1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 */ 8 9 /* 10 * DOC: Interesting implementation details of the Maple Tree 11 * 12 * Each node type has a number of slots for entries and a number of slots for 13 * pivots. In the case of dense nodes, the pivots are implied by the position 14 * and are simply the slot index + the minimum of the node. 15 * 16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 17 * indicate that the tree is specifying ranges, Pivots may appear in the 18 * subtree with an entry attached to the value where as keys are unique to a 19 * specific position of a B-tree. Pivot values are inclusive of the slot with 20 * the same index. 21 * 22 * 23 * The following illustrates the layout of a range64 nodes slots and pivots. 24 * 25 * 26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 28 * │ │ │ │ │ │ │ │ └─ Implied maximum 29 * │ │ │ │ │ │ │ └─ Pivot 14 30 * │ │ │ │ │ │ └─ Pivot 13 31 * │ │ │ │ │ └─ Pivot 12 32 * │ │ │ │ └─ Pivot 11 33 * │ │ │ └─ Pivot 2 34 * │ │ └─ Pivot 1 35 * │ └─ Pivot 0 36 * └─ Implied minimum 37 * 38 * Slot contents: 39 * Internal (non-leaf) nodes contain pointers to other nodes. 40 * Leaf nodes contain entries. 41 * 42 * The location of interest is often referred to as an offset. All offsets have 43 * a slot, but the last offset has an implied pivot from the node above (or 44 * UINT_MAX for the root node. 45 * 46 * Ranges complicate certain write activities. When modifying any of 47 * the B-tree variants, it is known that one entry will either be added or 48 * deleted. When modifying the Maple Tree, one store operation may overwrite 49 * the entire data set, or one half of the tree, or the middle half of the tree. 50 * 51 */ 52 53 54 #include <linux/maple_tree.h> 55 #include <linux/xarray.h> 56 #include <linux/types.h> 57 #include <linux/export.h> 58 #include <linux/slab.h> 59 #include <linux/limits.h> 60 #include <asm/barrier.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/maple_tree.h> 64 65 #define MA_ROOT_PARENT 1 66 67 /* 68 * Maple state flags 69 * * MA_STATE_BULK - Bulk insert mode 70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 72 */ 73 #define MA_STATE_BULK 1 74 #define MA_STATE_REBALANCE 2 75 #define MA_STATE_PREALLOC 4 76 77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 78 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 79 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 80 static struct kmem_cache *maple_node_cache; 81 82 #ifdef CONFIG_DEBUG_MAPLE_TREE 83 static const unsigned long mt_max[] = { 84 [maple_dense] = MAPLE_NODE_SLOTS, 85 [maple_leaf_64] = ULONG_MAX, 86 [maple_range_64] = ULONG_MAX, 87 [maple_arange_64] = ULONG_MAX, 88 }; 89 #define mt_node_max(x) mt_max[mte_node_type(x)] 90 #endif 91 92 static const unsigned char mt_slots[] = { 93 [maple_dense] = MAPLE_NODE_SLOTS, 94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 95 [maple_range_64] = MAPLE_RANGE64_SLOTS, 96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 97 }; 98 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 99 100 static const unsigned char mt_pivots[] = { 101 [maple_dense] = 0, 102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 105 }; 106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 107 108 static const unsigned char mt_min_slots[] = { 109 [maple_dense] = MAPLE_NODE_SLOTS / 2, 110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 113 }; 114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 115 116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 118 119 struct maple_big_node { 120 struct maple_pnode *parent; 121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 122 union { 123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 124 struct { 125 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 126 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 127 }; 128 }; 129 unsigned char b_end; 130 enum maple_type type; 131 }; 132 133 /* 134 * The maple_subtree_state is used to build a tree to replace a segment of an 135 * existing tree in a more atomic way. Any walkers of the older tree will hit a 136 * dead node and restart on updates. 137 */ 138 struct maple_subtree_state { 139 struct ma_state *orig_l; /* Original left side of subtree */ 140 struct ma_state *orig_r; /* Original right side of subtree */ 141 struct ma_state *l; /* New left side of subtree */ 142 struct ma_state *m; /* New middle of subtree (rare) */ 143 struct ma_state *r; /* New right side of subtree */ 144 struct ma_topiary *free; /* nodes to be freed */ 145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 146 struct maple_big_node *bn; 147 }; 148 149 #ifdef CONFIG_KASAN_STACK 150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 151 #define noinline_for_kasan noinline_for_stack 152 #else 153 #define noinline_for_kasan inline 154 #endif 155 156 /* Functions */ 157 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 158 { 159 return kmem_cache_alloc(maple_node_cache, gfp); 160 } 161 162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 163 { 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 165 } 166 167 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 168 { 169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 170 } 171 172 static void mt_free_rcu(struct rcu_head *head) 173 { 174 struct maple_node *node = container_of(head, struct maple_node, rcu); 175 176 kmem_cache_free(maple_node_cache, node); 177 } 178 179 /* 180 * ma_free_rcu() - Use rcu callback to free a maple node 181 * @node: The node to free 182 * 183 * The maple tree uses the parent pointer to indicate this node is no longer in 184 * use and will be freed. 185 */ 186 static void ma_free_rcu(struct maple_node *node) 187 { 188 WARN_ON(node->parent != ma_parent_ptr(node)); 189 call_rcu(&node->rcu, mt_free_rcu); 190 } 191 192 static void mas_set_height(struct ma_state *mas) 193 { 194 unsigned int new_flags = mas->tree->ma_flags; 195 196 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 197 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX); 198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 199 mas->tree->ma_flags = new_flags; 200 } 201 202 static unsigned int mas_mt_height(struct ma_state *mas) 203 { 204 return mt_height(mas->tree); 205 } 206 207 static inline enum maple_type mte_node_type(const struct maple_enode *entry) 208 { 209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 210 MAPLE_NODE_TYPE_MASK; 211 } 212 213 static inline bool ma_is_dense(const enum maple_type type) 214 { 215 return type < maple_leaf_64; 216 } 217 218 static inline bool ma_is_leaf(const enum maple_type type) 219 { 220 return type < maple_range_64; 221 } 222 223 static inline bool mte_is_leaf(const struct maple_enode *entry) 224 { 225 return ma_is_leaf(mte_node_type(entry)); 226 } 227 228 /* 229 * We also reserve values with the bottom two bits set to '10' which are 230 * below 4096 231 */ 232 static inline bool mt_is_reserved(const void *entry) 233 { 234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 235 xa_is_internal(entry); 236 } 237 238 static inline void mas_set_err(struct ma_state *mas, long err) 239 { 240 mas->node = MA_ERROR(err); 241 } 242 243 static inline bool mas_is_ptr(struct ma_state *mas) 244 { 245 return mas->node == MAS_ROOT; 246 } 247 248 static inline bool mas_is_start(struct ma_state *mas) 249 { 250 return mas->node == MAS_START; 251 } 252 253 bool mas_is_err(struct ma_state *mas) 254 { 255 return xa_is_err(mas->node); 256 } 257 258 static inline bool mas_searchable(struct ma_state *mas) 259 { 260 if (mas_is_none(mas)) 261 return false; 262 263 if (mas_is_ptr(mas)) 264 return false; 265 266 return true; 267 } 268 269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry) 270 { 271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 272 } 273 274 /* 275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 276 * @entry: The maple encoded node 277 * 278 * Return: a maple topiary pointer 279 */ 280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 281 { 282 return (struct maple_topiary *) 283 ((unsigned long)entry & ~MAPLE_NODE_MASK); 284 } 285 286 /* 287 * mas_mn() - Get the maple state node. 288 * @mas: The maple state 289 * 290 * Return: the maple node (not encoded - bare pointer). 291 */ 292 static inline struct maple_node *mas_mn(const struct ma_state *mas) 293 { 294 return mte_to_node(mas->node); 295 } 296 297 /* 298 * mte_set_node_dead() - Set a maple encoded node as dead. 299 * @mn: The maple encoded node. 300 */ 301 static inline void mte_set_node_dead(struct maple_enode *mn) 302 { 303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 304 smp_wmb(); /* Needed for RCU */ 305 } 306 307 /* Bit 1 indicates the root is a node */ 308 #define MAPLE_ROOT_NODE 0x02 309 /* maple_type stored bit 3-6 */ 310 #define MAPLE_ENODE_TYPE_SHIFT 0x03 311 /* Bit 2 means a NULL somewhere below */ 312 #define MAPLE_ENODE_NULL 0x04 313 314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 315 enum maple_type type) 316 { 317 return (void *)((unsigned long)node | 318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 319 } 320 321 static inline void *mte_mk_root(const struct maple_enode *node) 322 { 323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 324 } 325 326 static inline void *mte_safe_root(const struct maple_enode *node) 327 { 328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 329 } 330 331 static inline void *mte_set_full(const struct maple_enode *node) 332 { 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 334 } 335 336 static inline void *mte_clear_full(const struct maple_enode *node) 337 { 338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 339 } 340 341 static inline bool mte_has_null(const struct maple_enode *node) 342 { 343 return (unsigned long)node & MAPLE_ENODE_NULL; 344 } 345 346 static inline bool ma_is_root(struct maple_node *node) 347 { 348 return ((unsigned long)node->parent & MA_ROOT_PARENT); 349 } 350 351 static inline bool mte_is_root(const struct maple_enode *node) 352 { 353 return ma_is_root(mte_to_node(node)); 354 } 355 356 static inline bool mas_is_root_limits(const struct ma_state *mas) 357 { 358 return !mas->min && mas->max == ULONG_MAX; 359 } 360 361 static inline bool mt_is_alloc(struct maple_tree *mt) 362 { 363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 364 } 365 366 /* 367 * The Parent Pointer 368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 370 * bit values need an extra bit to store the offset. This extra bit comes from 371 * a reuse of the last bit in the node type. This is possible by using bit 1 to 372 * indicate if bit 2 is part of the type or the slot. 373 * 374 * Note types: 375 * 0x??1 = Root 376 * 0x?00 = 16 bit nodes 377 * 0x010 = 32 bit nodes 378 * 0x110 = 64 bit nodes 379 * 380 * Slot size and alignment 381 * 0b??1 : Root 382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 385 */ 386 387 #define MAPLE_PARENT_ROOT 0x01 388 389 #define MAPLE_PARENT_SLOT_SHIFT 0x03 390 #define MAPLE_PARENT_SLOT_MASK 0xF8 391 392 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 393 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 394 395 #define MAPLE_PARENT_RANGE64 0x06 396 #define MAPLE_PARENT_RANGE32 0x04 397 #define MAPLE_PARENT_NOT_RANGE16 0x02 398 399 /* 400 * mte_parent_shift() - Get the parent shift for the slot storage. 401 * @parent: The parent pointer cast as an unsigned long 402 * Return: The shift into that pointer to the star to of the slot 403 */ 404 static inline unsigned long mte_parent_shift(unsigned long parent) 405 { 406 /* Note bit 1 == 0 means 16B */ 407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 408 return MAPLE_PARENT_SLOT_SHIFT; 409 410 return MAPLE_PARENT_16B_SLOT_SHIFT; 411 } 412 413 /* 414 * mte_parent_slot_mask() - Get the slot mask for the parent. 415 * @parent: The parent pointer cast as an unsigned long. 416 * Return: The slot mask for that parent. 417 */ 418 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 419 { 420 /* Note bit 1 == 0 means 16B */ 421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 422 return MAPLE_PARENT_SLOT_MASK; 423 424 return MAPLE_PARENT_16B_SLOT_MASK; 425 } 426 427 /* 428 * mas_parent_enum() - Return the maple_type of the parent from the stored 429 * parent type. 430 * @mas: The maple state 431 * @node: The maple_enode to extract the parent's enum 432 * Return: The node->parent maple_type 433 */ 434 static inline 435 enum maple_type mte_parent_enum(struct maple_enode *p_enode, 436 struct maple_tree *mt) 437 { 438 unsigned long p_type; 439 440 p_type = (unsigned long)p_enode; 441 if (p_type & MAPLE_PARENT_ROOT) 442 return 0; /* Validated in the caller. */ 443 444 p_type &= MAPLE_NODE_MASK; 445 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type)); 446 447 switch (p_type) { 448 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 449 if (mt_is_alloc(mt)) 450 return maple_arange_64; 451 return maple_range_64; 452 } 453 454 return 0; 455 } 456 457 static inline 458 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode) 459 { 460 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree); 461 } 462 463 /* 464 * mte_set_parent() - Set the parent node and encode the slot 465 * @enode: The encoded maple node. 466 * @parent: The encoded maple node that is the parent of @enode. 467 * @slot: The slot that @enode resides in @parent. 468 * 469 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 470 * parent type. 471 */ 472 static inline 473 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent, 474 unsigned char slot) 475 { 476 unsigned long val = (unsigned long)parent; 477 unsigned long shift; 478 unsigned long type; 479 enum maple_type p_type = mte_node_type(parent); 480 481 BUG_ON(p_type == maple_dense); 482 BUG_ON(p_type == maple_leaf_64); 483 484 switch (p_type) { 485 case maple_range_64: 486 case maple_arange_64: 487 shift = MAPLE_PARENT_SLOT_SHIFT; 488 type = MAPLE_PARENT_RANGE64; 489 break; 490 default: 491 case maple_dense: 492 case maple_leaf_64: 493 shift = type = 0; 494 break; 495 } 496 497 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 498 val |= (slot << shift) | type; 499 mte_to_node(enode)->parent = ma_parent_ptr(val); 500 } 501 502 /* 503 * mte_parent_slot() - get the parent slot of @enode. 504 * @enode: The encoded maple node. 505 * 506 * Return: The slot in the parent node where @enode resides. 507 */ 508 static inline unsigned int mte_parent_slot(const struct maple_enode *enode) 509 { 510 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 511 512 if (val & MA_ROOT_PARENT) 513 return 0; 514 515 /* 516 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 517 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 518 */ 519 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 520 } 521 522 /* 523 * mte_parent() - Get the parent of @node. 524 * @node: The encoded maple node. 525 * 526 * Return: The parent maple node. 527 */ 528 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 529 { 530 return (void *)((unsigned long) 531 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 532 } 533 534 /* 535 * ma_dead_node() - check if the @enode is dead. 536 * @enode: The encoded maple node 537 * 538 * Return: true if dead, false otherwise. 539 */ 540 static inline bool ma_dead_node(const struct maple_node *node) 541 { 542 struct maple_node *parent; 543 544 /* Do not reorder reads from the node prior to the parent check */ 545 smp_rmb(); 546 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 547 return (parent == node); 548 } 549 550 /* 551 * mte_dead_node() - check if the @enode is dead. 552 * @enode: The encoded maple node 553 * 554 * Return: true if dead, false otherwise. 555 */ 556 static inline bool mte_dead_node(const struct maple_enode *enode) 557 { 558 struct maple_node *parent, *node; 559 560 node = mte_to_node(enode); 561 /* Do not reorder reads from the node prior to the parent check */ 562 smp_rmb(); 563 parent = mte_parent(enode); 564 return (parent == node); 565 } 566 567 /* 568 * mas_allocated() - Get the number of nodes allocated in a maple state. 569 * @mas: The maple state 570 * 571 * The ma_state alloc member is overloaded to hold a pointer to the first 572 * allocated node or to the number of requested nodes to allocate. If bit 0 is 573 * set, then the alloc contains the number of requested nodes. If there is an 574 * allocated node, then the total allocated nodes is in that node. 575 * 576 * Return: The total number of nodes allocated 577 */ 578 static inline unsigned long mas_allocated(const struct ma_state *mas) 579 { 580 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 581 return 0; 582 583 return mas->alloc->total; 584 } 585 586 /* 587 * mas_set_alloc_req() - Set the requested number of allocations. 588 * @mas: the maple state 589 * @count: the number of allocations. 590 * 591 * The requested number of allocations is either in the first allocated node, 592 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 593 * no allocated node. Set the request either in the node or do the necessary 594 * encoding to store in @mas->alloc directly. 595 */ 596 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 597 { 598 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 599 if (!count) 600 mas->alloc = NULL; 601 else 602 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 603 return; 604 } 605 606 mas->alloc->request_count = count; 607 } 608 609 /* 610 * mas_alloc_req() - get the requested number of allocations. 611 * @mas: The maple state 612 * 613 * The alloc count is either stored directly in @mas, or in 614 * @mas->alloc->request_count if there is at least one node allocated. Decode 615 * the request count if it's stored directly in @mas->alloc. 616 * 617 * Return: The allocation request count. 618 */ 619 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 620 { 621 if ((unsigned long)mas->alloc & 0x1) 622 return (unsigned long)(mas->alloc) >> 1; 623 else if (mas->alloc) 624 return mas->alloc->request_count; 625 return 0; 626 } 627 628 /* 629 * ma_pivots() - Get a pointer to the maple node pivots. 630 * @node - the maple node 631 * @type - the node type 632 * 633 * In the event of a dead node, this array may be %NULL 634 * 635 * Return: A pointer to the maple node pivots 636 */ 637 static inline unsigned long *ma_pivots(struct maple_node *node, 638 enum maple_type type) 639 { 640 switch (type) { 641 case maple_arange_64: 642 return node->ma64.pivot; 643 case maple_range_64: 644 case maple_leaf_64: 645 return node->mr64.pivot; 646 case maple_dense: 647 return NULL; 648 } 649 return NULL; 650 } 651 652 /* 653 * ma_gaps() - Get a pointer to the maple node gaps. 654 * @node - the maple node 655 * @type - the node type 656 * 657 * Return: A pointer to the maple node gaps 658 */ 659 static inline unsigned long *ma_gaps(struct maple_node *node, 660 enum maple_type type) 661 { 662 switch (type) { 663 case maple_arange_64: 664 return node->ma64.gap; 665 case maple_range_64: 666 case maple_leaf_64: 667 case maple_dense: 668 return NULL; 669 } 670 return NULL; 671 } 672 673 /* 674 * mte_pivot() - Get the pivot at @piv of the maple encoded node. 675 * @mn: The maple encoded node. 676 * @piv: The pivot. 677 * 678 * Return: the pivot at @piv of @mn. 679 */ 680 static inline unsigned long mte_pivot(const struct maple_enode *mn, 681 unsigned char piv) 682 { 683 struct maple_node *node = mte_to_node(mn); 684 enum maple_type type = mte_node_type(mn); 685 686 if (piv >= mt_pivots[type]) { 687 WARN_ON(1); 688 return 0; 689 } 690 switch (type) { 691 case maple_arange_64: 692 return node->ma64.pivot[piv]; 693 case maple_range_64: 694 case maple_leaf_64: 695 return node->mr64.pivot[piv]; 696 case maple_dense: 697 return 0; 698 } 699 return 0; 700 } 701 702 /* 703 * mas_safe_pivot() - get the pivot at @piv or mas->max. 704 * @mas: The maple state 705 * @pivots: The pointer to the maple node pivots 706 * @piv: The pivot to fetch 707 * @type: The maple node type 708 * 709 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 710 * otherwise. 711 */ 712 static inline unsigned long 713 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 714 unsigned char piv, enum maple_type type) 715 { 716 if (piv >= mt_pivots[type]) 717 return mas->max; 718 719 return pivots[piv]; 720 } 721 722 /* 723 * mas_safe_min() - Return the minimum for a given offset. 724 * @mas: The maple state 725 * @pivots: The pointer to the maple node pivots 726 * @offset: The offset into the pivot array 727 * 728 * Return: The minimum range value that is contained in @offset. 729 */ 730 static inline unsigned long 731 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 732 { 733 if (likely(offset)) 734 return pivots[offset - 1] + 1; 735 736 return mas->min; 737 } 738 739 /* 740 * mas_logical_pivot() - Get the logical pivot of a given offset. 741 * @mas: The maple state 742 * @pivots: The pointer to the maple node pivots 743 * @offset: The offset into the pivot array 744 * @type: The maple node type 745 * 746 * When there is no value at a pivot (beyond the end of the data), then the 747 * pivot is actually @mas->max. 748 * 749 * Return: the logical pivot of a given @offset. 750 */ 751 static inline unsigned long 752 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots, 753 unsigned char offset, enum maple_type type) 754 { 755 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type); 756 757 if (likely(lpiv)) 758 return lpiv; 759 760 if (likely(offset)) 761 return mas->max; 762 763 return lpiv; 764 } 765 766 /* 767 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 768 * @mn: The encoded maple node 769 * @piv: The pivot offset 770 * @val: The value of the pivot 771 */ 772 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 773 unsigned long val) 774 { 775 struct maple_node *node = mte_to_node(mn); 776 enum maple_type type = mte_node_type(mn); 777 778 BUG_ON(piv >= mt_pivots[type]); 779 switch (type) { 780 default: 781 case maple_range_64: 782 case maple_leaf_64: 783 node->mr64.pivot[piv] = val; 784 break; 785 case maple_arange_64: 786 node->ma64.pivot[piv] = val; 787 break; 788 case maple_dense: 789 break; 790 } 791 792 } 793 794 /* 795 * ma_slots() - Get a pointer to the maple node slots. 796 * @mn: The maple node 797 * @mt: The maple node type 798 * 799 * Return: A pointer to the maple node slots 800 */ 801 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 802 { 803 switch (mt) { 804 default: 805 case maple_arange_64: 806 return mn->ma64.slot; 807 case maple_range_64: 808 case maple_leaf_64: 809 return mn->mr64.slot; 810 case maple_dense: 811 return mn->slot; 812 } 813 } 814 815 static inline bool mt_locked(const struct maple_tree *mt) 816 { 817 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 818 lockdep_is_held(&mt->ma_lock); 819 } 820 821 static inline void *mt_slot(const struct maple_tree *mt, 822 void __rcu **slots, unsigned char offset) 823 { 824 return rcu_dereference_check(slots[offset], mt_locked(mt)); 825 } 826 827 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots, 828 unsigned char offset) 829 { 830 return rcu_dereference_protected(slots[offset], mt_locked(mt)); 831 } 832 /* 833 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 834 * @mas: The maple state 835 * @slots: The pointer to the slots 836 * @offset: The offset into the slots array to fetch 837 * 838 * Return: The entry stored in @slots at the @offset. 839 */ 840 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots, 841 unsigned char offset) 842 { 843 return mt_slot_locked(mas->tree, slots, offset); 844 } 845 846 /* 847 * mas_slot() - Get the slot value when not holding the maple tree lock. 848 * @mas: The maple state 849 * @slots: The pointer to the slots 850 * @offset: The offset into the slots array to fetch 851 * 852 * Return: The entry stored in @slots at the @offset 853 */ 854 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 855 unsigned char offset) 856 { 857 return mt_slot(mas->tree, slots, offset); 858 } 859 860 /* 861 * mas_root() - Get the maple tree root. 862 * @mas: The maple state. 863 * 864 * Return: The pointer to the root of the tree 865 */ 866 static inline void *mas_root(struct ma_state *mas) 867 { 868 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 869 } 870 871 static inline void *mt_root_locked(struct maple_tree *mt) 872 { 873 return rcu_dereference_protected(mt->ma_root, mt_locked(mt)); 874 } 875 876 /* 877 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 878 * @mas: The maple state. 