1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 */ 8 9 /* 10 * DOC: Interesting implementation details of the Maple Tree 11 * 12 * Each node type has a number of slots for entries and a number of slots for 13 * pivots. In the case of dense nodes, the pivots are implied by the position 14 * and are simply the slot index + the minimum of the node. 15 * 16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 17 * indicate that the tree is specifying ranges, Pivots may appear in the 18 * subtree with an entry attached to the value where as keys are unique to a 19 * specific position of a B-tree. Pivot values are inclusive of the slot with 20 * the same index. 21 * 22 * 23 * The following illustrates the layout of a range64 nodes slots and pivots. 24 * 25 * 26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 28 * │ │ │ │ │ │ │ │ └─ Implied maximum 29 * │ │ │ │ │ │ │ └─ Pivot 14 30 * │ │ │ │ │ │ └─ Pivot 13 31 * │ │ │ │ │ └─ Pivot 12 32 * │ │ │ │ └─ Pivot 11 33 * │ │ │ └─ Pivot 2 34 * │ │ └─ Pivot 1 35 * │ └─ Pivot 0 36 * └─ Implied minimum 37 * 38 * Slot contents: 39 * Internal (non-leaf) nodes contain pointers to other nodes. 40 * Leaf nodes contain entries. 41 * 42 * The location of interest is often referred to as an offset. All offsets have 43 * a slot, but the last offset has an implied pivot from the node above (or 44 * UINT_MAX for the root node. 45 * 46 * Ranges complicate certain write activities. When modifying any of 47 * the B-tree variants, it is known that one entry will either be added or 48 * deleted. When modifying the Maple Tree, one store operation may overwrite 49 * the entire data set, or one half of the tree, or the middle half of the tree. 50 * 51 */ 52 53 54 #include <linux/maple_tree.h> 55 #include <linux/xarray.h> 56 #include <linux/types.h> 57 #include <linux/export.h> 58 #include <linux/slab.h> 59 #include <linux/limits.h> 60 #include <asm/barrier.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/maple_tree.h> 64 65 #define MA_ROOT_PARENT 1 66 67 /* 68 * Maple state flags 69 * * MA_STATE_BULK - Bulk insert mode 70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 72 */ 73 #define MA_STATE_BULK 1 74 #define MA_STATE_REBALANCE 2 75 #define MA_STATE_PREALLOC 4 76 77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 78 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 79 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 80 static struct kmem_cache *maple_node_cache; 81 82 #ifdef CONFIG_DEBUG_MAPLE_TREE 83 static const unsigned long mt_max[] = { 84 [maple_dense] = MAPLE_NODE_SLOTS, 85 [maple_leaf_64] = ULONG_MAX, 86 [maple_range_64] = ULONG_MAX, 87 [maple_arange_64] = ULONG_MAX, 88 }; 89 #define mt_node_max(x) mt_max[mte_node_type(x)] 90 #endif 91 92 static const unsigned char mt_slots[] = { 93 [maple_dense] = MAPLE_NODE_SLOTS, 94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 95 [maple_range_64] = MAPLE_RANGE64_SLOTS, 96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 97 }; 98 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 99 100 static const unsigned char mt_pivots[] = { 101 [maple_dense] = 0, 102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 105 }; 106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 107 108 static const unsigned char mt_min_slots[] = { 109 [maple_dense] = MAPLE_NODE_SLOTS / 2, 110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 113 }; 114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 115 116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 118 119 struct maple_big_node { 120 struct maple_pnode *parent; 121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 122 union { 123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 124 struct { 125 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 126 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 127 }; 128 }; 129 unsigned char b_end; 130 enum maple_type type; 131 }; 132 133 /* 134 * The maple_subtree_state is used to build a tree to replace a segment of an 135 * existing tree in a more atomic way. Any walkers of the older tree will hit a 136 * dead node and restart on updates. 137 */ 138 struct maple_subtree_state { 139 struct ma_state *orig_l; /* Original left side of subtree */ 140 struct ma_state *orig_r; /* Original right side of subtree */ 141 struct ma_state *l; /* New left side of subtree */ 142 struct ma_state *m; /* New middle of subtree (rare) */ 143 struct ma_state *r; /* New right side of subtree */ 144 struct ma_topiary *free; /* nodes to be freed */ 145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 146 struct maple_big_node *bn; 147 }; 148 149 #ifdef CONFIG_KASAN_STACK 150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 151 #define noinline_for_kasan noinline_for_stack 152 #else 153 #define noinline_for_kasan inline 154 #endif 155 156 /* Functions */ 157 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 158 { 159 return kmem_cache_alloc(maple_node_cache, gfp); 160 } 161 162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 163 { 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 165 } 166 167 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 168 { 169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 170 } 171 172 static void mt_free_rcu(struct rcu_head *head) 173 { 174 struct maple_node *node = container_of(head, struct maple_node, rcu); 175 176 kmem_cache_free(maple_node_cache, node); 177 } 178 179 /* 180 * ma_free_rcu() - Use rcu callback to free a maple node 181 * @node: The node to free 182 * 183 * The maple tree uses the parent pointer to indicate this node is no longer in 184 * use and will be freed. 185 */ 186 static void ma_free_rcu(struct maple_node *node) 187 { 188 WARN_ON(node->parent != ma_parent_ptr(node)); 189 call_rcu(&node->rcu, mt_free_rcu); 190 } 191 192 static void mas_set_height(struct ma_state *mas) 193 { 194 unsigned int new_flags = mas->tree->ma_flags; 195 196 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 197 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX); 198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 199 mas->tree->ma_flags = new_flags; 200 } 201 202 static unsigned int mas_mt_height(struct ma_state *mas) 203 { 204 return mt_height(mas->tree); 205 } 206 207 static inline enum maple_type mte_node_type(const struct maple_enode *entry) 208 { 209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 210 MAPLE_NODE_TYPE_MASK; 211 } 212 213 static inline bool ma_is_dense(const enum maple_type type) 214 { 215 return type < maple_leaf_64; 216 } 217 218 static inline bool ma_is_leaf(const enum maple_type type) 219 { 220 return type < maple_range_64; 221 } 222 223 static inline bool mte_is_leaf(const struct maple_enode *entry) 224 { 225 return ma_is_leaf(mte_node_type(entry)); 226 } 227 228 /* 229 * We also reserve values with the bottom two bits set to '10' which are 230 * below 4096 231 */ 232 static inline bool mt_is_reserved(const void *entry) 233 { 234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 235 xa_is_internal(entry); 236 } 237 238 static inline void mas_set_err(struct ma_state *mas, long err) 239 { 240 mas->node = MA_ERROR(err); 241 } 242 243 static inline bool mas_is_ptr(struct ma_state *mas) 244 { 245 return mas->node == MAS_ROOT; 246 } 247 248 static inline bool mas_is_start(struct ma_state *mas) 249 { 250 return mas->node == MAS_START; 251 } 252 253 bool mas_is_err(struct ma_state *mas) 254 { 255 return xa_is_err(mas->node); 256 } 257 258 static inline bool mas_searchable(struct ma_state *mas) 259 { 260 if (mas_is_none(mas)) 261 return false; 262 263 if (mas_is_ptr(mas)) 264 return false; 265 266 return true; 267 } 268 269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry) 270 { 271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 272 } 273 274 /* 275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 276 * @entry: The maple encoded node 277 * 278 * Return: a maple topiary pointer 279 */ 280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 281 { 282 return (struct maple_topiary *) 283 ((unsigned long)entry & ~MAPLE_NODE_MASK); 284 } 285 286 /* 287 * mas_mn() - Get the maple state node. 288 * @mas: The maple state 289 * 290 * Return: the maple node (not encoded - bare pointer). 291 */ 292 static inline struct maple_node *mas_mn(const struct ma_state *mas) 293 { 294 return mte_to_node(mas->node); 295 } 296 297 /* 298 * mte_set_node_dead() - Set a maple encoded node as dead. 299 * @mn: The maple encoded node. 300 */ 301 static inline void mte_set_node_dead(struct maple_enode *mn) 302 { 303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 304 smp_wmb(); /* Needed for RCU */ 305 } 306 307 /* Bit 1 indicates the root is a node */ 308 #define MAPLE_ROOT_NODE 0x02 309 /* maple_type stored bit 3-6 */ 310 #define MAPLE_ENODE_TYPE_SHIFT 0x03 311 /* Bit 2 means a NULL somewhere below */ 312 #define MAPLE_ENODE_NULL 0x04 313 314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 315 enum maple_type type) 316 { 317 return (void *)((unsigned long)node | 318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 319 } 320 321 static inline void *mte_mk_root(const struct maple_enode *node) 322 { 323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 324 } 325 326 static inline void *mte_safe_root(const struct maple_enode *node) 327 { 328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 329 } 330 331 static inline void *mte_set_full(const struct maple_enode *node) 332 { 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 334 } 335 336 static inline void *mte_clear_full(const struct maple_enode *node) 337 { 338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 339 } 340 341 static inline bool mte_has_null(const struct maple_enode *node) 342 { 343 return (unsigned long)node & MAPLE_ENODE_NULL; 344 } 345 346 static inline bool ma_is_root(struct maple_node *node) 347 { 348 return ((unsigned long)node->parent & MA_ROOT_PARENT); 349 } 350 351 static inline bool mte_is_root(const struct maple_enode *node) 352 { 353 return ma_is_root(mte_to_node(node)); 354 } 355 356 static inline bool mas_is_root_limits(const struct ma_state *mas) 357 { 358 return !mas->min && mas->max == ULONG_MAX; 359 } 360 361 static inline bool mt_is_alloc(struct maple_tree *mt) 362 { 363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 364 } 365 366 /* 367 * The Parent Pointer 368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 370 * bit values need an extra bit to store the offset. This extra bit comes from 371 * a reuse of the last bit in the node type. This is possible by using bit 1 to 372 * indicate if bit 2 is part of the type or the slot. 373 * 374 * Note types: 375 * 0x??1 = Root 376 * 0x?00 = 16 bit nodes 377 * 0x010 = 32 bit nodes 378 * 0x110 = 64 bit nodes 379 * 380 * Slot size and alignment 381 * 0b??1 : Root 382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 385 */ 386 387 #define MAPLE_PARENT_ROOT 0x01 388 389 #define MAPLE_PARENT_SLOT_SHIFT 0x03 390 #define MAPLE_PARENT_SLOT_MASK 0xF8 391 392 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 393 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 394 395 #define MAPLE_PARENT_RANGE64 0x06 396 #define MAPLE_PARENT_RANGE32 0x04 397 #define MAPLE_PARENT_NOT_RANGE16 0x02 398 399 /* 400 * mte_parent_shift() - Get the parent shift for the slot storage. 401 * @parent: The parent pointer cast as an unsigned long 402 * Return: The shift into that pointer to the star to of the slot 403 */ 404 static inline unsigned long mte_parent_shift(unsigned long parent) 405 { 406 /* Note bit 1 == 0 means 16B */ 407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 408 return MAPLE_PARENT_SLOT_SHIFT; 409 410 return MAPLE_PARENT_16B_SLOT_SHIFT; 411 } 412 413 /* 414 * mte_parent_slot_mask() - Get the slot mask for the parent. 415 * @parent: The parent pointer cast as an unsigned long. 416 * Return: The slot mask for that parent. 417 */ 418 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 419 { 420 /* Note bit 1 == 0 means 16B */ 421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 422 return MAPLE_PARENT_SLOT_MASK; 423 424 return MAPLE_PARENT_16B_SLOT_MASK; 425 } 426 427 /* 428 * mas_parent_enum() - Return the maple_type of the parent from the stored 429 * parent type. 430 * @mas: The maple state 431 * @node: The maple_enode to extract the parent's enum 432 * Return: The node->parent maple_type 433 */ 434 static inline 435 enum maple_type mte_parent_enum(struct maple_enode *p_enode, 436 struct maple_tree *mt) 437 { 438 unsigned long p_type; 439 440 p_type = (unsigned long)p_enode; 441 if (p_type & MAPLE_PARENT_ROOT) 442 return 0; /* Validated in the caller. */ 443 444 p_type &= MAPLE_NODE_MASK; 445 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type)); 446 447 switch (p_type) { 448 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 449 if (mt_is_alloc(mt)) 450 return maple_arange_64; 451 return maple_range_64; 452 } 453 454 return 0; 455 } 456 457 static inline 458 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode) 459 { 460 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree); 461 } 462 463 /* 464 * mte_set_parent() - Set the parent node and encode the slot 465 * @enode: The encoded maple node. 466 * @parent: The encoded maple node that is the parent of @enode. 467 * @slot: The slot that @enode resides in @parent. 468 * 469 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 470 * parent type. 471 */ 472 static inline 473 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent, 474 unsigned char slot) 475 { 476 unsigned long val = (unsigned long)parent; 477 unsigned long shift; 478 unsigned long type; 479 enum maple_type p_type = mte_node_type(parent); 480 481 BUG_ON(p_type == maple_dense); 482 BUG_ON(p_type == maple_leaf_64); 483 484 switch (p_type) { 485 case maple_range_64: 486 case maple_arange_64: 487 shift = MAPLE_PARENT_SLOT_SHIFT; 488 type = MAPLE_PARENT_RANGE64; 489 break; 490 default: 491 case maple_dense: 492 case maple_leaf_64: 493 shift = type = 0; 494 break; 495 } 496 497 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 498 val |= (slot << shift) | type; 499 mte_to_node(enode)->parent = ma_parent_ptr(val); 500 } 501 502 /* 503 * mte_parent_slot() - get the parent slot of @enode. 504 * @enode: The encoded maple node. 505 * 506 * Return: The slot in the parent node where @enode resides. 