xref: /openbmc/linux/lib/maple_tree.c (revision 36aa1e67)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  */
8 
9 /*
10  * DOC: Interesting implementation details of the Maple Tree
11  *
12  * Each node type has a number of slots for entries and a number of slots for
13  * pivots.  In the case of dense nodes, the pivots are implied by the position
14  * and are simply the slot index + the minimum of the node.
15  *
16  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
17  * indicate that the tree is specifying ranges,  Pivots may appear in the
18  * subtree with an entry attached to the value where as keys are unique to a
19  * specific position of a B-tree.  Pivot values are inclusive of the slot with
20  * the same index.
21  *
22  *
23  * The following illustrates the layout of a range64 nodes slots and pivots.
24  *
25  *
26  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
28  *           │   │   │   │     │    │    │    │    └─ Implied maximum
29  *           │   │   │   │     │    │    │    └─ Pivot 14
30  *           │   │   │   │     │    │    └─ Pivot 13
31  *           │   │   │   │     │    └─ Pivot 12
32  *           │   │   │   │     └─ Pivot 11
33  *           │   │   │   └─ Pivot 2
34  *           │   │   └─ Pivot 1
35  *           │   └─ Pivot 0
36  *           └─  Implied minimum
37  *
38  * Slot contents:
39  *  Internal (non-leaf) nodes contain pointers to other nodes.
40  *  Leaf nodes contain entries.
41  *
42  * The location of interest is often referred to as an offset.  All offsets have
43  * a slot, but the last offset has an implied pivot from the node above (or
44  * UINT_MAX for the root node.
45  *
46  * Ranges complicate certain write activities.  When modifying any of
47  * the B-tree variants, it is known that one entry will either be added or
48  * deleted.  When modifying the Maple Tree, one store operation may overwrite
49  * the entire data set, or one half of the tree, or the middle half of the tree.
50  *
51  */
52 
53 
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
64 
65 #define MA_ROOT_PARENT 1
66 
67 /*
68  * Maple state flags
69  * * MA_STATE_BULK		- Bulk insert mode
70  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
71  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
72  */
73 #define MA_STATE_BULK		1
74 #define MA_STATE_REBALANCE	2
75 #define MA_STATE_PREALLOC	4
76 
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
81 
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 	[maple_dense]		= MAPLE_NODE_SLOTS,
85 	[maple_leaf_64]		= ULONG_MAX,
86 	[maple_range_64]	= ULONG_MAX,
87 	[maple_arange_64]	= ULONG_MAX,
88 };
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
90 #endif
91 
92 static const unsigned char mt_slots[] = {
93 	[maple_dense]		= MAPLE_NODE_SLOTS,
94 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
95 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
96 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
97 };
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
99 
100 static const unsigned char mt_pivots[] = {
101 	[maple_dense]		= 0,
102 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
103 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
104 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
105 };
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107 
108 static const unsigned char mt_min_slots[] = {
109 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
110 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
111 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
112 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
113 };
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115 
116 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
118 
119 struct maple_big_node {
120 	struct maple_pnode *parent;
121 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 	union {
123 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 		struct {
125 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 		};
128 	};
129 	unsigned char b_end;
130 	enum maple_type type;
131 };
132 
133 /*
134  * The maple_subtree_state is used to build a tree to replace a segment of an
135  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
136  * dead node and restart on updates.
137  */
138 struct maple_subtree_state {
139 	struct ma_state *orig_l;	/* Original left side of subtree */
140 	struct ma_state *orig_r;	/* Original right side of subtree */
141 	struct ma_state *l;		/* New left side of subtree */
142 	struct ma_state *m;		/* New middle of subtree (rare) */
143 	struct ma_state *r;		/* New right side of subtree */
144 	struct ma_topiary *free;	/* nodes to be freed */
145 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
146 	struct maple_big_node *bn;
147 };
148 
149 /* Functions */
150 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
151 {
152 	return kmem_cache_alloc(maple_node_cache, gfp);
153 }
154 
155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
156 {
157 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
158 }
159 
160 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
161 {
162 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
163 }
164 
165 static void mt_free_rcu(struct rcu_head *head)
166 {
167 	struct maple_node *node = container_of(head, struct maple_node, rcu);
168 
169 	kmem_cache_free(maple_node_cache, node);
170 }
171 
172 /*
173  * ma_free_rcu() - Use rcu callback to free a maple node
174  * @node: The node to free
175  *
176  * The maple tree uses the parent pointer to indicate this node is no longer in
177  * use and will be freed.
178  */
179 static void ma_free_rcu(struct maple_node *node)
180 {
181 	node->parent = ma_parent_ptr(node);
182 	call_rcu(&node->rcu, mt_free_rcu);
183 }
184 
185 static void mas_set_height(struct ma_state *mas)
186 {
187 	unsigned int new_flags = mas->tree->ma_flags;
188 
189 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
190 	BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
191 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
192 	mas->tree->ma_flags = new_flags;
193 }
194 
195 static unsigned int mas_mt_height(struct ma_state *mas)
196 {
197 	return mt_height(mas->tree);
198 }
199 
200 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
201 {
202 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
203 		MAPLE_NODE_TYPE_MASK;
204 }
205 
206 static inline bool ma_is_dense(const enum maple_type type)
207 {
208 	return type < maple_leaf_64;
209 }
210 
211 static inline bool ma_is_leaf(const enum maple_type type)
212 {
213 	return type < maple_range_64;
214 }
215 
216 static inline bool mte_is_leaf(const struct maple_enode *entry)
217 {
218 	return ma_is_leaf(mte_node_type(entry));
219 }
220 
221 /*
222  * We also reserve values with the bottom two bits set to '10' which are
223  * below 4096
224  */
225 static inline bool mt_is_reserved(const void *entry)
226 {
227 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
228 		xa_is_internal(entry);
229 }
230 
231 static inline void mas_set_err(struct ma_state *mas, long err)
232 {
233 	mas->node = MA_ERROR(err);
234 }
235 
236 static inline bool mas_is_ptr(struct ma_state *mas)
237 {
238 	return mas->node == MAS_ROOT;
239 }
240 
241 static inline bool mas_is_start(struct ma_state *mas)
242 {
243 	return mas->node == MAS_START;
244 }
245 
246 bool mas_is_err(struct ma_state *mas)
247 {
248 	return xa_is_err(mas->node);
249 }
250 
251 static inline bool mas_searchable(struct ma_state *mas)
252 {
253 	if (mas_is_none(mas))
254 		return false;
255 
256 	if (mas_is_ptr(mas))
257 		return false;
258 
259 	return true;
260 }
261 
262 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
263 {
264 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
265 }
266 
267 /*
268  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
269  * @entry: The maple encoded node
270  *
271  * Return: a maple topiary pointer
272  */
273 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
274 {
275 	return (struct maple_topiary *)
276 		((unsigned long)entry & ~MAPLE_NODE_MASK);
277 }
278 
279 /*
280  * mas_mn() - Get the maple state node.
281  * @mas: The maple state
282  *
283  * Return: the maple node (not encoded - bare pointer).
284  */
285 static inline struct maple_node *mas_mn(const struct ma_state *mas)
286 {
287 	return mte_to_node(mas->node);
288 }
289 
290 /*
291  * mte_set_node_dead() - Set a maple encoded node as dead.
292  * @mn: The maple encoded node.
293  */
294 static inline void mte_set_node_dead(struct maple_enode *mn)
295 {
296 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
297 	smp_wmb(); /* Needed for RCU */
298 }
299 
300 /* Bit 1 indicates the root is a node */
301 #define MAPLE_ROOT_NODE			0x02
302 /* maple_type stored bit 3-6 */
303 #define MAPLE_ENODE_TYPE_SHIFT		0x03
304 /* Bit 2 means a NULL somewhere below */
305 #define MAPLE_ENODE_NULL		0x04
306 
307 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
308 					     enum maple_type type)
309 {
310 	return (void *)((unsigned long)node |
311 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
312 }
313 
314 static inline void *mte_mk_root(const struct maple_enode *node)
315 {
316 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
317 }
318 
319 static inline void *mte_safe_root(const struct maple_enode *node)
320 {
321 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
322 }
323 
324 static inline void *mte_set_full(const struct maple_enode *node)
325 {
326 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
327 }
328 
329 static inline void *mte_clear_full(const struct maple_enode *node)
330 {
331 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
332 }
333 
334 static inline bool mte_has_null(const struct maple_enode *node)
335 {
336 	return (unsigned long)node & MAPLE_ENODE_NULL;
337 }
338 
339 static inline bool ma_is_root(struct maple_node *node)
340 {
341 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
342 }
343 
344 static inline bool mte_is_root(const struct maple_enode *node)
345 {
346 	return ma_is_root(mte_to_node(node));
347 }
348 
349 static inline bool mas_is_root_limits(const struct ma_state *mas)
350 {
351 	return !mas->min && mas->max == ULONG_MAX;
352 }
353 
354 static inline bool mt_is_alloc(struct maple_tree *mt)
355 {
356 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
357 }
358 
359 /*
360  * The Parent Pointer
361  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
362  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
363  * bit values need an extra bit to store the offset.  This extra bit comes from
364  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
365  * indicate if bit 2 is part of the type or the slot.
366  *
367  * Note types:
368  *  0x??1 = Root
369  *  0x?00 = 16 bit nodes
370  *  0x010 = 32 bit nodes
371  *  0x110 = 64 bit nodes
372  *
373  * Slot size and alignment
374  *  0b??1 : Root
375  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
376  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
377  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
378  */
379 
380 #define MAPLE_PARENT_ROOT		0x01
381 
382 #define MAPLE_PARENT_SLOT_SHIFT		0x03
383 #define MAPLE_PARENT_SLOT_MASK		0xF8
384 
385 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
386 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
387 
388 #define MAPLE_PARENT_RANGE64		0x06
389 #define MAPLE_PARENT_RANGE32		0x04
390 #define MAPLE_PARENT_NOT_RANGE16	0x02
391 
392 /*
393  * mte_parent_shift() - Get the parent shift for the slot storage.
394  * @parent: The parent pointer cast as an unsigned long
395  * Return: The shift into that pointer to the star to of the slot
396  */
397 static inline unsigned long mte_parent_shift(unsigned long parent)
398 {
399 	/* Note bit 1 == 0 means 16B */
400 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
401 		return MAPLE_PARENT_SLOT_SHIFT;
402 
403 	return MAPLE_PARENT_16B_SLOT_SHIFT;
404 }
405 
406 /*
407  * mte_parent_slot_mask() - Get the slot mask for the parent.
408  * @parent: The parent pointer cast as an unsigned long.
409  * Return: The slot mask for that parent.
410  */
411 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
412 {
413 	/* Note bit 1 == 0 means 16B */
414 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
415 		return MAPLE_PARENT_SLOT_MASK;
416 
417 	return MAPLE_PARENT_16B_SLOT_MASK;
418 }
419 
420 /*
421  * mas_parent_enum() - Return the maple_type of the parent from the stored
422  * parent type.
423  * @mas: The maple state
424  * @node: The maple_enode to extract the parent's enum
425  * Return: The node->parent maple_type
426  */
427 static inline
428 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
429 				struct maple_tree *mt)
430 {
431 	unsigned long p_type;
432 
433 	p_type = (unsigned long)p_enode;
434 	if (p_type & MAPLE_PARENT_ROOT)
435 		return 0; /* Validated in the caller. */
436 
437 	p_type &= MAPLE_NODE_MASK;
438 	p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
439 
440 	switch (p_type) {
441 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
442 		if (mt_is_alloc(mt))
443 			return maple_arange_64;
444 		return maple_range_64;
445 	}
446 
447 	return 0;
448 }
449 
450 static inline
451 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
452 {
453 	return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
454 }
455 
456 /*
457  * mte_set_parent() - Set the parent node and encode the slot
458  * @enode: The encoded maple node.
459  * @parent: The encoded maple node that is the parent of @enode.
460  * @slot: The slot that @enode resides in @parent.
461  *
462  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
463  * parent type.
464  */
465 static inline
466 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
467 		    unsigned char slot)
468 {
469 	unsigned long val = (unsigned long)parent;
470 	unsigned long shift;
471 	unsigned long type;
472 	enum maple_type p_type = mte_node_type(parent);
473 
474 	BUG_ON(p_type == maple_dense);
475 	BUG_ON(p_type == maple_leaf_64);
476 
477 	switch (p_type) {
478 	case maple_range_64:
479 	case maple_arange_64:
480 		shift = MAPLE_PARENT_SLOT_SHIFT;
481 		type = MAPLE_PARENT_RANGE64;
482 		break;
483 	default:
484 	case maple_dense:
485 	case maple_leaf_64:
486 		shift = type = 0;
487 		break;
488 	}
489 
490 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
491 	val |= (slot << shift) | type;
492 	mte_to_node(enode)->parent = ma_parent_ptr(val);
493 }
494 
495 /*
496  * mte_parent_slot() - get the parent slot of @enode.
497  * @enode: The encoded maple node.
498  *
499  * Return: The slot in the parent node where @enode resides.
500  */
501 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
502 {
503 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
504 
505 	if (val & MA_ROOT_PARENT)
506 		return 0;
507 
508 	/*
509 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
510 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
511 	 */
512 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
513 }
514 
515 /*
516  * mte_parent() - Get the parent of @node.
517  * @node: The encoded maple node.
518  *
519  * Return: The parent maple node.
520  */
521 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
522 {
523 	return (void *)((unsigned long)
524 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
525 }
526 
527 /*
528  * ma_dead_node() - check if the @enode is dead.
529  * @enode: The encoded maple node
530  *
531  * Return: true if dead, false otherwise.
532  */
533 static inline bool ma_dead_node(const struct maple_node *node)
534 {
535 	struct maple_node *parent = (void *)((unsigned long)
536 					     node->parent & ~MAPLE_NODE_MASK);
537 
538 	return (parent == node);
539 }
540 /*
541  * mte_dead_node() - check if the @enode is dead.
542  * @enode: The encoded maple node
543  *
544  * Return: true if dead, false otherwise.
545  */
546 static inline bool mte_dead_node(const struct maple_enode *enode)
547 {
548 	struct maple_node *parent, *node;
549 
550 	node = mte_to_node(enode);
551 	parent = mte_parent(enode);
552 	return (parent == node);
553 }
554 
555 /*
556  * mas_allocated() - Get the number of nodes allocated in a maple state.
557  * @mas: The maple state
558  *
559  * The ma_state alloc member is overloaded to hold a pointer to the first
560  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
561  * set, then the alloc contains the number of requested nodes.  If there is an
562  * allocated node, then the total allocated nodes is in that node.
563  *
564  * Return: The total number of nodes allocated
565  */
566 static inline unsigned long mas_allocated(const struct ma_state *mas)
567 {
568 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
569 		return 0;
570 
571 	return mas->alloc->total;
572 }
573 
574 /*
575  * mas_set_alloc_req() - Set the requested number of allocations.
576  * @mas: the maple state
577  * @count: the number of allocations.
578  *
579  * The requested number of allocations is either in the first allocated node,
580  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
581  * no allocated node.  Set the request either in the node or do the necessary
582  * encoding to store in @mas->alloc directly.
583  */
584 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
585 {
586 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
587 		if (!count)
588 			mas->alloc = NULL;
589 		else
590 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
591 		return;
592 	}
593 
594 	mas->alloc->request_count = count;
595 }
596 
597 /*
598  * mas_alloc_req() - get the requested number of allocations.
599  * @mas: The maple state
600  *
601  * The alloc count is either stored directly in @mas, or in
602  * @mas->alloc->request_count if there is at least one node allocated.  Decode
603  * the request count if it's stored directly in @mas->alloc.
604  *
605  * Return: The allocation request count.
606  */
607 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
608 {
609 	if ((unsigned long)mas->alloc & 0x1)
610 		return (unsigned long)(mas->alloc) >> 1;
611 	else if (mas->alloc)
612 		return mas->alloc->request_count;
613 	return 0;
614 }
615 
616 /*
617  * ma_pivots() - Get a pointer to the maple node pivots.
618  * @node - the maple node
619  * @type - the node type
620  *
621  * Return: A pointer to the maple node pivots
622  */
623 static inline unsigned long *ma_pivots(struct maple_node *node,
624 					   enum maple_type type)
625 {
626 	switch (type) {
627 	case maple_arange_64:
628 		return node->ma64.pivot;
629 	case maple_range_64:
630 	case maple_leaf_64:
631 		return node->mr64.pivot;
632 	case maple_dense:
633 		return NULL;
634 	}
635 	return NULL;
636 }
637 
638 /*
639  * ma_gaps() - Get a pointer to the maple node gaps.
640  * @node - the maple node
641  * @type - the node type
642  *
643  * Return: A pointer to the maple node gaps
644  */
645 static inline unsigned long *ma_gaps(struct maple_node *node,
646 				     enum maple_type type)
647 {
648 	switch (type) {
649 	case maple_arange_64:
650 		return node->ma64.gap;
651 	case maple_range_64:
652 	case maple_leaf_64:
653 	case maple_dense:
654 		return NULL;
655 	}
656 	return NULL;
657 }
658 
659 /*
660  * mte_pivot() - Get the pivot at @piv of the maple encoded node.
661  * @mn: The maple encoded node.
662  * @piv: The pivot.
663  *
664  * Return: the pivot at @piv of @mn.
665  */
666 static inline unsigned long mte_pivot(const struct maple_enode *mn,
667 				 unsigned char piv)
668 {
669 	struct maple_node *node = mte_to_node(mn);
670 	enum maple_type type = mte_node_type(mn);
671 
672 	if (piv >= mt_pivots[type]) {
673 		WARN_ON(1);
674 		return 0;
675 	}
676 	switch (type) {
677 	case maple_arange_64:
678 		return node->ma64.pivot[piv];
679 	case maple_range_64:
680 	case maple_leaf_64:
681 		return node->mr64.pivot[piv];
682 	case maple_dense:
683 		return 0;
684 	}
685 	return 0;
686 }
687 
688 /*
689  * mas_safe_pivot() - get the pivot at @piv or mas->max.
690  * @mas: The maple state
691  * @pivots: The pointer to the maple node pivots
692  * @piv: The pivot to fetch
693  * @type: The maple node type
694  *
695  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
696  * otherwise.
697  */
698 static inline unsigned long
699 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
700 	       unsigned char piv, enum maple_type type)
701 {
702 	if (piv >= mt_pivots[type])
703 		return mas->max;
704 
705 	return pivots[piv];
706 }
707 
708 /*
709  * mas_safe_min() - Return the minimum for a given offset.
710  * @mas: The maple state
711  * @pivots: The pointer to the maple node pivots
712  * @offset: The offset into the pivot array
713  *
714  * Return: The minimum range value that is contained in @offset.
715  */
716 static inline unsigned long
717 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
718 {
719 	if (likely(offset))
720 		return pivots[offset - 1] + 1;
721 
722 	return mas->min;
723 }
724 
725 /*
726  * mas_logical_pivot() - Get the logical pivot of a given offset.
727  * @mas: The maple state
728  * @pivots: The pointer to the maple node pivots
729  * @offset: The offset into the pivot array
730  * @type: The maple node type
731  *
732  * When there is no value at a pivot (beyond the end of the data), then the
733  * pivot is actually @mas->max.
734  *
735  * Return: the logical pivot of a given @offset.
736  */
737 static inline unsigned long
738 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
739 		  unsigned char offset, enum maple_type type)
740 {
741 	unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
742 
743 	if (likely(lpiv))
744 		return lpiv;
745 
746 	if (likely(offset))
747 		return mas->max;
748 
749 	return lpiv;
750 }
751 
752 /*
753  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
754  * @mn: The encoded maple node
755  * @piv: The pivot offset
756  * @val: The value of the pivot
757  */
758 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
759 				unsigned long val)
760 {
761 	struct maple_node *node = mte_to_node(mn);
762 	enum maple_type type = mte_node_type(mn);
763 
764 	BUG_ON(piv >= mt_pivots[type]);
765 	switch (type) {
766 	default:
767 	case maple_range_64:
768 	case maple_leaf_64:
769 		node->mr64.pivot[piv] = val;
770 		break;
771 	case maple_arange_64:
772 		node->ma64.pivot[piv] = val;
773 		break;
774 	case maple_dense:
775 		break;
776 	}
777 
778 }
779 
780 /*
781  * ma_slots() - Get a pointer to the maple node slots.
782  * @mn: The maple node
783  * @mt: The maple node type
784  *
785  * Return: A pointer to the maple node slots
786  */
787 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
788 {
789 	switch (mt) {
790 	default:
791 	case maple_arange_64:
792 		return mn->ma64.slot;
793 	case maple_range_64:
794 	case maple_leaf_64:
795 		return mn->mr64.slot;
796 	case maple_dense:
797 		return mn->slot;
798 	}
799 }
800 
801 static inline bool mt_locked(const struct maple_tree *mt)
802 {
803 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
804 		lockdep_is_held(&mt->ma_lock);
805 }
806 
807 static inline void *mt_slot(const struct maple_tree *mt,
808 		void __rcu **slots, unsigned char offset)
809 {
810 	return rcu_dereference_check(slots[offset], mt_locked(mt));
811 }
812 
813 /*
814  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
815  * @mas: The maple state
816  * @slots: The pointer to the slots
817  * @offset: The offset into the slots array to fetch
818  *
819  * Return: The entry stored in @slots at the @offset.
820  */
821 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
822 				       unsigned char offset)
823 {
824 	return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
825 }
826 
827 /*
828  * mas_slot() - Get the slot value when not holding the maple tree lock.
829  * @mas: The maple state
830  * @slots: The pointer to the slots
831  * @offset: The offset into the slots array to fetch
832  *
833  * Return: The entry stored in @slots at the @offset
834  */
835 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
836 			     unsigned char offset)
837 {
838 	return mt_slot(mas->tree, slots, offset);
839 }
840 
841 /*
842  * mas_root() - Get the maple tree root.
843  * @mas: The maple state.
844  *
845  * Return: The pointer to the root of the tree
846  */
847 static inline void *mas_root(struct ma_state *mas)
848 {
849 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
850 }
851 
852 static inline void *mt_root_locked(struct maple_tree *mt)
853 {
854 	return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
855 }
856 
857 /*
858  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
859  * @mas: The maple state.
860  *
861  * Return: The pointer to the root of the tree
862  */
863 static inline void *mas_root_locked(struct ma_state *mas)
864 {
865 	return mt_root_locked(mas->tree);
866 }
867 
868 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
869 					     enum maple_type mt)
870 {
871 	switch (mt) {
872 	case maple_arange_64:
873 		return &mn->ma64.meta;
874 	default:
875 		return &mn->mr64.meta;
876 	}
877 }
878 
879 /*
880  * ma_set_meta() - Set the metadata information of a node.
881  * @mn: The maple node
882  * @mt: The maple node type
883  * @offset: The offset of the highest sub-gap in this node.
884  * @end: The end of the data in this node.
885  */
886 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
887 			       unsigned char offset, unsigned char end)
888 {
889 	struct maple_metadata *meta = ma_meta(mn, mt);
890 
891 	meta->gap = offset;
892 	meta->end = end;
893 }
894 
895 /*
896  * ma_meta_end() - Get the data end of a node from the metadata
897  * @mn: The maple node
898  * @mt: The maple node type
899  */
900 static inline unsigned char ma_meta_end(struct maple_node *mn,
901 					enum maple_type mt)
902 {
903 	struct maple_metadata *meta = ma_meta(mn, mt);
904 
905 	return meta->end;
906 }
907 
908 /*
909  * ma_meta_gap() - Get the largest gap location of a node from the metadata
910  * @mn: The maple node
911  * @mt: The maple node type
912  */
913 static inline unsigned char ma_meta_gap(struct maple_node *mn,
914 					enum maple_type mt)
915 {
916 	BUG_ON(mt != maple_arange_64);
917 
918 	return mn->ma64.meta.gap;
919 }
920 
921 /*
922  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
923  * @mn: The maple node
924  * @mn: The maple node type
925  * @offset: The location of the largest gap.
926  */
927 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
928 				   unsigned char offset)
929 {
930 
931 	struct maple_metadata *meta = ma_meta(mn, mt);
932 
933 	meta->gap = offset;
934 }
935 
936 /*
937  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
938  * @mat - the ma_topiary, a linked list of dead nodes.
939  * @dead_enode - the node to be marked as dead and added to the tail of the list
940  *
941  * Add the @dead_enode to the linked list in @mat.
942  */
943 static inline void mat_add(struct ma_topiary *mat,
944 			   struct maple_enode *dead_enode)
945 {
946 	mte_set_node_dead(dead_enode);
947 	mte_to_mat(dead_enode)->next = NULL;
948 	if (!mat->tail) {
949 		mat->tail = mat->head = dead_enode;
950 		return;
951 	}
952 
953 	mte_to_mat(mat->tail)->next = dead_enode;
954 	mat->tail = dead_enode;
955 }
956 
957 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
958 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
959 
960 /*
961  * mas_mat_free() - Free all nodes in a dead list.
962  * @mas - the maple state
963  * @mat - the ma_topiary linked list of dead nodes to free.
964  *
965  * Free walk a dead list.
966  */
967 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
968 {
969 	struct maple_enode *next;
970 
971 	while (mat->head) {
972 		next = mte_to_mat(mat->head)->next;
973 		mas_free(mas, mat->head);
974 		mat->head = next;
975 	}
976 }
977 
978 /*
979  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
980  * @mas - the maple state
981  * @mat - the ma_topiary linked list of dead nodes to free.
982  *
983  * Destroy walk a dead list.
984  */
985 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
986 {
987 	struct maple_enode *next;
988 
989 	while (mat->head) {
990 		next = mte_to_mat(mat->head)->next;
991 		mte_destroy_walk(mat->head, mat->mtree);
992 		mat->head = next;
993 	}
994 }
995 /*
996  * mas_descend() - Descend into the slot stored in the ma_state.
997  * @mas - the maple state.
998  *
999  * Note: Not RCU safe, only use in write side or debug code.
1000  */
1001 static inline void mas_descend(struct ma_state *mas)
1002 {
1003 	enum maple_type type;
1004 	unsigned long *pivots;
1005 	struct maple_node *node;
1006 	void __rcu **slots;
1007 
1008 	node = mas_mn(mas);
1009 	type = mte_node_type(mas->node);
1010 	pivots = ma_pivots(node, type);
1011 	slots = ma_slots(node, type);
1012 
1013 	if (mas->offset)
1014 		mas->min = pivots[mas->offset - 1] + 1;
1015 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1016 	mas->node = mas_slot(mas, slots, mas->offset);
1017 }
1018 
1019 /*
1020  * mte_set_gap() - Set a maple node gap.
1021  * @mn: The encoded maple node
1022  * @gap: The offset of the gap to set
1023  * @val: The gap value
1024  */
1025 static inline void mte_set_gap(const struct maple_enode *mn,
1026 				 unsigned char gap, unsigned long val)
1027 {
1028 	switch (mte_node_type(mn)) {
1029 	default:
1030 		break;
1031 	case maple_arange_64:
1032 		mte_to_node(mn)->ma64.gap[gap] = val;
1033 		break;
1034 	}
1035 }
1036 
1037 /*
1038  * mas_ascend() - Walk up a level of the tree.
1039  * @mas: The maple state
1040  *
1041  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1042  * may cause several levels of walking up to find the correct min and max.
1043  * May find a dead node which will cause a premature return.