879 * 880 * Return: The pointer to the root of the tree 881 */ 882 static inline void *mas_root_locked(struct ma_state *mas) 883 { 884 return mt_root_locked(mas->tree); 885 } 886 887 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 888 enum maple_type mt) 889 { 890 switch (mt) { 891 case maple_arange_64: 892 return &mn->ma64.meta; 893 default: 894 return &mn->mr64.meta; 895 } 896 } 897 898 /* 899 * ma_set_meta() - Set the metadata information of a node. 900 * @mn: The maple node 901 * @mt: The maple node type 902 * @offset: The offset of the highest sub-gap in this node. 903 * @end: The end of the data in this node. 904 */ 905 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 906 unsigned char offset, unsigned char end) 907 { 908 struct maple_metadata *meta = ma_meta(mn, mt); 909 910 meta->gap = offset; 911 meta->end = end; 912 } 913 914 /* 915 * mt_clear_meta() - clear the metadata information of a node, if it exists 916 * @mt: The maple tree 917 * @mn: The maple node 918 * @type: The maple node type 919 * @offset: The offset of the highest sub-gap in this node. 920 * @end: The end of the data in this node. 921 */ 922 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 923 enum maple_type type) 924 { 925 struct maple_metadata *meta; 926 unsigned long *pivots; 927 void __rcu **slots; 928 void *next; 929 930 switch (type) { 931 case maple_range_64: 932 pivots = mn->mr64.pivot; 933 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 934 slots = mn->mr64.slot; 935 next = mt_slot_locked(mt, slots, 936 MAPLE_RANGE64_SLOTS - 1); 937 if (unlikely((mte_to_node(next) && 938 mte_node_type(next)))) 939 return; /* no metadata, could be node */ 940 } 941 fallthrough; 942 case maple_arange_64: 943 meta = ma_meta(mn, type); 944 break; 945 default: 946 return; 947 } 948 949 meta->gap = 0; 950 meta->end = 0; 951 } 952 953 /* 954 * ma_meta_end() - Get the data end of a node from the metadata 955 * @mn: The maple node 956 * @mt: The maple node type 957 */ 958 static inline unsigned char ma_meta_end(struct maple_node *mn, 959 enum maple_type mt) 960 { 961 struct maple_metadata *meta = ma_meta(mn, mt); 962 963 return meta->end; 964 } 965 966 /* 967 * ma_meta_gap() - Get the largest gap location of a node from the metadata 968 * @mn: The maple node 969 * @mt: The maple node type 970 */ 971 static inline unsigned char ma_meta_gap(struct maple_node *mn, 972 enum maple_type mt) 973 { 974 BUG_ON(mt != maple_arange_64); 975 976 return mn->ma64.meta.gap; 977 } 978 979 /* 980 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 981 * @mn: The maple node 982 * @mn: The maple node type 983 * @offset: The location of the largest gap. 984 */ 985 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 986 unsigned char offset) 987 { 988 989 struct maple_metadata *meta = ma_meta(mn, mt); 990 991 meta->gap = offset; 992 } 993 994 /* 995 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 996 * @mat - the ma_topiary, a linked list of dead nodes. 997 * @dead_enode - the node to be marked as dead and added to the tail of the list 998 * 999 * Add the @dead_enode to the linked list in @mat. 1000 */ 1001 static inline void mat_add(struct ma_topiary *mat, 1002 struct maple_enode *dead_enode) 1003 { 1004 mte_set_node_dead(dead_enode); 1005 mte_to_mat(dead_enode)->next = NULL; 1006 if (!mat->tail) { 1007 mat->tail = mat->head = dead_enode; 1008 return; 1009 } 1010 1011 mte_to_mat(mat->tail)->next = dead_enode; 1012 mat->tail = dead_enode; 1013 } 1014 1015 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 1016 static inline void mas_free(struct ma_state *mas, struct maple_enode *used); 1017 1018 /* 1019 * mas_mat_free() - Free all nodes in a dead list. 1020 * @mas - the maple state 1021 * @mat - the ma_topiary linked list of dead nodes to free. 1022 * 1023 * Free walk a dead list. 1024 */ 1025 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat) 1026 { 1027 struct maple_enode *next; 1028 1029 while (mat->head) { 1030 next = mte_to_mat(mat->head)->next; 1031 mas_free(mas, mat->head); 1032 mat->head = next; 1033 } 1034 } 1035 1036 /* 1037 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 1038 * @mas - the maple state 1039 * @mat - the ma_topiary linked list of dead nodes to free. 1040 * 1041 * Destroy walk a dead list. 1042 */ 1043 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 1044 { 1045 struct maple_enode *next; 1046 1047 while (mat->head) { 1048 next = mte_to_mat(mat->head)->next; 1049 mte_destroy_walk(mat->head, mat->mtree); 1050 mat->head = next; 1051 } 1052 } 1053 /* 1054 * mas_descend() - Descend into the slot stored in the ma_state. 1055 * @mas - the maple state. 1056 * 1057 * Note: Not RCU safe, only use in write side or debug code. 1058 */ 1059 static inline void mas_descend(struct ma_state *mas) 1060 { 1061 enum maple_type type; 1062 unsigned long *pivots; 1063 struct maple_node *node; 1064 void __rcu **slots; 1065 1066 node = mas_mn(mas); 1067 type = mte_node_type(mas->node); 1068 pivots = ma_pivots(node, type); 1069 slots = ma_slots(node, type); 1070 1071 if (mas->offset) 1072 mas->min = pivots[mas->offset - 1] + 1; 1073 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1074 mas->node = mas_slot(mas, slots, mas->offset); 1075 } 1076 1077 /* 1078 * mte_set_gap() - Set a maple node gap. 1079 * @mn: The encoded maple node 1080 * @gap: The offset of the gap to set 1081 * @val: The gap value 1082 */ 1083 static inline void mte_set_gap(const struct maple_enode *mn, 1084 unsigned char gap, unsigned long val) 1085 { 1086 switch (mte_node_type(mn)) { 1087 default: 1088 break; 1089 case maple_arange_64: 1090 mte_to_node(mn)->ma64.gap[gap] = val; 1091 break; 1092 } 1093 } 1094 1095 /* 1096 * mas_ascend() - Walk up a level of the tree. 1097 * @mas: The maple state 1098 * 1099 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1100 * may cause several levels of walking up to find the correct min and max. 1101 * May find a dead node which will cause a premature return. 1102 * Return: 1 on dead node, 0 otherwise 1103 */ 1104 static int mas_ascend(struct ma_state *mas) 1105 { 1106 struct maple_enode *p_enode; /* parent enode. */ 1107 struct maple_enode *a_enode; /* ancestor enode. */ 1108 struct maple_node *a_node; /* ancestor node. */ 1109 struct maple_node *p_node; /* parent node. */ 1110 unsigned char a_slot; 1111 enum maple_type a_type; 1112 unsigned long min, max; 1113 unsigned long *pivots; 1114 unsigned char offset; 1115 bool set_max = false, set_min = false; 1116 1117 a_node = mas_mn(mas); 1118 if (ma_is_root(a_node)) { 1119 mas->offset = 0; 1120 return 0; 1121 } 1122 1123 p_node = mte_parent(mas->node); 1124 if (unlikely(a_node == p_node)) 1125 return 1; 1126 a_type = mas_parent_enum(mas, mas->node); 1127 offset = mte_parent_slot(mas->node); 1128 a_enode = mt_mk_node(p_node, a_type); 1129 1130 /* Check to make sure all parent information is still accurate */ 1131 if (p_node != mte_parent(mas->node)) 1132 return 1; 1133 1134 mas->node = a_enode; 1135 mas->offset = offset; 1136 1137 if (mte_is_root(a_enode)) { 1138 mas->max = ULONG_MAX; 1139 mas->min = 0; 1140 return 0; 1141 } 1142 1143 min = 0; 1144 max = ULONG_MAX; 1145 do { 1146 p_enode = a_enode; 1147 a_type = mas_parent_enum(mas, p_enode); 1148 a_node = mte_parent(p_enode); 1149 a_slot = mte_parent_slot(p_enode); 1150 a_enode = mt_mk_node(a_node, a_type); 1151 pivots = ma_pivots(a_node, a_type); 1152 1153 if (unlikely(ma_dead_node(a_node))) 1154 return 1; 1155 1156 if (!set_min && a_slot) { 1157 set_min = true; 1158 min = pivots[a_slot - 1] + 1; 1159 } 1160 1161 if (!set_max && a_slot < mt_pivots[a_type]) { 1162 set_max = true; 1163 max = pivots[a_slot]; 1164 } 1165 1166 if (unlikely(ma_dead_node(a_node))) 1167 return 1; 1168 1169 if (unlikely(ma_is_root(a_node))) 1170 break; 1171 1172 } while (!set_min || !set_max); 1173 1174 mas->max = max; 1175 mas->min = min; 1176 return 0; 1177 } 1178 1179 /* 1180 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1181 * @mas: The maple state 1182 * 1183 * Return: A pointer to a maple node. 1184 */ 1185 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1186 { 1187 struct maple_alloc *ret, *node = mas->alloc; 1188 unsigned long total = mas_allocated(mas); 1189 unsigned int req = mas_alloc_req(mas); 1190 1191 /* nothing or a request pending. */ 1192 if (WARN_ON(!total)) 1193 return NULL; 1194 1195 if (total == 1) { 1196 /* single allocation in this ma_state */ 1197 mas->alloc = NULL; 1198 ret = node; 1199 goto single_node; 1200 } 1201 1202 if (node->node_count == 1) { 1203 /* Single allocation in this node. */ 1204 mas->alloc = node->slot[0]; 1205 mas->alloc->total = node->total - 1; 1206 ret = node; 1207 goto new_head; 1208 } 1209 node->total--; 1210 ret = node->slot[--node->node_count]; 1211 node->slot[node->node_count] = NULL; 1212 1213 single_node: 1214 new_head: 1215 if (req) { 1216 req++; 1217 mas_set_alloc_req(mas, req); 1218 } 1219 1220 memset(ret, 0, sizeof(*ret)); 1221 return (struct maple_node *)ret; 1222 } 1223 1224 /* 1225 * mas_push_node() - Push a node back on the maple state allocation. 1226 * @mas: The maple state 1227 * @used: The used maple node 1228 * 1229 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1230 * requested node count as necessary. 1231 */ 1232 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1233 { 1234 struct maple_alloc *reuse = (struct maple_alloc *)used; 1235 struct maple_alloc *head = mas->alloc; 1236 unsigned long count; 1237 unsigned int requested = mas_alloc_req(mas); 1238 1239 count = mas_allocated(mas); 1240 1241 reuse->request_count = 0; 1242 reuse->node_count = 0; 1243 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1244 head->slot[head->node_count++] = reuse; 1245 head->total++; 1246 goto done; 1247 } 1248 1249 reuse->total = 1; 1250 if ((head) && !((unsigned long)head & 0x1)) { 1251 reuse->slot[0] = head; 1252 reuse->node_count = 1; 1253 reuse->total += head->total; 1254 } 1255 1256 mas->alloc = reuse; 1257 done: 1258 if (requested > 1) 1259 mas_set_alloc_req(mas, requested - 1); 1260 } 1261 1262 /* 1263 * mas_alloc_nodes() - Allocate nodes into a maple state 1264 * @mas: The maple state 1265 * @gfp: The GFP Flags 1266 */ 1267 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1268 { 1269 struct maple_alloc *node; 1270 unsigned long allocated = mas_allocated(mas); 1271 unsigned int requested = mas_alloc_req(mas); 1272 unsigned int count; 1273 void **slots = NULL; 1274 unsigned int max_req = 0; 1275 1276 if (!requested) 1277 return; 1278 1279 mas_set_alloc_req(mas, 0); 1280 if (mas->mas_flags & MA_STATE_PREALLOC) { 1281 if (allocated) 1282 return; 1283 WARN_ON(!allocated); 1284 } 1285 1286 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1287 node = (struct maple_alloc *)mt_alloc_one(gfp); 1288 if (!node) 1289 goto nomem_one; 1290 1291 if (allocated) { 1292 node->slot[0] = mas->alloc; 1293 node->node_count = 1; 1294 } else { 1295 node->node_count = 0; 1296 } 1297 1298 mas->alloc = node; 1299 node->total = ++allocated; 1300 requested--; 1301 } 1302 1303 node = mas->alloc; 1304 node->request_count = 0; 1305 while (requested) { 1306 max_req = MAPLE_ALLOC_SLOTS; 1307 if (node->node_count) { 1308 unsigned int offset = node->node_count; 1309 1310 slots = (void **)&node->slot[offset]; 1311 max_req -= offset; 1312 } else { 1313 slots = (void **)&node->slot; 1314 } 1315 1316 max_req = min(requested, max_req); 1317 count = mt_alloc_bulk(gfp, max_req, slots); 1318 if (!count) 1319 goto nomem_bulk; 1320 1321 node->node_count += count; 1322 allocated += count; 1323 node = node->slot[0]; 1324 node->node_count = 0; 1325 node->request_count = 0; 1326 requested -= count; 1327 } 1328 mas->alloc->total = allocated; 1329 return; 1330 1331 nomem_bulk: 1332 /* Clean up potential freed allocations on bulk failure */ 1333 memset(slots, 0, max_req * sizeof(unsigned long)); 1334 nomem_one: 1335 mas_set_alloc_req(mas, requested); 1336 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1337 mas->alloc->total = allocated; 1338 mas_set_err(mas, -ENOMEM); 1339 } 1340 1341 /* 1342 * mas_free() - Free an encoded maple node 1343 * @mas: The maple state 1344 * @used: The encoded maple node to free. 1345 * 1346 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1347 * otherwise. 1348 */ 1349 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1350 { 1351 struct maple_node *tmp = mte_to_node(used); 1352 1353 if (mt_in_rcu(mas->tree)) 1354 ma_free_rcu(tmp); 1355 else 1356 mas_push_node(mas, tmp); 1357 } 1358 1359 /* 1360 * mas_node_count() - Check if enough nodes are allocated and request more if 1361 * there is not enough nodes. 1362 * @mas: The maple state 1363 * @count: The number of nodes needed 1364 * @gfp: the gfp flags 1365 */ 1366 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1367 { 1368 unsigned long allocated = mas_allocated(mas); 1369 1370 if (allocated < count) { 1371 mas_set_alloc_req(mas, count - allocated); 1372 mas_alloc_nodes(mas, gfp); 1373 } 1374 } 1375 1376 /* 1377 * mas_node_count() - Check if enough nodes are allocated and request more if 1378 * there is not enough nodes. 1379 * @mas: The maple state 1380 * @count: The number of nodes needed 1381 * 1382 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1383 */ 1384 static void mas_node_count(struct ma_state *mas, int count) 1385 { 1386 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1387 } 1388 1389 /* 1390 * mas_start() - Sets up maple state for operations. 1391 * @mas: The maple state. 1392 * 1393 * If mas->node == MAS_START, then set the min, max and depth to 1394 * defaults. 1395 * 1396 * Return: 1397 * - If mas->node is an error or not MAS_START, return NULL. 1398 * - If it's an empty tree: NULL & mas->node == MAS_NONE 1399 * - If it's a single entry: The entry & mas->node == MAS_ROOT 1400 * - If it's a tree: NULL & mas->node == safe root node. 1401 */ 1402 static inline struct maple_enode *mas_start(struct ma_state *mas) 1403 { 1404 if (likely(mas_is_start(mas))) { 1405 struct maple_enode *root; 1406 1407 mas->min = 0; 1408 mas->max = ULONG_MAX; 1409 mas->depth = 0; 1410 1411 retry: 1412 root = mas_root(mas); 1413 /* Tree with nodes */ 1414 if (likely(xa_is_node(root))) { 1415 mas->depth = 1; 1416 mas->node = mte_safe_root(root); 1417 mas->offset = 0; 1418 if (mte_dead_node(mas->node)) 1419 goto retry; 1420 1421 return NULL; 1422 } 1423 1424 /* empty tree */ 1425 if (unlikely(!root)) { 1426 mas->node = MAS_NONE; 1427 mas->offset = MAPLE_NODE_SLOTS; 1428 return NULL; 1429 } 1430 1431 /* Single entry tree */ 1432 mas->node = MAS_ROOT; 1433 mas->offset = MAPLE_NODE_SLOTS; 1434 1435 /* Single entry tree. */ 1436 if (mas->index > 0) 1437 return NULL; 1438 1439 return root; 1440 } 1441 1442 return NULL; 1443 } 1444 1445 /* 1446 * ma_data_end() - Find the end of the data in a node. 1447 * @node: The maple node 1448 * @type: The maple node type 1449 * @pivots: The array of pivots in the node 1450 * @max: The maximum value in the node 1451 * 1452 * Uses metadata to find the end of the data when possible. 1453 * Return: The zero indexed last slot with data (may be null). 1454 */ 1455 static inline unsigned char ma_data_end(struct maple_node *node, 1456 enum maple_type type, 1457 unsigned long *pivots, 1458 unsigned long max) 1459 { 1460 unsigned char offset; 1461 1462 if (!pivots) 1463 return 0; 1464 1465 if (type == maple_arange_64) 1466 return ma_meta_end(node, type); 1467 1468 offset = mt_pivots[type] - 1; 1469 if (likely(!pivots[offset])) 1470 return ma_meta_end(node, type); 1471 1472 if (likely(pivots[offset] == max)) 1473 return offset; 1474 1475 return mt_pivots[type]; 1476 } 1477 1478 /* 1479 * mas_data_end() - Find the end of the data (slot). 1480 * @mas: the maple state 1481 * 1482 * This method is optimized to check the metadata of a node if the node type 1483 * supports data end metadata. 1484 * 1485 * Return: The zero indexed last slot with data (may be null). 1486 */ 1487 static inline unsigned char mas_data_end(struct ma_state *mas) 1488 { 1489 enum maple_type type; 1490 struct maple_node *node; 1491 unsigned char offset; 1492 unsigned long *pivots; 1493 1494 type = mte_node_type(mas->node); 1495 node = mas_mn(mas); 1496 if (type == maple_arange_64) 1497 return ma_meta_end(node, type); 1498 1499 pivots = ma_pivots(node, type); 1500 if (unlikely(ma_dead_node(node))) 1501 return 0; 1502 1503 offset = mt_pivots[type] - 1; 1504 if (likely(!pivots[offset])) 1505 return ma_meta_end(node, type); 1506 1507 if (likely(pivots[offset] == mas->max)) 1508 return offset; 1509 1510 return mt_pivots[type]; 1511 } 1512 1513 /* 1514 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1515 * @mas - the maple state 1516 * 1517 * Return: The maximum gap in the leaf. 1518 */ 1519 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1520 { 1521 enum maple_type mt; 1522 unsigned long pstart, gap, max_gap; 1523 struct maple_node *mn; 1524 unsigned long *pivots; 1525 void __rcu **slots; 1526 unsigned char i; 1527 unsigned char max_piv; 1528 1529 mt = mte_node_type(mas->node); 1530 mn = mas_mn(mas); 1531 slots = ma_slots(mn, mt); 1532 max_gap = 0; 1533 if (unlikely(ma_is_dense(mt))) { 1534 gap = 0; 1535 for (i = 0; i < mt_slots[mt]; i++) { 1536 if (slots[i]) { 1537 if (gap > max_gap) 1538 max_gap = gap; 1539 gap = 0; 1540 } else { 1541 gap++; 1542 } 1543 } 1544 if (gap > max_gap) 1545 max_gap = gap; 1546 return max_gap; 1547 } 1548 1549 /* 1550 * Check the first implied pivot optimizes the loop below and slot 1 may 1551 * be skipped if there is a gap in slot 0. 1552 */ 1553 pivots = ma_pivots(mn, mt); 1554 if (likely(!slots[0])) { 1555 max_gap = pivots[0] - mas->min + 1; 1556 i = 2; 1557 } else { 1558 i = 1; 1559 } 1560 1561 /* reduce max_piv as the special case is checked before the loop */ 1562 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1563 /* 1564 * Check end implied pivot which can only be a gap on the right most 1565 * node. 1566 */ 1567 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1568 gap = ULONG_MAX - pivots[max_piv]; 1569 if (gap > max_gap) 1570 max_gap = gap; 1571 } 1572 1573 for (; i <= max_piv; i++) { 1574 /* data == no gap. */ 1575 if (likely(slots[i])) 1576 continue; 1577 1578 pstart = pivots[i - 1]; 1579 gap = pivots[i] - pstart; 1580 if (gap > max_gap) 1581 max_gap = gap; 1582 1583 /* There cannot be two gaps in a row. */ 1584 i++; 1585 } 1586 return max_gap; 1587 } 1588 1589 /* 1590 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1591 * @node: The maple node 1592 * @gaps: The pointer to the gaps 1593 * @mt: The maple node type 1594 * @*off: Pointer to store the offset location of the gap. 1595 * 1596 * Uses the metadata data end to scan backwards across set gaps. 1597 * 1598 * Return: The maximum gap value 1599 */ 1600 static inline unsigned long 1601 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1602 unsigned char *off) 1603 { 1604 unsigned char offset, i; 1605 unsigned long max_gap = 0; 1606 1607 i = offset = ma_meta_end(node, mt); 1608 do { 1609 if (gaps[i] > max_gap) { 1610 max_gap = gaps[i]; 1611 offset = i; 1612 } 1613 } while (i--); 1614 1615 *off = offset; 1616 return max_gap; 1617 } 1618 1619 /* 1620 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1621 * @mas: The maple state. 1622 * 1623 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap. 1624 * 1625 * Return: The gap value. 1626 */ 1627 static inline unsigned long mas_max_gap(struct ma_state *mas) 1628 { 1629 unsigned long *gaps; 1630 unsigned char offset; 1631 enum maple_type mt; 1632 struct maple_node *node; 1633 1634 mt = mte_node_type(mas->node); 1635 if (ma_is_leaf(mt)) 1636 return mas_leaf_max_gap(mas); 1637 1638 node = mas_mn(mas); 1639 offset = ma_meta_gap(node, mt); 1640 if (offset == MAPLE_ARANGE64_META_MAX) 1641 return 0; 1642 1643 gaps = ma_gaps(node, mt); 1644 return gaps[offset]; 1645 } 1646 1647 /* 1648 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1649 * @mas: The maple state 1650 * @offset: The gap offset in the parent to set 1651 * @new: The new gap value. 1652 * 1653 * Set the parent gap then continue to set the gap upwards, using the metadata 1654 * of the parent to see if it is necessary to check the node above. 1655 */ 1656 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1657 unsigned long new) 1658 { 1659 unsigned long meta_gap = 0; 1660 struct maple_node *pnode; 1661 struct maple_enode *penode; 1662 unsigned long *pgaps; 1663 unsigned char meta_offset; 1664 enum maple_type pmt; 1665 1666 pnode = mte_parent(mas->node); 1667 pmt = mas_parent_enum(mas, mas->node); 1668 penode = mt_mk_node(pnode, pmt); 1669 pgaps = ma_gaps(pnode, pmt); 1670 1671 ascend: 1672 meta_offset = ma_meta_gap(pnode, pmt); 1673 if (meta_offset == MAPLE_ARANGE64_META_MAX) 1674 meta_gap = 0; 1675 else 1676 meta_gap = pgaps[meta_offset]; 1677 1678 pgaps[offset] = new; 1679 1680 if (meta_gap == new) 1681 return; 1682 1683 if (offset != meta_offset) { 1684 if (meta_gap > new) 1685 return; 1686 1687 ma_set_meta_gap(pnode, pmt, offset); 1688 } else if (new < meta_gap) { 1689 meta_offset = 15; 1690 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1691 ma_set_meta_gap(pnode, pmt, meta_offset); 1692 } 1693 1694 if (ma_is_root(pnode)) 1695 return; 1696 1697 /* Go to the parent node. */ 1698 pnode = mte_parent(penode); 1699 pmt = mas_parent_enum(mas, penode); 1700 pgaps = ma_gaps(pnode, pmt); 1701 offset = mte_parent_slot(penode); 1702 penode = mt_mk_node(pnode, pmt); 1703 goto ascend; 1704 } 1705 1706 /* 1707 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1708 * @mas - the maple state. 1709 */ 1710 static inline void mas_update_gap(struct ma_state *mas) 1711 { 1712 unsigned char pslot; 1713 unsigned long p_gap; 1714 unsigned long max_gap; 1715 1716 if (!mt_is_alloc(mas->tree)) 1717 return; 1718 1719 if (mte_is_root(mas->node)) 1720 return; 1721 1722 max_gap = mas_max_gap(mas); 1723 1724 pslot = mte_parent_slot(mas->node); 1725 p_gap = ma_gaps(mte_parent(mas->node), 1726 mas_parent_enum(mas, mas->node))[pslot]; 1727 1728 if (p_gap != max_gap) 1729 mas_parent_gap(mas, pslot, max_gap); 1730 } 1731 1732 /* 1733 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1734 * @parent with the slot encoded. 1735 * @mas - the maple state (for the tree) 1736 * @parent - the maple encoded node containing the children. 1737 */ 1738 static inline void mas_adopt_children(struct ma_state *mas, 1739 struct maple_enode *parent) 1740 { 1741 enum maple_type type = mte_node_type(parent); 1742 struct maple_node *node = mas_mn(mas); 1743 void __rcu **slots = ma_slots(node, type); 1744 unsigned long *pivots = ma_pivots(node, type); 1745 struct maple_enode *child; 1746 unsigned char offset; 1747 1748 offset = ma_data_end(node, type, pivots, mas->max); 1749 do { 1750 child = mas_slot_locked(mas, slots, offset); 1751 mte_set_parent(child, parent, offset); 1752 } while (offset--); 1753 } 1754 1755 /* 1756 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the 1757 * parent encoding to locate the maple node in the tree. 1758 * @mas - the ma_state to use for operations. 1759 * @advanced - boolean to adopt the child nodes and free the old node (false) or 1760 * leave the node (true) and handle the adoption and free elsewhere. 1761 */ 1762 static inline void mas_replace(struct ma_state *mas, bool advanced) 1763 __must_hold(mas->tree->lock) 1764 { 1765 struct maple_node *mn = mas_mn(mas); 1766 struct maple_enode *old_enode; 1767 unsigned char offset = 0; 1768 void __rcu **slots = NULL; 1769 1770 if (ma_is_root(mn)) { 1771 old_enode = mas_root_locked(mas); 1772 } else { 1773 offset = mte_parent_slot(mas->node); 1774 slots = ma_slots(mte_parent(mas->node), 1775 mas_parent_enum(mas, mas->node)); 1776 old_enode = mas_slot_locked(mas, slots, offset); 1777 } 1778 1779 if (!advanced && !mte_is_leaf(mas->node)) 1780 mas_adopt_children(mas, mas->node); 1781 1782 if (mte_is_root(mas->node)) { 1783 mn->parent = ma_parent_ptr( 1784 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 1785 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1786 mas_set_height(mas); 1787 } else { 1788 rcu_assign_pointer(slots[offset], mas->node); 1789 } 1790 1791 if (!advanced) { 1792 mte_set_node_dead(old_enode); 1793 mas_free(mas, old_enode); 1794 } 1795 } 1796 1797 /* 1798 * mas_new_child() - Find the new child of a node. 1799 * @mas: the maple state 1800 * @child: the maple state to store the child. 1801 */ 1802 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child) 1803 __must_hold(mas->tree->lock) 1804 { 1805 enum maple_type mt; 1806 unsigned char offset; 1807 unsigned char end; 1808 unsigned long *pivots; 1809 struct maple_enode *entry; 1810 struct maple_node *node; 1811 void __rcu **slots; 1812 1813 mt = mte_node_type(mas->node); 1814 node = mas_mn(mas); 1815 slots = ma_slots(node, mt); 1816 pivots = ma_pivots(node, mt); 1817 end = ma_data_end(node, mt, pivots, mas->max); 1818 for (offset = mas->offset; offset <= end; offset++) { 1819 entry = mas_slot_locked(mas, slots, offset); 1820 if (mte_parent(entry) == node) { 1821 *child = *mas; 1822 mas->offset = offset + 1; 1823 child->offset = offset; 1824 mas_descend(child); 1825 child->offset = 0; 1826 return true; 1827 } 1828 } 1829 return false; 1830 } 1831 1832 /* 1833 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1834 * old data or set b_node->b_end. 1835 * @b_node: the maple_big_node 1836 * @shift: the shift count 1837 */ 1838 static inline void mab_shift_right(struct maple_big_node *b_node, 1839 unsigned char shift) 1840 { 1841 unsigned long size = b_node->b_end * sizeof(unsigned long); 1842 1843 memmove(b_node->pivot + shift, b_node->pivot, size); 1844 memmove(b_node->slot + shift, b_node->slot, size); 1845 if (b_node->type == maple_arange_64) 1846 memmove(b_node->gap + shift, b_node->gap, size); 1847 } 1848 1849 /* 1850 * mab_middle_node() - Check if a middle node is needed (unlikely) 1851 * @b_node: the maple_big_node that contains the data. 1852 * @size: the amount of data in the b_node 1853 * @split: the potential split location 1854 * @slot_count: the size that can be stored in a single node being considered. 1855 * 1856 * Return: true if a middle node is required. 1857 */ 1858 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1859 unsigned char slot_count) 1860 { 1861 unsigned char size = b_node->b_end; 1862 1863 if (size >= 2 * slot_count) 1864 return true; 1865 1866 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1867 return true; 1868 1869 return false; 1870 } 1871 1872 /* 1873 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1874 * @b_node: the maple_big_node with the data 1875 * @split: the suggested split location 1876 * @slot_count: the number of slots in the node being considered. 