(node, type);
1043 
1044 	if (mas->offset)
1045 		mas->min = pivots[mas->offset - 1] + 1;
1046 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1047 	mas->node = mas_slot(mas, slots, mas->offset);
1048 }
1049 
1050 /*
1051  * mte_set_gap() - Set a maple node gap.
1052  * @mn: The encoded maple node
1053  * @gap: The offset of the gap to set
1054  * @val: The gap value
1055  */
1056 static inline void mte_set_gap(const struct maple_enode *mn,
1057 				 unsigned char gap, unsigned long val)
1058 {
1059 	switch (mte_node_type(mn)) {
1060 	default:
1061 		break;
1062 	case maple_arange_64:
1063 		mte_to_node(mn)->ma64.gap[gap] = val;
1064 		break;
1065 	}
1066 }
1067 
1068 /*
1069  * mas_ascend() - Walk up a level of the tree.
1070  * @mas: The maple state
1071  *
1072  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1073  * may cause several levels of walking up to find the correct min and max.
1074  * May find a dead node which will cause a premature return.
1075  * Return: 1 on dead node, 0 otherwise
1076  */
1077 static int mas_ascend(struct ma_state *mas)
1078 {
1079 	struct maple_enode *p_enode; /* parent enode. */
1080 	struct maple_enode *a_enode; /* ancestor enode. */
1081 	struct maple_node *a_node; /* ancestor node. */
1082 	struct maple_node *p_node; /* parent node. */
1083 	unsigned char a_slot;
1084 	enum maple_type a_type;
1085 	unsigned long min, max;
1086 	unsigned long *pivots;
1087 	bool set_max = false, set_min = false;
1088 
1089 	a_node = mas_mn(mas);
1090 	if (ma_is_root(a_node)) {
1091 		mas->offset = 0;
1092 		return 0;
1093 	}
1094 
1095 	p_node = mte_parent(mas->node);
1096 	if (unlikely(a_node == p_node))
1097 		return 1;
1098 
1099 	a_type = mas_parent_type(mas, mas->node);
1100 	mas->offset = mte_parent_slot(mas->node);
1101 	a_enode = mt_mk_node(p_node, a_type);
1102 
1103 	/* Check to make sure all parent information is still accurate */
1104 	if (p_node != mte_parent(mas->node))
1105 		return 1;
1106 
1107 	mas->node = a_enode;
1108 
1109 	if (mte_is_root(a_enode)) {
1110 		mas->max = ULONG_MAX;
1111 		mas->min = 0;
1112 		return 0;
1113 	}
1114 
1115 	if (!mas->min)
1116 		set_min = true;
1117 
1118 	if (mas->max == ULONG_MAX)
1119 		set_max = true;
1120 
1121 	min = 0;
1122 	max = ULONG_MAX;
1123 	do {
1124 		p_enode = a_enode;
1125 		a_type = mas_parent_type(mas, p_enode);
1126 		a_node = mte_parent(p_enode);
1127 		a_slot = mte_parent_slot(p_enode);
1128 		a_enode = mt_mk_node(a_node, a_type);
1129 		pivots = ma_pivots(a_node, a_type);
1130 
1131 		if (unlikely(ma_dead_node(a_node)))
1132 			return 1;
1133 
1134 		if (!set_min && a_slot) {
1135 			set_min = true;
1136 			min = pivots[a_slot - 1] + 1;
1137 		}
1138 
1139 		if (!set_max && a_slot < mt_pivots[a_type]) {
1140 			set_max = true;
1141 			max = pivots[a_slot];
1142 		}
1143 
1144 		if (unlikely(ma_dead_node(a_node)))
1145 			return 1;
1146 
1147 		if (unlikely(ma_is_root(a_node)))
1148 			break;
1149 
1150 	} while (!set_min || !set_max);
1151 
1152 	mas->max = max;
1153 	mas->min = min;
1154 	return 0;
1155 }
1156 
1157 /*
1158  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1159  * @mas: The maple state
1160  *
1161  * Return: A pointer to a maple node.
1162  */
1163 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1164 {
1165 	struct maple_alloc *ret, *node = mas->alloc;
1166 	unsigned long total = mas_allocated(mas);
1167 	unsigned int req = mas_alloc_req(mas);
1168 
1169 	/* nothing or a request pending. */
1170 	if (WARN_ON(!total))
1171 		return NULL;
1172 
1173 	if (total == 1) {
1174 		/* single allocation in this ma_state */
1175 		mas->alloc = NULL;
1176 		ret = node;
1177 		goto single_node;
1178 	}
1179 
1180 	if (node->node_count == 1) {
1181 		/* Single allocation in this node. */
1182 		mas->alloc = node->slot[0];
1183 		mas->alloc->total = node->total - 1;
1184 		ret = node;
1185 		goto new_head;
1186 	}
1187 	node->total--;
1188 	ret = node->slot[--node->node_count];
1189 	node->slot[node->node_count] = NULL;
1190 
1191 single_node:
1192 new_head:
1193 	if (req) {
1194 		req++;
1195 		mas_set_alloc_req(mas, req);
1196 	}
1197 
1198 	memset(ret, 0, sizeof(*ret));
1199 	return (struct maple_node *)ret;
1200 }
1201 
1202 /*
1203  * mas_push_node() - Push a node back on the maple state allocation.
1204  * @mas: The maple state
1205  * @used: The used maple node
1206  *
1207  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1208  * requested node count as necessary.
1209  */
1210 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1211 {
1212 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1213 	struct maple_alloc *head = mas->alloc;
1214 	unsigned long count;
1215 	unsigned int requested = mas_alloc_req(mas);
1216 
1217 	count = mas_allocated(mas);
1218 
1219 	reuse->request_count = 0;
1220 	reuse->node_count = 0;
1221 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1222 		head->slot[head->node_count++] = reuse;
1223 		head->total++;
1224 		goto done;
1225 	}
1226 
1227 	reuse->total = 1;
1228 	if ((head) && !((unsigned long)head & 0x1)) {
1229 		reuse->slot[0] = head;
1230 		reuse->node_count = 1;
1231 		reuse->total += head->total;
1232 	}
1233 
1234 	mas->alloc = reuse;
1235 done:
1236 	if (requested > 1)
1237 		mas_set_alloc_req(mas, requested - 1);
1238 }
1239 
1240 /*
1241  * mas_alloc_nodes() - Allocate nodes into a maple state
1242  * @mas: The maple state
1243  * @gfp: The GFP Flags
1244  */
1245 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1246 {
1247 	struct maple_alloc *node;
1248 	unsigned long allocated = mas_allocated(mas);
1249 	unsigned int requested = mas_alloc_req(mas);
1250 	unsigned int count;
1251 	void **slots = NULL;
1252 	unsigned int max_req = 0;
1253 
1254 	if (!requested)
1255 		return;
1256 
1257 	mas_set_alloc_req(mas, 0);
1258 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1259 		if (allocated)
1260 			return;
1261 		WARN_ON(!allocated);
1262 	}
1263 
1264 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1265 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1266 		if (!node)
1267 			goto nomem_one;
1268 
1269 		if (allocated) {
1270 			node->slot[0] = mas->alloc;
1271 			node->node_count = 1;
1272 		} else {
1273 			node->node_count = 0;
1274 		}
1275 
1276 		mas->alloc = node;
1277 		node->total = ++allocated;
1278 		requested--;
1279 	}
1280 
1281 	node = mas->alloc;
1282 	node->request_count = 0;
1283 	while (requested) {
1284 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1285 		slots = (void **)&node->slot[node->node_count];
1286 		max_req = min(requested, max_req);
1287 		count = mt_alloc_bulk(gfp, max_req, slots);
1288 		if (!count)
1289 			goto nomem_bulk;
1290 
1291 		if (node->node_count == 0) {
1292 			node->slot[0]->node_count = 0;
1293 			node->slot[0]->request_count = 0;
1294 		}
1295 
1296 		node->node_count += count;
1297 		allocated += count;
1298 		node = node->slot[0];
1299 		requested -= count;
1300 	}
1301 	mas->alloc->total = allocated;
1302 	return;
1303 
1304 nomem_bulk:
1305 	/* Clean up potential freed allocations on bulk failure */
1306 	memset(slots, 0, max_req * sizeof(unsigned long));
1307 nomem_one:
1308 	mas_set_alloc_req(mas, requested);
1309 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1310 		mas->alloc->total = allocated;
1311 	mas_set_err(mas, -ENOMEM);
1312 }
1313 
1314 /*
1315  * mas_free() - Free an encoded maple node
1316  * @mas: The maple state
1317  * @used: The encoded maple node to free.
1318  *
1319  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1320  * otherwise.
1321  */
1322 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1323 {
1324 	struct maple_node *tmp = mte_to_node(used);
1325 
1326 	if (mt_in_rcu(mas->tree))
1327 		ma_free_rcu(tmp);
1328 	else
1329 		mas_push_node(mas, tmp);
1330 }
1331 
1332 /*
1333  * mas_node_count() - Check if enough nodes are allocated and request more if
1334  * there is not enough nodes.
1335  * @mas: The maple state
1336  * @count: The number of nodes needed
1337  * @gfp: the gfp flags
1338  */
1339 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1340 {
1341 	unsigned long allocated = mas_allocated(mas);
1342 
1343 	if (allocated < count) {
1344 		mas_set_alloc_req(mas, count - allocated);
1345 		mas_alloc_nodes(mas, gfp);
1346 	}
1347 }
1348 
1349 /*
1350  * mas_node_count() - Check if enough nodes are allocated and request more if
1351  * there is not enough nodes.
1352  * @mas: The maple state
1353  * @count: The number of nodes needed
1354  *
1355  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1356  */
1357 static void mas_node_count(struct ma_state *mas, int count)
1358 {
1359 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1360 }
1361 
1362 /*
1363  * mas_start() - Sets up maple state for operations.
1364  * @mas: The maple state.
1365  *
1366  * If mas->node == MAS_START, then set the min, max and depth to
1367  * defaults.
1368  *
1369  * Return:
1370  * - If mas->node is an error or not MAS_START, return NULL.
1371  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
1372  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
1373  * - If it's a tree:            NULL & mas->node == safe root node.
1374  */
1375 static inline struct maple_enode *mas_start(struct ma_state *mas)
1376 {
1377 	if (likely(mas_is_start(mas))) {
1378 		struct maple_enode *root;
1379 
1380 		mas->min = 0;
1381 		mas->max = ULONG_MAX;
1382 
1383 retry:
1384 		mas->depth = 0;
1385 		root = mas_root(mas);
1386 		/* Tree with nodes */
1387 		if (likely(xa_is_node(root))) {
1388 			mas->depth = 1;
1389 			mas->node = mte_safe_root(root);
1390 			mas->offset = 0;
1391 			if (mte_dead_node(mas->node))
1392 				goto retry;
1393 
1394 			return NULL;
1395 		}
1396 
1397 		/* empty tree */
1398 		if (unlikely(!root)) {
1399 			mas->node = MAS_NONE;
1400 			mas->offset = MAPLE_NODE_SLOTS;
1401 			return NULL;
1402 		}
1403 
1404 		/* Single entry tree */
1405 		mas->node = MAS_ROOT;
1406 		mas->offset = MAPLE_NODE_SLOTS;
1407 
1408 		/* Single entry tree. */
1409 		if (mas->index > 0)
1410 			return NULL;
1411 
1412 		return root;
1413 	}
1414 
1415 	return NULL;
1416 }
1417 
1418 /*
1419  * ma_data_end() - Find the end of the data in a node.
1420  * @node: The maple node
1421  * @type: The maple node type
1422  * @pivots: The array of pivots in the node
1423  * @max: The maximum value in the node
1424  *
1425  * Uses metadata to find the end of the data when possible.
1426  * Return: The zero indexed last slot with data (may be null).
1427  */
1428 static inline unsigned char ma_data_end(struct maple_node *node,
1429 					enum maple_type type,
1430 					unsigned long *pivots,
1431 					unsigned long max)
1432 {
1433 	unsigned char offset;
1434 
1435 	if (!pivots)
1436 		return 0;
1437 
1438 	if (type == maple_arange_64)
1439 		return ma_meta_end(node, type);
1440 
1441 	offset = mt_pivots[type] - 1;
1442 	if (likely(!pivots[offset]))
1443 		return ma_meta_end(node, type);
1444 
1445 	if (likely(pivots[offset] == max))
1446 		return offset;
1447 
1448 	return mt_pivots[type];
1449 }
1450 
1451 /*
1452  * mas_data_end() - Find the end of the data (slot).
1453  * @mas: the maple state
1454  *
1455  * This method is optimized to check the metadata of a node if the node type
1456  * supports data end metadata.
1457  *
1458  * Return: The zero indexed last slot with data (may be null).
1459  */
1460 static inline unsigned char mas_data_end(struct ma_state *mas)
1461 {
1462 	enum maple_type type;
1463 	struct maple_node *node;
1464 	unsigned char offset;
1465 	unsigned long *pivots;
1466 
1467 	type = mte_node_type(mas->node);
1468 	node = mas_mn(mas);
1469 	if (type == maple_arange_64)
1470 		return ma_meta_end(node, type);
1471 
1472 	pivots = ma_pivots(node, type);
1473 	if (unlikely(ma_dead_node(node)))
1474 		return 0;
1475 
1476 	offset = mt_pivots[type] - 1;
1477 	if (likely(!pivots[offset]))
1478 		return ma_meta_end(node, type);
1479 
1480 	if (likely(pivots[offset] == mas->max))
1481 		return offset;
1482 
1483 	return mt_pivots[type];
1484 }
1485 
1486 /*
1487  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1488  * @mas - the maple state
1489  *
1490  * Return: The maximum gap in the leaf.
1491  */
1492 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1493 {
1494 	enum maple_type mt;
1495 	unsigned long pstart, gap, max_gap;
1496 	struct maple_node *mn;
1497 	unsigned long *pivots;
1498 	void __rcu **slots;
1499 	unsigned char i;
1500 	unsigned char max_piv;
1501 
1502 	mt = mte_node_type(mas->node);
1503 	mn = mas_mn(mas);
1504 	slots = ma_slots(mn, mt);
1505 	max_gap = 0;
1506 	if (unlikely(ma_is_dense(mt))) {
1507 		gap = 0;
1508 		for (i = 0; i < mt_slots[mt]; i++) {
1509 			if (slots[i]) {
1510 				if (gap > max_gap)
1511 					max_gap = gap;
1512 				gap = 0;
1513 			} else {
1514 				gap++;
1515 			}
1516 		}
1517 		if (gap > max_gap)
1518 			max_gap = gap;
1519 		return max_gap;
1520 	}
1521 
1522 	/*
1523 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1524 	 * be skipped if there is a gap in slot 0.
1525 	 */
1526 	pivots = ma_pivots(mn, mt);
1527 	if (likely(!slots[0])) {
1528 		max_gap = pivots[0] - mas->min + 1;
1529 		i = 2;
1530 	} else {
1531 		i = 1;
1532 	}
1533 
1534 	/* reduce max_piv as the special case is checked before the loop */
1535 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1536 	/*
1537 	 * Check end implied pivot which can only be a gap on the right most
1538 	 * node.
1539 	 */
1540 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1541 		gap = ULONG_MAX - pivots[max_piv];
1542 		if (gap > max_gap)
1543 			max_gap = gap;
1544 	}
1545 
1546 	for (; i <= max_piv; i++) {
1547 		/* data == no gap. */
1548 		if (likely(slots[i]))
1549 			continue;
1550 
1551 		pstart = pivots[i - 1];
1552 		gap = pivots[i] - pstart;
1553 		if (gap > max_gap)
1554 			max_gap = gap;
1555 
1556 		/* There cannot be two gaps in a row. */
1557 		i++;
1558 	}
1559 	return max_gap;
1560 }
1561 
1562 /*
1563  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1564  * @node: The maple node
1565  * @gaps: The pointer to the gaps
1566  * @mt: The maple node type
1567  * @*off: Pointer to store the offset location of the gap.
1568  *
1569  * Uses the metadata data end to scan backwards across set gaps.
1570  *
1571  * Return: The maximum gap value
1572  */
1573 static inline unsigned long
1574 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1575 	    unsigned char *off)
1576 {
1577 	unsigned char offset, i;
1578 	unsigned long max_gap = 0;
1579 
1580 	i = offset = ma_meta_end(node, mt);
1581 	do {
1582 		if (gaps[i] > max_gap) {
1583 			max_gap = gaps[i];
1584 			offset = i;
1585 		}
1586 	} while (i--);
1587 
1588 	*off = offset;
1589 	return max_gap;
1590 }
1591 
1592 /*
1593  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1594  * @mas: The maple state.
1595  *
1596  * Return: The gap value.
1597  */
1598 static inline unsigned long mas_max_gap(struct ma_state *mas)
1599 {
1600 	unsigned long *gaps;
1601 	unsigned char offset;
1602 	enum maple_type mt;
1603 	struct maple_node *node;
1604 
1605 	mt = mte_node_type(mas->node);
1606 	if (ma_is_leaf(mt))
1607 		return mas_leaf_max_gap(mas);
1608 
1609 	node = mas_mn(mas);
1610 	MAS_BUG_ON(mas, mt != maple_arange_64);
1611 	offset = ma_meta_gap(node, mt);
1612 	gaps = ma_gaps(node, mt);
1613 	return gaps[offset];
1614 }
1615 
1616 /*
1617  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1618  * @mas: The maple state
1619  * @offset: The gap offset in the parent to set
1620  * @new: The new gap value.
1621  *
1622  * Set the parent gap then continue to set the gap upwards, using the metadata
1623  * of the parent to see if it is necessary to check the node above.
1624  */
1625 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1626 		unsigned long new)
1627 {
1628 	unsigned long meta_gap = 0;
1629 	struct maple_node *pnode;
1630 	struct maple_enode *penode;
1631 	unsigned long *pgaps;
1632 	unsigned char meta_offset;
1633 	enum maple_type pmt;
1634 
1635 	pnode = mte_parent(mas->node);
1636 	pmt = mas_parent_type(mas, mas->node);
1637 	penode = mt_mk_node(pnode, pmt);
1638 	pgaps = ma_gaps(pnode, pmt);
1639 
1640 ascend:
1641 	MAS_BUG_ON(mas, pmt != maple_arange_64);
1642 	meta_offset = ma_meta_gap(pnode, pmt);
1643 	meta_gap = pgaps[meta_offset];
1644 
1645 	pgaps[offset] = new;
1646 
1647 	if (meta_gap == new)
1648 		return;
1649 
1650 	if (offset != meta_offset) {
1651 		if (meta_gap > new)
1652 			return;
1653 
1654 		ma_set_meta_gap(pnode, pmt, offset);
1655 	} else if (new < meta_gap) {
1656 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1657 		ma_set_meta_gap(pnode, pmt, meta_offset);
1658 	}
1659 
1660 	if (ma_is_root(pnode))
1661 		return;
1662 
1663 	/* Go to the parent node. */
1664 	pnode = mte_parent(penode);
1665 	pmt = mas_parent_type(mas, penode);
1666 	pgaps = ma_gaps(pnode, pmt);
1667 	offset = mte_parent_slot(penode);
1668 	penode = mt_mk_node(pnode, pmt);
1669 	goto ascend;
1670 }
1671 
1672 /*
1673  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1674  * @mas - the maple state.
1675  */
1676 static inline void mas_update_gap(struct ma_state *mas)
1677 {
1678 	unsigned char pslot;
1679 	unsigned long p_gap;
1680 	unsigned long max_gap;
1681 
1682 	if (!mt_is_alloc(mas->tree))
1683 		return;
1684 
1685 	if (mte_is_root(mas->node))
1686 		return;
1687 
1688 	max_gap = mas_max_gap(mas);
1689 
1690 	pslot = mte_parent_slot(mas->node);
1691 	p_gap = ma_gaps(mte_parent(mas->node),
1692 			mas_parent_type(mas, mas->node))[pslot];
1693 
1694 	if (p_gap != max_gap)
1695 		mas_parent_gap(mas, pslot, max_gap);
1696 }
1697 
1698 /*
1699  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1700  * @parent with the slot encoded.
1701  * @mas - the maple state (for the tree)
1702  * @parent - the maple encoded node containing the children.
1703  */
1704 static inline void mas_adopt_children(struct ma_state *mas,
1705 		struct maple_enode *parent)
1706 {
1707 	enum maple_type type = mte_node_type(parent);
1708 	struct maple_node *node = mte_to_node(parent);
1709 	void __rcu **slots = ma_slots(node, type);
1710 	unsigned long *pivots = ma_pivots(node, type);
1711 	struct maple_enode *child;
1712 	unsigned char offset;
1713 
1714 	offset = ma_data_end(node, type, pivots, mas->max);
1715 	do {
1716 		child = mas_slot_locked(mas, slots, offset);
1717 		mas_set_parent(mas, child, parent, offset);
1718 	} while (offset--);
1719 }
1720 
1721 /*
1722  * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1723  * node as dead.
1724  * @mas - the maple state with the new node
1725  * @old_enode - The old maple encoded node to replace.
1726  */
1727 static inline void mas_put_in_tree(struct ma_state *mas,
1728 		struct maple_enode *old_enode)
1729 	__must_hold(mas->tree->ma_lock)
1730 {
1731 	unsigned char offset;
1732 	void __rcu **slots;
1733 
1734 	if (mte_is_root(mas->node)) {
1735 		mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1736 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1737 		mas_set_height(mas);
1738 	} else {
1739 
1740 		offset = mte_parent_slot(mas->node);
1741 		slots = ma_slots(mte_parent(mas->node),
1742 				 mas_parent_type(mas, mas->node));
1743 		rcu_assign_pointer(slots[offset], mas->node);
1744 	}
1745 
1746 	mte_set_node_dead(old_enode);
1747 }
1748 
1749 /*
1750  * mas_replace_node() - Replace a node by putting it in the tree, marking it
1751  * dead, and freeing it.
1752  * the parent encoding to locate the maple node in the tree.
1753  * @mas - the ma_state with @mas->node pointing to the new node.
1754  * @old_enode - The old maple encoded node.
1755  */
1756 static inline void mas_replace_node(struct ma_state *mas,
1757 		struct maple_enode *old_enode)
1758 	__must_hold(mas->tree->ma_lock)
1759 {
1760 	mas_put_in_tree(mas, old_enode);
1761 	mas_free(mas, old_enode);
1762 }
1763 
1764 /*
1765  * mas_find_child() - Find a child who has the parent @mas->node.
1766  * @mas: the maple state with the parent.
1767  * @child: the maple state to store the child.
1768  */
1769 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1770 	__must_hold(mas->tree->ma_lock)
1771 {
1772 	enum maple_type mt;
1773 	unsigned char offset;
1774 	unsigned char end;
1775 	unsigned long *pivots;
1776 	struct maple_enode *entry;
1777 	struct maple_node *node;
1778 	void __rcu **slots;
1779 
1780 	mt = mte_node_type(mas->node);
1781 	node = mas_mn(mas);
1782 	slots = ma_slots(node, mt);
1783 	pivots = ma_pivots(node, mt);
1784 	end = ma_data_end(node, mt, pivots, mas->max);
1785 	for (offset = mas->offset; offset <= end; offset++) {
1786 		entry = mas_slot_locked(mas, slots, offset);
1787 		if (mte_parent(entry) == node) {
1788 			*child = *mas;
1789 			mas->offset = offset + 1;
1790 			child->offset = offset;
1791 			mas_descend(child);
1792 			child->offset = 0;
1793 			return true;
1794 		}
1795 	}
1796 	return false;
1797 }
1798 
1799 /*
1800  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1801  * old data or set b_node->b_end.
1802  * @b_node: the maple_big_node
1803  * @shift: the shift count
1804  */
1805 static inline void mab_shift_right(struct maple_big_node *b_node,
1806 				 unsigned char shift)
1807 {
1808 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1809 
1810 	memmove(b_node->pivot + shift, b_node->pivot, size);
1811 	memmove(b_node->slot + shift, b_node->slot, size);
1812 	if (b_node->type == maple_arange_64)
1813 		memmove(b_node->gap + shift, b_node->gap, size);
1814 }
1815 
1816 /*
1817  * mab_middle_node() - Check if a middle node is needed (unlikely)
1818  * @b_node: the maple_big_node that contains the data.
1819  * @size: the amount of data in the b_node
1820  * @split: the potential split location
1821  * @slot_count: the size that can be stored in a single node being considered.
1822  *
1823  * Return: true if a middle node is required.
1824  */
1825 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1826 				   unsigned char slot_count)
1827 {
1828 	unsigned char size = b_node->b_end;
1829 
1830 	if (size >= 2 * slot_count)
1831 		return true;
1832 
1833 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1834 		return true;
1835 
1836 	return false;
1837 }
1838 
1839 /*
1840  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1841  * @b_node: the maple_big_node with the data
1842  * @split: the suggested split location
1843  * @slot_count: the number of slots in the node being considered.