507 */ 508 static inline unsigned int mte_parent_slot(const struct maple_enode *enode) 509 { 510 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 511 512 if (val & MA_ROOT_PARENT) 513 return 0; 514 515 /* 516 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 517 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 518 */ 519 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 520 } 521 522 /* 523 * mte_parent() - Get the parent of @node. 524 * @node: The encoded maple node. 525 * 526 * Return: The parent maple node. 527 */ 528 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 529 { 530 return (void *)((unsigned long) 531 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 532 } 533 534 /* 535 * ma_dead_node() - check if the @enode is dead. 536 * @enode: The encoded maple node 537 * 538 * Return: true if dead, false otherwise. 539 */ 540 static inline bool ma_dead_node(const struct maple_node *node) 541 { 542 struct maple_node *parent; 543 544 /* Do not reorder reads from the node prior to the parent check */ 545 smp_rmb(); 546 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 547 return (parent == node); 548 } 549 550 /* 551 * mte_dead_node() - check if the @enode is dead. 552 * @enode: The encoded maple node 553 * 554 * Return: true if dead, false otherwise. 555 */ 556 static inline bool mte_dead_node(const struct maple_enode *enode) 557 { 558 struct maple_node *parent, *node; 559 560 node = mte_to_node(enode); 561 /* Do not reorder reads from the node prior to the parent check */ 562 smp_rmb(); 563 parent = mte_parent(enode); 564 return (parent == node); 565 } 566 567 /* 568 * mas_allocated() - Get the number of nodes allocated in a maple state. 569 * @mas: The maple state 570 * 571 * The ma_state alloc member is overloaded to hold a pointer to the first 572 * allocated node or to the number of requested nodes to allocate. If bit 0 is 573 * set, then the alloc contains the number of requested nodes. If there is an 574 * allocated node, then the total allocated nodes is in that node. 575 * 576 * Return: The total number of nodes allocated 577 */ 578 static inline unsigned long mas_allocated(const struct ma_state *mas) 579 { 580 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 581 return 0; 582 583 return mas->alloc->total; 584 } 585 586 /* 587 * mas_set_alloc_req() - Set the requested number of allocations. 588 * @mas: the maple state 589 * @count: the number of allocations. 590 * 591 * The requested number of allocations is either in the first allocated node, 592 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 593 * no allocated node. Set the request either in the node or do the necessary 594 * encoding to store in @mas->alloc directly. 595 */ 596 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 597 { 598 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 599 if (!count) 600 mas->alloc = NULL; 601 else 602 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 603 return; 604 } 605 606 mas->alloc->request_count = count; 607 } 608 609 /* 610 * mas_alloc_req() - get the requested number of allocations. 611 * @mas: The maple state 612 * 613 * The alloc count is either stored directly in @mas, or in 614 * @mas->alloc->request_count if there is at least one node allocated. Decode 615 * the request count if it's stored directly in @mas->alloc. 616 * 617 * Return: The allocation request count. 618 */ 619 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 620 { 621 if ((unsigned long)mas->alloc & 0x1) 622 return (unsigned long)(mas->alloc) >> 1; 623 else if (mas->alloc) 624 return mas->alloc->request_count; 625 return 0; 626 } 627 628 /* 629 * ma_pivots() - Get a pointer to the maple node pivots. 630 * @node - the maple node 631 * @type - the node type 632 * 633 * In the event of a dead node, this array may be %NULL 634 * 635 * Return: A pointer to the maple node pivots 636 */ 637 static inline unsigned long *ma_pivots(struct maple_node *node, 638 enum maple_type type) 639 { 640 switch (type) { 641 case maple_arange_64: 642 return node->ma64.pivot; 643 case maple_range_64: 644 case maple_leaf_64: 645 return node->mr64.pivot; 646 case maple_dense: 647 return NULL; 648 } 649 return NULL; 650 } 651 652 /* 653 * ma_gaps() - Get a pointer to the maple node gaps. 654 * @node - the maple node 655 * @type - the node type 656 * 657 * Return: A pointer to the maple node gaps 658 */ 659 static inline unsigned long *ma_gaps(struct maple_node *node, 660 enum maple_type type) 661 { 662 switch (type) { 663 case maple_arange_64: 664 return node->ma64.gap; 665 case maple_range_64: 666 case maple_leaf_64: 667 case maple_dense: 668 return NULL; 669 } 670 return NULL; 671 } 672 673 /* 674 * mte_pivot() - Get the pivot at @piv of the maple encoded node. 675 * @mn: The maple encoded node. 676 * @piv: The pivot. 677 * 678 * Return: the pivot at @piv of @mn. 679 */ 680 static inline unsigned long mte_pivot(const struct maple_enode *mn, 681 unsigned char piv) 682 { 683 struct maple_node *node = mte_to_node(mn); 684 enum maple_type type = mte_node_type(mn); 685 686 if (piv >= mt_pivots[type]) { 687 WARN_ON(1); 688 return 0; 689 } 690 switch (type) { 691 case maple_arange_64: 692 return node->ma64.pivot[piv]; 693 case maple_range_64: 694 case maple_leaf_64: 695 return node->mr64.pivot[piv]; 696 case maple_dense: 697 return 0; 698 } 699 return 0; 700 } 701 702 /* 703 * mas_safe_pivot() - get the pivot at @piv or mas->max. 704 * @mas: The maple state 705 * @pivots: The pointer to the maple node pivots 706 * @piv: The pivot to fetch 707 * @type: The maple node type 708 * 709 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 710 * otherwise. 711 */ 712 static inline unsigned long 713 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 714 unsigned char piv, enum maple_type type) 715 { 716 if (piv >= mt_pivots[type]) 717 return mas->max; 718 719 return pivots[piv]; 720 } 721 722 /* 723 * mas_safe_min() - Return the minimum for a given offset. 724 * @mas: The maple state 725 * @pivots: The pointer to the maple node pivots 726 * @offset: The offset into the pivot array 727 * 728 * Return: The minimum range value that is contained in @offset. 729 */ 730 static inline unsigned long 731 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 732 { 733 if (likely(offset)) 734 return pivots[offset - 1] + 1; 735 736 return mas->min; 737 } 738 739 /* 740 * mas_logical_pivot() - Get the logical pivot of a given offset. 741 * @mas: The maple state 742 * @pivots: The pointer to the maple node pivots 743 * @offset: The offset into the pivot array 744 * @type: The maple node type 745 * 746 * When there is no value at a pivot (beyond the end of the data), then the 747 * pivot is actually @mas->max. 748 * 749 * Return: the logical pivot of a given @offset. 750 */ 751 static inline unsigned long 752 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots, 753 unsigned char offset, enum maple_type type) 754 { 755 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type); 756 757 if (likely(lpiv)) 758 return lpiv; 759 760 if (likely(offset)) 761 return mas->max; 762 763 return lpiv; 764 } 765 766 /* 767 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 768 * @mn: The encoded maple node 769 * @piv: The pivot offset 770 * @val: The value of the pivot 771 */ 772 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 773 unsigned long val) 774 { 775 struct maple_node *node = mte_to_node(mn); 776 enum maple_type type = mte_node_type(mn); 777 778 BUG_ON(piv >= mt_pivots[type]); 779 switch (type) { 780 default: 781 case maple_range_64: 782 case maple_leaf_64: 783 node->mr64.pivot[piv] = val; 784 break; 785 case maple_arange_64: 786 node->ma64.pivot[piv] = val; 787 break; 788 case maple_dense: 789 break; 790 } 791 792 } 793 794 /* 795 * ma_slots() - Get a pointer to the maple node slots. 796 * @mn: The maple node 797 * @mt: The maple node type 798 * 799 * Return: A pointer to the maple node slots 800 */ 801 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 802 { 803 switch (mt) { 804 default: 805 case maple_arange_64: 806 return mn->ma64.slot; 807 case maple_range_64: 808 case maple_leaf_64: 809 return mn->mr64.slot; 810 case maple_dense: 811 return mn->slot; 812 } 813 } 814 815 static inline bool mt_locked(const struct maple_tree *mt) 816 { 817 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 818 lockdep_is_held(&mt->ma_lock); 819 } 820 821 static inline void *mt_slot(const struct maple_tree *mt, 822 void __rcu **slots, unsigned char offset) 823 { 824 return rcu_dereference_check(slots[offset], mt_locked(mt)); 825 } 826 827 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots, 828 unsigned char offset) 829 { 830 return rcu_dereference_protected(slots[offset], mt_locked(mt)); 831 } 832 /* 833 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 834 * @mas: The maple state 835 * @slots: The pointer to the slots 836 * @offset: The offset into the slots array to fetch 837 * 838 * Return: The entry stored in @slots at the @offset. 839 */ 840 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots, 841 unsigned char offset) 842 { 843 return mt_slot_locked(mas->tree, slots, offset); 844 } 845 846 /* 847 * mas_slot() - Get the slot value when not holding the maple tree lock. 848 * @mas: The maple state 849 * @slots: The pointer to the slots 850 * @offset: The offset into the slots array to fetch 851 * 852 * Return: The entry stored in @slots at the @offset 853 */ 854 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 855 unsigned char offset) 856 { 857 return mt_slot(mas->tree, slots, offset); 858 } 859 860 /* 861 * mas_root() - Get the maple tree root. 862 * @mas: The maple state. 863 * 864 * Return: The pointer to the root of the tree 865 */ 866 static inline void *mas_root(struct ma_state *mas) 867 { 868 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 869 } 870 871 static inline void *mt_root_locked(struct maple_tree *mt) 872 { 873 return rcu_dereference_protected(mt->ma_root, mt_locked(mt)); 874 } 875 876 /* 877 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 878 * @mas: The maple state. 879 * 880 * Return: The pointer to the root of the tree 881 */ 882 static inline void *mas_root_locked(struct ma_state *mas) 883 { 884 return mt_root_locked(mas->tree); 885 } 886 887 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 888 enum maple_type mt) 889 { 890 switch (mt) { 891 case maple_arange_64: 892 return &mn->ma64.meta; 893 default: 894 return &mn->mr64.meta; 895 } 896 } 897 898 /* 899 * ma_set_meta() - Set the metadata information of a node. 900 * @mn: The maple node 901 * @mt: The maple node type 902 * @offset: The offset of the highest sub-gap in this node. 903 * @end: The end of the data in this node. 904 */ 905 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 906 unsigned char offset, unsigned char end) 907 { 908 struct maple_metadata *meta = ma_meta(mn, mt); 909 910 meta->gap = offset; 911 meta->end = end; 912 } 913 914 /* 915 * mt_clear_meta() - clear the metadata information of a node, if it exists 916 * @mt: The maple tree 917 * @mn: The maple node 918 * @type: The maple node type 919 * @offset: The offset of the highest sub-gap in this node. 920 * @end: The end of the data in this node. 921 */ 922 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 923 enum maple_type type) 924 { 925 struct maple_metadata *meta; 926 unsigned long *pivots; 927 void __rcu **slots; 928 void *next; 929 930 switch (type) { 931 case maple_range_64: 932 pivots = mn->mr64.pivot; 933 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 934 slots = mn->mr64.slot; 935 next = mt_slot_locked(mt, slots, 936 MAPLE_RANGE64_SLOTS - 1); 937 if (unlikely((mte_to_node(next) && 938 mte_node_type(next)))) 939 return; /* no metadata, could be node */ 940 } 941 fallthrough; 942 case maple_arange_64: 943 meta = ma_meta(mn, type); 944 break; 945 default: 946 return; 947 } 948 949 meta->gap = 0; 950 meta->end = 0; 951 } 952 953 /* 954 * ma_meta_end() - Get the data end of a node from the metadata 955 * @mn: The maple node 956 * @mt: The maple node type 957 */ 958 static inline unsigned char ma_meta_end(struct maple_node *mn, 959 enum maple_type mt) 960 { 961 struct maple_metadata *meta = ma_meta(mn, mt); 962 963 return meta->end; 964 } 965 966 /* 967 * ma_meta_gap() - Get the largest gap location of a node from the metadata 968 * @mn: The maple node 969 * @mt: The maple node type 970 */ 971 static inline unsigned char ma_meta_gap(struct maple_node *mn, 972 enum maple_type mt) 973 { 974 BUG_ON(mt != maple_arange_64); 975 976 return mn->ma64.meta.gap; 977 } 978 979 /* 980 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 981 * @mn: The maple node 982 * @mn: The maple node type 983 * @offset: The location of the largest gap. 984 */ 985 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 986 unsigned char offset) 987 { 988 989 struct maple_metadata *meta = ma_meta(mn, mt); 990 991 meta->gap = offset; 992 } 993 994 /* 995 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 996 * @mat - the ma_topiary, a linked list of dead nodes. 997 * @dead_enode - the node to be marked as dead and added to the tail of the list 998 * 999 * Add the @dead_enode to the linked list in @mat. 1000 */ 1001 static inline void mat_add(struct ma_topiary *mat, 1002 struct maple_enode *dead_enode) 1003 { 1004 mte_set_node_dead(dead_enode); 1005 mte_to_mat(dead_enode)->next = NULL; 1006 if (!mat->tail) { 1007 mat->tail = mat->head = dead_enode; 1008 return; 1009 } 1010 1011 mte_to_mat(mat->tail)->next = dead_enode; 1012 mat->tail = dead_enode; 1013 } 1014 1015 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 1016 static inline void mas_free(struct ma_state *mas, struct maple_enode *used); 1017 1018 /* 1019 * mas_mat_free() - Free all nodes in a dead list. 1020 * @mas - the maple state 1021 * @mat - the ma_topiary linked list of dead nodes to free. 1022 * 1023 * Free walk a dead list. 1024 */ 1025 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat) 1026 { 1027 struct maple_enode *next; 1028 1029 while (mat->head) { 1030 next = mte_to_mat(mat->head)->next; 1031 mas_free(mas, mat->head); 1032 mat->head = next; 1033 } 1034 } 1035 1036 /* 1037 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 1038 * @mas - the maple state 1039 * @mat - the ma_topiary linked list of dead nodes to free. 1040 * 1041 * Destroy walk a dead list. 1042 */ 1043 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 1044 { 1045 struct maple_enode *next; 1046 1047 while (mat->head) { 1048 next = mte_to_mat(mat->head)->next; 1049 mte_destroy_walk(mat->head, mat->mtree); 1050 mat->head = next; 1051 } 1052 } 1053 /* 1054 * mas_descend() - Descend into the slot stored in the ma_state. 