1877 * 1878 * Return: the split location. 1879 */ 1880 static inline int mab_no_null_split(struct maple_big_node *b_node, 1881 unsigned char split, unsigned char slot_count) 1882 { 1883 if (!b_node->slot[split]) { 1884 /* 1885 * If the split is less than the max slot && the right side will 1886 * still be sufficient, then increment the split on NULL. 1887 */ 1888 if ((split < slot_count - 1) && 1889 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1890 split++; 1891 else 1892 split--; 1893 } 1894 return split; 1895 } 1896 1897 /* 1898 * mab_calc_split() - Calculate the split location and if there needs to be two 1899 * splits. 1900 * @bn: The maple_big_node with the data 1901 * @mid_split: The second split, if required. 0 otherwise. 1902 * 1903 * Return: The first split location. The middle split is set in @mid_split. 1904 */ 1905 static inline int mab_calc_split(struct ma_state *mas, 1906 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1907 { 1908 unsigned char b_end = bn->b_end; 1909 int split = b_end / 2; /* Assume equal split. */ 1910 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1911 1912 /* 1913 * To support gap tracking, all NULL entries are kept together and a node cannot 1914 * end on a NULL entry, with the exception of the left-most leaf. The 1915 * limitation means that the split of a node must be checked for this condition 1916 * and be able to put more data in one direction or the other. 1917 */ 1918 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1919 *mid_split = 0; 1920 split = b_end - mt_min_slots[bn->type]; 1921 1922 if (!ma_is_leaf(bn->type)) 1923 return split; 1924 1925 mas->mas_flags |= MA_STATE_REBALANCE; 1926 if (!bn->slot[split]) 1927 split--; 1928 return split; 1929 } 1930 1931 /* 1932 * Although extremely rare, it is possible to enter what is known as the 3-way 1933 * split scenario. The 3-way split comes about by means of a store of a range 1934 * that overwrites the end and beginning of two full nodes. The result is a set 1935 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1936 * also be located in different parent nodes which are also full. This can 1937 * carry upwards all the way to the root in the worst case. 1938 */ 1939 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1940 split = b_end / 3; 1941 *mid_split = split * 2; 1942 } else { 1943 slot_min = mt_min_slots[bn->type]; 1944 1945 *mid_split = 0; 1946 /* 1947 * Avoid having a range less than the slot count unless it 1948 * causes one node to be deficient. 1949 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1950 */ 1951 while (((bn->pivot[split] - min) < slot_count - 1) && 1952 (split < slot_count - 1) && (b_end - split > slot_min)) 1953 split++; 1954 } 1955 1956 /* Avoid ending a node on a NULL entry */ 1957 split = mab_no_null_split(bn, split, slot_count); 1958 1959 if (unlikely(*mid_split)) 1960 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1961 1962 return split; 1963 } 1964 1965 /* 1966 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1967 * and set @b_node->b_end to the next free slot. 1968 * @mas: The maple state 1969 * @mas_start: The starting slot to copy 1970 * @mas_end: The end slot to copy (inclusively) 1971 * @b_node: The maple_big_node to place the data 1972 * @mab_start: The starting location in maple_big_node to store the data. 1973 */ 1974 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1975 unsigned char mas_end, struct maple_big_node *b_node, 1976 unsigned char mab_start) 1977 { 1978 enum maple_type mt; 1979 struct maple_node *node; 1980 void __rcu **slots; 1981 unsigned long *pivots, *gaps; 1982 int i = mas_start, j = mab_start; 1983 unsigned char piv_end; 1984 1985 node = mas_mn(mas); 1986 mt = mte_node_type(mas->node); 1987 pivots = ma_pivots(node, mt); 1988 if (!i) { 1989 b_node->pivot[j] = pivots[i++]; 1990 if (unlikely(i > mas_end)) 1991 goto complete; 1992 j++; 1993 } 1994 1995 piv_end = min(mas_end, mt_pivots[mt]); 1996 for (; i < piv_end; i++, j++) { 1997 b_node->pivot[j] = pivots[i]; 1998 if (unlikely(!b_node->pivot[j])) 1999 break; 2000 2001 if (unlikely(mas->max == b_node->pivot[j])) 2002 goto complete; 2003 } 2004 2005 if (likely(i <= mas_end)) 2006 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 2007 2008 complete: 2009 b_node->b_end = ++j; 2010 j -= mab_start; 2011 slots = ma_slots(node, mt); 2012 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 2013 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 2014 gaps = ma_gaps(node, mt); 2015 memcpy(b_node->gap + mab_start, gaps + mas_start, 2016 sizeof(unsigned long) * j); 2017 } 2018 } 2019 2020 /* 2021 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 2022 * @mas: The maple state 2023 * @node: The maple node 2024 * @pivots: pointer to the maple node pivots 2025 * @mt: The maple type 2026 * @end: The assumed end 2027 * 2028 * Note, end may be incremented within this function but not modified at the 2029 * source. This is fine since the metadata is the last thing to be stored in a 2030 * node during a write. 2031 */ 2032 static inline void mas_leaf_set_meta(struct ma_state *mas, 2033 struct maple_node *node, unsigned long *pivots, 2034 enum maple_type mt, unsigned char end) 2035 { 2036 /* There is no room for metadata already */ 2037 if (mt_pivots[mt] <= end) 2038 return; 2039 2040 if (pivots[end] && pivots[end] < mas->max) 2041 end++; 2042 2043 if (end < mt_slots[mt] - 1) 2044 ma_set_meta(node, mt, 0, end); 2045 } 2046 2047 /* 2048 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 2049 * @b_node: the maple_big_node that has the data 2050 * @mab_start: the start location in @b_node. 2051 * @mab_end: The end location in @b_node (inclusively) 2052 * @mas: The maple state with the maple encoded node. 2053 */ 2054 static inline void mab_mas_cp(struct maple_big_node *b_node, 2055 unsigned char mab_start, unsigned char mab_end, 2056 struct ma_state *mas, bool new_max) 2057 { 2058 int i, j = 0; 2059 enum maple_type mt = mte_node_type(mas->node); 2060 struct maple_node *node = mte_to_node(mas->node); 2061 void __rcu **slots = ma_slots(node, mt); 2062 unsigned long *pivots = ma_pivots(node, mt); 2063 unsigned long *gaps = NULL; 2064 unsigned char end; 2065 2066 if (mab_end - mab_start > mt_pivots[mt]) 2067 mab_end--; 2068 2069 if (!pivots[mt_pivots[mt] - 1]) 2070 slots[mt_pivots[mt]] = NULL; 2071 2072 i = mab_start; 2073 do { 2074 pivots[j++] = b_node->pivot[i++]; 2075 } while (i <= mab_end && likely(b_node->pivot[i])); 2076 2077 memcpy(slots, b_node->slot + mab_start, 2078 sizeof(void *) * (i - mab_start)); 2079 2080 if (new_max) 2081 mas->max = b_node->pivot[i - 1]; 2082 2083 end = j - 1; 2084 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2085 unsigned long max_gap = 0; 2086 unsigned char offset = 15; 2087 2088 gaps = ma_gaps(node, mt); 2089 do { 2090 gaps[--j] = b_node->gap[--i]; 2091 if (gaps[j] > max_gap) { 2092 offset = j; 2093 max_gap = gaps[j]; 2094 } 2095 } while (j); 2096 2097 ma_set_meta(node, mt, offset, end); 2098 } else { 2099 mas_leaf_set_meta(mas, node, pivots, mt, end); 2100 } 2101 } 2102 2103 /* 2104 * mas_descend_adopt() - Descend through a sub-tree and adopt children. 2105 * @mas: the maple state with the maple encoded node of the sub-tree. 2106 * 2107 * Descend through a sub-tree and adopt children who do not have the correct 2108 * parents set. Follow the parents which have the correct parents as they are 2109 * the new entries which need to be followed to find other incorrectly set 2110 * parents. 2111 */ 2112 static inline void mas_descend_adopt(struct ma_state *mas) 2113 { 2114 struct ma_state list[3], next[3]; 2115 int i, n; 2116 2117 /* 2118 * At each level there may be up to 3 correct parent pointers which indicates 2119 * the new nodes which need to be walked to find any new nodes at a lower level. 2120 */ 2121 2122 for (i = 0; i < 3; i++) { 2123 list[i] = *mas; 2124 list[i].offset = 0; 2125 next[i].offset = 0; 2126 } 2127 next[0] = *mas; 2128 2129 while (!mte_is_leaf(list[0].node)) { 2130 n = 0; 2131 for (i = 0; i < 3; i++) { 2132 if (mas_is_none(&list[i])) 2133 continue; 2134 2135 if (i && list[i-1].node == list[i].node) 2136 continue; 2137 2138 while ((n < 3) && (mas_new_child(&list[i], &next[n]))) 2139 n++; 2140 2141 mas_adopt_children(&list[i], list[i].node); 2142 } 2143 2144 while (n < 3) 2145 next[n++].node = MAS_NONE; 2146 2147 /* descend by setting the list to the children */ 2148 for (i = 0; i < 3; i++) 2149 list[i] = next[i]; 2150 } 2151 } 2152 2153 /* 2154 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2155 * @mas: The maple state 2156 * @end: The maple node end 2157 * @mt: The maple node type 2158 */ 2159 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2160 enum maple_type mt) 2161 { 2162 if (!(mas->mas_flags & MA_STATE_BULK)) 2163 return; 2164 2165 if (mte_is_root(mas->node)) 2166 return; 2167 2168 if (end > mt_min_slots[mt]) { 2169 mas->mas_flags &= ~MA_STATE_REBALANCE; 2170 return; 2171 } 2172 } 2173 2174 /* 2175 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2176 * data from a maple encoded node. 2177 * @wr_mas: the maple write state 2178 * @b_node: the maple_big_node to fill with data 2179 * @offset_end: the offset to end copying 2180 * 2181 * Return: The actual end of the data stored in @b_node 2182 */ 2183 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2184 struct maple_big_node *b_node, unsigned char offset_end) 2185 { 2186 unsigned char slot; 2187 unsigned char b_end; 2188 /* Possible underflow of piv will wrap back to 0 before use. */ 2189 unsigned long piv; 2190 struct ma_state *mas = wr_mas->mas; 2191 2192 b_node->type = wr_mas->type; 2193 b_end = 0; 2194 slot = mas->offset; 2195 if (slot) { 2196 /* Copy start data up to insert. */ 2197 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2198 b_end = b_node->b_end; 2199 piv = b_node->pivot[b_end - 1]; 2200 } else 2201 piv = mas->min - 1; 2202 2203 if (piv + 1 < mas->index) { 2204 /* Handle range starting after old range */ 2205 b_node->slot[b_end] = wr_mas->content; 2206 if (!wr_mas->content) 2207 b_node->gap[b_end] = mas->index - 1 - piv; 2208 b_node->pivot[b_end++] = mas->index - 1; 2209 } 2210 2211 /* Store the new entry. */ 2212 mas->offset = b_end; 2213 b_node->slot[b_end] = wr_mas->entry; 2214 b_node->pivot[b_end] = mas->last; 2215 2216 /* Appended. */ 2217 if (mas->last >= mas->max) 2218 goto b_end; 2219 2220 /* Handle new range ending before old range ends */ 2221 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2222 if (piv > mas->last) { 2223 if (piv == ULONG_MAX) 2224 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2225 2226 if (offset_end != slot) 2227 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2228 offset_end); 2229 2230 b_node->slot[++b_end] = wr_mas->content; 2231 if (!wr_mas->content) 2232 b_node->gap[b_end] = piv - mas->last + 1; 2233 b_node->pivot[b_end] = piv; 2234 } 2235 2236 slot = offset_end + 1; 2237 if (slot > wr_mas->node_end) 2238 goto b_end; 2239 2240 /* Copy end data to the end of the node. */ 2241 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end); 2242 b_node->b_end--; 2243 return; 2244 2245 b_end: 2246 b_node->b_end = b_end; 2247 } 2248 2249 /* 2250 * mas_prev_sibling() - Find the previous node with the same parent. 2251 * @mas: the maple state 2252 * 2253 * Return: True if there is a previous sibling, false otherwise. 2254 */ 2255 static inline bool mas_prev_sibling(struct ma_state *mas) 2256 { 2257 unsigned int p_slot = mte_parent_slot(mas->node); 2258 2259 if (mte_is_root(mas->node)) 2260 return false; 2261 2262 if (!p_slot) 2263 return false; 2264 2265 mas_ascend(mas); 2266 mas->offset = p_slot - 1; 2267 mas_descend(mas); 2268 return true; 2269 } 2270 2271 /* 2272 * mas_next_sibling() - Find the next node with the same parent. 2273 * @mas: the maple state 2274 * 2275 * Return: true if there is a next sibling, false otherwise. 2276 */ 2277 static inline bool mas_next_sibling(struct ma_state *mas) 2278 { 2279 MA_STATE(parent, mas->tree, mas->index, mas->last); 2280 2281 if (mte_is_root(mas->node)) 2282 return false; 2283 2284 parent = *mas; 2285 mas_ascend(&parent); 2286 parent.offset = mte_parent_slot(mas->node) + 1; 2287 if (parent.offset > mas_data_end(&parent)) 2288 return false; 2289 2290 *mas = parent; 2291 mas_descend(mas); 2292 return true; 2293 } 2294 2295 /* 2296 * mte_node_or_node() - Return the encoded node or MAS_NONE. 2297 * @enode: The encoded maple node. 2298 * 2299 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state. 2300 * 2301 * Return: @enode or MAS_NONE 2302 */ 2303 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode) 2304 { 2305 if (enode) 2306 return enode; 2307 2308 return ma_enode_ptr(MAS_NONE); 2309 } 2310 2311 /* 2312 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2313 * @wr_mas: The maple write state 2314 * 2315 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2316 */ 2317 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2318 { 2319 struct ma_state *mas = wr_mas->mas; 2320 unsigned char count; 2321 unsigned char offset; 2322 unsigned long index, min, max; 2323 2324 if (unlikely(ma_is_dense(wr_mas->type))) { 2325 wr_mas->r_max = wr_mas->r_min = mas->index; 2326 mas->offset = mas->index = mas->min; 2327 return; 2328 } 2329 2330 wr_mas->node = mas_mn(wr_mas->mas); 2331 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2332 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type, 2333 wr_mas->pivots, mas->max); 2334 offset = mas->offset; 2335 min = mas_safe_min(mas, wr_mas->pivots, offset); 2336 if (unlikely(offset == count)) 2337 goto max; 2338 2339 max = wr_mas->pivots[offset]; 2340 index = mas->index; 2341 if (unlikely(index <= max)) 2342 goto done; 2343 2344 if (unlikely(!max && offset)) 2345 goto max; 2346 2347 min = max + 1; 2348 while (++offset < count) { 2349 max = wr_mas->pivots[offset]; 2350 if (index <= max) 2351 goto done; 2352 else if (unlikely(!max)) 2353 break; 2354 2355 min = max + 1; 2356 } 2357 2358 max: 2359 max = mas->max; 2360 done: 2361 wr_mas->r_max = max; 2362 wr_mas->r_min = min; 2363 wr_mas->offset_end = mas->offset = offset; 2364 } 2365 2366 /* 2367 * mas_topiary_range() - Add a range of slots to the topiary. 2368 * @mas: The maple state 2369 * @destroy: The topiary to add the slots (usually destroy) 2370 * @start: The starting slot inclusively 2371 * @end: The end slot inclusively 2372 */ 2373 static inline void mas_topiary_range(struct ma_state *mas, 2374 struct ma_topiary *destroy, unsigned char start, unsigned char end) 2375 { 2376 void __rcu **slots; 2377 unsigned char offset; 2378 2379 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node)); 2380 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node)); 2381 for (offset = start; offset <= end; offset++) { 2382 struct maple_enode *enode = mas_slot_locked(mas, slots, offset); 2383 2384 if (mte_dead_node(enode)) 2385 continue; 2386 2387 mat_add(destroy, enode); 2388 } 2389 } 2390 2391 /* 2392 * mast_topiary() - Add the portions of the tree to the removal list; either to 2393 * be freed or discarded (destroy walk). 2394 * @mast: The maple_subtree_state. 2395 */ 2396 static inline void mast_topiary(struct maple_subtree_state *mast) 2397 { 2398 MA_WR_STATE(wr_mas, mast->orig_l, NULL); 2399 unsigned char r_start, r_end; 2400 unsigned char l_start, l_end; 2401 void __rcu **l_slots, **r_slots; 2402 2403 wr_mas.type = mte_node_type(mast->orig_l->node); 2404 mast->orig_l->index = mast->orig_l->last; 2405 mas_wr_node_walk(&wr_mas); 2406 l_start = mast->orig_l->offset + 1; 2407 l_end = mas_data_end(mast->orig_l); 2408 r_start = 0; 2409 r_end = mast->orig_r->offset; 2410 2411 if (r_end) 2412 r_end--; 2413 2414 l_slots = ma_slots(mas_mn(mast->orig_l), 2415 mte_node_type(mast->orig_l->node)); 2416 2417 r_slots = ma_slots(mas_mn(mast->orig_r), 2418 mte_node_type(mast->orig_r->node)); 2419 2420 if ((l_start < l_end) && 2421 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) { 2422 l_start++; 2423 } 2424 2425 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) { 2426 if (r_end) 2427 r_end--; 2428 } 2429 2430 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node)) 2431 return; 2432 2433 /* At the node where left and right sides meet, add the parts between */ 2434 if (mast->orig_l->node == mast->orig_r->node) { 2435 return mas_topiary_range(mast->orig_l, mast->destroy, 2436 l_start, r_end); 2437 } 2438 2439 /* mast->orig_r is different and consumed. */ 2440 if (mte_is_leaf(mast->orig_r->node)) 2441 return; 2442 2443 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end))) 2444 l_end--; 2445 2446 2447 if (l_start <= l_end) 2448 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end); 2449 2450 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start))) 2451 r_start++; 2452 2453 if (r_start <= r_end) 2454 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end); 2455 } 2456 2457 /* 2458 * mast_rebalance_next() - Rebalance against the next node 2459 * @mast: The maple subtree state 2460 * @old_r: The encoded maple node to the right (next node). 2461 */ 2462 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2463 { 2464 unsigned char b_end = mast->bn->b_end; 2465 2466 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2467 mast->bn, b_end); 2468 mast->orig_r->last = mast->orig_r->max; 2469 } 2470 2471 /* 2472 * mast_rebalance_prev() - Rebalance against the previous node 2473 * @mast: The maple subtree state 2474 * @old_l: The encoded maple node to the left (previous node) 2475 */ 2476 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2477 { 2478 unsigned char end = mas_data_end(mast->orig_l) + 1; 2479 unsigned char b_end = mast->bn->b_end; 2480 2481 mab_shift_right(mast->bn, end); 2482 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2483 mast->l->min = mast->orig_l->min; 2484 mast->orig_l->index = mast->orig_l->min; 2485 mast->bn->b_end = end + b_end; 2486 mast->l->offset += end; 2487 } 2488 2489 /* 2490 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2491 * the node to the right. Checking the nodes to the right then the left at each 2492 * level upwards until root is reached. Free and destroy as needed. 2493 * Data is copied into the @mast->bn. 2494 * @mast: The maple_subtree_state. 2495 */ 2496 static inline 2497 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2498 { 2499 struct ma_state r_tmp = *mast->orig_r; 2500 struct ma_state l_tmp = *mast->orig_l; 2501 struct maple_enode *ancestor = NULL; 2502 unsigned char start, end; 2503 unsigned char depth = 0; 2504 2505 r_tmp = *mast->orig_r; 2506 l_tmp = *mast->orig_l; 2507 do { 2508 mas_ascend(mast->orig_r); 2509 mas_ascend(mast->orig_l); 2510 depth++; 2511 if (!ancestor && 2512 (mast->orig_r->node == mast->orig_l->node)) { 2513 ancestor = mast->orig_r->node; 2514 end = mast->orig_r->offset - 1; 2515 start = mast->orig_l->offset + 1; 2516 } 2517 2518 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2519 if (!ancestor) { 2520 ancestor = mast->orig_r->node; 2521 start = 0; 2522 } 2523 2524 mast->orig_r->offset++; 2525 do { 2526 mas_descend(mast->orig_r); 2527 mast->orig_r->offset = 0; 2528 depth--; 2529 } while (depth); 2530 2531 mast_rebalance_next(mast); 2532 do { 2533 unsigned char l_off = 0; 2534 struct maple_enode *child = r_tmp.node; 2535 2536 mas_ascend(&r_tmp); 2537 if (ancestor == r_tmp.node) 2538 l_off = start; 2539 2540 if (r_tmp.offset) 2541 r_tmp.offset--; 2542 2543 if (l_off < r_tmp.offset) 2544 mas_topiary_range(&r_tmp, mast->destroy, 2545 l_off, r_tmp.offset); 2546 2547 if (l_tmp.node != child) 2548 mat_add(mast->free, child); 2549 2550 } while (r_tmp.node != ancestor); 2551 2552 *mast->orig_l = l_tmp; 2553 return true; 2554 2555 } else if (mast->orig_l->offset != 0) { 2556 if (!ancestor) { 2557 ancestor = mast->orig_l->node; 2558 end = mas_data_end(mast->orig_l); 2559 } 2560 2561 mast->orig_l->offset--; 2562 do { 2563 mas_descend(mast->orig_l); 2564 mast->orig_l->offset = 2565 mas_data_end(mast->orig_l); 2566 depth--; 2567 } while (depth); 2568 2569 mast_rebalance_prev(mast); 2570 do { 2571 unsigned char r_off; 2572 struct maple_enode *child = l_tmp.node; 2573 2574 mas_ascend(&l_tmp); 2575 if (ancestor == l_tmp.node) 2576 r_off = end; 2577 else 2578 r_off = mas_data_end(&l_tmp); 2579 2580 if (l_tmp.offset < r_off) 2581 l_tmp.offset++; 2582 2583 if (l_tmp.offset < r_off) 2584 mas_topiary_range(&l_tmp, mast->destroy, 2585 l_tmp.offset, r_off); 2586 2587 if (r_tmp.node != child) 2588 mat_add(mast->free, child); 2589 2590 } while (l_tmp.node != ancestor); 2591 2592 *mast->orig_r = r_tmp; 2593 return true; 2594 } 2595 } while (!mte_is_root(mast->orig_r->node)); 2596 2597 *mast->orig_r = r_tmp; 2598 *mast->orig_l = l_tmp; 2599 return false; 2600 } 2601 2602 /* 2603 * mast_ascend_free() - Add current original maple state nodes to the free list 2604 * and ascend. 2605 * @mast: the maple subtree state. 2606 * 2607 * Ascend the original left and right sides and add the previous nodes to the 2608 * free list. Set the slots to point to the correct location in the new nodes. 2609 */ 2610 static inline void 2611 mast_ascend_free(struct maple_subtree_state *mast) 2612 { 2613 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2614 struct maple_enode *left = mast->orig_l->node; 2615 struct maple_enode *right = mast->orig_r->node; 2616 2617 mas_ascend(mast->orig_l); 2618 mas_ascend(mast->orig_r); 2619 mat_add(mast->free, left); 2620 2621 if (left != right) 2622 mat_add(mast->free, right); 2623 2624 mast->orig_r->offset = 0; 2625 mast->orig_r->index = mast->r->max; 2626 /* last should be larger than or equal to index */ 2627 if (mast->orig_r->last < mast->orig_r->index) 2628 mast->orig_r->last = mast->orig_r->index; 2629 /* 2630 * The node may not contain the value so set slot to ensure all 2631 * of the nodes contents are freed or destroyed. 2632 */ 2633 wr_mas.type = mte_node_type(mast->orig_r->node); 2634 mas_wr_node_walk(&wr_mas); 2635 /* Set up the left side of things */ 2636 mast->orig_l->offset = 0; 2637 mast->orig_l->index = mast->l->min; 2638 wr_mas.mas = mast->orig_l; 2639 wr_mas.type = mte_node_type(mast->orig_l->node); 2640 mas_wr_node_walk(&wr_mas); 2641 2642 mast->bn->type = wr_mas.type; 2643 } 2644 2645 /* 2646 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2647 * @mas: the maple state with the allocations. 2648 * @b_node: the maple_big_node with the type encoding. 2649 * 2650 * Use the node type from the maple_big_node to allocate a new node from the 2651 * ma_state. This function exists mainly for code readability. 2652 * 2653 * Return: A new maple encoded node 2654 */ 2655 static inline struct maple_enode 2656 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2657 { 2658 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2659 } 2660 2661 /* 2662 * mas_mab_to_node() - Set up right and middle nodes 2663 * 2664 * @mas: the maple state that contains the allocations. 2665 * @b_node: the node which contains the data. 2666 * @left: The pointer which will have the left node 2667 * @right: The pointer which may have the right node 2668 * @middle: the pointer which may have the middle node (rare) 2669 * @mid_split: the split location for the middle node 2670 * 2671 * Return: the split of left. 2672 */ 2673 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2674 struct maple_big_node *b_node, struct maple_enode **left, 2675 struct maple_enode **right, struct maple_enode **middle, 2676 unsigned char *mid_split, unsigned long min) 2677 { 2678 unsigned char split = 0; 2679 unsigned char slot_count = mt_slots[b_node->type]; 2680 2681 *left = mas_new_ma_node(mas, b_node); 2682 *right = NULL; 2683 *middle = NULL; 2684 *mid_split = 0; 2685 2686 if (b_node->b_end < slot_count) { 2687 split = b_node->b_end; 2688 } else { 2689 split = mab_calc_split(mas, b_node, mid_split, min); 2690 *right = mas_new_ma_node(mas, b_node); 2691 } 2692 2693 if (*mid_split) 2694 *middle = mas_new_ma_node(mas, b_node); 2695 2696 return split; 2697 2698 } 2699 2700 /* 2701 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2702 * pointer. 2703 * @b_node - the big node to add the entry 2704 * @mas - the maple state to get the pivot (mas->max) 2705 * @entry - the entry to add, if NULL nothing happens. 2706 */ 2707 static inline void mab_set_b_end(struct maple_big_node *b_node, 2708 struct ma_state *mas, 2709 void *entry) 2710 { 2711 if (!entry) 2712 return; 2713 2714 b_node->slot[b_node->b_end] = entry; 2715 if (mt_is_alloc(mas->tree)) 2716 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2717 b_node->pivot[b_node->b_end++] = mas->max; 2718 } 2719 2720 /* 2721 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2722 * of @mas->node to either @left or @right, depending on @slot and @split 2723 * 2724 * @mas - the maple state with the node that needs a parent 2725 * @left - possible parent 1 2726 * @right - possible parent 2 2727 * @slot - the slot the mas->node was placed 2728 * @split - the split location between @left and @right 2729 */ 2730 static inline void mas_set_split_parent(struct ma_state *mas, 2731 struct maple_enode *left, 2732 struct maple_enode *right, 2733 unsigned char *slot, unsigned char split) 2734 { 2735 if (mas_is_none(mas)) 2736 return; 2737 2738 if ((*slot) <= split) 2739 mte_set_parent(mas->node, left, *slot); 2740 else if (right) 2741 mte_set_parent(mas->node, right, (*slot) - split - 1); 2742 2743 (*slot)++; 2744 } 2745 2746 /* 2747 * mte_mid_split_check() - Check if the next node passes the mid-split 2748 * @**l: Pointer to left encoded maple node. 2749 * @**m: Pointer to middle encoded maple node. 2750 * @**r: Pointer to right encoded maple node. 2751 * @slot: The offset 2752 * @*split: The split location. 