1844  *
1845  * Return: the split location.
1846  */
1847 static inline int mab_no_null_split(struct maple_big_node *b_node,
1848 				    unsigned char split, unsigned char slot_count)
1849 {
1850 	if (!b_node->slot[split]) {
1851 		/*
1852 		 * If the split is less than the max slot && the right side will
1853 		 * still be sufficient, then increment the split on NULL.
1854 		 */
1855 		if ((split < slot_count - 1) &&
1856 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1857 			split++;
1858 		else
1859 			split--;
1860 	}
1861 	return split;
1862 }
1863 
1864 /*
1865  * mab_calc_split() - Calculate the split location and if there needs to be two
1866  * splits.
1867  * @bn: The maple_big_node with the data
1868  * @mid_split: The second split, if required.  0 otherwise.
1869  *
1870  * Return: The first split location.  The middle split is set in @mid_split.
1871  */
1872 static inline int mab_calc_split(struct ma_state *mas,
1873 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1874 {
1875 	unsigned char b_end = bn->b_end;
1876 	int split = b_end / 2; /* Assume equal split. */
1877 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1878 
1879 	/*
1880 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1881 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1882 	 * limitation means that the split of a node must be checked for this condition
1883 	 * and be able to put more data in one direction or the other.
1884 	 */
1885 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1886 		*mid_split = 0;
1887 		split = b_end - mt_min_slots[bn->type];
1888 
1889 		if (!ma_is_leaf(bn->type))
1890 			return split;
1891 
1892 		mas->mas_flags |= MA_STATE_REBALANCE;
1893 		if (!bn->slot[split])
1894 			split--;
1895 		return split;
1896 	}
1897 
1898 	/*
1899 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1900 	 * split scenario.  The 3-way split comes about by means of a store of a range
1901 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1902 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1903 	 * also be located in different parent nodes which are also full.  This can
1904 	 * carry upwards all the way to the root in the worst case.
1905 	 */
1906 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1907 		split = b_end / 3;
1908 		*mid_split = split * 2;
1909 	} else {
1910 		slot_min = mt_min_slots[bn->type];
1911 
1912 		*mid_split = 0;
1913 		/*
1914 		 * Avoid having a range less than the slot count unless it
1915 		 * causes one node to be deficient.
1916 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1917 		 */
1918 		while ((split < slot_count - 1) &&
1919 		       ((bn->pivot[split] - min) < slot_count - 1) &&
1920 		       (b_end - split > slot_min))
1921 			split++;
1922 	}
1923 
1924 	/* Avoid ending a node on a NULL entry */
1925 	split = mab_no_null_split(bn, split, slot_count);
1926 
1927 	if (unlikely(*mid_split))
1928 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1929 
1930 	return split;
1931 }
1932 
1933 /*
1934  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1935  * and set @b_node->b_end to the next free slot.
1936  * @mas: The maple state
1937  * @mas_start: The starting slot to copy
1938  * @mas_end: The end slot to copy (inclusively)
1939  * @b_node: The maple_big_node to place the data
1940  * @mab_start: The starting location in maple_big_node to store the data.
1941  */
1942 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1943 			unsigned char mas_end, struct maple_big_node *b_node,
1944 			unsigned char mab_start)
1945 {
1946 	enum maple_type mt;
1947 	struct maple_node *node;
1948 	void __rcu **slots;
1949 	unsigned long *pivots, *gaps;
1950 	int i = mas_start, j = mab_start;
1951 	unsigned char piv_end;
1952 
1953 	node = mas_mn(mas);
1954 	mt = mte_node_type(mas->node);
1955 	pivots = ma_pivots(node, mt);
1956 	if (!i) {
1957 		b_node->pivot[j] = pivots[i++];
1958 		if (unlikely(i > mas_end))
1959 			goto complete;
1960 		j++;
1961 	}
1962 
1963 	piv_end = min(mas_end, mt_pivots[mt]);
1964 	for (; i < piv_end; i++, j++) {
1965 		b_node->pivot[j] = pivots[i];
1966 		if (unlikely(!b_node->pivot[j]))
1967 			break;
1968 
1969 		if (unlikely(mas->max == b_node->pivot[j]))
1970 			goto complete;
1971 	}
1972 
1973 	if (likely(i <= mas_end))
1974 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1975 
1976 complete:
1977 	b_node->b_end = ++j;
1978 	j -= mab_start;
1979 	slots = ma_slots(node, mt);
1980 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1981 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1982 		gaps = ma_gaps(node, mt);
1983 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1984 		       sizeof(unsigned long) * j);
1985 	}
1986 }
1987 
1988 /*
1989  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1990  * @mas: The maple state
1991  * @node: The maple node
1992  * @pivots: pointer to the maple node pivots
1993  * @mt: The maple type
1994  * @end: The assumed end
1995  *
1996  * Note, end may be incremented within this function but not modified at the
1997  * source.  This is fine since the metadata is the last thing to be stored in a
1998  * node during a write.
1999  */
2000 static inline void mas_leaf_set_meta(struct ma_state *mas,
2001 		struct maple_node *node, unsigned long *pivots,
2002 		enum maple_type mt, unsigned char end)
2003 {
2004 	/* There is no room for metadata already */
2005 	if (mt_pivots[mt] <= end)
2006 		return;
2007 
2008 	if (pivots[end] && pivots[end] < mas->max)
2009 		end++;
2010 
2011 	if (end < mt_slots[mt] - 1)
2012 		ma_set_meta(node, mt, 0, end);
2013 }
2014 
2015 /*
2016  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2017  * @b_node: the maple_big_node that has the data
2018  * @mab_start: the start location in @b_node.
2019  * @mab_end: The end location in @b_node (inclusively)
2020  * @mas: The maple state with the maple encoded node.
2021  */
2022 static inline void mab_mas_cp(struct maple_big_node *b_node,
2023 			      unsigned char mab_start, unsigned char mab_end,
2024 			      struct ma_state *mas, bool new_max)
2025 {
2026 	int i, j = 0;
2027 	enum maple_type mt = mte_node_type(mas->node);
2028 	struct maple_node *node = mte_to_node(mas->node);
2029 	void __rcu **slots = ma_slots(node, mt);
2030 	unsigned long *pivots = ma_pivots(node, mt);
2031 	unsigned long *gaps = NULL;
2032 	unsigned char end;
2033 
2034 	if (mab_end - mab_start > mt_pivots[mt])
2035 		mab_end--;
2036 
2037 	if (!pivots[mt_pivots[mt] - 1])
2038 		slots[mt_pivots[mt]] = NULL;
2039 
2040 	i = mab_start;
2041 	do {
2042 		pivots[j++] = b_node->pivot[i++];
2043 	} while (i <= mab_end && likely(b_node->pivot[i]));
2044 
2045 	memcpy(slots, b_node->slot + mab_start,
2046 	       sizeof(void *) * (i - mab_start));
2047 
2048 	if (new_max)
2049 		mas->max = b_node->pivot[i - 1];
2050 
2051 	end = j - 1;
2052 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2053 		unsigned long max_gap = 0;
2054 		unsigned char offset = 0;
2055 
2056 		gaps = ma_gaps(node, mt);
2057 		do {
2058 			gaps[--j] = b_node->gap[--i];
2059 			if (gaps[j] > max_gap) {
2060 				offset = j;
2061 				max_gap = gaps[j];
2062 			}
2063 		} while (j);
2064 
2065 		ma_set_meta(node, mt, offset, end);
2066 	} else {
2067 		mas_leaf_set_meta(mas, node, pivots, mt, end);
2068 	}
2069 }
2070 
2071 /*
2072  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2073  * @mas: The maple state
2074  * @end: The maple node end
2075  * @mt: The maple node type
2076  */
2077 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2078 				      enum maple_type mt)
2079 {
2080 	if (!(mas->mas_flags & MA_STATE_BULK))
2081 		return;
2082 
2083 	if (mte_is_root(mas->node))
2084 		return;
2085 
2086 	if (end > mt_min_slots[mt]) {
2087 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2088 		return;
2089 	}
2090 }
2091 
2092 /*
2093  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2094  * data from a maple encoded node.
2095  * @wr_mas: the maple write state
2096  * @b_node: the maple_big_node to fill with data
2097  * @offset_end: the offset to end copying
2098  *
2099  * Return: The actual end of the data stored in @b_node
2100  */
2101 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2102 		struct maple_big_node *b_node, unsigned char offset_end)
2103 {
2104 	unsigned char slot;
2105 	unsigned char b_end;
2106 	/* Possible underflow of piv will wrap back to 0 before use. */
2107 	unsigned long piv;
2108 	struct ma_state *mas = wr_mas->mas;
2109 
2110 	b_node->type = wr_mas->type;
2111 	b_end = 0;
2112 	slot = mas->offset;
2113 	if (slot) {
2114 		/* Copy start data up to insert. */
2115 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2116 		b_end = b_node->b_end;
2117 		piv = b_node->pivot[b_end - 1];
2118 	} else
2119 		piv = mas->min - 1;
2120 
2121 	if (piv + 1 < mas->index) {
2122 		/* Handle range starting after old range */
2123 		b_node->slot[b_end] = wr_mas->content;
2124 		if (!wr_mas->content)
2125 			b_node->gap[b_end] = mas->index - 1 - piv;
2126 		b_node->pivot[b_end++] = mas->index - 1;
2127 	}
2128 
2129 	/* Store the new entry. */
2130 	mas->offset = b_end;
2131 	b_node->slot[b_end] = wr_mas->entry;
2132 	b_node->pivot[b_end] = mas->last;
2133 
2134 	/* Appended. */
2135 	if (mas->last >= mas->max)
2136 		goto b_end;
2137 
2138 	/* Handle new range ending before old range ends */
2139 	piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2140 	if (piv > mas->last) {
2141 		if (piv == ULONG_MAX)
2142 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2143 
2144 		if (offset_end != slot)
2145 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2146 							  offset_end);
2147 
2148 		b_node->slot[++b_end] = wr_mas->content;
2149 		if (!wr_mas->content)
2150 			b_node->gap[b_end] = piv - mas->last + 1;
2151 		b_node->pivot[b_end] = piv;
2152 	}
2153 
2154 	slot = offset_end + 1;
2155 	if (slot > wr_mas->node_end)
2156 		goto b_end;
2157 
2158 	/* Copy end data to the end of the node. */
2159 	mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2160 	b_node->b_end--;
2161 	return;
2162 
2163 b_end:
2164 	b_node->b_end = b_end;
2165 }
2166 
2167 /*
2168  * mas_prev_sibling() - Find the previous node with the same parent.
2169  * @mas: the maple state
2170  *
2171  * Return: True if there is a previous sibling, false otherwise.
2172  */
2173 static inline bool mas_prev_sibling(struct ma_state *mas)
2174 {
2175 	unsigned int p_slot = mte_parent_slot(mas->node);
2176 
2177 	if (mte_is_root(mas->node))
2178 		return false;
2179 
2180 	if (!p_slot)
2181 		return false;
2182 
2183 	mas_ascend(mas);
2184 	mas->offset = p_slot - 1;
2185 	mas_descend(mas);
2186 	return true;
2187 }
2188 
2189 /*
2190  * mas_next_sibling() - Find the next node with the same parent.
2191  * @mas: the maple state
2192  *
2193  * Return: true if there is a next sibling, false otherwise.
2194  */
2195 static inline bool mas_next_sibling(struct ma_state *mas)
2196 {
2197 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2198 
2199 	if (mte_is_root(mas->node))
2200 		return false;
2201 
2202 	parent = *mas;
2203 	mas_ascend(&parent);
2204 	parent.offset = mte_parent_slot(mas->node) + 1;
2205 	if (parent.offset > mas_data_end(&parent))
2206 		return false;
2207 
2208 	*mas = parent;
2209 	mas_descend(mas);
2210 	return true;
2211 }
2212 
2213 /*
2214  * mte_node_or_node() - Return the encoded node or MAS_NONE.
2215  * @enode: The encoded maple node.
2216  *
2217  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2218  *
2219  * Return: @enode or MAS_NONE
2220  */
2221 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2222 {
2223 	if (enode)
2224 		return enode;
2225 
2226 	return ma_enode_ptr(MAS_NONE);
2227 }
2228 
2229 /*
2230  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2231  *                      If @mas->index cannot be found within the containing
2232  *                      node, we traverse to the last entry in the node.
2233  * @wr_mas: The maple write state
2234  *
2235  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2236  */
2237 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2238 {
2239 	struct ma_state *mas = wr_mas->mas;
2240 	unsigned char count, offset;
2241 
2242 	if (unlikely(ma_is_dense(wr_mas->type))) {
2243 		wr_mas->r_max = wr_mas->r_min = mas->index;
2244 		mas->offset = mas->index = mas->min;
2245 		return;
2246 	}
2247 
2248 	wr_mas->node = mas_mn(wr_mas->mas);
2249 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2250 	count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2251 					       wr_mas->pivots, mas->max);
2252 	offset = mas->offset;
2253 
2254 	while (offset < count && mas->index > wr_mas->pivots[offset])
2255 		offset++;
2256 
2257 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2258 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2259 	wr_mas->offset_end = mas->offset = offset;
2260 }
2261 
2262 /*
2263  * mast_rebalance_next() - Rebalance against the next node
2264  * @mast: The maple subtree state
2265  * @old_r: The encoded maple node to the right (next node).
2266  */
2267 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2268 {
2269 	unsigned char b_end = mast->bn->b_end;
2270 
2271 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2272 		   mast->bn, b_end);
2273 	mast->orig_r->last = mast->orig_r->max;
2274 }
2275 
2276 /*
2277  * mast_rebalance_prev() - Rebalance against the previous node
2278  * @mast: The maple subtree state
2279  * @old_l: The encoded maple node to the left (previous node)
2280  */
2281 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2282 {
2283 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2284 	unsigned char b_end = mast->bn->b_end;
2285 
2286 	mab_shift_right(mast->bn, end);
2287 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2288 	mast->l->min = mast->orig_l->min;
2289 	mast->orig_l->index = mast->orig_l->min;
2290 	mast->bn->b_end = end + b_end;
2291 	mast->l->offset += end;
2292 }
2293 
2294 /*
2295  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2296  * the node to the right.  Checking the nodes to the right then the left at each
2297  * level upwards until root is reached.
2298  * Data is copied into the @mast->bn.
2299  * @mast: The maple_subtree_state.
2300  */
2301 static inline
2302 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2303 {
2304 	struct ma_state r_tmp = *mast->orig_r;
2305 	struct ma_state l_tmp = *mast->orig_l;
2306 	unsigned char depth = 0;
2307 
2308 	r_tmp = *mast->orig_r;
2309 	l_tmp = *mast->orig_l;
2310 	do {
2311 		mas_ascend(mast->orig_r);
2312 		mas_ascend(mast->orig_l);
2313 		depth++;
2314 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2315 			mast->orig_r->offset++;
2316 			do {
2317 				mas_descend(mast->orig_r);
2318 				mast->orig_r->offset = 0;
2319 			} while (--depth);
2320 
2321 			mast_rebalance_next(mast);
2322 			*mast->orig_l = l_tmp;
2323 			return true;
2324 		} else if (mast->orig_l->offset != 0) {
2325 			mast->orig_l->offset--;
2326 			do {
2327 				mas_descend(mast->orig_l);
2328 				mast->orig_l->offset =
2329 					mas_data_end(mast->orig_l);
2330 			} while (--depth);
2331 
2332 			mast_rebalance_prev(mast);
2333 			*mast->orig_r = r_tmp;
2334 			return true;
2335 		}
2336 	} while (!mte_is_root(mast->orig_r->node));
2337 
2338 	*mast->orig_r = r_tmp;
2339 	*mast->orig_l = l_tmp;
2340 	return false;
2341 }
2342 
2343 /*
2344  * mast_ascend() - Ascend the original left and right maple states.
2345  * @mast: the maple subtree state.
2346  *
2347  * Ascend the original left and right sides.  Set the offsets to point to the
2348  * data already in the new tree (@mast->l and @mast->r).
2349  */
2350 static inline void mast_ascend(struct maple_subtree_state *mast)
2351 {
2352 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2353 	mas_ascend(mast->orig_l);
2354 	mas_ascend(mast->orig_r);
2355 
2356 	mast->orig_r->offset = 0;
2357 	mast->orig_r->index = mast->r->max;
2358 	/* last should be larger than or equal to index */
2359 	if (mast->orig_r->last < mast->orig_r->index)
2360 		mast->orig_r->last = mast->orig_r->index;
2361 
2362 	wr_mas.type = mte_node_type(mast->orig_r->node);
2363 	mas_wr_node_walk(&wr_mas);
2364 	/* Set up the left side of things */
2365 	mast->orig_l->offset = 0;
2366 	mast->orig_l->index = mast->l->min;
2367 	wr_mas.mas = mast->orig_l;
2368 	wr_mas.type = mte_node_type(mast->orig_l->node);
2369 	mas_wr_node_walk(&wr_mas);
2370 
2371 	mast->bn->type = wr_mas.type;
2372 }
2373 
2374 /*
2375  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2376  * @mas: the maple state with the allocations.
2377  * @b_node: the maple_big_node with the type encoding.
2378  *
2379  * Use the node type from the maple_big_node to allocate a new node from the
2380  * ma_state.  This function exists mainly for code readability.
2381  *
2382  * Return: A new maple encoded node
2383  */
2384 static inline struct maple_enode
2385 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2386 {
2387 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2388 }
2389 
2390 /*
2391  * mas_mab_to_node() - Set up right and middle nodes
2392  *
2393  * @mas: the maple state that contains the allocations.
2394  * @b_node: the node which contains the data.
2395  * @left: The pointer which will have the left node
2396  * @right: The pointer which may have the right node
2397  * @middle: the pointer which may have the middle node (rare)
2398  * @mid_split: the split location for the middle node
2399  *
2400  * Return: the split of left.
2401  */
2402 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2403 	struct maple_big_node *b_node, struct maple_enode **left,
2404 	struct maple_enode **right, struct maple_enode **middle,
2405 	unsigned char *mid_split, unsigned long min)
2406 {
2407 	unsigned char split = 0;
2408 	unsigned char slot_count = mt_slots[b_node->type];
2409 
2410 	*left = mas_new_ma_node(mas, b_node);
2411 	*right = NULL;
2412 	*middle = NULL;
2413 	*mid_split = 0;
2414 
2415 	if (b_node->b_end < slot_count) {
2416 		split = b_node->b_end;
2417 	} else {
2418 		split = mab_calc_split(mas, b_node, mid_split, min);
2419 		*right = mas_new_ma_node(mas, b_node);
2420 	}
2421 
2422 	if (*mid_split)
2423 		*middle = mas_new_ma_node(mas, b_node);
2424 
2425 	return split;
2426 
2427 }
2428 
2429 /*
2430  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2431  * pointer.
2432  * @b_node - the big node to add the entry
2433  * @mas - the maple state to get the pivot (mas->max)
2434  * @entry - the entry to add, if NULL nothing happens.
2435  */
2436 static inline void mab_set_b_end(struct maple_big_node *b_node,
2437 				 struct ma_state *mas,
2438 				 void *entry)
2439 {
2440 	if (!entry)
2441 		return;
2442 
2443 	b_node->slot[b_node->b_end] = entry;
2444 	if (mt_is_alloc(mas->tree))
2445 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2446 	b_node->pivot[b_node->b_end++] = mas->max;
2447 }
2448 
2449 /*
2450  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2451  * of @mas->node to either @left or @right, depending on @slot and @split
2452  *
2453  * @mas - the maple state with the node that needs a parent
2454  * @left - possible parent 1
2455  * @right - possible parent 2
2456  * @slot - the slot the mas->node was placed
2457  * @split - the split location between @left and @right
2458  */
2459 static inline void mas_set_split_parent(struct ma_state *mas,
2460 					struct maple_enode *left,
2461 					struct maple_enode *right,
2462 					unsigned char *slot, unsigned char split)
2463 {
2464 	if (mas_is_none(mas))
2465 		return;
2466 
2467 	if ((*slot) <= split)
2468 		mas_set_parent(mas, mas->node, left, *slot);
2469 	else if (right)
2470 		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2471 
2472 	(*slot)++;
2473 }
2474 
2475 /*
2476  * mte_mid_split_check() - Check if the next node passes the mid-split
2477  * @**l: Pointer to left encoded maple node.
2478  * @**m: Pointer to middle encoded maple node.
2479  * @**r: Pointer to right encoded maple node.
2480  * @slot: The offset
2481  * @*split: The split location.
2482  * @mid_split: The middle split.
2483  */
2484 static inline void mte_mid_split_check(struct maple_enode **l,
2485 				       struct maple_enode **r,
2486 				       struct maple_enode *right,
2487 				       unsigned char slot,
2488 				       unsigned char *split,
2489 				       unsigned char mid_split)
2490 {
2491 	if (*r == right)
2492 		return;
2493 
2494 	if (slot < mid_split)
2495 		return;
2496 
2497 	*l = *r;
2498 	*r = right;
2499 	*split = mid_split;
2500 }
2501 
2502 /*
2503  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2504  * is taken from @mast->l.
2505  * @mast - the maple subtree state
2506  * @left - the left node
2507  * @right - the right node
2508  * @split - the split location.
2509  */
2510 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2511 					  struct maple_enode *left,
2512 					  struct maple_enode *middle,
2513 					  struct maple_enode *right,
2514 					  unsigned char split,
2515 					  unsigned char mid_split)
2516 {
2517 	unsigned char slot;
2518 	struct maple_enode *l = left;
2519 	struct maple_enode *r = right;
2520 
2521 	if (mas_is_none(mast->l))
2522 		return;
2523 
2524 	if (middle)
2525 		r = middle;
2526 
2527 	slot = mast->l->offset;
2528 
2529 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2530 	mas_set_split_parent(mast->l, l, r, &slot, split);
2531 
2532 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2533 	mas_set_split_parent(mast->m, l, r, &slot, split);
2534 
2535 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2536 	mas_set_split_parent(mast->r, l, r, &slot, split);
2537 }
2538 
2539 /*
2540  * mas_topiary_node() - Dispose of a singe node
2541  * @mas: The maple state for pushing nodes
2542  * @enode: The encoded maple node
2543  * @in_rcu: If the tree is in rcu mode
2544  *
2545  * The node will either be RCU freed or pushed back on the maple state.
2546  */
2547 static inline void mas_topiary_node(struct ma_state *mas,
2548 		struct maple_enode *enode, bool in_rcu)
2549 {
2550 	struct maple_node *tmp;
2551 
2552 	if (enode == MAS_NONE)
2553 		return;
2554 
2555 	tmp = mte_to_node(enode);
2556 	mte_set_node_dead(enode);
2557 	if (in_rcu)
2558 		ma_free_rcu(tmp);
2559 	else
2560 		mas_push_node(mas, tmp);
2561 }
2562 
2563 /*
2564  * mas_topiary_replace() - Replace the data with new data, then repair the
2565  * parent links within the new tree.  Iterate over the dead sub-tree and collect
2566  * the dead subtrees and topiary the nodes that are no longer of use.
2567  *
2568  * The new tree will have up to three children with the correct parent.  Keep
2569  * track of the new entries as they need to be followed to find the next level
2570  * of new entries.
2571  *
2572  * The old tree will have up to three children with the old parent.  Keep track
2573  * of the old entries as they may have more nodes below replaced.  Nodes within
2574  * [index, last] are dead subtrees, others need to be freed and followed.