1055 * @mas - the maple state. 1056 * 1057 * Note: Not RCU safe, only use in write side or debug code. 1058 */ 1059 static inline void mas_descend(struct ma_state *mas) 1060 { 1061 enum maple_type type; 1062 unsigned long *pivots; 1063 struct maple_node *node; 1064 void __rcu **slots; 1065 1066 node = mas_mn(mas); 1067 type = mte_node_type(mas->node); 1068 pivots = ma_pivots(node, type); 1069 slots = ma_slots(node, type); 1070 1071 if (mas->offset) 1072 mas->min = pivots[mas->offset - 1] + 1; 1073 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1074 mas->node = mas_slot(mas, slots, mas->offset); 1075 } 1076 1077 /* 1078 * mte_set_gap() - Set a maple node gap. 1079 * @mn: The encoded maple node 1080 * @gap: The offset of the gap to set 1081 * @val: The gap value 1082 */ 1083 static inline void mte_set_gap(const struct maple_enode *mn, 1084 unsigned char gap, unsigned long val) 1085 { 1086 switch (mte_node_type(mn)) { 1087 default: 1088 break; 1089 case maple_arange_64: 1090 mte_to_node(mn)->ma64.gap[gap] = val; 1091 break; 1092 } 1093 } 1094 1095 /* 1096 * mas_ascend() - Walk up a level of the tree. 1097 * @mas: The maple state 1098 * 1099 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1100 * may cause several levels of walking up to find the correct min and max. 1101 * May find a dead node which will cause a premature return. 1102 * Return: 1 on dead node, 0 otherwise 1103 */ 1104 static int mas_ascend(struct ma_state *mas) 1105 { 1106 struct maple_enode *p_enode; /* parent enode. */ 1107 struct maple_enode *a_enode; /* ancestor enode. */ 1108 struct maple_node *a_node; /* ancestor node. */ 1109 struct maple_node *p_node; /* parent node. */ 1110 unsigned char a_slot; 1111 enum maple_type a_type; 1112 unsigned long min, max; 1113 unsigned long *pivots; 1114 unsigned char offset; 1115 bool set_max = false, set_min = false; 1116 1117 a_node = mas_mn(mas); 1118 if (ma_is_root(a_node)) { 1119 mas->offset = 0; 1120 return 0; 1121 } 1122 1123 p_node = mte_parent(mas->node); 1124 if (unlikely(a_node == p_node)) 1125 return 1; 1126 a_type = mas_parent_enum(mas, mas->node); 1127 offset = mte_parent_slot(mas->node); 1128 a_enode = mt_mk_node(p_node, a_type); 1129 1130 /* Check to make sure all parent information is still accurate */ 1131 if (p_node != mte_parent(mas->node)) 1132 return 1; 1133 1134 mas->node = a_enode; 1135 mas->offset = offset; 1136 1137 if (mte_is_root(a_enode)) { 1138 mas->max = ULONG_MAX; 1139 mas->min = 0; 1140 return 0; 1141 } 1142 1143 min = 0; 1144 max = ULONG_MAX; 1145 do { 1146 p_enode = a_enode; 1147 a_type = mas_parent_enum(mas, p_enode); 1148 a_node = mte_parent(p_enode); 1149 a_slot = mte_parent_slot(p_enode); 1150 a_enode = mt_mk_node(a_node, a_type); 1151 pivots = ma_pivots(a_node, a_type); 1152 1153 if (unlikely(ma_dead_node(a_node))) 1154 return 1; 1155 1156 if (!set_min && a_slot) { 1157 set_min = true; 1158 min = pivots[a_slot - 1] + 1; 1159 } 1160 1161 if (!set_max && a_slot < mt_pivots[a_type]) { 1162 set_max = true; 1163 max = pivots[a_slot]; 1164 } 1165 1166 if (unlikely(ma_dead_node(a_node))) 1167 return 1; 1168 1169 if (unlikely(ma_is_root(a_node))) 1170 break; 1171 1172 } while (!set_min || !set_max); 1173 1174 mas->max = max; 1175 mas->min = min; 1176 return 0; 1177 } 1178 1179 /* 1180 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1181 * @mas: The maple state 1182 * 1183 * Return: A pointer to a maple node. 1184 */ 1185 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1186 { 1187 struct maple_alloc *ret, *node = mas->alloc; 1188 unsigned long total = mas_allocated(mas); 1189 unsigned int req = mas_alloc_req(mas); 1190 1191 /* nothing or a request pending. */ 1192 if (WARN_ON(!total)) 1193 return NULL; 1194 1195 if (total == 1) { 1196 /* single allocation in this ma_state */ 1197 mas->alloc = NULL; 1198 ret = node; 1199 goto single_node; 1200 } 1201 1202 if (node->node_count == 1) { 1203 /* Single allocation in this node. */ 1204 mas->alloc = node->slot[0]; 1205 mas->alloc->total = node->total - 1; 1206 ret = node; 1207 goto new_head; 1208 } 1209 node->total--; 1210 ret = node->slot[--node->node_count]; 1211 node->slot[node->node_count] = NULL; 1212 1213 single_node: 1214 new_head: 1215 if (req) { 1216 req++; 1217 mas_set_alloc_req(mas, req); 1218 } 1219 1220 memset(ret, 0, sizeof(*ret)); 1221 return (struct maple_node *)ret; 1222 } 1223 1224 /* 1225 * mas_push_node() - Push a node back on the maple state allocation. 1226 * @mas: The maple state 1227 * @used: The used maple node 1228 * 1229 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1230 * requested node count as necessary. 1231 */ 1232 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1233 { 1234 struct maple_alloc *reuse = (struct maple_alloc *)used; 1235 struct maple_alloc *head = mas->alloc; 1236 unsigned long count; 1237 unsigned int requested = mas_alloc_req(mas); 1238 1239 count = mas_allocated(mas); 1240 1241 reuse->request_count = 0; 1242 reuse->node_count = 0; 1243 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1244 head->slot[head->node_count++] = reuse; 1245 head->total++; 1246 goto done; 1247 } 1248 1249 reuse->total = 1; 1250 if ((head) && !((unsigned long)head & 0x1)) { 1251 reuse->slot[0] = head; 1252 reuse->node_count = 1; 1253 reuse->total += head->total; 1254 } 1255 1256 mas->alloc = reuse; 1257 done: 1258 if (requested > 1) 1259 mas_set_alloc_req(mas, requested - 1); 1260 } 1261 1262 /* 1263 * mas_alloc_nodes() - Allocate nodes into a maple state 1264 * @mas: The maple state 1265 * @gfp: The GFP Flags 1266 */ 1267 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1268 { 1269 struct maple_alloc *node; 1270 unsigned long allocated = mas_allocated(mas); 1271 unsigned int requested = mas_alloc_req(mas); 1272 unsigned int count; 1273 void **slots = NULL; 1274 unsigned int max_req = 0; 1275 1276 if (!requested) 1277 return; 1278 1279 mas_set_alloc_req(mas, 0); 1280 if (mas->mas_flags & MA_STATE_PREALLOC) { 1281 if (allocated) 1282 return; 1283 WARN_ON(!allocated); 1284 } 1285 1286 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1287 node = (struct maple_alloc *)mt_alloc_one(gfp); 1288 if (!node) 1289 goto nomem_one; 1290 1291 if (allocated) { 1292 node->slot[0] = mas->alloc; 1293 node->node_count = 1; 1294 } else { 1295 node->node_count = 0; 1296 } 1297 1298 mas->alloc = node; 1299 node->total = ++allocated; 1300 requested--; 1301 } 1302 1303 node = mas->alloc; 1304 node->request_count = 0; 1305 while (requested) { 1306 max_req = MAPLE_ALLOC_SLOTS - node->node_count; 1307 slots = (void **)&node->slot[node->node_count]; 1308 max_req = min(requested, max_req); 1309 count = mt_alloc_bulk(gfp, max_req, slots); 1310 if (!count) 1311 goto nomem_bulk; 1312 1313 if (node->node_count == 0) { 1314 node->slot[0]->node_count = 0; 1315 node->slot[0]->request_count = 0; 1316 } 1317 1318 node->node_count += count; 1319 allocated += count; 1320 node = node->slot[0]; 1321 requested -= count; 1322 } 1323 mas->alloc->total = allocated; 1324 return; 1325 1326 nomem_bulk: 1327 /* Clean up potential freed allocations on bulk failure */ 1328 memset(slots, 0, max_req * sizeof(unsigned long)); 1329 nomem_one: 1330 mas_set_alloc_req(mas, requested); 1331 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1332 mas->alloc->total = allocated; 1333 mas_set_err(mas, -ENOMEM); 1334 } 1335 1336 /* 1337 * mas_free() - Free an encoded maple node 1338 * @mas: The maple state 1339 * @used: The encoded maple node to free. 1340 * 1341 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1342 * otherwise. 1343 */ 1344 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1345 { 1346 struct maple_node *tmp = mte_to_node(used); 1347 1348 if (mt_in_rcu(mas->tree)) 1349 ma_free_rcu(tmp); 1350 else 1351 mas_push_node(mas, tmp); 1352 } 1353 1354 /* 1355 * mas_node_count() - Check if enough nodes are allocated and request more if 1356 * there is not enough nodes. 1357 * @mas: The maple state 1358 * @count: The number of nodes needed 1359 * @gfp: the gfp flags 1360 */ 1361 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1362 { 1363 unsigned long allocated = mas_allocated(mas); 1364 1365 if (allocated < count) { 1366 mas_set_alloc_req(mas, count - allocated); 1367 mas_alloc_nodes(mas, gfp); 1368 } 1369 } 1370 1371 /* 1372 * mas_node_count() - Check if enough nodes are allocated and request more if 1373 * there is not enough nodes. 1374 * @mas: The maple state 1375 * @count: The number of nodes needed 1376 * 1377 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1378 */ 1379 static void mas_node_count(struct ma_state *mas, int count) 1380 { 1381 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1382 } 1383 1384 /* 1385 * mas_start() - Sets up maple state for operations. 1386 * @mas: The maple state. 1387 * 1388 * If mas->node == MAS_START, then set the min, max and depth to 1389 * defaults. 1390 * 1391 * Return: 1392 * - If mas->node is an error or not MAS_START, return NULL. 1393 * - If it's an empty tree: NULL & mas->node == MAS_NONE 1394 * - If it's a single entry: The entry & mas->node == MAS_ROOT 1395 * - If it's a tree: NULL & mas->node == safe root node. 1396 */ 1397 static inline struct maple_enode *mas_start(struct ma_state *mas) 1398 { 1399 if (likely(mas_is_start(mas))) { 1400 struct maple_enode *root; 1401 1402 mas->min = 0; 1403 mas->max = ULONG_MAX; 1404 mas->depth = 0; 1405 1406 retry: 1407 root = mas_root(mas); 1408 /* Tree with nodes */ 1409 if (likely(xa_is_node(root))) { 1410 mas->depth = 1; 1411 mas->node = mte_safe_root(root); 1412 mas->offset = 0; 1413 if (mte_dead_node(mas->node)) 1414 goto retry; 1415 1416 return NULL; 1417 } 1418 1419 /* empty tree */ 1420 if (unlikely(!root)) { 1421 mas->node = MAS_NONE; 1422 mas->offset = MAPLE_NODE_SLOTS; 1423 return NULL; 1424 } 1425 1426 /* Single entry tree */ 1427 mas->node = MAS_ROOT; 1428 mas->offset = MAPLE_NODE_SLOTS; 1429 1430 /* Single entry tree. */ 1431 if (mas->index > 0) 1432 return NULL; 1433 1434 return root; 1435 } 1436 1437 return NULL; 1438 } 1439 1440 /* 1441 * ma_data_end() - Find the end of the data in a node. 1442 * @node: The maple node 1443 * @type: The maple node type 1444 * @pivots: The array of pivots in the node 1445 * @max: The maximum value in the node 1446 * 1447 * Uses metadata to find the end of the data when possible. 1448 * Return: The zero indexed last slot with data (may be null). 1449 */ 1450 static inline unsigned char ma_data_end(struct maple_node *node, 1451 enum maple_type type, 1452 unsigned long *pivots, 1453 unsigned long max) 1454 { 1455 unsigned char offset; 1456 1457 if (!pivots) 1458 return 0; 1459 1460 if (type == maple_arange_64) 1461 return ma_meta_end(node, type); 1462 1463 offset = mt_pivots[type] - 1; 1464 if (likely(!pivots[offset])) 1465 return ma_meta_end(node, type); 1466 1467 if (likely(pivots[offset] == max)) 1468 return offset; 1469 1470 return mt_pivots[type]; 1471 } 1472 1473 /* 1474 * mas_data_end() - Find the end of the data (slot). 1475 * @mas: the maple state 1476 * 1477 * This method is optimized to check the metadata of a node if the node type 1478 * supports data end metadata. 1479 * 1480 * Return: The zero indexed last slot with data (may be null). 1481 */ 1482 static inline unsigned char mas_data_end(struct ma_state *mas) 1483 { 1484 enum maple_type type; 1485 struct maple_node *node; 1486 unsigned char offset; 1487 unsigned long *pivots; 1488 1489 type = mte_node_type(mas->node); 1490 node = mas_mn(mas); 1491 if (type == maple_arange_64) 1492 return ma_meta_end(node, type); 1493 1494 pivots = ma_pivots(node, type); 1495 if (unlikely(ma_dead_node(node))) 1496 return 0; 1497 1498 offset = mt_pivots[type] - 1; 1499 if (likely(!pivots[offset])) 1500 return ma_meta_end(node, type); 1501 1502 if (likely(pivots[offset] == mas->max)) 1503 return offset; 1504 1505 return mt_pivots[type]; 1506 } 1507 1508 /* 1509 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1510 * @mas - the maple state 1511 * 1512 * Return: The maximum gap in the leaf. 1513 */ 1514 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1515 { 1516 enum maple_type mt; 1517 unsigned long pstart, gap, max_gap; 1518 struct maple_node *mn; 1519 unsigned long *pivots; 1520 void __rcu **slots; 1521 unsigned char i; 1522 unsigned char max_piv; 1523 1524 mt = mte_node_type(mas->node); 1525 mn = mas_mn(mas); 1526 slots = ma_slots(mn, mt); 1527 max_gap = 0; 1528 if (unlikely(ma_is_dense(mt))) { 1529 gap = 0; 1530 for (i = 0; i < mt_slots[mt]; i++) { 1531 if (slots[i]) { 1532 if (gap > max_gap) 1533 max_gap = gap; 1534 gap = 0; 1535 } else { 1536 gap++; 1537 } 1538 } 1539 if (gap > max_gap) 1540 max_gap = gap; 1541 return max_gap; 1542 } 1543 1544 /* 1545 * Check the first implied pivot optimizes the loop below and slot 1 may 1546 * be skipped if there is a gap in slot 0. 1547 */ 1548 pivots = ma_pivots(mn, mt); 1549 if (likely(!slots[0])) { 1550 max_gap = pivots[0] - mas->min + 1; 1551 i = 2; 1552 } else { 1553 i = 1; 1554 } 1555 1556 /* reduce max_piv as the special case is checked before the loop */ 1557 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1558 /* 1559 * Check end implied pivot which can only be a gap on the right most 1560 * node. 1561 */ 1562 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1563 gap = ULONG_MAX - pivots[max_piv]; 1564 if (gap > max_gap) 1565 max_gap = gap; 1566 } 1567 1568 for (; i <= max_piv; i++) { 1569 /* data == no gap. */ 1570 if (likely(slots[i])) 1571 continue; 1572 1573 pstart = pivots[i - 1]; 1574 gap = pivots[i] - pstart; 1575 if (gap > max_gap) 1576 max_gap = gap; 1577 1578 /* There cannot be two gaps in a row. */ 1579 i++; 1580 } 1581 return max_gap; 1582 } 1583 1584 /* 1585 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1586 * @node: The maple node 1587 * @gaps: The pointer to the gaps 1588 * @mt: The maple node type 1589 * @*off: Pointer to store the offset location of the gap. 1590 * 1591 * Uses the metadata data end to scan backwards across set gaps. 1592 * 1593 * Return: The maximum gap value 1594 */ 1595 static inline unsigned long 1596 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1597 unsigned char *off) 1598 { 1599 unsigned char offset, i; 1600 unsigned long max_gap = 0; 1601 1602 i = offset = ma_meta_end(node, mt); 1603 do { 1604 if (gaps[i] > max_gap) { 1605 max_gap = gaps[i]; 1606 offset = i; 1607 } 1608 } while (i--); 1609 1610 *off = offset; 1611 return max_gap; 1612 } 1613 1614 /* 1615 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1616 * @mas: The maple state. 