2753 * @mid_split: The middle split. 2754 */ 2755 static inline void mte_mid_split_check(struct maple_enode **l, 2756 struct maple_enode **r, 2757 struct maple_enode *right, 2758 unsigned char slot, 2759 unsigned char *split, 2760 unsigned char mid_split) 2761 { 2762 if (*r == right) 2763 return; 2764 2765 if (slot < mid_split) 2766 return; 2767 2768 *l = *r; 2769 *r = right; 2770 *split = mid_split; 2771 } 2772 2773 /* 2774 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2775 * is taken from @mast->l. 2776 * @mast - the maple subtree state 2777 * @left - the left node 2778 * @right - the right node 2779 * @split - the split location. 2780 */ 2781 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2782 struct maple_enode *left, 2783 struct maple_enode *middle, 2784 struct maple_enode *right, 2785 unsigned char split, 2786 unsigned char mid_split) 2787 { 2788 unsigned char slot; 2789 struct maple_enode *l = left; 2790 struct maple_enode *r = right; 2791 2792 if (mas_is_none(mast->l)) 2793 return; 2794 2795 if (middle) 2796 r = middle; 2797 2798 slot = mast->l->offset; 2799 2800 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2801 mas_set_split_parent(mast->l, l, r, &slot, split); 2802 2803 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2804 mas_set_split_parent(mast->m, l, r, &slot, split); 2805 2806 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2807 mas_set_split_parent(mast->r, l, r, &slot, split); 2808 } 2809 2810 /* 2811 * mas_wmb_replace() - Write memory barrier and replace 2812 * @mas: The maple state 2813 * @free: the maple topiary list of nodes to free 2814 * @destroy: The maple topiary list of nodes to destroy (walk and free) 2815 * 2816 * Updates gap as necessary. 2817 */ 2818 static inline void mas_wmb_replace(struct ma_state *mas, 2819 struct ma_topiary *free, 2820 struct ma_topiary *destroy) 2821 { 2822 /* All nodes must see old data as dead prior to replacing that data */ 2823 smp_wmb(); /* Needed for RCU */ 2824 2825 /* Insert the new data in the tree */ 2826 mas_replace(mas, true); 2827 2828 if (!mte_is_leaf(mas->node)) 2829 mas_descend_adopt(mas); 2830 2831 mas_mat_free(mas, free); 2832 2833 if (destroy) 2834 mas_mat_destroy(mas, destroy); 2835 2836 if (mte_is_leaf(mas->node)) 2837 return; 2838 2839 mas_update_gap(mas); 2840 } 2841 2842 /* 2843 * mast_new_root() - Set a new tree root during subtree creation 2844 * @mast: The maple subtree state 2845 * @mas: The maple state 2846 */ 2847 static inline void mast_new_root(struct maple_subtree_state *mast, 2848 struct ma_state *mas) 2849 { 2850 mas_mn(mast->l)->parent = 2851 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT)); 2852 if (!mte_dead_node(mast->orig_l->node) && 2853 !mte_is_root(mast->orig_l->node)) { 2854 do { 2855 mast_ascend_free(mast); 2856 mast_topiary(mast); 2857 } while (!mte_is_root(mast->orig_l->node)); 2858 } 2859 if ((mast->orig_l->node != mas->node) && 2860 (mast->l->depth > mas_mt_height(mas))) { 2861 mat_add(mast->free, mas->node); 2862 } 2863 } 2864 2865 /* 2866 * mast_cp_to_nodes() - Copy data out to nodes. 2867 * @mast: The maple subtree state 2868 * @left: The left encoded maple node 2869 * @middle: The middle encoded maple node 2870 * @right: The right encoded maple node 2871 * @split: The location to split between left and (middle ? middle : right) 2872 * @mid_split: The location to split between middle and right. 2873 */ 2874 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2875 struct maple_enode *left, struct maple_enode *middle, 2876 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2877 { 2878 bool new_lmax = true; 2879 2880 mast->l->node = mte_node_or_none(left); 2881 mast->m->node = mte_node_or_none(middle); 2882 mast->r->node = mte_node_or_none(right); 2883 2884 mast->l->min = mast->orig_l->min; 2885 if (split == mast->bn->b_end) { 2886 mast->l->max = mast->orig_r->max; 2887 new_lmax = false; 2888 } 2889 2890 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2891 2892 if (middle) { 2893 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2894 mast->m->min = mast->bn->pivot[split] + 1; 2895 split = mid_split; 2896 } 2897 2898 mast->r->max = mast->orig_r->max; 2899 if (right) { 2900 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2901 mast->r->min = mast->bn->pivot[split] + 1; 2902 } 2903 } 2904 2905 /* 2906 * mast_combine_cp_left - Copy in the original left side of the tree into the 2907 * combined data set in the maple subtree state big node. 2908 * @mast: The maple subtree state 2909 */ 2910 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2911 { 2912 unsigned char l_slot = mast->orig_l->offset; 2913 2914 if (!l_slot) 2915 return; 2916 2917 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2918 } 2919 2920 /* 2921 * mast_combine_cp_right: Copy in the original right side of the tree into the 2922 * combined data set in the maple subtree state big node. 2923 * @mast: The maple subtree state 2924 */ 2925 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2926 { 2927 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2928 return; 2929 2930 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2931 mt_slot_count(mast->orig_r->node), mast->bn, 2932 mast->bn->b_end); 2933 mast->orig_r->last = mast->orig_r->max; 2934 } 2935 2936 /* 2937 * mast_sufficient: Check if the maple subtree state has enough data in the big 2938 * node to create at least one sufficient node 2939 * @mast: the maple subtree state 2940 */ 2941 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2942 { 2943 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2944 return true; 2945 2946 return false; 2947 } 2948 2949 /* 2950 * mast_overflow: Check if there is too much data in the subtree state for a 2951 * single node. 2952 * @mast: The maple subtree state 2953 */ 2954 static inline bool mast_overflow(struct maple_subtree_state *mast) 2955 { 2956 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2957 return true; 2958 2959 return false; 2960 } 2961 2962 static inline void *mtree_range_walk(struct ma_state *mas) 2963 { 2964 unsigned long *pivots; 2965 unsigned char offset; 2966 struct maple_node *node; 2967 struct maple_enode *next, *last; 2968 enum maple_type type; 2969 void __rcu **slots; 2970 unsigned char end; 2971 unsigned long max, min; 2972 unsigned long prev_max, prev_min; 2973 2974 next = mas->node; 2975 min = mas->min; 2976 max = mas->max; 2977 do { 2978 offset = 0; 2979 last = next; 2980 node = mte_to_node(next); 2981 type = mte_node_type(next); 2982 pivots = ma_pivots(node, type); 2983 end = ma_data_end(node, type, pivots, max); 2984 if (unlikely(ma_dead_node(node))) 2985 goto dead_node; 2986 2987 if (pivots[offset] >= mas->index) { 2988 prev_max = max; 2989 prev_min = min; 2990 max = pivots[offset]; 2991 goto next; 2992 } 2993 2994 do { 2995 offset++; 2996 } while ((offset < end) && (pivots[offset] < mas->index)); 2997 2998 prev_min = min; 2999 min = pivots[offset - 1] + 1; 3000 prev_max = max; 3001 if (likely(offset < end && pivots[offset])) 3002 max = pivots[offset]; 3003 3004 next: 3005 slots = ma_slots(node, type); 3006 next = mt_slot(mas->tree, slots, offset); 3007 if (unlikely(ma_dead_node(node))) 3008 goto dead_node; 3009 } while (!ma_is_leaf(type)); 3010 3011 mas->offset = offset; 3012 mas->index = min; 3013 mas->last = max; 3014 mas->min = prev_min; 3015 mas->max = prev_max; 3016 mas->node = last; 3017 return (void *)next; 3018 3019 dead_node: 3020 mas_reset(mas); 3021 return NULL; 3022 } 3023 3024 /* 3025 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 3026 * @mas: The starting maple state 3027 * @mast: The maple_subtree_state, keeps track of 4 maple states. 3028 * @count: The estimated count of iterations needed. 3029 * 3030 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 3031 * is hit. First @b_node is split into two entries which are inserted into the 3032 * next iteration of the loop. @b_node is returned populated with the final 3033 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 3034 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 3035 * to account of what has been copied into the new sub-tree. The update of 3036 * orig_l_mas->last is used in mas_consume to find the slots that will need to 3037 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 3038 * the new sub-tree in case the sub-tree becomes the full tree. 3039 * 3040 * Return: the number of elements in b_node during the last loop. 3041 */ 3042 static int mas_spanning_rebalance(struct ma_state *mas, 3043 struct maple_subtree_state *mast, unsigned char count) 3044 { 3045 unsigned char split, mid_split; 3046 unsigned char slot = 0; 3047 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 3048 3049 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 3050 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3051 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 3052 MA_TOPIARY(free, mas->tree); 3053 MA_TOPIARY(destroy, mas->tree); 3054 3055 /* 3056 * The tree needs to be rebalanced and leaves need to be kept at the same level. 3057 * Rebalancing is done by use of the ``struct maple_topiary``. 3058 */ 3059 mast->l = &l_mas; 3060 mast->m = &m_mas; 3061 mast->r = &r_mas; 3062 mast->free = &free; 3063 mast->destroy = &destroy; 3064 l_mas.node = r_mas.node = m_mas.node = MAS_NONE; 3065 3066 /* Check if this is not root and has sufficient data. */ 3067 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 3068 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 3069 mast_spanning_rebalance(mast); 3070 3071 mast->orig_l->depth = 0; 3072 3073 /* 3074 * Each level of the tree is examined and balanced, pushing data to the left or 3075 * right, or rebalancing against left or right nodes is employed to avoid 3076 * rippling up the tree to limit the amount of churn. Once a new sub-section of 3077 * the tree is created, there may be a mix of new and old nodes. The old nodes 3078 * will have the incorrect parent pointers and currently be in two trees: the 3079 * original tree and the partially new tree. To remedy the parent pointers in 3080 * the old tree, the new data is swapped into the active tree and a walk down 3081 * the tree is performed and the parent pointers are updated. 3082 * See mas_descend_adopt() for more information.. 3083 */ 3084 while (count--) { 3085 mast->bn->b_end--; 3086 mast->bn->type = mte_node_type(mast->orig_l->node); 3087 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 3088 &mid_split, mast->orig_l->min); 3089 mast_set_split_parents(mast, left, middle, right, split, 3090 mid_split); 3091 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 3092 3093 /* 3094 * Copy data from next level in the tree to mast->bn from next 3095 * iteration 3096 */ 3097 memset(mast->bn, 0, sizeof(struct maple_big_node)); 3098 mast->bn->type = mte_node_type(left); 3099 mast->orig_l->depth++; 3100 3101 /* Root already stored in l->node. */ 3102 if (mas_is_root_limits(mast->l)) 3103 goto new_root; 3104 3105 mast_ascend_free(mast); 3106 mast_combine_cp_left(mast); 3107 l_mas.offset = mast->bn->b_end; 3108 mab_set_b_end(mast->bn, &l_mas, left); 3109 mab_set_b_end(mast->bn, &m_mas, middle); 3110 mab_set_b_end(mast->bn, &r_mas, right); 3111 3112 /* Copy anything necessary out of the right node. */ 3113 mast_combine_cp_right(mast); 3114 mast_topiary(mast); 3115 mast->orig_l->last = mast->orig_l->max; 3116 3117 if (mast_sufficient(mast)) 3118 continue; 3119 3120 if (mast_overflow(mast)) 3121 continue; 3122 3123 /* May be a new root stored in mast->bn */ 3124 if (mas_is_root_limits(mast->orig_l)) 3125 break; 3126 3127 mast_spanning_rebalance(mast); 3128 3129 /* rebalancing from other nodes may require another loop. */ 3130 if (!count) 3131 count++; 3132 } 3133 3134 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 3135 mte_node_type(mast->orig_l->node)); 3136 mast->orig_l->depth++; 3137 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 3138 mte_set_parent(left, l_mas.node, slot); 3139 if (middle) 3140 mte_set_parent(middle, l_mas.node, ++slot); 3141 3142 if (right) 3143 mte_set_parent(right, l_mas.node, ++slot); 3144 3145 if (mas_is_root_limits(mast->l)) { 3146 new_root: 3147 mast_new_root(mast, mas); 3148 } else { 3149 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 3150 } 3151 3152 if (!mte_dead_node(mast->orig_l->node)) 3153 mat_add(&free, mast->orig_l->node); 3154 3155 mas->depth = mast->orig_l->depth; 3156 *mast->orig_l = l_mas; 3157 mte_set_node_dead(mas->node); 3158 3159 /* Set up mas for insertion. */ 3160 mast->orig_l->depth = mas->depth; 3161 mast->orig_l->alloc = mas->alloc; 3162 *mas = *mast->orig_l; 3163 mas_wmb_replace(mas, &free, &destroy); 3164 mtree_range_walk(mas); 3165 return mast->bn->b_end; 3166 } 3167 3168 /* 3169 * mas_rebalance() - Rebalance a given node. 3170 * @mas: The maple state 3171 * @b_node: The big maple node. 3172 * 3173 * Rebalance two nodes into a single node or two new nodes that are sufficient. 3174 * Continue upwards until tree is sufficient. 3175 * 3176 * Return: the number of elements in b_node during the last loop. 3177 */ 3178 static inline int mas_rebalance(struct ma_state *mas, 3179 struct maple_big_node *b_node) 3180 { 3181 char empty_count = mas_mt_height(mas); 3182 struct maple_subtree_state mast; 3183 unsigned char shift, b_end = ++b_node->b_end; 3184 3185 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3186 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3187 3188 trace_ma_op(__func__, mas); 3189 3190 /* 3191 * Rebalancing occurs if a node is insufficient. Data is rebalanced 3192 * against the node to the right if it exists, otherwise the node to the 3193 * left of this node is rebalanced against this node. If rebalancing 3194 * causes just one node to be produced instead of two, then the parent 3195 * is also examined and rebalanced if it is insufficient. Every level 3196 * tries to combine the data in the same way. If one node contains the 3197 * entire range of the tree, then that node is used as a new root node. 3198 */ 3199 mas_node_count(mas, 1 + empty_count * 3); 3200 if (mas_is_err(mas)) 3201 return 0; 3202 3203 mast.orig_l = &l_mas; 3204 mast.orig_r = &r_mas; 3205 mast.bn = b_node; 3206 mast.bn->type = mte_node_type(mas->node); 3207 3208 l_mas = r_mas = *mas; 3209 3210 if (mas_next_sibling(&r_mas)) { 3211 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 3212 r_mas.last = r_mas.index = r_mas.max; 3213 } else { 3214 mas_prev_sibling(&l_mas); 3215 shift = mas_data_end(&l_mas) + 1; 3216 mab_shift_right(b_node, shift); 3217 mas->offset += shift; 3218 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3219 b_node->b_end = shift + b_end; 3220 l_mas.index = l_mas.last = l_mas.min; 3221 } 3222 3223 return mas_spanning_rebalance(mas, &mast, empty_count); 3224 } 3225 3226 /* 3227 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3228 * state. 3229 * @mas: The maple state 3230 * @end: The end of the left-most node. 3231 * 3232 * During a mass-insert event (such as forking), it may be necessary to 3233 * rebalance the left-most node when it is not sufficient. 3234 */ 3235 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3236 { 3237 enum maple_type mt = mte_node_type(mas->node); 3238 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3239 struct maple_enode *eparent; 3240 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3241 void __rcu **l_slots, **slots; 3242 unsigned long *l_pivs, *pivs, gap; 3243 bool in_rcu = mt_in_rcu(mas->tree); 3244 3245 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3246 3247 l_mas = *mas; 3248 mas_prev_sibling(&l_mas); 3249 3250 /* set up node. */ 3251 if (in_rcu) { 3252 /* Allocate for both left and right as well as parent. */ 3253 mas_node_count(mas, 3); 3254 if (mas_is_err(mas)) 3255 return; 3256 3257 newnode = mas_pop_node(mas); 3258 } else { 3259 newnode = &reuse; 3260 } 3261 3262 node = mas_mn(mas); 3263 newnode->parent = node->parent; 3264 slots = ma_slots(newnode, mt); 3265 pivs = ma_pivots(newnode, mt); 3266 left = mas_mn(&l_mas); 3267 l_slots = ma_slots(left, mt); 3268 l_pivs = ma_pivots(left, mt); 3269 if (!l_slots[split]) 3270 split++; 3271 tmp = mas_data_end(&l_mas) - split; 3272 3273 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3274 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3275 pivs[tmp] = l_mas.max; 3276 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3277 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3278 3279 l_mas.max = l_pivs[split]; 3280 mas->min = l_mas.max + 1; 3281 eparent = mt_mk_node(mte_parent(l_mas.node), 3282 mas_parent_enum(&l_mas, l_mas.node)); 3283 tmp += end; 3284 if (!in_rcu) { 3285 unsigned char max_p = mt_pivots[mt]; 3286 unsigned char max_s = mt_slots[mt]; 3287 3288 if (tmp < max_p) 3289 memset(pivs + tmp, 0, 3290 sizeof(unsigned long *) * (max_p - tmp)); 3291 3292 if (tmp < mt_slots[mt]) 3293 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3294 3295 memcpy(node, newnode, sizeof(struct maple_node)); 3296 ma_set_meta(node, mt, 0, tmp - 1); 3297 mte_set_pivot(eparent, mte_parent_slot(l_mas.node), 3298 l_pivs[split]); 3299 3300 /* Remove data from l_pivs. */ 3301 tmp = split + 1; 3302 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3303 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3304 ma_set_meta(left, mt, 0, split); 3305 3306 goto done; 3307 } 3308 3309 /* RCU requires replacing both l_mas, mas, and parent. */ 3310 mas->node = mt_mk_node(newnode, mt); 3311 ma_set_meta(newnode, mt, 0, tmp); 3312 3313 new_left = mas_pop_node(mas); 3314 new_left->parent = left->parent; 3315 mt = mte_node_type(l_mas.node); 3316 slots = ma_slots(new_left, mt); 3317 pivs = ma_pivots(new_left, mt); 3318 memcpy(slots, l_slots, sizeof(void *) * split); 3319 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3320 ma_set_meta(new_left, mt, 0, split); 3321 l_mas.node = mt_mk_node(new_left, mt); 3322 3323 /* replace parent. */ 3324 offset = mte_parent_slot(mas->node); 3325 mt = mas_parent_enum(&l_mas, l_mas.node); 3326 parent = mas_pop_node(mas); 3327 slots = ma_slots(parent, mt); 3328 pivs = ma_pivots(parent, mt); 3329 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node)); 3330 rcu_assign_pointer(slots[offset], mas->node); 3331 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3332 pivs[offset - 1] = l_mas.max; 3333 eparent = mt_mk_node(parent, mt); 3334 done: 3335 gap = mas_leaf_max_gap(mas); 3336 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3337 gap = mas_leaf_max_gap(&l_mas); 3338 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3339 mas_ascend(mas); 3340 3341 if (in_rcu) 3342 mas_replace(mas, false); 3343 3344 mas_update_gap(mas); 3345 } 3346 3347 /* 3348 * mas_split_final_node() - Split the final node in a subtree operation. 3349 * @mast: the maple subtree state 3350 * @mas: The maple state 3351 * @height: The height of the tree in case it's a new root. 3352 */ 3353 static inline bool mas_split_final_node(struct maple_subtree_state *mast, 3354 struct ma_state *mas, int height) 3355 { 3356 struct maple_enode *ancestor; 3357 3358 if (mte_is_root(mas->node)) { 3359 if (mt_is_alloc(mas->tree)) 3360 mast->bn->type = maple_arange_64; 3361 else 3362 mast->bn->type = maple_range_64; 3363 mas->depth = height; 3364 } 3365 /* 3366 * Only a single node is used here, could be root. 3367 * The Big_node data should just fit in a single node. 3368 */ 3369 ancestor = mas_new_ma_node(mas, mast->bn); 3370 mte_set_parent(mast->l->node, ancestor, mast->l->offset); 3371 mte_set_parent(mast->r->node, ancestor, mast->r->offset); 3372 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3373 3374 mast->l->node = ancestor; 3375 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3376 mas->offset = mast->bn->b_end - 1; 3377 return true; 3378 } 3379 3380 /* 3381 * mast_fill_bnode() - Copy data into the big node in the subtree state 3382 * @mast: The maple subtree state 3383 * @mas: the maple state 3384 * @skip: The number of entries to skip for new nodes insertion. 3385 */ 3386 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3387 struct ma_state *mas, 3388 unsigned char skip) 3389 { 3390 bool cp = true; 3391 struct maple_enode *old = mas->node; 3392 unsigned char split; 3393 3394 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3395 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3396 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3397 mast->bn->b_end = 0; 3398 3399 if (mte_is_root(mas->node)) { 3400 cp = false; 3401 } else { 3402 mas_ascend(mas); 3403 mat_add(mast->free, old); 3404 mas->offset = mte_parent_slot(mas->node); 3405 } 3406 3407 if (cp && mast->l->offset) 3408 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3409 3410 split = mast->bn->b_end; 3411 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3412 mast->r->offset = mast->bn->b_end; 3413 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3414 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3415 cp = false; 3416 3417 if (cp) 3418 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3419 mast->bn, mast->bn->b_end); 3420 3421 mast->bn->b_end--; 3422 mast->bn->type = mte_node_type(mas->node); 3423 } 3424 3425 /* 3426 * mast_split_data() - Split the data in the subtree state big node into regular 3427 * nodes. 3428 * @mast: The maple subtree state 3429 * @mas: The maple state 3430 * @split: The location to split the big node 3431 */ 3432 static inline void mast_split_data(struct maple_subtree_state *mast, 3433 struct ma_state *mas, unsigned char split) 3434 { 3435 unsigned char p_slot; 3436 3437 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3438 mte_set_pivot(mast->r->node, 0, mast->r->max); 3439 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3440 mast->l->offset = mte_parent_slot(mas->node); 3441 mast->l->max = mast->bn->pivot[split]; 3442 mast->r->min = mast->l->max + 1; 3443 if (mte_is_leaf(mas->node)) 3444 return; 3445 3446 p_slot = mast->orig_l->offset; 3447 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3448 &p_slot, split); 3449 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3450 &p_slot, split); 3451 } 3452 3453 /* 3454 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3455 * data to the right or left node if there is room. 3456 * @mas: The maple state 3457 * @height: The current height of the maple state 3458 * @mast: The maple subtree state 3459 * @left: Push left or not. 3460 * 3461 * Keeping the height of the tree low means faster lookups. 3462 * 3463 * Return: True if pushed, false otherwise. 3464 */ 3465 static inline bool mas_push_data(struct ma_state *mas, int height, 3466 struct maple_subtree_state *mast, bool left) 3467 { 3468 unsigned char slot_total = mast->bn->b_end; 3469 unsigned char end, space, split; 3470 3471 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3472 tmp_mas = *mas; 3473 tmp_mas.depth = mast->l->depth; 3474 3475 if (left && !mas_prev_sibling(&tmp_mas)) 3476 return false; 3477 else if (!left && !mas_next_sibling(&tmp_mas)) 3478 return false; 3479 3480 end = mas_data_end(&tmp_mas); 3481 slot_total += end; 3482 space = 2 * mt_slot_count(mas->node) - 2; 3483 /* -2 instead of -1 to ensure there isn't a triple split */ 3484 if (ma_is_leaf(mast->bn->type)) 3485 space--; 3486 3487 if (mas->max == ULONG_MAX) 3488 space--; 3489 3490 if (slot_total >= space) 3491 return false; 3492 3493 /* Get the data; Fill mast->bn */ 3494 mast->bn->b_end++; 3495 if (left) { 3496 mab_shift_right(mast->bn, end + 1); 3497 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3498 mast->bn->b_end = slot_total + 1; 3499 } else { 3500 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3501 } 3502 3503 /* Configure mast for splitting of mast->bn */ 3504 split = mt_slots[mast->bn->type] - 2; 3505 if (left) { 3506 /* Switch mas to prev node */ 3507 mat_add(mast->free, mas->node); 3508 *mas = tmp_mas; 3509 /* Start using mast->l for the left side. */ 3510 tmp_mas.node = mast->l->node; 3511 *mast->l = tmp_mas; 3512 } else { 3513 mat_add(mast->free, tmp_mas.node); 3514 tmp_mas.node = mast->r->node; 3515 *mast->r = tmp_mas; 3516 split = slot_total - split; 3517 } 3518 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3519 /* Update parent slot for split calculation. */ 3520 if (left) 3521 mast->orig_l->offset += end + 1; 3522 3523 mast_split_data(mast, mas, split); 3524 mast_fill_bnode(mast, mas, 2); 3525 mas_split_final_node(mast, mas, height + 1); 3526 return true; 3527 } 3528 3529 /* 3530 * mas_split() - Split data that is too big for one node into two. 3531 * @mas: The maple state 3532 * @b_node: The maple big node 3533 * Return: 1 on success, 0 on failure. 3534 */ 3535 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3536 { 3537 struct maple_subtree_state mast; 3538 int height = 0; 3539 unsigned char mid_split, split = 0; 3540 3541 /* 3542 * Splitting is handled differently from any other B-tree; the Maple 3543 * Tree splits upwards. Splitting up means that the split operation 3544 * occurs when the walk of the tree hits the leaves and not on the way 3545 * down. The reason for splitting up is that it is impossible to know 3546 * how much space will be needed until the leaf is (or leaves are) 3547 * reached. Since overwriting data is allowed and a range could 3548 * overwrite more than one range or result in changing one entry into 3 3549 * entries, it is impossible to know if a split is required until the 3550 * data is examined. 