2575  *
2576  * @mas: The maple state pointing at the new data
2577  * @old_enode: The maple encoded node being replaced
2578  *
2579  */
2580 static inline void mas_topiary_replace(struct ma_state *mas,
2581 		struct maple_enode *old_enode)
2582 {
2583 	struct ma_state tmp[3], tmp_next[3];
2584 	MA_TOPIARY(subtrees, mas->tree);
2585 	bool in_rcu;
2586 	int i, n;
2587 
2588 	/* Place data in tree & then mark node as old */
2589 	mas_put_in_tree(mas, old_enode);
2590 
2591 	/* Update the parent pointers in the tree */
2592 	tmp[0] = *mas;
2593 	tmp[0].offset = 0;
2594 	tmp[1].node = MAS_NONE;
2595 	tmp[2].node = MAS_NONE;
2596 	while (!mte_is_leaf(tmp[0].node)) {
2597 		n = 0;
2598 		for (i = 0; i < 3; i++) {
2599 			if (mas_is_none(&tmp[i]))
2600 				continue;
2601 
2602 			while (n < 3) {
2603 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2604 					break;
2605 				n++;
2606 			}
2607 
2608 			mas_adopt_children(&tmp[i], tmp[i].node);
2609 		}
2610 
2611 		if (MAS_WARN_ON(mas, n == 0))
2612 			break;
2613 
2614 		while (n < 3)
2615 			tmp_next[n++].node = MAS_NONE;
2616 
2617 		for (i = 0; i < 3; i++)
2618 			tmp[i] = tmp_next[i];
2619 	}
2620 
2621 	/* Collect the old nodes that need to be discarded */
2622 	if (mte_is_leaf(old_enode))
2623 		return mas_free(mas, old_enode);
2624 
2625 	tmp[0] = *mas;
2626 	tmp[0].offset = 0;
2627 	tmp[0].node = old_enode;
2628 	tmp[1].node = MAS_NONE;
2629 	tmp[2].node = MAS_NONE;
2630 	in_rcu = mt_in_rcu(mas->tree);
2631 	do {
2632 		n = 0;
2633 		for (i = 0; i < 3; i++) {
2634 			if (mas_is_none(&tmp[i]))
2635 				continue;
2636 
2637 			while (n < 3) {
2638 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2639 					break;
2640 
2641 				if ((tmp_next[n].min >= tmp_next->index) &&
2642 				    (tmp_next[n].max <= tmp_next->last)) {
2643 					mat_add(&subtrees, tmp_next[n].node);
2644 					tmp_next[n].node = MAS_NONE;
2645 				} else {
2646 					n++;
2647 				}
2648 			}
2649 		}
2650 
2651 		if (MAS_WARN_ON(mas, n == 0))
2652 			break;
2653 
2654 		while (n < 3)
2655 			tmp_next[n++].node = MAS_NONE;
2656 
2657 		for (i = 0; i < 3; i++) {
2658 			mas_topiary_node(mas, tmp[i].node, in_rcu);
2659 			tmp[i] = tmp_next[i];
2660 		}
2661 	} while (!mte_is_leaf(tmp[0].node));
2662 
2663 	for (i = 0; i < 3; i++)
2664 		mas_topiary_node(mas, tmp[i].node, in_rcu);
2665 
2666 	mas_mat_destroy(mas, &subtrees);
2667 }
2668 
2669 /*
2670  * mas_wmb_replace() - Write memory barrier and replace
2671  * @mas: The maple state
2672  * @old: The old maple encoded node that is being replaced.
2673  *
2674  * Updates gap as necessary.
2675  */
2676 static inline void mas_wmb_replace(struct ma_state *mas,
2677 		struct maple_enode *old_enode)
2678 {
2679 	/* Insert the new data in the tree */
2680 	mas_topiary_replace(mas, old_enode);
2681 
2682 	if (mte_is_leaf(mas->node))
2683 		return;
2684 
2685 	mas_update_gap(mas);
2686 }
2687 
2688 /*
2689  * mast_cp_to_nodes() - Copy data out to nodes.
2690  * @mast: The maple subtree state
2691  * @left: The left encoded maple node
2692  * @middle: The middle encoded maple node
2693  * @right: The right encoded maple node
2694  * @split: The location to split between left and (middle ? middle : right)
2695  * @mid_split: The location to split between middle and right.
2696  */
2697 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2698 	struct maple_enode *left, struct maple_enode *middle,
2699 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2700 {
2701 	bool new_lmax = true;
2702 
2703 	mast->l->node = mte_node_or_none(left);
2704 	mast->m->node = mte_node_or_none(middle);
2705 	mast->r->node = mte_node_or_none(right);
2706 
2707 	mast->l->min = mast->orig_l->min;
2708 	if (split == mast->bn->b_end) {
2709 		mast->l->max = mast->orig_r->max;
2710 		new_lmax = false;
2711 	}
2712 
2713 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2714 
2715 	if (middle) {
2716 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2717 		mast->m->min = mast->bn->pivot[split] + 1;
2718 		split = mid_split;
2719 	}
2720 
2721 	mast->r->max = mast->orig_r->max;
2722 	if (right) {
2723 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2724 		mast->r->min = mast->bn->pivot[split] + 1;
2725 	}
2726 }
2727 
2728 /*
2729  * mast_combine_cp_left - Copy in the original left side of the tree into the
2730  * combined data set in the maple subtree state big node.
2731  * @mast: The maple subtree state
2732  */
2733 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2734 {
2735 	unsigned char l_slot = mast->orig_l->offset;
2736 
2737 	if (!l_slot)
2738 		return;
2739 
2740 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2741 }
2742 
2743 /*
2744  * mast_combine_cp_right: Copy in the original right side of the tree into the
2745  * combined data set in the maple subtree state big node.
2746  * @mast: The maple subtree state
2747  */
2748 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2749 {
2750 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2751 		return;
2752 
2753 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2754 		   mt_slot_count(mast->orig_r->node), mast->bn,
2755 		   mast->bn->b_end);
2756 	mast->orig_r->last = mast->orig_r->max;
2757 }
2758 
2759 /*
2760  * mast_sufficient: Check if the maple subtree state has enough data in the big
2761  * node to create at least one sufficient node
2762  * @mast: the maple subtree state
2763  */
2764 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2765 {
2766 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2767 		return true;
2768 
2769 	return false;
2770 }
2771 
2772 /*
2773  * mast_overflow: Check if there is too much data in the subtree state for a
2774  * single node.
2775  * @mast: The maple subtree state
2776  */
2777 static inline bool mast_overflow(struct maple_subtree_state *mast)
2778 {
2779 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2780 		return true;
2781 
2782 	return false;
2783 }
2784 
2785 static inline void *mtree_range_walk(struct ma_state *mas)
2786 {
2787 	unsigned long *pivots;
2788 	unsigned char offset;
2789 	struct maple_node *node;
2790 	struct maple_enode *next, *last;
2791 	enum maple_type type;
2792 	void __rcu **slots;
2793 	unsigned char end;
2794 	unsigned long max, min;
2795 	unsigned long prev_max, prev_min;
2796 
2797 	next = mas->node;
2798 	min = mas->min;
2799 	max = mas->max;
2800 	do {
2801 		offset = 0;
2802 		last = next;
2803 		node = mte_to_node(next);
2804 		type = mte_node_type(next);
2805 		pivots = ma_pivots(node, type);
2806 		end = ma_data_end(node, type, pivots, max);
2807 		if (unlikely(ma_dead_node(node)))
2808 			goto dead_node;
2809 
2810 		if (pivots[offset] >= mas->index) {
2811 			prev_max = max;
2812 			prev_min = min;
2813 			max = pivots[offset];
2814 			goto next;
2815 		}
2816 
2817 		do {
2818 			offset++;
2819 		} while ((offset < end) && (pivots[offset] < mas->index));
2820 
2821 		prev_min = min;
2822 		min = pivots[offset - 1] + 1;
2823 		prev_max = max;
2824 		if (likely(offset < end && pivots[offset]))
2825 			max = pivots[offset];
2826 
2827 next:
2828 		slots = ma_slots(node, type);
2829 		next = mt_slot(mas->tree, slots, offset);
2830 		if (unlikely(ma_dead_node(node)))
2831 			goto dead_node;
2832 	} while (!ma_is_leaf(type));
2833 
2834 	mas->offset = offset;
2835 	mas->index = min;
2836 	mas->last = max;
2837 	mas->min = prev_min;
2838 	mas->max = prev_max;
2839 	mas->node = last;
2840 	return (void *)next;
2841 
2842 dead_node:
2843 	mas_reset(mas);
2844 	return NULL;
2845 }
2846 
2847 /*
2848  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2849  * @mas: The starting maple state
2850  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2851  * @count: The estimated count of iterations needed.
2852  *
2853  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2854  * is hit.  First @b_node is split into two entries which are inserted into the
2855  * next iteration of the loop.  @b_node is returned populated with the final
2856  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2857  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2858  * to account of what has been copied into the new sub-tree.  The update of
2859  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2860  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2861  * the new sub-tree in case the sub-tree becomes the full tree.
2862  *
2863  * Return: the number of elements in b_node during the last loop.
2864  */
2865 static int mas_spanning_rebalance(struct ma_state *mas,
2866 		struct maple_subtree_state *mast, unsigned char count)
2867 {
2868 	unsigned char split, mid_split;
2869 	unsigned char slot = 0;
2870 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2871 	struct maple_enode *old_enode;
2872 
2873 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2874 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2875 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2876 
2877 	/*
2878 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2879 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2880 	 */
2881 	mast->l = &l_mas;
2882 	mast->m = &m_mas;
2883 	mast->r = &r_mas;
2884 	l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2885 
2886 	/* Check if this is not root and has sufficient data.  */
2887 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2888 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2889 		mast_spanning_rebalance(mast);
2890 
2891 	l_mas.depth = 0;
2892 
2893 	/*
2894 	 * Each level of the tree is examined and balanced, pushing data to the left or
2895 	 * right, or rebalancing against left or right nodes is employed to avoid
2896 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
2897 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
2898 	 * will have the incorrect parent pointers and currently be in two trees: the
2899 	 * original tree and the partially new tree.  To remedy the parent pointers in
2900 	 * the old tree, the new data is swapped into the active tree and a walk down
2901 	 * the tree is performed and the parent pointers are updated.
2902 	 * See mas_topiary_replace() for more information.
2903 	 */
2904 	while (count--) {
2905 		mast->bn->b_end--;
2906 		mast->bn->type = mte_node_type(mast->orig_l->node);
2907 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2908 					&mid_split, mast->orig_l->min);
2909 		mast_set_split_parents(mast, left, middle, right, split,
2910 				       mid_split);
2911 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2912 
2913 		/*
2914 		 * Copy data from next level in the tree to mast->bn from next
2915 		 * iteration
2916 		 */
2917 		memset(mast->bn, 0, sizeof(struct maple_big_node));
2918 		mast->bn->type = mte_node_type(left);
2919 		l_mas.depth++;
2920 
2921 		/* Root already stored in l->node. */
2922 		if (mas_is_root_limits(mast->l))
2923 			goto new_root;
2924 
2925 		mast_ascend(mast);
2926 		mast_combine_cp_left(mast);
2927 		l_mas.offset = mast->bn->b_end;
2928 		mab_set_b_end(mast->bn, &l_mas, left);
2929 		mab_set_b_end(mast->bn, &m_mas, middle);
2930 		mab_set_b_end(mast->bn, &r_mas, right);
2931 
2932 		/* Copy anything necessary out of the right node. */
2933 		mast_combine_cp_right(mast);
2934 		mast->orig_l->last = mast->orig_l->max;
2935 
2936 		if (mast_sufficient(mast))
2937 			continue;
2938 
2939 		if (mast_overflow(mast))
2940 			continue;
2941 
2942 		/* May be a new root stored in mast->bn */
2943 		if (mas_is_root_limits(mast->orig_l))
2944 			break;
2945 
2946 		mast_spanning_rebalance(mast);
2947 
2948 		/* rebalancing from other nodes may require another loop. */
2949 		if (!count)
2950 			count++;
2951 	}
2952 
2953 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2954 				mte_node_type(mast->orig_l->node));
2955 	l_mas.depth++;
2956 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2957 	mas_set_parent(mas, left, l_mas.node, slot);
2958 	if (middle)
2959 		mas_set_parent(mas, middle, l_mas.node, ++slot);
2960 
2961 	if (right)
2962 		mas_set_parent(mas, right, l_mas.node, ++slot);
2963 
2964 	if (mas_is_root_limits(mast->l)) {
2965 new_root:
2966 		mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2967 		while (!mte_is_root(mast->orig_l->node))
2968 			mast_ascend(mast);
2969 	} else {
2970 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2971 	}
2972 
2973 	old_enode = mast->orig_l->node;
2974 	mas->depth = l_mas.depth;
2975 	mas->node = l_mas.node;
2976 	mas->min = l_mas.min;
2977 	mas->max = l_mas.max;
2978 	mas->offset = l_mas.offset;
2979 	mas_wmb_replace(mas, old_enode);
2980 	mtree_range_walk(mas);
2981 	return mast->bn->b_end;
2982 }
2983 
2984 /*
2985  * mas_rebalance() - Rebalance a given node.
2986  * @mas: The maple state
2987  * @b_node: The big maple node.
2988  *
2989  * Rebalance two nodes into a single node or two new nodes that are sufficient.
2990  * Continue upwards until tree is sufficient.
2991  *
2992  * Return: the number of elements in b_node during the last loop.
2993  */
2994 static inline int mas_rebalance(struct ma_state *mas,
2995 				struct maple_big_node *b_node)
2996 {
2997 	char empty_count = mas_mt_height(mas);
2998 	struct maple_subtree_state mast;
2999 	unsigned char shift, b_end = ++b_node->b_end;
3000 
3001 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3002 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3003 
3004 	trace_ma_op(__func__, mas);
3005 
3006 	/*
3007 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
3008 	 * against the node to the right if it exists, otherwise the node to the
3009 	 * left of this node is rebalanced against this node.  If rebalancing
3010 	 * causes just one node to be produced instead of two, then the parent
3011 	 * is also examined and rebalanced if it is insufficient.  Every level
3012 	 * tries to combine the data in the same way.  If one node contains the
3013 	 * entire range of the tree, then that node is used as a new root node.
3014 	 */
3015 	mas_node_count(mas, empty_count * 2 - 1);
3016 	if (mas_is_err(mas))
3017 		return 0;
3018 
3019 	mast.orig_l = &l_mas;
3020 	mast.orig_r = &r_mas;
3021 	mast.bn = b_node;
3022 	mast.bn->type = mte_node_type(mas->node);
3023 
3024 	l_mas = r_mas = *mas;
3025 
3026 	if (mas_next_sibling(&r_mas)) {
3027 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3028 		r_mas.last = r_mas.index = r_mas.max;
3029 	} else {
3030 		mas_prev_sibling(&l_mas);
3031 		shift = mas_data_end(&l_mas) + 1;
3032 		mab_shift_right(b_node, shift);
3033 		mas->offset += shift;
3034 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3035 		b_node->b_end = shift + b_end;
3036 		l_mas.index = l_mas.last = l_mas.min;
3037 	}
3038 
3039 	return mas_spanning_rebalance(mas, &mast, empty_count);
3040 }
3041 
3042 /*
3043  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3044  * state.
3045  * @mas: The maple state
3046  * @end: The end of the left-most node.
3047  *
3048  * During a mass-insert event (such as forking), it may be necessary to
3049  * rebalance the left-most node when it is not sufficient.
3050  */
3051 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3052 {
3053 	enum maple_type mt = mte_node_type(mas->node);
3054 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3055 	struct maple_enode *eparent, *old_eparent;
3056 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3057 	void __rcu **l_slots, **slots;
3058 	unsigned long *l_pivs, *pivs, gap;
3059 	bool in_rcu = mt_in_rcu(mas->tree);
3060 
3061 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3062 
3063 	l_mas = *mas;
3064 	mas_prev_sibling(&l_mas);
3065 
3066 	/* set up node. */
3067 	if (in_rcu) {
3068 		/* Allocate for both left and right as well as parent. */
3069 		mas_node_count(mas, 3);
3070 		if (mas_is_err(mas))
3071 			return;
3072 
3073 		newnode = mas_pop_node(mas);
3074 	} else {
3075 		newnode = &reuse;
3076 	}
3077 
3078 	node = mas_mn(mas);
3079 	newnode->parent = node->parent;
3080 	slots = ma_slots(newnode, mt);
3081 	pivs = ma_pivots(newnode, mt);
3082 	left = mas_mn(&l_mas);
3083 	l_slots = ma_slots(left, mt);
3084 	l_pivs = ma_pivots(left, mt);
3085 	if (!l_slots[split])
3086 		split++;
3087 	tmp = mas_data_end(&l_mas) - split;
3088 
3089 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3090 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3091 	pivs[tmp] = l_mas.max;
3092 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3093 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3094 
3095 	l_mas.max = l_pivs[split];
3096 	mas->min = l_mas.max + 1;
3097 	old_eparent = mt_mk_node(mte_parent(l_mas.node),
3098 			     mas_parent_type(&l_mas, l_mas.node));
3099 	tmp += end;
3100 	if (!in_rcu) {
3101 		unsigned char max_p = mt_pivots[mt];
3102 		unsigned char max_s = mt_slots[mt];
3103 
3104 		if (tmp < max_p)
3105 			memset(pivs + tmp, 0,
3106 			       sizeof(unsigned long) * (max_p - tmp));
3107 
3108 		if (tmp < mt_slots[mt])
3109 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3110 
3111 		memcpy(node, newnode, sizeof(struct maple_node));
3112 		ma_set_meta(node, mt, 0, tmp - 1);
3113 		mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3114 			      l_pivs[split]);
3115 
3116 		/* Remove data from l_pivs. */
3117 		tmp = split + 1;
3118 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3119 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3120 		ma_set_meta(left, mt, 0, split);
3121 		eparent = old_eparent;
3122 
3123 		goto done;
3124 	}
3125 
3126 	/* RCU requires replacing both l_mas, mas, and parent. */
3127 	mas->node = mt_mk_node(newnode, mt);
3128 	ma_set_meta(newnode, mt, 0, tmp);
3129 
3130 	new_left = mas_pop_node(mas);
3131 	new_left->parent = left->parent;
3132 	mt = mte_node_type(l_mas.node);
3133 	slots = ma_slots(new_left, mt);
3134 	pivs = ma_pivots(new_left, mt);
3135 	memcpy(slots, l_slots, sizeof(void *) * split);
3136 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3137 	ma_set_meta(new_left, mt, 0, split);
3138 	l_mas.node = mt_mk_node(new_left, mt);
3139 
3140 	/* replace parent. */
3141 	offset = mte_parent_slot(mas->node);
3142 	mt = mas_parent_type(&l_mas, l_mas.node);
3143 	parent = mas_pop_node(mas);
3144 	slots = ma_slots(parent, mt);
3145 	pivs = ma_pivots(parent, mt);
3146 	memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3147 	rcu_assign_pointer(slots[offset], mas->node);
3148 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3149 	pivs[offset - 1] = l_mas.max;
3150 	eparent = mt_mk_node(parent, mt);
3151 done:
3152 	gap = mas_leaf_max_gap(mas);
3153 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3154 	gap = mas_leaf_max_gap(&l_mas);
3155 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3156 	mas_ascend(mas);
3157 
3158 	if (in_rcu) {
3159 		mas_replace_node(mas, old_eparent);
3160 		mas_adopt_children(mas, mas->node);
3161 	}
3162 
3163 	mas_update_gap(mas);
3164 }
3165 
3166 /*
3167  * mas_split_final_node() - Split the final node in a subtree operation.
3168  * @mast: the maple subtree state
3169  * @mas: The maple state
3170  * @height: The height of the tree in case it's a new root.
3171  */
3172 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3173 					struct ma_state *mas, int height)
3174 {
3175 	struct maple_enode *ancestor;
3176 
3177 	if (mte_is_root(mas->node)) {
3178 		if (mt_is_alloc(mas->tree))
3179 			mast->bn->type = maple_arange_64;
3180 		else
3181 			mast->bn->type = maple_range_64;
3182 		mas->depth = height;
3183 	}
3184 	/*
3185 	 * Only a single node is used here, could be root.
3186 	 * The Big_node data should just fit in a single node.
3187 	 */
3188 	ancestor = mas_new_ma_node(mas, mast->bn);
3189 	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3190 	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3191 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3192 
3193 	mast->l->node = ancestor;
3194 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3195 	mas->offset = mast->bn->b_end - 1;
3196 	return true;
3197 }
3198 
3199 /*
3200  * mast_fill_bnode() - Copy data into the big node in the subtree state
3201  * @mast: The maple subtree state
3202  * @mas: the maple state
3203  * @skip: The number of entries to skip for new nodes insertion.
3204  */
3205 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3206 					 struct ma_state *mas,
3207 					 unsigned char skip)
3208 {
3209 	bool cp = true;
3210 	unsigned char split;
3211 
3212 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3213 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3214 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3215 	mast->bn->b_end = 0;
3216 
3217 	if (mte_is_root(mas->node)) {
3218 		cp = false;
3219 	} else {
3220 		mas_ascend(mas);
3221 		mas->offset = mte_parent_slot(mas->node);
3222 	}
3223 
3224 	if (cp && mast->l->offset)
3225 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3226 
3227 	split = mast->bn->b_end;
3228 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3229 	mast->r->offset = mast->bn->b_end;
3230 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3231 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3232 		cp = false;
3233 
3234 	if (cp)
3235 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3236 			   mast->bn, mast->bn->b_end);
3237 
3238 	mast->bn->b_end--;
3239 	mast->bn->type = mte_node_type(mas->node);
3240 }
3241 
3242 /*
3243  * mast_split_data() - Split the data in the subtree state big node into regular
3244  * nodes.
3245  * @mast: The maple subtree state
3246  * @mas: The maple state
3247  * @split: The location to split the big node
3248  */
3249 static inline void mast_split_data(struct maple_subtree_state *mast,
3250 	   struct ma_state *mas, unsigned char split)
3251 {
3252 	unsigned char p_slot;
3253 
3254 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3255 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3256 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3257 	mast->l->offset = mte_parent_slot(mas->node);
3258 	mast->l->max = mast->bn->pivot[split];
3259 	mast->r->min = mast->l->max + 1;
3260 	if (mte_is_leaf(mas->node))
3261 		return;
3262 
3263 	p_slot = mast->orig_l->offset;
3264 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3265 			     &p_slot, split);
3266 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3267 			     &p_slot, split);
3268 }
3269 
3270 /*
3271  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3272  * data to the right or left node if there is room.
3273  * @mas: The maple state
3274  * @height: The current height of the maple state
3275  * @mast: The maple subtree state
3276  * @left: Push left or not.
3277  *
3278  * Keeping the height of the tree low means faster lookups.
3279  *
3280  * Return: True if pushed, false otherwise.
3281  */
3282 static inline bool mas_push_data(struct ma_state *mas, int height,
3283 				 struct maple_subtree_state *mast, bool left)
3284 {
3285 	unsigned char slot_total = mast->bn->b_end;
3286 	unsigned char end, space, split;
3287 
3288 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3289 	tmp_mas = *mas;
3290 	tmp_mas.depth = mast->l->depth;
3291 
3292 	if (left && !mas_prev_sibling(&tmp_mas))
3293 		return false;
3294 	else if (!left && !mas_next_sibling(&tmp_mas))
3295 		return false;
3296 
3297 	end = mas_data_end(&tmp_mas);
3298 	slot_total += end;
3299 	space = 2 * mt_slot_count(mas->node) - 2;
3300 	/* -2 instead of -1 to ensure there isn't a triple split */
3301 	if (ma_is_leaf(mast->bn->type))
3302 		space--;
3303 
3304 	if (mas->max == ULONG_MAX)
3305 		space--;
3306 
3307 	if (slot_total >= space)
3308 		return false;
3309 
3310 	/* Get the data; Fill mast->bn */
3311 	mast->bn->b_end++;
3312 	if (left) {
3313 		mab_shift_right(mast->bn, end + 1);
3314 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3315 		mast->bn->b_end = slot_total + 1;
3316 	} else {
3317 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3318 	}
3319 
3320 	/* Configure mast for splitting of mast->bn */
3321 	split = mt_slots[mast->bn->type] - 2;
3322 	if (left) {
3323 		/*  Switch mas to prev node  */
3324 		*mas = tmp_mas;
3325 		/* Start using mast->l for the left side. */
3326 		tmp_mas.node = mast->l->node;
3327 		*mast->l = tmp_mas;
3328 	} else {
3329 		tmp_mas.node = mast->r->node;
3330 		*mast->r = tmp_mas;
3331 		split = slot_total - split;
3332 	}
3333 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3334 	/* Update parent slot for split calculation. */
3335 	if (left)
3336 		mast->orig_l->offset += end + 1;
3337 
3338 	mast_split_data(mast, mas, split);
3339 	mast_fill_bnode(mast, mas, 2);
3340 	mas_split_final_node(mast, mas, height + 1);
3341 	return true;
3342 }
3343 
3344 /*
3345  * mas_split() - Split data that is too big for one node into two.
3346  * @mas: The maple state
3347  * @b_node: The maple big node
3348  * Return: 1 on success, 0 on failure.
3349  */
3350 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3351 {
3352 	struct maple_subtree_state mast;
3353 	int height = 0;
3354 	unsigned char mid_split, split = 0;
3355 	struct maple_enode *old;
3356 
3357 	/*
3358 	 * Splitting is handled differently from any other B-tree; the Maple
3359 	 * Tree splits upwards.  Splitting up means that the split operation
3360 	 * occurs when the walk of the tree hits the leaves and not on the way
3361 	 * down.  The reason for splitting up is that it is impossible to know
3362 	 * how much space will be needed until the leaf is (or leaves are)
3363 	 * reached.  Since overwriting data is allowed and a range could
3364 	 * overwrite more than one range or result in changing one entry into 3
3365 	 * entries, it is impossible to know if a split is required until the
3366 	 * data is examined.