1044  * Return: 1 on dead node, 0 otherwise
1045  */
1046 static int mas_ascend(struct ma_state *mas)
1047 {
1048 	struct maple_enode *p_enode; /* parent enode. */
1049 	struct maple_enode *a_enode; /* ancestor enode. */
1050 	struct maple_node *a_node; /* ancestor node. */
1051 	struct maple_node *p_node; /* parent node. */
1052 	unsigned char a_slot;
1053 	enum maple_type a_type;
1054 	unsigned long min, max;
1055 	unsigned long *pivots;
1056 	unsigned char offset;
1057 	bool set_max = false, set_min = false;
1058 
1059 	a_node = mas_mn(mas);
1060 	if (ma_is_root(a_node)) {
1061 		mas->offset = 0;
1062 		return 0;
1063 	}
1064 
1065 	p_node = mte_parent(mas->node);
1066 	if (unlikely(a_node == p_node))
1067 		return 1;
1068 	a_type = mas_parent_enum(mas, mas->node);
1069 	offset = mte_parent_slot(mas->node);
1070 	a_enode = mt_mk_node(p_node, a_type);
1071 
1072 	/* Check to make sure all parent information is still accurate */
1073 	if (p_node != mte_parent(mas->node))
1074 		return 1;
1075 
1076 	mas->node = a_enode;
1077 	mas->offset = offset;
1078 
1079 	if (mte_is_root(a_enode)) {
1080 		mas->max = ULONG_MAX;
1081 		mas->min = 0;
1082 		return 0;
1083 	}
1084 
1085 	min = 0;
1086 	max = ULONG_MAX;
1087 	do {
1088 		p_enode = a_enode;
1089 		a_type = mas_parent_enum(mas, p_enode);
1090 		a_node = mte_parent(p_enode);
1091 		a_slot = mte_parent_slot(p_enode);
1092 		pivots = ma_pivots(a_node, a_type);
1093 		a_enode = mt_mk_node(a_node, a_type);
1094 
1095 		if (!set_min && a_slot) {
1096 			set_min = true;
1097 			min = pivots[a_slot - 1] + 1;
1098 		}
1099 
1100 		if (!set_max && a_slot < mt_pivots[a_type]) {
1101 			set_max = true;
1102 			max = pivots[a_slot];
1103 		}
1104 
1105 		if (unlikely(ma_dead_node(a_node)))
1106 			return 1;
1107 
1108 		if (unlikely(ma_is_root(a_node)))
1109 			break;
1110 
1111 	} while (!set_min || !set_max);
1112 
1113 	mas->max = max;
1114 	mas->min = min;
1115 	return 0;
1116 }
1117 
1118 /*
1119  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1120  * @mas: The maple state
1121  *
1122  * Return: A pointer to a maple node.
1123  */
1124 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1125 {
1126 	struct maple_alloc *ret, *node = mas->alloc;
1127 	unsigned long total = mas_allocated(mas);
1128 	unsigned int req = mas_alloc_req(mas);
1129 
1130 	/* nothing or a request pending. */
1131 	if (WARN_ON(!total))
1132 		return NULL;
1133 
1134 	if (total == 1) {
1135 		/* single allocation in this ma_state */
1136 		mas->alloc = NULL;
1137 		ret = node;
1138 		goto single_node;
1139 	}
1140 
1141 	if (node->node_count == 1) {
1142 		/* Single allocation in this node. */
1143 		mas->alloc = node->slot[0];
1144 		mas->alloc->total = node->total - 1;
1145 		ret = node;
1146 		goto new_head;
1147 	}
1148 	node->total--;
1149 	ret = node->slot[--node->node_count];
1150 	node->slot[node->node_count] = NULL;
1151 
1152 single_node:
1153 new_head:
1154 	if (req) {
1155 		req++;
1156 		mas_set_alloc_req(mas, req);
1157 	}
1158 
1159 	memset(ret, 0, sizeof(*ret));
1160 	return (struct maple_node *)ret;
1161 }
1162 
1163 /*
1164  * mas_push_node() - Push a node back on the maple state allocation.
1165  * @mas: The maple state
1166  * @used: The used maple node
1167  *
1168  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1169  * requested node count as necessary.
1170  */
1171 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1172 {
1173 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1174 	struct maple_alloc *head = mas->alloc;
1175 	unsigned long count;
1176 	unsigned int requested = mas_alloc_req(mas);
1177 
1178 	count = mas_allocated(mas);
1179 
1180 	reuse->request_count = 0;
1181 	reuse->node_count = 0;
1182 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1183 		head->slot[head->node_count++] = reuse;
1184 		head->total++;
1185 		goto done;
1186 	}
1187 
1188 	reuse->total = 1;
1189 	if ((head) && !((unsigned long)head & 0x1)) {
1190 		reuse->slot[0] = head;
1191 		reuse->node_count = 1;
1192 		reuse->total += head->total;
1193 	}
1194 
1195 	mas->alloc = reuse;
1196 done:
1197 	if (requested > 1)
1198 		mas_set_alloc_req(mas, requested - 1);
1199 }
1200 
1201 /*
1202  * mas_alloc_nodes() - Allocate nodes into a maple state
1203  * @mas: The maple state
1204  * @gfp: The GFP Flags
1205  */
1206 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1207 {
1208 	struct maple_alloc *node;
1209 	unsigned long allocated = mas_allocated(mas);
1210 	unsigned int requested = mas_alloc_req(mas);
1211 	unsigned int count;
1212 	void **slots = NULL;
1213 	unsigned int max_req = 0;
1214 
1215 	if (!requested)
1216 		return;
1217 
1218 	mas_set_alloc_req(mas, 0);
1219 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1220 		if (allocated)
1221 			return;
1222 		WARN_ON(!allocated);
1223 	}
1224 
1225 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1226 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1227 		if (!node)
1228 			goto nomem_one;
1229 
1230 		if (allocated) {
1231 			node->slot[0] = mas->alloc;
1232 			node->node_count = 1;
1233 		} else {
1234 			node->node_count = 0;
1235 		}
1236 
1237 		mas->alloc = node;
1238 		node->total = ++allocated;
1239 		requested--;
1240 	}
1241 
1242 	node = mas->alloc;
1243 	node->request_count = 0;
1244 	while (requested) {
1245 		max_req = MAPLE_ALLOC_SLOTS;
1246 		if (node->node_count) {
1247 			unsigned int offset = node->node_count;
1248 
1249 			slots = (void **)&node->slot[offset];
1250 			max_req -= offset;
1251 		} else {
1252 			slots = (void **)&node->slot;
1253 		}
1254 
1255 		max_req = min(requested, max_req);
1256 		count = mt_alloc_bulk(gfp, max_req, slots);
1257 		if (!count)
1258 			goto nomem_bulk;
1259 
1260 		node->node_count += count;
1261 		allocated += count;
1262 		node = node->slot[0];
1263 		node->node_count = 0;
1264 		node->request_count = 0;
1265 		requested -= count;
1266 	}
1267 	mas->alloc->total = allocated;
1268 	return;
1269 
1270 nomem_bulk:
1271 	/* Clean up potential freed allocations on bulk failure */
1272 	memset(slots, 0, max_req * sizeof(unsigned long));
1273 nomem_one:
1274 	mas_set_alloc_req(mas, requested);
1275 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1276 		mas->alloc->total = allocated;
1277 	mas_set_err(mas, -ENOMEM);
1278 }
1279 
1280 /*
1281  * mas_free() - Free an encoded maple node
1282  * @mas: The maple state
1283  * @used: The encoded maple node to free.
1284  *
1285  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1286  * otherwise.
1287  */
1288 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1289 {
1290 	struct maple_node *tmp = mte_to_node(used);
1291 
1292 	if (mt_in_rcu(mas->tree))
1293 		ma_free_rcu(tmp);
1294 	else
1295 		mas_push_node(mas, tmp);
1296 }
1297 
1298 /*
1299  * mas_node_count() - Check if enough nodes are allocated and request more if
1300  * there is not enough nodes.
1301  * @mas: The maple state
1302  * @count: The number of nodes needed
1303  * @gfp: the gfp flags
1304  */
1305 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1306 {
1307 	unsigned long allocated = mas_allocated(mas);
1308 
1309 	if (allocated < count) {
1310 		mas_set_alloc_req(mas, count - allocated);
1311 		mas_alloc_nodes(mas, gfp);
1312 	}
1313 }
1314 
1315 /*
1316  * mas_node_count() - Check if enough nodes are allocated and request more if
1317  * there is not enough nodes.
1318  * @mas: The maple state
1319  * @count: The number of nodes needed
1320  *
1321  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1322  */
1323 static void mas_node_count(struct ma_state *mas, int count)
1324 {
1325 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1326 }
1327 
1328 /*
1329  * mas_start() - Sets up maple state for operations.
1330  * @mas: The maple state.
1331  *
1332  * If mas->node == MAS_START, then set the min, max and depth to
1333  * defaults.
1334  *
1335  * Return:
1336  * - If mas->node is an error or not MAS_START, return NULL.
1337  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
1338  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
1339  * - If it's a tree:            NULL & mas->node == safe root node.
1340  */
1341 static inline struct maple_enode *mas_start(struct ma_state *mas)
1342 {
1343 	if (likely(mas_is_start(mas))) {
1344 		struct maple_enode *root;
1345 
1346 		mas->min = 0;
1347 		mas->max = ULONG_MAX;
1348 		mas->depth = 0;
1349 
1350 		root = mas_root(mas);
1351 		/* Tree with nodes */
1352 		if (likely(xa_is_node(root))) {
1353 			mas->depth = 1;
1354 			mas->node = mte_safe_root(root);
1355 			mas->offset = 0;
1356 			return NULL;
1357 		}
1358 
1359 		/* empty tree */
1360 		if (unlikely(!root)) {
1361 			mas->node = MAS_NONE;
1362 			mas->offset = MAPLE_NODE_SLOTS;
1363 			return NULL;
1364 		}
1365 
1366 		/* Single entry tree */
1367 		mas->node = MAS_ROOT;
1368 		mas->offset = MAPLE_NODE_SLOTS;
1369 
1370 		/* Single entry tree. */
1371 		if (mas->index > 0)
1372 			return NULL;
1373 
1374 		return root;
1375 	}
1376 
1377 	return NULL;
1378 }
1379 
1380 /*
1381  * ma_data_end() - Find the end of the data in a node.
1382  * @node: The maple node
1383  * @type: The maple node type
1384  * @pivots: The array of pivots in the node
1385  * @max: The maximum value in the node
1386  *
1387  * Uses metadata to find the end of the data when possible.
1388  * Return: The zero indexed last slot with data (may be null).
1389  */
1390 static inline unsigned char ma_data_end(struct maple_node *node,
1391 					enum maple_type type,
1392 					unsigned long *pivots,
1393 					unsigned long max)
1394 {
1395 	unsigned char offset;
1396 
1397 	if (type == maple_arange_64)
1398 		return ma_meta_end(node, type);
1399 
1400 	offset = mt_pivots[type] - 1;
1401 	if (likely(!pivots[offset]))
1402 		return ma_meta_end(node, type);
1403 
1404 	if (likely(pivots[offset] == max))
1405 		return offset;
1406 
1407 	return mt_pivots[type];
1408 }
1409 
1410 /*
1411  * mas_data_end() - Find the end of the data (slot).
1412  * @mas: the maple state
1413  *
1414  * This method is optimized to check the metadata of a node if the node type
1415  * supports data end metadata.
1416  *
1417  * Return: The zero indexed last slot with data (may be null).
1418  */
1419 static inline unsigned char mas_data_end(struct ma_state *mas)
1420 {
1421 	enum maple_type type;
1422 	struct maple_node *node;
1423 	unsigned char offset;
1424 	unsigned long *pivots;
1425 
1426 	type = mte_node_type(mas->node);
1427 	node = mas_mn(mas);
1428 	if (type == maple_arange_64)
1429 		return ma_meta_end(node, type);
1430 
1431 	pivots = ma_pivots(node, type);
1432 	offset = mt_pivots[type] - 1;
1433 	if (likely(!pivots[offset]))
1434 		return ma_meta_end(node, type);
1435 
1436 	if (likely(pivots[offset] == mas->max))
1437 		return offset;
1438 
1439 	return mt_pivots[type];
1440 }
1441 
1442 /*
1443  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1444  * @mas - the maple state
1445  *
1446  * Return: The maximum gap in the leaf.
1447  */
1448 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1449 {
1450 	enum maple_type mt;
1451 	unsigned long pstart, gap, max_gap;
1452 	struct maple_node *mn;
1453 	unsigned long *pivots;
1454 	void __rcu **slots;
1455 	unsigned char i;
1456 	unsigned char max_piv;
1457 
1458 	mt = mte_node_type(mas->node);
1459 	mn = mas_mn(mas);
1460 	slots = ma_slots(mn, mt);
1461 	max_gap = 0;
1462 	if (unlikely(ma_is_dense(mt))) {
1463 		gap = 0;
1464 		for (i = 0; i < mt_slots[mt]; i++) {
1465 			if (slots[i]) {
1466 				if (gap > max_gap)
1467 					max_gap = gap;
1468 				gap = 0;
1469 			} else {
1470 				gap++;
1471 			}
1472 		}
1473 		if (gap > max_gap)
1474 			max_gap = gap;
1475 		return max_gap;
1476 	}
1477 
1478 	/*
1479 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1480 	 * be skipped if there is a gap in slot 0.
1481 	 */
1482 	pivots = ma_pivots(mn, mt);
1483 	if (likely(!slots[0])) {
1484 		max_gap = pivots[0] - mas->min + 1;
1485 		i = 2;
1486 	} else {
1487 		i = 1;
1488 	}
1489 
1490 	/* reduce max_piv as the special case is checked before the loop */
1491 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1492 	/*
1493 	 * Check end implied pivot which can only be a gap on the right most
1494 	 * node.
1495 	 */
1496 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1497 		gap = ULONG_MAX - pivots[max_piv];
1498 		if (gap > max_gap)
1499 			max_gap = gap;
1500 	}
1501 
1502 	for (; i <= max_piv; i++) {
1503 		/* data == no gap. */
1504 		if (likely(slots[i]))
1505 			continue;
1506 
1507 		pstart = pivots[i - 1];
1508 		gap = pivots[i] - pstart;
1509 		if (gap > max_gap)
1510 			max_gap = gap;
1511 
1512 		/* There cannot be two gaps in a row. */
1513 		i++;
1514 	}
1515 	return max_gap;
1516 }
1517 
1518 /*
1519  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1520  * @node: The maple node
1521  * @gaps: The pointer to the gaps
1522  * @mt: The maple node type
1523  * @*off: Pointer to store the offset location of the gap.
1524  *
1525  * Uses the metadata data end to scan backwards across set gaps.
1526  *
1527  * Return: The maximum gap value
1528  */
1529 static inline unsigned long
1530 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1531 	    unsigned char *off)
1532 {
1533 	unsigned char offset, i;
1534 	unsigned long max_gap = 0;
1535 
1536 	i = offset = ma_meta_end(node, mt);
1537 	do {
1538 		if (gaps[i] > max_gap) {
1539 			max_gap = gaps[i];
1540 			offset = i;
1541 		}
1542 	} while (i--);
1543 
1544 	*off = offset;
1545 	return max_gap;
1546 }
1547 
1548 /*
1549  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1550  * @mas: The maple state.
1551  *
1552  * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1553  *
1554  * Return: The gap value.
1555  */
1556 static inline unsigned long mas_max_gap(struct ma_state *mas)
1557 {
1558 	unsigned long *gaps;
1559 	unsigned char offset;
1560 	enum maple_type mt;
1561 	struct maple_node *node;
1562 
1563 	mt = mte_node_type(mas->node);
1564 	if (ma_is_leaf(mt))
1565 		return mas_leaf_max_gap(mas);
1566 
1567 	node = mas_mn(mas);
1568 	offset = ma_meta_gap(node, mt);
1569 	if (offset == MAPLE_ARANGE64_META_MAX)
1570 		return 0;
1571 
1572 	gaps = ma_gaps(node, mt);
1573 	return gaps[offset];
1574 }
1575 
1576 /*
1577  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1578  * @mas: The maple state
1579  * @offset: The gap offset in the parent to set
1580  * @new: The new gap value.
1581  *
1582  * Set the parent gap then continue to set the gap upwards, using the metadata
1583  * of the parent to see if it is necessary to check the node above.
1584  */
1585 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1586 		unsigned long new)
1587 {
1588 	unsigned long meta_gap = 0;
1589 	struct maple_node *pnode;
1590 	struct maple_enode *penode;
1591 	unsigned long *pgaps;
1592 	unsigned char meta_offset;
1593 	enum maple_type pmt;
1594 
1595 	pnode = mte_parent(mas->node);
1596 	pmt = mas_parent_enum(mas, mas->node);
1597 	penode = mt_mk_node(pnode, pmt);
1598 	pgaps = ma_gaps(pnode, pmt);
1599 
1600 ascend:
1601 	meta_offset = ma_meta_gap(pnode, pmt);
1602 	if (meta_offset == MAPLE_ARANGE64_META_MAX)
1603 		meta_gap = 0;
1604 	else
1605 		meta_gap = pgaps[meta_offset];
1606 
1607 	pgaps[offset] = new;
1608 
1609 	if (meta_gap == new)
1610 		return;
1611 
1612 	if (offset != meta_offset) {
1613 		if (meta_gap > new)
1614 			return;
1615 
1616 		ma_set_meta_gap(pnode, pmt, offset);
1617 	} else if (new < meta_gap) {
1618 		meta_offset = 15;
1619 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1620 		ma_set_meta_gap(pnode, pmt, meta_offset);
1621 	}
1622 
1623 	if (ma_is_root(pnode))
1624 		return;
1625 
1626 	/* Go to the parent node. */
1627 	pnode = mte_parent(penode);
1628 	pmt = mas_parent_enum(mas, penode);
1629 	pgaps = ma_gaps(pnode, pmt);
1630 	offset = mte_parent_slot(penode);
1631 	penode = mt_mk_node(pnode, pmt);
1632 	goto ascend;
1633 }
1634 
1635 /*
1636  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1637  * @mas - the maple state.
1638  */
1639 static inline void mas_update_gap(struct ma_state *mas)
1640 {
1641 	unsigned char pslot;
1642 	unsigned long p_gap;
1643 	unsigned long max_gap;
1644 
1645 	if (!mt_is_alloc(mas->tree))
1646 		return;
1647 
1648 	if (mte_is_root(mas->node))
1649 		return;
1650 
1651 	max_gap = mas_max_gap(mas);
1652 
1653 	pslot = mte_parent_slot(mas->node);
1654 	p_gap = ma_gaps(mte_parent(mas->node),
1655 			mas_parent_enum(mas, mas->node))[pslot];
1656 
1657 	if (p_gap != max_gap)
1658 		mas_parent_gap(mas, pslot, max_gap);
1659 }
1660 
1661 /*
1662  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1663  * @parent with the slot encoded.
1664  * @mas - the maple state (for the tree)
1665  * @parent - the maple encoded node containing the children.
1666  */
1667 static inline void mas_adopt_children(struct ma_state *mas,
1668 		struct maple_enode *parent)
1669 {
1670 	enum maple_type type = mte_node_type(parent);
1671 	struct maple_node *node = mas_mn(mas);
1672 	void __rcu **slots = ma_slots(node, type);
1673 	unsigned long *pivots = ma_pivots(node, type);
1674 	struct maple_enode *child;
1675 	unsigned char offset;
1676 
1677 	offset = ma_data_end(node, type, pivots, mas->max);
1678 	do {
1679 		child = mas_slot_locked(mas, slots, offset);
1680 		mte_set_parent(child, parent, offset);
1681 	} while (offset--);
1682 }
1683 
1684 /*
1685  * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the
1686  * parent encoding to locate the maple node in the tree.
1687  * @mas - the ma_state to use for operations.
1688  * @advanced - boolean to adopt the child nodes and free the old node (false) or
1689  * leave the node (true) and handle the adoption and free elsewhere.
1690  */
1691 static inline void mas_replace(struct ma_state *mas, bool advanced)
1692 	__must_hold(mas->tree->lock)
1693 {
1694 	struct maple_node *mn = mas_mn(mas);
1695 	struct maple_enode *old_enode;
1696 	unsigned char offset = 0;
1697 	void __rcu **slots = NULL;
1698 
1699 	if (ma_is_root(mn)) {
1700 		old_enode = mas_root_locked(mas);
1701 	} else {
1702 		offset = mte_parent_slot(mas->node);
1703 		slots = ma_slots(mte_parent(mas->node),
1704 				 mas_parent_enum(mas, mas->node));
1705 		old_enode = mas_slot_locked(mas, slots, offset);
1706 	}
1707 
1708 	if (!advanced && !mte_is_leaf(mas->node))
1709 		mas_adopt_children(mas, mas->node);
1710 
1711 	if (mte_is_root(mas->node)) {
1712 		mn->parent = ma_parent_ptr(
1713 			      ((unsigned long)mas->tree | MA_ROOT_PARENT));
1714 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1715 		mas_set_height(mas);
1716 	} else {
1717 		rcu_assign_pointer(slots[offset], mas->node);
1718 	}
1719 
1720 	if (!advanced)
1721 		mas_free(mas, old_enode);
1722 }
1723 
1724 /*
1725  * mas_new_child() - Find the new child of a node.
1726  * @mas: the maple state
1727  * @child: the maple state to store the child.
1728  */
1729 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1730 	__must_hold(mas->tree->lock)
1731 {
1732 	enum maple_type mt;
1733 	unsigned char offset;
1734 	unsigned char end;
1735 	unsigned long *pivots;
1736 	struct maple_enode *entry;
1737 	struct maple_node *node;
1738 	void __rcu **slots;
1739 
1740 	mt = mte_node_type(mas->node);
1741 	node = mas_mn(mas);
1742 	slots = ma_slots(node, mt);
1743 	pivots = ma_pivots(node, mt);
1744 	end = ma_data_end(node, mt, pivots, mas->max);
1745 	for (offset = mas->offset; offset <= end; offset++) {
1746 		entry = mas_slot_locked(mas, slots, offset);
1747 		if (mte_parent(entry) == node) {
1748 			*child = *mas;
1749 			mas->offset = offset + 1;
1750 			child->offset = offset;
1751 			mas_descend(child);
1752 			child->offset = 0;
1753 			return true;
1754 		}
1755 	}
1756 	return false;
1757 }
1758 
1759 /*
1760  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1761  * old data or set b_node->b_end.
1762  * @b_node: the maple_big_node
1763  * @shift: the shift count
1764  */
1765 static inline void mab_shift_right(struct maple_big_node *b_node,
1766 				 unsigned char shift)
1767 {
1768 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1769 
1770 	memmove(b_node->pivot + shift, b_node->pivot, size);
1771 	memmove(b_node->slot + shift, b_node->slot, size);
1772 	if (b_node->type == maple_arange_64)
1773 		memmove(b_node->gap + shift, b_node->gap, size);
1774 }
1775 
1776 /*
1777  * mab_middle_node() - Check if a middle node is needed (unlikely)
1778  * @b_node: the maple_big_node that contains the data.
1779  * @size: the amount of data in the b_node
1780  * @split: the potential split location
1781  * @slot_count: the size that can be stored in a single node being considered.
1782  *
1783  * Return: true if a middle node is required.
1784  */
1785 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1786 				   unsigned char slot_count)
1787 {
1788 	unsigned char size = b_node->b_end;
1789 
1790 	if (size >= 2 * slot_count)
1791 		return true;
1792 
1793 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1794 		return true;
1795 
1796 	return false;
1797 }
1798 
1799 /*
1800  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1801  * @b_node: the maple_big_node with the data
1802  * @split: the suggested split location
1803  * @slot_count: the number of slots in the node being considered.
1804  *
1805  * Return: the split location.
1806  */
1807 static inline int mab_no_null_split(struct maple_big_node *b_node,
1808 				    unsigned char split, unsigned char slot_count)
1809 {
1810 	if (!b_node->slot[split]) {
1811 		/*
1812 		 * If the split is less than the max slot && the right side will
1813 		 * still be sufficient, then increment the split on NULL.
1814 		 */
1815 		if ((split < slot_count - 1) &&
1816 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1817 			split++;
1818 		else
1819 			split--;
1820 	}
1821 	return split;
1822 }
1823 
1824 /*
1825  * mab_calc_split() - Calculate the split location and if there needs to be two
1826  * splits.
1827  * @bn: The maple_big_node with the data
1828  * @mid_split: The second split, if required.  0 otherwise.
1829  *
1830  * Return: The first split location.  The middle split is set in @mid_split.
1831  */
1832 static inline int mab_calc_split(struct ma_state *mas,
1833 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1834 {
1835 	unsigned char b_end = bn->b_end;
1836 	int split = b_end / 2; /* Assume equal split. */
1837 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1838 
1839 	/*
1840 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1841 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1842 	 * limitation means that the split of a node must be checked for this condition
1843 	 * and be able to put more data in one direction or the other.
1844 	 */
1845 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1846 		*mid_split = 0;
1847 		split = b_end - mt_min_slots[bn->type];
1848 
1849 		if (!ma_is_leaf(bn->type))
1850 			return split;
1851 
1852 		mas->mas_flags |= MA_STATE_REBALANCE;
1853 		if (!bn->slot[split])
1854 			split--;
1855 		return split;
1856 	}
1857 
1858 	/*
1859 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1860 	 * split scenario.  The 3-way split comes about by means of a store of a range
1861 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1862 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1863 	 * also be located in different parent nodes which are also full.  This can
1864 	 * carry upwards all the way to the root in the worst case.
1865 	 */
1866 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1867 		split = b_end / 3;
1868 		*mid_split = split * 2;
1869 	} else {
1870 		slot_min = mt_min_slots[bn->type];
1871 
1872 		*mid_split = 0;
1873 		/*
1874 		 * Avoid having a range less than the slot count unless it
1875 		 * causes one node to be deficient.
1876 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1877 		 */
1878 		while (((bn->pivot[split] - min) < slot_count - 1) &&
1879 		       (split < slot_count - 1) && (b_end - split > slot_min))
1880 			split++;
1881 	}
1882 
1883 	/* Avoid ending a node on a NULL entry */
1884 	split = mab_no_null_split(bn, split, slot_count);
1885 
1886 	if (unlikely(*mid_split))
1887 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1888 
1889 	return split;
1890 }
1891 
1892 /*
1893  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1894  * and set @b_node->b_end to the next free slot.
1895  * @mas: The maple state
1896  * @mas_start: The starting slot to copy
1897  * @mas_end: The end slot to copy (inclusively)
1898  * @b_node: The maple_big_node to place the data
1899  * @mab_start: The starting location in maple_big_node to store the data.
1900  */
1901 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1902 			unsigned char mas_end, struct maple_big_node *b_node,
1903 			unsigned char mab_start)
1904 {
1905 	enum maple_type mt;
1906 	struct maple_node *node;
1907 	void __rcu **slots;
1908 	unsigned long *pivots, *gaps;
1909 	int i = mas_start, j = mab_start;
1910 	unsigned char piv_end;
1911 
1912 	node = mas_mn(mas);
1913 	mt = mte_node_type(mas->node);
1914 	pivots = ma_pivots(node, mt);
1915 	if (!i) {
1916 		b_node->pivot[j] = pivots[i++];
1917 		if (unlikely(i > mas_end))
1918 			goto complete;
1919 		j++;
1920 	}
1921 
1922 	piv_end = min(mas_end, mt_pivots[mt]);
1923 	for (; i < piv_end; i++, j++) {
1924 		b_node->pivot[j] = pivots[i];
1925 		if (unlikely(!b_node->pivot[j]))
1926 			break;
1927 
1928 		if (unlikely(mas->max == b_node->pivot[j]))
1929 			goto complete;
1930 	}
1931 
1932 	if (likely(i <= mas_end))
1933 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1934 
1935 complete:
1936 	b_node->b_end = ++j;
1937 	j -= mab_start;
1938 	slots = ma_slots(node, mt);
1939 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1940 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1941 		gaps = ma_gaps(node, mt);
1942 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1943 		       sizeof(unsigned long) * j);
1944 	}
1945 }
1946 
1947 /*
1948  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1949  * @mas: The maple state
1950  * @node: The maple node
1951  * @pivots: pointer to the maple node pivots
1952  * @mt: The maple type
1953  * @end: The assumed end
1954  *
1955  * Note, end may be incremented within this function but not modified at the
1956  * source.  This is fine since the metadata is the last thing to be stored in a
1957  * node during a write.