3551 * 3552 * Splitting is a balancing act between keeping allocations to a minimum 3553 * and avoiding a 'jitter' event where a tree is expanded to make room 3554 * for an entry followed by a contraction when the entry is removed. To 3555 * accomplish the balance, there are empty slots remaining in both left 3556 * and right nodes after a split. 3557 */ 3558 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3559 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3560 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3561 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3562 MA_TOPIARY(mat, mas->tree); 3563 3564 trace_ma_op(__func__, mas); 3565 mas->depth = mas_mt_height(mas); 3566 /* Allocation failures will happen early. */ 3567 mas_node_count(mas, 1 + mas->depth * 2); 3568 if (mas_is_err(mas)) 3569 return 0; 3570 3571 mast.l = &l_mas; 3572 mast.r = &r_mas; 3573 mast.orig_l = &prev_l_mas; 3574 mast.orig_r = &prev_r_mas; 3575 mast.free = &mat; 3576 mast.bn = b_node; 3577 3578 while (height++ <= mas->depth) { 3579 if (mt_slots[b_node->type] > b_node->b_end) { 3580 mas_split_final_node(&mast, mas, height); 3581 break; 3582 } 3583 3584 l_mas = r_mas = *mas; 3585 l_mas.node = mas_new_ma_node(mas, b_node); 3586 r_mas.node = mas_new_ma_node(mas, b_node); 3587 /* 3588 * Another way that 'jitter' is avoided is to terminate a split up early if the 3589 * left or right node has space to spare. This is referred to as "pushing left" 3590 * or "pushing right" and is similar to the B* tree, except the nodes left or 3591 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3592 * is a significant savings. 3593 */ 3594 /* Try to push left. */ 3595 if (mas_push_data(mas, height, &mast, true)) 3596 break; 3597 3598 /* Try to push right. */ 3599 if (mas_push_data(mas, height, &mast, false)) 3600 break; 3601 3602 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3603 mast_split_data(&mast, mas, split); 3604 /* 3605 * Usually correct, mab_mas_cp in the above call overwrites 3606 * r->max. 3607 */ 3608 mast.r->max = mas->max; 3609 mast_fill_bnode(&mast, mas, 1); 3610 prev_l_mas = *mast.l; 3611 prev_r_mas = *mast.r; 3612 } 3613 3614 /* Set the original node as dead */ 3615 mat_add(mast.free, mas->node); 3616 mas->node = l_mas.node; 3617 mas_wmb_replace(mas, mast.free, NULL); 3618 mtree_range_walk(mas); 3619 return 1; 3620 } 3621 3622 /* 3623 * mas_reuse_node() - Reuse the node to store the data. 3624 * @wr_mas: The maple write state 3625 * @bn: The maple big node 3626 * @end: The end of the data. 3627 * 3628 * Will always return false in RCU mode. 3629 * 3630 * Return: True if node was reused, false otherwise. 3631 */ 3632 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3633 struct maple_big_node *bn, unsigned char end) 3634 { 3635 /* Need to be rcu safe. */ 3636 if (mt_in_rcu(wr_mas->mas->tree)) 3637 return false; 3638 3639 if (end > bn->b_end) { 3640 int clear = mt_slots[wr_mas->type] - bn->b_end; 3641 3642 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3643 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3644 } 3645 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3646 return true; 3647 } 3648 3649 /* 3650 * mas_commit_b_node() - Commit the big node into the tree. 3651 * @wr_mas: The maple write state 3652 * @b_node: The maple big node 3653 * @end: The end of the data. 3654 */ 3655 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas, 3656 struct maple_big_node *b_node, unsigned char end) 3657 { 3658 struct maple_node *node; 3659 unsigned char b_end = b_node->b_end; 3660 enum maple_type b_type = b_node->type; 3661 3662 if ((b_end < mt_min_slots[b_type]) && 3663 (!mte_is_root(wr_mas->mas->node)) && 3664 (mas_mt_height(wr_mas->mas) > 1)) 3665 return mas_rebalance(wr_mas->mas, b_node); 3666 3667 if (b_end >= mt_slots[b_type]) 3668 return mas_split(wr_mas->mas, b_node); 3669 3670 if (mas_reuse_node(wr_mas, b_node, end)) 3671 goto reuse_node; 3672 3673 mas_node_count(wr_mas->mas, 1); 3674 if (mas_is_err(wr_mas->mas)) 3675 return 0; 3676 3677 node = mas_pop_node(wr_mas->mas); 3678 node->parent = mas_mn(wr_mas->mas)->parent; 3679 wr_mas->mas->node = mt_mk_node(node, b_type); 3680 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3681 mas_replace(wr_mas->mas, false); 3682 reuse_node: 3683 mas_update_gap(wr_mas->mas); 3684 return 1; 3685 } 3686 3687 /* 3688 * mas_root_expand() - Expand a root to a node 3689 * @mas: The maple state 3690 * @entry: The entry to store into the tree 3691 */ 3692 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3693 { 3694 void *contents = mas_root_locked(mas); 3695 enum maple_type type = maple_leaf_64; 3696 struct maple_node *node; 3697 void __rcu **slots; 3698 unsigned long *pivots; 3699 int slot = 0; 3700 3701 mas_node_count(mas, 1); 3702 if (unlikely(mas_is_err(mas))) 3703 return 0; 3704 3705 node = mas_pop_node(mas); 3706 pivots = ma_pivots(node, type); 3707 slots = ma_slots(node, type); 3708 node->parent = ma_parent_ptr( 3709 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3710 mas->node = mt_mk_node(node, type); 3711 3712 if (mas->index) { 3713 if (contents) { 3714 rcu_assign_pointer(slots[slot], contents); 3715 if (likely(mas->index > 1)) 3716 slot++; 3717 } 3718 pivots[slot++] = mas->index - 1; 3719 } 3720 3721 rcu_assign_pointer(slots[slot], entry); 3722 mas->offset = slot; 3723 pivots[slot] = mas->last; 3724 if (mas->last != ULONG_MAX) 3725 slot++; 3726 mas->depth = 1; 3727 mas_set_height(mas); 3728 ma_set_meta(node, maple_leaf_64, 0, slot); 3729 /* swap the new root into the tree */ 3730 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3731 return slot; 3732 } 3733 3734 static inline void mas_store_root(struct ma_state *mas, void *entry) 3735 { 3736 if (likely((mas->last != 0) || (mas->index != 0))) 3737 mas_root_expand(mas, entry); 3738 else if (((unsigned long) (entry) & 3) == 2) 3739 mas_root_expand(mas, entry); 3740 else { 3741 rcu_assign_pointer(mas->tree->ma_root, entry); 3742 mas->node = MAS_START; 3743 } 3744 } 3745 3746 /* 3747 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3748 * spans the node. 3749 * @mas: The maple state 3750 * @piv: The pivot value being written 3751 * @type: The maple node type 3752 * @entry: The data to write 3753 * 3754 * Spanning writes are writes that start in one node and end in another OR if 3755 * the write of a %NULL will cause the node to end with a %NULL. 3756 * 3757 * Return: True if this is a spanning write, false otherwise. 3758 */ 3759 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3760 { 3761 unsigned long max; 3762 unsigned long last = wr_mas->mas->last; 3763 unsigned long piv = wr_mas->r_max; 3764 enum maple_type type = wr_mas->type; 3765 void *entry = wr_mas->entry; 3766 3767 /* Contained in this pivot */ 3768 if (piv > last) 3769 return false; 3770 3771 max = wr_mas->mas->max; 3772 if (unlikely(ma_is_leaf(type))) { 3773 /* Fits in the node, but may span slots. */ 3774 if (last < max) 3775 return false; 3776 3777 /* Writes to the end of the node but not null. */ 3778 if ((last == max) && entry) 3779 return false; 3780 3781 /* 3782 * Writing ULONG_MAX is not a spanning write regardless of the 3783 * value being written as long as the range fits in the node. 3784 */ 3785 if ((last == ULONG_MAX) && (last == max)) 3786 return false; 3787 } else if (piv == last) { 3788 if (entry) 3789 return false; 3790 3791 /* Detect spanning store wr walk */ 3792 if (last == ULONG_MAX) 3793 return false; 3794 } 3795 3796 trace_ma_write(__func__, wr_mas->mas, piv, entry); 3797 3798 return true; 3799 } 3800 3801 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3802 { 3803 wr_mas->type = mte_node_type(wr_mas->mas->node); 3804 mas_wr_node_walk(wr_mas); 3805 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3806 } 3807 3808 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3809 { 3810 wr_mas->mas->max = wr_mas->r_max; 3811 wr_mas->mas->min = wr_mas->r_min; 3812 wr_mas->mas->node = wr_mas->content; 3813 wr_mas->mas->offset = 0; 3814 wr_mas->mas->depth++; 3815 } 3816 /* 3817 * mas_wr_walk() - Walk the tree for a write. 3818 * @wr_mas: The maple write state 3819 * 3820 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3821 * 3822 * Return: True if it's contained in a node, false on spanning write. 3823 */ 3824 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3825 { 3826 struct ma_state *mas = wr_mas->mas; 3827 3828 while (true) { 3829 mas_wr_walk_descend(wr_mas); 3830 if (unlikely(mas_is_span_wr(wr_mas))) 3831 return false; 3832 3833 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3834 mas->offset); 3835 if (ma_is_leaf(wr_mas->type)) 3836 return true; 3837 3838 mas_wr_walk_traverse(wr_mas); 3839 } 3840 3841 return true; 3842 } 3843 3844 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3845 { 3846 struct ma_state *mas = wr_mas->mas; 3847 3848 while (true) { 3849 mas_wr_walk_descend(wr_mas); 3850 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3851 mas->offset); 3852 if (ma_is_leaf(wr_mas->type)) 3853 return true; 3854 mas_wr_walk_traverse(wr_mas); 3855 3856 } 3857 return true; 3858 } 3859 /* 3860 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3861 * @l_wr_mas: The left maple write state 3862 * @r_wr_mas: The right maple write state 3863 */ 3864 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3865 struct ma_wr_state *r_wr_mas) 3866 { 3867 struct ma_state *r_mas = r_wr_mas->mas; 3868 struct ma_state *l_mas = l_wr_mas->mas; 3869 unsigned char l_slot; 3870 3871 l_slot = l_mas->offset; 3872 if (!l_wr_mas->content) 3873 l_mas->index = l_wr_mas->r_min; 3874 3875 if ((l_mas->index == l_wr_mas->r_min) && 3876 (l_slot && 3877 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3878 if (l_slot > 1) 3879 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3880 else 3881 l_mas->index = l_mas->min; 3882 3883 l_mas->offset = l_slot - 1; 3884 } 3885 3886 if (!r_wr_mas->content) { 3887 if (r_mas->last < r_wr_mas->r_max) 3888 r_mas->last = r_wr_mas->r_max; 3889 r_mas->offset++; 3890 } else if ((r_mas->last == r_wr_mas->r_max) && 3891 (r_mas->last < r_mas->max) && 3892 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3893 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3894 r_wr_mas->type, r_mas->offset + 1); 3895 r_mas->offset++; 3896 } 3897 } 3898 3899 static inline void *mas_state_walk(struct ma_state *mas) 3900 { 3901 void *entry; 3902 3903 entry = mas_start(mas); 3904 if (mas_is_none(mas)) 3905 return NULL; 3906 3907 if (mas_is_ptr(mas)) 3908 return entry; 3909 3910 return mtree_range_walk(mas); 3911 } 3912 3913 /* 3914 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3915 * to date. 3916 * 3917 * @mas: The maple state. 3918 * 3919 * Note: Leaves mas in undesirable state. 3920 * Return: The entry for @mas->index or %NULL on dead node. 3921 */ 3922 static inline void *mtree_lookup_walk(struct ma_state *mas) 3923 { 3924 unsigned long *pivots; 3925 unsigned char offset; 3926 struct maple_node *node; 3927 struct maple_enode *next; 3928 enum maple_type type; 3929 void __rcu **slots; 3930 unsigned char end; 3931 unsigned long max; 3932 3933 next = mas->node; 3934 max = ULONG_MAX; 3935 do { 3936 offset = 0; 3937 node = mte_to_node(next); 3938 type = mte_node_type(next); 3939 pivots = ma_pivots(node, type); 3940 end = ma_data_end(node, type, pivots, max); 3941 if (unlikely(ma_dead_node(node))) 3942 goto dead_node; 3943 do { 3944 if (pivots[offset] >= mas->index) { 3945 max = pivots[offset]; 3946 break; 3947 } 3948 } while (++offset < end); 3949 3950 slots = ma_slots(node, type); 3951 next = mt_slot(mas->tree, slots, offset); 3952 if (unlikely(ma_dead_node(node))) 3953 goto dead_node; 3954 } while (!ma_is_leaf(type)); 3955 3956 return (void *)next; 3957 3958 dead_node: 3959 mas_reset(mas); 3960 return NULL; 3961 } 3962 3963 /* 3964 * mas_new_root() - Create a new root node that only contains the entry passed 3965 * in. 3966 * @mas: The maple state 3967 * @entry: The entry to store. 3968 * 3969 * Only valid when the index == 0 and the last == ULONG_MAX 3970 * 3971 * Return 0 on error, 1 on success. 3972 */ 3973 static inline int mas_new_root(struct ma_state *mas, void *entry) 3974 { 3975 struct maple_enode *root = mas_root_locked(mas); 3976 enum maple_type type = maple_leaf_64; 3977 struct maple_node *node; 3978 void __rcu **slots; 3979 unsigned long *pivots; 3980 3981 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3982 mas->depth = 0; 3983 mas_set_height(mas); 3984 rcu_assign_pointer(mas->tree->ma_root, entry); 3985 mas->node = MAS_START; 3986 goto done; 3987 } 3988 3989 mas_node_count(mas, 1); 3990 if (mas_is_err(mas)) 3991 return 0; 3992 3993 node = mas_pop_node(mas); 3994 pivots = ma_pivots(node, type); 3995 slots = ma_slots(node, type); 3996 node->parent = ma_parent_ptr( 3997 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3998 mas->node = mt_mk_node(node, type); 3999 rcu_assign_pointer(slots[0], entry); 4000 pivots[0] = mas->last; 4001 mas->depth = 1; 4002 mas_set_height(mas); 4003 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 4004 4005 done: 4006 if (xa_is_node(root)) 4007 mte_destroy_walk(root, mas->tree); 4008 4009 return 1; 4010 } 4011 /* 4012 * mas_wr_spanning_store() - Create a subtree with the store operation completed 4013 * and new nodes where necessary, then place the sub-tree in the actual tree. 4014 * Note that mas is expected to point to the node which caused the store to 4015 * span. 4016 * @wr_mas: The maple write state 4017 * 4018 * Return: 0 on error, positive on success. 4019 */ 4020 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 4021 { 4022 struct maple_subtree_state mast; 4023 struct maple_big_node b_node; 4024 struct ma_state *mas; 4025 unsigned char height; 4026 4027 /* Left and Right side of spanning store */ 4028 MA_STATE(l_mas, NULL, 0, 0); 4029 MA_STATE(r_mas, NULL, 0, 0); 4030 4031 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 4032 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 4033 4034 /* 4035 * A store operation that spans multiple nodes is called a spanning 4036 * store and is handled early in the store call stack by the function 4037 * mas_is_span_wr(). When a spanning store is identified, the maple 4038 * state is duplicated. The first maple state walks the left tree path 4039 * to ``index``, the duplicate walks the right tree path to ``last``. 4040 * The data in the two nodes are combined into a single node, two nodes, 4041 * or possibly three nodes (see the 3-way split above). A ``NULL`` 4042 * written to the last entry of a node is considered a spanning store as 4043 * a rebalance is required for the operation to complete and an overflow 4044 * of data may happen. 4045 */ 4046 mas = wr_mas->mas; 4047 trace_ma_op(__func__, mas); 4048 4049 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 4050 return mas_new_root(mas, wr_mas->entry); 4051 /* 4052 * Node rebalancing may occur due to this store, so there may be three new 4053 * entries per level plus a new root. 4054 */ 4055 height = mas_mt_height(mas); 4056 mas_node_count(mas, 1 + height * 3); 4057 if (mas_is_err(mas)) 4058 return 0; 4059 4060 /* 4061 * Set up right side. Need to get to the next offset after the spanning 4062 * store to ensure it's not NULL and to combine both the next node and 4063 * the node with the start together. 4064 */ 4065 r_mas = *mas; 4066 /* Avoid overflow, walk to next slot in the tree. */ 4067 if (r_mas.last + 1) 4068 r_mas.last++; 4069 4070 r_mas.index = r_mas.last; 4071 mas_wr_walk_index(&r_wr_mas); 4072 r_mas.last = r_mas.index = mas->last; 4073 4074 /* Set up left side. */ 4075 l_mas = *mas; 4076 mas_wr_walk_index(&l_wr_mas); 4077 4078 if (!wr_mas->entry) { 4079 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 4080 mas->offset = l_mas.offset; 4081 mas->index = l_mas.index; 4082 mas->last = l_mas.last = r_mas.last; 4083 } 4084 4085 /* expanding NULLs may make this cover the entire range */ 4086 if (!l_mas.index && r_mas.last == ULONG_MAX) { 4087 mas_set_range(mas, 0, ULONG_MAX); 4088 return mas_new_root(mas, wr_mas->entry); 4089 } 4090 4091 memset(&b_node, 0, sizeof(struct maple_big_node)); 4092 /* Copy l_mas and store the value in b_node. */ 4093 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end); 4094 /* Copy r_mas into b_node. */ 4095 if (r_mas.offset <= r_wr_mas.node_end) 4096 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end, 4097 &b_node, b_node.b_end + 1); 4098 else 4099 b_node.b_end++; 4100 4101 /* Stop spanning searches by searching for just index. */ 4102 l_mas.index = l_mas.last = mas->index; 4103 4104 mast.bn = &b_node; 4105 mast.orig_l = &l_mas; 4106 mast.orig_r = &r_mas; 4107 /* Combine l_mas and r_mas and split them up evenly again. */ 4108 return mas_spanning_rebalance(mas, &mast, height + 1); 4109 } 4110 4111 /* 4112 * mas_wr_node_store() - Attempt to store the value in a node 4113 * @wr_mas: The maple write state 4114 * 4115 * Attempts to reuse the node, but may allocate. 4116 * 4117 * Return: True if stored, false otherwise 4118 */ 4119 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas) 4120 { 4121 struct ma_state *mas = wr_mas->mas; 4122 void __rcu **dst_slots; 4123 unsigned long *dst_pivots; 4124 unsigned char dst_offset; 4125 unsigned char new_end = wr_mas->node_end; 4126 unsigned char offset; 4127 unsigned char node_slots = mt_slots[wr_mas->type]; 4128 struct maple_node reuse, *newnode; 4129 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type]; 4130 bool in_rcu = mt_in_rcu(mas->tree); 4131 4132 offset = mas->offset; 4133 if (mas->last == wr_mas->r_max) { 4134 /* runs right to the end of the node */ 4135 if (mas->last == mas->max) 4136 new_end = offset; 4137 /* don't copy this offset */ 4138 wr_mas->offset_end++; 4139 } else if (mas->last < wr_mas->r_max) { 4140 /* new range ends in this range */ 4141 if (unlikely(wr_mas->r_max == ULONG_MAX)) 4142 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type); 4143 4144 new_end++; 4145 } else { 4146 if (wr_mas->end_piv == mas->last) 4147 wr_mas->offset_end++; 4148 4149 new_end -= wr_mas->offset_end - offset - 1; 4150 } 4151 4152 /* new range starts within a range */ 4153 if (wr_mas->r_min < mas->index) 4154 new_end++; 4155 4156 /* Not enough room */ 4157 if (new_end >= node_slots) 4158 return false; 4159 4160 /* Not enough data. */ 4161 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 4162 !(mas->mas_flags & MA_STATE_BULK)) 4163 return false; 4164 4165 /* set up node. */ 4166 if (in_rcu) { 4167 mas_node_count(mas, 1); 4168 if (mas_is_err(mas)) 4169 return false; 4170 4171 newnode = mas_pop_node(mas); 4172 } else { 4173 memset(&reuse, 0, sizeof(struct maple_node)); 4174 newnode = &reuse; 4175 } 4176 4177 newnode->parent = mas_mn(mas)->parent; 4178 dst_pivots = ma_pivots(newnode, wr_mas->type); 4179 dst_slots = ma_slots(newnode, wr_mas->type); 4180 /* Copy from start to insert point */ 4181 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1)); 4182 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1)); 4183 dst_offset = offset; 4184 4185 /* Handle insert of new range starting after old range */ 4186 if (wr_mas->r_min < mas->index) { 4187 mas->offset++; 4188 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content); 4189 dst_pivots[dst_offset++] = mas->index - 1; 4190 } 4191 4192 /* Store the new entry and range end. */ 4193 if (dst_offset < max_piv) 4194 dst_pivots[dst_offset] = mas->last; 4195 mas->offset = dst_offset; 4196 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry); 4197 4198 /* 4199 * this range wrote to the end of the node or it overwrote the rest of 4200 * the data 4201 */ 4202 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) { 4203 new_end = dst_offset; 4204 goto done; 4205 } 4206 4207 dst_offset++; 4208 /* Copy to the end of node if necessary. */ 4209 copy_size = wr_mas->node_end - wr_mas->offset_end + 1; 4210 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end, 4211 sizeof(void *) * copy_size); 4212 if (dst_offset < max_piv) { 4213 if (copy_size > max_piv - dst_offset) 4214 copy_size = max_piv - dst_offset; 4215 4216 memcpy(dst_pivots + dst_offset, 4217 wr_mas->pivots + wr_mas->offset_end, 4218 sizeof(unsigned long) * copy_size); 4219 } 4220 4221 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1)) 4222 dst_pivots[new_end] = mas->max; 4223 4224 done: 4225 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end); 4226 if (in_rcu) { 4227 mte_set_node_dead(mas->node); 4228 mas->node = mt_mk_node(newnode, wr_mas->type); 4229 mas_replace(mas, false); 4230 } else { 4231 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 4232 } 4233 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4234 mas_update_gap(mas); 4235 return true; 4236 } 4237 4238 /* 4239 * mas_wr_slot_store: Attempt to store a value in a slot. 4240 * @wr_mas: the maple write state 4241 * 4242 * Return: True if stored, false otherwise 4243 */ 4244 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 4245 { 4246 struct ma_state *mas = wr_mas->mas; 4247 unsigned long lmax; /* Logical max. */ 4248 unsigned char offset = mas->offset; 4249 4250 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) || 4251 (offset != wr_mas->node_end))) 4252 return false; 4253 4254 if (offset == wr_mas->node_end - 1) 4255 lmax = mas->max; 4256 else 4257 lmax = wr_mas->pivots[offset + 1]; 4258 4259 /* going to overwrite too many slots. */ 4260 if (lmax < mas->last) 4261 return false; 4262 4263 if (wr_mas->r_min == mas->index) { 4264 /* overwriting two or more ranges with one. */ 4265 if (lmax == mas->last) 4266 return false; 4267 4268 /* Overwriting all of offset and a portion of offset + 1. */ 4269 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry); 4270 wr_mas->pivots[offset] = mas->last; 4271 goto done; 4272 } 4273 4274 /* Doesn't end on the next range end. */ 4275 if (lmax != mas->last) 4276 return false; 4277 4278 /* Overwriting a portion of offset and all of offset + 1 */ 4279 if ((offset + 1 < mt_pivots[wr_mas->type]) && 4280 (wr_mas->entry || wr_mas->pivots[offset + 1])) 4281 wr_mas->pivots[offset + 1] = mas->last; 4282 4283 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry); 4284 wr_mas->pivots[offset] = mas->index - 1; 4285 mas->offset++; /* Keep mas accurate. */ 4286 4287 done: 4288 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4289 mas_update_gap(mas); 4290 return true; 4291 } 4292 4293 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4294 { 4295 while ((wr_mas->mas->last > wr_mas->end_piv) && 4296 (wr_mas->offset_end < wr_mas->node_end)) 4297 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end]; 4298 4299 if (wr_mas->mas->last > wr_mas->end_piv) 4300 wr_mas->end_piv = wr_mas->mas->max; 4301 } 4302 4303 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4304 { 4305 struct ma_state *mas = wr_mas->mas; 4306 4307 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end]) 4308 mas->last = wr_mas->end_piv; 4309 4310 /* Check next slot(s) if we are overwriting the end */ 4311 if ((mas->last == wr_mas->end_piv) && 4312 (wr_mas->node_end != wr_mas->offset_end) && 4313 !wr_mas->slots[wr_mas->offset_end + 1]) { 4314 wr_mas->offset_end++; 4315 if (wr_mas->offset_end == wr_mas->node_end) 4316 mas->last = mas->max; 4317 else 4318 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4319 wr_mas->end_piv = mas->last; 4320 } 4321 4322 if (!wr_mas->content) { 4323 /* If this one is null, the next and prev are not */ 4324 mas->index = wr_mas->r_min; 4325 } else { 4326 /* Check prev slot if we are overwriting the start */ 4327 if (mas->index == wr_mas->r_min && mas->offset && 4328 !wr_mas->slots[mas->offset - 1]) { 4329 mas->offset--; 4330 wr_mas->r_min = mas->index = 4331 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4332 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4333 } 4334 } 4335 } 4336 4337 static inline bool mas_wr_append(struct ma_wr_state *wr_mas) 4338 { 4339 unsigned char end = wr_mas->node_end; 4340 unsigned char new_end = end + 1; 4341 struct ma_state *mas = wr_mas->mas; 4342 unsigned char node_pivots = mt_pivots[wr_mas->type]; 4343 4344 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) { 4345 if (new_end < node_pivots) 4346 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4347 4348 if (new_end < node_pivots) 4349 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4350 4351 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry); 4352 mas->offset = new_end; 4353 wr_mas->pivots[end] = mas->index - 1; 4354 4355 return true; 4356 } 4357 4358 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) { 4359 if (new_end < node_pivots) 4360 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4361 4362 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content); 4363 if (new_end < node_pivots) 4364 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4365 4366 wr_mas->pivots[end] = mas->last; 4367 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry); 4368 return true; 4369 } 4370 4371 return false; 4372 } 4373 4374 /* 4375 * mas_wr_bnode() - Slow path for a modification. 