3367 	 *
3368 	 * Splitting is a balancing act between keeping allocations to a minimum
3369 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3370 	 * for an entry followed by a contraction when the entry is removed.  To
3371 	 * accomplish the balance, there are empty slots remaining in both left
3372 	 * and right nodes after a split.
3373 	 */
3374 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3375 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3376 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3377 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3378 
3379 	trace_ma_op(__func__, mas);
3380 	mas->depth = mas_mt_height(mas);
3381 	/* Allocation failures will happen early. */
3382 	mas_node_count(mas, 1 + mas->depth * 2);
3383 	if (mas_is_err(mas))
3384 		return 0;
3385 
3386 	mast.l = &l_mas;
3387 	mast.r = &r_mas;
3388 	mast.orig_l = &prev_l_mas;
3389 	mast.orig_r = &prev_r_mas;
3390 	mast.bn = b_node;
3391 
3392 	while (height++ <= mas->depth) {
3393 		if (mt_slots[b_node->type] > b_node->b_end) {
3394 			mas_split_final_node(&mast, mas, height);
3395 			break;
3396 		}
3397 
3398 		l_mas = r_mas = *mas;
3399 		l_mas.node = mas_new_ma_node(mas, b_node);
3400 		r_mas.node = mas_new_ma_node(mas, b_node);
3401 		/*
3402 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3403 		 * left or right node has space to spare.  This is referred to as "pushing left"
3404 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3405 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3406 		 * is a significant savings.
3407 		 */
3408 		/* Try to push left. */
3409 		if (mas_push_data(mas, height, &mast, true))
3410 			break;
3411 
3412 		/* Try to push right. */
3413 		if (mas_push_data(mas, height, &mast, false))
3414 			break;
3415 
3416 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3417 		mast_split_data(&mast, mas, split);
3418 		/*
3419 		 * Usually correct, mab_mas_cp in the above call overwrites
3420 		 * r->max.
3421 		 */
3422 		mast.r->max = mas->max;
3423 		mast_fill_bnode(&mast, mas, 1);
3424 		prev_l_mas = *mast.l;
3425 		prev_r_mas = *mast.r;
3426 	}
3427 
3428 	/* Set the original node as dead */
3429 	old = mas->node;
3430 	mas->node = l_mas.node;
3431 	mas_wmb_replace(mas, old);
3432 	mtree_range_walk(mas);
3433 	return 1;
3434 }
3435 
3436 /*
3437  * mas_reuse_node() - Reuse the node to store the data.
3438  * @wr_mas: The maple write state
3439  * @bn: The maple big node
3440  * @end: The end of the data.
3441  *
3442  * Will always return false in RCU mode.
3443  *
3444  * Return: True if node was reused, false otherwise.
3445  */
3446 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3447 			  struct maple_big_node *bn, unsigned char end)
3448 {
3449 	/* Need to be rcu safe. */
3450 	if (mt_in_rcu(wr_mas->mas->tree))
3451 		return false;
3452 
3453 	if (end > bn->b_end) {
3454 		int clear = mt_slots[wr_mas->type] - bn->b_end;
3455 
3456 		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3457 		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3458 	}
3459 	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3460 	return true;
3461 }
3462 
3463 /*
3464  * mas_commit_b_node() - Commit the big node into the tree.
3465  * @wr_mas: The maple write state
3466  * @b_node: The maple big node
3467  * @end: The end of the data.
3468  */
3469 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3470 			    struct maple_big_node *b_node, unsigned char end)
3471 {
3472 	struct maple_node *node;
3473 	struct maple_enode *old_enode;
3474 	unsigned char b_end = b_node->b_end;
3475 	enum maple_type b_type = b_node->type;
3476 
3477 	old_enode = wr_mas->mas->node;
3478 	if ((b_end < mt_min_slots[b_type]) &&
3479 	    (!mte_is_root(old_enode)) &&
3480 	    (mas_mt_height(wr_mas->mas) > 1))
3481 		return mas_rebalance(wr_mas->mas, b_node);
3482 
3483 	if (b_end >= mt_slots[b_type])
3484 		return mas_split(wr_mas->mas, b_node);
3485 
3486 	if (mas_reuse_node(wr_mas, b_node, end))
3487 		goto reuse_node;
3488 
3489 	mas_node_count(wr_mas->mas, 1);
3490 	if (mas_is_err(wr_mas->mas))
3491 		return 0;
3492 
3493 	node = mas_pop_node(wr_mas->mas);
3494 	node->parent = mas_mn(wr_mas->mas)->parent;
3495 	wr_mas->mas->node = mt_mk_node(node, b_type);
3496 	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3497 	mas_replace_node(wr_mas->mas, old_enode);
3498 reuse_node:
3499 	mas_update_gap(wr_mas->mas);
3500 	return 1;
3501 }
3502 
3503 /*
3504  * mas_root_expand() - Expand a root to a node
3505  * @mas: The maple state
3506  * @entry: The entry to store into the tree
3507  */
3508 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3509 {
3510 	void *contents = mas_root_locked(mas);
3511 	enum maple_type type = maple_leaf_64;
3512 	struct maple_node *node;
3513 	void __rcu **slots;
3514 	unsigned long *pivots;
3515 	int slot = 0;
3516 
3517 	mas_node_count(mas, 1);
3518 	if (unlikely(mas_is_err(mas)))
3519 		return 0;
3520 
3521 	node = mas_pop_node(mas);
3522 	pivots = ma_pivots(node, type);
3523 	slots = ma_slots(node, type);
3524 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3525 	mas->node = mt_mk_node(node, type);
3526 
3527 	if (mas->index) {
3528 		if (contents) {
3529 			rcu_assign_pointer(slots[slot], contents);
3530 			if (likely(mas->index > 1))
3531 				slot++;
3532 		}
3533 		pivots[slot++] = mas->index - 1;
3534 	}
3535 
3536 	rcu_assign_pointer(slots[slot], entry);
3537 	mas->offset = slot;
3538 	pivots[slot] = mas->last;
3539 	if (mas->last != ULONG_MAX)
3540 		pivots[++slot] = ULONG_MAX;
3541 
3542 	mas->depth = 1;
3543 	mas_set_height(mas);
3544 	ma_set_meta(node, maple_leaf_64, 0, slot);
3545 	/* swap the new root into the tree */
3546 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3547 	return slot;
3548 }
3549 
3550 static inline void mas_store_root(struct ma_state *mas, void *entry)
3551 {
3552 	if (likely((mas->last != 0) || (mas->index != 0)))
3553 		mas_root_expand(mas, entry);
3554 	else if (((unsigned long) (entry) & 3) == 2)
3555 		mas_root_expand(mas, entry);
3556 	else {
3557 		rcu_assign_pointer(mas->tree->ma_root, entry);
3558 		mas->node = MAS_START;
3559 	}
3560 }
3561 
3562 /*
3563  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3564  * spans the node.
3565  * @mas: The maple state
3566  * @piv: The pivot value being written
3567  * @type: The maple node type
3568  * @entry: The data to write
3569  *
3570  * Spanning writes are writes that start in one node and end in another OR if
3571  * the write of a %NULL will cause the node to end with a %NULL.
3572  *
3573  * Return: True if this is a spanning write, false otherwise.
3574  */
3575 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3576 {
3577 	unsigned long max = wr_mas->r_max;
3578 	unsigned long last = wr_mas->mas->last;
3579 	enum maple_type type = wr_mas->type;
3580 	void *entry = wr_mas->entry;
3581 
3582 	/* Contained in this pivot, fast path */
3583 	if (last < max)
3584 		return false;
3585 
3586 	if (ma_is_leaf(type)) {
3587 		max = wr_mas->mas->max;
3588 		if (last < max)
3589 			return false;
3590 	}
3591 
3592 	if (last == max) {
3593 		/*
3594 		 * The last entry of leaf node cannot be NULL unless it is the
3595 		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3596 		 */
3597 		if (entry || last == ULONG_MAX)
3598 			return false;
3599 	}
3600 
3601 	trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3602 	return true;
3603 }
3604 
3605 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3606 {
3607 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3608 	mas_wr_node_walk(wr_mas);
3609 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3610 }
3611 
3612 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3613 {
3614 	wr_mas->mas->max = wr_mas->r_max;
3615 	wr_mas->mas->min = wr_mas->r_min;
3616 	wr_mas->mas->node = wr_mas->content;
3617 	wr_mas->mas->offset = 0;
3618 	wr_mas->mas->depth++;
3619 }
3620 /*
3621  * mas_wr_walk() - Walk the tree for a write.
3622  * @wr_mas: The maple write state
3623  *
3624  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3625  *
3626  * Return: True if it's contained in a node, false on spanning write.
3627  */
3628 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3629 {
3630 	struct ma_state *mas = wr_mas->mas;
3631 
3632 	while (true) {
3633 		mas_wr_walk_descend(wr_mas);
3634 		if (unlikely(mas_is_span_wr(wr_mas)))
3635 			return false;
3636 
3637 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3638 						  mas->offset);
3639 		if (ma_is_leaf(wr_mas->type))
3640 			return true;
3641 
3642 		mas_wr_walk_traverse(wr_mas);
3643 	}
3644 
3645 	return true;
3646 }
3647 
3648 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3649 {
3650 	struct ma_state *mas = wr_mas->mas;
3651 
3652 	while (true) {
3653 		mas_wr_walk_descend(wr_mas);
3654 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3655 						  mas->offset);
3656 		if (ma_is_leaf(wr_mas->type))
3657 			return;
3658 		mas_wr_walk_traverse(wr_mas);
3659 	}
3660 }
3661 /*
3662  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3663  * @l_wr_mas: The left maple write state
3664  * @r_wr_mas: The right maple write state
3665  */
3666 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3667 					    struct ma_wr_state *r_wr_mas)
3668 {
3669 	struct ma_state *r_mas = r_wr_mas->mas;
3670 	struct ma_state *l_mas = l_wr_mas->mas;
3671 	unsigned char l_slot;
3672 
3673 	l_slot = l_mas->offset;
3674 	if (!l_wr_mas->content)
3675 		l_mas->index = l_wr_mas->r_min;
3676 
3677 	if ((l_mas->index == l_wr_mas->r_min) &&
3678 		 (l_slot &&
3679 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3680 		if (l_slot > 1)
3681 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3682 		else
3683 			l_mas->index = l_mas->min;
3684 
3685 		l_mas->offset = l_slot - 1;
3686 	}
3687 
3688 	if (!r_wr_mas->content) {
3689 		if (r_mas->last < r_wr_mas->r_max)
3690 			r_mas->last = r_wr_mas->r_max;
3691 		r_mas->offset++;
3692 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3693 	    (r_mas->last < r_mas->max) &&
3694 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3695 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3696 					     r_wr_mas->type, r_mas->offset + 1);
3697 		r_mas->offset++;
3698 	}
3699 }
3700 
3701 static inline void *mas_state_walk(struct ma_state *mas)
3702 {
3703 	void *entry;
3704 
3705 	entry = mas_start(mas);
3706 	if (mas_is_none(mas))
3707 		return NULL;
3708 
3709 	if (mas_is_ptr(mas))
3710 		return entry;
3711 
3712 	return mtree_range_walk(mas);
3713 }
3714 
3715 /*
3716  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3717  * to date.
3718  *
3719  * @mas: The maple state.
3720  *
3721  * Note: Leaves mas in undesirable state.
3722  * Return: The entry for @mas->index or %NULL on dead node.
3723  */
3724 static inline void *mtree_lookup_walk(struct ma_state *mas)
3725 {
3726 	unsigned long *pivots;
3727 	unsigned char offset;
3728 	struct maple_node *node;
3729 	struct maple_enode *next;
3730 	enum maple_type type;
3731 	void __rcu **slots;
3732 	unsigned char end;
3733 	unsigned long max;
3734 
3735 	next = mas->node;
3736 	max = ULONG_MAX;
3737 	do {
3738 		offset = 0;
3739 		node = mte_to_node(next);
3740 		type = mte_node_type(next);
3741 		pivots = ma_pivots(node, type);
3742 		end = ma_data_end(node, type, pivots, max);
3743 		if (unlikely(ma_dead_node(node)))
3744 			goto dead_node;
3745 		do {
3746 			if (pivots[offset] >= mas->index) {
3747 				max = pivots[offset];
3748 				break;
3749 			}
3750 		} while (++offset < end);
3751 
3752 		slots = ma_slots(node, type);
3753 		next = mt_slot(mas->tree, slots, offset);
3754 		if (unlikely(ma_dead_node(node)))
3755 			goto dead_node;
3756 	} while (!ma_is_leaf(type));
3757 
3758 	return (void *)next;
3759 
3760 dead_node:
3761 	mas_reset(mas);
3762 	return NULL;
3763 }
3764 
3765 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3766 /*
3767  * mas_new_root() - Create a new root node that only contains the entry passed
3768  * in.
3769  * @mas: The maple state
3770  * @entry: The entry to store.
3771  *
3772  * Only valid when the index == 0 and the last == ULONG_MAX
3773  *
3774  * Return 0 on error, 1 on success.
3775  */
3776 static inline int mas_new_root(struct ma_state *mas, void *entry)
3777 {
3778 	struct maple_enode *root = mas_root_locked(mas);
3779 	enum maple_type type = maple_leaf_64;
3780 	struct maple_node *node;
3781 	void __rcu **slots;
3782 	unsigned long *pivots;
3783 
3784 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3785 		mas->depth = 0;
3786 		mas_set_height(mas);
3787 		rcu_assign_pointer(mas->tree->ma_root, entry);
3788 		mas->node = MAS_START;
3789 		goto done;
3790 	}
3791 
3792 	mas_node_count(mas, 1);
3793 	if (mas_is_err(mas))
3794 		return 0;
3795 
3796 	node = mas_pop_node(mas);
3797 	pivots = ma_pivots(node, type);
3798 	slots = ma_slots(node, type);
3799 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3800 	mas->node = mt_mk_node(node, type);
3801 	rcu_assign_pointer(slots[0], entry);
3802 	pivots[0] = mas->last;
3803 	mas->depth = 1;
3804 	mas_set_height(mas);
3805 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3806 
3807 done:
3808 	if (xa_is_node(root))
3809 		mte_destroy_walk(root, mas->tree);
3810 
3811 	return 1;
3812 }
3813 /*
3814  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3815  * and new nodes where necessary, then place the sub-tree in the actual tree.
3816  * Note that mas is expected to point to the node which caused the store to
3817  * span.
3818  * @wr_mas: The maple write state
3819  *
3820  * Return: 0 on error, positive on success.
3821  */
3822 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3823 {
3824 	struct maple_subtree_state mast;
3825 	struct maple_big_node b_node;
3826 	struct ma_state *mas;
3827 	unsigned char height;
3828 
3829 	/* Left and Right side of spanning store */
3830 	MA_STATE(l_mas, NULL, 0, 0);
3831 	MA_STATE(r_mas, NULL, 0, 0);
3832 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3833 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3834 
3835 	/*
3836 	 * A store operation that spans multiple nodes is called a spanning
3837 	 * store and is handled early in the store call stack by the function
3838 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3839 	 * state is duplicated.  The first maple state walks the left tree path
3840 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3841 	 * The data in the two nodes are combined into a single node, two nodes,
3842 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3843 	 * written to the last entry of a node is considered a spanning store as
3844 	 * a rebalance is required for the operation to complete and an overflow
3845 	 * of data may happen.
3846 	 */
3847 	mas = wr_mas->mas;
3848 	trace_ma_op(__func__, mas);
3849 
3850 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3851 		return mas_new_root(mas, wr_mas->entry);
3852 	/*
3853 	 * Node rebalancing may occur due to this store, so there may be three new
3854 	 * entries per level plus a new root.
3855 	 */
3856 	height = mas_mt_height(mas);
3857 	mas_node_count(mas, 1 + height * 3);
3858 	if (mas_is_err(mas))
3859 		return 0;
3860 
3861 	/*
3862 	 * Set up right side.  Need to get to the next offset after the spanning
3863 	 * store to ensure it's not NULL and to combine both the next node and
3864 	 * the node with the start together.
3865 	 */
3866 	r_mas = *mas;
3867 	/* Avoid overflow, walk to next slot in the tree. */
3868 	if (r_mas.last + 1)
3869 		r_mas.last++;
3870 
3871 	r_mas.index = r_mas.last;
3872 	mas_wr_walk_index(&r_wr_mas);
3873 	r_mas.last = r_mas.index = mas->last;
3874 
3875 	/* Set up left side. */
3876 	l_mas = *mas;
3877 	mas_wr_walk_index(&l_wr_mas);
3878 
3879 	if (!wr_mas->entry) {
3880 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3881 		mas->offset = l_mas.offset;
3882 		mas->index = l_mas.index;
3883 		mas->last = l_mas.last = r_mas.last;
3884 	}
3885 
3886 	/* expanding NULLs may make this cover the entire range */
3887 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
3888 		mas_set_range(mas, 0, ULONG_MAX);
3889 		return mas_new_root(mas, wr_mas->entry);
3890 	}
3891 
3892 	memset(&b_node, 0, sizeof(struct maple_big_node));
3893 	/* Copy l_mas and store the value in b_node. */
3894 	mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
3895 	/* Copy r_mas into b_node if there is anything to copy. */
3896 	if (r_mas.max > r_mas.last)
3897 		mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
3898 			   &b_node, b_node.b_end + 1);
3899 	else
3900 		b_node.b_end++;
3901 
3902 	/* Stop spanning searches by searching for just index. */
3903 	l_mas.index = l_mas.last = mas->index;
3904 
3905 	mast.bn = &b_node;
3906 	mast.orig_l = &l_mas;
3907 	mast.orig_r = &r_mas;
3908 	/* Combine l_mas and r_mas and split them up evenly again. */
3909 	return mas_spanning_rebalance(mas, &mast, height + 1);
3910 }
3911 
3912 /*
3913  * mas_wr_node_store() - Attempt to store the value in a node
3914  * @wr_mas: The maple write state
3915  *
3916  * Attempts to reuse the node, but may allocate.
3917  *
3918  * Return: True if stored, false otherwise
3919  */
3920 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
3921 				     unsigned char new_end)
3922 {
3923 	struct ma_state *mas = wr_mas->mas;
3924 	void __rcu **dst_slots;
3925 	unsigned long *dst_pivots;
3926 	unsigned char dst_offset, offset_end = wr_mas->offset_end;
3927 	struct maple_node reuse, *newnode;
3928 	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3929 	bool in_rcu = mt_in_rcu(mas->tree);
3930 
3931 	/* Check if there is enough data. The room is enough. */
3932 	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
3933 	    !(mas->mas_flags & MA_STATE_BULK))
3934 		return false;
3935 
3936 	if (mas->last == wr_mas->end_piv)
3937 		offset_end++; /* don't copy this offset */
3938 	else if (unlikely(wr_mas->r_max == ULONG_MAX))
3939 		mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
3940 
3941 	/* set up node. */
3942 	if (in_rcu) {
3943 		mas_node_count(mas, 1);
3944 		if (mas_is_err(mas))
3945 			return false;
3946 
3947 		newnode = mas_pop_node(mas);
3948 	} else {
3949 		memset(&reuse, 0, sizeof(struct maple_node));
3950 		newnode = &reuse;
3951 	}
3952 
3953 	newnode->parent = mas_mn(mas)->parent;
3954 	dst_pivots = ma_pivots(newnode, wr_mas->type);
3955 	dst_slots = ma_slots(newnode, wr_mas->type);
3956 	/* Copy from start to insert point */
3957 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3958 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3959 
3960 	/* Handle insert of new range starting after old range */
3961 	if (wr_mas->r_min < mas->index) {
3962 		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3963 		dst_pivots[mas->offset++] = mas->index - 1;
3964 	}
3965 
3966 	/* Store the new entry and range end. */
3967 	if (mas->offset < node_pivots)
3968 		dst_pivots[mas->offset] = mas->last;
3969 	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3970 
3971 	/*
3972 	 * this range wrote to the end of the node or it overwrote the rest of
3973 	 * the data
3974 	 */
3975 	if (offset_end > wr_mas->node_end)
3976 		goto done;
3977 
3978 	dst_offset = mas->offset + 1;
3979 	/* Copy to the end of node if necessary. */
3980 	copy_size = wr_mas->node_end - offset_end + 1;
3981 	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3982 	       sizeof(void *) * copy_size);
3983 	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3984 	       sizeof(unsigned long) * (copy_size - 1));
3985 
3986 	if (new_end < node_pivots)
3987 		dst_pivots[new_end] = mas->max;
3988 
3989 done:
3990 	mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
3991 	if (in_rcu) {
3992 		struct maple_enode *old_enode = mas->node;
3993 
3994 		mas->node = mt_mk_node(newnode, wr_mas->type);
3995 		mas_replace_node(mas, old_enode);
3996 	} else {
3997 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3998 	}
3999 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4000 	mas_update_gap(mas);
4001 	return true;
4002 }
4003 
4004 /*
4005  * mas_wr_slot_store: Attempt to store a value in a slot.
4006  * @wr_mas: the maple write state
4007  *
4008  * Return: True if stored, false otherwise
4009  */
4010 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4011 {
4012 	struct ma_state *mas = wr_mas->mas;
4013 	unsigned char offset = mas->offset;
4014 	void __rcu **slots = wr_mas->slots;
4015 	bool gap = false;
4016 
4017 	gap |= !mt_slot_locked(mas->tree, slots, offset);
4018 	gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
4019 
4020 	if (wr_mas->offset_end - offset == 1) {
4021 		if (mas->index == wr_mas->r_min) {
4022 			/* Overwriting the range and a part of the next one */
4023 			rcu_assign_pointer(slots[offset], wr_mas->entry);
4024 			wr_mas->pivots[offset] = mas->last;
4025 		} else {
4026 			/* Overwriting a part of the range and the next one */
4027 			rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4028 			wr_mas->pivots[offset] = mas->index - 1;
4029 			mas->offset++; /* Keep mas accurate. */
4030 		}
4031 	} else if (!mt_in_rcu(mas->tree)) {
4032 		/*
4033 		 * Expand the range, only partially overwriting the previous and
4034 		 * next ranges
4035 		 */
4036 		gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
4037 		rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4038 		wr_mas->pivots[offset] = mas->index - 1;
4039 		wr_mas->pivots[offset + 1] = mas->last;
4040 		mas->offset++; /* Keep mas accurate. */
4041 	} else {
4042 		return false;
4043 	}
4044 
4045 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4046 	/*
4047 	 * Only update gap when the new entry is empty or there is an empty
4048 	 * entry in the original two ranges.
4049 	 */
4050 	if (!wr_mas->entry || gap)
4051 		mas_update_gap(mas);
4052 
4053 	return true;
4054 }
4055 
4056 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4057 {
4058 	struct ma_state *mas = wr_mas->mas;
4059 
4060 	if (!wr_mas->slots[wr_mas->offset_end]) {
4061 		/* If this one is null, the next and prev are not */
4062 		mas->last = wr_mas->end_piv;
4063 	} else {
4064 		/* Check next slot(s) if we are overwriting the end */
4065 		if ((mas->last == wr_mas->end_piv) &&
4066 		    (wr_mas->node_end != wr_mas->offset_end) &&
4067 		    !wr_mas->slots[wr_mas->offset_end + 1]) {
4068 			wr_mas->offset_end++;
4069 			if (wr_mas->offset_end == wr_mas->node_end)
4070 				mas->last = mas->max;
4071 			else
4072 				mas->last = wr_mas->pivots[wr_mas->offset_end];
4073 			wr_mas->end_piv = mas->last;
4074 		}
4075 	}
4076 
4077 	if (!wr_mas->content) {
4078 		/* If this one is null, the next and prev are not */
4079 		mas->index = wr_mas->r_min;
4080 	} else {
4081 		/* Check prev slot if we are overwriting the start */
4082 		if (mas->index == wr_mas->r_min && mas->offset &&
4083 		    !wr_mas->slots[mas->offset - 1]) {
4084 			mas->offset--;
4085 			wr_mas->r_min = mas->index =
4086 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4087 			wr_mas->r_max = wr_mas->pivots[mas->offset];
4088 		}
4089 	}
4090 }
4091 
4092 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4093 {
4094 	while ((wr_mas->offset_end < wr_mas->node_end) &&
4095 	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4096 		wr_mas->offset_end++;
4097 
4098 	if (wr_mas->offset_end < wr_mas->node_end)
4099 		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4100 	else
4101 		wr_mas->end_piv = wr_mas->mas->max;
4102 
4103 	if (!wr_mas->entry)
4104 		mas_wr_extend_null(wr_mas);
4105 }
4106 
4107 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4108 {
4109 	struct ma_state *mas = wr_mas->mas;
4110 	unsigned char new_end = wr_mas->node_end + 2;
4111 
4112 	new_end -= wr_mas->offset_end - mas->offset;
4113 	if (wr_mas->r_min == mas->index)
4114 		new_end--;
4115 
4116 	if (wr_mas->end_piv == mas->last)
4117 		new_end--;
4118 
4119 	return new_end;
4120 }
4121 
4122 /*
4123  * mas_wr_append: Attempt to append
4124  * @wr_mas: the maple write state
4125  * @new_end: The end of the node after the modification
4126  *
4127  * This is currently unsafe in rcu mode since the end of the node may be cached
4128  * by readers while the node contents may be updated which could result in
4129  * inaccurate information.