1958  */
1959 static inline void mas_leaf_set_meta(struct ma_state *mas,
1960 		struct maple_node *node, unsigned long *pivots,
1961 		enum maple_type mt, unsigned char end)
1962 {
1963 	/* There is no room for metadata already */
1964 	if (mt_pivots[mt] <= end)
1965 		return;
1966 
1967 	if (pivots[end] && pivots[end] < mas->max)
1968 		end++;
1969 
1970 	if (end < mt_slots[mt] - 1)
1971 		ma_set_meta(node, mt, 0, end);
1972 }
1973 
1974 /*
1975  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1976  * @b_node: the maple_big_node that has the data
1977  * @mab_start: the start location in @b_node.
1978  * @mab_end: The end location in @b_node (inclusively)
1979  * @mas: The maple state with the maple encoded node.
1980  */
1981 static inline void mab_mas_cp(struct maple_big_node *b_node,
1982 			      unsigned char mab_start, unsigned char mab_end,
1983 			      struct ma_state *mas, bool new_max)
1984 {
1985 	int i, j = 0;
1986 	enum maple_type mt = mte_node_type(mas->node);
1987 	struct maple_node *node = mte_to_node(mas->node);
1988 	void __rcu **slots = ma_slots(node, mt);
1989 	unsigned long *pivots = ma_pivots(node, mt);
1990 	unsigned long *gaps = NULL;
1991 	unsigned char end;
1992 
1993 	if (mab_end - mab_start > mt_pivots[mt])
1994 		mab_end--;
1995 
1996 	if (!pivots[mt_pivots[mt] - 1])
1997 		slots[mt_pivots[mt]] = NULL;
1998 
1999 	i = mab_start;
2000 	do {
2001 		pivots[j++] = b_node->pivot[i++];
2002 	} while (i <= mab_end && likely(b_node->pivot[i]));
2003 
2004 	memcpy(slots, b_node->slot + mab_start,
2005 	       sizeof(void *) * (i - mab_start));
2006 
2007 	if (new_max)
2008 		mas->max = b_node->pivot[i - 1];
2009 
2010 	end = j - 1;
2011 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2012 		unsigned long max_gap = 0;
2013 		unsigned char offset = 15;
2014 
2015 		gaps = ma_gaps(node, mt);
2016 		do {
2017 			gaps[--j] = b_node->gap[--i];
2018 			if (gaps[j] > max_gap) {
2019 				offset = j;
2020 				max_gap = gaps[j];
2021 			}
2022 		} while (j);
2023 
2024 		ma_set_meta(node, mt, offset, end);
2025 	} else {
2026 		mas_leaf_set_meta(mas, node, pivots, mt, end);
2027 	}
2028 }
2029 
2030 /*
2031  * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2032  * @mas: the maple state with the maple encoded node of the sub-tree.
2033  *
2034  * Descend through a sub-tree and adopt children who do not have the correct
2035  * parents set.  Follow the parents which have the correct parents as they are
2036  * the new entries which need to be followed to find other incorrectly set
2037  * parents.
2038  */
2039 static inline void mas_descend_adopt(struct ma_state *mas)
2040 {
2041 	struct ma_state list[3], next[3];
2042 	int i, n;
2043 
2044 	/*
2045 	 * At each level there may be up to 3 correct parent pointers which indicates
2046 	 * the new nodes which need to be walked to find any new nodes at a lower level.
2047 	 */
2048 
2049 	for (i = 0; i < 3; i++) {
2050 		list[i] = *mas;
2051 		list[i].offset = 0;
2052 		next[i].offset = 0;
2053 	}
2054 	next[0] = *mas;
2055 
2056 	while (!mte_is_leaf(list[0].node)) {
2057 		n = 0;
2058 		for (i = 0; i < 3; i++) {
2059 			if (mas_is_none(&list[i]))
2060 				continue;
2061 
2062 			if (i && list[i-1].node == list[i].node)
2063 				continue;
2064 
2065 			while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2066 				n++;
2067 
2068 			mas_adopt_children(&list[i], list[i].node);
2069 		}
2070 
2071 		while (n < 3)
2072 			next[n++].node = MAS_NONE;
2073 
2074 		/* descend by setting the list to the children */
2075 		for (i = 0; i < 3; i++)
2076 			list[i] = next[i];
2077 	}
2078 }
2079 
2080 /*
2081  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2082  * @mas: The maple state
2083  * @end: The maple node end
2084  * @mt: The maple node type
2085  */
2086 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2087 				      enum maple_type mt)
2088 {
2089 	if (!(mas->mas_flags & MA_STATE_BULK))
2090 		return;
2091 
2092 	if (mte_is_root(mas->node))
2093 		return;
2094 
2095 	if (end > mt_min_slots[mt]) {
2096 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2097 		return;
2098 	}
2099 }
2100 
2101 /*
2102  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2103  * data from a maple encoded node.
2104  * @wr_mas: the maple write state
2105  * @b_node: the maple_big_node to fill with data
2106  * @offset_end: the offset to end copying
2107  *
2108  * Return: The actual end of the data stored in @b_node
2109  */
2110 static inline void mas_store_b_node(struct ma_wr_state *wr_mas,
2111 		struct maple_big_node *b_node, unsigned char offset_end)
2112 {
2113 	unsigned char slot;
2114 	unsigned char b_end;
2115 	/* Possible underflow of piv will wrap back to 0 before use. */
2116 	unsigned long piv;
2117 	struct ma_state *mas = wr_mas->mas;
2118 
2119 	b_node->type = wr_mas->type;
2120 	b_end = 0;
2121 	slot = mas->offset;
2122 	if (slot) {
2123 		/* Copy start data up to insert. */
2124 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2125 		b_end = b_node->b_end;
2126 		piv = b_node->pivot[b_end - 1];
2127 	} else
2128 		piv = mas->min - 1;
2129 
2130 	if (piv + 1 < mas->index) {
2131 		/* Handle range starting after old range */
2132 		b_node->slot[b_end] = wr_mas->content;
2133 		if (!wr_mas->content)
2134 			b_node->gap[b_end] = mas->index - 1 - piv;
2135 		b_node->pivot[b_end++] = mas->index - 1;
2136 	}
2137 
2138 	/* Store the new entry. */
2139 	mas->offset = b_end;
2140 	b_node->slot[b_end] = wr_mas->entry;
2141 	b_node->pivot[b_end] = mas->last;
2142 
2143 	/* Appended. */
2144 	if (mas->last >= mas->max)
2145 		goto b_end;
2146 
2147 	/* Handle new range ending before old range ends */
2148 	piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2149 	if (piv > mas->last) {
2150 		if (piv == ULONG_MAX)
2151 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2152 
2153 		if (offset_end != slot)
2154 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2155 							  offset_end);
2156 
2157 		b_node->slot[++b_end] = wr_mas->content;
2158 		if (!wr_mas->content)
2159 			b_node->gap[b_end] = piv - mas->last + 1;
2160 		b_node->pivot[b_end] = piv;
2161 	}
2162 
2163 	slot = offset_end + 1;
2164 	if (slot > wr_mas->node_end)
2165 		goto b_end;
2166 
2167 	/* Copy end data to the end of the node. */
2168 	mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2169 	b_node->b_end--;
2170 	return;
2171 
2172 b_end:
2173 	b_node->b_end = b_end;
2174 }
2175 
2176 /*
2177  * mas_prev_sibling() - Find the previous node with the same parent.
2178  * @mas: the maple state
2179  *
2180  * Return: True if there is a previous sibling, false otherwise.
2181  */
2182 static inline bool mas_prev_sibling(struct ma_state *mas)
2183 {
2184 	unsigned int p_slot = mte_parent_slot(mas->node);
2185 
2186 	if (mte_is_root(mas->node))
2187 		return false;
2188 
2189 	if (!p_slot)
2190 		return false;
2191 
2192 	mas_ascend(mas);
2193 	mas->offset = p_slot - 1;
2194 	mas_descend(mas);
2195 	return true;
2196 }
2197 
2198 /*
2199  * mas_next_sibling() - Find the next node with the same parent.
2200  * @mas: the maple state
2201  *
2202  * Return: true if there is a next sibling, false otherwise.
2203  */
2204 static inline bool mas_next_sibling(struct ma_state *mas)
2205 {
2206 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2207 
2208 	if (mte_is_root(mas->node))
2209 		return false;
2210 
2211 	parent = *mas;
2212 	mas_ascend(&parent);
2213 	parent.offset = mte_parent_slot(mas->node) + 1;
2214 	if (parent.offset > mas_data_end(&parent))
2215 		return false;
2216 
2217 	*mas = parent;
2218 	mas_descend(mas);
2219 	return true;
2220 }
2221 
2222 /*
2223  * mte_node_or_node() - Return the encoded node or MAS_NONE.
2224  * @enode: The encoded maple node.
2225  *
2226  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2227  *
2228  * Return: @enode or MAS_NONE
2229  */
2230 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2231 {
2232 	if (enode)
2233 		return enode;
2234 
2235 	return ma_enode_ptr(MAS_NONE);
2236 }
2237 
2238 /*
2239  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2240  * @wr_mas: The maple write state
2241  *
2242  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2243  */
2244 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2245 {
2246 	struct ma_state *mas = wr_mas->mas;
2247 	unsigned char count;
2248 	unsigned char offset;
2249 	unsigned long index, min, max;
2250 
2251 	if (unlikely(ma_is_dense(wr_mas->type))) {
2252 		wr_mas->r_max = wr_mas->r_min = mas->index;
2253 		mas->offset = mas->index = mas->min;
2254 		return;
2255 	}
2256 
2257 	wr_mas->node = mas_mn(wr_mas->mas);
2258 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2259 	count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2260 					       wr_mas->pivots, mas->max);
2261 	offset = mas->offset;
2262 	min = mas_safe_min(mas, wr_mas->pivots, offset);
2263 	if (unlikely(offset == count))
2264 		goto max;
2265 
2266 	max = wr_mas->pivots[offset];
2267 	index = mas->index;
2268 	if (unlikely(index <= max))
2269 		goto done;
2270 
2271 	if (unlikely(!max && offset))
2272 		goto max;
2273 
2274 	min = max + 1;
2275 	while (++offset < count) {
2276 		max = wr_mas->pivots[offset];
2277 		if (index <= max)
2278 			goto done;
2279 		else if (unlikely(!max))
2280 			break;
2281 
2282 		min = max + 1;
2283 	}
2284 
2285 max:
2286 	max = mas->max;
2287 done:
2288 	wr_mas->r_max = max;
2289 	wr_mas->r_min = min;
2290 	wr_mas->offset_end = mas->offset = offset;
2291 }
2292 
2293 /*
2294  * mas_topiary_range() - Add a range of slots to the topiary.
2295  * @mas: The maple state
2296  * @destroy: The topiary to add the slots (usually destroy)
2297  * @start: The starting slot inclusively
2298  * @end: The end slot inclusively
2299  */
2300 static inline void mas_topiary_range(struct ma_state *mas,
2301 	struct ma_topiary *destroy, unsigned char start, unsigned char end)
2302 {
2303 	void __rcu **slots;
2304 	unsigned char offset;
2305 
2306 	MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2307 	slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2308 	for (offset = start; offset <= end; offset++) {
2309 		struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2310 
2311 		if (mte_dead_node(enode))
2312 			continue;
2313 
2314 		mat_add(destroy, enode);
2315 	}
2316 }
2317 
2318 /*
2319  * mast_topiary() - Add the portions of the tree to the removal list; either to
2320  * be freed or discarded (destroy walk).
2321  * @mast: The maple_subtree_state.
2322  */
2323 static inline void mast_topiary(struct maple_subtree_state *mast)
2324 {
2325 	MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2326 	unsigned char r_start, r_end;
2327 	unsigned char l_start, l_end;
2328 	void __rcu **l_slots, **r_slots;
2329 
2330 	wr_mas.type = mte_node_type(mast->orig_l->node);
2331 	mast->orig_l->index = mast->orig_l->last;
2332 	mas_wr_node_walk(&wr_mas);
2333 	l_start = mast->orig_l->offset + 1;
2334 	l_end = mas_data_end(mast->orig_l);
2335 	r_start = 0;
2336 	r_end = mast->orig_r->offset;
2337 
2338 	if (r_end)
2339 		r_end--;
2340 
2341 	l_slots = ma_slots(mas_mn(mast->orig_l),
2342 			   mte_node_type(mast->orig_l->node));
2343 
2344 	r_slots = ma_slots(mas_mn(mast->orig_r),
2345 			   mte_node_type(mast->orig_r->node));
2346 
2347 	if ((l_start < l_end) &&
2348 	    mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2349 		l_start++;
2350 	}
2351 
2352 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2353 		if (r_end)
2354 			r_end--;
2355 	}
2356 
2357 	if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2358 		return;
2359 
2360 	/* At the node where left and right sides meet, add the parts between */
2361 	if (mast->orig_l->node == mast->orig_r->node) {
2362 		return mas_topiary_range(mast->orig_l, mast->destroy,
2363 					     l_start, r_end);
2364 	}
2365 
2366 	/* mast->orig_r is different and consumed. */
2367 	if (mte_is_leaf(mast->orig_r->node))
2368 		return;
2369 
2370 	if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2371 		l_end--;
2372 
2373 
2374 	if (l_start <= l_end)
2375 		mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2376 
2377 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2378 		r_start++;
2379 
2380 	if (r_start <= r_end)
2381 		mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2382 }
2383 
2384 /*
2385  * mast_rebalance_next() - Rebalance against the next node
2386  * @mast: The maple subtree state
2387  * @old_r: The encoded maple node to the right (next node).
2388  */
2389 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2390 {
2391 	unsigned char b_end = mast->bn->b_end;
2392 
2393 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2394 		   mast->bn, b_end);
2395 	mast->orig_r->last = mast->orig_r->max;
2396 }
2397 
2398 /*
2399  * mast_rebalance_prev() - Rebalance against the previous node
2400  * @mast: The maple subtree state
2401  * @old_l: The encoded maple node to the left (previous node)
2402  */
2403 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2404 {
2405 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2406 	unsigned char b_end = mast->bn->b_end;
2407 
2408 	mab_shift_right(mast->bn, end);
2409 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2410 	mast->l->min = mast->orig_l->min;
2411 	mast->orig_l->index = mast->orig_l->min;
2412 	mast->bn->b_end = end + b_end;
2413 	mast->l->offset += end;
2414 }
2415 
2416 /*
2417  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2418  * the node to the right.  Checking the nodes to the right then the left at each
2419  * level upwards until root is reached.  Free and destroy as needed.
2420  * Data is copied into the @mast->bn.
2421  * @mast: The maple_subtree_state.
2422  */
2423 static inline
2424 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2425 {
2426 	struct ma_state r_tmp = *mast->orig_r;
2427 	struct ma_state l_tmp = *mast->orig_l;
2428 	struct maple_enode *ancestor = NULL;
2429 	unsigned char start, end;
2430 	unsigned char depth = 0;
2431 
2432 	r_tmp = *mast->orig_r;
2433 	l_tmp = *mast->orig_l;
2434 	do {
2435 		mas_ascend(mast->orig_r);
2436 		mas_ascend(mast->orig_l);
2437 		depth++;
2438 		if (!ancestor &&
2439 		    (mast->orig_r->node == mast->orig_l->node)) {
2440 			ancestor = mast->orig_r->node;
2441 			end = mast->orig_r->offset - 1;
2442 			start = mast->orig_l->offset + 1;
2443 		}
2444 
2445 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2446 			if (!ancestor) {
2447 				ancestor = mast->orig_r->node;
2448 				start = 0;
2449 			}
2450 
2451 			mast->orig_r->offset++;
2452 			do {
2453 				mas_descend(mast->orig_r);
2454 				mast->orig_r->offset = 0;
2455 				depth--;
2456 			} while (depth);
2457 
2458 			mast_rebalance_next(mast);
2459 			do {
2460 				unsigned char l_off = 0;
2461 				struct maple_enode *child = r_tmp.node;
2462 
2463 				mas_ascend(&r_tmp);
2464 				if (ancestor == r_tmp.node)
2465 					l_off = start;
2466 
2467 				if (r_tmp.offset)
2468 					r_tmp.offset--;
2469 
2470 				if (l_off < r_tmp.offset)
2471 					mas_topiary_range(&r_tmp, mast->destroy,
2472 							  l_off, r_tmp.offset);
2473 
2474 				if (l_tmp.node != child)
2475 					mat_add(mast->free, child);
2476 
2477 			} while (r_tmp.node != ancestor);
2478 
2479 			*mast->orig_l = l_tmp;
2480 			return true;
2481 
2482 		} else if (mast->orig_l->offset != 0) {
2483 			if (!ancestor) {
2484 				ancestor = mast->orig_l->node;
2485 				end = mas_data_end(mast->orig_l);
2486 			}
2487 
2488 			mast->orig_l->offset--;
2489 			do {
2490 				mas_descend(mast->orig_l);
2491 				mast->orig_l->offset =
2492 					mas_data_end(mast->orig_l);
2493 				depth--;
2494 			} while (depth);
2495 
2496 			mast_rebalance_prev(mast);
2497 			do {
2498 				unsigned char r_off;
2499 				struct maple_enode *child = l_tmp.node;
2500 
2501 				mas_ascend(&l_tmp);
2502 				if (ancestor == l_tmp.node)
2503 					r_off = end;
2504 				else
2505 					r_off = mas_data_end(&l_tmp);
2506 
2507 				if (l_tmp.offset < r_off)
2508 					l_tmp.offset++;
2509 
2510 				if (l_tmp.offset < r_off)
2511 					mas_topiary_range(&l_tmp, mast->destroy,
2512 							  l_tmp.offset, r_off);
2513 
2514 				if (r_tmp.node != child)
2515 					mat_add(mast->free, child);
2516 
2517 			} while (l_tmp.node != ancestor);
2518 
2519 			*mast->orig_r = r_tmp;
2520 			return true;
2521 		}
2522 	} while (!mte_is_root(mast->orig_r->node));
2523 
2524 	*mast->orig_r = r_tmp;
2525 	*mast->orig_l = l_tmp;
2526 	return false;
2527 }
2528 
2529 /*
2530  * mast_ascend_free() - Add current original maple state nodes to the free list
2531  * and ascend.
2532  * @mast: the maple subtree state.
2533  *
2534  * Ascend the original left and right sides and add the previous nodes to the
2535  * free list.  Set the slots to point to the correct location in the new nodes.
2536  */
2537 static inline void
2538 mast_ascend_free(struct maple_subtree_state *mast)
2539 {
2540 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2541 	struct maple_enode *left = mast->orig_l->node;
2542 	struct maple_enode *right = mast->orig_r->node;
2543 
2544 	mas_ascend(mast->orig_l);
2545 	mas_ascend(mast->orig_r);
2546 	mat_add(mast->free, left);
2547 
2548 	if (left != right)
2549 		mat_add(mast->free, right);
2550 
2551 	mast->orig_r->offset = 0;
2552 	mast->orig_r->index = mast->r->max;
2553 	/* last should be larger than or equal to index */
2554 	if (mast->orig_r->last < mast->orig_r->index)
2555 		mast->orig_r->last = mast->orig_r->index;
2556 	/*
2557 	 * The node may not contain the value so set slot to ensure all
2558 	 * of the nodes contents are freed or destroyed.
2559 	 */
2560 	wr_mas.type = mte_node_type(mast->orig_r->node);
2561 	mas_wr_node_walk(&wr_mas);
2562 	/* Set up the left side of things */
2563 	mast->orig_l->offset = 0;
2564 	mast->orig_l->index = mast->l->min;
2565 	wr_mas.mas = mast->orig_l;
2566 	wr_mas.type = mte_node_type(mast->orig_l->node);
2567 	mas_wr_node_walk(&wr_mas);
2568 
2569 	mast->bn->type = wr_mas.type;
2570 }
2571 
2572 /*
2573  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2574  * @mas: the maple state with the allocations.
2575  * @b_node: the maple_big_node with the type encoding.
2576  *
2577  * Use the node type from the maple_big_node to allocate a new node from the
2578  * ma_state.  This function exists mainly for code readability.
2579  *
2580  * Return: A new maple encoded node
2581  */
2582 static inline struct maple_enode
2583 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2584 {
2585 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2586 }
2587 
2588 /*
2589  * mas_mab_to_node() - Set up right and middle nodes
2590  *
2591  * @mas: the maple state that contains the allocations.
2592  * @b_node: the node which contains the data.
2593  * @left: The pointer which will have the left node
2594  * @right: The pointer which may have the right node
2595  * @middle: the pointer which may have the middle node (rare)
2596  * @mid_split: the split location for the middle node
2597  *
2598  * Return: the split of left.
2599  */
2600 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2601 	struct maple_big_node *b_node, struct maple_enode **left,
2602 	struct maple_enode **right, struct maple_enode **middle,
2603 	unsigned char *mid_split, unsigned long min)
2604 {
2605 	unsigned char split = 0;
2606 	unsigned char slot_count = mt_slots[b_node->type];
2607 
2608 	*left = mas_new_ma_node(mas, b_node);
2609 	*right = NULL;
2610 	*middle = NULL;
2611 	*mid_split = 0;
2612 
2613 	if (b_node->b_end < slot_count) {
2614 		split = b_node->b_end;
2615 	} else {
2616 		split = mab_calc_split(mas, b_node, mid_split, min);
2617 		*right = mas_new_ma_node(mas, b_node);
2618 	}
2619 
2620 	if (*mid_split)
2621 		*middle = mas_new_ma_node(mas, b_node);
2622 
2623 	return split;
2624 
2625 }
2626 
2627 /*
2628  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2629  * pointer.
2630  * @b_node - the big node to add the entry
2631  * @mas - the maple state to get the pivot (mas->max)
2632  * @entry - the entry to add, if NULL nothing happens.
2633  */
2634 static inline void mab_set_b_end(struct maple_big_node *b_node,
2635 				 struct ma_state *mas,
2636 				 void *entry)
2637 {
2638 	if (!entry)
2639 		return;
2640 
2641 	b_node->slot[b_node->b_end] = entry;
2642 	if (mt_is_alloc(mas->tree))
2643 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2644 	b_node->pivot[b_node->b_end++] = mas->max;
2645 }
2646 
2647 /*
2648  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2649  * of @mas->node to either @left or @right, depending on @slot and @split
2650  *
2651  * @mas - the maple state with the node that needs a parent
2652  * @left - possible parent 1
2653  * @right - possible parent 2
2654  * @slot - the slot the mas->node was placed
2655  * @split - the split location between @left and @right
2656  */
2657 static inline void mas_set_split_parent(struct ma_state *mas,
2658 					struct maple_enode *left,
2659 					struct maple_enode *right,
2660 					unsigned char *slot, unsigned char split)
2661 {
2662 	if (mas_is_none(mas))
2663 		return;
2664 
2665 	if ((*slot) <= split)
2666 		mte_set_parent(mas->node, left, *slot);
2667 	else if (right)
2668 		mte_set_parent(mas->node, right, (*slot) - split - 1);
2669 
2670 	(*slot)++;
2671 }
2672 
2673 /*
2674  * mte_mid_split_check() - Check if the next node passes the mid-split
2675  * @**l: Pointer to left encoded maple node.
2676  * @**m: Pointer to middle encoded maple node.
2677  * @**r: Pointer to right encoded maple node.
2678  * @slot: The offset
2679  * @*split: The split location.
2680  * @mid_split: The middle split.
2681  */
2682 static inline void mte_mid_split_check(struct maple_enode **l,
2683 				       struct maple_enode **r,
2684 				       struct maple_enode *right,
2685 				       unsigned char slot,
2686 				       unsigned char *split,
2687 				       unsigned char mid_split)
2688 {
2689 	if (*r == right)
2690 		return;
2691 
2692 	if (slot < mid_split)
2693 		return;
2694 
2695 	*l = *r;
2696 	*r = right;
2697 	*split = mid_split;
2698 }
2699 
2700 /*
2701  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2702  * is taken from @mast->l.
2703  * @mast - the maple subtree state
2704  * @left - the left node
2705  * @right - the right node
2706  * @split - the split location.
2707  */
2708 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2709 					  struct maple_enode *left,
2710 					  struct maple_enode *middle,
2711 					  struct maple_enode *right,
2712 					  unsigned char split,
2713 					  unsigned char mid_split)
2714 {
2715 	unsigned char slot;
2716 	struct maple_enode *l = left;
2717 	struct maple_enode *r = right;
2718 
2719 	if (mas_is_none(mast->l))
2720 		return;
2721 
2722 	if (middle)
2723 		r = middle;
2724 
2725 	slot = mast->l->offset;
2726 
2727 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2728 	mas_set_split_parent(mast->l, l, r, &slot, split);
2729 
2730 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2731 	mas_set_split_parent(mast->m, l, r, &slot, split);
2732 
2733 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2734 	mas_set_split_parent(mast->r, l, r, &slot, split);
2735 }
2736 
2737 /*
2738  * mas_wmb_replace() - Write memory barrier and replace
2739  * @mas: The maple state
2740  * @free: the maple topiary list of nodes to free
2741  * @destroy: The maple topiary list of nodes to destroy (walk and free)
2742  *
2743  * Updates gap as necessary.
2744  */
2745 static inline void mas_wmb_replace(struct ma_state *mas,
2746 				   struct ma_topiary *free,
2747 				   struct ma_topiary *destroy)
2748 {
2749 	/* All nodes must see old data as dead prior to replacing that data */
2750 	smp_wmb(); /* Needed for RCU */
2751 
2752 	/* Insert the new data in the tree */
2753 	mas_replace(mas, true);
2754 
2755 	if (!mte_is_leaf(mas->node))
2756 		mas_descend_adopt(mas);
2757 
2758 	mas_mat_free(mas, free);
2759 
2760 	if (destroy)
2761 		mas_mat_destroy(mas, destroy);
2762 
2763 	if (mte_is_leaf(mas->node))
2764 		return;
2765 
2766 	mas_update_gap(mas);
2767 }
2768 
2769 /*
2770  * mast_new_root() - Set a new tree root during subtree creation
2771  * @mast: The maple subtree state
2772  * @mas: The maple state
2773  */
2774 static inline void mast_new_root(struct maple_subtree_state *mast,
2775 				 struct ma_state *mas)
2776 {
2777 	mas_mn(mast->l)->parent =
2778 		ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2779 	if (!mte_dead_node(mast->orig_l->node) &&
2780 	    !mte_is_root(mast->orig_l->node)) {
2781 		do {
2782 			mast_ascend_free(mast);
2783 			mast_topiary(mast);
2784 		} while (!mte_is_root(mast->orig_l->node));
2785 	}
2786 	if ((mast->orig_l->node != mas->node) &&
2787 		   (mast->l->depth > mas_mt_height(mas))) {
2788 		mat_add(mast->free, mas->node);
2789 	}
2790 }
2791 
2792 /*
2793  * mast_cp_to_nodes() - Copy data out to nodes.