4376 * @wr_mas: The write maple state 4377 * 4378 * This is where split, rebalance end up. 4379 */ 4380 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4381 { 4382 struct maple_big_node b_node; 4383 4384 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4385 memset(&b_node, 0, sizeof(struct maple_big_node)); 4386 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4387 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end); 4388 } 4389 4390 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4391 { 4392 unsigned char node_slots; 4393 unsigned char node_size; 4394 struct ma_state *mas = wr_mas->mas; 4395 4396 /* Direct replacement */ 4397 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4398 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4399 if (!!wr_mas->entry ^ !!wr_mas->content) 4400 mas_update_gap(mas); 4401 return; 4402 } 4403 4404 /* Attempt to append */ 4405 node_slots = mt_slots[wr_mas->type]; 4406 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2; 4407 if (mas->max == ULONG_MAX) 4408 node_size++; 4409 4410 /* slot and node store will not fit, go to the slow path */ 4411 if (unlikely(node_size >= node_slots)) 4412 goto slow_path; 4413 4414 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) && 4415 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) { 4416 if (!wr_mas->content || !wr_mas->entry) 4417 mas_update_gap(mas); 4418 return; 4419 } 4420 4421 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas)) 4422 return; 4423 else if (mas_wr_node_store(wr_mas)) 4424 return; 4425 4426 if (mas_is_err(mas)) 4427 return; 4428 4429 slow_path: 4430 mas_wr_bnode(wr_mas); 4431 } 4432 4433 /* 4434 * mas_wr_store_entry() - Internal call to store a value 4435 * @mas: The maple state 4436 * @entry: The entry to store. 4437 * 4438 * Return: The contents that was stored at the index. 4439 */ 4440 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4441 { 4442 struct ma_state *mas = wr_mas->mas; 4443 4444 wr_mas->content = mas_start(mas); 4445 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4446 mas_store_root(mas, wr_mas->entry); 4447 return wr_mas->content; 4448 } 4449 4450 if (unlikely(!mas_wr_walk(wr_mas))) { 4451 mas_wr_spanning_store(wr_mas); 4452 return wr_mas->content; 4453 } 4454 4455 /* At this point, we are at the leaf node that needs to be altered. */ 4456 wr_mas->end_piv = wr_mas->r_max; 4457 mas_wr_end_piv(wr_mas); 4458 4459 if (!wr_mas->entry) 4460 mas_wr_extend_null(wr_mas); 4461 4462 /* New root for a single pointer */ 4463 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4464 mas_new_root(mas, wr_mas->entry); 4465 return wr_mas->content; 4466 } 4467 4468 mas_wr_modify(wr_mas); 4469 return wr_mas->content; 4470 } 4471 4472 /** 4473 * mas_insert() - Internal call to insert a value 4474 * @mas: The maple state 4475 * @entry: The entry to store 4476 * 4477 * Return: %NULL or the contents that already exists at the requested index 4478 * otherwise. The maple state needs to be checked for error conditions. 4479 */ 4480 static inline void *mas_insert(struct ma_state *mas, void *entry) 4481 { 4482 MA_WR_STATE(wr_mas, mas, entry); 4483 4484 /* 4485 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4486 * tree. If the insert fits exactly into an existing gap with a value 4487 * of NULL, then the slot only needs to be written with the new value. 4488 * If the range being inserted is adjacent to another range, then only a 4489 * single pivot needs to be inserted (as well as writing the entry). If 4490 * the new range is within a gap but does not touch any other ranges, 4491 * then two pivots need to be inserted: the start - 1, and the end. As 4492 * usual, the entry must be written. Most operations require a new node 4493 * to be allocated and replace an existing node to ensure RCU safety, 4494 * when in RCU mode. The exception to requiring a newly allocated node 4495 * is when inserting at the end of a node (appending). When done 4496 * carefully, appending can reuse the node in place. 4497 */ 4498 wr_mas.content = mas_start(mas); 4499 if (wr_mas.content) 4500 goto exists; 4501 4502 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4503 mas_store_root(mas, entry); 4504 return NULL; 4505 } 4506 4507 /* spanning writes always overwrite something */ 4508 if (!mas_wr_walk(&wr_mas)) 4509 goto exists; 4510 4511 /* At this point, we are at the leaf node that needs to be altered. */ 4512 wr_mas.offset_end = mas->offset; 4513 wr_mas.end_piv = wr_mas.r_max; 4514 4515 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4516 goto exists; 4517 4518 if (!entry) 4519 return NULL; 4520 4521 mas_wr_modify(&wr_mas); 4522 return wr_mas.content; 4523 4524 exists: 4525 mas_set_err(mas, -EEXIST); 4526 return wr_mas.content; 4527 4528 } 4529 4530 /* 4531 * mas_prev_node() - Find the prev non-null entry at the same level in the 4532 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE. 4533 * @mas: The maple state 4534 * @min: The lower limit to search 4535 * 4536 * The prev node value will be mas->node[mas->offset] or MAS_NONE. 4537 * Return: 1 if the node is dead, 0 otherwise. 4538 */ 4539 static inline int mas_prev_node(struct ma_state *mas, unsigned long min) 4540 { 4541 enum maple_type mt; 4542 int offset, level; 4543 void __rcu **slots; 4544 struct maple_node *node; 4545 struct maple_enode *enode; 4546 unsigned long *pivots; 4547 4548 if (mas_is_none(mas)) 4549 return 0; 4550 4551 level = 0; 4552 do { 4553 node = mas_mn(mas); 4554 if (ma_is_root(node)) 4555 goto no_entry; 4556 4557 /* Walk up. */ 4558 if (unlikely(mas_ascend(mas))) 4559 return 1; 4560 offset = mas->offset; 4561 level++; 4562 } while (!offset); 4563 4564 offset--; 4565 mt = mte_node_type(mas->node); 4566 node = mas_mn(mas); 4567 slots = ma_slots(node, mt); 4568 pivots = ma_pivots(node, mt); 4569 if (unlikely(ma_dead_node(node))) 4570 return 1; 4571 4572 mas->max = pivots[offset]; 4573 if (offset) 4574 mas->min = pivots[offset - 1] + 1; 4575 if (unlikely(ma_dead_node(node))) 4576 return 1; 4577 4578 if (mas->max < min) 4579 goto no_entry_min; 4580 4581 while (level > 1) { 4582 level--; 4583 enode = mas_slot(mas, slots, offset); 4584 if (unlikely(ma_dead_node(node))) 4585 return 1; 4586 4587 mas->node = enode; 4588 mt = mte_node_type(mas->node); 4589 node = mas_mn(mas); 4590 slots = ma_slots(node, mt); 4591 pivots = ma_pivots(node, mt); 4592 offset = ma_data_end(node, mt, pivots, mas->max); 4593 if (unlikely(ma_dead_node(node))) 4594 return 1; 4595 4596 if (offset) 4597 mas->min = pivots[offset - 1] + 1; 4598 4599 if (offset < mt_pivots[mt]) 4600 mas->max = pivots[offset]; 4601 4602 if (mas->max < min) 4603 goto no_entry; 4604 } 4605 4606 mas->node = mas_slot(mas, slots, offset); 4607 if (unlikely(ma_dead_node(node))) 4608 return 1; 4609 4610 mas->offset = mas_data_end(mas); 4611 if (unlikely(mte_dead_node(mas->node))) 4612 return 1; 4613 4614 return 0; 4615 4616 no_entry_min: 4617 mas->offset = offset; 4618 if (offset) 4619 mas->min = pivots[offset - 1] + 1; 4620 no_entry: 4621 if (unlikely(ma_dead_node(node))) 4622 return 1; 4623 4624 mas->node = MAS_NONE; 4625 return 0; 4626 } 4627 4628 /* 4629 * mas_next_node() - Get the next node at the same level in the tree. 4630 * @mas: The maple state 4631 * @max: The maximum pivot value to check. 4632 * 4633 * The next value will be mas->node[mas->offset] or MAS_NONE. 4634 * Return: 1 on dead node, 0 otherwise. 4635 */ 4636 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node, 4637 unsigned long max) 4638 { 4639 unsigned long min, pivot; 4640 unsigned long *pivots; 4641 struct maple_enode *enode; 4642 int level = 0; 4643 unsigned char offset; 4644 unsigned char node_end; 4645 enum maple_type mt; 4646 void __rcu **slots; 4647 4648 if (mas->max >= max) 4649 goto no_entry; 4650 4651 level = 0; 4652 do { 4653 if (ma_is_root(node)) 4654 goto no_entry; 4655 4656 min = mas->max + 1; 4657 if (min > max) 4658 goto no_entry; 4659 4660 if (unlikely(mas_ascend(mas))) 4661 return 1; 4662 4663 offset = mas->offset; 4664 level++; 4665 node = mas_mn(mas); 4666 mt = mte_node_type(mas->node); 4667 pivots = ma_pivots(node, mt); 4668 node_end = ma_data_end(node, mt, pivots, mas->max); 4669 if (unlikely(ma_dead_node(node))) 4670 return 1; 4671 4672 } while (unlikely(offset == node_end)); 4673 4674 slots = ma_slots(node, mt); 4675 pivot = mas_safe_pivot(mas, pivots, ++offset, mt); 4676 while (unlikely(level > 1)) { 4677 /* Descend, if necessary */ 4678 enode = mas_slot(mas, slots, offset); 4679 if (unlikely(ma_dead_node(node))) 4680 return 1; 4681 4682 mas->node = enode; 4683 level--; 4684 node = mas_mn(mas); 4685 mt = mte_node_type(mas->node); 4686 slots = ma_slots(node, mt); 4687 pivots = ma_pivots(node, mt); 4688 if (unlikely(ma_dead_node(node))) 4689 return 1; 4690 4691 offset = 0; 4692 pivot = pivots[0]; 4693 } 4694 4695 enode = mas_slot(mas, slots, offset); 4696 if (unlikely(ma_dead_node(node))) 4697 return 1; 4698 4699 mas->node = enode; 4700 mas->min = min; 4701 mas->max = pivot; 4702 return 0; 4703 4704 no_entry: 4705 if (unlikely(ma_dead_node(node))) 4706 return 1; 4707 4708 mas->node = MAS_NONE; 4709 return 0; 4710 } 4711 4712 /* 4713 * mas_next_nentry() - Get the next node entry 4714 * @mas: The maple state 4715 * @max: The maximum value to check 4716 * @*range_start: Pointer to store the start of the range. 4717 * 4718 * Sets @mas->offset to the offset of the next node entry, @mas->last to the 4719 * pivot of the entry. 4720 * 4721 * Return: The next entry, %NULL otherwise 4722 */ 4723 static inline void *mas_next_nentry(struct ma_state *mas, 4724 struct maple_node *node, unsigned long max, enum maple_type type) 4725 { 4726 unsigned char count; 4727 unsigned long pivot; 4728 unsigned long *pivots; 4729 void __rcu **slots; 4730 void *entry; 4731 4732 if (mas->last == mas->max) { 4733 mas->index = mas->max; 4734 return NULL; 4735 } 4736 4737 slots = ma_slots(node, type); 4738 pivots = ma_pivots(node, type); 4739 count = ma_data_end(node, type, pivots, mas->max); 4740 if (unlikely(ma_dead_node(node))) 4741 return NULL; 4742 4743 mas->index = mas_safe_min(mas, pivots, mas->offset); 4744 if (unlikely(ma_dead_node(node))) 4745 return NULL; 4746 4747 if (mas->index > max) 4748 return NULL; 4749 4750 if (mas->offset > count) 4751 return NULL; 4752 4753 while (mas->offset < count) { 4754 pivot = pivots[mas->offset]; 4755 entry = mas_slot(mas, slots, mas->offset); 4756 if (ma_dead_node(node)) 4757 return NULL; 4758 4759 if (entry) 4760 goto found; 4761 4762 if (pivot >= max) 4763 return NULL; 4764 4765 mas->index = pivot + 1; 4766 mas->offset++; 4767 } 4768 4769 if (mas->index > mas->max) { 4770 mas->index = mas->last; 4771 return NULL; 4772 } 4773 4774 pivot = mas_safe_pivot(mas, pivots, mas->offset, type); 4775 entry = mas_slot(mas, slots, mas->offset); 4776 if (ma_dead_node(node)) 4777 return NULL; 4778 4779 if (!pivot) 4780 return NULL; 4781 4782 if (!entry) 4783 return NULL; 4784 4785 found: 4786 mas->last = pivot; 4787 return entry; 4788 } 4789 4790 static inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4791 { 4792 retry: 4793 mas_set(mas, index); 4794 mas_state_walk(mas); 4795 if (mas_is_start(mas)) 4796 goto retry; 4797 } 4798 4799 /* 4800 * mas_next_entry() - Internal function to get the next entry. 4801 * @mas: The maple state 4802 * @limit: The maximum range start. 4803 * 4804 * Set the @mas->node to the next entry and the range_start to 4805 * the beginning value for the entry. Does not check beyond @limit. 4806 * Sets @mas->index and @mas->last to the limit if it is hit. 4807 * Restarts on dead nodes. 4808 * 4809 * Return: the next entry or %NULL. 4810 */ 4811 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4812 { 4813 void *entry = NULL; 4814 struct maple_enode *prev_node; 4815 struct maple_node *node; 4816 unsigned char offset; 4817 unsigned long last; 4818 enum maple_type mt; 4819 4820 if (mas->index > limit) { 4821 mas->index = mas->last = limit; 4822 mas_pause(mas); 4823 return NULL; 4824 } 4825 last = mas->last; 4826 retry: 4827 offset = mas->offset; 4828 prev_node = mas->node; 4829 node = mas_mn(mas); 4830 mt = mte_node_type(mas->node); 4831 mas->offset++; 4832 if (unlikely(mas->offset >= mt_slots[mt])) { 4833 mas->offset = mt_slots[mt] - 1; 4834 goto next_node; 4835 } 4836 4837 while (!mas_is_none(mas)) { 4838 entry = mas_next_nentry(mas, node, limit, mt); 4839 if (unlikely(ma_dead_node(node))) { 4840 mas_rewalk(mas, last); 4841 goto retry; 4842 } 4843 4844 if (likely(entry)) 4845 return entry; 4846 4847 if (unlikely((mas->index > limit))) 4848 break; 4849 4850 next_node: 4851 prev_node = mas->node; 4852 offset = mas->offset; 4853 if (unlikely(mas_next_node(mas, node, limit))) { 4854 mas_rewalk(mas, last); 4855 goto retry; 4856 } 4857 mas->offset = 0; 4858 node = mas_mn(mas); 4859 mt = mte_node_type(mas->node); 4860 } 4861 4862 mas->index = mas->last = limit; 4863 mas->offset = offset; 4864 mas->node = prev_node; 4865 return NULL; 4866 } 4867 4868 /* 4869 * mas_prev_nentry() - Get the previous node entry. 4870 * @mas: The maple state. 4871 * @limit: The lower limit to check for a value. 4872 * 4873 * Return: the entry, %NULL otherwise. 4874 */ 4875 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit, 4876 unsigned long index) 4877 { 4878 unsigned long pivot, min; 4879 unsigned char offset; 4880 struct maple_node *mn; 4881 enum maple_type mt; 4882 unsigned long *pivots; 4883 void __rcu **slots; 4884 void *entry; 4885 4886 retry: 4887 if (!mas->offset) 4888 return NULL; 4889 4890 mn = mas_mn(mas); 4891 mt = mte_node_type(mas->node); 4892 offset = mas->offset - 1; 4893 if (offset >= mt_slots[mt]) 4894 offset = mt_slots[mt] - 1; 4895 4896 slots = ma_slots(mn, mt); 4897 pivots = ma_pivots(mn, mt); 4898 if (unlikely(ma_dead_node(mn))) { 4899 mas_rewalk(mas, index); 4900 goto retry; 4901 } 4902 4903 if (offset == mt_pivots[mt]) 4904 pivot = mas->max; 4905 else 4906 pivot = pivots[offset]; 4907 4908 if (unlikely(ma_dead_node(mn))) { 4909 mas_rewalk(mas, index); 4910 goto retry; 4911 } 4912 4913 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) || 4914 !pivot)) 4915 pivot = pivots[--offset]; 4916 4917 min = mas_safe_min(mas, pivots, offset); 4918 entry = mas_slot(mas, slots, offset); 4919 if (unlikely(ma_dead_node(mn))) { 4920 mas_rewalk(mas, index); 4921 goto retry; 4922 } 4923 4924 if (likely(entry)) { 4925 mas->offset = offset; 4926 mas->last = pivot; 4927 mas->index = min; 4928 } 4929 return entry; 4930 } 4931 4932 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min) 4933 { 4934 void *entry; 4935 4936 if (mas->index < min) { 4937 mas->index = mas->last = min; 4938 mas->node = MAS_NONE; 4939 return NULL; 4940 } 4941 retry: 4942 while (likely(!mas_is_none(mas))) { 4943 entry = mas_prev_nentry(mas, min, mas->index); 4944 if (unlikely(mas->last < min)) 4945 goto not_found; 4946 4947 if (likely(entry)) 4948 return entry; 4949 4950 if (unlikely(mas_prev_node(mas, min))) { 4951 mas_rewalk(mas, mas->index); 4952 goto retry; 4953 } 4954 4955 mas->offset++; 4956 } 4957 4958 mas->offset--; 4959 not_found: 4960 mas->index = mas->last = min; 4961 return NULL; 4962 } 4963 4964 /* 4965 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4966 * highest gap address of a given size in a given node and descend. 4967 * @mas: The maple state 4968 * @size: The needed size. 4969 * 4970 * Return: True if found in a leaf, false otherwise. 4971 * 4972 */ 4973 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size) 4974 { 4975 enum maple_type type = mte_node_type(mas->node); 4976 struct maple_node *node = mas_mn(mas); 4977 unsigned long *pivots, *gaps; 4978 void __rcu **slots; 4979 unsigned long gap = 0; 4980 unsigned long max, min; 4981 unsigned char offset; 4982 4983 if (unlikely(mas_is_err(mas))) 4984 return true; 4985 4986 if (ma_is_dense(type)) { 4987 /* dense nodes. */ 4988 mas->offset = (unsigned char)(mas->index - mas->min); 4989 return true; 4990 } 4991 4992 pivots = ma_pivots(node, type); 4993 slots = ma_slots(node, type); 4994 gaps = ma_gaps(node, type); 4995 offset = mas->offset; 4996 min = mas_safe_min(mas, pivots, offset); 4997 /* Skip out of bounds. */ 4998 while (mas->last < min) 4999 min = mas_safe_min(mas, pivots, --offset); 5000 5001 max = mas_safe_pivot(mas, pivots, offset, type); 5002 while (mas->index <= max) { 5003 gap = 0; 5004 if (gaps) 5005 gap = gaps[offset]; 5006 else if (!mas_slot(mas, slots, offset)) 5007 gap = max - min + 1; 5008 5009 if (gap) { 5010 if ((size <= gap) && (size <= mas->last - min + 1)) 5011 break; 5012 5013 if (!gaps) { 5014 /* Skip the next slot, it cannot be a gap. */ 5015 if (offset < 2) 5016 goto ascend; 5017 5018 offset -= 2; 5019 max = pivots[offset]; 5020 min = mas_safe_min(mas, pivots, offset); 5021 continue; 5022 } 5023 } 5024 5025 if (!offset) 5026 goto ascend; 5027 5028 offset--; 5029 max = min - 1; 5030 min = mas_safe_min(mas, pivots, offset); 5031 } 5032 5033 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 5034 goto no_space; 5035 5036 if (unlikely(ma_is_leaf(type))) { 5037 mas->offset = offset; 5038 mas->min = min; 5039 mas->max = min + gap - 1; 5040 return true; 5041 } 5042 5043 /* descend, only happens under lock. */ 5044 mas->node = mas_slot(mas, slots, offset); 5045 mas->min = min; 5046 mas->max = max; 5047 mas->offset = mas_data_end(mas); 5048 return false; 5049 5050 ascend: 5051 if (!mte_is_root(mas->node)) 5052 return false; 5053 5054 no_space: 5055 mas_set_err(mas, -EBUSY); 5056 return false; 5057 } 5058 5059 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 5060 { 5061 enum maple_type type = mte_node_type(mas->node); 5062 unsigned long pivot, min, gap = 0; 5063 unsigned char offset; 5064 unsigned long *gaps; 5065 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 5066 void __rcu **slots = ma_slots(mas_mn(mas), type); 5067 bool found = false; 5068 5069 if (ma_is_dense(type)) { 5070 mas->offset = (unsigned char)(mas->index - mas->min); 5071 return true; 5072 } 5073 5074 gaps = ma_gaps(mte_to_node(mas->node), type); 5075 offset = mas->offset; 5076 min = mas_safe_min(mas, pivots, offset); 5077 for (; offset < mt_slots[type]; offset++) { 5078 pivot = mas_safe_pivot(mas, pivots, offset, type); 5079 if (offset && !pivot) 5080 break; 5081 5082 /* Not within lower bounds */ 5083 if (mas->index > pivot) 5084 goto next_slot; 5085 5086 if (gaps) 5087 gap = gaps[offset]; 5088 else if (!mas_slot(mas, slots, offset)) 5089 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 5090 else 5091 goto next_slot; 5092 5093 if (gap >= size) { 5094 if (ma_is_leaf(type)) { 5095 found = true; 5096 goto done; 5097 } 5098 if (mas->index <= pivot) { 5099 mas->node = mas_slot(mas, slots, offset); 5100 mas->min = min; 5101 mas->max = pivot; 5102 offset = 0; 5103 break; 5104 } 5105 } 5106 next_slot: 5107 min = pivot + 1; 5108 if (mas->last <= pivot) { 5109 mas_set_err(mas, -EBUSY); 5110 return true; 5111 } 5112 } 5113 5114 if (mte_is_root(mas->node)) 5115 found = true; 5116 done: 5117 mas->offset = offset; 5118 return found; 5119 } 5120 5121 /** 5122 * mas_walk() - Search for @mas->index in the tree. 5123 * @mas: The maple state. 5124 * 5125 * mas->index and mas->last will be set to the range if there is a value. If 5126 * mas->node is MAS_NONE, reset to MAS_START. 5127 * 5128 * Return: the entry at the location or %NULL. 5129 */ 5130 void *mas_walk(struct ma_state *mas) 5131 { 5132 void *entry; 5133 5134 retry: 5135 entry = mas_state_walk(mas); 5136 if (mas_is_start(mas)) 5137 goto retry; 5138 5139 if (mas_is_ptr(mas)) { 5140 if (!mas->index) { 5141 mas->last = 0; 5142 } else { 5143 mas->index = 1; 5144 mas->last = ULONG_MAX; 5145 } 5146 return entry; 5147 } 5148 5149 if (mas_is_none(mas)) { 5150 mas->index = 0; 5151 mas->last = ULONG_MAX; 5152 } 5153 5154 return entry; 5155 } 5156 EXPORT_SYMBOL_GPL(mas_walk); 5157 5158 static inline bool mas_rewind_node(struct ma_state *mas) 5159 { 5160 unsigned char slot; 5161 5162 do { 5163 if (mte_is_root(mas->node)) { 5164 slot = mas->offset; 5165 if (!slot) 5166 return false; 5167 } else { 5168 mas_ascend(mas); 5169 slot = mas->offset; 5170 } 5171 } while (!slot); 5172 5173 mas->offset = --slot; 5174 return true; 5175 } 5176 5177 /* 5178 * mas_skip_node() - Internal function. Skip over a node. 5179 * @mas: The maple state. 5180 * 5181 * Return: true if there is another node, false otherwise. 5182 */ 5183 static inline bool mas_skip_node(struct ma_state *mas) 5184 { 5185 if (mas_is_err(mas)) 5186 return false; 5187 5188 do { 5189 if (mte_is_root(mas->node)) { 5190 if (mas->offset >= mas_data_end(mas)) { 5191 mas_set_err(mas, -EBUSY); 5192 return false; 5193 } 5194 } else { 5195 mas_ascend(mas); 5196 } 5197 } while (mas->offset >= mas_data_end(mas)); 5198 5199 mas->offset++; 5200 return true; 5201 } 5202 5203 /* 5204 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5205 * @size 5206 * @mas: The maple state 5207 * @size: The size of the gap required 5208 * 5209 * Search between @mas->index and @mas->last for a gap of @size. 5210 */ 5211 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5212 { 5213 struct maple_enode *last = NULL; 5214 5215 /* 5216 * There are 4 options: 5217 * go to child (descend) 5218 * go back to parent (ascend) 5219 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5220 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5221 */ 5222 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5223 if (last == mas->node) 5224 mas_skip_node(mas); 5225 else 5226 last = mas->node; 5227 } 5228 } 5229 5230 /* 5231 * mas_fill_gap() - Fill a located gap with @entry. 5232 * @mas: The maple state 5233 * @entry: The value to store 5234 * @slot: The offset into the node to store the @entry 5235 * @size: The size of the entry 5236 * @index: The start location 5237 */ 5238 static inline void mas_fill_gap(struct ma_state *mas, void *entry, 5239 unsigned char slot, unsigned long size, unsigned long *index) 5240 { 5241 MA_WR_STATE(wr_mas, mas, entry); 5242 unsigned char pslot = mte_parent_slot(mas->node); 5243 struct maple_enode *mn = mas->node; 5244 unsigned long *pivots; 5245 enum maple_type ptype; 5246 /* 5247 * mas->index is the start address for the search 5248 * which may no longer be needed. 5249 * mas->last is the end address for the search 5250 */ 5251 5252 *index = mas->index; 5253 mas->last = mas->index + size - 1; 5254 5255 /* 5256 * It is possible that using mas->max and mas->min to correctly 5257 * calculate the index and last will cause an issue in the gap 5258 * calculation, so fix the ma_state here 5259 */ 5260 mas_ascend(mas); 5261 ptype = mte_node_type(mas->node); 5262 pivots = ma_pivots(mas_mn(mas), ptype); 5263 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype); 5264 mas->min = mas_safe_min(mas, pivots, pslot); 5265 mas->node = mn; 5266 mas->offset = slot; 5267 mas_wr_store_entry(&wr_mas); 5268 } 5269 5270 /* 5271 * mas_sparse_area() - Internal function. Return upper or lower limit when 5272 * searching for a gap in an empty tree. 5273 * @mas: The maple state 5274 * @min: the minimum range 5275 * @max: The maximum range 5276 * @size: The size of the gap 5277 * @fwd: Searching forward or back 5278 */ 5279 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min, 5280 unsigned long max, unsigned long size, bool fwd) 5281 { 5282 unsigned long start = 0; 5283 5284 if (!unlikely(mas_is_none(mas))) 5285 start++; 5286 /* mas_is_ptr */ 5287 5288 if (start < min) 5289 start = min; 5290 5291 if (fwd) { 5292 mas->index = start; 5293 mas->last = start + size - 1; 5294 return; 5295 } 5296 5297 mas->index = max; 5298 } 5299 5300 /* 5301 * mas_empty_area() - Get the lowest address within the range that is 5302 * sufficient for the size requested. 5303 * @mas: The maple state 5304 * @min: The lowest value of the range 5305 * @max: The highest value of the range 5306 * @size: The size needed 5307 */ 5308 int mas_empty_area(struct ma_state *mas, unsigned long min, 5309 unsigned long max, unsigned long size) 5310 { 5311 unsigned char offset; 5312 unsigned long *pivots; 5313 enum maple_type mt; 5314 5315 if (mas_is_start(mas)) 5316 mas_start(mas); 5317 else if (mas->offset >= 2) 5318 mas->offset -= 2; 5319 else if (!mas_skip_node(mas)) 5320 return -EBUSY; 5321 5322 /* Empty set */ 5323 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5324 mas_sparse_area(mas, min, max, size, true); 5325 return 0; 5326 } 5327 5328 /* The start of the window can only be within these values */ 5329 mas->index = min; 5330 mas->last = max; 5331 mas_awalk(mas, size); 5332 5333 if (unlikely(mas_is_err(mas))) 5334 return xa_err(mas->node); 5335 5336 offset = mas->offset; 5337 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5338 return -EBUSY; 5339 5340 mt = mte_node_type(mas->node); 5341 pivots = ma_pivots(mas_mn(mas), mt); 5342 if (offset) 5343 mas->min = pivots[offset - 1] + 1; 5344 5345 if (offset < mt_pivots[mt]) 5346 mas->max = pivots[offset]; 5347 5348 if (mas->index < mas->min) 5349 mas->index = mas->min; 5350 5351 mas->last = mas->index + size - 1; 5352 return 0; 5353 } 5354 EXPORT_SYMBOL_GPL(mas_empty_area); 5355 5356 /* 5357 * mas_empty_area_rev() - Get the highest address within the range that is 5358 * sufficient for the size requested. 5359 * @mas: The maple state 5360 * @min: The lowest value of the range 5361 * @max: The highest value of the range 5362 * @size: The size needed 5363 */ 5364 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5365 unsigned long max, unsigned long size) 5366 { 5367 struct maple_enode *last = mas->node; 5368 5369 if (mas_is_start(mas)) { 5370 mas_start(mas); 5371 mas->offset = mas_data_end(mas); 5372 } else if (mas->offset >= 2) { 5373 mas->offset -= 2; 5374 } else if (!mas_rewind_node(mas)) { 5375 return -EBUSY; 5376 } 5377 5378 /* Empty set. */ 5379 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5380 mas_sparse_area(mas, min, max, size, false); 5381 return 0; 5382 } 5383 5384 /* The start of the window can only be within these values. */ 5385 mas->index = min; 5386 mas->last = max; 5387 5388 while (!mas_rev_awalk(mas, size)) { 5389 if (last == mas->node) { 5390 if (!mas_rewind_node(mas)) 5391 return -EBUSY; 5392 } else { 5393 last = mas->node; 5394 } 5395 } 5396 5397 if (mas_is_err(mas)) 5398 return xa_err(mas->node); 5399 5400 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5401 return -EBUSY; 5402 5403 /* 5404 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If 5405 * the maximum is outside the window we are searching, then use the last 5406 * location in the search. 