1617 * 1618 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap. 1619 * 1620 * Return: The gap value. 1621 */ 1622 static inline unsigned long mas_max_gap(struct ma_state *mas) 1623 { 1624 unsigned long *gaps; 1625 unsigned char offset; 1626 enum maple_type mt; 1627 struct maple_node *node; 1628 1629 mt = mte_node_type(mas->node); 1630 if (ma_is_leaf(mt)) 1631 return mas_leaf_max_gap(mas); 1632 1633 node = mas_mn(mas); 1634 offset = ma_meta_gap(node, mt); 1635 if (offset == MAPLE_ARANGE64_META_MAX) 1636 return 0; 1637 1638 gaps = ma_gaps(node, mt); 1639 return gaps[offset]; 1640 } 1641 1642 /* 1643 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1644 * @mas: The maple state 1645 * @offset: The gap offset in the parent to set 1646 * @new: The new gap value. 1647 * 1648 * Set the parent gap then continue to set the gap upwards, using the metadata 1649 * of the parent to see if it is necessary to check the node above. 1650 */ 1651 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1652 unsigned long new) 1653 { 1654 unsigned long meta_gap = 0; 1655 struct maple_node *pnode; 1656 struct maple_enode *penode; 1657 unsigned long *pgaps; 1658 unsigned char meta_offset; 1659 enum maple_type pmt; 1660 1661 pnode = mte_parent(mas->node); 1662 pmt = mas_parent_enum(mas, mas->node); 1663 penode = mt_mk_node(pnode, pmt); 1664 pgaps = ma_gaps(pnode, pmt); 1665 1666 ascend: 1667 meta_offset = ma_meta_gap(pnode, pmt); 1668 if (meta_offset == MAPLE_ARANGE64_META_MAX) 1669 meta_gap = 0; 1670 else 1671 meta_gap = pgaps[meta_offset]; 1672 1673 pgaps[offset] = new; 1674 1675 if (meta_gap == new) 1676 return; 1677 1678 if (offset != meta_offset) { 1679 if (meta_gap > new) 1680 return; 1681 1682 ma_set_meta_gap(pnode, pmt, offset); 1683 } else if (new < meta_gap) { 1684 meta_offset = 15; 1685 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1686 ma_set_meta_gap(pnode, pmt, meta_offset); 1687 } 1688 1689 if (ma_is_root(pnode)) 1690 return; 1691 1692 /* Go to the parent node. */ 1693 pnode = mte_parent(penode); 1694 pmt = mas_parent_enum(mas, penode); 1695 pgaps = ma_gaps(pnode, pmt); 1696 offset = mte_parent_slot(penode); 1697 penode = mt_mk_node(pnode, pmt); 1698 goto ascend; 1699 } 1700 1701 /* 1702 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1703 * @mas - the maple state. 1704 */ 1705 static inline void mas_update_gap(struct ma_state *mas) 1706 { 1707 unsigned char pslot; 1708 unsigned long p_gap; 1709 unsigned long max_gap; 1710 1711 if (!mt_is_alloc(mas->tree)) 1712 return; 1713 1714 if (mte_is_root(mas->node)) 1715 return; 1716 1717 max_gap = mas_max_gap(mas); 1718 1719 pslot = mte_parent_slot(mas->node); 1720 p_gap = ma_gaps(mte_parent(mas->node), 1721 mas_parent_enum(mas, mas->node))[pslot]; 1722 1723 if (p_gap != max_gap) 1724 mas_parent_gap(mas, pslot, max_gap); 1725 } 1726 1727 /* 1728 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1729 * @parent with the slot encoded. 1730 * @mas - the maple state (for the tree) 1731 * @parent - the maple encoded node containing the children. 1732 */ 1733 static inline void mas_adopt_children(struct ma_state *mas, 1734 struct maple_enode *parent) 1735 { 1736 enum maple_type type = mte_node_type(parent); 1737 struct maple_node *node = mas_mn(mas); 1738 void __rcu **slots = ma_slots(node, type); 1739 unsigned long *pivots = ma_pivots(node, type); 1740 struct maple_enode *child; 1741 unsigned char offset; 1742 1743 offset = ma_data_end(node, type, pivots, mas->max); 1744 do { 1745 child = mas_slot_locked(mas, slots, offset); 1746 mte_set_parent(child, parent, offset); 1747 } while (offset--); 1748 } 1749 1750 /* 1751 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the 1752 * parent encoding to locate the maple node in the tree. 1753 * @mas - the ma_state to use for operations. 1754 * @advanced - boolean to adopt the child nodes and free the old node (false) or 1755 * leave the node (true) and handle the adoption and free elsewhere. 1756 */ 1757 static inline void mas_replace(struct ma_state *mas, bool advanced) 1758 __must_hold(mas->tree->lock) 1759 { 1760 struct maple_node *mn = mas_mn(mas); 1761 struct maple_enode *old_enode; 1762 unsigned char offset = 0; 1763 void __rcu **slots = NULL; 1764 1765 if (ma_is_root(mn)) { 1766 old_enode = mas_root_locked(mas); 1767 } else { 1768 offset = mte_parent_slot(mas->node); 1769 slots = ma_slots(mte_parent(mas->node), 1770 mas_parent_enum(mas, mas->node)); 1771 old_enode = mas_slot_locked(mas, slots, offset); 1772 } 1773 1774 if (!advanced && !mte_is_leaf(mas->node)) 1775 mas_adopt_children(mas, mas->node); 1776 1777 if (mte_is_root(mas->node)) { 1778 mn->parent = ma_parent_ptr( 1779 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 1780 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1781 mas_set_height(mas); 1782 } else { 1783 rcu_assign_pointer(slots[offset], mas->node); 1784 } 1785 1786 if (!advanced) { 1787 mte_set_node_dead(old_enode); 1788 mas_free(mas, old_enode); 1789 } 1790 } 1791 1792 /* 1793 * mas_new_child() - Find the new child of a node. 1794 * @mas: the maple state 1795 * @child: the maple state to store the child. 1796 */ 1797 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child) 1798 __must_hold(mas->tree->lock) 1799 { 1800 enum maple_type mt; 1801 unsigned char offset; 1802 unsigned char end; 1803 unsigned long *pivots; 1804 struct maple_enode *entry; 1805 struct maple_node *node; 1806 void __rcu **slots; 1807 1808 mt = mte_node_type(mas->node); 1809 node = mas_mn(mas); 1810 slots = ma_slots(node, mt); 1811 pivots = ma_pivots(node, mt); 1812 end = ma_data_end(node, mt, pivots, mas->max); 1813 for (offset = mas->offset; offset <= end; offset++) { 1814 entry = mas_slot_locked(mas, slots, offset); 1815 if (mte_parent(entry) == node) { 1816 *child = *mas; 1817 mas->offset = offset + 1; 1818 child->offset = offset; 1819 mas_descend(child); 1820 child->offset = 0; 1821 return true; 1822 } 1823 } 1824 return false; 1825 } 1826 1827 /* 1828 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1829 * old data or set b_node->b_end. 1830 * @b_node: the maple_big_node 1831 * @shift: the shift count 1832 */ 1833 static inline void mab_shift_right(struct maple_big_node *b_node, 1834 unsigned char shift) 1835 { 1836 unsigned long size = b_node->b_end * sizeof(unsigned long); 1837 1838 memmove(b_node->pivot + shift, b_node->pivot, size); 1839 memmove(b_node->slot + shift, b_node->slot, size); 1840 if (b_node->type == maple_arange_64) 1841 memmove(b_node->gap + shift, b_node->gap, size); 1842 } 1843 1844 /* 1845 * mab_middle_node() - Check if a middle node is needed (unlikely) 1846 * @b_node: the maple_big_node that contains the data. 1847 * @size: the amount of data in the b_node 1848 * @split: the potential split location 1849 * @slot_count: the size that can be stored in a single node being considered. 1850 * 1851 * Return: true if a middle node is required. 1852 */ 1853 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1854 unsigned char slot_count) 1855 { 1856 unsigned char size = b_node->b_end; 1857 1858 if (size >= 2 * slot_count) 1859 return true; 1860 1861 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1862 return true; 1863 1864 return false; 1865 } 1866 1867 /* 1868 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1869 * @b_node: the maple_big_node with the data 1870 * @split: the suggested split location 1871 * @slot_count: the number of slots in the node being considered. 1872 * 1873 * Return: the split location. 1874 */ 1875 static inline int mab_no_null_split(struct maple_big_node *b_node, 1876 unsigned char split, unsigned char slot_count) 1877 { 1878 if (!b_node->slot[split]) { 1879 /* 1880 * If the split is less than the max slot && the right side will 1881 * still be sufficient, then increment the split on NULL. 1882 */ 1883 if ((split < slot_count - 1) && 1884 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1885 split++; 1886 else 1887 split--; 1888 } 1889 return split; 1890 } 1891 1892 /* 1893 * mab_calc_split() - Calculate the split location and if there needs to be two 1894 * splits. 1895 * @bn: The maple_big_node with the data 1896 * @mid_split: The second split, if required. 0 otherwise. 1897 * 1898 * Return: The first split location. The middle split is set in @mid_split. 1899 */ 1900 static inline int mab_calc_split(struct ma_state *mas, 1901 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1902 { 1903 unsigned char b_end = bn->b_end; 1904 int split = b_end / 2; /* Assume equal split. */ 1905 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1906 1907 /* 1908 * To support gap tracking, all NULL entries are kept together and a node cannot 1909 * end on a NULL entry, with the exception of the left-most leaf. The 1910 * limitation means that the split of a node must be checked for this condition 1911 * and be able to put more data in one direction or the other. 1912 */ 1913 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1914 *mid_split = 0; 1915 split = b_end - mt_min_slots[bn->type]; 1916 1917 if (!ma_is_leaf(bn->type)) 1918 return split; 1919 1920 mas->mas_flags |= MA_STATE_REBALANCE; 1921 if (!bn->slot[split]) 1922 split--; 1923 return split; 1924 } 1925 1926 /* 1927 * Although extremely rare, it is possible to enter what is known as the 3-way 1928 * split scenario. The 3-way split comes about by means of a store of a range 1929 * that overwrites the end and beginning of two full nodes. The result is a set 1930 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1931 * also be located in different parent nodes which are also full. This can 1932 * carry upwards all the way to the root in the worst case. 1933 */ 1934 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1935 split = b_end / 3; 1936 *mid_split = split * 2; 1937 } else { 1938 slot_min = mt_min_slots[bn->type]; 1939 1940 *mid_split = 0; 1941 /* 1942 * Avoid having a range less than the slot count unless it 1943 * causes one node to be deficient. 1944 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1945 */ 1946 while (((bn->pivot[split] - min) < slot_count - 1) && 1947 (split < slot_count - 1) && (b_end - split > slot_min)) 1948 split++; 1949 } 1950 1951 /* Avoid ending a node on a NULL entry */ 1952 split = mab_no_null_split(bn, split, slot_count); 1953 1954 if (unlikely(*mid_split)) 1955 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1956 1957 return split; 1958 } 1959 1960 /* 1961 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1962 * and set @b_node->b_end to the next free slot. 1963 * @mas: The maple state 1964 * @mas_start: The starting slot to copy 1965 * @mas_end: The end slot to copy (inclusively) 1966 * @b_node: The maple_big_node to place the data 1967 * @mab_start: The starting location in maple_big_node to store the data. 1968 */ 1969 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1970 unsigned char mas_end, struct maple_big_node *b_node, 1971 unsigned char mab_start) 1972 { 1973 enum maple_type mt; 1974 struct maple_node *node; 1975 void __rcu **slots; 1976 unsigned long *pivots, *gaps; 1977 int i = mas_start, j = mab_start; 1978 unsigned char piv_end; 1979 1980 node = mas_mn(mas); 1981 mt = mte_node_type(mas->node); 1982 pivots = ma_pivots(node, mt); 1983 if (!i) { 1984 b_node->pivot[j] = pivots[i++]; 1985 if (unlikely(i > mas_end)) 1986 goto complete; 1987 j++; 1988 } 1989 1990 piv_end = min(mas_end, mt_pivots[mt]); 1991 for (; i < piv_end; i++, j++) { 1992 b_node->pivot[j] = pivots[i]; 1993 if (unlikely(!b_node->pivot[j])) 1994 break; 1995 1996 if (unlikely(mas->max == b_node->pivot[j])) 1997 goto complete; 1998 } 1999 2000 if (likely(i <= mas_end)) 2001 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 2002 2003 complete: 2004 b_node->b_end = ++j; 2005 j -= mab_start; 2006 slots = ma_slots(node, mt); 2007 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 2008 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 2009 gaps = ma_gaps(node, mt); 2010 memcpy(b_node->gap + mab_start, gaps + mas_start, 2011 sizeof(unsigned long) * j); 2012 } 2013 } 2014 2015 /* 2016 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 2017 * @mas: The maple state 2018 * @node: The maple node 2019 * @pivots: pointer to the maple node pivots 2020 * @mt: The maple type 2021 * @end: The assumed end 2022 * 2023 * Note, end may be incremented within this function but not modified at the 2024 * source. This is fine since the metadata is the last thing to be stored in a 2025 * node during a write. 2026 */ 2027 static inline void mas_leaf_set_meta(struct ma_state *mas, 2028 struct maple_node *node, unsigned long *pivots, 2029 enum maple_type mt, unsigned char end) 2030 { 2031 /* There is no room for metadata already */ 2032 if (mt_pivots[mt] <= end) 2033 return; 2034 2035 if (pivots[end] && pivots[end] < mas->max) 2036 end++; 2037 2038 if (end < mt_slots[mt] - 1) 2039 ma_set_meta(node, mt, 0, end); 2040 } 2041 2042 /* 2043 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 2044 * @b_node: the maple_big_node that has the data 2045 * @mab_start: the start location in @b_node. 2046 * @mab_end: The end location in @b_node (inclusively) 2047 * @mas: The maple state with the maple encoded node. 2048 */ 2049 static inline void mab_mas_cp(struct maple_big_node *b_node, 2050 unsigned char mab_start, unsigned char mab_end, 2051 struct ma_state *mas, bool new_max) 2052 { 2053 int i, j = 0; 2054 enum maple_type mt = mte_node_type(mas->node); 2055 struct maple_node *node = mte_to_node(mas->node); 2056 void __rcu **slots = ma_slots(node, mt); 2057 unsigned long *pivots = ma_pivots(node, mt); 2058 unsigned long *gaps = NULL; 2059 unsigned char end; 2060 2061 if (mab_end - mab_start > mt_pivots[mt]) 2062 mab_end--; 2063 2064 if (!pivots[mt_pivots[mt] - 1]) 2065 slots[mt_pivots[mt]] = NULL; 2066 2067 i = mab_start; 2068 do { 2069 pivots[j++] = b_node->pivot[i++]; 2070 } while (i <= mab_end && likely(b_node->pivot[i])); 2071 2072 memcpy(slots, b_node->slot + mab_start, 2073 sizeof(void *) * (i - mab_start)); 2074 2075 if (new_max) 2076 mas->max = b_node->pivot[i - 1]; 2077 2078 end = j - 1; 2079 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2080 unsigned long max_gap = 0; 2081 unsigned char offset = 15; 2082 2083 gaps = ma_gaps(node, mt); 2084 do { 2085 gaps[--j] = b_node->gap[--i]; 2086 if (gaps[j] > max_gap) { 2087 offset = j; 2088 max_gap = gaps[j]; 2089 } 2090 } while (j); 2091 2092 ma_set_meta(node, mt, offset, end); 2093 } else { 2094 mas_leaf_set_meta(mas, node, pivots, mt, end); 2095 } 2096 } 2097 2098 /* 2099 * mas_descend_adopt() - Descend through a sub-tree and adopt children. 