2794  * @mast: The maple subtree state
2795  * @left: The left encoded maple node
2796  * @middle: The middle encoded maple node
2797  * @right: The right encoded maple node
2798  * @split: The location to split between left and (middle ? middle : right)
2799  * @mid_split: The location to split between middle and right.
2800  */
2801 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2802 	struct maple_enode *left, struct maple_enode *middle,
2803 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2804 {
2805 	bool new_lmax = true;
2806 
2807 	mast->l->node = mte_node_or_none(left);
2808 	mast->m->node = mte_node_or_none(middle);
2809 	mast->r->node = mte_node_or_none(right);
2810 
2811 	mast->l->min = mast->orig_l->min;
2812 	if (split == mast->bn->b_end) {
2813 		mast->l->max = mast->orig_r->max;
2814 		new_lmax = false;
2815 	}
2816 
2817 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2818 
2819 	if (middle) {
2820 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2821 		mast->m->min = mast->bn->pivot[split] + 1;
2822 		split = mid_split;
2823 	}
2824 
2825 	mast->r->max = mast->orig_r->max;
2826 	if (right) {
2827 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2828 		mast->r->min = mast->bn->pivot[split] + 1;
2829 	}
2830 }
2831 
2832 /*
2833  * mast_combine_cp_left - Copy in the original left side of the tree into the
2834  * combined data set in the maple subtree state big node.
2835  * @mast: The maple subtree state
2836  */
2837 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2838 {
2839 	unsigned char l_slot = mast->orig_l->offset;
2840 
2841 	if (!l_slot)
2842 		return;
2843 
2844 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2845 }
2846 
2847 /*
2848  * mast_combine_cp_right: Copy in the original right side of the tree into the
2849  * combined data set in the maple subtree state big node.
2850  * @mast: The maple subtree state
2851  */
2852 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2853 {
2854 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2855 		return;
2856 
2857 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2858 		   mt_slot_count(mast->orig_r->node), mast->bn,
2859 		   mast->bn->b_end);
2860 	mast->orig_r->last = mast->orig_r->max;
2861 }
2862 
2863 /*
2864  * mast_sufficient: Check if the maple subtree state has enough data in the big
2865  * node to create at least one sufficient node
2866  * @mast: the maple subtree state
2867  */
2868 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2869 {
2870 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2871 		return true;
2872 
2873 	return false;
2874 }
2875 
2876 /*
2877  * mast_overflow: Check if there is too much data in the subtree state for a
2878  * single node.
2879  * @mast: The maple subtree state
2880  */
2881 static inline bool mast_overflow(struct maple_subtree_state *mast)
2882 {
2883 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2884 		return true;
2885 
2886 	return false;
2887 }
2888 
2889 static inline void *mtree_range_walk(struct ma_state *mas)
2890 {
2891 	unsigned long *pivots;
2892 	unsigned char offset;
2893 	struct maple_node *node;
2894 	struct maple_enode *next, *last;
2895 	enum maple_type type;
2896 	void __rcu **slots;
2897 	unsigned char end;
2898 	unsigned long max, min;
2899 	unsigned long prev_max, prev_min;
2900 
2901 	next = mas->node;
2902 	min = mas->min;
2903 	max = mas->max;
2904 	do {
2905 		offset = 0;
2906 		last = next;
2907 		node = mte_to_node(next);
2908 		type = mte_node_type(next);
2909 		pivots = ma_pivots(node, type);
2910 		end = ma_data_end(node, type, pivots, max);
2911 		if (unlikely(ma_dead_node(node)))
2912 			goto dead_node;
2913 
2914 		if (pivots[offset] >= mas->index) {
2915 			prev_max = max;
2916 			prev_min = min;
2917 			max = pivots[offset];
2918 			goto next;
2919 		}
2920 
2921 		do {
2922 			offset++;
2923 		} while ((offset < end) && (pivots[offset] < mas->index));
2924 
2925 		prev_min = min;
2926 		min = pivots[offset - 1] + 1;
2927 		prev_max = max;
2928 		if (likely(offset < end && pivots[offset]))
2929 			max = pivots[offset];
2930 
2931 next:
2932 		slots = ma_slots(node, type);
2933 		next = mt_slot(mas->tree, slots, offset);
2934 		if (unlikely(ma_dead_node(node)))
2935 			goto dead_node;
2936 	} while (!ma_is_leaf(type));
2937 
2938 	mas->offset = offset;
2939 	mas->index = min;
2940 	mas->last = max;
2941 	mas->min = prev_min;
2942 	mas->max = prev_max;
2943 	mas->node = last;
2944 	return (void *)next;
2945 
2946 dead_node:
2947 	mas_reset(mas);
2948 	return NULL;
2949 }
2950 
2951 /*
2952  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2953  * @mas: The starting maple state
2954  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2955  * @count: The estimated count of iterations needed.
2956  *
2957  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2958  * is hit.  First @b_node is split into two entries which are inserted into the
2959  * next iteration of the loop.  @b_node is returned populated with the final
2960  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2961  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2962  * to account of what has been copied into the new sub-tree.  The update of
2963  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2964  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2965  * the new sub-tree in case the sub-tree becomes the full tree.
2966  *
2967  * Return: the number of elements in b_node during the last loop.
2968  */
2969 static int mas_spanning_rebalance(struct ma_state *mas,
2970 		struct maple_subtree_state *mast, unsigned char count)
2971 {
2972 	unsigned char split, mid_split;
2973 	unsigned char slot = 0;
2974 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2975 
2976 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2977 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2978 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2979 	MA_TOPIARY(free, mas->tree);
2980 	MA_TOPIARY(destroy, mas->tree);
2981 
2982 	/*
2983 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2984 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2985 	 */
2986 	mast->l = &l_mas;
2987 	mast->m = &m_mas;
2988 	mast->r = &r_mas;
2989 	mast->free = &free;
2990 	mast->destroy = &destroy;
2991 	l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2992 
2993 	/* Check if this is not root and has sufficient data.  */
2994 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2995 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2996 		mast_spanning_rebalance(mast);
2997 
2998 	mast->orig_l->depth = 0;
2999 
3000 	/*
3001 	 * Each level of the tree is examined and balanced, pushing data to the left or
3002 	 * right, or rebalancing against left or right nodes is employed to avoid
3003 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
3004 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
3005 	 * will have the incorrect parent pointers and currently be in two trees: the
3006 	 * original tree and the partially new tree.  To remedy the parent pointers in
3007 	 * the old tree, the new data is swapped into the active tree and a walk down
3008 	 * the tree is performed and the parent pointers are updated.
3009 	 * See mas_descend_adopt() for more information..
3010 	 */
3011 	while (count--) {
3012 		mast->bn->b_end--;
3013 		mast->bn->type = mte_node_type(mast->orig_l->node);
3014 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3015 					&mid_split, mast->orig_l->min);
3016 		mast_set_split_parents(mast, left, middle, right, split,
3017 				       mid_split);
3018 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3019 
3020 		/*
3021 		 * Copy data from next level in the tree to mast->bn from next
3022 		 * iteration
3023 		 */
3024 		memset(mast->bn, 0, sizeof(struct maple_big_node));
3025 		mast->bn->type = mte_node_type(left);
3026 		mast->orig_l->depth++;
3027 
3028 		/* Root already stored in l->node. */
3029 		if (mas_is_root_limits(mast->l))
3030 			goto new_root;
3031 
3032 		mast_ascend_free(mast);
3033 		mast_combine_cp_left(mast);
3034 		l_mas.offset = mast->bn->b_end;
3035 		mab_set_b_end(mast->bn, &l_mas, left);
3036 		mab_set_b_end(mast->bn, &m_mas, middle);
3037 		mab_set_b_end(mast->bn, &r_mas, right);
3038 
3039 		/* Copy anything necessary out of the right node. */
3040 		mast_combine_cp_right(mast);
3041 		mast_topiary(mast);
3042 		mast->orig_l->last = mast->orig_l->max;
3043 
3044 		if (mast_sufficient(mast))
3045 			continue;
3046 
3047 		if (mast_overflow(mast))
3048 			continue;
3049 
3050 		/* May be a new root stored in mast->bn */
3051 		if (mas_is_root_limits(mast->orig_l))
3052 			break;
3053 
3054 		mast_spanning_rebalance(mast);
3055 
3056 		/* rebalancing from other nodes may require another loop. */
3057 		if (!count)
3058 			count++;
3059 	}
3060 
3061 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3062 				mte_node_type(mast->orig_l->node));
3063 	mast->orig_l->depth++;
3064 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3065 	mte_set_parent(left, l_mas.node, slot);
3066 	if (middle)
3067 		mte_set_parent(middle, l_mas.node, ++slot);
3068 
3069 	if (right)
3070 		mte_set_parent(right, l_mas.node, ++slot);
3071 
3072 	if (mas_is_root_limits(mast->l)) {
3073 new_root:
3074 		mast_new_root(mast, mas);
3075 	} else {
3076 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3077 	}
3078 
3079 	if (!mte_dead_node(mast->orig_l->node))
3080 		mat_add(&free, mast->orig_l->node);
3081 
3082 	mas->depth = mast->orig_l->depth;
3083 	*mast->orig_l = l_mas;
3084 	mte_set_node_dead(mas->node);
3085 
3086 	/* Set up mas for insertion. */
3087 	mast->orig_l->depth = mas->depth;
3088 	mast->orig_l->alloc = mas->alloc;
3089 	*mas = *mast->orig_l;
3090 	mas_wmb_replace(mas, &free, &destroy);
3091 	mtree_range_walk(mas);
3092 	return mast->bn->b_end;
3093 }
3094 
3095 /*
3096  * mas_rebalance() - Rebalance a given node.
3097  * @mas: The maple state
3098  * @b_node: The big maple node.
3099  *
3100  * Rebalance two nodes into a single node or two new nodes that are sufficient.
3101  * Continue upwards until tree is sufficient.
3102  *
3103  * Return: the number of elements in b_node during the last loop.
3104  */
3105 static inline int mas_rebalance(struct ma_state *mas,
3106 				struct maple_big_node *b_node)
3107 {
3108 	char empty_count = mas_mt_height(mas);
3109 	struct maple_subtree_state mast;
3110 	unsigned char shift, b_end = ++b_node->b_end;
3111 
3112 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3113 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3114 
3115 	trace_ma_op(__func__, mas);
3116 
3117 	/*
3118 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
3119 	 * against the node to the right if it exists, otherwise the node to the
3120 	 * left of this node is rebalanced against this node.  If rebalancing
3121 	 * causes just one node to be produced instead of two, then the parent
3122 	 * is also examined and rebalanced if it is insufficient.  Every level
3123 	 * tries to combine the data in the same way.  If one node contains the
3124 	 * entire range of the tree, then that node is used as a new root node.
3125 	 */
3126 	mas_node_count(mas, 1 + empty_count * 3);
3127 	if (mas_is_err(mas))
3128 		return 0;
3129 
3130 	mast.orig_l = &l_mas;
3131 	mast.orig_r = &r_mas;
3132 	mast.bn = b_node;
3133 	mast.bn->type = mte_node_type(mas->node);
3134 
3135 	l_mas = r_mas = *mas;
3136 
3137 	if (mas_next_sibling(&r_mas)) {
3138 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3139 		r_mas.last = r_mas.index = r_mas.max;
3140 	} else {
3141 		mas_prev_sibling(&l_mas);
3142 		shift = mas_data_end(&l_mas) + 1;
3143 		mab_shift_right(b_node, shift);
3144 		mas->offset += shift;
3145 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3146 		b_node->b_end = shift + b_end;
3147 		l_mas.index = l_mas.last = l_mas.min;
3148 	}
3149 
3150 	return mas_spanning_rebalance(mas, &mast, empty_count);
3151 }
3152 
3153 /*
3154  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3155  * state.
3156  * @mas: The maple state
3157  * @end: The end of the left-most node.
3158  *
3159  * During a mass-insert event (such as forking), it may be necessary to
3160  * rebalance the left-most node when it is not sufficient.
3161  */
3162 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3163 {
3164 	enum maple_type mt = mte_node_type(mas->node);
3165 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3166 	struct maple_enode *eparent;
3167 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3168 	void __rcu **l_slots, **slots;
3169 	unsigned long *l_pivs, *pivs, gap;
3170 	bool in_rcu = mt_in_rcu(mas->tree);
3171 
3172 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3173 
3174 	l_mas = *mas;
3175 	mas_prev_sibling(&l_mas);
3176 
3177 	/* set up node. */
3178 	if (in_rcu) {
3179 		/* Allocate for both left and right as well as parent. */
3180 		mas_node_count(mas, 3);
3181 		if (mas_is_err(mas))
3182 			return;
3183 
3184 		newnode = mas_pop_node(mas);
3185 	} else {
3186 		newnode = &reuse;
3187 	}
3188 
3189 	node = mas_mn(mas);
3190 	newnode->parent = node->parent;
3191 	slots = ma_slots(newnode, mt);
3192 	pivs = ma_pivots(newnode, mt);
3193 	left = mas_mn(&l_mas);
3194 	l_slots = ma_slots(left, mt);
3195 	l_pivs = ma_pivots(left, mt);
3196 	if (!l_slots[split])
3197 		split++;
3198 	tmp = mas_data_end(&l_mas) - split;
3199 
3200 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3201 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3202 	pivs[tmp] = l_mas.max;
3203 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3204 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3205 
3206 	l_mas.max = l_pivs[split];
3207 	mas->min = l_mas.max + 1;
3208 	eparent = mt_mk_node(mte_parent(l_mas.node),
3209 			     mas_parent_enum(&l_mas, l_mas.node));
3210 	tmp += end;
3211 	if (!in_rcu) {
3212 		unsigned char max_p = mt_pivots[mt];
3213 		unsigned char max_s = mt_slots[mt];
3214 
3215 		if (tmp < max_p)
3216 			memset(pivs + tmp, 0,
3217 			       sizeof(unsigned long *) * (max_p - tmp));
3218 
3219 		if (tmp < mt_slots[mt])
3220 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3221 
3222 		memcpy(node, newnode, sizeof(struct maple_node));
3223 		ma_set_meta(node, mt, 0, tmp - 1);
3224 		mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3225 			      l_pivs[split]);
3226 
3227 		/* Remove data from l_pivs. */
3228 		tmp = split + 1;
3229 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3230 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3231 		ma_set_meta(left, mt, 0, split);
3232 
3233 		goto done;
3234 	}
3235 
3236 	/* RCU requires replacing both l_mas, mas, and parent. */
3237 	mas->node = mt_mk_node(newnode, mt);
3238 	ma_set_meta(newnode, mt, 0, tmp);
3239 
3240 	new_left = mas_pop_node(mas);
3241 	new_left->parent = left->parent;
3242 	mt = mte_node_type(l_mas.node);
3243 	slots = ma_slots(new_left, mt);
3244 	pivs = ma_pivots(new_left, mt);
3245 	memcpy(slots, l_slots, sizeof(void *) * split);
3246 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3247 	ma_set_meta(new_left, mt, 0, split);
3248 	l_mas.node = mt_mk_node(new_left, mt);
3249 
3250 	/* replace parent. */
3251 	offset = mte_parent_slot(mas->node);
3252 	mt = mas_parent_enum(&l_mas, l_mas.node);
3253 	parent = mas_pop_node(mas);
3254 	slots = ma_slots(parent, mt);
3255 	pivs = ma_pivots(parent, mt);
3256 	memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3257 	rcu_assign_pointer(slots[offset], mas->node);
3258 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3259 	pivs[offset - 1] = l_mas.max;
3260 	eparent = mt_mk_node(parent, mt);
3261 done:
3262 	gap = mas_leaf_max_gap(mas);
3263 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3264 	gap = mas_leaf_max_gap(&l_mas);
3265 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3266 	mas_ascend(mas);
3267 
3268 	if (in_rcu)
3269 		mas_replace(mas, false);
3270 
3271 	mas_update_gap(mas);
3272 }
3273 
3274 /*
3275  * mas_split_final_node() - Split the final node in a subtree operation.
3276  * @mast: the maple subtree state
3277  * @mas: The maple state
3278  * @height: The height of the tree in case it's a new root.
3279  */
3280 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3281 					struct ma_state *mas, int height)
3282 {
3283 	struct maple_enode *ancestor;
3284 
3285 	if (mte_is_root(mas->node)) {
3286 		if (mt_is_alloc(mas->tree))
3287 			mast->bn->type = maple_arange_64;
3288 		else
3289 			mast->bn->type = maple_range_64;
3290 		mas->depth = height;
3291 	}
3292 	/*
3293 	 * Only a single node is used here, could be root.
3294 	 * The Big_node data should just fit in a single node.
3295 	 */
3296 	ancestor = mas_new_ma_node(mas, mast->bn);
3297 	mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3298 	mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3299 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3300 
3301 	mast->l->node = ancestor;
3302 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3303 	mas->offset = mast->bn->b_end - 1;
3304 	return true;
3305 }
3306 
3307 /*
3308  * mast_fill_bnode() - Copy data into the big node in the subtree state
3309  * @mast: The maple subtree state
3310  * @mas: the maple state
3311  * @skip: The number of entries to skip for new nodes insertion.
3312  */
3313 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3314 					 struct ma_state *mas,
3315 					 unsigned char skip)
3316 {
3317 	bool cp = true;
3318 	struct maple_enode *old = mas->node;
3319 	unsigned char split;
3320 
3321 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3322 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3323 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3324 	mast->bn->b_end = 0;
3325 
3326 	if (mte_is_root(mas->node)) {
3327 		cp = false;
3328 	} else {
3329 		mas_ascend(mas);
3330 		mat_add(mast->free, old);
3331 		mas->offset = mte_parent_slot(mas->node);
3332 	}
3333 
3334 	if (cp && mast->l->offset)
3335 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3336 
3337 	split = mast->bn->b_end;
3338 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3339 	mast->r->offset = mast->bn->b_end;
3340 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3341 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3342 		cp = false;
3343 
3344 	if (cp)
3345 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3346 			   mast->bn, mast->bn->b_end);
3347 
3348 	mast->bn->b_end--;
3349 	mast->bn->type = mte_node_type(mas->node);
3350 }
3351 
3352 /*
3353  * mast_split_data() - Split the data in the subtree state big node into regular
3354  * nodes.
3355  * @mast: The maple subtree state
3356  * @mas: The maple state
3357  * @split: The location to split the big node
3358  */
3359 static inline void mast_split_data(struct maple_subtree_state *mast,
3360 	   struct ma_state *mas, unsigned char split)
3361 {
3362 	unsigned char p_slot;
3363 
3364 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3365 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3366 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3367 	mast->l->offset = mte_parent_slot(mas->node);
3368 	mast->l->max = mast->bn->pivot[split];
3369 	mast->r->min = mast->l->max + 1;
3370 	if (mte_is_leaf(mas->node))
3371 		return;
3372 
3373 	p_slot = mast->orig_l->offset;
3374 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3375 			     &p_slot, split);
3376 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3377 			     &p_slot, split);
3378 }
3379 
3380 /*
3381  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3382  * data to the right or left node if there is room.
3383  * @mas: The maple state
3384  * @height: The current height of the maple state
3385  * @mast: The maple subtree state
3386  * @left: Push left or not.
3387  *
3388  * Keeping the height of the tree low means faster lookups.
3389  *
3390  * Return: True if pushed, false otherwise.
3391  */
3392 static inline bool mas_push_data(struct ma_state *mas, int height,
3393 				 struct maple_subtree_state *mast, bool left)
3394 {
3395 	unsigned char slot_total = mast->bn->b_end;
3396 	unsigned char end, space, split;
3397 
3398 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3399 	tmp_mas = *mas;
3400 	tmp_mas.depth = mast->l->depth;
3401 
3402 	if (left && !mas_prev_sibling(&tmp_mas))
3403 		return false;
3404 	else if (!left && !mas_next_sibling(&tmp_mas))
3405 		return false;
3406 
3407 	end = mas_data_end(&tmp_mas);
3408 	slot_total += end;
3409 	space = 2 * mt_slot_count(mas->node) - 2;
3410 	/* -2 instead of -1 to ensure there isn't a triple split */
3411 	if (ma_is_leaf(mast->bn->type))
3412 		space--;
3413 
3414 	if (mas->max == ULONG_MAX)
3415 		space--;
3416 
3417 	if (slot_total >= space)
3418 		return false;
3419 
3420 	/* Get the data; Fill mast->bn */
3421 	mast->bn->b_end++;
3422 	if (left) {
3423 		mab_shift_right(mast->bn, end + 1);
3424 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3425 		mast->bn->b_end = slot_total + 1;
3426 	} else {
3427 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3428 	}
3429 
3430 	/* Configure mast for splitting of mast->bn */
3431 	split = mt_slots[mast->bn->type] - 2;
3432 	if (left) {
3433 		/*  Switch mas to prev node  */
3434 		mat_add(mast->free, mas->node);
3435 		*mas = tmp_mas;
3436 		/* Start using mast->l for the left side. */
3437 		tmp_mas.node = mast->l->node;
3438 		*mast->l = tmp_mas;
3439 	} else {
3440 		mat_add(mast->free, tmp_mas.node);
3441 		tmp_mas.node = mast->r->node;
3442 		*mast->r = tmp_mas;
3443 		split = slot_total - split;
3444 	}
3445 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3446 	/* Update parent slot for split calculation. */
3447 	if (left)
3448 		mast->orig_l->offset += end + 1;
3449 
3450 	mast_split_data(mast, mas, split);
3451 	mast_fill_bnode(mast, mas, 2);
3452 	mas_split_final_node(mast, mas, height + 1);
3453 	return true;
3454 }
3455 
3456 /*
3457  * mas_split() - Split data that is too big for one node into two.
3458  * @mas: The maple state
3459  * @b_node: The maple big node
3460  * Return: 1 on success, 0 on failure.
3461  */
3462 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3463 {
3464 	struct maple_subtree_state mast;
3465 	int height = 0;
3466 	unsigned char mid_split, split = 0;
3467 
3468 	/*
3469 	 * Splitting is handled differently from any other B-tree; the Maple
3470 	 * Tree splits upwards.  Splitting up means that the split operation
3471 	 * occurs when the walk of the tree hits the leaves and not on the way
3472 	 * down.  The reason for splitting up is that it is impossible to know
3473 	 * how much space will be needed until the leaf is (or leaves are)
3474 	 * reached.  Since overwriting data is allowed and a range could
3475 	 * overwrite more than one range or result in changing one entry into 3
3476 	 * entries, it is impossible to know if a split is required until the
3477 	 * data is examined.
3478 	 *
3479 	 * Splitting is a balancing act between keeping allocations to a minimum
3480 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3481 	 * for an entry followed by a contraction when the entry is removed.  To
3482 	 * accomplish the balance, there are empty slots remaining in both left
3483 	 * and right nodes after a split.
3484 	 */
3485 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3486 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3487 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3488 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3489 	MA_TOPIARY(mat, mas->tree);
3490 
3491 	trace_ma_op(__func__, mas);
3492 	mas->depth = mas_mt_height(mas);
3493 	/* Allocation failures will happen early. */
3494 	mas_node_count(mas, 1 + mas->depth * 2);
3495 	if (mas_is_err(mas))
3496 		return 0;
3497 
3498 	mast.l = &l_mas;
3499 	mast.r = &r_mas;
3500 	mast.orig_l = &prev_l_mas;
3501 	mast.orig_r = &prev_r_mas;
3502 	mast.free = &mat;
3503 	mast.bn = b_node;
3504 
3505 	while (height++ <= mas->depth) {
3506 		if (mt_slots[b_node->type] > b_node->b_end) {
3507 			mas_split_final_node(&mast, mas, height);
3508 			break;
3509 		}
3510 
3511 		l_mas = r_mas = *mas;
3512 		l_mas.node = mas_new_ma_node(mas, b_node);
3513 		r_mas.node = mas_new_ma_node(mas, b_node);
3514 		/*
3515 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3516 		 * left or right node has space to spare.  This is referred to as "pushing left"
3517 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3518 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3519 		 * is a significant savings.
3520 		 */
3521 		/* Try to push left. */
3522 		if (mas_push_data(mas, height, &mast, true))
3523 			break;
3524 
3525 		/* Try to push right. */
3526 		if (mas_push_data(mas, height, &mast, false))
3527 			break;
3528 
3529 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3530 		mast_split_data(&mast, mas, split);
3531 		/*
3532 		 * Usually correct, mab_mas_cp in the above call overwrites
3533 		 * r->max.
3534 		 */
3535 		mast.r->max = mas->max;
3536 		mast_fill_bnode(&mast, mas, 1);
3537 		prev_l_mas = *mast.l;
3538 		prev_r_mas = *mast.r;
3539 	}
3540 
3541 	/* Set the original node as dead */
3542 	mat_add(mast.free, mas->node);
3543 	mas->node = l_mas.node;
3544 	mas_wmb_replace(mas, mast.free, NULL);
3545 	mtree_range_walk(mas);
3546 	return 1;
3547 }
3548 
3549 /*
3550  * mas_reuse_node() - Reuse the node to store the data.
3551  * @wr_mas: The maple write state
3552  * @bn: The maple big node
3553  * @end: The end of the data.
3554  *
3555  * Will always return false in RCU mode.
3556  *
3557  * Return: True if node was reused, false otherwise.
3558  */
3559 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3560 			  struct maple_big_node *bn, unsigned char end)
3561 {
3562 	/* Need to be rcu safe. */
3563 	if (mt_in_rcu(wr_mas->mas->tree))
3564 		return false;
3565 
3566 	if (end > bn->b_end) {
3567 		int clear = mt_slots[wr_mas->type] - bn->b_end;
3568 
3569 		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3570 		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3571 	}
3572 	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3573 	return true;
3574 }
3575 
3576 /*
3577  * mas_commit_b_node() - Commit the big node into the tree.
3578  * @wr_mas: The maple write state
3579  * @b_node: The maple big node
3580  * @end: The end of the data.
3581  */
3582 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas,
3583 			    struct maple_big_node *b_node, unsigned char end)
3584 {
3585 	struct maple_node *node;
3586 	unsigned char b_end = b_node->b_end;
3587 	enum maple_type b_type = b_node->type;
3588 
3589 	if ((b_end < mt_min_slots[b_type]) &&
3590 	    (!mte_is_root(wr_mas->mas->node)) &&
3591 	    (mas_mt_height(wr_mas->mas) > 1))
3592 		return mas_rebalance(wr_mas->mas, b_node);
3593 
3594 	if (b_end >= mt_slots[b_type])
3595 		return mas_split(wr_mas->mas, b_node);
3596 
3597 	if (mas_reuse_node(wr_mas, b_node, end))
3598 		goto reuse_node;
3599 
3600 	mas_node_count(wr_mas->mas, 1);
3601 	if (mas_is_err(wr_mas->mas))
3602 		return 0;
3603 
3604 	node = mas_pop_node(wr_mas->mas);
3605 	node->parent = mas_mn(wr_mas->mas)->parent;
3606 	wr_mas->mas->node = mt_mk_node(node, b_type);
3607 	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3608 	mas_replace(wr_mas->mas, false);
3609 reuse_node:
3610 	mas_update_gap(wr_mas->mas);
3611 	return 1;
3612 }
3613 
3614 /*
3615  * mas_root_expand() - Expand a root to a node
3616  * @mas: The maple state
3617  * @entry: The entry to store into the tree
3618  */
3619 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3620 {
3621 	void *contents = mas_root_locked(mas);
3622 	enum maple_type type = maple_leaf_64;
3623 	struct maple_node *node;
3624 	void __rcu **slots;
3625 	unsigned long *pivots;
3626 	int slot = 0;
3627 
3628 	mas_node_count(mas, 1);
3629 	if (unlikely(mas_is_err(mas)))
3630 		return 0;
3631 
3632 	node = mas_pop_node(mas);
3633 	pivots = ma_pivots(node, type);
3634 	slots = ma_slots(node, type);
3635 	node->parent = ma_parent_ptr(
3636 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3637 	mas->node = mt_mk_node(node, type);
3638 
3639 	if (mas->index) {
3640 		if (contents) {
3641 			rcu_assign_pointer(slots[slot], contents);
3642 			if (likely(mas->index > 1))
3643 				slot++;
3644 		}
3645 		pivots[slot++] = mas->index - 1;
3646 	}
3647 
3648 	rcu_assign_pointer(slots[slot], entry);
3649 	mas->offset = slot;
3650 	pivots[slot] = mas->last;
3651 	if (mas->last != ULONG_MAX)
3652 		slot++;
3653 	mas->depth = 1;
3654 	mas_set_height(mas);
3655 
3656 	/* swap the new root into the tree */
3657 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3658 	ma_set_meta(node, maple_leaf_64, 0, slot);
3659 	return slot;
3660 }
3661 
3662 static inline void mas_store_root(struct ma_state *mas, void *entry)
3663 {
3664 	if (likely((mas->last != 0) || (mas->index != 0)))
3665 		mas_root_expand(mas, entry);
3666 	else if (((unsigned long) (entry) & 3) == 2)
3667 		mas_root_expand(mas, entry);
3668 	else {
3669 		rcu_assign_pointer(mas->tree->ma_root, entry);
3670 		mas->node = MAS_START;
3671 	}
3672 }
3673 
3674 /*
3675  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3676  * spans the node.