5407 * mas->max and mas->min is the range of the gap. 5408 * mas->index and mas->last are currently set to the search range. 5409 */ 5410 5411 /* Trim the upper limit to the max. */ 5412 if (mas->max <= mas->last) 5413 mas->last = mas->max; 5414 5415 mas->index = mas->last - size + 1; 5416 return 0; 5417 } 5418 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5419 5420 static inline int mas_alloc(struct ma_state *mas, void *entry, 5421 unsigned long size, unsigned long *index) 5422 { 5423 unsigned long min; 5424 5425 mas_start(mas); 5426 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5427 mas_root_expand(mas, entry); 5428 if (mas_is_err(mas)) 5429 return xa_err(mas->node); 5430 5431 if (!mas->index) 5432 return mte_pivot(mas->node, 0); 5433 return mte_pivot(mas->node, 1); 5434 } 5435 5436 /* Must be walking a tree. */ 5437 mas_awalk(mas, size); 5438 if (mas_is_err(mas)) 5439 return xa_err(mas->node); 5440 5441 if (mas->offset == MAPLE_NODE_SLOTS) 5442 goto no_gap; 5443 5444 /* 5445 * At this point, mas->node points to the right node and we have an 5446 * offset that has a sufficient gap. 5447 */ 5448 min = mas->min; 5449 if (mas->offset) 5450 min = mte_pivot(mas->node, mas->offset - 1) + 1; 5451 5452 if (mas->index < min) 5453 mas->index = min; 5454 5455 mas_fill_gap(mas, entry, mas->offset, size, index); 5456 return 0; 5457 5458 no_gap: 5459 return -EBUSY; 5460 } 5461 5462 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min, 5463 unsigned long max, void *entry, 5464 unsigned long size, unsigned long *index) 5465 { 5466 int ret = 0; 5467 5468 ret = mas_empty_area_rev(mas, min, max, size); 5469 if (ret) 5470 return ret; 5471 5472 if (mas_is_err(mas)) 5473 return xa_err(mas->node); 5474 5475 if (mas->offset == MAPLE_NODE_SLOTS) 5476 goto no_gap; 5477 5478 mas_fill_gap(mas, entry, mas->offset, size, index); 5479 return 0; 5480 5481 no_gap: 5482 return -EBUSY; 5483 } 5484 5485 /* 5486 * mte_dead_leaves() - Mark all leaves of a node as dead. 5487 * @mas: The maple state 5488 * @slots: Pointer to the slot array 5489 * @type: The maple node type 5490 * 5491 * Must hold the write lock. 5492 * 5493 * Return: The number of leaves marked as dead. 5494 */ 5495 static inline 5496 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5497 void __rcu **slots) 5498 { 5499 struct maple_node *node; 5500 enum maple_type type; 5501 void *entry; 5502 int offset; 5503 5504 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5505 entry = mt_slot(mt, slots, offset); 5506 type = mte_node_type(entry); 5507 node = mte_to_node(entry); 5508 /* Use both node and type to catch LE & BE metadata */ 5509 if (!node || !type) 5510 break; 5511 5512 mte_set_node_dead(entry); 5513 node->type = type; 5514 rcu_assign_pointer(slots[offset], node); 5515 } 5516 5517 return offset; 5518 } 5519 5520 /** 5521 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5522 * @enode: The maple encoded node 5523 * @offset: The starting offset 5524 * 5525 * Note: This can only be used from the RCU callback context. 5526 */ 5527 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5528 { 5529 struct maple_node *node, *next; 5530 void __rcu **slots = NULL; 5531 5532 next = mte_to_node(*enode); 5533 do { 5534 *enode = ma_enode_ptr(next); 5535 node = mte_to_node(*enode); 5536 slots = ma_slots(node, node->type); 5537 next = rcu_dereference_protected(slots[offset], 5538 lock_is_held(&rcu_callback_map)); 5539 offset = 0; 5540 } while (!ma_is_leaf(next->type)); 5541 5542 return slots; 5543 } 5544 5545 /** 5546 * mt_free_walk() - Walk & free a tree in the RCU callback context 5547 * @head: The RCU head that's within the node. 5548 * 5549 * Note: This can only be used from the RCU callback context. 5550 */ 5551 static void mt_free_walk(struct rcu_head *head) 5552 { 5553 void __rcu **slots; 5554 struct maple_node *node, *start; 5555 struct maple_enode *enode; 5556 unsigned char offset; 5557 enum maple_type type; 5558 5559 node = container_of(head, struct maple_node, rcu); 5560 5561 if (ma_is_leaf(node->type)) 5562 goto free_leaf; 5563 5564 start = node; 5565 enode = mt_mk_node(node, node->type); 5566 slots = mte_dead_walk(&enode, 0); 5567 node = mte_to_node(enode); 5568 do { 5569 mt_free_bulk(node->slot_len, slots); 5570 offset = node->parent_slot + 1; 5571 enode = node->piv_parent; 5572 if (mte_to_node(enode) == node) 5573 goto free_leaf; 5574 5575 type = mte_node_type(enode); 5576 slots = ma_slots(mte_to_node(enode), type); 5577 if ((offset < mt_slots[type]) && 5578 rcu_dereference_protected(slots[offset], 5579 lock_is_held(&rcu_callback_map))) 5580 slots = mte_dead_walk(&enode, offset); 5581 node = mte_to_node(enode); 5582 } while ((node != start) || (node->slot_len < offset)); 5583 5584 slots = ma_slots(node, node->type); 5585 mt_free_bulk(node->slot_len, slots); 5586 5587 free_leaf: 5588 mt_free_rcu(&node->rcu); 5589 } 5590 5591 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5592 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5593 { 5594 struct maple_node *node; 5595 struct maple_enode *next = *enode; 5596 void __rcu **slots = NULL; 5597 enum maple_type type; 5598 unsigned char next_offset = 0; 5599 5600 do { 5601 *enode = next; 5602 node = mte_to_node(*enode); 5603 type = mte_node_type(*enode); 5604 slots = ma_slots(node, type); 5605 next = mt_slot_locked(mt, slots, next_offset); 5606 if ((mte_dead_node(next))) 5607 next = mt_slot_locked(mt, slots, ++next_offset); 5608 5609 mte_set_node_dead(*enode); 5610 node->type = type; 5611 node->piv_parent = prev; 5612 node->parent_slot = offset; 5613 offset = next_offset; 5614 next_offset = 0; 5615 prev = *enode; 5616 } while (!mte_is_leaf(next)); 5617 5618 return slots; 5619 } 5620 5621 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5622 bool free) 5623 { 5624 void __rcu **slots; 5625 struct maple_node *node = mte_to_node(enode); 5626 struct maple_enode *start; 5627 5628 if (mte_is_leaf(enode)) { 5629 node->type = mte_node_type(enode); 5630 goto free_leaf; 5631 } 5632 5633 start = enode; 5634 slots = mte_destroy_descend(&enode, mt, start, 0); 5635 node = mte_to_node(enode); // Updated in the above call. 5636 do { 5637 enum maple_type type; 5638 unsigned char offset; 5639 struct maple_enode *parent, *tmp; 5640 5641 node->slot_len = mte_dead_leaves(enode, mt, slots); 5642 if (free) 5643 mt_free_bulk(node->slot_len, slots); 5644 offset = node->parent_slot + 1; 5645 enode = node->piv_parent; 5646 if (mte_to_node(enode) == node) 5647 goto free_leaf; 5648 5649 type = mte_node_type(enode); 5650 slots = ma_slots(mte_to_node(enode), type); 5651 if (offset >= mt_slots[type]) 5652 goto next; 5653 5654 tmp = mt_slot_locked(mt, slots, offset); 5655 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5656 parent = enode; 5657 enode = tmp; 5658 slots = mte_destroy_descend(&enode, mt, parent, offset); 5659 } 5660 next: 5661 node = mte_to_node(enode); 5662 } while (start != enode); 5663 5664 node = mte_to_node(enode); 5665 node->slot_len = mte_dead_leaves(enode, mt, slots); 5666 if (free) 5667 mt_free_bulk(node->slot_len, slots); 5668 5669 free_leaf: 5670 if (free) 5671 mt_free_rcu(&node->rcu); 5672 else 5673 mt_clear_meta(mt, node, node->type); 5674 } 5675 5676 /* 5677 * mte_destroy_walk() - Free a tree or sub-tree. 5678 * @enode: the encoded maple node (maple_enode) to start 5679 * @mt: the tree to free - needed for node types. 5680 * 5681 * Must hold the write lock. 5682 */ 5683 static inline void mte_destroy_walk(struct maple_enode *enode, 5684 struct maple_tree *mt) 5685 { 5686 struct maple_node *node = mte_to_node(enode); 5687 5688 if (mt_in_rcu(mt)) { 5689 mt_destroy_walk(enode, mt, false); 5690 call_rcu(&node->rcu, mt_free_walk); 5691 } else { 5692 mt_destroy_walk(enode, mt, true); 5693 } 5694 } 5695 5696 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5697 { 5698 if (unlikely(mas_is_paused(wr_mas->mas))) 5699 mas_reset(wr_mas->mas); 5700 5701 if (!mas_is_start(wr_mas->mas)) { 5702 if (mas_is_none(wr_mas->mas)) { 5703 mas_reset(wr_mas->mas); 5704 } else { 5705 wr_mas->r_max = wr_mas->mas->max; 5706 wr_mas->type = mte_node_type(wr_mas->mas->node); 5707 if (mas_is_span_wr(wr_mas)) 5708 mas_reset(wr_mas->mas); 5709 } 5710 } 5711 } 5712 5713 /* Interface */ 5714 5715 /** 5716 * mas_store() - Store an @entry. 5717 * @mas: The maple state. 5718 * @entry: The entry to store. 5719 * 5720 * The @mas->index and @mas->last is used to set the range for the @entry. 5721 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5722 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5723 * 5724 * Return: the first entry between mas->index and mas->last or %NULL. 5725 */ 5726 void *mas_store(struct ma_state *mas, void *entry) 5727 { 5728 MA_WR_STATE(wr_mas, mas, entry); 5729 5730 trace_ma_write(__func__, mas, 0, entry); 5731 #ifdef CONFIG_DEBUG_MAPLE_TREE 5732 if (mas->index > mas->last) 5733 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry); 5734 MT_BUG_ON(mas->tree, mas->index > mas->last); 5735 if (mas->index > mas->last) { 5736 mas_set_err(mas, -EINVAL); 5737 return NULL; 5738 } 5739 5740 #endif 5741 5742 /* 5743 * Storing is the same operation as insert with the added caveat that it 5744 * can overwrite entries. Although this seems simple enough, one may 5745 * want to examine what happens if a single store operation was to 5746 * overwrite multiple entries within a self-balancing B-Tree. 5747 */ 5748 mas_wr_store_setup(&wr_mas); 5749 mas_wr_store_entry(&wr_mas); 5750 return wr_mas.content; 5751 } 5752 EXPORT_SYMBOL_GPL(mas_store); 5753 5754 /** 5755 * mas_store_gfp() - Store a value into the tree. 5756 * @mas: The maple state 5757 * @entry: The entry to store 5758 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5759 * 5760 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5761 * be allocated. 5762 */ 5763 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5764 { 5765 MA_WR_STATE(wr_mas, mas, entry); 5766 5767 mas_wr_store_setup(&wr_mas); 5768 trace_ma_write(__func__, mas, 0, entry); 5769 retry: 5770 mas_wr_store_entry(&wr_mas); 5771 if (unlikely(mas_nomem(mas, gfp))) 5772 goto retry; 5773 5774 if (unlikely(mas_is_err(mas))) 5775 return xa_err(mas->node); 5776 5777 return 0; 5778 } 5779 EXPORT_SYMBOL_GPL(mas_store_gfp); 5780 5781 /** 5782 * mas_store_prealloc() - Store a value into the tree using memory 5783 * preallocated in the maple state. 5784 * @mas: The maple state 5785 * @entry: The entry to store. 5786 */ 5787 void mas_store_prealloc(struct ma_state *mas, void *entry) 5788 { 5789 MA_WR_STATE(wr_mas, mas, entry); 5790 5791 mas_wr_store_setup(&wr_mas); 5792 trace_ma_write(__func__, mas, 0, entry); 5793 mas_wr_store_entry(&wr_mas); 5794 BUG_ON(mas_is_err(mas)); 5795 mas_destroy(mas); 5796 } 5797 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5798 5799 /** 5800 * mas_preallocate() - Preallocate enough nodes for a store operation 5801 * @mas: The maple state 5802 * @gfp: The GFP_FLAGS to use for allocations. 5803 * 5804 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5805 */ 5806 int mas_preallocate(struct ma_state *mas, gfp_t gfp) 5807 { 5808 int ret; 5809 5810 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp); 5811 mas->mas_flags |= MA_STATE_PREALLOC; 5812 if (likely(!mas_is_err(mas))) 5813 return 0; 5814 5815 mas_set_alloc_req(mas, 0); 5816 ret = xa_err(mas->node); 5817 mas_reset(mas); 5818 mas_destroy(mas); 5819 mas_reset(mas); 5820 return ret; 5821 } 5822 5823 /* 5824 * mas_destroy() - destroy a maple state. 5825 * @mas: The maple state 5826 * 5827 * Upon completion, check the left-most node and rebalance against the node to 5828 * the right if necessary. Frees any allocated nodes associated with this maple 5829 * state. 5830 */ 5831 void mas_destroy(struct ma_state *mas) 5832 { 5833 struct maple_alloc *node; 5834 unsigned long total; 5835 5836 /* 5837 * When using mas_for_each() to insert an expected number of elements, 5838 * it is possible that the number inserted is less than the expected 5839 * number. To fix an invalid final node, a check is performed here to 5840 * rebalance the previous node with the final node. 5841 */ 5842 if (mas->mas_flags & MA_STATE_REBALANCE) { 5843 unsigned char end; 5844 5845 if (mas_is_start(mas)) 5846 mas_start(mas); 5847 5848 mtree_range_walk(mas); 5849 end = mas_data_end(mas) + 1; 5850 if (end < mt_min_slot_count(mas->node) - 1) 5851 mas_destroy_rebalance(mas, end); 5852 5853 mas->mas_flags &= ~MA_STATE_REBALANCE; 5854 } 5855 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5856 5857 total = mas_allocated(mas); 5858 while (total) { 5859 node = mas->alloc; 5860 mas->alloc = node->slot[0]; 5861 if (node->node_count > 1) { 5862 size_t count = node->node_count - 1; 5863 5864 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5865 total -= count; 5866 } 5867 kmem_cache_free(maple_node_cache, node); 5868 total--; 5869 } 5870 5871 mas->alloc = NULL; 5872 } 5873 EXPORT_SYMBOL_GPL(mas_destroy); 5874 5875 /* 5876 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5877 * @mas: The maple state 5878 * @nr_entries: The number of expected entries. 5879 * 5880 * This will attempt to pre-allocate enough nodes to store the expected number 5881 * of entries. The allocations will occur using the bulk allocator interface 5882 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5883 * to ensure any unused nodes are freed. 5884 * 5885 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5886 */ 5887 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5888 { 5889 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5890 struct maple_enode *enode = mas->node; 5891 int nr_nodes; 5892 int ret; 5893 5894 /* 5895 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5896 * forking a process and duplicating the VMAs from one tree to a new 5897 * tree. When such a situation arises, it is known that the new tree is 5898 * not going to be used until the entire tree is populated. For 5899 * performance reasons, it is best to use a bulk load with RCU disabled. 5900 * This allows for optimistic splitting that favours the left and reuse 5901 * of nodes during the operation. 5902 */ 5903 5904 /* Optimize splitting for bulk insert in-order */ 5905 mas->mas_flags |= MA_STATE_BULK; 5906 5907 /* 5908 * Avoid overflow, assume a gap between each entry and a trailing null. 5909 * If this is wrong, it just means allocation can happen during 5910 * insertion of entries. 5911 */ 5912 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5913 if (!mt_is_alloc(mas->tree)) 5914 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5915 5916 /* Leaves; reduce slots to keep space for expansion */ 5917 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5918 /* Internal nodes */ 5919 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5920 /* Add working room for split (2 nodes) + new parents */ 5921 mas_node_count(mas, nr_nodes + 3); 5922 5923 /* Detect if allocations run out */ 5924 mas->mas_flags |= MA_STATE_PREALLOC; 5925 5926 if (!mas_is_err(mas)) 5927 return 0; 5928 5929 ret = xa_err(mas->node); 5930 mas->node = enode; 5931 mas_destroy(mas); 5932 return ret; 5933 5934 } 5935 EXPORT_SYMBOL_GPL(mas_expected_entries); 5936 5937 /** 5938 * mas_next() - Get the next entry. 5939 * @mas: The maple state 5940 * @max: The maximum index to check. 5941 * 5942 * Returns the next entry after @mas->index. 5943 * Must hold rcu_read_lock or the write lock. 5944 * Can return the zero entry. 5945 * 5946 * Return: The next entry or %NULL 5947 */ 5948 void *mas_next(struct ma_state *mas, unsigned long max) 5949 { 5950 if (mas_is_none(mas) || mas_is_paused(mas)) 5951 mas->node = MAS_START; 5952 5953 if (mas_is_start(mas)) 5954 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5955 5956 if (mas_is_ptr(mas)) { 5957 if (!mas->index) { 5958 mas->index = 1; 5959 mas->last = ULONG_MAX; 5960 } 5961 return NULL; 5962 } 5963 5964 if (mas->last == ULONG_MAX) 5965 return NULL; 5966 5967 /* Retries on dead nodes handled by mas_next_entry */ 5968 return mas_next_entry(mas, max); 5969 } 5970 EXPORT_SYMBOL_GPL(mas_next); 5971 5972 /** 5973 * mt_next() - get the next value in the maple tree 5974 * @mt: The maple tree 5975 * @index: The start index 5976 * @max: The maximum index to check 5977 * 5978 * Return: The entry at @index or higher, or %NULL if nothing is found. 5979 */ 5980 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5981 { 5982 void *entry = NULL; 5983 MA_STATE(mas, mt, index, index); 5984 5985 rcu_read_lock(); 5986 entry = mas_next(&mas, max); 5987 rcu_read_unlock(); 5988 return entry; 5989 } 5990 EXPORT_SYMBOL_GPL(mt_next); 5991 5992 /** 5993 * mas_prev() - Get the previous entry 5994 * @mas: The maple state 5995 * @min: The minimum value to check. 5996 * 5997 * Must hold rcu_read_lock or the write lock. 5998 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5999 * searchable nodes. 6000 * 6001 * Return: the previous value or %NULL. 6002 */ 6003 void *mas_prev(struct ma_state *mas, unsigned long min) 6004 { 6005 if (!mas->index) { 6006 /* Nothing comes before 0 */ 6007 mas->last = 0; 6008 mas->node = MAS_NONE; 6009 return NULL; 6010 } 6011 6012 if (unlikely(mas_is_ptr(mas))) 6013 return NULL; 6014 6015 if (mas_is_none(mas) || mas_is_paused(mas)) 6016 mas->node = MAS_START; 6017 6018 if (mas_is_start(mas)) { 6019 mas_walk(mas); 6020 if (!mas->index) 6021 return NULL; 6022 } 6023 6024 if (mas_is_ptr(mas)) { 6025 if (!mas->index) { 6026 mas->last = 0; 6027 return NULL; 6028 } 6029 6030 mas->index = mas->last = 0; 6031 return mas_root_locked(mas); 6032 } 6033 return mas_prev_entry(mas, min); 6034 } 6035 EXPORT_SYMBOL_GPL(mas_prev); 6036 6037 /** 6038 * mt_prev() - get the previous value in the maple tree 6039 * @mt: The maple tree 6040 * @index: The start index 6041 * @min: The minimum index to check 6042 * 6043 * Return: The entry at @index or lower, or %NULL if nothing is found. 6044 */ 6045 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 6046 { 6047 void *entry = NULL; 6048 MA_STATE(mas, mt, index, index); 6049 6050 rcu_read_lock(); 6051 entry = mas_prev(&mas, min); 6052 rcu_read_unlock(); 6053 return entry; 6054 } 6055 EXPORT_SYMBOL_GPL(mt_prev); 6056 6057 /** 6058 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 6059 * @mas: The maple state to pause 6060 * 6061 * Some users need to pause a walk and drop the lock they're holding in 6062 * order to yield to a higher priority thread or carry out an operation 6063 * on an entry. Those users should call this function before they drop 6064 * the lock. It resets the @mas to be suitable for the next iteration 6065 * of the loop after the user has reacquired the lock. If most entries 6066 * found during a walk require you to call mas_pause(), the mt_for_each() 6067 * iterator may be more appropriate. 6068 * 6069 */ 6070 void mas_pause(struct ma_state *mas) 6071 { 6072 mas->node = MAS_PAUSE; 6073 } 6074 EXPORT_SYMBOL_GPL(mas_pause); 6075 6076 /** 6077 * mas_find() - On the first call, find the entry at or after mas->index up to 6078 * %max. Otherwise, find the entry after mas->index. 6079 * @mas: The maple state 6080 * @max: The maximum value to check. 6081 * 6082 * Must hold rcu_read_lock or the write lock. 6083 * If an entry exists, last and index are updated accordingly. 6084 * May set @mas->node to MAS_NONE. 6085 * 6086 * Return: The entry or %NULL. 6087 */ 6088 void *mas_find(struct ma_state *mas, unsigned long max) 6089 { 6090 if (unlikely(mas_is_paused(mas))) { 6091 if (unlikely(mas->last == ULONG_MAX)) { 6092 mas->node = MAS_NONE; 6093 return NULL; 6094 } 6095 mas->node = MAS_START; 6096 mas->index = ++mas->last; 6097 } 6098 6099 if (unlikely(mas_is_none(mas))) 6100 mas->node = MAS_START; 6101 6102 if (unlikely(mas_is_start(mas))) { 6103 /* First run or continue */ 6104 void *entry; 6105 6106 if (mas->index > max) 6107 return NULL; 6108 6109 entry = mas_walk(mas); 6110 if (entry) 6111 return entry; 6112 } 6113 6114 if (unlikely(!mas_searchable(mas))) 6115 return NULL; 6116 6117 /* Retries on dead nodes handled by mas_next_entry */ 6118 return mas_next_entry(mas, max); 6119 } 6120 EXPORT_SYMBOL_GPL(mas_find); 6121 6122 /** 6123 * mas_find_rev: On the first call, find the first non-null entry at or below 6124 * mas->index down to %min. Otherwise find the first non-null entry below 6125 * mas->index down to %min. 6126 * @mas: The maple state 6127 * @min: The minimum value to check. 6128 * 6129 * Must hold rcu_read_lock or the write lock. 6130 * If an entry exists, last and index are updated accordingly. 6131 * May set @mas->node to MAS_NONE. 6132 * 6133 * Return: The entry or %NULL. 6134 */ 6135 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6136 { 6137 if (unlikely(mas_is_paused(mas))) { 6138 if (unlikely(mas->last == ULONG_MAX)) { 6139 mas->node = MAS_NONE; 6140 return NULL; 6141 } 6142 mas->node = MAS_START; 6143 mas->last = --mas->index; 6144 } 6145 6146 if (unlikely(mas_is_start(mas))) { 6147 /* First run or continue */ 6148 void *entry; 6149 6150 if (mas->index < min) 6151 return NULL; 6152 6153 entry = mas_walk(mas); 6154 if (entry) 6155 return entry; 6156 } 6157 6158 if (unlikely(!mas_searchable(mas))) 6159 return NULL; 6160 6161 if (mas->index < min) 6162 return NULL; 6163 6164 /* Retries on dead nodes handled by mas_prev_entry */ 6165 return mas_prev_entry(mas, min); 6166 } 6167 EXPORT_SYMBOL_GPL(mas_find_rev); 6168 6169 /** 6170 * mas_erase() - Find the range in which index resides and erase the entire 6171 * range. 6172 * @mas: The maple state 6173 * 6174 * Must hold the write lock. 6175 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6176 * erases that range. 6177 * 6178 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6179 */ 6180 void *mas_erase(struct ma_state *mas) 6181 { 6182 void *entry; 6183 MA_WR_STATE(wr_mas, mas, NULL); 6184 6185 if (mas_is_none(mas) || mas_is_paused(mas)) 6186 mas->node = MAS_START; 6187 6188 /* Retry unnecessary when holding the write lock. */ 6189 entry = mas_state_walk(mas); 6190 if (!entry) 6191 return NULL; 6192 6193 write_retry: 6194 /* Must reset to ensure spanning writes of last slot are detected */ 6195 mas_reset(mas); 6196 mas_wr_store_setup(&wr_mas); 6197 mas_wr_store_entry(&wr_mas); 6198 if (mas_nomem(mas, GFP_KERNEL)) 6199 goto write_retry; 6200 6201 return entry; 6202 } 6203 EXPORT_SYMBOL_GPL(mas_erase); 6204 6205 /** 6206 * mas_nomem() - Check if there was an error allocating and do the allocation 6207 * if necessary If there are allocations, then free them. 6208 * @mas: The maple state 6209 * @gfp: The GFP_FLAGS to use for allocations 6210 * Return: true on allocation, false otherwise. 6211 */ 6212 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6213 __must_hold(mas->tree->lock) 6214 { 6215 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6216 mas_destroy(mas); 6217 return false; 6218 } 6219 6220 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6221 mtree_unlock(mas->tree); 6222 mas_alloc_nodes(mas, gfp); 6223 mtree_lock(mas->tree); 6224 } else { 6225 mas_alloc_nodes(mas, gfp); 6226 } 6227 6228 if (!mas_allocated(mas)) 6229 return false; 6230 6231 mas->node = MAS_START; 6232 return true; 6233 } 6234 6235 void __init maple_tree_init(void) 6236 { 6237 maple_node_cache = kmem_cache_create("maple_node", 6238 sizeof(struct maple_node), sizeof(struct maple_node), 6239 SLAB_PANIC, NULL); 6240 } 6241 6242 /** 6243 * mtree_load() - Load a value stored in a maple tree 6244 * @mt: The maple tree 6245 * @index: The index to load 6246 * 6247 * Return: the entry or %NULL 6248 */ 6249 void *mtree_load(struct maple_tree *mt, unsigned long index) 6250 { 6251 MA_STATE(mas, mt, index, index); 6252 void *entry; 6253 6254 trace_ma_read(__func__, &mas); 6255 rcu_read_lock(); 6256 retry: 6257 entry = mas_start(&mas); 6258 if (unlikely(mas_is_none(&mas))) 6259 goto unlock; 6260 6261 if (unlikely(mas_is_ptr(&mas))) { 6262 if (index) 6263 entry = NULL; 6264 6265 goto unlock; 6266 } 6267 6268 entry = mtree_lookup_walk(&mas); 6269 if (!entry && unlikely(mas_is_start(&mas))) 6270 goto retry; 6271 unlock: 6272 rcu_read_unlock(); 6273 if (xa_is_zero(entry)) 6274 return NULL; 6275 6276 return entry; 6277 } 6278 EXPORT_SYMBOL(mtree_load); 6279 6280 /** 6281 * mtree_store_range() - Store an entry at a given range. 6282 * @mt: The maple tree 6283 * @index: The start of the range 6284 * @last: The end of the range 6285 * @entry: The entry to store 6286 * @gfp: The GFP_FLAGS to use for allocations 6287 * 6288 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6289 * be allocated. 6290 */ 6291 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6292 unsigned long last, void *entry, gfp_t gfp) 6293 { 6294 MA_STATE(mas, mt, index, last); 6295 MA_WR_STATE(wr_mas, &mas, entry); 6296 6297 trace_ma_write(__func__, &mas, 0, entry); 6298 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6299 return -EINVAL; 6300 6301 if (index > last) 6302 return -EINVAL; 6303 6304 mtree_lock(mt); 6305 retry: 6306 mas_wr_store_entry(&wr_mas); 6307 if (mas_nomem(&mas, gfp)) 6308 goto retry; 6309 6310 mtree_unlock(mt); 6311 if (mas_is_err(&mas)) 6312 return xa_err(mas.node); 6313 6314 return 0; 6315 } 6316 EXPORT_SYMBOL(mtree_store_range); 6317 6318 /** 6319 * mtree_store() - Store an entry at a given index. 