2100 * @mas: the maple state with the maple encoded node of the sub-tree. 2101 * 2102 * Descend through a sub-tree and adopt children who do not have the correct 2103 * parents set. Follow the parents which have the correct parents as they are 2104 * the new entries which need to be followed to find other incorrectly set 2105 * parents. 2106 */ 2107 static inline void mas_descend_adopt(struct ma_state *mas) 2108 { 2109 struct ma_state list[3], next[3]; 2110 int i, n; 2111 2112 /* 2113 * At each level there may be up to 3 correct parent pointers which indicates 2114 * the new nodes which need to be walked to find any new nodes at a lower level. 2115 */ 2116 2117 for (i = 0; i < 3; i++) { 2118 list[i] = *mas; 2119 list[i].offset = 0; 2120 next[i].offset = 0; 2121 } 2122 next[0] = *mas; 2123 2124 while (!mte_is_leaf(list[0].node)) { 2125 n = 0; 2126 for (i = 0; i < 3; i++) { 2127 if (mas_is_none(&list[i])) 2128 continue; 2129 2130 if (i && list[i-1].node == list[i].node) 2131 continue; 2132 2133 while ((n < 3) && (mas_new_child(&list[i], &next[n]))) 2134 n++; 2135 2136 mas_adopt_children(&list[i], list[i].node); 2137 } 2138 2139 while (n < 3) 2140 next[n++].node = MAS_NONE; 2141 2142 /* descend by setting the list to the children */ 2143 for (i = 0; i < 3; i++) 2144 list[i] = next[i]; 2145 } 2146 } 2147 2148 /* 2149 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2150 * @mas: The maple state 2151 * @end: The maple node end 2152 * @mt: The maple node type 2153 */ 2154 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2155 enum maple_type mt) 2156 { 2157 if (!(mas->mas_flags & MA_STATE_BULK)) 2158 return; 2159 2160 if (mte_is_root(mas->node)) 2161 return; 2162 2163 if (end > mt_min_slots[mt]) { 2164 mas->mas_flags &= ~MA_STATE_REBALANCE; 2165 return; 2166 } 2167 } 2168 2169 /* 2170 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2171 * data from a maple encoded node. 2172 * @wr_mas: the maple write state 2173 * @b_node: the maple_big_node to fill with data 2174 * @offset_end: the offset to end copying 2175 * 2176 * Return: The actual end of the data stored in @b_node 2177 */ 2178 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2179 struct maple_big_node *b_node, unsigned char offset_end) 2180 { 2181 unsigned char slot; 2182 unsigned char b_end; 2183 /* Possible underflow of piv will wrap back to 0 before use. */ 2184 unsigned long piv; 2185 struct ma_state *mas = wr_mas->mas; 2186 2187 b_node->type = wr_mas->type; 2188 b_end = 0; 2189 slot = mas->offset; 2190 if (slot) { 2191 /* Copy start data up to insert. */ 2192 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2193 b_end = b_node->b_end; 2194 piv = b_node->pivot[b_end - 1]; 2195 } else 2196 piv = mas->min - 1; 2197 2198 if (piv + 1 < mas->index) { 2199 /* Handle range starting after old range */ 2200 b_node->slot[b_end] = wr_mas->content; 2201 if (!wr_mas->content) 2202 b_node->gap[b_end] = mas->index - 1 - piv; 2203 b_node->pivot[b_end++] = mas->index - 1; 2204 } 2205 2206 /* Store the new entry. */ 2207 mas->offset = b_end; 2208 b_node->slot[b_end] = wr_mas->entry; 2209 b_node->pivot[b_end] = mas->last; 2210 2211 /* Appended. */ 2212 if (mas->last >= mas->max) 2213 goto b_end; 2214 2215 /* Handle new range ending before old range ends */ 2216 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2217 if (piv > mas->last) { 2218 if (piv == ULONG_MAX) 2219 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2220 2221 if (offset_end != slot) 2222 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2223 offset_end); 2224 2225 b_node->slot[++b_end] = wr_mas->content; 2226 if (!wr_mas->content) 2227 b_node->gap[b_end] = piv - mas->last + 1; 2228 b_node->pivot[b_end] = piv; 2229 } 2230 2231 slot = offset_end + 1; 2232 if (slot > wr_mas->node_end) 2233 goto b_end; 2234 2235 /* Copy end data to the end of the node. */ 2236 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end); 2237 b_node->b_end--; 2238 return; 2239 2240 b_end: 2241 b_node->b_end = b_end; 2242 } 2243 2244 /* 2245 * mas_prev_sibling() - Find the previous node with the same parent. 2246 * @mas: the maple state 2247 * 2248 * Return: True if there is a previous sibling, false otherwise. 2249 */ 2250 static inline bool mas_prev_sibling(struct ma_state *mas) 2251 { 2252 unsigned int p_slot = mte_parent_slot(mas->node); 2253 2254 if (mte_is_root(mas->node)) 2255 return false; 2256 2257 if (!p_slot) 2258 return false; 2259 2260 mas_ascend(mas); 2261 mas->offset = p_slot - 1; 2262 mas_descend(mas); 2263 return true; 2264 } 2265 2266 /* 2267 * mas_next_sibling() - Find the next node with the same parent. 2268 * @mas: the maple state 2269 * 2270 * Return: true if there is a next sibling, false otherwise. 2271 */ 2272 static inline bool mas_next_sibling(struct ma_state *mas) 2273 { 2274 MA_STATE(parent, mas->tree, mas->index, mas->last); 2275 2276 if (mte_is_root(mas->node)) 2277 return false; 2278 2279 parent = *mas; 2280 mas_ascend(&parent); 2281 parent.offset = mte_parent_slot(mas->node) + 1; 2282 if (parent.offset > mas_data_end(&parent)) 2283 return false; 2284 2285 *mas = parent; 2286 mas_descend(mas); 2287 return true; 2288 } 2289 2290 /* 2291 * mte_node_or_node() - Return the encoded node or MAS_NONE. 2292 * @enode: The encoded maple node. 2293 * 2294 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state. 2295 * 2296 * Return: @enode or MAS_NONE 2297 */ 2298 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode) 2299 { 2300 if (enode) 2301 return enode; 2302 2303 return ma_enode_ptr(MAS_NONE); 2304 } 2305 2306 /* 2307 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2308 * @wr_mas: The maple write state 2309 * 2310 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2311 */ 2312 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2313 { 2314 struct ma_state *mas = wr_mas->mas; 2315 unsigned char count; 2316 unsigned char offset; 2317 unsigned long index, min, max; 2318 2319 if (unlikely(ma_is_dense(wr_mas->type))) { 2320 wr_mas->r_max = wr_mas->r_min = mas->index; 2321 mas->offset = mas->index = mas->min; 2322 return; 2323 } 2324 2325 wr_mas->node = mas_mn(wr_mas->mas); 2326 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2327 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type, 2328 wr_mas->pivots, mas->max); 2329 offset = mas->offset; 2330 min = mas_safe_min(mas, wr_mas->pivots, offset); 2331 if (unlikely(offset == count)) 2332 goto max; 2333 2334 max = wr_mas->pivots[offset]; 2335 index = mas->index; 2336 if (unlikely(index <= max)) 2337 goto done; 2338 2339 if (unlikely(!max && offset)) 2340 goto max; 2341 2342 min = max + 1; 2343 while (++offset < count) { 2344 max = wr_mas->pivots[offset]; 2345 if (index <= max) 2346 goto done; 2347 else if (unlikely(!max)) 2348 break; 2349 2350 min = max + 1; 2351 } 2352 2353 max: 2354 max = mas->max; 2355 done: 2356 wr_mas->r_max = max; 2357 wr_mas->r_min = min; 2358 wr_mas->offset_end = mas->offset = offset; 2359 } 2360 2361 /* 2362 * mas_topiary_range() - Add a range of slots to the topiary. 2363 * @mas: The maple state 2364 * @destroy: The topiary to add the slots (usually destroy) 2365 * @start: The starting slot inclusively 2366 * @end: The end slot inclusively 2367 */ 2368 static inline void mas_topiary_range(struct ma_state *mas, 2369 struct ma_topiary *destroy, unsigned char start, unsigned char end) 2370 { 2371 void __rcu **slots; 2372 unsigned char offset; 2373 2374 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node)); 2375 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node)); 2376 for (offset = start; offset <= end; offset++) { 2377 struct maple_enode *enode = mas_slot_locked(mas, slots, offset); 2378 2379 if (mte_dead_node(enode)) 2380 continue; 2381 2382 mat_add(destroy, enode); 2383 } 2384 } 2385 2386 /* 2387 * mast_topiary() - Add the portions of the tree to the removal list; either to 2388 * be freed or discarded (destroy walk). 2389 * @mast: The maple_subtree_state. 2390 */ 2391 static inline void mast_topiary(struct maple_subtree_state *mast) 2392 { 2393 MA_WR_STATE(wr_mas, mast->orig_l, NULL); 2394 unsigned char r_start, r_end; 2395 unsigned char l_start, l_end; 2396 void __rcu **l_slots, **r_slots; 2397 2398 wr_mas.type = mte_node_type(mast->orig_l->node); 2399 mast->orig_l->index = mast->orig_l->last; 2400 mas_wr_node_walk(&wr_mas); 2401 l_start = mast->orig_l->offset + 1; 2402 l_end = mas_data_end(mast->orig_l); 2403 r_start = 0; 2404 r_end = mast->orig_r->offset; 2405 2406 if (r_end) 2407 r_end--; 2408 2409 l_slots = ma_slots(mas_mn(mast->orig_l), 2410 mte_node_type(mast->orig_l->node)); 2411 2412 r_slots = ma_slots(mas_mn(mast->orig_r), 2413 mte_node_type(mast->orig_r->node)); 2414 2415 if ((l_start < l_end) && 2416 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) { 2417 l_start++; 2418 } 2419 2420 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) { 2421 if (r_end) 2422 r_end--; 2423 } 2424 2425 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node)) 2426 return; 2427 2428 /* At the node where left and right sides meet, add the parts between */ 2429 if (mast->orig_l->node == mast->orig_r->node) { 2430 return mas_topiary_range(mast->orig_l, mast->destroy, 2431 l_start, r_end); 2432 } 2433 2434 /* mast->orig_r is different and consumed. */ 2435 if (mte_is_leaf(mast->orig_r->node)) 2436 return; 2437 2438 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end))) 2439 l_end--; 2440 2441 2442 if (l_start <= l_end) 2443 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end); 2444 2445 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start))) 2446 r_start++; 2447 2448 if (r_start <= r_end) 2449 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end); 2450 } 2451 2452 /* 2453 * mast_rebalance_next() - Rebalance against the next node 2454 * @mast: The maple subtree state 2455 * @old_r: The encoded maple node to the right (next node). 2456 */ 2457 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2458 { 2459 unsigned char b_end = mast->bn->b_end; 2460 2461 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2462 mast->bn, b_end); 2463 mast->orig_r->last = mast->orig_r->max; 2464 } 2465 2466 /* 2467 * mast_rebalance_prev() - Rebalance against the previous node 2468 * @mast: The maple subtree state 2469 * @old_l: The encoded maple node to the left (previous node) 2470 */ 2471 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2472 { 2473 unsigned char end = mas_data_end(mast->orig_l) + 1; 2474 unsigned char b_end = mast->bn->b_end; 2475 2476 mab_shift_right(mast->bn, end); 2477 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2478 mast->l->min = mast->orig_l->min; 2479 mast->orig_l->index = mast->orig_l->min; 2480 mast->bn->b_end = end + b_end; 2481 mast->l->offset += end; 2482 } 2483 2484 /* 2485 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2486 * the node to the right. Checking the nodes to the right then the left at each 2487 * level upwards until root is reached. Free and destroy as needed. 2488 * Data is copied into the @mast->bn. 2489 * @mast: The maple_subtree_state. 2490 */ 2491 static inline 2492 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2493 { 2494 struct ma_state r_tmp = *mast->orig_r; 2495 struct ma_state l_tmp = *mast->orig_l; 2496 struct maple_enode *ancestor = NULL; 2497 unsigned char start, end; 2498 unsigned char depth = 0; 2499 2500 r_tmp = *mast->orig_r; 2501 l_tmp = *mast->orig_l; 2502 do { 2503 mas_ascend(mast->orig_r); 2504 mas_ascend(mast->orig_l); 2505 depth++; 2506 if (!ancestor && 2507 (mast->orig_r->node == mast->orig_l->node)) { 2508 ancestor = mast->orig_r->node; 2509 end = mast->orig_r->offset - 1; 2510 start = mast->orig_l->offset + 1; 2511 } 2512 2513 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2514 if (!ancestor) { 2515 ancestor = mast->orig_r->node; 2516 start = 0; 2517 } 2518 2519 mast->orig_r->offset++; 2520 do { 2521 mas_descend(mast->orig_r); 2522 mast->orig_r->offset = 0; 2523 depth--; 2524 } while (depth); 2525 2526 mast_rebalance_next(mast); 2527 do { 2528 unsigned char l_off = 0; 2529 struct maple_enode *child = r_tmp.node; 2530 2531 mas_ascend(&r_tmp); 2532 if (ancestor == r_tmp.node) 2533 l_off = start; 2534 2535 if (r_tmp.offset) 2536 r_tmp.offset--; 2537 2538 if (l_off < r_tmp.offset) 2539 mas_topiary_range(&r_tmp, mast->destroy, 2540 l_off, r_tmp.offset); 2541 2542 if (l_tmp.node != child) 2543 mat_add(mast->free, child); 2544 2545 } while (r_tmp.node != ancestor); 2546 2547 *mast->orig_l = l_tmp; 2548 return true; 2549 2550 } else if (mast->orig_l->offset != 0) { 2551 if (!ancestor) { 2552 ancestor = mast->orig_l->node; 2553 end = mas_data_end(mast->orig_l); 2554 } 2555 2556 mast->orig_l->offset--; 2557 do { 2558 mas_descend(mast->orig_l); 2559 mast->orig_l->offset = 2560 mas_data_end(mast->orig_l); 2561 depth--; 2562 } while (depth); 2563 2564 mast_rebalance_prev(mast); 2565 do { 2566 unsigned char r_off; 2567 struct maple_enode *child = l_tmp.node; 2568 2569 mas_ascend(&l_tmp); 2570 if (ancestor == l_tmp.node) 2571 r_off = end; 2572 else 2573 r_off = mas_data_end(&l_tmp); 2574 2575 if (l_tmp.offset < r_off) 2576 l_tmp.offset++; 2577 2578 if (l_tmp.offset < r_off) 2579 mas_topiary_range(&l_tmp, mast->destroy, 2580 l_tmp.offset, r_off); 2581 2582 if (r_tmp.node != child) 2583 mat_add(mast->free, child); 2584 2585 } while (l_tmp.node != ancestor); 2586 2587 *mast->orig_r = r_tmp; 2588 return true; 2589 } 2590 } while (!mte_is_root(mast->orig_r->node)); 2591 2592 *mast->orig_r = r_tmp; 2593 *mast->orig_l = l_tmp; 2594 return false; 2595 } 2596 2597 /* 2598 * mast_ascend_free() - Add current original maple state nodes to the free list 2599 * and ascend. 