3677  * @mas: The maple state
3678  * @piv: The pivot value being written
3679  * @type: The maple node type
3680  * @entry: The data to write
3681  *
3682  * Spanning writes are writes that start in one node and end in another OR if
3683  * the write of a %NULL will cause the node to end with a %NULL.
3684  *
3685  * Return: True if this is a spanning write, false otherwise.
3686  */
3687 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3688 {
3689 	unsigned long max;
3690 	unsigned long last = wr_mas->mas->last;
3691 	unsigned long piv = wr_mas->r_max;
3692 	enum maple_type type = wr_mas->type;
3693 	void *entry = wr_mas->entry;
3694 
3695 	/* Contained in this pivot */
3696 	if (piv > last)
3697 		return false;
3698 
3699 	max = wr_mas->mas->max;
3700 	if (unlikely(ma_is_leaf(type))) {
3701 		/* Fits in the node, but may span slots. */
3702 		if (last < max)
3703 			return false;
3704 
3705 		/* Writes to the end of the node but not null. */
3706 		if ((last == max) && entry)
3707 			return false;
3708 
3709 		/*
3710 		 * Writing ULONG_MAX is not a spanning write regardless of the
3711 		 * value being written as long as the range fits in the node.
3712 		 */
3713 		if ((last == ULONG_MAX) && (last == max))
3714 			return false;
3715 	} else if (piv == last) {
3716 		if (entry)
3717 			return false;
3718 
3719 		/* Detect spanning store wr walk */
3720 		if (last == ULONG_MAX)
3721 			return false;
3722 	}
3723 
3724 	trace_ma_write(__func__, wr_mas->mas, piv, entry);
3725 
3726 	return true;
3727 }
3728 
3729 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3730 {
3731 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3732 	mas_wr_node_walk(wr_mas);
3733 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3734 }
3735 
3736 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3737 {
3738 	wr_mas->mas->max = wr_mas->r_max;
3739 	wr_mas->mas->min = wr_mas->r_min;
3740 	wr_mas->mas->node = wr_mas->content;
3741 	wr_mas->mas->offset = 0;
3742 	wr_mas->mas->depth++;
3743 }
3744 /*
3745  * mas_wr_walk() - Walk the tree for a write.
3746  * @wr_mas: The maple write state
3747  *
3748  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3749  *
3750  * Return: True if it's contained in a node, false on spanning write.
3751  */
3752 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3753 {
3754 	struct ma_state *mas = wr_mas->mas;
3755 
3756 	while (true) {
3757 		mas_wr_walk_descend(wr_mas);
3758 		if (unlikely(mas_is_span_wr(wr_mas)))
3759 			return false;
3760 
3761 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3762 						  mas->offset);
3763 		if (ma_is_leaf(wr_mas->type))
3764 			return true;
3765 
3766 		mas_wr_walk_traverse(wr_mas);
3767 	}
3768 
3769 	return true;
3770 }
3771 
3772 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3773 {
3774 	struct ma_state *mas = wr_mas->mas;
3775 
3776 	while (true) {
3777 		mas_wr_walk_descend(wr_mas);
3778 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3779 						  mas->offset);
3780 		if (ma_is_leaf(wr_mas->type))
3781 			return true;
3782 		mas_wr_walk_traverse(wr_mas);
3783 
3784 	}
3785 	return true;
3786 }
3787 /*
3788  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3789  * @l_wr_mas: The left maple write state
3790  * @r_wr_mas: The right maple write state
3791  */
3792 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3793 					    struct ma_wr_state *r_wr_mas)
3794 {
3795 	struct ma_state *r_mas = r_wr_mas->mas;
3796 	struct ma_state *l_mas = l_wr_mas->mas;
3797 	unsigned char l_slot;
3798 
3799 	l_slot = l_mas->offset;
3800 	if (!l_wr_mas->content)
3801 		l_mas->index = l_wr_mas->r_min;
3802 
3803 	if ((l_mas->index == l_wr_mas->r_min) &&
3804 		 (l_slot &&
3805 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3806 		if (l_slot > 1)
3807 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3808 		else
3809 			l_mas->index = l_mas->min;
3810 
3811 		l_mas->offset = l_slot - 1;
3812 	}
3813 
3814 	if (!r_wr_mas->content) {
3815 		if (r_mas->last < r_wr_mas->r_max)
3816 			r_mas->last = r_wr_mas->r_max;
3817 		r_mas->offset++;
3818 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3819 	    (r_mas->last < r_mas->max) &&
3820 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3821 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3822 					     r_wr_mas->type, r_mas->offset + 1);
3823 		r_mas->offset++;
3824 	}
3825 }
3826 
3827 static inline void *mas_state_walk(struct ma_state *mas)
3828 {
3829 	void *entry;
3830 
3831 	entry = mas_start(mas);
3832 	if (mas_is_none(mas))
3833 		return NULL;
3834 
3835 	if (mas_is_ptr(mas))
3836 		return entry;
3837 
3838 	return mtree_range_walk(mas);
3839 }
3840 
3841 /*
3842  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3843  * to date.
3844  *
3845  * @mas: The maple state.
3846  *
3847  * Note: Leaves mas in undesirable state.
3848  * Return: The entry for @mas->index or %NULL on dead node.
3849  */
3850 static inline void *mtree_lookup_walk(struct ma_state *mas)
3851 {
3852 	unsigned long *pivots;
3853 	unsigned char offset;
3854 	struct maple_node *node;
3855 	struct maple_enode *next;
3856 	enum maple_type type;
3857 	void __rcu **slots;
3858 	unsigned char end;
3859 	unsigned long max;
3860 
3861 	next = mas->node;
3862 	max = ULONG_MAX;
3863 	do {
3864 		offset = 0;
3865 		node = mte_to_node(next);
3866 		type = mte_node_type(next);
3867 		pivots = ma_pivots(node, type);
3868 		end = ma_data_end(node, type, pivots, max);
3869 		if (unlikely(ma_dead_node(node)))
3870 			goto dead_node;
3871 
3872 		if (pivots[offset] >= mas->index)
3873 			goto next;
3874 
3875 		do {
3876 			offset++;
3877 		} while ((offset < end) && (pivots[offset] < mas->index));
3878 
3879 		if (likely(offset > end))
3880 			max = pivots[offset];
3881 
3882 next:
3883 		slots = ma_slots(node, type);
3884 		next = mt_slot(mas->tree, slots, offset);
3885 		if (unlikely(ma_dead_node(node)))
3886 			goto dead_node;
3887 	} while (!ma_is_leaf(type));
3888 
3889 	return (void *)next;
3890 
3891 dead_node:
3892 	mas_reset(mas);
3893 	return NULL;
3894 }
3895 
3896 /*
3897  * mas_new_root() - Create a new root node that only contains the entry passed
3898  * in.
3899  * @mas: The maple state
3900  * @entry: The entry to store.
3901  *
3902  * Only valid when the index == 0 and the last == ULONG_MAX
3903  *
3904  * Return 0 on error, 1 on success.
3905  */
3906 static inline int mas_new_root(struct ma_state *mas, void *entry)
3907 {
3908 	struct maple_enode *root = mas_root_locked(mas);
3909 	enum maple_type type = maple_leaf_64;
3910 	struct maple_node *node;
3911 	void __rcu **slots;
3912 	unsigned long *pivots;
3913 
3914 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3915 		mas->depth = 0;
3916 		mas_set_height(mas);
3917 		rcu_assign_pointer(mas->tree->ma_root, entry);
3918 		mas->node = MAS_START;
3919 		goto done;
3920 	}
3921 
3922 	mas_node_count(mas, 1);
3923 	if (mas_is_err(mas))
3924 		return 0;
3925 
3926 	node = mas_pop_node(mas);
3927 	pivots = ma_pivots(node, type);
3928 	slots = ma_slots(node, type);
3929 	node->parent = ma_parent_ptr(
3930 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3931 	mas->node = mt_mk_node(node, type);
3932 	rcu_assign_pointer(slots[0], entry);
3933 	pivots[0] = mas->last;
3934 	mas->depth = 1;
3935 	mas_set_height(mas);
3936 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3937 
3938 done:
3939 	if (xa_is_node(root))
3940 		mte_destroy_walk(root, mas->tree);
3941 
3942 	return 1;
3943 }
3944 /*
3945  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3946  * and new nodes where necessary, then place the sub-tree in the actual tree.
3947  * Note that mas is expected to point to the node which caused the store to
3948  * span.
3949  * @wr_mas: The maple write state
3950  *
3951  * Return: 0 on error, positive on success.
3952  */
3953 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3954 {
3955 	struct maple_subtree_state mast;
3956 	struct maple_big_node b_node;
3957 	struct ma_state *mas;
3958 	unsigned char height;
3959 
3960 	/* Left and Right side of spanning store */
3961 	MA_STATE(l_mas, NULL, 0, 0);
3962 	MA_STATE(r_mas, NULL, 0, 0);
3963 
3964 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3965 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3966 
3967 	/*
3968 	 * A store operation that spans multiple nodes is called a spanning
3969 	 * store and is handled early in the store call stack by the function
3970 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3971 	 * state is duplicated.  The first maple state walks the left tree path
3972 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3973 	 * The data in the two nodes are combined into a single node, two nodes,
3974 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3975 	 * written to the last entry of a node is considered a spanning store as
3976 	 * a rebalance is required for the operation to complete and an overflow
3977 	 * of data may happen.
3978 	 */
3979 	mas = wr_mas->mas;
3980 	trace_ma_op(__func__, mas);
3981 
3982 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3983 		return mas_new_root(mas, wr_mas->entry);
3984 	/*
3985 	 * Node rebalancing may occur due to this store, so there may be three new
3986 	 * entries per level plus a new root.
3987 	 */
3988 	height = mas_mt_height(mas);
3989 	mas_node_count(mas, 1 + height * 3);
3990 	if (mas_is_err(mas))
3991 		return 0;
3992 
3993 	/*
3994 	 * Set up right side.  Need to get to the next offset after the spanning
3995 	 * store to ensure it's not NULL and to combine both the next node and
3996 	 * the node with the start together.
3997 	 */
3998 	r_mas = *mas;
3999 	/* Avoid overflow, walk to next slot in the tree. */
4000 	if (r_mas.last + 1)
4001 		r_mas.last++;
4002 
4003 	r_mas.index = r_mas.last;
4004 	mas_wr_walk_index(&r_wr_mas);
4005 	r_mas.last = r_mas.index = mas->last;
4006 
4007 	/* Set up left side. */
4008 	l_mas = *mas;
4009 	mas_wr_walk_index(&l_wr_mas);
4010 
4011 	if (!wr_mas->entry) {
4012 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4013 		mas->offset = l_mas.offset;
4014 		mas->index = l_mas.index;
4015 		mas->last = l_mas.last = r_mas.last;
4016 	}
4017 
4018 	/* expanding NULLs may make this cover the entire range */
4019 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
4020 		mas_set_range(mas, 0, ULONG_MAX);
4021 		return mas_new_root(mas, wr_mas->entry);
4022 	}
4023 
4024 	memset(&b_node, 0, sizeof(struct maple_big_node));
4025 	/* Copy l_mas and store the value in b_node. */
4026 	mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4027 	/* Copy r_mas into b_node. */
4028 	if (r_mas.offset <= r_wr_mas.node_end)
4029 		mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4030 			   &b_node, b_node.b_end + 1);
4031 	else
4032 		b_node.b_end++;
4033 
4034 	/* Stop spanning searches by searching for just index. */
4035 	l_mas.index = l_mas.last = mas->index;
4036 
4037 	mast.bn = &b_node;
4038 	mast.orig_l = &l_mas;
4039 	mast.orig_r = &r_mas;
4040 	/* Combine l_mas and r_mas and split them up evenly again. */
4041 	return mas_spanning_rebalance(mas, &mast, height + 1);
4042 }
4043 
4044 /*
4045  * mas_wr_node_store() - Attempt to store the value in a node
4046  * @wr_mas: The maple write state
4047  *
4048  * Attempts to reuse the node, but may allocate.
4049  *
4050  * Return: True if stored, false otherwise
4051  */
4052 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4053 {
4054 	struct ma_state *mas = wr_mas->mas;
4055 	void __rcu **dst_slots;
4056 	unsigned long *dst_pivots;
4057 	unsigned char dst_offset;
4058 	unsigned char new_end = wr_mas->node_end;
4059 	unsigned char offset;
4060 	unsigned char node_slots = mt_slots[wr_mas->type];
4061 	struct maple_node reuse, *newnode;
4062 	unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4063 	bool in_rcu = mt_in_rcu(mas->tree);
4064 
4065 	offset = mas->offset;
4066 	if (mas->last == wr_mas->r_max) {
4067 		/* runs right to the end of the node */
4068 		if (mas->last == mas->max)
4069 			new_end = offset;
4070 		/* don't copy this offset */
4071 		wr_mas->offset_end++;
4072 	} else if (mas->last < wr_mas->r_max) {
4073 		/* new range ends in this range */
4074 		if (unlikely(wr_mas->r_max == ULONG_MAX))
4075 			mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4076 
4077 		new_end++;
4078 	} else {
4079 		if (wr_mas->end_piv == mas->last)
4080 			wr_mas->offset_end++;
4081 
4082 		new_end -= wr_mas->offset_end - offset - 1;
4083 	}
4084 
4085 	/* new range starts within a range */
4086 	if (wr_mas->r_min < mas->index)
4087 		new_end++;
4088 
4089 	/* Not enough room */
4090 	if (new_end >= node_slots)
4091 		return false;
4092 
4093 	/* Not enough data. */
4094 	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4095 	    !(mas->mas_flags & MA_STATE_BULK))
4096 		return false;
4097 
4098 	/* set up node. */
4099 	if (in_rcu) {
4100 		mas_node_count(mas, 1);
4101 		if (mas_is_err(mas))
4102 			return false;
4103 
4104 		newnode = mas_pop_node(mas);
4105 	} else {
4106 		memset(&reuse, 0, sizeof(struct maple_node));
4107 		newnode = &reuse;
4108 	}
4109 
4110 	newnode->parent = mas_mn(mas)->parent;
4111 	dst_pivots = ma_pivots(newnode, wr_mas->type);
4112 	dst_slots = ma_slots(newnode, wr_mas->type);
4113 	/* Copy from start to insert point */
4114 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4115 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4116 	dst_offset = offset;
4117 
4118 	/* Handle insert of new range starting after old range */
4119 	if (wr_mas->r_min < mas->index) {
4120 		mas->offset++;
4121 		rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4122 		dst_pivots[dst_offset++] = mas->index - 1;
4123 	}
4124 
4125 	/* Store the new entry and range end. */
4126 	if (dst_offset < max_piv)
4127 		dst_pivots[dst_offset] = mas->last;
4128 	mas->offset = dst_offset;
4129 	rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4130 
4131 	/*
4132 	 * this range wrote to the end of the node or it overwrote the rest of
4133 	 * the data
4134 	 */
4135 	if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4136 		new_end = dst_offset;
4137 		goto done;
4138 	}
4139 
4140 	dst_offset++;
4141 	/* Copy to the end of node if necessary. */
4142 	copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4143 	memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4144 	       sizeof(void *) * copy_size);
4145 	if (dst_offset < max_piv) {
4146 		if (copy_size > max_piv - dst_offset)
4147 			copy_size = max_piv - dst_offset;
4148 
4149 		memcpy(dst_pivots + dst_offset,
4150 		       wr_mas->pivots + wr_mas->offset_end,
4151 		       sizeof(unsigned long) * copy_size);
4152 	}
4153 
4154 	if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4155 		dst_pivots[new_end] = mas->max;
4156 
4157 done:
4158 	mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4159 	if (in_rcu) {
4160 		mas->node = mt_mk_node(newnode, wr_mas->type);
4161 		mas_replace(mas, false);
4162 	} else {
4163 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4164 	}
4165 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4166 	mas_update_gap(mas);
4167 	return true;
4168 }
4169 
4170 /*
4171  * mas_wr_slot_store: Attempt to store a value in a slot.
4172  * @wr_mas: the maple write state
4173  *
4174  * Return: True if stored, false otherwise
4175  */
4176 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4177 {
4178 	struct ma_state *mas = wr_mas->mas;
4179 	unsigned long lmax; /* Logical max. */
4180 	unsigned char offset = mas->offset;
4181 
4182 	if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4183 				  (offset != wr_mas->node_end)))
4184 		return false;
4185 
4186 	if (offset == wr_mas->node_end - 1)
4187 		lmax = mas->max;
4188 	else
4189 		lmax = wr_mas->pivots[offset + 1];
4190 
4191 	/* going to overwrite too many slots. */
4192 	if (lmax < mas->last)
4193 		return false;
4194 
4195 	if (wr_mas->r_min == mas->index) {
4196 		/* overwriting two or more ranges with one. */
4197 		if (lmax == mas->last)
4198 			return false;
4199 
4200 		/* Overwriting all of offset and a portion of offset + 1. */
4201 		rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4202 		wr_mas->pivots[offset] = mas->last;
4203 		goto done;
4204 	}
4205 
4206 	/* Doesn't end on the next range end. */
4207 	if (lmax != mas->last)
4208 		return false;
4209 
4210 	/* Overwriting a portion of offset and all of offset + 1 */
4211 	if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4212 	    (wr_mas->entry || wr_mas->pivots[offset + 1]))
4213 		wr_mas->pivots[offset + 1] = mas->last;
4214 
4215 	rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4216 	wr_mas->pivots[offset] = mas->index - 1;
4217 	mas->offset++; /* Keep mas accurate. */
4218 
4219 done:
4220 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4221 	mas_update_gap(mas);
4222 	return true;
4223 }
4224 
4225 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4226 {
4227 	while ((wr_mas->mas->last > wr_mas->end_piv) &&
4228 	       (wr_mas->offset_end < wr_mas->node_end))
4229 		wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4230 
4231 	if (wr_mas->mas->last > wr_mas->end_piv)
4232 		wr_mas->end_piv = wr_mas->mas->max;
4233 }
4234 
4235 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4236 {
4237 	struct ma_state *mas = wr_mas->mas;
4238 
4239 	if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4240 		mas->last = wr_mas->end_piv;
4241 
4242 	/* Check next slot(s) if we are overwriting the end */
4243 	if ((mas->last == wr_mas->end_piv) &&
4244 	    (wr_mas->node_end != wr_mas->offset_end) &&
4245 	    !wr_mas->slots[wr_mas->offset_end + 1]) {
4246 		wr_mas->offset_end++;
4247 		if (wr_mas->offset_end == wr_mas->node_end)
4248 			mas->last = mas->max;
4249 		else
4250 			mas->last = wr_mas->pivots[wr_mas->offset_end];
4251 		wr_mas->end_piv = mas->last;
4252 	}
4253 
4254 	if (!wr_mas->content) {
4255 		/* If this one is null, the next and prev are not */
4256 		mas->index = wr_mas->r_min;
4257 	} else {
4258 		/* Check prev slot if we are overwriting the start */
4259 		if (mas->index == wr_mas->r_min && mas->offset &&
4260 		    !wr_mas->slots[mas->offset - 1]) {
4261 			mas->offset--;
4262 			wr_mas->r_min = mas->index =
4263 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4264 			wr_mas->r_max = wr_mas->pivots[mas->offset];
4265 		}
4266 	}
4267 }
4268 
4269 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4270 {
4271 	unsigned char end = wr_mas->node_end;
4272 	unsigned char new_end = end + 1;
4273 	struct ma_state *mas = wr_mas->mas;
4274 	unsigned char node_pivots = mt_pivots[wr_mas->type];
4275 
4276 	if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4277 		if (new_end < node_pivots)
4278 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4279 
4280 		if (new_end < node_pivots)
4281 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4282 
4283 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4284 		mas->offset = new_end;
4285 		wr_mas->pivots[end] = mas->index - 1;
4286 
4287 		return true;
4288 	}
4289 
4290 	if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4291 		if (new_end < node_pivots)
4292 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4293 
4294 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4295 		if (new_end < node_pivots)
4296 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4297 
4298 		wr_mas->pivots[end] = mas->last;
4299 		rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4300 		return true;
4301 	}
4302 
4303 	return false;
4304 }
4305 
4306 /*
4307  * mas_wr_bnode() - Slow path for a modification.
4308  * @wr_mas: The write maple state
4309  *
4310  * This is where split, rebalance end up.
4311  */
4312 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4313 {
4314 	struct maple_big_node b_node;
4315 
4316 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4317 	memset(&b_node, 0, sizeof(struct maple_big_node));
4318 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4319 	mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4320 }
4321 
4322 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4323 {
4324 	unsigned char node_slots;
4325 	unsigned char node_size;
4326 	struct ma_state *mas = wr_mas->mas;
4327 
4328 	/* Direct replacement */
4329 	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4330 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4331 		if (!!wr_mas->entry ^ !!wr_mas->content)
4332 			mas_update_gap(mas);
4333 		return;
4334 	}
4335 
4336 	/* Attempt to append */
4337 	node_slots = mt_slots[wr_mas->type];
4338 	node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4339 	if (mas->max == ULONG_MAX)
4340 		node_size++;
4341 
4342 	/* slot and node store will not fit, go to the slow path */
4343 	if (unlikely(node_size >= node_slots))
4344 		goto slow_path;
4345 
4346 	if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4347 	    (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4348 		if (!wr_mas->content || !wr_mas->entry)
4349 			mas_update_gap(mas);
4350 		return;
4351 	}
4352 
4353 	if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4354 		return;
4355 	else if (mas_wr_node_store(wr_mas))
4356 		return;
4357 
4358 	if (mas_is_err(mas))
4359 		return;
4360 
4361 slow_path:
4362 	mas_wr_bnode(wr_mas);
4363 }
4364 
4365 /*
4366  * mas_wr_store_entry() - Internal call to store a value
4367  * @mas: The maple state
4368  * @entry: The entry to store.
4369  *
4370  * Return: The contents that was stored at the index.
4371  */
4372 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4373 {
4374 	struct ma_state *mas = wr_mas->mas;
4375 
4376 	wr_mas->content = mas_start(mas);
4377 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4378 		mas_store_root(mas, wr_mas->entry);
4379 		return wr_mas->content;
4380 	}
4381 
4382 	if (unlikely(!mas_wr_walk(wr_mas))) {
4383 		mas_wr_spanning_store(wr_mas);
4384 		return wr_mas->content;
4385 	}
4386 
4387 	/* At this point, we are at the leaf node that needs to be altered. */
4388 	wr_mas->end_piv = wr_mas->r_max;
4389 	mas_wr_end_piv(wr_mas);
4390 
4391 	if (!wr_mas->entry)
4392 		mas_wr_extend_null(wr_mas);
4393 
4394 	/* New root for a single pointer */
4395 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4396 		mas_new_root(mas, wr_mas->entry);
4397 		return wr_mas->content;
4398 	}
4399 
4400 	mas_wr_modify(wr_mas);
4401 	return wr_mas->content;
4402 }
4403 
4404 /**
4405  * mas_insert() - Internal call to insert a value
4406  * @mas: The maple state
4407  * @entry: The entry to store
4408  *
4409  * Return: %NULL or the contents that already exists at the requested index
4410  * otherwise.  The maple state needs to be checked for error conditions.
4411  */
4412 static inline void *mas_insert(struct ma_state *mas, void *entry)
4413 {
4414 	MA_WR_STATE(wr_mas, mas, entry);
4415 
4416 	/*
4417 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4418 	 * tree.  If the insert fits exactly into an existing gap with a value
4419 	 * of NULL, then the slot only needs to be written with the new value.
4420 	 * If the range being inserted is adjacent to another range, then only a
4421 	 * single pivot needs to be inserted (as well as writing the entry).  If
4422 	 * the new range is within a gap but does not touch any other ranges,
4423 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4424 	 * usual, the entry must be written.  Most operations require a new node
4425 	 * to be allocated and replace an existing node to ensure RCU safety,
4426 	 * when in RCU mode.  The exception to requiring a newly allocated node
4427 	 * is when inserting at the end of a node (appending).  When done
4428 	 * carefully, appending can reuse the node in place.
4429 	 */
4430 	wr_mas.content = mas_start(mas);
4431 	if (wr_mas.content)
4432 		goto exists;
4433 
4434 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4435 		mas_store_root(mas, entry);
4436 		return NULL;
4437 	}
4438 
4439 	/* spanning writes always overwrite something */
4440 	if (!mas_wr_walk(&wr_mas))
4441 		goto exists;
4442 
4443 	/* At this point, we are at the leaf node that needs to be altered. */
4444 	wr_mas.offset_end = mas->offset;
4445 	wr_mas.end_piv = wr_mas.r_max;
4446 
4447 	if (wr_mas.content || (mas->last > wr_mas.r_max))
4448 		goto exists;
4449 
4450 	if (!entry)
4451 		return NULL;
4452 
4453 	mas_wr_modify(&wr_mas);
4454 	return wr_mas.content;
4455 
4456 exists:
4457 	mas_set_err(mas, -EEXIST);
4458 	return wr_mas.content;
4459 
4460 }
4461 
4462 /*
4463  * mas_prev_node() - Find the prev non-null entry at the same level in the
4464  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
4465  * @mas: The maple state
4466  * @min: The lower limit to search
4467  *
4468  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4469  * Return: 1 if the node is dead, 0 otherwise.