6320 * @mt: The maple tree 6321 * @index: The index to store the value 6322 * @entry: The entry to store 6323 * @gfp: The GFP_FLAGS to use for allocations 6324 * 6325 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6326 * be allocated. 6327 */ 6328 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6329 gfp_t gfp) 6330 { 6331 return mtree_store_range(mt, index, index, entry, gfp); 6332 } 6333 EXPORT_SYMBOL(mtree_store); 6334 6335 /** 6336 * mtree_insert_range() - Insert an entry at a give range if there is no value. 6337 * @mt: The maple tree 6338 * @first: The start of the range 6339 * @last: The end of the range 6340 * @entry: The entry to store 6341 * @gfp: The GFP_FLAGS to use for allocations. 6342 * 6343 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6344 * request, -ENOMEM if memory could not be allocated. 6345 */ 6346 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6347 unsigned long last, void *entry, gfp_t gfp) 6348 { 6349 MA_STATE(ms, mt, first, last); 6350 6351 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6352 return -EINVAL; 6353 6354 if (first > last) 6355 return -EINVAL; 6356 6357 mtree_lock(mt); 6358 retry: 6359 mas_insert(&ms, entry); 6360 if (mas_nomem(&ms, gfp)) 6361 goto retry; 6362 6363 mtree_unlock(mt); 6364 if (mas_is_err(&ms)) 6365 return xa_err(ms.node); 6366 6367 return 0; 6368 } 6369 EXPORT_SYMBOL(mtree_insert_range); 6370 6371 /** 6372 * mtree_insert() - Insert an entry at a give index if there is no value. 6373 * @mt: The maple tree 6374 * @index : The index to store the value 6375 * @entry: The entry to store 6376 * @gfp: The FGP_FLAGS to use for allocations. 6377 * 6378 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6379 * request, -ENOMEM if memory could not be allocated. 6380 */ 6381 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6382 gfp_t gfp) 6383 { 6384 return mtree_insert_range(mt, index, index, entry, gfp); 6385 } 6386 EXPORT_SYMBOL(mtree_insert); 6387 6388 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6389 void *entry, unsigned long size, unsigned long min, 6390 unsigned long max, gfp_t gfp) 6391 { 6392 int ret = 0; 6393 6394 MA_STATE(mas, mt, min, max - size); 6395 if (!mt_is_alloc(mt)) 6396 return -EINVAL; 6397 6398 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6399 return -EINVAL; 6400 6401 if (min > max) 6402 return -EINVAL; 6403 6404 if (max < size) 6405 return -EINVAL; 6406 6407 if (!size) 6408 return -EINVAL; 6409 6410 mtree_lock(mt); 6411 retry: 6412 mas.offset = 0; 6413 mas.index = min; 6414 mas.last = max - size; 6415 ret = mas_alloc(&mas, entry, size, startp); 6416 if (mas_nomem(&mas, gfp)) 6417 goto retry; 6418 6419 mtree_unlock(mt); 6420 return ret; 6421 } 6422 EXPORT_SYMBOL(mtree_alloc_range); 6423 6424 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6425 void *entry, unsigned long size, unsigned long min, 6426 unsigned long max, gfp_t gfp) 6427 { 6428 int ret = 0; 6429 6430 MA_STATE(mas, mt, min, max - size); 6431 if (!mt_is_alloc(mt)) 6432 return -EINVAL; 6433 6434 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6435 return -EINVAL; 6436 6437 if (min >= max) 6438 return -EINVAL; 6439 6440 if (max < size - 1) 6441 return -EINVAL; 6442 6443 if (!size) 6444 return -EINVAL; 6445 6446 mtree_lock(mt); 6447 retry: 6448 ret = mas_rev_alloc(&mas, min, max, entry, size, startp); 6449 if (mas_nomem(&mas, gfp)) 6450 goto retry; 6451 6452 mtree_unlock(mt); 6453 return ret; 6454 } 6455 EXPORT_SYMBOL(mtree_alloc_rrange); 6456 6457 /** 6458 * mtree_erase() - Find an index and erase the entire range. 6459 * @mt: The maple tree 6460 * @index: The index to erase 6461 * 6462 * Erasing is the same as a walk to an entry then a store of a NULL to that 6463 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6464 * 6465 * Return: The entry stored at the @index or %NULL 6466 */ 6467 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6468 { 6469 void *entry = NULL; 6470 6471 MA_STATE(mas, mt, index, index); 6472 trace_ma_op(__func__, &mas); 6473 6474 mtree_lock(mt); 6475 entry = mas_erase(&mas); 6476 mtree_unlock(mt); 6477 6478 return entry; 6479 } 6480 EXPORT_SYMBOL(mtree_erase); 6481 6482 /** 6483 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6484 * @mt: The maple tree 6485 * 6486 * Note: Does not handle locking. 6487 */ 6488 void __mt_destroy(struct maple_tree *mt) 6489 { 6490 void *root = mt_root_locked(mt); 6491 6492 rcu_assign_pointer(mt->ma_root, NULL); 6493 if (xa_is_node(root)) 6494 mte_destroy_walk(root, mt); 6495 6496 mt->ma_flags = 0; 6497 } 6498 EXPORT_SYMBOL_GPL(__mt_destroy); 6499 6500 /** 6501 * mtree_destroy() - Destroy a maple tree 6502 * @mt: The maple tree 6503 * 6504 * Frees all resources used by the tree. Handles locking. 6505 */ 6506 void mtree_destroy(struct maple_tree *mt) 6507 { 6508 mtree_lock(mt); 6509 __mt_destroy(mt); 6510 mtree_unlock(mt); 6511 } 6512 EXPORT_SYMBOL(mtree_destroy); 6513 6514 /** 6515 * mt_find() - Search from the start up until an entry is found. 6516 * @mt: The maple tree 6517 * @index: Pointer which contains the start location of the search 6518 * @max: The maximum value to check 6519 * 6520 * Handles locking. @index will be incremented to one beyond the range. 6521 * 6522 * Return: The entry at or after the @index or %NULL 6523 */ 6524 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6525 { 6526 MA_STATE(mas, mt, *index, *index); 6527 void *entry; 6528 #ifdef CONFIG_DEBUG_MAPLE_TREE 6529 unsigned long copy = *index; 6530 #endif 6531 6532 trace_ma_read(__func__, &mas); 6533 6534 if ((*index) > max) 6535 return NULL; 6536 6537 rcu_read_lock(); 6538 retry: 6539 entry = mas_state_walk(&mas); 6540 if (mas_is_start(&mas)) 6541 goto retry; 6542 6543 if (unlikely(xa_is_zero(entry))) 6544 entry = NULL; 6545 6546 if (entry) 6547 goto unlock; 6548 6549 while (mas_searchable(&mas) && (mas.index < max)) { 6550 entry = mas_next_entry(&mas, max); 6551 if (likely(entry && !xa_is_zero(entry))) 6552 break; 6553 } 6554 6555 if (unlikely(xa_is_zero(entry))) 6556 entry = NULL; 6557 unlock: 6558 rcu_read_unlock(); 6559 if (likely(entry)) { 6560 *index = mas.last + 1; 6561 #ifdef CONFIG_DEBUG_MAPLE_TREE 6562 if ((*index) && (*index) <= copy) 6563 pr_err("index not increased! %lx <= %lx\n", 6564 *index, copy); 6565 MT_BUG_ON(mt, (*index) && ((*index) <= copy)); 6566 #endif 6567 } 6568 6569 return entry; 6570 } 6571 EXPORT_SYMBOL(mt_find); 6572 6573 /** 6574 * mt_find_after() - Search from the start up until an entry is found. 6575 * @mt: The maple tree 6576 * @index: Pointer which contains the start location of the search 6577 * @max: The maximum value to check 6578 * 6579 * Handles locking, detects wrapping on index == 0 6580 * 6581 * Return: The entry at or after the @index or %NULL 6582 */ 6583 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6584 unsigned long max) 6585 { 6586 if (!(*index)) 6587 return NULL; 6588 6589 return mt_find(mt, index, max); 6590 } 6591 EXPORT_SYMBOL(mt_find_after); 6592 6593 #ifdef CONFIG_DEBUG_MAPLE_TREE 6594 atomic_t maple_tree_tests_run; 6595 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6596 atomic_t maple_tree_tests_passed; 6597 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6598 6599 #ifndef __KERNEL__ 6600 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6601 void mt_set_non_kernel(unsigned int val) 6602 { 6603 kmem_cache_set_non_kernel(maple_node_cache, val); 6604 } 6605 6606 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 6607 unsigned long mt_get_alloc_size(void) 6608 { 6609 return kmem_cache_get_alloc(maple_node_cache); 6610 } 6611 6612 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 6613 void mt_zero_nr_tallocated(void) 6614 { 6615 kmem_cache_zero_nr_tallocated(maple_node_cache); 6616 } 6617 6618 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 6619 unsigned int mt_nr_tallocated(void) 6620 { 6621 return kmem_cache_nr_tallocated(maple_node_cache); 6622 } 6623 6624 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 6625 unsigned int mt_nr_allocated(void) 6626 { 6627 return kmem_cache_nr_allocated(maple_node_cache); 6628 } 6629 6630 /* 6631 * mas_dead_node() - Check if the maple state is pointing to a dead node. 6632 * @mas: The maple state 6633 * @index: The index to restore in @mas. 6634 * 6635 * Used in test code. 6636 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise. 6637 */ 6638 static inline int mas_dead_node(struct ma_state *mas, unsigned long index) 6639 { 6640 if (unlikely(!mas_searchable(mas) || mas_is_start(mas))) 6641 return 0; 6642 6643 if (likely(!mte_dead_node(mas->node))) 6644 return 0; 6645 6646 mas_rewalk(mas, index); 6647 return 1; 6648 } 6649 6650 void mt_cache_shrink(void) 6651 { 6652 } 6653 #else 6654 /* 6655 * mt_cache_shrink() - For testing, don't use this. 6656 * 6657 * Certain testcases can trigger an OOM when combined with other memory 6658 * debugging configuration options. This function is used to reduce the 6659 * possibility of an out of memory even due to kmem_cache objects remaining 6660 * around for longer than usual. 6661 */ 6662 void mt_cache_shrink(void) 6663 { 6664 kmem_cache_shrink(maple_node_cache); 6665 6666 } 6667 EXPORT_SYMBOL_GPL(mt_cache_shrink); 6668 6669 #endif /* not defined __KERNEL__ */ 6670 /* 6671 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 6672 * @mas: The maple state 6673 * @offset: The offset into the slot array to fetch. 6674 * 6675 * Return: The entry stored at @offset. 6676 */ 6677 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 6678 unsigned char offset) 6679 { 6680 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 6681 offset); 6682 } 6683 6684 6685 /* 6686 * mas_first_entry() - Go the first leaf and find the first entry. 6687 * @mas: the maple state. 6688 * @limit: the maximum index to check. 6689 * @*r_start: Pointer to set to the range start. 6690 * 6691 * Sets mas->offset to the offset of the entry, r_start to the range minimum. 6692 * 6693 * Return: The first entry or MAS_NONE. 6694 */ 6695 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn, 6696 unsigned long limit, enum maple_type mt) 6697 6698 { 6699 unsigned long max; 6700 unsigned long *pivots; 6701 void __rcu **slots; 6702 void *entry = NULL; 6703 6704 mas->index = mas->min; 6705 if (mas->index > limit) 6706 goto none; 6707 6708 max = mas->max; 6709 mas->offset = 0; 6710 while (likely(!ma_is_leaf(mt))) { 6711 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6712 slots = ma_slots(mn, mt); 6713 entry = mas_slot(mas, slots, 0); 6714 pivots = ma_pivots(mn, mt); 6715 if (unlikely(ma_dead_node(mn))) 6716 return NULL; 6717 max = pivots[0]; 6718 mas->node = entry; 6719 mn = mas_mn(mas); 6720 mt = mte_node_type(mas->node); 6721 } 6722 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6723 6724 mas->max = max; 6725 slots = ma_slots(mn, mt); 6726 entry = mas_slot(mas, slots, 0); 6727 if (unlikely(ma_dead_node(mn))) 6728 return NULL; 6729 6730 /* Slot 0 or 1 must be set */ 6731 if (mas->index > limit) 6732 goto none; 6733 6734 if (likely(entry)) 6735 return entry; 6736 6737 mas->offset = 1; 6738 entry = mas_slot(mas, slots, 1); 6739 pivots = ma_pivots(mn, mt); 6740 if (unlikely(ma_dead_node(mn))) 6741 return NULL; 6742 6743 mas->index = pivots[0] + 1; 6744 if (mas->index > limit) 6745 goto none; 6746 6747 if (likely(entry)) 6748 return entry; 6749 6750 none: 6751 if (likely(!ma_dead_node(mn))) 6752 mas->node = MAS_NONE; 6753 return NULL; 6754 } 6755 6756 /* Depth first search, post-order */ 6757 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 6758 { 6759 6760 struct maple_enode *p = MAS_NONE, *mn = mas->node; 6761 unsigned long p_min, p_max; 6762 6763 mas_next_node(mas, mas_mn(mas), max); 6764 if (!mas_is_none(mas)) 6765 return; 6766 6767 if (mte_is_root(mn)) 6768 return; 6769 6770 mas->node = mn; 6771 mas_ascend(mas); 6772 while (mas->node != MAS_NONE) { 6773 p = mas->node; 6774 p_min = mas->min; 6775 p_max = mas->max; 6776 mas_prev_node(mas, 0); 6777 } 6778 6779 if (p == MAS_NONE) 6780 return; 6781 6782 mas->node = p; 6783 mas->max = p_max; 6784 mas->min = p_min; 6785 } 6786 6787 /* Tree validations */ 6788 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6789 unsigned long min, unsigned long max, unsigned int depth); 6790 static void mt_dump_range(unsigned long min, unsigned long max, 6791 unsigned int depth) 6792 { 6793 static const char spaces[] = " "; 6794 6795 if (min == max) 6796 pr_info("%.*s%lu: ", depth * 2, spaces, min); 6797 else 6798 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 6799 } 6800 6801 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 6802 unsigned int depth) 6803 { 6804 mt_dump_range(min, max, depth); 6805 6806 if (xa_is_value(entry)) 6807 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 6808 xa_to_value(entry), entry); 6809 else if (xa_is_zero(entry)) 6810 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 6811 else if (mt_is_reserved(entry)) 6812 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 6813 else 6814 pr_cont("%p\n", entry); 6815 } 6816 6817 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 6818 unsigned long min, unsigned long max, unsigned int depth) 6819 { 6820 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 6821 bool leaf = mte_is_leaf(entry); 6822 unsigned long first = min; 6823 int i; 6824 6825 pr_cont(" contents: "); 6826 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) 6827 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6828 pr_cont("%p\n", node->slot[i]); 6829 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 6830 unsigned long last = max; 6831 6832 if (i < (MAPLE_RANGE64_SLOTS - 1)) 6833 last = node->pivot[i]; 6834 else if (!node->slot[i] && max != mt_node_max(entry)) 6835 break; 6836 if (last == 0 && i > 0) 6837 break; 6838 if (leaf) 6839 mt_dump_entry(mt_slot(mt, node->slot, i), 6840 first, last, depth + 1); 6841 else if (node->slot[i]) 6842 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6843 first, last, depth + 1); 6844 6845 if (last == max) 6846 break; 6847 if (last > max) { 6848 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6849 node, last, max, i); 6850 break; 6851 } 6852 first = last + 1; 6853 } 6854 } 6855 6856 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 6857 unsigned long min, unsigned long max, unsigned int depth) 6858 { 6859 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 6860 bool leaf = mte_is_leaf(entry); 6861 unsigned long first = min; 6862 int i; 6863 6864 pr_cont(" contents: "); 6865 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) 6866 pr_cont("%lu ", node->gap[i]); 6867 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 6868 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) 6869 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6870 pr_cont("%p\n", node->slot[i]); 6871 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 6872 unsigned long last = max; 6873 6874 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 6875 last = node->pivot[i]; 6876 else if (!node->slot[i]) 6877 break; 6878 if (last == 0 && i > 0) 6879 break; 6880 if (leaf) 6881 mt_dump_entry(mt_slot(mt, node->slot, i), 6882 first, last, depth + 1); 6883 else if (node->slot[i]) 6884 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6885 first, last, depth + 1); 6886 6887 if (last == max) 6888 break; 6889 if (last > max) { 6890 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6891 node, last, max, i); 6892 break; 6893 } 6894 first = last + 1; 6895 } 6896 } 6897 6898 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6899 unsigned long min, unsigned long max, unsigned int depth) 6900 { 6901 struct maple_node *node = mte_to_node(entry); 6902 unsigned int type = mte_node_type(entry); 6903 unsigned int i; 6904 6905 mt_dump_range(min, max, depth); 6906 6907 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 6908 node ? node->parent : NULL); 6909 switch (type) { 6910 case maple_dense: 6911 pr_cont("\n"); 6912 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 6913 if (min + i > max) 6914 pr_cont("OUT OF RANGE: "); 6915 mt_dump_entry(mt_slot(mt, node->slot, i), 6916 min + i, min + i, depth); 6917 } 6918 break; 6919 case maple_leaf_64: 6920 case maple_range_64: 6921 mt_dump_range64(mt, entry, min, max, depth); 6922 break; 6923 case maple_arange_64: 6924 mt_dump_arange64(mt, entry, min, max, depth); 6925 break; 6926 6927 default: 6928 pr_cont(" UNKNOWN TYPE\n"); 6929 } 6930 } 6931 6932 void mt_dump(const struct maple_tree *mt) 6933 { 6934 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 6935 6936 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 6937 mt, mt->ma_flags, mt_height(mt), entry); 6938 if (!xa_is_node(entry)) 6939 mt_dump_entry(entry, 0, 0, 0); 6940 else if (entry) 6941 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0); 6942 } 6943 EXPORT_SYMBOL_GPL(mt_dump); 6944 6945 /* 6946 * Calculate the maximum gap in a node and check if that's what is reported in 6947 * the parent (unless root). 6948 */ 6949 static void mas_validate_gaps(struct ma_state *mas) 6950 { 6951 struct maple_enode *mte = mas->node; 6952 struct maple_node *p_mn; 6953 unsigned long gap = 0, max_gap = 0; 6954 unsigned long p_end, p_start = mas->min; 6955 unsigned char p_slot; 6956 unsigned long *gaps = NULL; 6957 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte)); 6958 int i; 6959 6960 if (ma_is_dense(mte_node_type(mte))) { 6961 for (i = 0; i < mt_slot_count(mte); i++) { 6962 if (mas_get_slot(mas, i)) { 6963 if (gap > max_gap) 6964 max_gap = gap; 6965 gap = 0; 6966 continue; 6967 } 6968 gap++; 6969 } 6970 goto counted; 6971 } 6972 6973 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte)); 6974 for (i = 0; i < mt_slot_count(mte); i++) { 6975 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte)); 6976 6977 if (!gaps) { 6978 if (mas_get_slot(mas, i)) { 6979 gap = 0; 6980 goto not_empty; 6981 } 6982 6983 gap += p_end - p_start + 1; 6984 } else { 6985 void *entry = mas_get_slot(mas, i); 6986 6987 gap = gaps[i]; 6988 if (!entry) { 6989 if (gap != p_end - p_start + 1) { 6990 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n", 6991 mas_mn(mas), i, 6992 mas_get_slot(mas, i), gap, 6993 p_end, p_start); 6994 mt_dump(mas->tree); 6995 6996 MT_BUG_ON(mas->tree, 6997 gap != p_end - p_start + 1); 6998 } 6999 } else { 7000 if (gap > p_end - p_start + 1) { 7001 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 7002 mas_mn(mas), i, gap, p_end, p_start, 7003 p_end - p_start + 1); 7004 MT_BUG_ON(mas->tree, 7005 gap > p_end - p_start + 1); 7006 } 7007 } 7008 } 7009 7010 if (gap > max_gap) 7011 max_gap = gap; 7012 not_empty: 7013 p_start = p_end + 1; 7014 if (p_end >= mas->max) 7015 break; 7016 } 7017 7018 counted: 7019 if (mte_is_root(mte)) 7020 return; 7021 7022 p_slot = mte_parent_slot(mas->node); 7023 p_mn = mte_parent(mte); 7024 MT_BUG_ON(mas->tree, max_gap > mas->max); 7025 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) { 7026 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 7027 mt_dump(mas->tree); 7028 } 7029 7030 MT_BUG_ON(mas->tree, 7031 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap); 7032 } 7033 7034 static void mas_validate_parent_slot(struct ma_state *mas) 7035 { 7036 struct maple_node *parent; 7037 struct maple_enode *node; 7038 enum maple_type p_type = mas_parent_enum(mas, mas->node); 7039 unsigned char p_slot = mte_parent_slot(mas->node); 7040 void __rcu **slots; 7041 int i; 7042 7043 if (mte_is_root(mas->node)) 7044 return; 7045 7046 parent = mte_parent(mas->node); 7047 slots = ma_slots(parent, p_type); 7048 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 7049 7050 /* Check prev/next parent slot for duplicate node entry */ 7051 7052 for (i = 0; i < mt_slots[p_type]; i++) { 7053 node = mas_slot(mas, slots, i); 7054 if (i == p_slot) { 7055 if (node != mas->node) 7056 pr_err("parent %p[%u] does not have %p\n", 7057 parent, i, mas_mn(mas)); 7058 MT_BUG_ON(mas->tree, node != mas->node); 7059 } else if (node == mas->node) { 7060 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 7061 mas_mn(mas), parent, i, p_slot); 7062 MT_BUG_ON(mas->tree, node == mas->node); 7063 } 7064 } 7065 } 7066 7067 static void mas_validate_child_slot(struct ma_state *mas) 7068 { 7069 enum maple_type type = mte_node_type(mas->node); 7070 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7071 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 7072 struct maple_enode *child; 7073 unsigned char i; 7074 7075 if (mte_is_leaf(mas->node)) 7076 return; 7077 7078 for (i = 0; i < mt_slots[type]; i++) { 7079 child = mas_slot(mas, slots, i); 7080 if (!pivots[i] || pivots[i] == mas->max) 7081 break; 7082 7083 if (!child) 7084 break; 7085 7086 if (mte_parent_slot(child) != i) { 7087 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7088 mas_mn(mas), i, mte_to_node(child), 7089 mte_parent_slot(child)); 7090 MT_BUG_ON(mas->tree, 1); 7091 } 7092 7093 if (mte_parent(child) != mte_to_node(mas->node)) { 7094 pr_err("child %p has parent %p not %p\n", 7095 mte_to_node(child), mte_parent(child), 7096 mte_to_node(mas->node)); 7097 MT_BUG_ON(mas->tree, 1); 7098 } 7099 } 7100 } 7101 7102 /* 7103 * Validate all pivots are within mas->min and mas->max. 7104 */ 7105 static void mas_validate_limits(struct ma_state *mas) 7106 { 7107 int i; 7108 unsigned long prev_piv = 0; 7109 enum maple_type type = mte_node_type(mas->node); 7110 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7111 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7112 7113 /* all limits are fine here. */ 7114 if (mte_is_root(mas->node)) 7115 return; 7116 7117 for (i = 0; i < mt_slots[type]; i++) { 7118 unsigned long piv; 7119 7120 piv = mas_safe_pivot(mas, pivots, i, type); 7121 7122 if (!piv && (i != 0)) 7123 break; 7124 7125 if (!mte_is_leaf(mas->node)) { 7126 void *entry = mas_slot(mas, slots, i); 7127 7128 if (!entry) 7129 pr_err("%p[%u] cannot be null\n", 7130 mas_mn(mas), i); 7131 7132 MT_BUG_ON(mas->tree, !entry); 7133 } 7134 7135 if (prev_piv > piv) { 7136 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7137 mas_mn(mas), i, piv, prev_piv); 7138 MT_BUG_ON(mas->tree, piv < prev_piv); 7139 } 7140 7141 if (piv < mas->min) { 7142 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7143 piv, mas->min); 7144 MT_BUG_ON(mas->tree, piv < mas->min); 7145 } 7146 if (piv > mas->max) { 7147 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7148 piv, mas->max); 7149 MT_BUG_ON(mas->tree, piv > mas->max); 7150 } 7151 prev_piv = piv; 7152 if (piv == mas->max) 7153 break; 7154 } 7155 for (i += 1; i < mt_slots[type]; i++) { 7156 void *entry = mas_slot(mas, slots, i); 7157 7158 if (entry && (i != mt_slots[type] - 1)) { 7159 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7160 i, entry); 7161 MT_BUG_ON(mas->tree, entry != NULL); 7162 } 7163 7164 if (i < mt_pivots[type]) { 7165 unsigned long piv = pivots[i]; 7166 7167 if (!piv) 7168 continue; 7169 7170 pr_err("%p[%u] should not have piv %lu\n", 7171 mas_mn(mas), i, piv); 7172 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1); 7173 } 7174 } 7175 } 7176 7177 static void mt_validate_nulls(struct maple_tree *mt) 7178 { 7179 void *entry, *last = (void *)1; 7180 unsigned char offset = 0; 7181 void __rcu **slots; 7182 MA_STATE(mas, mt, 0, 0); 7183 7184 mas_start(&mas); 7185 if (mas_is_none(&mas) || (mas.node == MAS_ROOT)) 7186 return; 7187 7188 while (!mte_is_leaf(mas.node)) 7189 mas_descend(&mas); 7190 7191 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7192 do { 7193 entry = mas_slot(&mas, slots, offset); 7194 if (!last && !entry) { 7195 pr_err("Sequential nulls end at %p[%u]\n", 7196 mas_mn(&mas), offset); 7197 } 7198 MT_BUG_ON(mt, !last && !entry); 7199 last = entry; 7200 if (offset == mas_data_end(&mas)) { 7201 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7202 if (mas_is_none(&mas)) 7203 return; 7204 offset = 0; 7205 slots = ma_slots(mte_to_node(mas.node), 7206 mte_node_type(mas.node)); 7207 } else { 7208 offset++; 7209 } 7210 7211 } while (!mas_is_none(&mas)); 7212 } 7213 7214 /* 7215 * validate a maple tree by checking: 7216 * 1. The limits (pivots are within mas->min to mas->max) 7217 * 2. The gap is correctly set in the parents 7218 */ 7219 void mt_validate(struct maple_tree *mt) 7220 { 7221 unsigned char end; 7222 7223 MA_STATE(mas, mt, 0, 0); 7224 rcu_read_lock(); 7225 mas_start(&mas); 7226 if (!mas_searchable(&mas)) 7227 goto done; 7228 7229 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node)); 7230 while (!mas_is_none(&mas)) { 7231 MT_BUG_ON(mas.tree, mte_dead_node(mas.node)); 7232 if (!mte_is_root(mas.node)) { 7233 end = mas_data_end(&mas); 7234 if ((end < mt_min_slot_count(mas.node)) && 7235 (mas.max != ULONG_MAX)) { 7236 pr_err("Invalid size %u of %p\n", end, 7237 mas_mn(&mas)); 7238 MT_BUG_ON(mas.tree, 1); 7239 } 7240 7241 } 7242 mas_validate_parent_slot(&mas); 7243 mas_validate_child_slot(&mas); 7244 mas_validate_limits(&mas); 7245 if (mt_is_alloc(mt)) 7246 mas_validate_gaps(&mas); 7247 mas_dfs_postorder(&mas, ULONG_MAX); 7248 } 7249 mt_validate_nulls(mt); 7250 done: 7251 rcu_read_unlock(); 7252 7253 } 7254 EXPORT_SYMBOL_GPL(mt_validate); 7255 7256 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7257