2600 * @mast: the maple subtree state. 2601 * 2602 * Ascend the original left and right sides and add the previous nodes to the 2603 * free list. Set the slots to point to the correct location in the new nodes. 2604 */ 2605 static inline void 2606 mast_ascend_free(struct maple_subtree_state *mast) 2607 { 2608 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2609 struct maple_enode *left = mast->orig_l->node; 2610 struct maple_enode *right = mast->orig_r->node; 2611 2612 mas_ascend(mast->orig_l); 2613 mas_ascend(mast->orig_r); 2614 mat_add(mast->free, left); 2615 2616 if (left != right) 2617 mat_add(mast->free, right); 2618 2619 mast->orig_r->offset = 0; 2620 mast->orig_r->index = mast->r->max; 2621 /* last should be larger than or equal to index */ 2622 if (mast->orig_r->last < mast->orig_r->index) 2623 mast->orig_r->last = mast->orig_r->index; 2624 /* 2625 * The node may not contain the value so set slot to ensure all 2626 * of the nodes contents are freed or destroyed. 2627 */ 2628 wr_mas.type = mte_node_type(mast->orig_r->node); 2629 mas_wr_node_walk(&wr_mas); 2630 /* Set up the left side of things */ 2631 mast->orig_l->offset = 0; 2632 mast->orig_l->index = mast->l->min; 2633 wr_mas.mas = mast->orig_l; 2634 wr_mas.type = mte_node_type(mast->orig_l->node); 2635 mas_wr_node_walk(&wr_mas); 2636 2637 mast->bn->type = wr_mas.type; 2638 } 2639 2640 /* 2641 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2642 * @mas: the maple state with the allocations. 2643 * @b_node: the maple_big_node with the type encoding. 2644 * 2645 * Use the node type from the maple_big_node to allocate a new node from the 2646 * ma_state. This function exists mainly for code readability. 2647 * 2648 * Return: A new maple encoded node 2649 */ 2650 static inline struct maple_enode 2651 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2652 { 2653 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2654 } 2655 2656 /* 2657 * mas_mab_to_node() - Set up right and middle nodes 2658 * 2659 * @mas: the maple state that contains the allocations. 2660 * @b_node: the node which contains the data. 2661 * @left: The pointer which will have the left node 2662 * @right: The pointer which may have the right node 2663 * @middle: the pointer which may have the middle node (rare) 2664 * @mid_split: the split location for the middle node 2665 * 2666 * Return: the split of left. 2667 */ 2668 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2669 struct maple_big_node *b_node, struct maple_enode **left, 2670 struct maple_enode **right, struct maple_enode **middle, 2671 unsigned char *mid_split, unsigned long min) 2672 { 2673 unsigned char split = 0; 2674 unsigned char slot_count = mt_slots[b_node->type]; 2675 2676 *left = mas_new_ma_node(mas, b_node); 2677 *right = NULL; 2678 *middle = NULL; 2679 *mid_split = 0; 2680 2681 if (b_node->b_end < slot_count) { 2682 split = b_node->b_end; 2683 } else { 2684 split = mab_calc_split(mas, b_node, mid_split, min); 2685 *right = mas_new_ma_node(mas, b_node); 2686 } 2687 2688 if (*mid_split) 2689 *middle = mas_new_ma_node(mas, b_node); 2690 2691 return split; 2692 2693 } 2694 2695 /* 2696 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2697 * pointer. 2698 * @b_node - the big node to add the entry 2699 * @mas - the maple state to get the pivot (mas->max) 2700 * @entry - the entry to add, if NULL nothing happens. 2701 */ 2702 static inline void mab_set_b_end(struct maple_big_node *b_node, 2703 struct ma_state *mas, 2704 void *entry) 2705 { 2706 if (!entry) 2707 return; 2708 2709 b_node->slot[b_node->b_end] = entry; 2710 if (mt_is_alloc(mas->tree)) 2711 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2712 b_node->pivot[b_node->b_end++] = mas->max; 2713 } 2714 2715 /* 2716 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2717 * of @mas->node to either @left or @right, depending on @slot and @split 2718 * 2719 * @mas - the maple state with the node that needs a parent 2720 * @left - possible parent 1 2721 * @right - possible parent 2 2722 * @slot - the slot the mas->node was placed 2723 * @split - the split location between @left and @right 2724 */ 2725 static inline void mas_set_split_parent(struct ma_state *mas, 2726 struct maple_enode *left, 2727 struct maple_enode *right, 2728 unsigned char *slot, unsigned char split) 2729 { 2730 if (mas_is_none(mas)) 2731 return; 2732 2733 if ((*slot) <= split) 2734 mte_set_parent(mas->node, left, *slot); 2735 else if (right) 2736 mte_set_parent(mas->node, right, (*slot) - split - 1); 2737 2738 (*slot)++; 2739 } 2740 2741 /* 2742 * mte_mid_split_check() - Check if the next node passes the mid-split 2743 * @**l: Pointer to left encoded maple node. 2744 * @**m: Pointer to middle encoded maple node. 2745 * @**r: Pointer to right encoded maple node. 2746 * @slot: The offset 2747 * @*split: The split location. 2748 * @mid_split: The middle split. 2749 */ 2750 static inline void mte_mid_split_check(struct maple_enode **l, 2751 struct maple_enode **r, 2752 struct maple_enode *right, 2753 unsigned char slot, 2754 unsigned char *split, 2755 unsigned char mid_split) 2756 { 2757 if (*r == right) 2758 return; 2759 2760 if (slot < mid_split) 2761 return; 2762 2763 *l = *r; 2764 *r = right; 2765 *split = mid_split; 2766 } 2767 2768 /* 2769 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2770 * is taken from @mast->l. 2771 * @mast - the maple subtree state 2772 * @left - the left node 2773 * @right - the right node 2774 * @split - the split location. 2775 */ 2776 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2777 struct maple_enode *left, 2778 struct maple_enode *middle, 2779 struct maple_enode *right, 2780 unsigned char split, 2781 unsigned char mid_split) 2782 { 2783 unsigned char slot; 2784 struct maple_enode *l = left; 2785 struct maple_enode *r = right; 2786 2787 if (mas_is_none(mast->l)) 2788 return; 2789 2790 if (middle) 2791 r = middle; 2792 2793 slot = mast->l->offset; 2794 2795 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2796 mas_set_split_parent(mast->l, l, r, &slot, split); 2797 2798 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2799 mas_set_split_parent(mast->m, l, r, &slot, split); 2800 2801 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2802 mas_set_split_parent(mast->r, l, r, &slot, split); 2803 } 2804 2805 /* 2806 * mas_wmb_replace() - Write memory barrier and replace 2807 * @mas: The maple state 2808 * @free: the maple topiary list of nodes to free 2809 * @destroy: The maple topiary list of nodes to destroy (walk and free) 2810 * 2811 * Updates gap as necessary. 2812 */ 2813 static inline void mas_wmb_replace(struct ma_state *mas, 2814 struct ma_topiary *free, 2815 struct ma_topiary *destroy) 2816 { 2817 /* All nodes must see old data as dead prior to replacing that data */ 2818 smp_wmb(); /* Needed for RCU */ 2819 2820 /* Insert the new data in the tree */ 2821 mas_replace(mas, true); 2822 2823 if (!mte_is_leaf(mas->node)) 2824 mas_descend_adopt(mas); 2825 2826 mas_mat_free(mas, free); 2827 2828 if (destroy) 2829 mas_mat_destroy(mas, destroy); 2830 2831 if (mte_is_leaf(mas->node)) 2832 return; 2833 2834 mas_update_gap(mas); 2835 } 2836 2837 /* 2838 * mast_new_root() - Set a new tree root during subtree creation 2839 * @mast: The maple subtree state 2840 * @mas: The maple state 2841 */ 2842 static inline void mast_new_root(struct maple_subtree_state *mast, 2843 struct ma_state *mas) 2844 { 2845 mas_mn(mast->l)->parent = 2846 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT)); 2847 if (!mte_dead_node(mast->orig_l->node) && 2848 !mte_is_root(mast->orig_l->node)) { 2849 do { 2850 mast_ascend_free(mast); 2851 mast_topiary(mast); 2852 } while (!mte_is_root(mast->orig_l->node)); 2853 } 2854 if ((mast->orig_l->node != mas->node) && 2855 (mast->l->depth > mas_mt_height(mas))) { 2856 mat_add(mast->free, mas->node); 2857 } 2858 } 2859 2860 /* 2861 * mast_cp_to_nodes() - Copy data out to nodes. 2862 * @mast: The maple subtree state 2863 * @left: The left encoded maple node 2864 * @middle: The middle encoded maple node 2865 * @right: The right encoded maple node 2866 * @split: The location to split between left and (middle ? middle : right) 2867 * @mid_split: The location to split between middle and right. 2868 */ 2869 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2870 struct maple_enode *left, struct maple_enode *middle, 2871 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2872 { 2873 bool new_lmax = true; 2874 2875 mast->l->node = mte_node_or_none(left); 2876 mast->m->node = mte_node_or_none(middle); 2877 mast->r->node = mte_node_or_none(right); 2878 2879 mast->l->min = mast->orig_l->min; 2880 if (split == mast->bn->b_end) { 2881 mast->l->max = mast->orig_r->max; 2882 new_lmax = false; 2883 } 2884 2885 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2886 2887 if (middle) { 2888 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2889 mast->m->min = mast->bn->pivot[split] + 1; 2890 split = mid_split; 2891 } 2892 2893 mast->r->max = mast->orig_r->max; 2894 if (right) { 2895 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2896 mast->r->min = mast->bn->pivot[split] + 1; 2897 } 2898 } 2899 2900 /* 2901 * mast_combine_cp_left - Copy in the original left side of the tree into the 2902 * combined data set in the maple subtree state big node. 2903 * @mast: The maple subtree state 2904 */ 2905 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2906 { 2907 unsigned char l_slot = mast->orig_l->offset; 2908 2909 if (!l_slot) 2910 return; 2911 2912 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2913 } 2914 2915 /* 2916 * mast_combine_cp_right: Copy in the original right side of the tree into the 2917 * combined data set in the maple subtree state big node. 2918 * @mast: The maple subtree state 2919 */ 2920 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2921 { 2922 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2923 return; 2924 2925 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2926 mt_slot_count(mast->orig_r->node), mast->bn, 2927 mast->bn->b_end); 2928 mast->orig_r->last = mast->orig_r->max; 2929 } 2930 2931 /* 2932 * mast_sufficient: Check if the maple subtree state has enough data in the big 2933 * node to create at least one sufficient node 2934 * @mast: the maple subtree state 2935 */ 2936 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2937 { 2938 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2939 return true; 2940 2941 return false; 2942 } 2943 2944 /* 2945 * mast_overflow: Check if there is too much data in the subtree state for a 2946 * single node. 2947 * @mast: The maple subtree state 2948 */ 2949 static inline bool mast_overflow(struct maple_subtree_state *mast) 2950 { 2951 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2952 return true; 2953 2954 return false; 2955 } 2956 2957 static inline void *mtree_range_walk(struct ma_state *mas) 2958 { 2959 unsigned long *pivots; 2960 unsigned char offset; 2961 struct maple_node *node; 2962 struct maple_enode *next, *last; 2963 enum maple_type type; 2964 void __rcu **slots; 2965 unsigned char end; 2966 unsigned long max, min; 2967 unsigned long prev_max, prev_min; 2968 2969 next = mas->node; 2970 min = mas->min; 2971 max = mas->max; 2972 do { 2973 offset = 0; 2974 last = next; 2975 node = mte_to_node(next); 2976 type = mte_node_type(next); 2977 pivots = ma_pivots(node, type); 2978 end = ma_data_end(node, type, pivots, max); 2979 if (unlikely(ma_dead_node(node))) 2980 goto dead_node; 2981 2982 if (pivots[offset] >= mas->index) { 2983 prev_max = max; 2984 prev_min = min; 2985 max = pivots[offset]; 2986 goto next; 2987 } 2988 2989 do { 2990 offset++; 2991 } while ((offset < end) && (pivots[offset] < mas->index)); 2992 2993 prev_min = min; 2994 min = pivots[offset - 1] + 1; 2995 prev_max = max; 2996 if (likely(offset < end && pivots[offset])) 2997 max = pivots[offset]; 2998 2999 next: 3000 slots = ma_slots(node, type); 3001 next = mt_slot(mas->tree, slots, offset); 3002 if (unlikely(ma_dead_node(node))) 3003 goto dead_node; 3004 } while (!ma_is_leaf(type)); 3005 3006 mas->offset = offset; 3007 mas->index = min; 3008 mas->last = max; 3009 mas->min = prev_min; 3010 mas->max = prev_max; 3011 mas->node = last; 3012 return (void *)next; 3013 3014 dead_node: 3015 mas_reset(mas); 3016 return NULL; 3017 } 3018 3019 /* 3020 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 3021 * @mas: The starting maple state 3022 * @mast: The maple_subtree_state, keeps track of 4 maple states. 3023 * @count: The estimated count of iterations needed. 3024 * 3025 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 3026 * is hit. First @b_node is split into two entries which are inserted into the 3027 * next iteration of the loop. @b_node is returned populated with the final 3028 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 3029 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 3030 * to account of what has been copied into the new sub-tree. The update of 3031 * orig_l_mas->last is used in mas_consume to find the slots that will need to 3032 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 3033 * the new sub-tree in case the sub-tree becomes the full tree. 3034 * 3035 * Return: the number of elements in b_node during the last loop. 3036 */ 3037 static int mas_spanning_rebalance(struct ma_state *mas, 3038 struct maple_subtree_state *mast, unsigned char count) 3039 { 3040 unsigned char split, mid_split; 3041 unsigned char slot = 0; 3042 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 3043 3044 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 3045 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3046 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 3047 MA_TOPIARY(free, mas->tree); 3048 MA_TOPIARY(destroy, mas->tree); 3049 3050 /* 3051 * The tree needs to be rebalanced and leaves need to be kept at the same level. 3052 * Rebalancing is done by use of the ``struct maple_topiary``. 