4130  *
4131  * Return: True if appended, false otherwise
4132  */
4133 static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
4134 		unsigned char new_end)
4135 {
4136 	struct ma_state *mas;
4137 	void __rcu **slots;
4138 	unsigned char end;
4139 
4140 	mas = wr_mas->mas;
4141 	if (mt_in_rcu(mas->tree))
4142 		return false;
4143 
4144 	if (mas->offset != wr_mas->node_end)
4145 		return false;
4146 
4147 	end = wr_mas->node_end;
4148 	if (mas->offset != end)
4149 		return false;
4150 
4151 	if (new_end < mt_pivots[wr_mas->type]) {
4152 		wr_mas->pivots[new_end] = wr_mas->pivots[end];
4153 		ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4154 	}
4155 
4156 	slots = wr_mas->slots;
4157 	if (new_end == end + 1) {
4158 		if (mas->last == wr_mas->r_max) {
4159 			/* Append to end of range */
4160 			rcu_assign_pointer(slots[new_end], wr_mas->entry);
4161 			wr_mas->pivots[end] = mas->index - 1;
4162 			mas->offset = new_end;
4163 		} else {
4164 			/* Append to start of range */
4165 			rcu_assign_pointer(slots[new_end], wr_mas->content);
4166 			wr_mas->pivots[end] = mas->last;
4167 			rcu_assign_pointer(slots[end], wr_mas->entry);
4168 		}
4169 	} else {
4170 		/* Append to the range without touching any boundaries. */
4171 		rcu_assign_pointer(slots[new_end], wr_mas->content);
4172 		wr_mas->pivots[end + 1] = mas->last;
4173 		rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4174 		wr_mas->pivots[end] = mas->index - 1;
4175 		mas->offset = end + 1;
4176 	}
4177 
4178 	if (!wr_mas->content || !wr_mas->entry)
4179 		mas_update_gap(mas);
4180 
4181 	trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4182 	return  true;
4183 }
4184 
4185 /*
4186  * mas_wr_bnode() - Slow path for a modification.
4187  * @wr_mas: The write maple state
4188  *
4189  * This is where split, rebalance end up.
4190  */
4191 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4192 {
4193 	struct maple_big_node b_node;
4194 
4195 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4196 	memset(&b_node, 0, sizeof(struct maple_big_node));
4197 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4198 	mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4199 }
4200 
4201 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4202 {
4203 	struct ma_state *mas = wr_mas->mas;
4204 	unsigned char new_end;
4205 
4206 	/* Direct replacement */
4207 	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4208 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4209 		if (!!wr_mas->entry ^ !!wr_mas->content)
4210 			mas_update_gap(mas);
4211 		return;
4212 	}
4213 
4214 	/*
4215 	 * new_end exceeds the size of the maple node and cannot enter the fast
4216 	 * path.
4217 	 */
4218 	new_end = mas_wr_new_end(wr_mas);
4219 	if (new_end >= mt_slots[wr_mas->type])
4220 		goto slow_path;
4221 
4222 	/* Attempt to append */
4223 	if (mas_wr_append(wr_mas, new_end))
4224 		return;
4225 
4226 	if (new_end == wr_mas->node_end && mas_wr_slot_store(wr_mas))
4227 		return;
4228 
4229 	if (mas_wr_node_store(wr_mas, new_end))
4230 		return;
4231 
4232 	if (mas_is_err(mas))
4233 		return;
4234 
4235 slow_path:
4236 	mas_wr_bnode(wr_mas);
4237 }
4238 
4239 /*
4240  * mas_wr_store_entry() - Internal call to store a value
4241  * @mas: The maple state
4242  * @entry: The entry to store.
4243  *
4244  * Return: The contents that was stored at the index.
4245  */
4246 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4247 {
4248 	struct ma_state *mas = wr_mas->mas;
4249 
4250 	wr_mas->content = mas_start(mas);
4251 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4252 		mas_store_root(mas, wr_mas->entry);
4253 		return wr_mas->content;
4254 	}
4255 
4256 	if (unlikely(!mas_wr_walk(wr_mas))) {
4257 		mas_wr_spanning_store(wr_mas);
4258 		return wr_mas->content;
4259 	}
4260 
4261 	/* At this point, we are at the leaf node that needs to be altered. */
4262 	mas_wr_end_piv(wr_mas);
4263 	/* New root for a single pointer */
4264 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4265 		mas_new_root(mas, wr_mas->entry);
4266 		return wr_mas->content;
4267 	}
4268 
4269 	mas_wr_modify(wr_mas);
4270 	return wr_mas->content;
4271 }
4272 
4273 /**
4274  * mas_insert() - Internal call to insert a value
4275  * @mas: The maple state
4276  * @entry: The entry to store
4277  *
4278  * Return: %NULL or the contents that already exists at the requested index
4279  * otherwise.  The maple state needs to be checked for error conditions.
4280  */
4281 static inline void *mas_insert(struct ma_state *mas, void *entry)
4282 {
4283 	MA_WR_STATE(wr_mas, mas, entry);
4284 
4285 	/*
4286 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4287 	 * tree.  If the insert fits exactly into an existing gap with a value
4288 	 * of NULL, then the slot only needs to be written with the new value.
4289 	 * If the range being inserted is adjacent to another range, then only a
4290 	 * single pivot needs to be inserted (as well as writing the entry).  If
4291 	 * the new range is within a gap but does not touch any other ranges,
4292 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4293 	 * usual, the entry must be written.  Most operations require a new node
4294 	 * to be allocated and replace an existing node to ensure RCU safety,
4295 	 * when in RCU mode.  The exception to requiring a newly allocated node
4296 	 * is when inserting at the end of a node (appending).  When done
4297 	 * carefully, appending can reuse the node in place.
4298 	 */
4299 	wr_mas.content = mas_start(mas);
4300 	if (wr_mas.content)
4301 		goto exists;
4302 
4303 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4304 		mas_store_root(mas, entry);
4305 		return NULL;
4306 	}
4307 
4308 	/* spanning writes always overwrite something */
4309 	if (!mas_wr_walk(&wr_mas))
4310 		goto exists;
4311 
4312 	/* At this point, we are at the leaf node that needs to be altered. */
4313 	wr_mas.offset_end = mas->offset;
4314 	wr_mas.end_piv = wr_mas.r_max;
4315 
4316 	if (wr_mas.content || (mas->last > wr_mas.r_max))
4317 		goto exists;
4318 
4319 	if (!entry)
4320 		return NULL;
4321 
4322 	mas_wr_modify(&wr_mas);
4323 	return wr_mas.content;
4324 
4325 exists:
4326 	mas_set_err(mas, -EEXIST);
4327 	return wr_mas.content;
4328 
4329 }
4330 
4331 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4332 {
4333 retry:
4334 	mas_set(mas, index);
4335 	mas_state_walk(mas);
4336 	if (mas_is_start(mas))
4337 		goto retry;
4338 }
4339 
4340 static inline bool mas_rewalk_if_dead(struct ma_state *mas,
4341 		struct maple_node *node, const unsigned long index)
4342 {
4343 	if (unlikely(ma_dead_node(node))) {
4344 		mas_rewalk(mas, index);
4345 		return true;
4346 	}
4347 	return false;
4348 }
4349 
4350 /*
4351  * mas_prev_node() - Find the prev non-null entry at the same level in the
4352  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
4353  * @mas: The maple state
4354  * @min: The lower limit to search
4355  *
4356  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4357  * Return: 1 if the node is dead, 0 otherwise.
4358  */
4359 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4360 {
4361 	enum maple_type mt;
4362 	int offset, level;
4363 	void __rcu **slots;
4364 	struct maple_node *node;
4365 	unsigned long *pivots;
4366 	unsigned long max;
4367 
4368 	node = mas_mn(mas);
4369 	if (!mas->min)
4370 		goto no_entry;
4371 
4372 	max = mas->min - 1;
4373 	if (max < min)
4374 		goto no_entry;
4375 
4376 	level = 0;
4377 	do {
4378 		if (ma_is_root(node))
4379 			goto no_entry;
4380 
4381 		/* Walk up. */
4382 		if (unlikely(mas_ascend(mas)))
4383 			return 1;
4384 		offset = mas->offset;
4385 		level++;
4386 		node = mas_mn(mas);
4387 	} while (!offset);
4388 
4389 	offset--;
4390 	mt = mte_node_type(mas->node);
4391 	while (level > 1) {
4392 		level--;
4393 		slots = ma_slots(node, mt);
4394 		mas->node = mas_slot(mas, slots, offset);
4395 		if (unlikely(ma_dead_node(node)))
4396 			return 1;
4397 
4398 		mt = mte_node_type(mas->node);
4399 		node = mas_mn(mas);
4400 		pivots = ma_pivots(node, mt);
4401 		offset = ma_data_end(node, mt, pivots, max);
4402 		if (unlikely(ma_dead_node(node)))
4403 			return 1;
4404 	}
4405 
4406 	slots = ma_slots(node, mt);
4407 	mas->node = mas_slot(mas, slots, offset);
4408 	pivots = ma_pivots(node, mt);
4409 	if (unlikely(ma_dead_node(node)))
4410 		return 1;
4411 
4412 	if (likely(offset))
4413 		mas->min = pivots[offset - 1] + 1;
4414 	mas->max = max;
4415 	mas->offset = mas_data_end(mas);
4416 	if (unlikely(mte_dead_node(mas->node)))
4417 		return 1;
4418 
4419 	return 0;
4420 
4421 no_entry:
4422 	if (unlikely(ma_dead_node(node)))
4423 		return 1;
4424 
4425 	mas->node = MAS_NONE;
4426 	return 0;
4427 }
4428 
4429 /*
4430  * mas_prev_slot() - Get the entry in the previous slot
4431  *
4432  * @mas: The maple state
4433  * @max: The minimum starting range
4434  * @empty: Can be empty
4435  * @set_underflow: Set the @mas->node to underflow state on limit.
4436  *
4437  * Return: The entry in the previous slot which is possibly NULL
4438  */
4439 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty,
4440 			   bool set_underflow)
4441 {
4442 	void *entry;
4443 	void __rcu **slots;
4444 	unsigned long pivot;
4445 	enum maple_type type;
4446 	unsigned long *pivots;
4447 	struct maple_node *node;
4448 	unsigned long save_point = mas->index;
4449 
4450 retry:
4451 	node = mas_mn(mas);
4452 	type = mte_node_type(mas->node);
4453 	pivots = ma_pivots(node, type);
4454 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4455 		goto retry;
4456 
4457 	if (mas->min <= min) {
4458 		pivot = mas_safe_min(mas, pivots, mas->offset);
4459 
4460 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4461 			goto retry;
4462 
4463 		if (pivot <= min)
4464 			goto underflow;
4465 	}
4466 
4467 again:
4468 	if (likely(mas->offset)) {
4469 		mas->offset--;
4470 		mas->last = mas->index - 1;
4471 		mas->index = mas_safe_min(mas, pivots, mas->offset);
4472 	} else  {
4473 		if (mas_prev_node(mas, min)) {
4474 			mas_rewalk(mas, save_point);
4475 			goto retry;
4476 		}
4477 
4478 		if (mas_is_none(mas))
4479 			goto underflow;
4480 
4481 		mas->last = mas->max;
4482 		node = mas_mn(mas);
4483 		type = mte_node_type(mas->node);
4484 		pivots = ma_pivots(node, type);
4485 		mas->index = pivots[mas->offset - 1] + 1;
4486 	}
4487 
4488 	slots = ma_slots(node, type);
4489 	entry = mas_slot(mas, slots, mas->offset);
4490 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4491 		goto retry;
4492 
4493 	if (likely(entry))
4494 		return entry;
4495 
4496 	if (!empty) {
4497 		if (mas->index <= min)
4498 			goto underflow;
4499 
4500 		goto again;
4501 	}
4502 
4503 	return entry;
4504 
4505 underflow:
4506 	if (set_underflow)
4507 		mas->node = MAS_UNDERFLOW;
4508 	return NULL;
4509 }
4510 
4511 /*
4512  * mas_next_node() - Get the next node at the same level in the tree.
4513  * @mas: The maple state
4514  * @max: The maximum pivot value to check.
4515  *
4516  * The next value will be mas->node[mas->offset] or MAS_NONE.
4517  * Return: 1 on dead node, 0 otherwise.
4518  */
4519 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4520 				unsigned long max)
4521 {
4522 	unsigned long min;
4523 	unsigned long *pivots;
4524 	struct maple_enode *enode;
4525 	int level = 0;
4526 	unsigned char node_end;
4527 	enum maple_type mt;
4528 	void __rcu **slots;
4529 
4530 	if (mas->max >= max)
4531 		goto no_entry;
4532 
4533 	min = mas->max + 1;
4534 	level = 0;
4535 	do {
4536 		if (ma_is_root(node))
4537 			goto no_entry;
4538 
4539 		/* Walk up. */
4540 		if (unlikely(mas_ascend(mas)))
4541 			return 1;
4542 
4543 		level++;
4544 		node = mas_mn(mas);
4545 		mt = mte_node_type(mas->node);
4546 		pivots = ma_pivots(node, mt);
4547 		node_end = ma_data_end(node, mt, pivots, mas->max);
4548 		if (unlikely(ma_dead_node(node)))
4549 			return 1;
4550 
4551 	} while (unlikely(mas->offset == node_end));
4552 
4553 	slots = ma_slots(node, mt);
4554 	mas->offset++;
4555 	enode = mas_slot(mas, slots, mas->offset);
4556 	if (unlikely(ma_dead_node(node)))
4557 		return 1;
4558 
4559 	if (level > 1)
4560 		mas->offset = 0;
4561 
4562 	while (unlikely(level > 1)) {
4563 		level--;
4564 		mas->node = enode;
4565 		node = mas_mn(mas);
4566 		mt = mte_node_type(mas->node);
4567 		slots = ma_slots(node, mt);
4568 		enode = mas_slot(mas, slots, 0);
4569 		if (unlikely(ma_dead_node(node)))
4570 			return 1;
4571 	}
4572 
4573 	if (!mas->offset)
4574 		pivots = ma_pivots(node, mt);
4575 
4576 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4577 	if (unlikely(ma_dead_node(node)))
4578 		return 1;
4579 
4580 	mas->node = enode;
4581 	mas->min = min;
4582 	return 0;
4583 
4584 no_entry:
4585 	if (unlikely(ma_dead_node(node)))
4586 		return 1;
4587 
4588 	mas->node = MAS_NONE;
4589 	return 0;
4590 }
4591 
4592 /*
4593  * mas_next_slot() - Get the entry in the next slot
4594  *
4595  * @mas: The maple state
4596  * @max: The maximum starting range
4597  * @empty: Can be empty
4598  * @set_overflow: Should @mas->node be set to overflow when the limit is
4599  * reached.
4600  *
4601  * Return: The entry in the next slot which is possibly NULL
4602  */
4603 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty,
4604 			   bool set_overflow)
4605 {
4606 	void __rcu **slots;
4607 	unsigned long *pivots;
4608 	unsigned long pivot;
4609 	enum maple_type type;
4610 	struct maple_node *node;
4611 	unsigned char data_end;
4612 	unsigned long save_point = mas->last;
4613 	void *entry;
4614 
4615 retry:
4616 	node = mas_mn(mas);
4617 	type = mte_node_type(mas->node);
4618 	pivots = ma_pivots(node, type);
4619 	data_end = ma_data_end(node, type, pivots, mas->max);
4620 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4621 		goto retry;
4622 
4623 	if (mas->max >= max) {
4624 		if (likely(mas->offset < data_end))
4625 			pivot = pivots[mas->offset];
4626 		else
4627 			goto overflow;
4628 
4629 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4630 			goto retry;
4631 
4632 		if (pivot >= max)
4633 			goto overflow;
4634 	}
4635 
4636 	if (likely(mas->offset < data_end)) {
4637 		mas->index = pivots[mas->offset] + 1;
4638 again:
4639 		mas->offset++;
4640 		if (likely(mas->offset < data_end))
4641 			mas->last = pivots[mas->offset];
4642 		else
4643 			mas->last = mas->max;
4644 	} else  {
4645 		if (mas_next_node(mas, node, max)) {
4646 			mas_rewalk(mas, save_point);
4647 			goto retry;
4648 		}
4649 
4650 		if (WARN_ON_ONCE(mas_is_none(mas))) {
4651 			mas->node = MAS_OVERFLOW;
4652 			return NULL;
4653 			goto overflow;
4654 		}
4655 
4656 		mas->offset = 0;
4657 		mas->index = mas->min;
4658 		node = mas_mn(mas);
4659 		type = mte_node_type(mas->node);
4660 		pivots = ma_pivots(node, type);
4661 		mas->last = pivots[0];
4662 	}
4663 
4664 	slots = ma_slots(node, type);
4665 	entry = mt_slot(mas->tree, slots, mas->offset);
4666 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4667 		goto retry;
4668 
4669 	if (entry)
4670 		return entry;
4671 
4672 	if (!empty) {
4673 		if (mas->last >= max)
4674 			goto overflow;
4675 
4676 		mas->index = mas->last + 1;
4677 		/* Node cannot end on NULL, so it's safe to short-cut here */
4678 		goto again;
4679 	}
4680 
4681 	return entry;
4682 
4683 overflow:
4684 	if (set_overflow)
4685 		mas->node = MAS_OVERFLOW;
4686 	return NULL;
4687 }
4688 
4689 /*
4690  * mas_next_entry() - Internal function to get the next entry.
4691  * @mas: The maple state
4692  * @limit: The maximum range start.
4693  *
4694  * Set the @mas->node to the next entry and the range_start to
4695  * the beginning value for the entry.  Does not check beyond @limit.
4696  * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4697  * @mas->last on overflow.
4698  * Restarts on dead nodes.
4699  *
4700  * Return: the next entry or %NULL.
4701  */
4702 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4703 {
4704 	if (mas->last >= limit) {
4705 		mas->node = MAS_OVERFLOW;
4706 		return NULL;
4707 	}
4708 
4709 	return mas_next_slot(mas, limit, false, true);
4710 }
4711 
4712 /*
4713  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4714  * highest gap address of a given size in a given node and descend.
4715  * @mas: The maple state
4716  * @size: The needed size.
4717  *
4718  * Return: True if found in a leaf, false otherwise.
4719  *
4720  */
4721 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4722 		unsigned long *gap_min, unsigned long *gap_max)
4723 {
4724 	enum maple_type type = mte_node_type(mas->node);
4725 	struct maple_node *node = mas_mn(mas);
4726 	unsigned long *pivots, *gaps;
4727 	void __rcu **slots;
4728 	unsigned long gap = 0;
4729 	unsigned long max, min;
4730 	unsigned char offset;
4731 
4732 	if (unlikely(mas_is_err(mas)))
4733 		return true;
4734 
4735 	if (ma_is_dense(type)) {
4736 		/* dense nodes. */
4737 		mas->offset = (unsigned char)(mas->index - mas->min);
4738 		return true;
4739 	}
4740 
4741 	pivots = ma_pivots(node, type);
4742 	slots = ma_slots(node, type);
4743 	gaps = ma_gaps(node, type);
4744 	offset = mas->offset;
4745 	min = mas_safe_min(mas, pivots, offset);
4746 	/* Skip out of bounds. */
4747 	while (mas->last < min)
4748 		min = mas_safe_min(mas, pivots, --offset);
4749 
4750 	max = mas_safe_pivot(mas, pivots, offset, type);
4751 	while (mas->index <= max) {
4752 		gap = 0;
4753 		if (gaps)
4754 			gap = gaps[offset];
4755 		else if (!mas_slot(mas, slots, offset))
4756 			gap = max - min + 1;
4757 
4758 		if (gap) {
4759 			if ((size <= gap) && (size <= mas->last - min + 1))
4760 				break;
4761 
4762 			if (!gaps) {
4763 				/* Skip the next slot, it cannot be a gap. */
4764 				if (offset < 2)
4765 					goto ascend;
4766 
4767 				offset -= 2;
4768 				max = pivots[offset];
4769 				min = mas_safe_min(mas, pivots, offset);
4770 				continue;
4771 			}
4772 		}
4773 
4774 		if (!offset)
4775 			goto ascend;
4776 
4777 		offset--;
4778 		max = min - 1;
4779 		min = mas_safe_min(mas, pivots, offset);
4780 	}
4781 
4782 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4783 		goto no_space;
4784 
4785 	if (unlikely(ma_is_leaf(type))) {
4786 		mas->offset = offset;
4787 		*gap_min = min;
4788 		*gap_max = min + gap - 1;
4789 		return true;
4790 	}
4791 
4792 	/* descend, only happens under lock. */
4793 	mas->node = mas_slot(mas, slots, offset);
4794 	mas->min = min;
4795 	mas->max = max;
4796 	mas->offset = mas_data_end(mas);
4797 	return false;
4798 
4799 ascend:
4800 	if (!mte_is_root(mas->node))
4801 		return false;
4802 
4803 no_space:
4804 	mas_set_err(mas, -EBUSY);
4805 	return false;
4806 }
4807 
4808 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4809 {
4810 	enum maple_type type = mte_node_type(mas->node);
4811 	unsigned long pivot, min, gap = 0;
4812 	unsigned char offset, data_end;
4813 	unsigned long *gaps, *pivots;
4814 	void __rcu **slots;
4815 	struct maple_node *node;
4816 	bool found = false;
4817 
4818 	if (ma_is_dense(type)) {
4819 		mas->offset = (unsigned char)(mas->index - mas->min);
4820 		return true;
4821 	}
4822 
4823 	node = mas_mn(mas);
4824 	pivots = ma_pivots(node, type);
4825 	slots = ma_slots(node, type);
4826 	gaps = ma_gaps(node, type);
4827 	offset = mas->offset;
4828 	min = mas_safe_min(mas, pivots, offset);
4829 	data_end = ma_data_end(node, type, pivots, mas->max);
4830 	for (; offset <= data_end; offset++) {
4831 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4832 
4833 		/* Not within lower bounds */
4834 		if (mas->index > pivot)
4835 			goto next_slot;
4836 
4837 		if (gaps)
4838 			gap = gaps[offset];
4839 		else if (!mas_slot(mas, slots, offset))
4840 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4841 		else
4842 			goto next_slot;
4843 
4844 		if (gap >= size) {
4845 			if (ma_is_leaf(type)) {
4846 				found = true;
4847 				goto done;
4848 			}
4849 			if (mas->index <= pivot) {
4850 				mas->node = mas_slot(mas, slots, offset);
4851 				mas->min = min;
4852 				mas->max = pivot;
4853 				offset = 0;
4854 				break;
4855 			}
4856 		}
4857 next_slot:
4858 		min = pivot + 1;
4859 		if (mas->last <= pivot) {
4860 			mas_set_err(mas, -EBUSY);
4861 			return true;
4862 		}
4863 	}
4864 
4865 	if (mte_is_root(mas->node))
4866 		found = true;
4867 done:
4868 	mas->offset = offset;
4869 	return found;
4870 }
4871 
4872 /**
4873  * mas_walk() - Search for @mas->index in the tree.
4874  * @mas: The maple state.
4875  *
4876  * mas->index and mas->last will be set to the range if there is a value.  If
4877  * mas->node is MAS_NONE, reset to MAS_START.
4878  *
4879  * Return: the entry at the location or %NULL.