4470  */
4471 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4472 {
4473 	enum maple_type mt;
4474 	int offset, level;
4475 	void __rcu **slots;
4476 	struct maple_node *node;
4477 	struct maple_enode *enode;
4478 	unsigned long *pivots;
4479 
4480 	if (mas_is_none(mas))
4481 		return 0;
4482 
4483 	level = 0;
4484 	do {
4485 		node = mas_mn(mas);
4486 		if (ma_is_root(node))
4487 			goto no_entry;
4488 
4489 		/* Walk up. */
4490 		if (unlikely(mas_ascend(mas)))
4491 			return 1;
4492 		offset = mas->offset;
4493 		level++;
4494 	} while (!offset);
4495 
4496 	offset--;
4497 	mt = mte_node_type(mas->node);
4498 	node = mas_mn(mas);
4499 	slots = ma_slots(node, mt);
4500 	pivots = ma_pivots(node, mt);
4501 	mas->max = pivots[offset];
4502 	if (offset)
4503 		mas->min = pivots[offset - 1] + 1;
4504 	if (unlikely(ma_dead_node(node)))
4505 		return 1;
4506 
4507 	if (mas->max < min)
4508 		goto no_entry_min;
4509 
4510 	while (level > 1) {
4511 		level--;
4512 		enode = mas_slot(mas, slots, offset);
4513 		if (unlikely(ma_dead_node(node)))
4514 			return 1;
4515 
4516 		mas->node = enode;
4517 		mt = mte_node_type(mas->node);
4518 		node = mas_mn(mas);
4519 		slots = ma_slots(node, mt);
4520 		pivots = ma_pivots(node, mt);
4521 		offset = ma_data_end(node, mt, pivots, mas->max);
4522 		if (offset)
4523 			mas->min = pivots[offset - 1] + 1;
4524 
4525 		if (offset < mt_pivots[mt])
4526 			mas->max = pivots[offset];
4527 
4528 		if (mas->max < min)
4529 			goto no_entry;
4530 	}
4531 
4532 	mas->node = mas_slot(mas, slots, offset);
4533 	if (unlikely(ma_dead_node(node)))
4534 		return 1;
4535 
4536 	mas->offset = mas_data_end(mas);
4537 	if (unlikely(mte_dead_node(mas->node)))
4538 		return 1;
4539 
4540 	return 0;
4541 
4542 no_entry_min:
4543 	mas->offset = offset;
4544 	if (offset)
4545 		mas->min = pivots[offset - 1] + 1;
4546 no_entry:
4547 	if (unlikely(ma_dead_node(node)))
4548 		return 1;
4549 
4550 	mas->node = MAS_NONE;
4551 	return 0;
4552 }
4553 
4554 /*
4555  * mas_next_node() - Get the next node at the same level in the tree.
4556  * @mas: The maple state
4557  * @max: The maximum pivot value to check.
4558  *
4559  * The next value will be mas->node[mas->offset] or MAS_NONE.
4560  * Return: 1 on dead node, 0 otherwise.
4561  */
4562 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4563 				unsigned long max)
4564 {
4565 	unsigned long min, pivot;
4566 	unsigned long *pivots;
4567 	struct maple_enode *enode;
4568 	int level = 0;
4569 	unsigned char offset;
4570 	enum maple_type mt;
4571 	void __rcu **slots;
4572 
4573 	if (mas->max >= max)
4574 		goto no_entry;
4575 
4576 	level = 0;
4577 	do {
4578 		if (ma_is_root(node))
4579 			goto no_entry;
4580 
4581 		min = mas->max + 1;
4582 		if (min > max)
4583 			goto no_entry;
4584 
4585 		if (unlikely(mas_ascend(mas)))
4586 			return 1;
4587 
4588 		offset = mas->offset;
4589 		level++;
4590 		node = mas_mn(mas);
4591 		mt = mte_node_type(mas->node);
4592 		pivots = ma_pivots(node, mt);
4593 	} while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4594 
4595 	slots = ma_slots(node, mt);
4596 	pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4597 	while (unlikely(level > 1)) {
4598 		/* Descend, if necessary */
4599 		enode = mas_slot(mas, slots, offset);
4600 		if (unlikely(ma_dead_node(node)))
4601 			return 1;
4602 
4603 		mas->node = enode;
4604 		level--;
4605 		node = mas_mn(mas);
4606 		mt = mte_node_type(mas->node);
4607 		slots = ma_slots(node, mt);
4608 		pivots = ma_pivots(node, mt);
4609 		offset = 0;
4610 		pivot = pivots[0];
4611 	}
4612 
4613 	enode = mas_slot(mas, slots, offset);
4614 	if (unlikely(ma_dead_node(node)))
4615 		return 1;
4616 
4617 	mas->node = enode;
4618 	mas->min = min;
4619 	mas->max = pivot;
4620 	return 0;
4621 
4622 no_entry:
4623 	if (unlikely(ma_dead_node(node)))
4624 		return 1;
4625 
4626 	mas->node = MAS_NONE;
4627 	return 0;
4628 }
4629 
4630 /*
4631  * mas_next_nentry() - Get the next node entry
4632  * @mas: The maple state
4633  * @max: The maximum value to check
4634  * @*range_start: Pointer to store the start of the range.
4635  *
4636  * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4637  * pivot of the entry.
4638  *
4639  * Return: The next entry, %NULL otherwise
4640  */
4641 static inline void *mas_next_nentry(struct ma_state *mas,
4642 	    struct maple_node *node, unsigned long max, enum maple_type type)
4643 {
4644 	unsigned char count;
4645 	unsigned long pivot;
4646 	unsigned long *pivots;
4647 	void __rcu **slots;
4648 	void *entry;
4649 
4650 	if (mas->last == mas->max) {
4651 		mas->index = mas->max;
4652 		return NULL;
4653 	}
4654 
4655 	pivots = ma_pivots(node, type);
4656 	slots = ma_slots(node, type);
4657 	mas->index = mas_safe_min(mas, pivots, mas->offset);
4658 	count = ma_data_end(node, type, pivots, mas->max);
4659 	if (ma_dead_node(node))
4660 		return NULL;
4661 
4662 	if (mas->index > max)
4663 		return NULL;
4664 
4665 	if (mas->offset > count)
4666 		return NULL;
4667 
4668 	while (mas->offset < count) {
4669 		pivot = pivots[mas->offset];
4670 		entry = mas_slot(mas, slots, mas->offset);
4671 		if (ma_dead_node(node))
4672 			return NULL;
4673 
4674 		if (entry)
4675 			goto found;
4676 
4677 		if (pivot >= max)
4678 			return NULL;
4679 
4680 		mas->index = pivot + 1;
4681 		mas->offset++;
4682 	}
4683 
4684 	if (mas->index > mas->max) {
4685 		mas->index = mas->last;
4686 		return NULL;
4687 	}
4688 
4689 	pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4690 	entry = mas_slot(mas, slots, mas->offset);
4691 	if (ma_dead_node(node))
4692 		return NULL;
4693 
4694 	if (!pivot)
4695 		return NULL;
4696 
4697 	if (!entry)
4698 		return NULL;
4699 
4700 found:
4701 	mas->last = pivot;
4702 	return entry;
4703 }
4704 
4705 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4706 {
4707 retry:
4708 	mas_set(mas, index);
4709 	mas_state_walk(mas);
4710 	if (mas_is_start(mas))
4711 		goto retry;
4712 }
4713 
4714 /*
4715  * mas_next_entry() - Internal function to get the next entry.
4716  * @mas: The maple state
4717  * @limit: The maximum range start.
4718  *
4719  * Set the @mas->node to the next entry and the range_start to
4720  * the beginning value for the entry.  Does not check beyond @limit.
4721  * Sets @mas->index and @mas->last to the limit if it is hit.
4722  * Restarts on dead nodes.
4723  *
4724  * Return: the next entry or %NULL.
4725  */
4726 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4727 {
4728 	void *entry = NULL;
4729 	struct maple_enode *prev_node;
4730 	struct maple_node *node;
4731 	unsigned char offset;
4732 	unsigned long last;
4733 	enum maple_type mt;
4734 
4735 	if (mas->index > limit) {
4736 		mas->index = mas->last = limit;
4737 		mas_pause(mas);
4738 		return NULL;
4739 	}
4740 	last = mas->last;
4741 retry:
4742 	offset = mas->offset;
4743 	prev_node = mas->node;
4744 	node = mas_mn(mas);
4745 	mt = mte_node_type(mas->node);
4746 	mas->offset++;
4747 	if (unlikely(mas->offset >= mt_slots[mt])) {
4748 		mas->offset = mt_slots[mt] - 1;
4749 		goto next_node;
4750 	}
4751 
4752 	while (!mas_is_none(mas)) {
4753 		entry = mas_next_nentry(mas, node, limit, mt);
4754 		if (unlikely(ma_dead_node(node))) {
4755 			mas_rewalk(mas, last);
4756 			goto retry;
4757 		}
4758 
4759 		if (likely(entry))
4760 			return entry;
4761 
4762 		if (unlikely((mas->index > limit)))
4763 			break;
4764 
4765 next_node:
4766 		prev_node = mas->node;
4767 		offset = mas->offset;
4768 		if (unlikely(mas_next_node(mas, node, limit))) {
4769 			mas_rewalk(mas, last);
4770 			goto retry;
4771 		}
4772 		mas->offset = 0;
4773 		node = mas_mn(mas);
4774 		mt = mte_node_type(mas->node);
4775 	}
4776 
4777 	mas->index = mas->last = limit;
4778 	mas->offset = offset;
4779 	mas->node = prev_node;
4780 	return NULL;
4781 }
4782 
4783 /*
4784  * mas_prev_nentry() - Get the previous node entry.
4785  * @mas: The maple state.
4786  * @limit: The lower limit to check for a value.
4787  *
4788  * Return: the entry, %NULL otherwise.
4789  */
4790 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4791 				    unsigned long index)
4792 {
4793 	unsigned long pivot, min;
4794 	unsigned char offset;
4795 	struct maple_node *mn;
4796 	enum maple_type mt;
4797 	unsigned long *pivots;
4798 	void __rcu **slots;
4799 	void *entry;
4800 
4801 retry:
4802 	if (!mas->offset)
4803 		return NULL;
4804 
4805 	mn = mas_mn(mas);
4806 	mt = mte_node_type(mas->node);
4807 	offset = mas->offset - 1;
4808 	if (offset >= mt_slots[mt])
4809 		offset = mt_slots[mt] - 1;
4810 
4811 	slots = ma_slots(mn, mt);
4812 	pivots = ma_pivots(mn, mt);
4813 	if (offset == mt_pivots[mt])
4814 		pivot = mas->max;
4815 	else
4816 		pivot = pivots[offset];
4817 
4818 	if (unlikely(ma_dead_node(mn))) {
4819 		mas_rewalk(mas, index);
4820 		goto retry;
4821 	}
4822 
4823 	while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4824 	       !pivot))
4825 		pivot = pivots[--offset];
4826 
4827 	min = mas_safe_min(mas, pivots, offset);
4828 	entry = mas_slot(mas, slots, offset);
4829 	if (unlikely(ma_dead_node(mn))) {
4830 		mas_rewalk(mas, index);
4831 		goto retry;
4832 	}
4833 
4834 	if (likely(entry)) {
4835 		mas->offset = offset;
4836 		mas->last = pivot;
4837 		mas->index = min;
4838 	}
4839 	return entry;
4840 }
4841 
4842 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4843 {
4844 	void *entry;
4845 
4846 	if (mas->index < min) {
4847 		mas->index = mas->last = min;
4848 		mas->node = MAS_NONE;
4849 		return NULL;
4850 	}
4851 retry:
4852 	while (likely(!mas_is_none(mas))) {
4853 		entry = mas_prev_nentry(mas, min, mas->index);
4854 		if (unlikely(mas->last < min))
4855 			goto not_found;
4856 
4857 		if (likely(entry))
4858 			return entry;
4859 
4860 		if (unlikely(mas_prev_node(mas, min))) {
4861 			mas_rewalk(mas, mas->index);
4862 			goto retry;
4863 		}
4864 
4865 		mas->offset++;
4866 	}
4867 
4868 	mas->offset--;
4869 not_found:
4870 	mas->index = mas->last = min;
4871 	return NULL;
4872 }
4873 
4874 /*
4875  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4876  * highest gap address of a given size in a given node and descend.
4877  * @mas: The maple state
4878  * @size: The needed size.
4879  *
4880  * Return: True if found in a leaf, false otherwise.
4881  *
4882  */
4883 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4884 {
4885 	enum maple_type type = mte_node_type(mas->node);
4886 	struct maple_node *node = mas_mn(mas);
4887 	unsigned long *pivots, *gaps;
4888 	void __rcu **slots;
4889 	unsigned long gap = 0;
4890 	unsigned long max, min;
4891 	unsigned char offset;
4892 
4893 	if (unlikely(mas_is_err(mas)))
4894 		return true;
4895 
4896 	if (ma_is_dense(type)) {
4897 		/* dense nodes. */
4898 		mas->offset = (unsigned char)(mas->index - mas->min);
4899 		return true;
4900 	}
4901 
4902 	pivots = ma_pivots(node, type);
4903 	slots = ma_slots(node, type);
4904 	gaps = ma_gaps(node, type);
4905 	offset = mas->offset;
4906 	min = mas_safe_min(mas, pivots, offset);
4907 	/* Skip out of bounds. */
4908 	while (mas->last < min)
4909 		min = mas_safe_min(mas, pivots, --offset);
4910 
4911 	max = mas_safe_pivot(mas, pivots, offset, type);
4912 	while (mas->index <= max) {
4913 		gap = 0;
4914 		if (gaps)
4915 			gap = gaps[offset];
4916 		else if (!mas_slot(mas, slots, offset))
4917 			gap = max - min + 1;
4918 
4919 		if (gap) {
4920 			if ((size <= gap) && (size <= mas->last - min + 1))
4921 				break;
4922 
4923 			if (!gaps) {
4924 				/* Skip the next slot, it cannot be a gap. */
4925 				if (offset < 2)
4926 					goto ascend;
4927 
4928 				offset -= 2;
4929 				max = pivots[offset];
4930 				min = mas_safe_min(mas, pivots, offset);
4931 				continue;
4932 			}
4933 		}
4934 
4935 		if (!offset)
4936 			goto ascend;
4937 
4938 		offset--;
4939 		max = min - 1;
4940 		min = mas_safe_min(mas, pivots, offset);
4941 	}
4942 
4943 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4944 		goto no_space;
4945 
4946 	if (unlikely(ma_is_leaf(type))) {
4947 		mas->offset = offset;
4948 		mas->min = min;
4949 		mas->max = min + gap - 1;
4950 		return true;
4951 	}
4952 
4953 	/* descend, only happens under lock. */
4954 	mas->node = mas_slot(mas, slots, offset);
4955 	mas->min = min;
4956 	mas->max = max;
4957 	mas->offset = mas_data_end(mas);
4958 	return false;
4959 
4960 ascend:
4961 	if (!mte_is_root(mas->node))
4962 		return false;
4963 
4964 no_space:
4965 	mas_set_err(mas, -EBUSY);
4966 	return false;
4967 }
4968 
4969 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4970 {
4971 	enum maple_type type = mte_node_type(mas->node);
4972 	unsigned long pivot, min, gap = 0;
4973 	unsigned char offset;
4974 	unsigned long *gaps;
4975 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
4976 	void __rcu **slots = ma_slots(mas_mn(mas), type);
4977 	bool found = false;
4978 
4979 	if (ma_is_dense(type)) {
4980 		mas->offset = (unsigned char)(mas->index - mas->min);
4981 		return true;
4982 	}
4983 
4984 	gaps = ma_gaps(mte_to_node(mas->node), type);
4985 	offset = mas->offset;
4986 	min = mas_safe_min(mas, pivots, offset);
4987 	for (; offset < mt_slots[type]; offset++) {
4988 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4989 		if (offset && !pivot)
4990 			break;
4991 
4992 		/* Not within lower bounds */
4993 		if (mas->index > pivot)
4994 			goto next_slot;
4995 
4996 		if (gaps)
4997 			gap = gaps[offset];
4998 		else if (!mas_slot(mas, slots, offset))
4999 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5000 		else
5001 			goto next_slot;
5002 
5003 		if (gap >= size) {
5004 			if (ma_is_leaf(type)) {
5005 				found = true;
5006 				goto done;
5007 			}
5008 			if (mas->index <= pivot) {
5009 				mas->node = mas_slot(mas, slots, offset);
5010 				mas->min = min;
5011 				mas->max = pivot;
5012 				offset = 0;
5013 				break;
5014 			}
5015 		}
5016 next_slot:
5017 		min = pivot + 1;
5018 		if (mas->last <= pivot) {
5019 			mas_set_err(mas, -EBUSY);
5020 			return true;
5021 		}
5022 	}
5023 
5024 	if (mte_is_root(mas->node))
5025 		found = true;
5026 done:
5027 	mas->offset = offset;
5028 	return found;
5029 }
5030 
5031 /**
5032  * mas_walk() - Search for @mas->index in the tree.
5033  * @mas: The maple state.
5034  *
5035  * mas->index and mas->last will be set to the range if there is a value.  If
5036  * mas->node is MAS_NONE, reset to MAS_START.
5037  *
5038  * Return: the entry at the location or %NULL.
5039  */
5040 void *mas_walk(struct ma_state *mas)
5041 {
5042 	void *entry;
5043 
5044 retry:
5045 	entry = mas_state_walk(mas);
5046 	if (mas_is_start(mas))
5047 		goto retry;
5048 
5049 	if (mas_is_ptr(mas)) {
5050 		if (!mas->index) {
5051 			mas->last = 0;
5052 		} else {
5053 			mas->index = 1;
5054 			mas->last = ULONG_MAX;
5055 		}
5056 		return entry;
5057 	}
5058 
5059 	if (mas_is_none(mas)) {
5060 		mas->index = 0;
5061 		mas->last = ULONG_MAX;
5062 	}
5063 
5064 	return entry;
5065 }
5066 EXPORT_SYMBOL_GPL(mas_walk);
5067 
5068 static inline bool mas_rewind_node(struct ma_state *mas)
5069 {
5070 	unsigned char slot;
5071 
5072 	do {
5073 		if (mte_is_root(mas->node)) {
5074 			slot = mas->offset;
5075 			if (!slot)
5076 				return false;
5077 		} else {
5078 			mas_ascend(mas);
5079 			slot = mas->offset;
5080 		}
5081 	} while (!slot);
5082 
5083 	mas->offset = --slot;
5084 	return true;
5085 }
5086 
5087 /*
5088  * mas_skip_node() - Internal function.  Skip over a node.
5089  * @mas: The maple state.
5090  *
5091  * Return: true if there is another node, false otherwise.
5092  */
5093 static inline bool mas_skip_node(struct ma_state *mas)
5094 {
5095 	unsigned char slot, slot_count;
5096 	unsigned long *pivots;
5097 	enum maple_type mt;
5098 
5099 	mt = mte_node_type(mas->node);
5100 	slot_count = mt_slots[mt] - 1;
5101 	do {
5102 		if (mte_is_root(mas->node)) {
5103 			slot = mas->offset;
5104 			if (slot > slot_count) {
5105 				mas_set_err(mas, -EBUSY);
5106 				return false;
5107 			}
5108 		} else {
5109 			mas_ascend(mas);
5110 			slot = mas->offset;
5111 			mt = mte_node_type(mas->node);
5112 			slot_count = mt_slots[mt] - 1;
5113 		}
5114 	} while (slot > slot_count);
5115 
5116 	mas->offset = ++slot;
5117 	pivots = ma_pivots(mas_mn(mas), mt);
5118 	if (slot > 0)
5119 		mas->min = pivots[slot - 1] + 1;
5120 
5121 	if (slot <= slot_count)
5122 		mas->max = pivots[slot];
5123 
5124 	return true;
5125 }
5126 
5127 /*
5128  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5129  * @size
5130  * @mas: The maple state
5131  * @size: The size of the gap required
5132  *
5133  * Search between @mas->index and @mas->last for a gap of @size.
5134  */
5135 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5136 {
5137 	struct maple_enode *last = NULL;
5138 
5139 	/*
5140 	 * There are 4 options:
5141 	 * go to child (descend)
5142 	 * go back to parent (ascend)
5143 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5144 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5145 	 */
5146 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5147 		if (last == mas->node)
5148 			mas_skip_node(mas);
5149 		else
5150 			last = mas->node;
5151 	}
5152 }
5153 
5154 /*
5155  * mas_fill_gap() - Fill a located gap with @entry.
5156  * @mas: The maple state
5157  * @entry: The value to store
5158  * @slot: The offset into the node to store the @entry
5159  * @size: The size of the entry
5160  * @index: The start location
5161  */
5162 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5163 		unsigned char slot, unsigned long size, unsigned long *index)
5164 {
5165 	MA_WR_STATE(wr_mas, mas, entry);
5166 	unsigned char pslot = mte_parent_slot(mas->node);
5167 	struct maple_enode *mn = mas->node;
5168 	unsigned long *pivots;
5169 	enum maple_type ptype;
5170 	/*
5171 	 * mas->index is the start address for the search
5172 	 *  which may no longer be needed.
5173 	 * mas->last is the end address for the search
5174 	 */
5175 
5176 	*index = mas->index;
5177 	mas->last = mas->index + size - 1;
5178 
5179 	/*
5180 	 * It is possible that using mas->max and mas->min to correctly
5181 	 * calculate the index and last will cause an issue in the gap
5182 	 * calculation, so fix the ma_state here
5183 	 */
5184 	mas_ascend(mas);
5185 	ptype = mte_node_type(mas->node);
5186 	pivots = ma_pivots(mas_mn(mas), ptype);
5187 	mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5188 	mas->min = mas_safe_min(mas, pivots, pslot);
5189 	mas->node = mn;
5190 	mas->offset = slot;
5191 	mas_wr_store_entry(&wr_mas);
5192 }
5193 
5194 /*
5195  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5196  * searching for a gap in an empty tree.
5197  * @mas: The maple state
5198  * @min: the minimum range
5199  * @max: The maximum range
5200  * @size: The size of the gap
5201  * @fwd: Searching forward or back
5202  */
5203 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5204 				unsigned long max, unsigned long size, bool fwd)
5205 {
5206 	unsigned long start = 0;
5207 
5208 	if (!unlikely(mas_is_none(mas)))
5209 		start++;
5210 	/* mas_is_ptr */
5211 
5212 	if (start < min)
5213 		start = min;
5214 
5215 	if (fwd) {
5216 		mas->index = start;
5217 		mas->last = start + size - 1;
5218 		return;
5219 	}
5220 
5221 	mas->index = max;
5222 }
5223 
5224 /*
5225  * mas_empty_area() - Get the lowest address within the range that is
5226  * sufficient for the size requested.
5227  * @mas: The maple state
5228  * @min: The lowest value of the range
5229  * @max: The highest value of the range
5230  * @size: The size needed
5231  */
5232 int mas_empty_area(struct ma_state *mas, unsigned long min,
5233 		unsigned long max, unsigned long size)
5234 {
5235 	unsigned char offset;
5236 	unsigned long *pivots;
5237 	enum maple_type mt;
5238 
5239 	if (mas_is_start(mas))
5240 		mas_start(mas);
5241 	else if (mas->offset >= 2)
5242 		mas->offset -= 2;
5243 	else if (!mas_skip_node(mas))
5244 		return -EBUSY;
5245 
5246 	/* Empty set */
5247 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5248 		mas_sparse_area(mas, min, max, size, true);
5249 		return 0;
5250 	}
5251 
5252 	/* The start of the window can only be within these values */
5253 	mas->index = min;
5254 	mas->last = max;
5255 	mas_awalk(mas, size);
5256 
5257 	if (unlikely(mas_is_err(mas)))
5258 		return xa_err(mas->node);
5259 
5260 	offset = mas->offset;
5261 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5262 		return -EBUSY;
5263 
5264 	mt = mte_node_type(mas->node);
5265 	pivots = ma_pivots(mas_mn(mas), mt);
5266 	if (offset)
5267 		mas->min = pivots[offset - 1] + 1;
5268 
5269 	if (offset < mt_pivots[mt])
5270 		mas->max = pivots[offset];
5271 
5272 	if (mas->index < mas->min)
5273 		mas->index = mas->min;
5274 
5275 	mas->last = mas->index + size - 1;
5276 	return 0;
5277 }
5278 EXPORT_SYMBOL_GPL(mas_empty_area);
5279 
5280 /*
5281  * mas_empty_area_rev() - Get the highest address within the range that is
5282  * sufficient for the size requested.
5283  * @mas: The maple state
5284  * @min: The lowest value of the range
5285  * @max: The highest value of the range
5286  * @size: The size needed
5287  */
5288 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5289 		unsigned long max, unsigned long size)
5290 {
5291 	struct maple_enode *last = mas->node;
5292 
5293 	if (mas_is_start(mas)) {
5294 		mas_start(mas);
5295 		mas->offset = mas_data_end(mas);
5296 	} else if (mas->offset >= 2) {
5297 		mas->offset -= 2;
5298 	} else if (!mas_rewind_node(mas)) {
5299 		return -EBUSY;
5300 	}
5301 
5302 	/* Empty set. */
5303 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5304 		mas_sparse_area(mas, min, max, size, false);
5305 		return 0;
5306 	}
5307 
5308 	/* The start of the window can only be within these values. */
5309 	mas->index = min;
5310 	mas->last = max;
5311 
5312 	while (!mas_rev_awalk(mas, size)) {
5313 		if (last == mas->node) {
5314 			if (!mas_rewind_node(mas))
5315 				return -EBUSY;
5316 		} else {
5317 			last = mas->node;
5318 		}
5319 	}
5320 
5321 	if (mas_is_err(mas))
5322 		return xa_err(mas->node);
5323 
5324 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5325 		return -EBUSY;
5326 
5327 	/*
5328 	 * mas_rev_awalk() has set mas->min and mas->max to the gap values.  If
5329 	 * the maximum is outside the window we are searching, then use the last
5330 	 * location in the search.
5331 	 * mas->max and mas->min is the range of the gap.
5332 	 * mas->index and mas->last are currently set to the search range.
5333 	 */
5334 
5335 	/* Trim the upper limit to the max. */
5336 	if (mas->max <= mas->last)
5337 		mas->last = mas->max;
5338 
5339 	mas->index = mas->last - size + 1;
5340 	return 0;
5341 }
5342 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5343 
5344 static inline int mas_alloc(struct ma_state *mas, void *entry,
5345 		unsigned long size, unsigned long *index)
5346 {
5347 	unsigned long min;
5348 
5349 	mas_start(mas);
5350 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5351 		mas_root_expand(mas, entry);
5352 		if (mas_is_err(mas))
5353 			return xa_err(mas->node);
5354 
5355 		if (!mas->index)
5356 			return mte_pivot(mas->node, 0);
5357 		return mte_pivot(mas->node, 1);
5358 	}
5359 
5360 	/* Must be walking a tree. */
5361 	mas_awalk(mas, size);
5362 	if (mas_is_err(mas))
5363 		return xa_err(mas->node);
5364 
5365 	if (mas->offset == MAPLE_NODE_SLOTS)
5366 		goto no_gap;
5367 
5368 	/*
5369 	 * At this point, mas->node points to the right node and we have an
5370 	 * offset that has a sufficient gap.
5371 	 */
5372 	min = mas->min;
5373 	if (mas->offset)
5374 		min = mte_pivot(mas->node, mas->offset - 1) + 1;
5375 
5376 	if (mas->index < min)
5377 		mas->index = min;
5378 
5379 	mas_fill_gap(mas, entry, mas->offset, size, index);
5380 	return 0;
5381 
5382 no_gap:
5383 	return -EBUSY;
5384 }
5385 
5386 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5387 				unsigned long max, void *entry,
5388 				unsigned long size, unsigned long *index)
5389 {
5390 	int ret = 0;
5391 
5392 	ret = mas_empty_area_rev(mas, min, max, size);
5393 	if (ret)
5394 		return ret;
5395 
5396 	if (mas_is_err(mas))
5397 		return xa_err(mas->node);
5398 
5399 	if (mas->offset == MAPLE_NODE_SLOTS)
5400 		goto no_gap;
5401 
5402 	mas_fill_gap(mas, entry, mas->offset, size, index);
5403 	return 0;
5404 
5405 no_gap:
5406 	return -EBUSY;
5407 }
5408 
5409 /*
5410  * mas_dead_leaves() - Mark all leaves of a node as dead.