3053 */ 3054 mast->l = &l_mas; 3055 mast->m = &m_mas; 3056 mast->r = &r_mas; 3057 mast->free = &free; 3058 mast->destroy = &destroy; 3059 l_mas.node = r_mas.node = m_mas.node = MAS_NONE; 3060 3061 /* Check if this is not root and has sufficient data. */ 3062 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 3063 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 3064 mast_spanning_rebalance(mast); 3065 3066 mast->orig_l->depth = 0; 3067 3068 /* 3069 * Each level of the tree is examined and balanced, pushing data to the left or 3070 * right, or rebalancing against left or right nodes is employed to avoid 3071 * rippling up the tree to limit the amount of churn. Once a new sub-section of 3072 * the tree is created, there may be a mix of new and old nodes. The old nodes 3073 * will have the incorrect parent pointers and currently be in two trees: the 3074 * original tree and the partially new tree. To remedy the parent pointers in 3075 * the old tree, the new data is swapped into the active tree and a walk down 3076 * the tree is performed and the parent pointers are updated. 3077 * See mas_descend_adopt() for more information.. 3078 */ 3079 while (count--) { 3080 mast->bn->b_end--; 3081 mast->bn->type = mte_node_type(mast->orig_l->node); 3082 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 3083 &mid_split, mast->orig_l->min); 3084 mast_set_split_parents(mast, left, middle, right, split, 3085 mid_split); 3086 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 3087 3088 /* 3089 * Copy data from next level in the tree to mast->bn from next 3090 * iteration 3091 */ 3092 memset(mast->bn, 0, sizeof(struct maple_big_node)); 3093 mast->bn->type = mte_node_type(left); 3094 mast->orig_l->depth++; 3095 3096 /* Root already stored in l->node. */ 3097 if (mas_is_root_limits(mast->l)) 3098 goto new_root; 3099 3100 mast_ascend_free(mast); 3101 mast_combine_cp_left(mast); 3102 l_mas.offset = mast->bn->b_end; 3103 mab_set_b_end(mast->bn, &l_mas, left); 3104 mab_set_b_end(mast->bn, &m_mas, middle); 3105 mab_set_b_end(mast->bn, &r_mas, right); 3106 3107 /* Copy anything necessary out of the right node. */ 3108 mast_combine_cp_right(mast); 3109 mast_topiary(mast); 3110 mast->orig_l->last = mast->orig_l->max; 3111 3112 if (mast_sufficient(mast)) 3113 continue; 3114 3115 if (mast_overflow(mast)) 3116 continue; 3117 3118 /* May be a new root stored in mast->bn */ 3119 if (mas_is_root_limits(mast->orig_l)) 3120 break; 3121 3122 mast_spanning_rebalance(mast); 3123 3124 /* rebalancing from other nodes may require another loop. */ 3125 if (!count) 3126 count++; 3127 } 3128 3129 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 3130 mte_node_type(mast->orig_l->node)); 3131 mast->orig_l->depth++; 3132 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 3133 mte_set_parent(left, l_mas.node, slot); 3134 if (middle) 3135 mte_set_parent(middle, l_mas.node, ++slot); 3136 3137 if (right) 3138 mte_set_parent(right, l_mas.node, ++slot); 3139 3140 if (mas_is_root_limits(mast->l)) { 3141 new_root: 3142 mast_new_root(mast, mas); 3143 } else { 3144 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 3145 } 3146 3147 if (!mte_dead_node(mast->orig_l->node)) 3148 mat_add(&free, mast->orig_l->node); 3149 3150 mas->depth = mast->orig_l->depth; 3151 *mast->orig_l = l_mas; 3152 mte_set_node_dead(mas->node); 3153 3154 /* Set up mas for insertion. */ 3155 mast->orig_l->depth = mas->depth; 3156 mast->orig_l->alloc = mas->alloc; 3157 *mas = *mast->orig_l; 3158 mas_wmb_replace(mas, &free, &destroy); 3159 mtree_range_walk(mas); 3160 return mast->bn->b_end; 3161 } 3162 3163 /* 3164 * mas_rebalance() - Rebalance a given node. 3165 * @mas: The maple state 3166 * @b_node: The big maple node. 3167 * 3168 * Rebalance two nodes into a single node or two new nodes that are sufficient. 3169 * Continue upwards until tree is sufficient. 3170 * 3171 * Return: the number of elements in b_node during the last loop. 3172 */ 3173 static inline int mas_rebalance(struct ma_state *mas, 3174 struct maple_big_node *b_node) 3175 { 3176 char empty_count = mas_mt_height(mas); 3177 struct maple_subtree_state mast; 3178 unsigned char shift, b_end = ++b_node->b_end; 3179 3180 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3181 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3182 3183 trace_ma_op(__func__, mas); 3184 3185 /* 3186 * Rebalancing occurs if a node is insufficient. Data is rebalanced 3187 * against the node to the right if it exists, otherwise the node to the 3188 * left of this node is rebalanced against this node. If rebalancing 3189 * causes just one node to be produced instead of two, then the parent 3190 * is also examined and rebalanced if it is insufficient. Every level 3191 * tries to combine the data in the same way. If one node contains the 3192 * entire range of the tree, then that node is used as a new root node. 3193 */ 3194 mas_node_count(mas, 1 + empty_count * 3); 3195 if (mas_is_err(mas)) 3196 return 0; 3197 3198 mast.orig_l = &l_mas; 3199 mast.orig_r = &r_mas; 3200 mast.bn = b_node; 3201 mast.bn->type = mte_node_type(mas->node); 3202 3203 l_mas = r_mas = *mas; 3204 3205 if (mas_next_sibling(&r_mas)) { 3206 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 3207 r_mas.last = r_mas.index = r_mas.max; 3208 } else { 3209 mas_prev_sibling(&l_mas); 3210 shift = mas_data_end(&l_mas) + 1; 3211 mab_shift_right(b_node, shift); 3212 mas->offset += shift; 3213 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3214 b_node->b_end = shift + b_end; 3215 l_mas.index = l_mas.last = l_mas.min; 3216 } 3217 3218 return mas_spanning_rebalance(mas, &mast, empty_count); 3219 } 3220 3221 /* 3222 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3223 * state. 3224 * @mas: The maple state 3225 * @end: The end of the left-most node. 3226 * 3227 * During a mass-insert event (such as forking), it may be necessary to 3228 * rebalance the left-most node when it is not sufficient. 3229 */ 3230 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3231 { 3232 enum maple_type mt = mte_node_type(mas->node); 3233 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3234 struct maple_enode *eparent; 3235 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3236 void __rcu **l_slots, **slots; 3237 unsigned long *l_pivs, *pivs, gap; 3238 bool in_rcu = mt_in_rcu(mas->tree); 3239 3240 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3241 3242 l_mas = *mas; 3243 mas_prev_sibling(&l_mas); 3244 3245 /* set up node. */ 3246 if (in_rcu) { 3247 /* Allocate for both left and right as well as parent. */ 3248 mas_node_count(mas, 3); 3249 if (mas_is_err(mas)) 3250 return; 3251 3252 newnode = mas_pop_node(mas); 3253 } else { 3254 newnode = &reuse; 3255 } 3256 3257 node = mas_mn(mas); 3258 newnode->parent = node->parent; 3259 slots = ma_slots(newnode, mt); 3260 pivs = ma_pivots(newnode, mt); 3261 left = mas_mn(&l_mas); 3262 l_slots = ma_slots(left, mt); 3263 l_pivs = ma_pivots(left, mt); 3264 if (!l_slots[split]) 3265 split++; 3266 tmp = mas_data_end(&l_mas) - split; 3267 3268 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3269 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3270 pivs[tmp] = l_mas.max; 3271 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3272 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3273 3274 l_mas.max = l_pivs[split]; 3275 mas->min = l_mas.max + 1; 3276 eparent = mt_mk_node(mte_parent(l_mas.node), 3277 mas_parent_enum(&l_mas, l_mas.node)); 3278 tmp += end; 3279 if (!in_rcu) { 3280 unsigned char max_p = mt_pivots[mt]; 3281 unsigned char max_s = mt_slots[mt]; 3282 3283 if (tmp < max_p) 3284 memset(pivs + tmp, 0, 3285 sizeof(unsigned long *) * (max_p - tmp)); 3286 3287 if (tmp < mt_slots[mt]) 3288 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3289 3290 memcpy(node, newnode, sizeof(struct maple_node)); 3291 ma_set_meta(node, mt, 0, tmp - 1); 3292 mte_set_pivot(eparent, mte_parent_slot(l_mas.node), 3293 l_pivs[split]); 3294 3295 /* Remove data from l_pivs. */ 3296 tmp = split + 1; 3297 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3298 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3299 ma_set_meta(left, mt, 0, split); 3300 3301 goto done; 3302 } 3303 3304 /* RCU requires replacing both l_mas, mas, and parent. */ 3305 mas->node = mt_mk_node(newnode, mt); 3306 ma_set_meta(newnode, mt, 0, tmp); 3307 3308 new_left = mas_pop_node(mas); 3309 new_left->parent = left->parent; 3310 mt = mte_node_type(l_mas.node); 3311 slots = ma_slots(new_left, mt); 3312 pivs = ma_pivots(new_left, mt); 3313 memcpy(slots, l_slots, sizeof(void *) * split); 3314 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3315 ma_set_meta(new_left, mt, 0, split); 3316 l_mas.node = mt_mk_node(new_left, mt); 3317 3318 /* replace parent. */ 3319 offset = mte_parent_slot(mas->node); 3320 mt = mas_parent_enum(&l_mas, l_mas.node); 3321 parent = mas_pop_node(mas); 3322 slots = ma_slots(parent, mt); 3323 pivs = ma_pivots(parent, mt); 3324 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node)); 3325 rcu_assign_pointer(slots[offset], mas->node); 3326 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3327 pivs[offset - 1] = l_mas.max; 3328 eparent = mt_mk_node(parent, mt); 3329 done: 3330 gap = mas_leaf_max_gap(mas); 3331 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3332 gap = mas_leaf_max_gap(&l_mas); 3333 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3334 mas_ascend(mas); 3335 3336 if (in_rcu) 3337 mas_replace(mas, false); 3338 3339 mas_update_gap(mas); 3340 } 3341 3342 /* 3343 * mas_split_final_node() - Split the final node in a subtree operation. 3344 * @mast: the maple subtree state 3345 * @mas: The maple state 3346 * @height: The height of the tree in case it's a new root. 3347 */ 3348 static inline bool mas_split_final_node(struct maple_subtree_state *mast, 3349 struct ma_state *mas, int height) 3350 { 3351 struct maple_enode *ancestor; 3352 3353 if (mte_is_root(mas->node)) { 3354 if (mt_is_alloc(mas->tree)) 3355 mast->bn->type = maple_arange_64; 3356 else 3357 mast->bn->type = maple_range_64; 3358 mas->depth = height; 3359 } 3360 /* 3361 * Only a single node is used here, could be root. 3362 * The Big_node data should just fit in a single node. 3363 */ 3364 ancestor = mas_new_ma_node(mas, mast->bn); 3365 mte_set_parent(mast->l->node, ancestor, mast->l->offset); 3366 mte_set_parent(mast->r->node, ancestor, mast->r->offset); 3367 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3368 3369 mast->l->node = ancestor; 3370 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3371 mas->offset = mast->bn->b_end - 1; 3372 return true; 3373 } 3374 3375 /* 3376 * mast_fill_bnode() - Copy data into the big node in the subtree state 3377 * @mast: The maple subtree state 3378 * @mas: the maple state 3379 * @skip: The number of entries to skip for new nodes insertion. 3380 */ 3381 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3382 struct ma_state *mas, 3383 unsigned char skip) 3384 { 3385 bool cp = true; 3386 struct maple_enode *old = mas->node; 3387 unsigned char split; 3388 3389 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3390 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3391 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3392 mast->bn->b_end = 0; 3393 3394 if (mte_is_root(mas->node)) { 3395 cp = false; 3396 } else { 3397 mas_ascend(mas); 3398 mat_add(mast->free, old); 3399 mas->offset = mte_parent_slot(mas->node); 3400 } 3401 3402 if (cp && mast->l->offset) 3403 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3404 3405 split = mast->bn->b_end; 3406 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3407 mast->r->offset = mast->bn->b_end; 3408 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3409 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3410 cp = false; 3411 3412 if (cp) 3413 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3414 mast->bn, mast->bn->b_end); 3415 3416 mast->bn->b_end--; 3417 mast->bn->type = mte_node_type(mas->node); 3418 } 3419 3420 /* 3421 * mast_split_data() - Split the data in the subtree state big node into regular 3422 * nodes. 3423 * @mast: The maple subtree state 3424 * @mas: The maple state 3425 * @split: The location to split the big node 3426 */ 3427 static inline void mast_split_data(struct maple_subtree_state *mast, 3428 struct ma_state *mas, unsigned char split) 3429 { 3430 unsigned char p_slot; 3431 3432 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3433 mte_set_pivot(mast->r->node, 0, mast->r->max); 3434 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3435 mast->l->offset = mte_parent_slot(mas->node); 3436 mast->l->max = mast->bn->pivot[split]; 3437 mast->r->min = mast->l->max + 1; 3438 if (mte_is_leaf(mas->node)) 3439 return; 3440 3441 p_slot = mast->orig_l->offset; 3442 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3443 &p_slot, split); 3444 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3445 &p_slot, split); 3446 } 3447 3448 /* 3449 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3450 * data to the right or left node if there is room. 3451 * @mas: The maple state 3452 * @height: The current height of the maple state 3453 * @mast: The maple subtree state 3454 * @left: Push left or not. 3455 * 3456 * Keeping the height of the tree low means faster lookups. 3457 * 3458 * Return: True if pushed, false otherwise. 