4880  */
4881 void *mas_walk(struct ma_state *mas)
4882 {
4883 	void *entry;
4884 
4885 	if (!mas_is_active(mas) || !mas_is_start(mas))
4886 		mas->node = MAS_START;
4887 retry:
4888 	entry = mas_state_walk(mas);
4889 	if (mas_is_start(mas)) {
4890 		goto retry;
4891 	} else if (mas_is_none(mas)) {
4892 		mas->index = 0;
4893 		mas->last = ULONG_MAX;
4894 	} else if (mas_is_ptr(mas)) {
4895 		if (!mas->index) {
4896 			mas->last = 0;
4897 			return entry;
4898 		}
4899 
4900 		mas->index = 1;
4901 		mas->last = ULONG_MAX;
4902 		mas->node = MAS_NONE;
4903 		return NULL;
4904 	}
4905 
4906 	return entry;
4907 }
4908 EXPORT_SYMBOL_GPL(mas_walk);
4909 
4910 static inline bool mas_rewind_node(struct ma_state *mas)
4911 {
4912 	unsigned char slot;
4913 
4914 	do {
4915 		if (mte_is_root(mas->node)) {
4916 			slot = mas->offset;
4917 			if (!slot)
4918 				return false;
4919 		} else {
4920 			mas_ascend(mas);
4921 			slot = mas->offset;
4922 		}
4923 	} while (!slot);
4924 
4925 	mas->offset = --slot;
4926 	return true;
4927 }
4928 
4929 /*
4930  * mas_skip_node() - Internal function.  Skip over a node.
4931  * @mas: The maple state.
4932  *
4933  * Return: true if there is another node, false otherwise.
4934  */
4935 static inline bool mas_skip_node(struct ma_state *mas)
4936 {
4937 	if (mas_is_err(mas))
4938 		return false;
4939 
4940 	do {
4941 		if (mte_is_root(mas->node)) {
4942 			if (mas->offset >= mas_data_end(mas)) {
4943 				mas_set_err(mas, -EBUSY);
4944 				return false;
4945 			}
4946 		} else {
4947 			mas_ascend(mas);
4948 		}
4949 	} while (mas->offset >= mas_data_end(mas));
4950 
4951 	mas->offset++;
4952 	return true;
4953 }
4954 
4955 /*
4956  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
4957  * @size
4958  * @mas: The maple state
4959  * @size: The size of the gap required
4960  *
4961  * Search between @mas->index and @mas->last for a gap of @size.
4962  */
4963 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4964 {
4965 	struct maple_enode *last = NULL;
4966 
4967 	/*
4968 	 * There are 4 options:
4969 	 * go to child (descend)
4970 	 * go back to parent (ascend)
4971 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
4972 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
4973 	 */
4974 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4975 		if (last == mas->node)
4976 			mas_skip_node(mas);
4977 		else
4978 			last = mas->node;
4979 	}
4980 }
4981 
4982 /*
4983  * mas_sparse_area() - Internal function.  Return upper or lower limit when
4984  * searching for a gap in an empty tree.
4985  * @mas: The maple state
4986  * @min: the minimum range
4987  * @max: The maximum range
4988  * @size: The size of the gap
4989  * @fwd: Searching forward or back
4990  */
4991 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
4992 				unsigned long max, unsigned long size, bool fwd)
4993 {
4994 	if (!unlikely(mas_is_none(mas)) && min == 0) {
4995 		min++;
4996 		/*
4997 		 * At this time, min is increased, we need to recheck whether
4998 		 * the size is satisfied.
4999 		 */
5000 		if (min > max || max - min + 1 < size)
5001 			return -EBUSY;
5002 	}
5003 	/* mas_is_ptr */
5004 
5005 	if (fwd) {
5006 		mas->index = min;
5007 		mas->last = min + size - 1;
5008 	} else {
5009 		mas->last = max;
5010 		mas->index = max - size + 1;
5011 	}
5012 	return 0;
5013 }
5014 
5015 /*
5016  * mas_empty_area() - Get the lowest address within the range that is
5017  * sufficient for the size requested.
5018  * @mas: The maple state
5019  * @min: The lowest value of the range
5020  * @max: The highest value of the range
5021  * @size: The size needed
5022  */
5023 int mas_empty_area(struct ma_state *mas, unsigned long min,
5024 		unsigned long max, unsigned long size)
5025 {
5026 	unsigned char offset;
5027 	unsigned long *pivots;
5028 	enum maple_type mt;
5029 
5030 	if (min > max)
5031 		return -EINVAL;
5032 
5033 	if (size == 0 || max - min < size - 1)
5034 		return -EINVAL;
5035 
5036 	if (mas_is_start(mas))
5037 		mas_start(mas);
5038 	else if (mas->offset >= 2)
5039 		mas->offset -= 2;
5040 	else if (!mas_skip_node(mas))
5041 		return -EBUSY;
5042 
5043 	/* Empty set */
5044 	if (mas_is_none(mas) || mas_is_ptr(mas))
5045 		return mas_sparse_area(mas, min, max, size, true);
5046 
5047 	/* The start of the window can only be within these values */
5048 	mas->index = min;
5049 	mas->last = max;
5050 	mas_awalk(mas, size);
5051 
5052 	if (unlikely(mas_is_err(mas)))
5053 		return xa_err(mas->node);
5054 
5055 	offset = mas->offset;
5056 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5057 		return -EBUSY;
5058 
5059 	mt = mte_node_type(mas->node);
5060 	pivots = ma_pivots(mas_mn(mas), mt);
5061 	min = mas_safe_min(mas, pivots, offset);
5062 	if (mas->index < min)
5063 		mas->index = min;
5064 	mas->last = mas->index + size - 1;
5065 	return 0;
5066 }
5067 EXPORT_SYMBOL_GPL(mas_empty_area);
5068 
5069 /*
5070  * mas_empty_area_rev() - Get the highest address within the range that is
5071  * sufficient for the size requested.
5072  * @mas: The maple state
5073  * @min: The lowest value of the range
5074  * @max: The highest value of the range
5075  * @size: The size needed
5076  */
5077 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5078 		unsigned long max, unsigned long size)
5079 {
5080 	struct maple_enode *last = mas->node;
5081 
5082 	if (min > max)
5083 		return -EINVAL;
5084 
5085 	if (size == 0 || max - min < size - 1)
5086 		return -EINVAL;
5087 
5088 	if (mas_is_start(mas))
5089 		mas_start(mas);
5090 	else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5091 		return -EBUSY;
5092 
5093 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5094 		return mas_sparse_area(mas, min, max, size, false);
5095 	else if (mas->offset >= 2)
5096 		mas->offset -= 2;
5097 	else
5098 		mas->offset = mas_data_end(mas);
5099 
5100 
5101 	/* The start of the window can only be within these values. */
5102 	mas->index = min;
5103 	mas->last = max;
5104 
5105 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5106 		if (last == mas->node) {
5107 			if (!mas_rewind_node(mas))
5108 				return -EBUSY;
5109 		} else {
5110 			last = mas->node;
5111 		}
5112 	}
5113 
5114 	if (mas_is_err(mas))
5115 		return xa_err(mas->node);
5116 
5117 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5118 		return -EBUSY;
5119 
5120 	/* Trim the upper limit to the max. */
5121 	if (max < mas->last)
5122 		mas->last = max;
5123 
5124 	mas->index = mas->last - size + 1;
5125 	return 0;
5126 }
5127 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5128 
5129 /*
5130  * mte_dead_leaves() - Mark all leaves of a node as dead.
5131  * @mas: The maple state
5132  * @slots: Pointer to the slot array
5133  * @type: The maple node type
5134  *
5135  * Must hold the write lock.
5136  *
5137  * Return: The number of leaves marked as dead.
5138  */
5139 static inline
5140 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5141 			      void __rcu **slots)
5142 {
5143 	struct maple_node *node;
5144 	enum maple_type type;
5145 	void *entry;
5146 	int offset;
5147 
5148 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5149 		entry = mt_slot(mt, slots, offset);
5150 		type = mte_node_type(entry);
5151 		node = mte_to_node(entry);
5152 		/* Use both node and type to catch LE & BE metadata */
5153 		if (!node || !type)
5154 			break;
5155 
5156 		mte_set_node_dead(entry);
5157 		node->type = type;
5158 		rcu_assign_pointer(slots[offset], node);
5159 	}
5160 
5161 	return offset;
5162 }
5163 
5164 /**
5165  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5166  * @enode: The maple encoded node
5167  * @offset: The starting offset
5168  *
5169  * Note: This can only be used from the RCU callback context.
5170  */
5171 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5172 {
5173 	struct maple_node *node, *next;
5174 	void __rcu **slots = NULL;
5175 
5176 	next = mte_to_node(*enode);
5177 	do {
5178 		*enode = ma_enode_ptr(next);
5179 		node = mte_to_node(*enode);
5180 		slots = ma_slots(node, node->type);
5181 		next = rcu_dereference_protected(slots[offset],
5182 					lock_is_held(&rcu_callback_map));
5183 		offset = 0;
5184 	} while (!ma_is_leaf(next->type));
5185 
5186 	return slots;
5187 }
5188 
5189 /**
5190  * mt_free_walk() - Walk & free a tree in the RCU callback context
5191  * @head: The RCU head that's within the node.
5192  *
5193  * Note: This can only be used from the RCU callback context.
5194  */
5195 static void mt_free_walk(struct rcu_head *head)
5196 {
5197 	void __rcu **slots;
5198 	struct maple_node *node, *start;
5199 	struct maple_enode *enode;
5200 	unsigned char offset;
5201 	enum maple_type type;
5202 
5203 	node = container_of(head, struct maple_node, rcu);
5204 
5205 	if (ma_is_leaf(node->type))
5206 		goto free_leaf;
5207 
5208 	start = node;
5209 	enode = mt_mk_node(node, node->type);
5210 	slots = mte_dead_walk(&enode, 0);
5211 	node = mte_to_node(enode);
5212 	do {
5213 		mt_free_bulk(node->slot_len, slots);
5214 		offset = node->parent_slot + 1;
5215 		enode = node->piv_parent;
5216 		if (mte_to_node(enode) == node)
5217 			goto free_leaf;
5218 
5219 		type = mte_node_type(enode);
5220 		slots = ma_slots(mte_to_node(enode), type);
5221 		if ((offset < mt_slots[type]) &&
5222 		    rcu_dereference_protected(slots[offset],
5223 					      lock_is_held(&rcu_callback_map)))
5224 			slots = mte_dead_walk(&enode, offset);
5225 		node = mte_to_node(enode);
5226 	} while ((node != start) || (node->slot_len < offset));
5227 
5228 	slots = ma_slots(node, node->type);
5229 	mt_free_bulk(node->slot_len, slots);
5230 
5231 free_leaf:
5232 	mt_free_rcu(&node->rcu);
5233 }
5234 
5235 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5236 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5237 {
5238 	struct maple_node *node;
5239 	struct maple_enode *next = *enode;
5240 	void __rcu **slots = NULL;
5241 	enum maple_type type;
5242 	unsigned char next_offset = 0;
5243 
5244 	do {
5245 		*enode = next;
5246 		node = mte_to_node(*enode);
5247 		type = mte_node_type(*enode);
5248 		slots = ma_slots(node, type);
5249 		next = mt_slot_locked(mt, slots, next_offset);
5250 		if ((mte_dead_node(next)))
5251 			next = mt_slot_locked(mt, slots, ++next_offset);
5252 
5253 		mte_set_node_dead(*enode);
5254 		node->type = type;
5255 		node->piv_parent = prev;
5256 		node->parent_slot = offset;
5257 		offset = next_offset;
5258 		next_offset = 0;
5259 		prev = *enode;
5260 	} while (!mte_is_leaf(next));
5261 
5262 	return slots;
5263 }
5264 
5265 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5266 			    bool free)
5267 {
5268 	void __rcu **slots;
5269 	struct maple_node *node = mte_to_node(enode);
5270 	struct maple_enode *start;
5271 
5272 	if (mte_is_leaf(enode)) {
5273 		node->type = mte_node_type(enode);
5274 		goto free_leaf;
5275 	}
5276 
5277 	start = enode;
5278 	slots = mte_destroy_descend(&enode, mt, start, 0);
5279 	node = mte_to_node(enode); // Updated in the above call.
5280 	do {
5281 		enum maple_type type;
5282 		unsigned char offset;
5283 		struct maple_enode *parent, *tmp;
5284 
5285 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5286 		if (free)
5287 			mt_free_bulk(node->slot_len, slots);
5288 		offset = node->parent_slot + 1;
5289 		enode = node->piv_parent;
5290 		if (mte_to_node(enode) == node)
5291 			goto free_leaf;
5292 
5293 		type = mte_node_type(enode);
5294 		slots = ma_slots(mte_to_node(enode), type);
5295 		if (offset >= mt_slots[type])
5296 			goto next;
5297 
5298 		tmp = mt_slot_locked(mt, slots, offset);
5299 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5300 			parent = enode;
5301 			enode = tmp;
5302 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5303 		}
5304 next:
5305 		node = mte_to_node(enode);
5306 	} while (start != enode);
5307 
5308 	node = mte_to_node(enode);
5309 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5310 	if (free)
5311 		mt_free_bulk(node->slot_len, slots);
5312 
5313 free_leaf:
5314 	if (free)
5315 		mt_free_rcu(&node->rcu);
5316 	else
5317 		mt_clear_meta(mt, node, node->type);
5318 }
5319 
5320 /*
5321  * mte_destroy_walk() - Free a tree or sub-tree.
5322  * @enode: the encoded maple node (maple_enode) to start
5323  * @mt: the tree to free - needed for node types.
5324  *
5325  * Must hold the write lock.
5326  */
5327 static inline void mte_destroy_walk(struct maple_enode *enode,
5328 				    struct maple_tree *mt)
5329 {
5330 	struct maple_node *node = mte_to_node(enode);
5331 
5332 	if (mt_in_rcu(mt)) {
5333 		mt_destroy_walk(enode, mt, false);
5334 		call_rcu(&node->rcu, mt_free_walk);
5335 	} else {
5336 		mt_destroy_walk(enode, mt, true);
5337 	}
5338 }
5339 
5340 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5341 {
5342 	if (!mas_is_active(wr_mas->mas)) {
5343 		if (mas_is_start(wr_mas->mas))
5344 			return;
5345 
5346 		if (unlikely(mas_is_paused(wr_mas->mas)))
5347 			goto reset;
5348 
5349 		if (unlikely(mas_is_none(wr_mas->mas)))
5350 			goto reset;
5351 
5352 		if (unlikely(mas_is_overflow(wr_mas->mas)))
5353 			goto reset;
5354 
5355 		if (unlikely(mas_is_underflow(wr_mas->mas)))
5356 			goto reset;
5357 	}
5358 
5359 	/*
5360 	 * A less strict version of mas_is_span_wr() where we allow spanning
5361 	 * writes within this node.  This is to stop partial walks in
5362 	 * mas_prealloc() from being reset.
5363 	 */
5364 	if (wr_mas->mas->last > wr_mas->mas->max)
5365 		goto reset;
5366 
5367 	if (wr_mas->entry)
5368 		return;
5369 
5370 	if (mte_is_leaf(wr_mas->mas->node) &&
5371 	    wr_mas->mas->last == wr_mas->mas->max)
5372 		goto reset;
5373 
5374 	return;
5375 
5376 reset:
5377 	mas_reset(wr_mas->mas);
5378 }
5379 
5380 /* Interface */
5381 
5382 /**
5383  * mas_store() - Store an @entry.
5384  * @mas: The maple state.
5385  * @entry: The entry to store.
5386  *
5387  * The @mas->index and @mas->last is used to set the range for the @entry.
5388  * Note: The @mas should have pre-allocated entries to ensure there is memory to
5389  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5390  *
5391  * Return: the first entry between mas->index and mas->last or %NULL.
5392  */
5393 void *mas_store(struct ma_state *mas, void *entry)
5394 {
5395 	MA_WR_STATE(wr_mas, mas, entry);
5396 
5397 	trace_ma_write(__func__, mas, 0, entry);
5398 #ifdef CONFIG_DEBUG_MAPLE_TREE
5399 	if (MAS_WARN_ON(mas, mas->index > mas->last))
5400 		pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5401 
5402 	if (mas->index > mas->last) {
5403 		mas_set_err(mas, -EINVAL);
5404 		return NULL;
5405 	}
5406 
5407 #endif
5408 
5409 	/*
5410 	 * Storing is the same operation as insert with the added caveat that it
5411 	 * can overwrite entries.  Although this seems simple enough, one may
5412 	 * want to examine what happens if a single store operation was to
5413 	 * overwrite multiple entries within a self-balancing B-Tree.
5414 	 */
5415 	mas_wr_store_setup(&wr_mas);
5416 	mas_wr_store_entry(&wr_mas);
5417 	return wr_mas.content;
5418 }
5419 EXPORT_SYMBOL_GPL(mas_store);
5420 
5421 /**
5422  * mas_store_gfp() - Store a value into the tree.
5423  * @mas: The maple state
5424  * @entry: The entry to store
5425  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5426  *
5427  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5428  * be allocated.
5429  */
5430 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5431 {
5432 	MA_WR_STATE(wr_mas, mas, entry);
5433 
5434 	mas_wr_store_setup(&wr_mas);
5435 	trace_ma_write(__func__, mas, 0, entry);
5436 retry:
5437 	mas_wr_store_entry(&wr_mas);
5438 	if (unlikely(mas_nomem(mas, gfp)))
5439 		goto retry;
5440 
5441 	if (unlikely(mas_is_err(mas)))
5442 		return xa_err(mas->node);
5443 
5444 	return 0;
5445 }
5446 EXPORT_SYMBOL_GPL(mas_store_gfp);
5447 
5448 /**
5449  * mas_store_prealloc() - Store a value into the tree using memory
5450  * preallocated in the maple state.
5451  * @mas: The maple state
5452  * @entry: The entry to store.
5453  */
5454 void mas_store_prealloc(struct ma_state *mas, void *entry)
5455 {
5456 	MA_WR_STATE(wr_mas, mas, entry);
5457 
5458 	mas_wr_store_setup(&wr_mas);
5459 	trace_ma_write(__func__, mas, 0, entry);
5460 	mas_wr_store_entry(&wr_mas);
5461 	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5462 	mas_destroy(mas);
5463 }
5464 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5465 
5466 /**
5467  * mas_preallocate() - Preallocate enough nodes for a store operation
5468  * @mas: The maple state
5469  * @entry: The entry that will be stored
5470  * @gfp: The GFP_FLAGS to use for allocations.
5471  *
5472  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5473  */
5474 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5475 {
5476 	MA_WR_STATE(wr_mas, mas, entry);
5477 	unsigned char node_size;
5478 	int request = 1;
5479 	int ret;
5480 
5481 
5482 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
5483 		goto ask_now;
5484 
5485 	mas_wr_store_setup(&wr_mas);
5486 	wr_mas.content = mas_start(mas);
5487 	/* Root expand */
5488 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5489 		goto ask_now;
5490 
5491 	if (unlikely(!mas_wr_walk(&wr_mas))) {
5492 		/* Spanning store, use worst case for now */
5493 		request = 1 + mas_mt_height(mas) * 3;
5494 		goto ask_now;
5495 	}
5496 
5497 	/* At this point, we are at the leaf node that needs to be altered. */
5498 	/* Exact fit, no nodes needed. */
5499 	if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last)
5500 		return 0;
5501 
5502 	mas_wr_end_piv(&wr_mas);
5503 	node_size = mas_wr_new_end(&wr_mas);
5504 
5505 	/* Slot store, does not require additional nodes */
5506 	if (node_size == wr_mas.node_end) {
5507 		/* reuse node */
5508 		if (!mt_in_rcu(mas->tree))
5509 			return 0;
5510 		/* shifting boundary */
5511 		if (wr_mas.offset_end - mas->offset == 1)
5512 			return 0;
5513 	}
5514 
5515 	if (node_size >= mt_slots[wr_mas.type]) {
5516 		/* Split, worst case for now. */
5517 		request = 1 + mas_mt_height(mas) * 2;
5518 		goto ask_now;
5519 	}
5520 
5521 	/* New root needs a singe node */
5522 	if (unlikely(mte_is_root(mas->node)))
5523 		goto ask_now;
5524 
5525 	/* Potential spanning rebalance collapsing a node, use worst-case */
5526 	if (node_size  - 1 <= mt_min_slots[wr_mas.type])
5527 		request = mas_mt_height(mas) * 2 - 1;
5528 
5529 	/* node store, slot store needs one node */
5530 ask_now:
5531 	mas_node_count_gfp(mas, request, gfp);
5532 	mas->mas_flags |= MA_STATE_PREALLOC;
5533 	if (likely(!mas_is_err(mas)))
5534 		return 0;
5535 
5536 	mas_set_alloc_req(mas, 0);
5537 	ret = xa_err(mas->node);
5538 	mas_reset(mas);
5539 	mas_destroy(mas);
5540 	mas_reset(mas);
5541 	return ret;
5542 }
5543 EXPORT_SYMBOL_GPL(mas_preallocate);
5544 
5545 /*
5546  * mas_destroy() - destroy a maple state.
5547  * @mas: The maple state
5548  *
5549  * Upon completion, check the left-most node and rebalance against the node to
5550  * the right if necessary.  Frees any allocated nodes associated with this maple
5551  * state.
5552  */
5553 void mas_destroy(struct ma_state *mas)
5554 {
5555 	struct maple_alloc *node;
5556 	unsigned long total;
5557 
5558 	/*
5559 	 * When using mas_for_each() to insert an expected number of elements,
5560 	 * it is possible that the number inserted is less than the expected
5561 	 * number.  To fix an invalid final node, a check is performed here to
5562 	 * rebalance the previous node with the final node.
5563 	 */
5564 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5565 		unsigned char end;
5566 
5567 		mas_start(mas);
5568 		mtree_range_walk(mas);
5569 		end = mas_data_end(mas) + 1;
5570 		if (end < mt_min_slot_count(mas->node) - 1)
5571 			mas_destroy_rebalance(mas, end);
5572 
5573 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5574 	}
5575 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5576 
5577 	total = mas_allocated(mas);
5578 	while (total) {
5579 		node = mas->alloc;
5580 		mas->alloc = node->slot[0];
5581 		if (node->node_count > 1) {
5582 			size_t count = node->node_count - 1;
5583 
5584 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5585 			total -= count;
5586 		}
5587 		kmem_cache_free(maple_node_cache, node);
5588 		total--;
5589 	}
5590 
5591 	mas->alloc = NULL;
5592 }
5593 EXPORT_SYMBOL_GPL(mas_destroy);
5594 
5595 /*
5596  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5597  * @mas: The maple state
5598  * @nr_entries: The number of expected entries.
5599  *
5600  * This will attempt to pre-allocate enough nodes to store the expected number
5601  * of entries.  The allocations will occur using the bulk allocator interface
5602  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5603  * to ensure any unused nodes are freed.
5604  *
5605  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5606  */
5607 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5608 {
5609 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5610 	struct maple_enode *enode = mas->node;
5611 	int nr_nodes;
5612 	int ret;
5613 
5614 	/*
5615 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5616 	 * forking a process and duplicating the VMAs from one tree to a new
5617 	 * tree.  When such a situation arises, it is known that the new tree is
5618 	 * not going to be used until the entire tree is populated.  For
5619 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5620 	 * This allows for optimistic splitting that favours the left and reuse
5621 	 * of nodes during the operation.
5622 	 */
5623 
5624 	/* Optimize splitting for bulk insert in-order */
5625 	mas->mas_flags |= MA_STATE_BULK;
5626 
5627 	/*
5628 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5629 	 * If this is wrong, it just means allocation can happen during
5630 	 * insertion of entries.
5631 	 */
5632 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5633 	if (!mt_is_alloc(mas->tree))
5634 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5635 
5636 	/* Leaves; reduce slots to keep space for expansion */
5637 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5638 	/* Internal nodes */
5639 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5640 	/* Add working room for split (2 nodes) + new parents */
5641 	mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5642 
5643 	/* Detect if allocations run out */
5644 	mas->mas_flags |= MA_STATE_PREALLOC;
5645 
5646 	if (!mas_is_err(mas))
5647 		return 0;
5648 
5649 	ret = xa_err(mas->node);
5650 	mas->node = enode;
5651 	mas_destroy(mas);
5652 	return ret;
5653 
5654 }
5655 EXPORT_SYMBOL_GPL(mas_expected_entries);
5656 
5657 static inline bool mas_next_setup(struct ma_state *mas, unsigned long max,
5658 		void **entry)
5659 {
5660 	bool was_none = mas_is_none(mas);
5661 
5662 	if (unlikely(mas->last >= max)) {
5663 		mas->node = MAS_OVERFLOW;
5664 		return true;
5665 	}
5666 
5667 	if (mas_is_active(mas))
5668 		return false;
5669 
5670 	if (mas_is_none(mas) || mas_is_paused(mas)) {
5671 		mas->node = MAS_START;
5672 	} else if (mas_is_overflow(mas)) {
5673 		/* Overflowed before, but the max changed */
5674 		mas->node = MAS_START;
5675 	} else if (mas_is_underflow(mas)) {
5676 		mas->node = MAS_START;
5677 		*entry = mas_walk(mas);
5678 		if (*entry)
5679 			return true;
5680 	}
5681 
5682 	if (mas_is_start(mas))
5683 		*entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5684 
5685 	if (mas_is_ptr(mas)) {
5686 		*entry = NULL;
5687 		if (was_none && mas->index == 0) {
5688 			mas->index = mas->last = 0;
5689 			return true;
5690 		}
5691 		mas->index = 1;
5692 		mas->last = ULONG_MAX;
5693 		mas->node = MAS_NONE;
5694 		return true;
5695 	}
5696 
5697 	if (mas_is_none(mas))
5698 		return true;
5699 
5700 	return false;
5701 }
5702 
5703 /**
5704  * mas_next() - Get the next entry.