5411  * @mas: The maple state
5412  * @slots: Pointer to the slot array
5413  *
5414  * Must hold the write lock.
5415  *
5416  * Return: The number of leaves marked as dead.
5417  */
5418 static inline
5419 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5420 {
5421 	struct maple_node *node;
5422 	enum maple_type type;
5423 	void *entry;
5424 	int offset;
5425 
5426 	for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5427 		entry = mas_slot_locked(mas, slots, offset);
5428 		type = mte_node_type(entry);
5429 		node = mte_to_node(entry);
5430 		/* Use both node and type to catch LE & BE metadata */
5431 		if (!node || !type)
5432 			break;
5433 
5434 		mte_set_node_dead(entry);
5435 		smp_wmb(); /* Needed for RCU */
5436 		node->type = type;
5437 		rcu_assign_pointer(slots[offset], node);
5438 	}
5439 
5440 	return offset;
5441 }
5442 
5443 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5444 {
5445 	struct maple_node *node, *next;
5446 	void __rcu **slots = NULL;
5447 
5448 	next = mas_mn(mas);
5449 	do {
5450 		mas->node = ma_enode_ptr(next);
5451 		node = mas_mn(mas);
5452 		slots = ma_slots(node, node->type);
5453 		next = mas_slot_locked(mas, slots, offset);
5454 		offset = 0;
5455 	} while (!ma_is_leaf(next->type));
5456 
5457 	return slots;
5458 }
5459 
5460 static void mt_free_walk(struct rcu_head *head)
5461 {
5462 	void __rcu **slots;
5463 	struct maple_node *node, *start;
5464 	struct maple_tree mt;
5465 	unsigned char offset;
5466 	enum maple_type type;
5467 	MA_STATE(mas, &mt, 0, 0);
5468 
5469 	node = container_of(head, struct maple_node, rcu);
5470 
5471 	if (ma_is_leaf(node->type))
5472 		goto free_leaf;
5473 
5474 	mt_init_flags(&mt, node->ma_flags);
5475 	mas_lock(&mas);
5476 	start = node;
5477 	mas.node = mt_mk_node(node, node->type);
5478 	slots = mas_dead_walk(&mas, 0);
5479 	node = mas_mn(&mas);
5480 	do {
5481 		mt_free_bulk(node->slot_len, slots);
5482 		offset = node->parent_slot + 1;
5483 		mas.node = node->piv_parent;
5484 		if (mas_mn(&mas) == node)
5485 			goto start_slots_free;
5486 
5487 		type = mte_node_type(mas.node);
5488 		slots = ma_slots(mte_to_node(mas.node), type);
5489 		if ((offset < mt_slots[type]) && (slots[offset]))
5490 			slots = mas_dead_walk(&mas, offset);
5491 
5492 		node = mas_mn(&mas);
5493 	} while ((node != start) || (node->slot_len < offset));
5494 
5495 	slots = ma_slots(node, node->type);
5496 	mt_free_bulk(node->slot_len, slots);
5497 
5498 start_slots_free:
5499 	mas_unlock(&mas);
5500 free_leaf:
5501 	mt_free_rcu(&node->rcu);
5502 }
5503 
5504 static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5505 			struct maple_enode *prev, unsigned char offset)
5506 {
5507 	struct maple_node *node;
5508 	struct maple_enode *next = mas->node;
5509 	void __rcu **slots = NULL;
5510 
5511 	do {
5512 		mas->node = next;
5513 		node = mas_mn(mas);
5514 		slots = ma_slots(node, mte_node_type(mas->node));
5515 		next = mas_slot_locked(mas, slots, 0);
5516 		if ((mte_dead_node(next)))
5517 			next = mas_slot_locked(mas, slots, 1);
5518 
5519 		mte_set_node_dead(mas->node);
5520 		node->type = mte_node_type(mas->node);
5521 		node->piv_parent = prev;
5522 		node->parent_slot = offset;
5523 		offset = 0;
5524 		prev = mas->node;
5525 	} while (!mte_is_leaf(next));
5526 
5527 	return slots;
5528 }
5529 
5530 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5531 			    bool free)
5532 {
5533 	void __rcu **slots;
5534 	struct maple_node *node = mte_to_node(enode);
5535 	struct maple_enode *start;
5536 	struct maple_tree mt;
5537 
5538 	MA_STATE(mas, &mt, 0, 0);
5539 
5540 	if (mte_is_leaf(enode))
5541 		goto free_leaf;
5542 
5543 	mt_init_flags(&mt, ma_flags);
5544 	mas_lock(&mas);
5545 
5546 	mas.node = start = enode;
5547 	slots = mas_destroy_descend(&mas, start, 0);
5548 	node = mas_mn(&mas);
5549 	do {
5550 		enum maple_type type;
5551 		unsigned char offset;
5552 		struct maple_enode *parent, *tmp;
5553 
5554 		node->slot_len = mas_dead_leaves(&mas, slots);
5555 		if (free)
5556 			mt_free_bulk(node->slot_len, slots);
5557 		offset = node->parent_slot + 1;
5558 		mas.node = node->piv_parent;
5559 		if (mas_mn(&mas) == node)
5560 			goto start_slots_free;
5561 
5562 		type = mte_node_type(mas.node);
5563 		slots = ma_slots(mte_to_node(mas.node), type);
5564 		if (offset >= mt_slots[type])
5565 			goto next;
5566 
5567 		tmp = mas_slot_locked(&mas, slots, offset);
5568 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5569 			parent = mas.node;
5570 			mas.node = tmp;
5571 			slots = mas_destroy_descend(&mas, parent, offset);
5572 		}
5573 next:
5574 		node = mas_mn(&mas);
5575 	} while (start != mas.node);
5576 
5577 	node = mas_mn(&mas);
5578 	node->slot_len = mas_dead_leaves(&mas, slots);
5579 	if (free)
5580 		mt_free_bulk(node->slot_len, slots);
5581 
5582 start_slots_free:
5583 	mas_unlock(&mas);
5584 
5585 free_leaf:
5586 	if (free)
5587 		mt_free_rcu(&node->rcu);
5588 }
5589 
5590 /*
5591  * mte_destroy_walk() - Free a tree or sub-tree.
5592  * @enode: the encoded maple node (maple_enode) to start
5593  * @mt: the tree to free - needed for node types.
5594  *
5595  * Must hold the write lock.
5596  */
5597 static inline void mte_destroy_walk(struct maple_enode *enode,
5598 				    struct maple_tree *mt)
5599 {
5600 	struct maple_node *node = mte_to_node(enode);
5601 
5602 	if (mt_in_rcu(mt)) {
5603 		mt_destroy_walk(enode, mt->ma_flags, false);
5604 		call_rcu(&node->rcu, mt_free_walk);
5605 	} else {
5606 		mt_destroy_walk(enode, mt->ma_flags, true);
5607 	}
5608 }
5609 
5610 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5611 {
5612 	if (unlikely(mas_is_paused(wr_mas->mas)))
5613 		mas_reset(wr_mas->mas);
5614 
5615 	if (!mas_is_start(wr_mas->mas)) {
5616 		if (mas_is_none(wr_mas->mas)) {
5617 			mas_reset(wr_mas->mas);
5618 		} else {
5619 			wr_mas->r_max = wr_mas->mas->max;
5620 			wr_mas->type = mte_node_type(wr_mas->mas->node);
5621 			if (mas_is_span_wr(wr_mas))
5622 				mas_reset(wr_mas->mas);
5623 		}
5624 	}
5625 }
5626 
5627 /* Interface */
5628 
5629 /**
5630  * mas_store() - Store an @entry.
5631  * @mas: The maple state.
5632  * @entry: The entry to store.
5633  *
5634  * The @mas->index and @mas->last is used to set the range for the @entry.
5635  * Note: The @mas should have pre-allocated entries to ensure there is memory to
5636  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5637  *
5638  * Return: the first entry between mas->index and mas->last or %NULL.
5639  */
5640 void *mas_store(struct ma_state *mas, void *entry)
5641 {
5642 	MA_WR_STATE(wr_mas, mas, entry);
5643 
5644 	trace_ma_write(__func__, mas, 0, entry);
5645 #ifdef CONFIG_DEBUG_MAPLE_TREE
5646 	if (mas->index > mas->last)
5647 		pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5648 	MT_BUG_ON(mas->tree, mas->index > mas->last);
5649 	if (mas->index > mas->last) {
5650 		mas_set_err(mas, -EINVAL);
5651 		return NULL;
5652 	}
5653 
5654 #endif
5655 
5656 	/*
5657 	 * Storing is the same operation as insert with the added caveat that it
5658 	 * can overwrite entries.  Although this seems simple enough, one may
5659 	 * want to examine what happens if a single store operation was to
5660 	 * overwrite multiple entries within a self-balancing B-Tree.
5661 	 */
5662 	mas_wr_store_setup(&wr_mas);
5663 	mas_wr_store_entry(&wr_mas);
5664 	return wr_mas.content;
5665 }
5666 EXPORT_SYMBOL_GPL(mas_store);
5667 
5668 /**
5669  * mas_store_gfp() - Store a value into the tree.
5670  * @mas: The maple state
5671  * @entry: The entry to store
5672  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5673  *
5674  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5675  * be allocated.
5676  */
5677 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5678 {
5679 	MA_WR_STATE(wr_mas, mas, entry);
5680 
5681 	mas_wr_store_setup(&wr_mas);
5682 	trace_ma_write(__func__, mas, 0, entry);
5683 retry:
5684 	mas_wr_store_entry(&wr_mas);
5685 	if (unlikely(mas_nomem(mas, gfp)))
5686 		goto retry;
5687 
5688 	if (unlikely(mas_is_err(mas)))
5689 		return xa_err(mas->node);
5690 
5691 	return 0;
5692 }
5693 EXPORT_SYMBOL_GPL(mas_store_gfp);
5694 
5695 /**
5696  * mas_store_prealloc() - Store a value into the tree using memory
5697  * preallocated in the maple state.
5698  * @mas: The maple state
5699  * @entry: The entry to store.
5700  */
5701 void mas_store_prealloc(struct ma_state *mas, void *entry)
5702 {
5703 	MA_WR_STATE(wr_mas, mas, entry);
5704 
5705 	mas_wr_store_setup(&wr_mas);
5706 	trace_ma_write(__func__, mas, 0, entry);
5707 	mas_wr_store_entry(&wr_mas);
5708 	BUG_ON(mas_is_err(mas));
5709 	mas_destroy(mas);
5710 }
5711 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5712 
5713 /**
5714  * mas_preallocate() - Preallocate enough nodes for a store operation
5715  * @mas: The maple state
5716  * @gfp: The GFP_FLAGS to use for allocations.
5717  *
5718  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5719  */
5720 int mas_preallocate(struct ma_state *mas, gfp_t gfp)
5721 {
5722 	int ret;
5723 
5724 	mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5725 	mas->mas_flags |= MA_STATE_PREALLOC;
5726 	if (likely(!mas_is_err(mas)))
5727 		return 0;
5728 
5729 	mas_set_alloc_req(mas, 0);
5730 	ret = xa_err(mas->node);
5731 	mas_reset(mas);
5732 	mas_destroy(mas);
5733 	mas_reset(mas);
5734 	return ret;
5735 }
5736 
5737 /*
5738  * mas_destroy() - destroy a maple state.
5739  * @mas: The maple state
5740  *
5741  * Upon completion, check the left-most node and rebalance against the node to
5742  * the right if necessary.  Frees any allocated nodes associated with this maple
5743  * state.
5744  */
5745 void mas_destroy(struct ma_state *mas)
5746 {
5747 	struct maple_alloc *node;
5748 	unsigned long total;
5749 
5750 	/*
5751 	 * When using mas_for_each() to insert an expected number of elements,
5752 	 * it is possible that the number inserted is less than the expected
5753 	 * number.  To fix an invalid final node, a check is performed here to
5754 	 * rebalance the previous node with the final node.
5755 	 */
5756 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5757 		unsigned char end;
5758 
5759 		if (mas_is_start(mas))
5760 			mas_start(mas);
5761 
5762 		mtree_range_walk(mas);
5763 		end = mas_data_end(mas) + 1;
5764 		if (end < mt_min_slot_count(mas->node) - 1)
5765 			mas_destroy_rebalance(mas, end);
5766 
5767 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5768 	}
5769 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5770 
5771 	total = mas_allocated(mas);
5772 	while (total) {
5773 		node = mas->alloc;
5774 		mas->alloc = node->slot[0];
5775 		if (node->node_count > 1) {
5776 			size_t count = node->node_count - 1;
5777 
5778 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5779 			total -= count;
5780 		}
5781 		kmem_cache_free(maple_node_cache, node);
5782 		total--;
5783 	}
5784 
5785 	mas->alloc = NULL;
5786 }
5787 EXPORT_SYMBOL_GPL(mas_destroy);
5788 
5789 /*
5790  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5791  * @mas: The maple state
5792  * @nr_entries: The number of expected entries.
5793  *
5794  * This will attempt to pre-allocate enough nodes to store the expected number
5795  * of entries.  The allocations will occur using the bulk allocator interface
5796  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5797  * to ensure any unused nodes are freed.
5798  *
5799  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5800  */
5801 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5802 {
5803 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5804 	struct maple_enode *enode = mas->node;
5805 	int nr_nodes;
5806 	int ret;
5807 
5808 	/*
5809 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5810 	 * forking a process and duplicating the VMAs from one tree to a new
5811 	 * tree.  When such a situation arises, it is known that the new tree is
5812 	 * not going to be used until the entire tree is populated.  For
5813 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5814 	 * This allows for optimistic splitting that favours the left and reuse
5815 	 * of nodes during the operation.
5816 	 */
5817 
5818 	/* Optimize splitting for bulk insert in-order */
5819 	mas->mas_flags |= MA_STATE_BULK;
5820 
5821 	/*
5822 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5823 	 * If this is wrong, it just means allocation can happen during
5824 	 * insertion of entries.
5825 	 */
5826 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5827 	if (!mt_is_alloc(mas->tree))
5828 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5829 
5830 	/* Leaves; reduce slots to keep space for expansion */
5831 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5832 	/* Internal nodes */
5833 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5834 	/* Add working room for split (2 nodes) + new parents */
5835 	mas_node_count(mas, nr_nodes + 3);
5836 
5837 	/* Detect if allocations run out */
5838 	mas->mas_flags |= MA_STATE_PREALLOC;
5839 
5840 	if (!mas_is_err(mas))
5841 		return 0;
5842 
5843 	ret = xa_err(mas->node);
5844 	mas->node = enode;
5845 	mas_destroy(mas);
5846 	return ret;
5847 
5848 }
5849 EXPORT_SYMBOL_GPL(mas_expected_entries);
5850 
5851 /**
5852  * mas_next() - Get the next entry.
5853  * @mas: The maple state
5854  * @max: The maximum index to check.
5855  *
5856  * Returns the next entry after @mas->index.
5857  * Must hold rcu_read_lock or the write lock.
5858  * Can return the zero entry.
5859  *
5860  * Return: The next entry or %NULL
5861  */
5862 void *mas_next(struct ma_state *mas, unsigned long max)
5863 {
5864 	if (mas_is_none(mas) || mas_is_paused(mas))
5865 		mas->node = MAS_START;
5866 
5867 	if (mas_is_start(mas))
5868 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5869 
5870 	if (mas_is_ptr(mas)) {
5871 		if (!mas->index) {
5872 			mas->index = 1;
5873 			mas->last = ULONG_MAX;
5874 		}
5875 		return NULL;
5876 	}
5877 
5878 	if (mas->last == ULONG_MAX)
5879 		return NULL;
5880 
5881 	/* Retries on dead nodes handled by mas_next_entry */
5882 	return mas_next_entry(mas, max);
5883 }
5884 EXPORT_SYMBOL_GPL(mas_next);
5885 
5886 /**
5887  * mt_next() - get the next value in the maple tree
5888  * @mt: The maple tree
5889  * @index: The start index
5890  * @max: The maximum index to check
5891  *
5892  * Return: The entry at @index or higher, or %NULL if nothing is found.
5893  */
5894 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5895 {
5896 	void *entry = NULL;
5897 	MA_STATE(mas, mt, index, index);
5898 
5899 	rcu_read_lock();
5900 	entry = mas_next(&mas, max);
5901 	rcu_read_unlock();
5902 	return entry;
5903 }
5904 EXPORT_SYMBOL_GPL(mt_next);
5905 
5906 /**
5907  * mas_prev() - Get the previous entry
5908  * @mas: The maple state
5909  * @min: The minimum value to check.
5910  *
5911  * Must hold rcu_read_lock or the write lock.
5912  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5913  * searchable nodes.
5914  *
5915  * Return: the previous value or %NULL.
5916  */
5917 void *mas_prev(struct ma_state *mas, unsigned long min)
5918 {
5919 	if (!mas->index) {
5920 		/* Nothing comes before 0 */
5921 		mas->last = 0;
5922 		mas->node = MAS_NONE;
5923 		return NULL;
5924 	}
5925 
5926 	if (unlikely(mas_is_ptr(mas)))
5927 		return NULL;
5928 
5929 	if (mas_is_none(mas) || mas_is_paused(mas))
5930 		mas->node = MAS_START;
5931 
5932 	if (mas_is_start(mas)) {
5933 		mas_walk(mas);
5934 		if (!mas->index)
5935 			return NULL;
5936 	}
5937 
5938 	if (mas_is_ptr(mas)) {
5939 		if (!mas->index) {
5940 			mas->last = 0;
5941 			return NULL;
5942 		}
5943 
5944 		mas->index = mas->last = 0;
5945 		return mas_root_locked(mas);
5946 	}
5947 	return mas_prev_entry(mas, min);
5948 }
5949 EXPORT_SYMBOL_GPL(mas_prev);
5950 
5951 /**
5952  * mt_prev() - get the previous value in the maple tree
5953  * @mt: The maple tree
5954  * @index: The start index
5955  * @min: The minimum index to check
5956  *
5957  * Return: The entry at @index or lower, or %NULL if nothing is found.
5958  */
5959 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5960 {
5961 	void *entry = NULL;
5962 	MA_STATE(mas, mt, index, index);
5963 
5964 	rcu_read_lock();
5965 	entry = mas_prev(&mas, min);
5966 	rcu_read_unlock();
5967 	return entry;
5968 }
5969 EXPORT_SYMBOL_GPL(mt_prev);
5970 
5971 /**
5972  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5973  * @mas: The maple state to pause
5974  *
5975  * Some users need to pause a walk and drop the lock they're holding in
5976  * order to yield to a higher priority thread or carry out an operation
5977  * on an entry.  Those users should call this function before they drop
5978  * the lock.  It resets the @mas to be suitable for the next iteration
5979  * of the loop after the user has reacquired the lock.  If most entries
5980  * found during a walk require you to call mas_pause(), the mt_for_each()
5981  * iterator may be more appropriate.
5982  *
5983  */
5984 void mas_pause(struct ma_state *mas)
5985 {
5986 	mas->node = MAS_PAUSE;
5987 }
5988 EXPORT_SYMBOL_GPL(mas_pause);
5989 
5990 /**
5991  * mas_find() - On the first call, find the entry at or after mas->index up to
5992  * %max.  Otherwise, find the entry after mas->index.
5993  * @mas: The maple state
5994  * @max: The maximum value to check.
5995  *
5996  * Must hold rcu_read_lock or the write lock.
5997  * If an entry exists, last and index are updated accordingly.
5998  * May set @mas->node to MAS_NONE.
5999  *
6000  * Return: The entry or %NULL.
6001  */
6002 void *mas_find(struct ma_state *mas, unsigned long max)
6003 {
6004 	if (unlikely(mas_is_paused(mas))) {
6005 		if (unlikely(mas->last == ULONG_MAX)) {
6006 			mas->node = MAS_NONE;
6007 			return NULL;
6008 		}
6009 		mas->node = MAS_START;
6010 		mas->index = ++mas->last;
6011 	}
6012 
6013 	if (unlikely(mas_is_none(mas)))
6014 		mas->node = MAS_START;
6015 
6016 	if (unlikely(mas_is_start(mas))) {
6017 		/* First run or continue */
6018 		void *entry;
6019 
6020 		if (mas->index > max)
6021 			return NULL;
6022 
6023 		entry = mas_walk(mas);
6024 		if (entry)
6025 			return entry;
6026 	}
6027 
6028 	if (unlikely(!mas_searchable(mas)))
6029 		return NULL;
6030 
6031 	/* Retries on dead nodes handled by mas_next_entry */
6032 	return mas_next_entry(mas, max);
6033 }
6034 EXPORT_SYMBOL_GPL(mas_find);
6035 
6036 /**
6037  * mas_find_rev: On the first call, find the first non-null entry at or below
6038  * mas->index down to %min.  Otherwise find the first non-null entry below
6039  * mas->index down to %min.
6040  * @mas: The maple state
6041  * @min: The minimum value to check.
6042  *
6043  * Must hold rcu_read_lock or the write lock.
6044  * If an entry exists, last and index are updated accordingly.
6045  * May set @mas->node to MAS_NONE.
6046  *
6047  * Return: The entry or %NULL.
6048  */
6049 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6050 {
6051 	if (unlikely(mas_is_paused(mas))) {
6052 		if (unlikely(mas->last == ULONG_MAX)) {
6053 			mas->node = MAS_NONE;
6054 			return NULL;
6055 		}
6056 		mas->node = MAS_START;
6057 		mas->last = --mas->index;
6058 	}
6059 
6060 	if (unlikely(mas_is_start(mas))) {
6061 		/* First run or continue */
6062 		void *entry;
6063 
6064 		if (mas->index < min)
6065 			return NULL;
6066 
6067 		entry = mas_walk(mas);
6068 		if (entry)
6069 			return entry;
6070 	}
6071 
6072 	if (unlikely(!mas_searchable(mas)))
6073 		return NULL;
6074 
6075 	if (mas->index < min)
6076 		return NULL;
6077 
6078 	/* Retries on dead nodes handled by mas_prev_entry */
6079 	return mas_prev_entry(mas, min);
6080 }
6081 EXPORT_SYMBOL_GPL(mas_find_rev);
6082 
6083 /**
6084  * mas_erase() - Find the range in which index resides and erase the entire
6085  * range.
6086  * @mas: The maple state
6087  *
6088  * Must hold the write lock.
6089  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6090  * erases that range.
6091  *
6092  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6093  */
6094 void *mas_erase(struct ma_state *mas)
6095 {
6096 	void *entry;
6097 	MA_WR_STATE(wr_mas, mas, NULL);
6098 
6099 	if (mas_is_none(mas) || mas_is_paused(mas))
6100 		mas->node = MAS_START;
6101 
6102 	/* Retry unnecessary when holding the write lock. */
6103 	entry = mas_state_walk(mas);
6104 	if (!entry)
6105 		return NULL;
6106 
6107 write_retry:
6108 	/* Must reset to ensure spanning writes of last slot are detected */
6109 	mas_reset(mas);
6110 	mas_wr_store_setup(&wr_mas);
6111 	mas_wr_store_entry(&wr_mas);
6112 	if (mas_nomem(mas, GFP_KERNEL))
6113 		goto write_retry;
6114 
6115 	return entry;
6116 }
6117 EXPORT_SYMBOL_GPL(mas_erase);
6118 
6119 /**
6120  * mas_nomem() - Check if there was an error allocating and do the allocation
6121  * if necessary If there are allocations, then free them.
6122  * @mas: The maple state
6123  * @gfp: The GFP_FLAGS to use for allocations
6124  * Return: true on allocation, false otherwise.
6125  */
6126 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6127 	__must_hold(mas->tree->lock)
6128 {
6129 	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6130 		mas_destroy(mas);
6131 		return false;
6132 	}
6133 
6134 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6135 		mtree_unlock(mas->tree);
6136 		mas_alloc_nodes(mas, gfp);
6137 		mtree_lock(mas->tree);
6138 	} else {
6139 		mas_alloc_nodes(mas, gfp);
6140 	}
6141 
6142 	if (!mas_allocated(mas))
6143 		return false;
6144 
6145 	mas->node = MAS_START;
6146 	return true;
6147 }
6148 
6149 void __init maple_tree_init(void)
6150 {
6151 	maple_node_cache = kmem_cache_create("maple_node",
6152 			sizeof(struct maple_node), sizeof(struct maple_node),
6153 			SLAB_PANIC, NULL);
6154 }
6155 
6156 /**
6157  * mtree_load() - Load a value stored in a maple tree
6158  * @mt: The maple tree
6159  * @index: The index to load
6160  *
6161  * Return: the entry or %NULL
6162  */
6163 void *mtree_load(struct maple_tree *mt, unsigned long index)
6164 {
6165 	MA_STATE(mas, mt, index, index);
6166 	void *entry;
6167 
6168 	trace_ma_read(__func__, &mas);
6169 	rcu_read_lock();
6170 retry:
6171 	entry = mas_start(&mas);
6172 	if (unlikely(mas_is_none(&mas)))
6173 		goto unlock;
6174 
6175 	if (unlikely(mas_is_ptr(&mas))) {
6176 		if (index)
6177 			entry = NULL;
6178 
6179 		goto unlock;
6180 	}
6181 
6182 	entry = mtree_lookup_walk(&mas);
6183 	if (!entry && unlikely(mas_is_start(&mas)))
6184 		goto retry;
6185 unlock:
6186 	rcu_read_unlock();
6187 	if (xa_is_zero(entry))
6188 		return NULL;
6189 
6190 	return entry;
6191 }
6192 EXPORT_SYMBOL(mtree_load);
6193 
6194 /**
6195  * mtree_store_range() - Store an entry at a given range.
6196  * @mt: The maple tree
6197  * @index: The start of the range
6198  * @last: The end of the range
6199  * @entry: The entry to store
6200  * @gfp: The GFP_FLAGS to use for allocations
6201  *
6202  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6203  * be allocated.
6204  */
6205 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6206 		unsigned long last, void *entry, gfp_t gfp)
6207 {
6208 	MA_STATE(mas, mt, index, last);
6209 	MA_WR_STATE(wr_mas, &mas, entry);
6210 
6211 	trace_ma_write(__func__, &mas, 0, entry);
6212 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6213 		return -EINVAL;
6214 
6215 	if (index > last)
6216 		return -EINVAL;
6217 
6218 	mtree_lock(mt);
6219 retry:
6220 	mas_wr_store_entry(&wr_mas);
6221 	if (mas_nomem(&mas, gfp))
6222 		goto retry;
6223 
6224 	mtree_unlock(mt);
6225 	if (mas_is_err(&mas))
6226 		return xa_err(mas.node);
6227 
6228 	return 0;
6229 }
6230 EXPORT_SYMBOL(mtree_store_range);
6231 
6232 /**
6233  * mtree_store() - Store an entry at a given index.
6234  * @mt: The maple tree
6235  * @index: The index to store the value
6236  * @entry: The entry to store
6237  * @gfp: The GFP_FLAGS to use for allocations
6238  *
6239  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6240  * be allocated.
6241  */
6242 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6243 		 gfp_t gfp)
6244 {
6245 	return mtree_store_range(mt, index, index, entry, gfp);
6246 }
6247 EXPORT_SYMBOL(mtree_store);
6248 
6249 /**
6250  * mtree_insert_range() - Insert an entry at a give range if there is no value.
6251  * @mt: The maple tree
6252  * @first: The start of the range
6253  * @last: The end of the range
6254  * @entry: The entry to store
6255  * @gfp: The GFP_FLAGS to use for allocations.