5705  * @mas: The maple state
5706  * @max: The maximum index to check.
5707  *
5708  * Returns the next entry after @mas->index.
5709  * Must hold rcu_read_lock or the write lock.
5710  * Can return the zero entry.
5711  *
5712  * Return: The next entry or %NULL
5713  */
5714 void *mas_next(struct ma_state *mas, unsigned long max)
5715 {
5716 	void *entry = NULL;
5717 
5718 	if (mas_next_setup(mas, max, &entry))
5719 		return entry;
5720 
5721 	/* Retries on dead nodes handled by mas_next_slot */
5722 	return mas_next_slot(mas, max, false, true);
5723 }
5724 EXPORT_SYMBOL_GPL(mas_next);
5725 
5726 /**
5727  * mas_next_range() - Advance the maple state to the next range
5728  * @mas: The maple state
5729  * @max: The maximum index to check.
5730  *
5731  * Sets @mas->index and @mas->last to the range.
5732  * Must hold rcu_read_lock or the write lock.
5733  * Can return the zero entry.
5734  *
5735  * Return: The next entry or %NULL
5736  */
5737 void *mas_next_range(struct ma_state *mas, unsigned long max)
5738 {
5739 	void *entry = NULL;
5740 
5741 	if (mas_next_setup(mas, max, &entry))
5742 		return entry;
5743 
5744 	/* Retries on dead nodes handled by mas_next_slot */
5745 	return mas_next_slot(mas, max, true, true);
5746 }
5747 EXPORT_SYMBOL_GPL(mas_next_range);
5748 
5749 /**
5750  * mt_next() - get the next value in the maple tree
5751  * @mt: The maple tree
5752  * @index: The start index
5753  * @max: The maximum index to check
5754  *
5755  * Takes RCU read lock internally to protect the search, which does not
5756  * protect the returned pointer after dropping RCU read lock.
5757  * See also: Documentation/core-api/maple_tree.rst
5758  *
5759  * Return: The entry higher than @index or %NULL if nothing is found.
5760  */
5761 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5762 {
5763 	void *entry = NULL;
5764 	MA_STATE(mas, mt, index, index);
5765 
5766 	rcu_read_lock();
5767 	entry = mas_next(&mas, max);
5768 	rcu_read_unlock();
5769 	return entry;
5770 }
5771 EXPORT_SYMBOL_GPL(mt_next);
5772 
5773 static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min,
5774 		void **entry)
5775 {
5776 	if (unlikely(mas->index <= min)) {
5777 		mas->node = MAS_UNDERFLOW;
5778 		return true;
5779 	}
5780 
5781 	if (mas_is_active(mas))
5782 		return false;
5783 
5784 	if (mas_is_overflow(mas)) {
5785 		mas->node = MAS_START;
5786 		*entry = mas_walk(mas);
5787 		if (*entry)
5788 			return true;
5789 	}
5790 
5791 	if (mas_is_none(mas) || mas_is_paused(mas)) {
5792 		mas->node = MAS_START;
5793 	} else if (mas_is_underflow(mas)) {
5794 		/* underflowed before but the min changed */
5795 		mas->node = MAS_START;
5796 	}
5797 
5798 	if (mas_is_start(mas))
5799 		mas_walk(mas);
5800 
5801 	if (unlikely(mas_is_ptr(mas))) {
5802 		if (!mas->index)
5803 			goto none;
5804 		mas->index = mas->last = 0;
5805 		*entry = mas_root(mas);
5806 		return true;
5807 	}
5808 
5809 	if (mas_is_none(mas)) {
5810 		if (mas->index) {
5811 			/* Walked to out-of-range pointer? */
5812 			mas->index = mas->last = 0;
5813 			mas->node = MAS_ROOT;
5814 			*entry = mas_root(mas);
5815 			return true;
5816 		}
5817 		return true;
5818 	}
5819 
5820 	return false;
5821 
5822 none:
5823 	mas->node = MAS_NONE;
5824 	return true;
5825 }
5826 
5827 /**
5828  * mas_prev() - Get the previous entry
5829  * @mas: The maple state
5830  * @min: The minimum value to check.
5831  *
5832  * Must hold rcu_read_lock or the write lock.
5833  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5834  * searchable nodes.
5835  *
5836  * Return: the previous value or %NULL.
5837  */
5838 void *mas_prev(struct ma_state *mas, unsigned long min)
5839 {
5840 	void *entry = NULL;
5841 
5842 	if (mas_prev_setup(mas, min, &entry))
5843 		return entry;
5844 
5845 	return mas_prev_slot(mas, min, false, true);
5846 }
5847 EXPORT_SYMBOL_GPL(mas_prev);
5848 
5849 /**
5850  * mas_prev_range() - Advance to the previous range
5851  * @mas: The maple state
5852  * @min: The minimum value to check.
5853  *
5854  * Sets @mas->index and @mas->last to the range.
5855  * Must hold rcu_read_lock or the write lock.
5856  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5857  * searchable nodes.
5858  *
5859  * Return: the previous value or %NULL.
5860  */
5861 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5862 {
5863 	void *entry = NULL;
5864 
5865 	if (mas_prev_setup(mas, min, &entry))
5866 		return entry;
5867 
5868 	return mas_prev_slot(mas, min, true, true);
5869 }
5870 EXPORT_SYMBOL_GPL(mas_prev_range);
5871 
5872 /**
5873  * mt_prev() - get the previous value in the maple tree
5874  * @mt: The maple tree
5875  * @index: The start index
5876  * @min: The minimum index to check
5877  *
5878  * Takes RCU read lock internally to protect the search, which does not
5879  * protect the returned pointer after dropping RCU read lock.
5880  * See also: Documentation/core-api/maple_tree.rst
5881  *
5882  * Return: The entry before @index or %NULL if nothing is found.
5883  */
5884 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5885 {
5886 	void *entry = NULL;
5887 	MA_STATE(mas, mt, index, index);
5888 
5889 	rcu_read_lock();
5890 	entry = mas_prev(&mas, min);
5891 	rcu_read_unlock();
5892 	return entry;
5893 }
5894 EXPORT_SYMBOL_GPL(mt_prev);
5895 
5896 /**
5897  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5898  * @mas: The maple state to pause
5899  *
5900  * Some users need to pause a walk and drop the lock they're holding in
5901  * order to yield to a higher priority thread or carry out an operation
5902  * on an entry.  Those users should call this function before they drop
5903  * the lock.  It resets the @mas to be suitable for the next iteration
5904  * of the loop after the user has reacquired the lock.  If most entries
5905  * found during a walk require you to call mas_pause(), the mt_for_each()
5906  * iterator may be more appropriate.
5907  *
5908  */
5909 void mas_pause(struct ma_state *mas)
5910 {
5911 	mas->node = MAS_PAUSE;
5912 }
5913 EXPORT_SYMBOL_GPL(mas_pause);
5914 
5915 /**
5916  * mas_find_setup() - Internal function to set up mas_find*().
5917  * @mas: The maple state
5918  * @max: The maximum index
5919  * @entry: Pointer to the entry
5920  *
5921  * Returns: True if entry is the answer, false otherwise.
5922  */
5923 static inline bool mas_find_setup(struct ma_state *mas, unsigned long max,
5924 		void **entry)
5925 {
5926 	if (mas_is_active(mas)) {
5927 		if (mas->last < max)
5928 			return false;
5929 
5930 		return true;
5931 	}
5932 
5933 	if (mas_is_paused(mas)) {
5934 		if (unlikely(mas->last >= max))
5935 			return true;
5936 
5937 		mas->index = ++mas->last;
5938 		mas->node = MAS_START;
5939 	} else if (mas_is_none(mas)) {
5940 		if (unlikely(mas->last >= max))
5941 			return true;
5942 
5943 		mas->index = mas->last;
5944 		mas->node = MAS_START;
5945 	} else if (mas_is_overflow(mas) || mas_is_underflow(mas)) {
5946 		if (mas->index > max) {
5947 			mas->node = MAS_OVERFLOW;
5948 			return true;
5949 		}
5950 
5951 		mas->node = MAS_START;
5952 	}
5953 
5954 	if (mas_is_start(mas)) {
5955 		/* First run or continue */
5956 		if (mas->index > max)
5957 			return true;
5958 
5959 		*entry = mas_walk(mas);
5960 		if (*entry)
5961 			return true;
5962 
5963 	}
5964 
5965 	if (unlikely(!mas_searchable(mas))) {
5966 		if (unlikely(mas_is_ptr(mas)))
5967 			goto ptr_out_of_range;
5968 
5969 		return true;
5970 	}
5971 
5972 	if (mas->index == max)
5973 		return true;
5974 
5975 	return false;
5976 
5977 ptr_out_of_range:
5978 	mas->node = MAS_NONE;
5979 	mas->index = 1;
5980 	mas->last = ULONG_MAX;
5981 	return true;
5982 }
5983 
5984 /**
5985  * mas_find() - On the first call, find the entry at or after mas->index up to
5986  * %max.  Otherwise, find the entry after mas->index.
5987  * @mas: The maple state
5988  * @max: The maximum value to check.
5989  *
5990  * Must hold rcu_read_lock or the write lock.
5991  * If an entry exists, last and index are updated accordingly.
5992  * May set @mas->node to MAS_NONE.
5993  *
5994  * Return: The entry or %NULL.
5995  */
5996 void *mas_find(struct ma_state *mas, unsigned long max)
5997 {
5998 	void *entry = NULL;
5999 
6000 	if (mas_find_setup(mas, max, &entry))
6001 		return entry;
6002 
6003 	/* Retries on dead nodes handled by mas_next_slot */
6004 	return mas_next_slot(mas, max, false, false);
6005 }
6006 EXPORT_SYMBOL_GPL(mas_find);
6007 
6008 /**
6009  * mas_find_range() - On the first call, find the entry at or after
6010  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
6011  * @mas: The maple state
6012  * @max: The maximum value to check.
6013  *
6014  * Must hold rcu_read_lock or the write lock.
6015  * If an entry exists, last and index are updated accordingly.
6016  * May set @mas->node to MAS_NONE.
6017  *
6018  * Return: The entry or %NULL.
6019  */
6020 void *mas_find_range(struct ma_state *mas, unsigned long max)
6021 {
6022 	void *entry = NULL;
6023 
6024 	if (mas_find_setup(mas, max, &entry))
6025 		return entry;
6026 
6027 	/* Retries on dead nodes handled by mas_next_slot */
6028 	return mas_next_slot(mas, max, true, false);
6029 }
6030 EXPORT_SYMBOL_GPL(mas_find_range);
6031 
6032 /**
6033  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6034  * @mas: The maple state
6035  * @min: The minimum index
6036  * @entry: Pointer to the entry
6037  *
6038  * Returns: True if entry is the answer, false otherwise.
6039  */
6040 static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6041 		void **entry)
6042 {
6043 	if (mas_is_active(mas)) {
6044 		if (mas->index > min)
6045 			return false;
6046 
6047 		return true;
6048 	}
6049 
6050 	if (mas_is_paused(mas)) {
6051 		if (unlikely(mas->index <= min)) {
6052 			mas->node = MAS_NONE;
6053 			return true;
6054 		}
6055 		mas->node = MAS_START;
6056 		mas->last = --mas->index;
6057 	} else if (mas_is_none(mas)) {
6058 		if (mas->index <= min)
6059 			goto none;
6060 
6061 		mas->last = mas->index;
6062 		mas->node = MAS_START;
6063 	} else if (mas_is_underflow(mas) || mas_is_overflow(mas)) {
6064 		if (mas->last <= min) {
6065 			mas->node = MAS_UNDERFLOW;
6066 			return true;
6067 		}
6068 
6069 		mas->node = MAS_START;
6070 	}
6071 
6072 	if (mas_is_start(mas)) {
6073 		/* First run or continue */
6074 		if (mas->index < min)
6075 			return true;
6076 
6077 		*entry = mas_walk(mas);
6078 		if (*entry)
6079 			return true;
6080 	}
6081 
6082 	if (unlikely(!mas_searchable(mas))) {
6083 		if (mas_is_ptr(mas))
6084 			goto none;
6085 
6086 		if (mas_is_none(mas)) {
6087 			/*
6088 			 * Walked to the location, and there was nothing so the
6089 			 * previous location is 0.
6090 			 */
6091 			mas->last = mas->index = 0;
6092 			mas->node = MAS_ROOT;
6093 			*entry = mas_root(mas);
6094 			return true;
6095 		}
6096 	}
6097 
6098 	if (mas->index < min)
6099 		return true;
6100 
6101 	return false;
6102 
6103 none:
6104 	mas->node = MAS_NONE;
6105 	return true;
6106 }
6107 
6108 /**
6109  * mas_find_rev: On the first call, find the first non-null entry at or below
6110  * mas->index down to %min.  Otherwise find the first non-null entry below
6111  * mas->index down to %min.
6112  * @mas: The maple state
6113  * @min: The minimum value to check.
6114  *
6115  * Must hold rcu_read_lock or the write lock.
6116  * If an entry exists, last and index are updated accordingly.
6117  * May set @mas->node to MAS_NONE.
6118  *
6119  * Return: The entry or %NULL.
6120  */
6121 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6122 {
6123 	void *entry = NULL;
6124 
6125 	if (mas_find_rev_setup(mas, min, &entry))
6126 		return entry;
6127 
6128 	/* Retries on dead nodes handled by mas_prev_slot */
6129 	return mas_prev_slot(mas, min, false, false);
6130 
6131 }
6132 EXPORT_SYMBOL_GPL(mas_find_rev);
6133 
6134 /**
6135  * mas_find_range_rev: On the first call, find the first non-null entry at or
6136  * below mas->index down to %min.  Otherwise advance to the previous slot after
6137  * mas->index down to %min.
6138  * @mas: The maple state
6139  * @min: The minimum value to check.
6140  *
6141  * Must hold rcu_read_lock or the write lock.
6142  * If an entry exists, last and index are updated accordingly.
6143  * May set @mas->node to MAS_NONE.
6144  *
6145  * Return: The entry or %NULL.
6146  */
6147 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6148 {
6149 	void *entry = NULL;
6150 
6151 	if (mas_find_rev_setup(mas, min, &entry))
6152 		return entry;
6153 
6154 	/* Retries on dead nodes handled by mas_prev_slot */
6155 	return mas_prev_slot(mas, min, true, false);
6156 }
6157 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6158 
6159 /**
6160  * mas_erase() - Find the range in which index resides and erase the entire
6161  * range.
6162  * @mas: The maple state
6163  *
6164  * Must hold the write lock.
6165  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6166  * erases that range.
6167  *
6168  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6169  */
6170 void *mas_erase(struct ma_state *mas)
6171 {
6172 	void *entry;
6173 	MA_WR_STATE(wr_mas, mas, NULL);
6174 
6175 	if (mas_is_none(mas) || mas_is_paused(mas))
6176 		mas->node = MAS_START;
6177 
6178 	/* Retry unnecessary when holding the write lock. */
6179 	entry = mas_state_walk(mas);
6180 	if (!entry)
6181 		return NULL;
6182 
6183 write_retry:
6184 	/* Must reset to ensure spanning writes of last slot are detected */
6185 	mas_reset(mas);
6186 	mas_wr_store_setup(&wr_mas);
6187 	mas_wr_store_entry(&wr_mas);
6188 	if (mas_nomem(mas, GFP_KERNEL))
6189 		goto write_retry;
6190 
6191 	return entry;
6192 }
6193 EXPORT_SYMBOL_GPL(mas_erase);
6194 
6195 /**
6196  * mas_nomem() - Check if there was an error allocating and do the allocation
6197  * if necessary If there are allocations, then free them.
6198  * @mas: The maple state
6199  * @gfp: The GFP_FLAGS to use for allocations
6200  * Return: true on allocation, false otherwise.
6201  */
6202 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6203 	__must_hold(mas->tree->ma_lock)
6204 {
6205 	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6206 		mas_destroy(mas);
6207 		return false;
6208 	}
6209 
6210 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6211 		mtree_unlock(mas->tree);
6212 		mas_alloc_nodes(mas, gfp);
6213 		mtree_lock(mas->tree);
6214 	} else {
6215 		mas_alloc_nodes(mas, gfp);
6216 	}
6217 
6218 	if (!mas_allocated(mas))
6219 		return false;
6220 
6221 	mas->node = MAS_START;
6222 	return true;
6223 }
6224 
6225 void __init maple_tree_init(void)
6226 {
6227 	maple_node_cache = kmem_cache_create("maple_node",
6228 			sizeof(struct maple_node), sizeof(struct maple_node),
6229 			SLAB_PANIC, NULL);
6230 }
6231 
6232 /**
6233  * mtree_load() - Load a value stored in a maple tree
6234  * @mt: The maple tree
6235  * @index: The index to load
6236  *
6237  * Return: the entry or %NULL
6238  */
6239 void *mtree_load(struct maple_tree *mt, unsigned long index)
6240 {
6241 	MA_STATE(mas, mt, index, index);
6242 	void *entry;
6243 
6244 	trace_ma_read(__func__, &mas);
6245 	rcu_read_lock();
6246 retry:
6247 	entry = mas_start(&mas);
6248 	if (unlikely(mas_is_none(&mas)))
6249 		goto unlock;
6250 
6251 	if (unlikely(mas_is_ptr(&mas))) {
6252 		if (index)
6253 			entry = NULL;
6254 
6255 		goto unlock;
6256 	}
6257 
6258 	entry = mtree_lookup_walk(&mas);
6259 	if (!entry && unlikely(mas_is_start(&mas)))
6260 		goto retry;
6261 unlock:
6262 	rcu_read_unlock();
6263 	if (xa_is_zero(entry))
6264 		return NULL;
6265 
6266 	return entry;
6267 }
6268 EXPORT_SYMBOL(mtree_load);
6269 
6270 /**
6271  * mtree_store_range() - Store an entry at a given range.
6272  * @mt: The maple tree
6273  * @index: The start of the range
6274  * @last: The end of the range
6275  * @entry: The entry to store
6276  * @gfp: The GFP_FLAGS to use for allocations
6277  *
6278  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6279  * be allocated.
6280  */
6281 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6282 		unsigned long last, void *entry, gfp_t gfp)
6283 {
6284 	MA_STATE(mas, mt, index, last);
6285 	MA_WR_STATE(wr_mas, &mas, entry);
6286 
6287 	trace_ma_write(__func__, &mas, 0, entry);
6288 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6289 		return -EINVAL;
6290 
6291 	if (index > last)
6292 		return -EINVAL;
6293 
6294 	mtree_lock(mt);
6295 retry:
6296 	mas_wr_store_entry(&wr_mas);
6297 	if (mas_nomem(&mas, gfp))
6298 		goto retry;
6299 
6300 	mtree_unlock(mt);
6301 	if (mas_is_err(&mas))
6302 		return xa_err(mas.node);
6303 
6304 	return 0;
6305 }
6306 EXPORT_SYMBOL(mtree_store_range);
6307 
6308 /**
6309  * mtree_store() - Store an entry at a given index.
6310  * @mt: The maple tree
6311  * @index: The index to store the value
6312  * @entry: The entry to store
6313  * @gfp: The GFP_FLAGS to use for allocations
6314  *
6315  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6316  * be allocated.
6317  */
6318 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6319 		 gfp_t gfp)
6320 {
6321 	return mtree_store_range(mt, index, index, entry, gfp);
6322 }
6323 EXPORT_SYMBOL(mtree_store);
6324 
6325 /**
6326  * mtree_insert_range() - Insert an entry at a given range if there is no value.
6327  * @mt: The maple tree
6328  * @first: The start of the range
6329  * @last: The end of the range
6330  * @entry: The entry to store
6331  * @gfp: The GFP_FLAGS to use for allocations.
6332  *
6333  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6334  * request, -ENOMEM if memory could not be allocated.
6335  */
6336 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6337 		unsigned long last, void *entry, gfp_t gfp)
6338 {
6339 	MA_STATE(ms, mt, first, last);
6340 
6341 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6342 		return -EINVAL;
6343 
6344 	if (first > last)
6345 		return -EINVAL;
6346 
6347 	mtree_lock(mt);
6348 retry:
6349 	mas_insert(&ms, entry);
6350 	if (mas_nomem(&ms, gfp))
6351 		goto retry;
6352 
6353 	mtree_unlock(mt);
6354 	if (mas_is_err(&ms))
6355 		return xa_err(ms.node);
6356 
6357 	return 0;
6358 }
6359 EXPORT_SYMBOL(mtree_insert_range);
6360 
6361 /**
6362  * mtree_insert() - Insert an entry at a given index if there is no value.
6363  * @mt: The maple tree
6364  * @index : The index to store the value
6365  * @entry: The entry to store
6366  * @gfp: The GFP_FLAGS to use for allocations.
6367  *
6368  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6369  * request, -ENOMEM if memory could not be allocated.
6370  */
6371 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6372 		 gfp_t gfp)
6373 {
6374 	return mtree_insert_range(mt, index, index, entry, gfp);
6375 }
6376 EXPORT_SYMBOL(mtree_insert);
6377 
6378 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6379 		void *entry, unsigned long size, unsigned long min,
6380 		unsigned long max, gfp_t gfp)
6381 {
6382 	int ret = 0;
6383 
6384 	MA_STATE(mas, mt, 0, 0);
6385 	if (!mt_is_alloc(mt))
6386 		return -EINVAL;
6387 
6388 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6389 		return -EINVAL;
6390 
6391 	mtree_lock(mt);
6392 retry:
6393 	ret = mas_empty_area(&mas, min, max, size);
6394 	if (ret)
6395 		goto unlock;
6396 
6397 	mas_insert(&mas, entry);
6398 	/*
6399 	 * mas_nomem() may release the lock, causing the allocated area
6400 	 * to be unavailable, so try to allocate a free area again.
6401 	 */
6402 	if (mas_nomem(&mas, gfp))
6403 		goto retry;
6404 
6405 	if (mas_is_err(&mas))
6406 		ret = xa_err(mas.node);
6407 	else
6408 		*startp = mas.index;
6409 
6410 unlock:
6411 	mtree_unlock(mt);
6412 	return ret;
6413 }
6414 EXPORT_SYMBOL(mtree_alloc_range);
6415 
6416 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6417 		void *entry, unsigned long size, unsigned long min,
6418 		unsigned long max, gfp_t gfp)
6419 {
6420 	int ret = 0;
6421 
6422 	MA_STATE(mas, mt, 0, 0);
6423 	if (!mt_is_alloc(mt))
6424 		return -EINVAL;
6425 
6426 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6427 		return -EINVAL;
6428 
6429 	mtree_lock(mt);
6430 retry:
6431 	ret = mas_empty_area_rev(&mas, min, max, size);
6432 	if (ret)
6433 		goto unlock;
6434 
6435 	mas_insert(&mas, entry);
6436 	/*
6437 	 * mas_nomem() may release the lock, causing the allocated area
6438 	 * to be unavailable, so try to allocate a free area again.
6439 	 */
6440 	if (mas_nomem(&mas, gfp))
6441 		goto retry;
6442 
6443 	if (mas_is_err(&mas))
6444 		ret = xa_err(mas.node);
6445 	else
6446 		*startp = mas.index;
6447 
6448 unlock:
6449 	mtree_unlock(mt);
6450 	return ret;
6451 }
6452 EXPORT_SYMBOL(mtree_alloc_rrange);
6453 
6454 /**
6455  * mtree_erase() - Find an index and erase the entire range.
6456  * @mt: The maple tree
6457  * @index: The index to erase
6458  *
6459  * Erasing is the same as a walk to an entry then a store of a NULL to that
6460  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6461  *
6462  * Return: The entry stored at the @index or %NULL
6463  */
6464 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6465 {
6466 	void *entry = NULL;
6467 
6468 	MA_STATE(mas, mt, index, index);
6469 	trace_ma_op(__func__, &mas);
6470 
6471 	mtree_lock(mt);
6472 	entry = mas_erase(&mas);
6473 	mtree_unlock(mt);
6474 
6475 	return entry;
6476 }
6477 EXPORT_SYMBOL(mtree_erase);
6478 
6479 /**
6480  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6481  * @mt: The maple tree
6482  *
6483  * Note: Does not handle locking.