6256  *
6257  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6258  * request, -ENOMEM if memory could not be allocated.
6259  */
6260 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6261 		unsigned long last, void *entry, gfp_t gfp)
6262 {
6263 	MA_STATE(ms, mt, first, last);
6264 
6265 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6266 		return -EINVAL;
6267 
6268 	if (first > last)
6269 		return -EINVAL;
6270 
6271 	mtree_lock(mt);
6272 retry:
6273 	mas_insert(&ms, entry);
6274 	if (mas_nomem(&ms, gfp))
6275 		goto retry;
6276 
6277 	mtree_unlock(mt);
6278 	if (mas_is_err(&ms))
6279 		return xa_err(ms.node);
6280 
6281 	return 0;
6282 }
6283 EXPORT_SYMBOL(mtree_insert_range);
6284 
6285 /**
6286  * mtree_insert() - Insert an entry at a give index if there is no value.
6287  * @mt: The maple tree
6288  * @index : The index to store the value
6289  * @entry: The entry to store
6290  * @gfp: The FGP_FLAGS to use for allocations.
6291  *
6292  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6293  * request, -ENOMEM if memory could not be allocated.
6294  */
6295 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6296 		 gfp_t gfp)
6297 {
6298 	return mtree_insert_range(mt, index, index, entry, gfp);
6299 }
6300 EXPORT_SYMBOL(mtree_insert);
6301 
6302 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6303 		void *entry, unsigned long size, unsigned long min,
6304 		unsigned long max, gfp_t gfp)
6305 {
6306 	int ret = 0;
6307 
6308 	MA_STATE(mas, mt, min, max - size);
6309 	if (!mt_is_alloc(mt))
6310 		return -EINVAL;
6311 
6312 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6313 		return -EINVAL;
6314 
6315 	if (min > max)
6316 		return -EINVAL;
6317 
6318 	if (max < size)
6319 		return -EINVAL;
6320 
6321 	if (!size)
6322 		return -EINVAL;
6323 
6324 	mtree_lock(mt);
6325 retry:
6326 	mas.offset = 0;
6327 	mas.index = min;
6328 	mas.last = max - size;
6329 	ret = mas_alloc(&mas, entry, size, startp);
6330 	if (mas_nomem(&mas, gfp))
6331 		goto retry;
6332 
6333 	mtree_unlock(mt);
6334 	return ret;
6335 }
6336 EXPORT_SYMBOL(mtree_alloc_range);
6337 
6338 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6339 		void *entry, unsigned long size, unsigned long min,
6340 		unsigned long max, gfp_t gfp)
6341 {
6342 	int ret = 0;
6343 
6344 	MA_STATE(mas, mt, min, max - size);
6345 	if (!mt_is_alloc(mt))
6346 		return -EINVAL;
6347 
6348 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6349 		return -EINVAL;
6350 
6351 	if (min >= max)
6352 		return -EINVAL;
6353 
6354 	if (max < size - 1)
6355 		return -EINVAL;
6356 
6357 	if (!size)
6358 		return -EINVAL;
6359 
6360 	mtree_lock(mt);
6361 retry:
6362 	ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6363 	if (mas_nomem(&mas, gfp))
6364 		goto retry;
6365 
6366 	mtree_unlock(mt);
6367 	return ret;
6368 }
6369 EXPORT_SYMBOL(mtree_alloc_rrange);
6370 
6371 /**
6372  * mtree_erase() - Find an index and erase the entire range.
6373  * @mt: The maple tree
6374  * @index: The index to erase
6375  *
6376  * Erasing is the same as a walk to an entry then a store of a NULL to that
6377  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6378  *
6379  * Return: The entry stored at the @index or %NULL
6380  */
6381 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6382 {
6383 	void *entry = NULL;
6384 
6385 	MA_STATE(mas, mt, index, index);
6386 	trace_ma_op(__func__, &mas);
6387 
6388 	mtree_lock(mt);
6389 	entry = mas_erase(&mas);
6390 	mtree_unlock(mt);
6391 
6392 	return entry;
6393 }
6394 EXPORT_SYMBOL(mtree_erase);
6395 
6396 /**
6397  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6398  * @mt: The maple tree
6399  *
6400  * Note: Does not handle locking.
6401  */
6402 void __mt_destroy(struct maple_tree *mt)
6403 {
6404 	void *root = mt_root_locked(mt);
6405 
6406 	rcu_assign_pointer(mt->ma_root, NULL);
6407 	if (xa_is_node(root))
6408 		mte_destroy_walk(root, mt);
6409 
6410 	mt->ma_flags = 0;
6411 }
6412 EXPORT_SYMBOL_GPL(__mt_destroy);
6413 
6414 /**
6415  * mtree_destroy() - Destroy a maple tree
6416  * @mt: The maple tree
6417  *
6418  * Frees all resources used by the tree.  Handles locking.
6419  */
6420 void mtree_destroy(struct maple_tree *mt)
6421 {
6422 	mtree_lock(mt);
6423 	__mt_destroy(mt);
6424 	mtree_unlock(mt);
6425 }
6426 EXPORT_SYMBOL(mtree_destroy);
6427 
6428 /**
6429  * mt_find() - Search from the start up until an entry is found.
6430  * @mt: The maple tree
6431  * @index: Pointer which contains the start location of the search
6432  * @max: The maximum value to check
6433  *
6434  * Handles locking.  @index will be incremented to one beyond the range.
6435  *
6436  * Return: The entry at or after the @index or %NULL
6437  */
6438 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6439 {
6440 	MA_STATE(mas, mt, *index, *index);
6441 	void *entry;
6442 #ifdef CONFIG_DEBUG_MAPLE_TREE
6443 	unsigned long copy = *index;
6444 #endif
6445 
6446 	trace_ma_read(__func__, &mas);
6447 
6448 	if ((*index) > max)
6449 		return NULL;
6450 
6451 	rcu_read_lock();
6452 retry:
6453 	entry = mas_state_walk(&mas);
6454 	if (mas_is_start(&mas))
6455 		goto retry;
6456 
6457 	if (unlikely(xa_is_zero(entry)))
6458 		entry = NULL;
6459 
6460 	if (entry)
6461 		goto unlock;
6462 
6463 	while (mas_searchable(&mas) && (mas.index < max)) {
6464 		entry = mas_next_entry(&mas, max);
6465 		if (likely(entry && !xa_is_zero(entry)))
6466 			break;
6467 	}
6468 
6469 	if (unlikely(xa_is_zero(entry)))
6470 		entry = NULL;
6471 unlock:
6472 	rcu_read_unlock();
6473 	if (likely(entry)) {
6474 		*index = mas.last + 1;
6475 #ifdef CONFIG_DEBUG_MAPLE_TREE
6476 		if ((*index) && (*index) <= copy)
6477 			pr_err("index not increased! %lx <= %lx\n",
6478 			       *index, copy);
6479 		MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6480 #endif
6481 	}
6482 
6483 	return entry;
6484 }
6485 EXPORT_SYMBOL(mt_find);
6486 
6487 /**
6488  * mt_find_after() - Search from the start up until an entry is found.
6489  * @mt: The maple tree
6490  * @index: Pointer which contains the start location of the search
6491  * @max: The maximum value to check
6492  *
6493  * Handles locking, detects wrapping on index == 0
6494  *
6495  * Return: The entry at or after the @index or %NULL
6496  */
6497 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6498 		    unsigned long max)
6499 {
6500 	if (!(*index))
6501 		return NULL;
6502 
6503 	return mt_find(mt, index, max);
6504 }
6505 EXPORT_SYMBOL(mt_find_after);
6506 
6507 #ifdef CONFIG_DEBUG_MAPLE_TREE
6508 atomic_t maple_tree_tests_run;
6509 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6510 atomic_t maple_tree_tests_passed;
6511 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6512 
6513 #ifndef __KERNEL__
6514 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6515 void mt_set_non_kernel(unsigned int val)
6516 {
6517 	kmem_cache_set_non_kernel(maple_node_cache, val);
6518 }
6519 
6520 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6521 unsigned long mt_get_alloc_size(void)
6522 {
6523 	return kmem_cache_get_alloc(maple_node_cache);
6524 }
6525 
6526 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6527 void mt_zero_nr_tallocated(void)
6528 {
6529 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6530 }
6531 
6532 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6533 unsigned int mt_nr_tallocated(void)
6534 {
6535 	return kmem_cache_nr_tallocated(maple_node_cache);
6536 }
6537 
6538 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6539 unsigned int mt_nr_allocated(void)
6540 {
6541 	return kmem_cache_nr_allocated(maple_node_cache);
6542 }
6543 
6544 /*
6545  * mas_dead_node() - Check if the maple state is pointing to a dead node.
6546  * @mas: The maple state
6547  * @index: The index to restore in @mas.
6548  *
6549  * Used in test code.
6550  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6551  */
6552 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6553 {
6554 	if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6555 		return 0;
6556 
6557 	if (likely(!mte_dead_node(mas->node)))
6558 		return 0;
6559 
6560 	mas_rewalk(mas, index);
6561 	return 1;
6562 }
6563 
6564 void mt_cache_shrink(void)
6565 {
6566 }
6567 #else
6568 /*
6569  * mt_cache_shrink() - For testing, don't use this.
6570  *
6571  * Certain testcases can trigger an OOM when combined with other memory
6572  * debugging configuration options.  This function is used to reduce the
6573  * possibility of an out of memory even due to kmem_cache objects remaining
6574  * around for longer than usual.
6575  */
6576 void mt_cache_shrink(void)
6577 {
6578 	kmem_cache_shrink(maple_node_cache);
6579 
6580 }
6581 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6582 
6583 #endif /* not defined __KERNEL__ */
6584 /*
6585  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6586  * @mas: The maple state
6587  * @offset: The offset into the slot array to fetch.
6588  *
6589  * Return: The entry stored at @offset.
6590  */
6591 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6592 		unsigned char offset)
6593 {
6594 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6595 			offset);
6596 }
6597 
6598 
6599 /*
6600  * mas_first_entry() - Go the first leaf and find the first entry.
6601  * @mas: the maple state.
6602  * @limit: the maximum index to check.
6603  * @*r_start: Pointer to set to the range start.
6604  *
6605  * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6606  *
6607  * Return: The first entry or MAS_NONE.
6608  */
6609 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6610 		unsigned long limit, enum maple_type mt)
6611 
6612 {
6613 	unsigned long max;
6614 	unsigned long *pivots;
6615 	void __rcu **slots;
6616 	void *entry = NULL;
6617 
6618 	mas->index = mas->min;
6619 	if (mas->index > limit)
6620 		goto none;
6621 
6622 	max = mas->max;
6623 	mas->offset = 0;
6624 	while (likely(!ma_is_leaf(mt))) {
6625 		MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6626 		slots = ma_slots(mn, mt);
6627 		pivots = ma_pivots(mn, mt);
6628 		max = pivots[0];
6629 		entry = mas_slot(mas, slots, 0);
6630 		if (unlikely(ma_dead_node(mn)))
6631 			return NULL;
6632 		mas->node = entry;
6633 		mn = mas_mn(mas);
6634 		mt = mte_node_type(mas->node);
6635 	}
6636 	MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6637 
6638 	mas->max = max;
6639 	slots = ma_slots(mn, mt);
6640 	entry = mas_slot(mas, slots, 0);
6641 	if (unlikely(ma_dead_node(mn)))
6642 		return NULL;
6643 
6644 	/* Slot 0 or 1 must be set */
6645 	if (mas->index > limit)
6646 		goto none;
6647 
6648 	if (likely(entry))
6649 		return entry;
6650 
6651 	pivots = ma_pivots(mn, mt);
6652 	mas->index = pivots[0] + 1;
6653 	mas->offset = 1;
6654 	entry = mas_slot(mas, slots, 1);
6655 	if (unlikely(ma_dead_node(mn)))
6656 		return NULL;
6657 
6658 	if (mas->index > limit)
6659 		goto none;
6660 
6661 	if (likely(entry))
6662 		return entry;
6663 
6664 none:
6665 	if (likely(!ma_dead_node(mn)))
6666 		mas->node = MAS_NONE;
6667 	return NULL;
6668 }
6669 
6670 /* Depth first search, post-order */
6671 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6672 {
6673 
6674 	struct maple_enode *p = MAS_NONE, *mn = mas->node;
6675 	unsigned long p_min, p_max;
6676 
6677 	mas_next_node(mas, mas_mn(mas), max);
6678 	if (!mas_is_none(mas))
6679 		return;
6680 
6681 	if (mte_is_root(mn))
6682 		return;
6683 
6684 	mas->node = mn;
6685 	mas_ascend(mas);
6686 	while (mas->node != MAS_NONE) {
6687 		p = mas->node;
6688 		p_min = mas->min;
6689 		p_max = mas->max;
6690 		mas_prev_node(mas, 0);
6691 	}
6692 
6693 	if (p == MAS_NONE)
6694 		return;
6695 
6696 	mas->node = p;
6697 	mas->max = p_max;
6698 	mas->min = p_min;
6699 }
6700 
6701 /* Tree validations */
6702 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6703 		unsigned long min, unsigned long max, unsigned int depth);
6704 static void mt_dump_range(unsigned long min, unsigned long max,
6705 			  unsigned int depth)
6706 {
6707 	static const char spaces[] = "                                ";
6708 
6709 	if (min == max)
6710 		pr_info("%.*s%lu: ", depth * 2, spaces, min);
6711 	else
6712 		pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6713 }
6714 
6715 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6716 			  unsigned int depth)
6717 {
6718 	mt_dump_range(min, max, depth);
6719 
6720 	if (xa_is_value(entry))
6721 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6722 				xa_to_value(entry), entry);
6723 	else if (xa_is_zero(entry))
6724 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
6725 	else if (mt_is_reserved(entry))
6726 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6727 	else
6728 		pr_cont("%p\n", entry);
6729 }
6730 
6731 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6732 			unsigned long min, unsigned long max, unsigned int depth)
6733 {
6734 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6735 	bool leaf = mte_is_leaf(entry);
6736 	unsigned long first = min;
6737 	int i;
6738 
6739 	pr_cont(" contents: ");
6740 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6741 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6742 	pr_cont("%p\n", node->slot[i]);
6743 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6744 		unsigned long last = max;
6745 
6746 		if (i < (MAPLE_RANGE64_SLOTS - 1))
6747 			last = node->pivot[i];
6748 		else if (!node->slot[i] && max != mt_node_max(entry))
6749 			break;
6750 		if (last == 0 && i > 0)
6751 			break;
6752 		if (leaf)
6753 			mt_dump_entry(mt_slot(mt, node->slot, i),
6754 					first, last, depth + 1);
6755 		else if (node->slot[i])
6756 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6757 					first, last, depth + 1);
6758 
6759 		if (last == max)
6760 			break;
6761 		if (last > max) {
6762 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6763 					node, last, max, i);
6764 			break;
6765 		}
6766 		first = last + 1;
6767 	}
6768 }
6769 
6770 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6771 			unsigned long min, unsigned long max, unsigned int depth)
6772 {
6773 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6774 	bool leaf = mte_is_leaf(entry);
6775 	unsigned long first = min;
6776 	int i;
6777 
6778 	pr_cont(" contents: ");
6779 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6780 		pr_cont("%lu ", node->gap[i]);
6781 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6782 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6783 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6784 	pr_cont("%p\n", node->slot[i]);
6785 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6786 		unsigned long last = max;
6787 
6788 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
6789 			last = node->pivot[i];
6790 		else if (!node->slot[i])
6791 			break;
6792 		if (last == 0 && i > 0)
6793 			break;
6794 		if (leaf)
6795 			mt_dump_entry(mt_slot(mt, node->slot, i),
6796 					first, last, depth + 1);
6797 		else if (node->slot[i])
6798 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6799 					first, last, depth + 1);
6800 
6801 		if (last == max)
6802 			break;
6803 		if (last > max) {
6804 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6805 					node, last, max, i);
6806 			break;
6807 		}
6808 		first = last + 1;
6809 	}
6810 }
6811 
6812 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6813 		unsigned long min, unsigned long max, unsigned int depth)
6814 {
6815 	struct maple_node *node = mte_to_node(entry);
6816 	unsigned int type = mte_node_type(entry);
6817 	unsigned int i;
6818 
6819 	mt_dump_range(min, max, depth);
6820 
6821 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6822 			node ? node->parent : NULL);
6823 	switch (type) {
6824 	case maple_dense:
6825 		pr_cont("\n");
6826 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6827 			if (min + i > max)
6828 				pr_cont("OUT OF RANGE: ");
6829 			mt_dump_entry(mt_slot(mt, node->slot, i),
6830 					min + i, min + i, depth);
6831 		}
6832 		break;
6833 	case maple_leaf_64:
6834 	case maple_range_64:
6835 		mt_dump_range64(mt, entry, min, max, depth);
6836 		break;
6837 	case maple_arange_64:
6838 		mt_dump_arange64(mt, entry, min, max, depth);
6839 		break;
6840 
6841 	default:
6842 		pr_cont(" UNKNOWN TYPE\n");
6843 	}
6844 }
6845 
6846 void mt_dump(const struct maple_tree *mt)
6847 {
6848 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6849 
6850 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6851 		 mt, mt->ma_flags, mt_height(mt), entry);
6852 	if (!xa_is_node(entry))
6853 		mt_dump_entry(entry, 0, 0, 0);
6854 	else if (entry)
6855 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
6856 }
6857 EXPORT_SYMBOL_GPL(mt_dump);
6858 
6859 /*
6860  * Calculate the maximum gap in a node and check if that's what is reported in
6861  * the parent (unless root).
6862  */
6863 static void mas_validate_gaps(struct ma_state *mas)
6864 {
6865 	struct maple_enode *mte = mas->node;
6866 	struct maple_node *p_mn;
6867 	unsigned long gap = 0, max_gap = 0;
6868 	unsigned long p_end, p_start = mas->min;
6869 	unsigned char p_slot;
6870 	unsigned long *gaps = NULL;
6871 	unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6872 	int i;
6873 
6874 	if (ma_is_dense(mte_node_type(mte))) {
6875 		for (i = 0; i < mt_slot_count(mte); i++) {
6876 			if (mas_get_slot(mas, i)) {
6877 				if (gap > max_gap)
6878 					max_gap = gap;
6879 				gap = 0;
6880 				continue;
6881 			}
6882 			gap++;
6883 		}
6884 		goto counted;
6885 	}
6886 
6887 	gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6888 	for (i = 0; i < mt_slot_count(mte); i++) {
6889 		p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6890 
6891 		if (!gaps) {
6892 			if (mas_get_slot(mas, i)) {
6893 				gap = 0;
6894 				goto not_empty;
6895 			}
6896 
6897 			gap += p_end - p_start + 1;
6898 		} else {
6899 			void *entry = mas_get_slot(mas, i);
6900 
6901 			gap = gaps[i];
6902 			if (!entry) {
6903 				if (gap != p_end - p_start + 1) {
6904 					pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6905 						mas_mn(mas), i,
6906 						mas_get_slot(mas, i), gap,
6907 						p_end, p_start);
6908 					mt_dump(mas->tree);
6909 
6910 					MT_BUG_ON(mas->tree,
6911 						gap != p_end - p_start + 1);
6912 				}
6913 			} else {
6914 				if (gap > p_end - p_start + 1) {
6915 					pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6916 					mas_mn(mas), i, gap, p_end, p_start,
6917 					p_end - p_start + 1);
6918 					MT_BUG_ON(mas->tree,
6919 						gap > p_end - p_start + 1);
6920 				}
6921 			}
6922 		}
6923 
6924 		if (gap > max_gap)
6925 			max_gap = gap;
6926 not_empty:
6927 		p_start = p_end + 1;
6928 		if (p_end >= mas->max)
6929 			break;
6930 	}
6931 
6932 counted:
6933 	if (mte_is_root(mte))
6934 		return;
6935 
6936 	p_slot = mte_parent_slot(mas->node);
6937 	p_mn = mte_parent(mte);
6938 	MT_BUG_ON(mas->tree, max_gap > mas->max);
6939 	if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6940 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6941 		mt_dump(mas->tree);
6942 	}
6943 
6944 	MT_BUG_ON(mas->tree,
6945 		  ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6946 }
6947 
6948 static void mas_validate_parent_slot(struct ma_state *mas)
6949 {
6950 	struct maple_node *parent;
6951 	struct maple_enode *node;
6952 	enum maple_type p_type = mas_parent_enum(mas, mas->node);
6953 	unsigned char p_slot = mte_parent_slot(mas->node);
6954 	void __rcu **slots;
6955 	int i;
6956 
6957 	if (mte_is_root(mas->node))
6958 		return;
6959 
6960 	parent = mte_parent(mas->node);
6961 	slots = ma_slots(parent, p_type);
6962 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6963 
6964 	/* Check prev/next parent slot for duplicate node entry */
6965 
6966 	for (i = 0; i < mt_slots[p_type]; i++) {
6967 		node = mas_slot(mas, slots, i);
6968 		if (i == p_slot) {
6969 			if (node != mas->node)
6970 				pr_err("parent %p[%u] does not have %p\n",
6971 					parent, i, mas_mn(mas));
6972 			MT_BUG_ON(mas->tree, node != mas->node);
6973 		} else if (node == mas->node) {
6974 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6975 			       mas_mn(mas), parent, i, p_slot);
6976 			MT_BUG_ON(mas->tree, node == mas->node);
6977 		}
6978 	}
6979 }
6980 
6981 static void mas_validate_child_slot(struct ma_state *mas)
6982 {
6983 	enum maple_type type = mte_node_type(mas->node);
6984 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6985 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6986 	struct maple_enode *child;
6987 	unsigned char i;
6988 
6989 	if (mte_is_leaf(mas->node))
6990 		return;
6991 
6992 	for (i = 0; i < mt_slots[type]; i++) {
6993 		child = mas_slot(mas, slots, i);
6994 		if (!pivots[i] || pivots[i] == mas->max)
6995 			break;
6996 
6997 		if (!child)
6998 			break;
6999 
7000 		if (mte_parent_slot(child) != i) {
7001 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7002 			       mas_mn(mas), i, mte_to_node(child),
7003 			       mte_parent_slot(child));
7004 			MT_BUG_ON(mas->tree, 1);
7005 		}
7006 
7007 		if (mte_parent(child) != mte_to_node(mas->node)) {
7008 			pr_err("child %p has parent %p not %p\n",
7009 			       mte_to_node(child), mte_parent(child),
7010 			       mte_to_node(mas->node));
7011 			MT_BUG_ON(mas->tree, 1);
7012 		}
7013 	}
7014 }
7015 
7016 /*
7017  * Validate all pivots are within mas->min and mas->max.
7018  */
7019 static void mas_validate_limits(struct ma_state *mas)
7020 {
7021 	int i;
7022 	unsigned long prev_piv = 0;
7023 	enum maple_type type = mte_node_type(mas->node);
7024 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7025 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7026 
7027 	/* all limits are fine here. */
7028 	if (mte_is_root(mas->node))
7029 		return;
7030 
7031 	for (i = 0; i < mt_slots[type]; i++) {
7032 		unsigned long piv;
7033 
7034 		piv = mas_safe_pivot(mas, pivots, i, type);
7035 
7036 		if (!piv && (i != 0))
7037 			break;
7038 
7039 		if (!mte_is_leaf(mas->node)) {
7040 			void *entry = mas_slot(mas, slots, i);
7041 
7042 			if (!entry)
7043 				pr_err("%p[%u] cannot be null\n",
7044 				       mas_mn(mas), i);
7045 
7046 			MT_BUG_ON(mas->tree, !entry);
7047 		}
7048 
7049 		if (prev_piv > piv) {
7050 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7051 				mas_mn(mas), i, piv, prev_piv);
7052 			MT_BUG_ON(mas->tree, piv < prev_piv);
7053 		}
7054 
7055 		if (piv < mas->min) {
7056 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7057 				piv, mas->min);
7058 			MT_BUG_ON(mas->tree, piv < mas->min);
7059 		}
7060 		if (piv > mas->max) {
7061 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7062 				piv, mas->max);
7063 			MT_BUG_ON(mas->tree, piv > mas->max);
7064 		}
7065 		prev_piv = piv;
7066 		if (piv == mas->max)
7067 			break;
7068 	}
7069 	for (i += 1; i < mt_slots[type]; i++) {
7070 		void *entry = mas_slot(mas, slots, i);
7071 
7072 		if (entry && (i != mt_slots[type] - 1)) {
7073 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7074 			       i, entry);
7075 			MT_BUG_ON(mas->tree, entry != NULL);
7076 		}
7077 
7078 		if (i < mt_pivots[type]) {
7079 			unsigned long piv = pivots[i];
7080 
7081 			if (!piv)
7082 				continue;
7083 
7084 			pr_err("%p[%u] should not have piv %lu\n",
7085 			       mas_mn(mas), i, piv);
7086 			MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7087 		}
7088 	}
7089 }
7090 
7091 static void mt_validate_nulls(struct maple_tree *mt)
7092 {
7093 	void *entry, *last = (void *)1;
7094 	unsigned char offset = 0;
7095 	void __rcu **slots;
7096 	MA_STATE(mas, mt, 0, 0);
7097 
7098 	mas_start(&mas);
7099 	if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7100 		return;
7101 
7102 	while (!mte_is_leaf(mas.node))
7103 		mas_descend(&mas);
7104 
7105 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7106 	do {
7107 		entry = mas_slot(&mas, slots, offset);
7108 		if (!last && !entry) {
7109 			pr_err("Sequential nulls end at %p[%u]\n",
7110 				mas_mn(&mas), offset);
7111 		}
7112 		MT_BUG_ON(mt, !last && !entry);
7113 		last = entry;
7114 		if (offset == mas_data_end(&mas)) {
7115 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7116 			if (mas_is_none(&mas))
7117 				return;
7118 			offset = 0;
7119 			slots = ma_slots(mte_to_node(mas.node),
7120 					 mte_node_type(mas.node));
7121 		} else {
7122 			offset++;
7123 		}
7124 
7125 	} while (!mas_is_none(&mas));
7126 }
7127 
7128 /*
7129  * validate a maple tree by checking:
7130  * 1. The limits (pivots are within mas->min to mas->max)
7131  * 2. The gap is correctly set in the parents
7132  */
7133 void mt_validate(struct maple_tree *mt)
7134 {
7135 	unsigned char end;
7136 
7137 	MA_STATE(mas, mt, 0, 0);
7138 	rcu_read_lock();
7139 	mas_start(&mas);
7140 	if (!mas_searchable(&mas))
7141 		goto done;
7142 
7143 	mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7144 	while (!mas_is_none(&mas)) {
7145 		MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7146 		if (!mte_is_root(mas.node)) {
7147 			end = mas_data_end(&mas);
7148 			if ((end < mt_min_slot_count(mas.node)) &&
7149 			    (mas.max != ULONG_MAX)) {
7150 				pr_err("Invalid size %u of %p\n", end,
7151 				mas_mn(&mas));
7152 				MT_BUG_ON(mas.tree, 1);
7153 			}
7154 
7155 		}
7156 		mas_validate_parent_slot(&mas);
7157 		mas_validate_child_slot(&mas);
7158 		mas_validate_limits(&mas);
7159 		if (mt_is_alloc(mt))
7160 			mas_validate_gaps(&mas);
7161 		mas_dfs_postorder(&mas, ULONG_MAX);
7162 	}
7163 	mt_validate_nulls(mt);
7164 done:
7165 	rcu_read_unlock();
7166 
7167 }
7168 EXPORT_SYMBOL_GPL(mt_validate);
7169 
7170 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7171