6484  */
6485 void __mt_destroy(struct maple_tree *mt)
6486 {
6487 	void *root = mt_root_locked(mt);
6488 
6489 	rcu_assign_pointer(mt->ma_root, NULL);
6490 	if (xa_is_node(root))
6491 		mte_destroy_walk(root, mt);
6492 
6493 	mt->ma_flags = 0;
6494 }
6495 EXPORT_SYMBOL_GPL(__mt_destroy);
6496 
6497 /**
6498  * mtree_destroy() - Destroy a maple tree
6499  * @mt: The maple tree
6500  *
6501  * Frees all resources used by the tree.  Handles locking.
6502  */
6503 void mtree_destroy(struct maple_tree *mt)
6504 {
6505 	mtree_lock(mt);
6506 	__mt_destroy(mt);
6507 	mtree_unlock(mt);
6508 }
6509 EXPORT_SYMBOL(mtree_destroy);
6510 
6511 /**
6512  * mt_find() - Search from the start up until an entry is found.
6513  * @mt: The maple tree
6514  * @index: Pointer which contains the start location of the search
6515  * @max: The maximum value of the search range
6516  *
6517  * Takes RCU read lock internally to protect the search, which does not
6518  * protect the returned pointer after dropping RCU read lock.
6519  * See also: Documentation/core-api/maple_tree.rst
6520  *
6521  * In case that an entry is found @index is updated to point to the next
6522  * possible entry independent whether the found entry is occupying a
6523  * single index or a range if indices.
6524  *
6525  * Return: The entry at or after the @index or %NULL
6526  */
6527 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6528 {
6529 	MA_STATE(mas, mt, *index, *index);
6530 	void *entry;
6531 #ifdef CONFIG_DEBUG_MAPLE_TREE
6532 	unsigned long copy = *index;
6533 #endif
6534 
6535 	trace_ma_read(__func__, &mas);
6536 
6537 	if ((*index) > max)
6538 		return NULL;
6539 
6540 	rcu_read_lock();
6541 retry:
6542 	entry = mas_state_walk(&mas);
6543 	if (mas_is_start(&mas))
6544 		goto retry;
6545 
6546 	if (unlikely(xa_is_zero(entry)))
6547 		entry = NULL;
6548 
6549 	if (entry)
6550 		goto unlock;
6551 
6552 	while (mas_searchable(&mas) && (mas.last < max)) {
6553 		entry = mas_next_entry(&mas, max);
6554 		if (likely(entry && !xa_is_zero(entry)))
6555 			break;
6556 	}
6557 
6558 	if (unlikely(xa_is_zero(entry)))
6559 		entry = NULL;
6560 unlock:
6561 	rcu_read_unlock();
6562 	if (likely(entry)) {
6563 		*index = mas.last + 1;
6564 #ifdef CONFIG_DEBUG_MAPLE_TREE
6565 		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6566 			pr_err("index not increased! %lx <= %lx\n",
6567 			       *index, copy);
6568 #endif
6569 	}
6570 
6571 	return entry;
6572 }
6573 EXPORT_SYMBOL(mt_find);
6574 
6575 /**
6576  * mt_find_after() - Search from the start up until an entry is found.
6577  * @mt: The maple tree
6578  * @index: Pointer which contains the start location of the search
6579  * @max: The maximum value to check
6580  *
6581  * Same as mt_find() except that it checks @index for 0 before
6582  * searching. If @index == 0, the search is aborted. This covers a wrap
6583  * around of @index to 0 in an iterator loop.
6584  *
6585  * Return: The entry at or after the @index or %NULL
6586  */
6587 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6588 		    unsigned long max)
6589 {
6590 	if (!(*index))
6591 		return NULL;
6592 
6593 	return mt_find(mt, index, max);
6594 }
6595 EXPORT_SYMBOL(mt_find_after);
6596 
6597 #ifdef CONFIG_DEBUG_MAPLE_TREE
6598 atomic_t maple_tree_tests_run;
6599 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6600 atomic_t maple_tree_tests_passed;
6601 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6602 
6603 #ifndef __KERNEL__
6604 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6605 void mt_set_non_kernel(unsigned int val)
6606 {
6607 	kmem_cache_set_non_kernel(maple_node_cache, val);
6608 }
6609 
6610 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6611 unsigned long mt_get_alloc_size(void)
6612 {
6613 	return kmem_cache_get_alloc(maple_node_cache);
6614 }
6615 
6616 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6617 void mt_zero_nr_tallocated(void)
6618 {
6619 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6620 }
6621 
6622 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6623 unsigned int mt_nr_tallocated(void)
6624 {
6625 	return kmem_cache_nr_tallocated(maple_node_cache);
6626 }
6627 
6628 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6629 unsigned int mt_nr_allocated(void)
6630 {
6631 	return kmem_cache_nr_allocated(maple_node_cache);
6632 }
6633 
6634 /*
6635  * mas_dead_node() - Check if the maple state is pointing to a dead node.
6636  * @mas: The maple state
6637  * @index: The index to restore in @mas.
6638  *
6639  * Used in test code.
6640  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6641  */
6642 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6643 {
6644 	if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6645 		return 0;
6646 
6647 	if (likely(!mte_dead_node(mas->node)))
6648 		return 0;
6649 
6650 	mas_rewalk(mas, index);
6651 	return 1;
6652 }
6653 
6654 void mt_cache_shrink(void)
6655 {
6656 }
6657 #else
6658 /*
6659  * mt_cache_shrink() - For testing, don't use this.
6660  *
6661  * Certain testcases can trigger an OOM when combined with other memory
6662  * debugging configuration options.  This function is used to reduce the
6663  * possibility of an out of memory even due to kmem_cache objects remaining
6664  * around for longer than usual.
6665  */
6666 void mt_cache_shrink(void)
6667 {
6668 	kmem_cache_shrink(maple_node_cache);
6669 
6670 }
6671 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6672 
6673 #endif /* not defined __KERNEL__ */
6674 /*
6675  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6676  * @mas: The maple state
6677  * @offset: The offset into the slot array to fetch.
6678  *
6679  * Return: The entry stored at @offset.
6680  */
6681 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6682 		unsigned char offset)
6683 {
6684 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6685 			offset);
6686 }
6687 
6688 /* Depth first search, post-order */
6689 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6690 {
6691 
6692 	struct maple_enode *p = MAS_NONE, *mn = mas->node;
6693 	unsigned long p_min, p_max;
6694 
6695 	mas_next_node(mas, mas_mn(mas), max);
6696 	if (!mas_is_none(mas))
6697 		return;
6698 
6699 	if (mte_is_root(mn))
6700 		return;
6701 
6702 	mas->node = mn;
6703 	mas_ascend(mas);
6704 	do {
6705 		p = mas->node;
6706 		p_min = mas->min;
6707 		p_max = mas->max;
6708 		mas_prev_node(mas, 0);
6709 	} while (!mas_is_none(mas));
6710 
6711 	mas->node = p;
6712 	mas->max = p_max;
6713 	mas->min = p_min;
6714 }
6715 
6716 /* Tree validations */
6717 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6718 		unsigned long min, unsigned long max, unsigned int depth,
6719 		enum mt_dump_format format);
6720 static void mt_dump_range(unsigned long min, unsigned long max,
6721 			  unsigned int depth, enum mt_dump_format format)
6722 {
6723 	static const char spaces[] = "                                ";
6724 
6725 	switch(format) {
6726 	case mt_dump_hex:
6727 		if (min == max)
6728 			pr_info("%.*s%lx: ", depth * 2, spaces, min);
6729 		else
6730 			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
6731 		break;
6732 	default:
6733 	case mt_dump_dec:
6734 		if (min == max)
6735 			pr_info("%.*s%lu: ", depth * 2, spaces, min);
6736 		else
6737 			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6738 	}
6739 }
6740 
6741 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6742 			  unsigned int depth, enum mt_dump_format format)
6743 {
6744 	mt_dump_range(min, max, depth, format);
6745 
6746 	if (xa_is_value(entry))
6747 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6748 				xa_to_value(entry), entry);
6749 	else if (xa_is_zero(entry))
6750 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
6751 	else if (mt_is_reserved(entry))
6752 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6753 	else
6754 		pr_cont("%p\n", entry);
6755 }
6756 
6757 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6758 		unsigned long min, unsigned long max, unsigned int depth,
6759 		enum mt_dump_format format)
6760 {
6761 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6762 	bool leaf = mte_is_leaf(entry);
6763 	unsigned long first = min;
6764 	int i;
6765 
6766 	pr_cont(" contents: ");
6767 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
6768 		switch(format) {
6769 		case mt_dump_hex:
6770 			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6771 			break;
6772 		default:
6773 		case mt_dump_dec:
6774 			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6775 		}
6776 	}
6777 	pr_cont("%p\n", node->slot[i]);
6778 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6779 		unsigned long last = max;
6780 
6781 		if (i < (MAPLE_RANGE64_SLOTS - 1))
6782 			last = node->pivot[i];
6783 		else if (!node->slot[i] && max != mt_node_max(entry))
6784 			break;
6785 		if (last == 0 && i > 0)
6786 			break;
6787 		if (leaf)
6788 			mt_dump_entry(mt_slot(mt, node->slot, i),
6789 					first, last, depth + 1, format);
6790 		else if (node->slot[i])
6791 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6792 					first, last, depth + 1, format);
6793 
6794 		if (last == max)
6795 			break;
6796 		if (last > max) {
6797 			switch(format) {
6798 			case mt_dump_hex:
6799 				pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
6800 					node, last, max, i);
6801 				break;
6802 			default:
6803 			case mt_dump_dec:
6804 				pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6805 					node, last, max, i);
6806 			}
6807 		}
6808 		first = last + 1;
6809 	}
6810 }
6811 
6812 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6813 	unsigned long min, unsigned long max, unsigned int depth,
6814 	enum mt_dump_format format)
6815 {
6816 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6817 	bool leaf = mte_is_leaf(entry);
6818 	unsigned long first = min;
6819 	int i;
6820 
6821 	pr_cont(" contents: ");
6822 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6823 		switch (format) {
6824 		case mt_dump_hex:
6825 			pr_cont("%lx ", node->gap[i]);
6826 			break;
6827 		default:
6828 		case mt_dump_dec:
6829 			pr_cont("%lu ", node->gap[i]);
6830 		}
6831 	}
6832 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6833 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
6834 		switch (format) {
6835 		case mt_dump_hex:
6836 			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6837 			break;
6838 		default:
6839 		case mt_dump_dec:
6840 			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6841 		}
6842 	}
6843 	pr_cont("%p\n", node->slot[i]);
6844 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6845 		unsigned long last = max;
6846 
6847 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
6848 			last = node->pivot[i];
6849 		else if (!node->slot[i])
6850 			break;
6851 		if (last == 0 && i > 0)
6852 			break;
6853 		if (leaf)
6854 			mt_dump_entry(mt_slot(mt, node->slot, i),
6855 					first, last, depth + 1, format);
6856 		else if (node->slot[i])
6857 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6858 					first, last, depth + 1, format);
6859 
6860 		if (last == max)
6861 			break;
6862 		if (last > max) {
6863 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6864 					node, last, max, i);
6865 			break;
6866 		}
6867 		first = last + 1;
6868 	}
6869 }
6870 
6871 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6872 		unsigned long min, unsigned long max, unsigned int depth,
6873 		enum mt_dump_format format)
6874 {
6875 	struct maple_node *node = mte_to_node(entry);
6876 	unsigned int type = mte_node_type(entry);
6877 	unsigned int i;
6878 
6879 	mt_dump_range(min, max, depth, format);
6880 
6881 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6882 			node ? node->parent : NULL);
6883 	switch (type) {
6884 	case maple_dense:
6885 		pr_cont("\n");
6886 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6887 			if (min + i > max)
6888 				pr_cont("OUT OF RANGE: ");
6889 			mt_dump_entry(mt_slot(mt, node->slot, i),
6890 					min + i, min + i, depth, format);
6891 		}
6892 		break;
6893 	case maple_leaf_64:
6894 	case maple_range_64:
6895 		mt_dump_range64(mt, entry, min, max, depth, format);
6896 		break;
6897 	case maple_arange_64:
6898 		mt_dump_arange64(mt, entry, min, max, depth, format);
6899 		break;
6900 
6901 	default:
6902 		pr_cont(" UNKNOWN TYPE\n");
6903 	}
6904 }
6905 
6906 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
6907 {
6908 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6909 
6910 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6911 		 mt, mt->ma_flags, mt_height(mt), entry);
6912 	if (!xa_is_node(entry))
6913 		mt_dump_entry(entry, 0, 0, 0, format);
6914 	else if (entry)
6915 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
6916 }
6917 EXPORT_SYMBOL_GPL(mt_dump);
6918 
6919 /*
6920  * Calculate the maximum gap in a node and check if that's what is reported in
6921  * the parent (unless root).
6922  */
6923 static void mas_validate_gaps(struct ma_state *mas)
6924 {
6925 	struct maple_enode *mte = mas->node;
6926 	struct maple_node *p_mn, *node = mte_to_node(mte);
6927 	enum maple_type mt = mte_node_type(mas->node);
6928 	unsigned long gap = 0, max_gap = 0;
6929 	unsigned long p_end, p_start = mas->min;
6930 	unsigned char p_slot, offset;
6931 	unsigned long *gaps = NULL;
6932 	unsigned long *pivots = ma_pivots(node, mt);
6933 	unsigned int i;
6934 
6935 	if (ma_is_dense(mt)) {
6936 		for (i = 0; i < mt_slot_count(mte); i++) {
6937 			if (mas_get_slot(mas, i)) {
6938 				if (gap > max_gap)
6939 					max_gap = gap;
6940 				gap = 0;
6941 				continue;
6942 			}
6943 			gap++;
6944 		}
6945 		goto counted;
6946 	}
6947 
6948 	gaps = ma_gaps(node, mt);
6949 	for (i = 0; i < mt_slot_count(mte); i++) {
6950 		p_end = mas_safe_pivot(mas, pivots, i, mt);
6951 
6952 		if (!gaps) {
6953 			if (!mas_get_slot(mas, i))
6954 				gap = p_end - p_start + 1;
6955 		} else {
6956 			void *entry = mas_get_slot(mas, i);
6957 
6958 			gap = gaps[i];
6959 			MT_BUG_ON(mas->tree, !entry);
6960 
6961 			if (gap > p_end - p_start + 1) {
6962 				pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6963 				       mas_mn(mas), i, gap, p_end, p_start,
6964 				       p_end - p_start + 1);
6965 				MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
6966 			}
6967 		}
6968 
6969 		if (gap > max_gap)
6970 			max_gap = gap;
6971 
6972 		p_start = p_end + 1;
6973 		if (p_end >= mas->max)
6974 			break;
6975 	}
6976 
6977 counted:
6978 	if (mt == maple_arange_64) {
6979 		offset = ma_meta_gap(node, mt);
6980 		if (offset > i) {
6981 			pr_err("gap offset %p[%u] is invalid\n", node, offset);
6982 			MT_BUG_ON(mas->tree, 1);
6983 		}
6984 
6985 		if (gaps[offset] != max_gap) {
6986 			pr_err("gap %p[%u] is not the largest gap %lu\n",
6987 			       node, offset, max_gap);
6988 			MT_BUG_ON(mas->tree, 1);
6989 		}
6990 
6991 		MT_BUG_ON(mas->tree, !gaps);
6992 		for (i++ ; i < mt_slot_count(mte); i++) {
6993 			if (gaps[i] != 0) {
6994 				pr_err("gap %p[%u] beyond node limit != 0\n",
6995 				       node, i);
6996 				MT_BUG_ON(mas->tree, 1);
6997 			}
6998 		}
6999 	}
7000 
7001 	if (mte_is_root(mte))
7002 		return;
7003 
7004 	p_slot = mte_parent_slot(mas->node);
7005 	p_mn = mte_parent(mte);
7006 	MT_BUG_ON(mas->tree, max_gap > mas->max);
7007 	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7008 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7009 		mt_dump(mas->tree, mt_dump_hex);
7010 		MT_BUG_ON(mas->tree, 1);
7011 	}
7012 }
7013 
7014 static void mas_validate_parent_slot(struct ma_state *mas)
7015 {
7016 	struct maple_node *parent;
7017 	struct maple_enode *node;
7018 	enum maple_type p_type;
7019 	unsigned char p_slot;
7020 	void __rcu **slots;
7021 	int i;
7022 
7023 	if (mte_is_root(mas->node))
7024 		return;
7025 
7026 	p_slot = mte_parent_slot(mas->node);
7027 	p_type = mas_parent_type(mas, mas->node);
7028 	parent = mte_parent(mas->node);
7029 	slots = ma_slots(parent, p_type);
7030 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7031 
7032 	/* Check prev/next parent slot for duplicate node entry */
7033 
7034 	for (i = 0; i < mt_slots[p_type]; i++) {
7035 		node = mas_slot(mas, slots, i);
7036 		if (i == p_slot) {
7037 			if (node != mas->node)
7038 				pr_err("parent %p[%u] does not have %p\n",
7039 					parent, i, mas_mn(mas));
7040 			MT_BUG_ON(mas->tree, node != mas->node);
7041 		} else if (node == mas->node) {
7042 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7043 			       mas_mn(mas), parent, i, p_slot);
7044 			MT_BUG_ON(mas->tree, node == mas->node);
7045 		}
7046 	}
7047 }
7048 
7049 static void mas_validate_child_slot(struct ma_state *mas)
7050 {
7051 	enum maple_type type = mte_node_type(mas->node);
7052 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7053 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7054 	struct maple_enode *child;
7055 	unsigned char i;
7056 
7057 	if (mte_is_leaf(mas->node))
7058 		return;
7059 
7060 	for (i = 0; i < mt_slots[type]; i++) {
7061 		child = mas_slot(mas, slots, i);
7062 
7063 		if (!child) {
7064 			pr_err("Non-leaf node lacks child at %p[%u]\n",
7065 			       mas_mn(mas), i);
7066 			MT_BUG_ON(mas->tree, 1);
7067 		}
7068 
7069 		if (mte_parent_slot(child) != i) {
7070 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7071 			       mas_mn(mas), i, mte_to_node(child),
7072 			       mte_parent_slot(child));
7073 			MT_BUG_ON(mas->tree, 1);
7074 		}
7075 
7076 		if (mte_parent(child) != mte_to_node(mas->node)) {
7077 			pr_err("child %p has parent %p not %p\n",
7078 			       mte_to_node(child), mte_parent(child),
7079 			       mte_to_node(mas->node));
7080 			MT_BUG_ON(mas->tree, 1);
7081 		}
7082 
7083 		if (i < mt_pivots[type] && pivots[i] == mas->max)
7084 			break;
7085 	}
7086 }
7087 
7088 /*
7089  * Validate all pivots are within mas->min and mas->max, check metadata ends
7090  * where the maximum ends and ensure there is no slots or pivots set outside of
7091  * the end of the data.
7092  */
7093 static void mas_validate_limits(struct ma_state *mas)
7094 {
7095 	int i;
7096 	unsigned long prev_piv = 0;
7097 	enum maple_type type = mte_node_type(mas->node);
7098 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7099 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7100 
7101 	for (i = 0; i < mt_slots[type]; i++) {
7102 		unsigned long piv;
7103 
7104 		piv = mas_safe_pivot(mas, pivots, i, type);
7105 
7106 		if (!piv && (i != 0)) {
7107 			pr_err("Missing node limit pivot at %p[%u]",
7108 			       mas_mn(mas), i);
7109 			MAS_WARN_ON(mas, 1);
7110 		}
7111 
7112 		if (prev_piv > piv) {
7113 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7114 				mas_mn(mas), i, piv, prev_piv);
7115 			MAS_WARN_ON(mas, piv < prev_piv);
7116 		}
7117 
7118 		if (piv < mas->min) {
7119 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7120 				piv, mas->min);
7121 			MAS_WARN_ON(mas, piv < mas->min);
7122 		}
7123 		if (piv > mas->max) {
7124 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7125 				piv, mas->max);
7126 			MAS_WARN_ON(mas, piv > mas->max);
7127 		}
7128 		prev_piv = piv;
7129 		if (piv == mas->max)
7130 			break;
7131 	}
7132 
7133 	if (mas_data_end(mas) != i) {
7134 		pr_err("node%p: data_end %u != the last slot offset %u\n",
7135 		       mas_mn(mas), mas_data_end(mas), i);
7136 		MT_BUG_ON(mas->tree, 1);
7137 	}
7138 
7139 	for (i += 1; i < mt_slots[type]; i++) {
7140 		void *entry = mas_slot(mas, slots, i);
7141 
7142 		if (entry && (i != mt_slots[type] - 1)) {
7143 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7144 			       i, entry);
7145 			MT_BUG_ON(mas->tree, entry != NULL);
7146 		}
7147 
7148 		if (i < mt_pivots[type]) {
7149 			unsigned long piv = pivots[i];
7150 
7151 			if (!piv)
7152 				continue;
7153 
7154 			pr_err("%p[%u] should not have piv %lu\n",
7155 			       mas_mn(mas), i, piv);
7156 			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7157 		}
7158 	}
7159 }
7160 
7161 static void mt_validate_nulls(struct maple_tree *mt)
7162 {
7163 	void *entry, *last = (void *)1;
7164 	unsigned char offset = 0;
7165 	void __rcu **slots;
7166 	MA_STATE(mas, mt, 0, 0);
7167 
7168 	mas_start(&mas);
7169 	if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7170 		return;
7171 
7172 	while (!mte_is_leaf(mas.node))
7173 		mas_descend(&mas);
7174 
7175 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7176 	do {
7177 		entry = mas_slot(&mas, slots, offset);
7178 		if (!last && !entry) {
7179 			pr_err("Sequential nulls end at %p[%u]\n",
7180 				mas_mn(&mas), offset);
7181 		}
7182 		MT_BUG_ON(mt, !last && !entry);
7183 		last = entry;
7184 		if (offset == mas_data_end(&mas)) {
7185 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7186 			if (mas_is_none(&mas))
7187 				return;
7188 			offset = 0;
7189 			slots = ma_slots(mte_to_node(mas.node),
7190 					 mte_node_type(mas.node));
7191 		} else {
7192 			offset++;
7193 		}
7194 
7195 	} while (!mas_is_none(&mas));
7196 }
7197 
7198 /*
7199  * validate a maple tree by checking:
7200  * 1. The limits (pivots are within mas->min to mas->max)
7201  * 2. The gap is correctly set in the parents
7202  */
7203 void mt_validate(struct maple_tree *mt)
7204 {
7205 	unsigned char end;
7206 
7207 	MA_STATE(mas, mt, 0, 0);
7208 	rcu_read_lock();
7209 	mas_start(&mas);
7210 	if (!mas_searchable(&mas))
7211 		goto done;
7212 
7213 	while (!mte_is_leaf(mas.node))
7214 		mas_descend(&mas);
7215 
7216 	while (!mas_is_none(&mas)) {
7217 		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7218 		end = mas_data_end(&mas);
7219 		if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7220 				(mas.max != ULONG_MAX))) {
7221 			pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
7222 		}
7223 
7224 		mas_validate_parent_slot(&mas);
7225 		mas_validate_limits(&mas);
7226 		mas_validate_child_slot(&mas);
7227 		if (mt_is_alloc(mt))
7228 			mas_validate_gaps(&mas);
7229 		mas_dfs_postorder(&mas, ULONG_MAX);
7230 	}
7231 	mt_validate_nulls(mt);
7232 done:
7233 	rcu_read_unlock();
7234 
7235 }
7236 EXPORT_SYMBOL_GPL(mt_validate);
7237 
7238 void mas_dump(const struct ma_state *mas)
7239 {
7240 	pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7241 	if (mas_is_none(mas))
7242 		pr_err("(MAS_NONE) ");
7243 	else if (mas_is_ptr(mas))
7244 		pr_err("(MAS_ROOT) ");
7245 	else if (mas_is_start(mas))
7246 		 pr_err("(MAS_START) ");
7247 	else if (mas_is_paused(mas))
7248 		pr_err("(MAS_PAUSED) ");
7249 
7250 	pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last);
7251 	pr_err("     min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7252 	       mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7253 	if (mas->index > mas->last)
7254 		pr_err("Check index & last\n");
7255 }
7256 EXPORT_SYMBOL_GPL(mas_dump);
7257 
7258 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7259 {
7260 	pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7261 	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7262 	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7263 	       wr_mas->type, wr_mas->offset_end, wr_mas->node_end,
7264 	       wr_mas->end_piv);
7265 }
7266 EXPORT_SYMBOL_GPL(mas_wr_dump);
7267 
7268 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7269