3459 */ 3460 static inline bool mas_push_data(struct ma_state *mas, int height, 3461 struct maple_subtree_state *mast, bool left) 3462 { 3463 unsigned char slot_total = mast->bn->b_end; 3464 unsigned char end, space, split; 3465 3466 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3467 tmp_mas = *mas; 3468 tmp_mas.depth = mast->l->depth; 3469 3470 if (left && !mas_prev_sibling(&tmp_mas)) 3471 return false; 3472 else if (!left && !mas_next_sibling(&tmp_mas)) 3473 return false; 3474 3475 end = mas_data_end(&tmp_mas); 3476 slot_total += end; 3477 space = 2 * mt_slot_count(mas->node) - 2; 3478 /* -2 instead of -1 to ensure there isn't a triple split */ 3479 if (ma_is_leaf(mast->bn->type)) 3480 space--; 3481 3482 if (mas->max == ULONG_MAX) 3483 space--; 3484 3485 if (slot_total >= space) 3486 return false; 3487 3488 /* Get the data; Fill mast->bn */ 3489 mast->bn->b_end++; 3490 if (left) { 3491 mab_shift_right(mast->bn, end + 1); 3492 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3493 mast->bn->b_end = slot_total + 1; 3494 } else { 3495 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3496 } 3497 3498 /* Configure mast for splitting of mast->bn */ 3499 split = mt_slots[mast->bn->type] - 2; 3500 if (left) { 3501 /* Switch mas to prev node */ 3502 mat_add(mast->free, mas->node); 3503 *mas = tmp_mas; 3504 /* Start using mast->l for the left side. */ 3505 tmp_mas.node = mast->l->node; 3506 *mast->l = tmp_mas; 3507 } else { 3508 mat_add(mast->free, tmp_mas.node); 3509 tmp_mas.node = mast->r->node; 3510 *mast->r = tmp_mas; 3511 split = slot_total - split; 3512 } 3513 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3514 /* Update parent slot for split calculation. */ 3515 if (left) 3516 mast->orig_l->offset += end + 1; 3517 3518 mast_split_data(mast, mas, split); 3519 mast_fill_bnode(mast, mas, 2); 3520 mas_split_final_node(mast, mas, height + 1); 3521 return true; 3522 } 3523 3524 /* 3525 * mas_split() - Split data that is too big for one node into two. 3526 * @mas: The maple state 3527 * @b_node: The maple big node 3528 * Return: 1 on success, 0 on failure. 3529 */ 3530 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3531 { 3532 struct maple_subtree_state mast; 3533 int height = 0; 3534 unsigned char mid_split, split = 0; 3535 3536 /* 3537 * Splitting is handled differently from any other B-tree; the Maple 3538 * Tree splits upwards. Splitting up means that the split operation 3539 * occurs when the walk of the tree hits the leaves and not on the way 3540 * down. The reason for splitting up is that it is impossible to know 3541 * how much space will be needed until the leaf is (or leaves are) 3542 * reached. Since overwriting data is allowed and a range could 3543 * overwrite more than one range or result in changing one entry into 3 3544 * entries, it is impossible to know if a split is required until the 3545 * data is examined. 3546 * 3547 * Splitting is a balancing act between keeping allocations to a minimum 3548 * and avoiding a 'jitter' event where a tree is expanded to make room 3549 * for an entry followed by a contraction when the entry is removed. To 3550 * accomplish the balance, there are empty slots remaining in both left 3551 * and right nodes after a split. 3552 */ 3553 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3554 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3555 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3556 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3557 MA_TOPIARY(mat, mas->tree); 3558 3559 trace_ma_op(__func__, mas); 3560 mas->depth = mas_mt_height(mas); 3561 /* Allocation failures will happen early. */ 3562 mas_node_count(mas, 1 + mas->depth * 2); 3563 if (mas_is_err(mas)) 3564 return 0; 3565 3566 mast.l = &l_mas; 3567 mast.r = &r_mas; 3568 mast.orig_l = &prev_l_mas; 3569 mast.orig_r = &prev_r_mas; 3570 mast.free = &mat; 3571 mast.bn = b_node; 3572 3573 while (height++ <= mas->depth) { 3574 if (mt_slots[b_node->type] > b_node->b_end) { 3575 mas_split_final_node(&mast, mas, height); 3576 break; 3577 } 3578 3579 l_mas = r_mas = *mas; 3580 l_mas.node = mas_new_ma_node(mas, b_node); 3581 r_mas.node = mas_new_ma_node(mas, b_node); 3582 /* 3583 * Another way that 'jitter' is avoided is to terminate a split up early if the 3584 * left or right node has space to spare. This is referred to as "pushing left" 3585 * or "pushing right" and is similar to the B* tree, except the nodes left or 3586 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3587 * is a significant savings. 3588 */ 3589 /* Try to push left. */ 3590 if (mas_push_data(mas, height, &mast, true)) 3591 break; 3592 3593 /* Try to push right. */ 3594 if (mas_push_data(mas, height, &mast, false)) 3595 break; 3596 3597 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3598 mast_split_data(&mast, mas, split); 3599 /* 3600 * Usually correct, mab_mas_cp in the above call overwrites 3601 * r->max. 3602 */ 3603 mast.r->max = mas->max; 3604 mast_fill_bnode(&mast, mas, 1); 3605 prev_l_mas = *mast.l; 3606 prev_r_mas = *mast.r; 3607 } 3608 3609 /* Set the original node as dead */ 3610 mat_add(mast.free, mas->node); 3611 mas->node = l_mas.node; 3612 mas_wmb_replace(mas, mast.free, NULL); 3613 mtree_range_walk(mas); 3614 return 1; 3615 } 3616 3617 /* 3618 * mas_reuse_node() - Reuse the node to store the data. 3619 * @wr_mas: The maple write state 3620 * @bn: The maple big node 3621 * @end: The end of the data. 3622 * 3623 * Will always return false in RCU mode. 3624 * 3625 * Return: True if node was reused, false otherwise. 3626 */ 3627 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3628 struct maple_big_node *bn, unsigned char end) 3629 { 3630 /* Need to be rcu safe. */ 3631 if (mt_in_rcu(wr_mas->mas->tree)) 3632 return false; 3633 3634 if (end > bn->b_end) { 3635 int clear = mt_slots[wr_mas->type] - bn->b_end; 3636 3637 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3638 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3639 } 3640 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3641 return true; 3642 } 3643 3644 /* 3645 * mas_commit_b_node() - Commit the big node into the tree. 3646 * @wr_mas: The maple write state 3647 * @b_node: The maple big node 3648 * @end: The end of the data. 3649 */ 3650 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas, 3651 struct maple_big_node *b_node, unsigned char end) 3652 { 3653 struct maple_node *node; 3654 unsigned char b_end = b_node->b_end; 3655 enum maple_type b_type = b_node->type; 3656 3657 if ((b_end < mt_min_slots[b_type]) && 3658 (!mte_is_root(wr_mas->mas->node)) && 3659 (mas_mt_height(wr_mas->mas) > 1)) 3660 return mas_rebalance(wr_mas->mas, b_node); 3661 3662 if (b_end >= mt_slots[b_type]) 3663 return mas_split(wr_mas->mas, b_node); 3664 3665 if (mas_reuse_node(wr_mas, b_node, end)) 3666 goto reuse_node; 3667 3668 mas_node_count(wr_mas->mas, 1); 3669 if (mas_is_err(wr_mas->mas)) 3670 return 0; 3671 3672 node = mas_pop_node(wr_mas->mas); 3673 node->parent = mas_mn(wr_mas->mas)->parent; 3674 wr_mas->mas->node = mt_mk_node(node, b_type); 3675 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3676 mas_replace(wr_mas->mas, false); 3677 reuse_node: 3678 mas_update_gap(wr_mas->mas); 3679 return 1; 3680 } 3681 3682 /* 3683 * mas_root_expand() - Expand a root to a node 3684 * @mas: The maple state 3685 * @entry: The entry to store into the tree 3686 */ 3687 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3688 { 3689 void *contents = mas_root_locked(mas); 3690 enum maple_type type = maple_leaf_64; 3691 struct maple_node *node; 3692 void __rcu **slots; 3693 unsigned long *pivots; 3694 int slot = 0; 3695 3696 mas_node_count(mas, 1); 3697 if (unlikely(mas_is_err(mas))) 3698 return 0; 3699 3700 node = mas_pop_node(mas); 3701 pivots = ma_pivots(node, type); 3702 slots = ma_slots(node, type); 3703 node->parent = ma_parent_ptr( 3704 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3705 mas->node = mt_mk_node(node, type); 3706 3707 if (mas->index) { 3708 if (contents) { 3709 rcu_assign_pointer(slots[slot], contents); 3710 if (likely(mas->index > 1)) 3711 slot++; 3712 } 3713 pivots[slot++] = mas->index - 1; 3714 } 3715 3716 rcu_assign_pointer(slots[slot], entry); 3717 mas->offset = slot; 3718 pivots[slot] = mas->last; 3719 if (mas->last != ULONG_MAX) 3720 slot++; 3721 mas->depth = 1; 3722 mas_set_height(mas); 3723 ma_set_meta(node, maple_leaf_64, 0, slot); 3724 /* swap the new root into the tree */ 3725 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3726 return slot; 3727 } 3728 3729 static inline void mas_store_root(struct ma_state *mas, void *entry) 3730 { 3731 if (likely((mas->last != 0) || (mas->index != 0))) 3732 mas_root_expand(mas, entry); 3733 else if (((unsigned long) (entry) & 3) == 2) 3734 mas_root_expand(mas, entry); 3735 else { 3736 rcu_assign_pointer(mas->tree->ma_root, entry); 3737 mas->node = MAS_START; 3738 } 3739 } 3740 3741 /* 3742 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3743 * spans the node. 3744 * @mas: The maple state 3745 * @piv: The pivot value being written 3746 * @type: The maple node type 3747 * @entry: The data to write 3748 * 3749 * Spanning writes are writes that start in one node and end in another OR if 3750 * the write of a %NULL will cause the node to end with a %NULL. 3751 * 3752 * Return: True if this is a spanning write, false otherwise. 3753 */ 3754 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3755 { 3756 unsigned long max; 3757 unsigned long last = wr_mas->mas->last; 3758 unsigned long piv = wr_mas->r_max; 3759 enum maple_type type = wr_mas->type; 3760 void *entry = wr_mas->entry; 3761 3762 /* Contained in this pivot */ 3763 if (piv > last) 3764 return false; 3765 3766 max = wr_mas->mas->max; 3767 if (unlikely(ma_is_leaf(type))) { 3768 /* Fits in the node, but may span slots. */ 3769 if (last < max) 3770 return false; 3771 3772 /* Writes to the end of the node but not null. */ 3773 if ((last == max) && entry) 3774 return false; 3775 3776 /* 3777 * Writing ULONG_MAX is not a spanning write regardless of the 3778 * value being written as long as the range fits in the node. 3779 */ 3780 if ((last == ULONG_MAX) && (last == max)) 3781 return false; 3782 } else if (piv == last) { 3783 if (entry) 3784 return false; 3785 3786 /* Detect spanning store wr walk */ 3787 if (last == ULONG_MAX) 3788 return false; 3789 } 3790 3791 trace_ma_write(__func__, wr_mas->mas, piv, entry); 3792 3793 return true; 3794 } 3795 3796 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3797 { 3798 wr_mas->type = mte_node_type(wr_mas->mas->node); 3799 mas_wr_node_walk(wr_mas); 3800 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3801 } 3802 3803 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3804 { 3805 wr_mas->mas->max = wr_mas->r_max; 3806 wr_mas->mas->min = wr_mas->r_min; 3807 wr_mas->mas->node = wr_mas->content; 3808 wr_mas->mas->offset = 0; 3809 wr_mas->mas->depth++; 3810 } 3811 /* 3812 * mas_wr_walk() - Walk the tree for a write. 3813 * @wr_mas: The maple write state 3814 * 3815 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3816 * 3817 * Return: True if it's contained in a node, false on spanning write. 3818 */ 3819 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3820 { 3821 struct ma_state *mas = wr_mas->mas; 3822 3823 while (true) { 3824 mas_wr_walk_descend(wr_mas); 3825 if (unlikely(mas_is_span_wr(wr_mas))) 3826 return false; 3827 3828 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3829 mas->offset); 3830 if (ma_is_leaf(wr_mas->type)) 3831 return true; 3832 3833 mas_wr_walk_traverse(wr_mas); 3834 } 3835 3836 return true; 3837 } 3838 3839 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3840 { 3841 struct ma_state *mas = wr_mas->mas; 3842 3843 while (true) { 3844 mas_wr_walk_descend(wr_mas); 3845 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3846 mas->offset); 3847 if (ma_is_leaf(wr_mas->type)) 3848 return true; 3849 mas_wr_walk_traverse(wr_mas); 3850 3851 } 3852 return true; 3853 } 3854 /* 3855 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3856 * @l_wr_mas: The left maple write state 3857 * @r_wr_mas: The right maple write state 3858 */ 3859 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3860 struct ma_wr_state *r_wr_mas) 3861 { 3862 struct ma_state *r_mas = r_wr_mas->mas; 3863 struct ma_state *l_mas = l_wr_mas->mas; 3864 unsigned char l_slot; 3865 3866 l_slot = l_mas->offset; 3867 if (!l_wr_mas->content) 3868 l_mas->index = l_wr_mas->r_min; 3869 3870 if ((l_mas->index == l_wr_mas->r_min) && 3871 (l_slot && 3872 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3873 if (l_slot > 1) 3874 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3875 else 3876 l_mas->index = l_mas->min; 3877 3878 l_mas->offset = l_slot - 1; 3879 } 3880 3881 if (!r_wr_mas->content) { 3882 if (r_mas->last < r_wr_mas->r_max) 3883 r_mas->last = r_wr_mas->r_max; 3884 r_mas->offset++; 3885 } else if ((r_mas->last == r_wr_mas->r_max) && 3886 (r_mas->last < r_mas->max) && 3887 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3888 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3889 r_wr_mas->type, r_mas->offset + 1); 3890 r_mas->offset++; 3891 } 3892 } 3893 3894 static inline void *mas_state_walk(struct ma_state *mas) 3895 { 3896 void *entry; 3897 3898 entry = mas_start(mas); 3899 if (mas_is_none(mas)) 3900 return NULL; 3901 3902 if (mas_is_ptr(mas)) 3903 return entry; 3904 3905 return mtree_range_walk(mas); 3906 } 3907 3908 /* 3909 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3910 * to date. 3911 * 3912 * @mas: The maple state. 3913 * 3914 * Note: Leaves mas in undesirable state. 3915 * Return: The entry for @mas->index or %NULL on dead node. 3916 */ 3917 static inline void *mtree_lookup_walk(struct ma_state *mas) 3918 { 3919 unsigned long *pivots; 3920 unsigned char offset; 3921 struct maple_node *node; 3922 struct maple_enode *next; 3923 enum maple_type type; 3924 void __rcu **slots; 3925 unsigned char end; 3926 unsigned long max; 3927 3928 next = mas->node; 3929 max = ULONG_MAX; 3930 do { 3931 offset = 0; 3932 node = mte_to_node(next); 3933 type = mte_node_type(next); 3934 pivots = ma_pivots(node, type); 3935 end = ma_data_end(node, type, pivots, max); 3936 if (unlikely(ma_dead_node(node))) 3937 goto dead_node; 3938 do { 3939 if (pivots[offset] >= mas->index) { 3940 max = pivots[offset]; 3941 break; 3942 } 3943 } while (++offset < end); 3944 3945 slots = ma_slots(node, type); 3946 next = mt_slot(mas->tree, slots, offset); 3947 if (unlikely(ma_dead_node(node))) 3948 goto dead_node; 3949 } while (!ma_is_leaf(type)); 3950 3951 return (void *)next; 3952 3953 dead_node: 3954 mas_reset(mas); 3955 return NULL; 3956 } 3957 3958 /* 3959 * mas_new_root() - Create a new root node that only contains the entry passed 3960 * in. 3961 * @mas: The maple state 3962 * @entry: The entry to store. 3963 * 3964 * Only valid when the index == 0 and the last == ULONG_MAX 3965 * 3966 * Return 0 on error, 1 on success. 3967 */ 3968 static inline int mas_new_root(struct ma_state *mas, void *entry) 3969 { 3970 struct maple_enode *root = mas_root_locked(mas); 3971 enum maple_type type = maple_leaf_64; 3972 struct maple_node *node; 3973 void __rcu **slots; 3974 unsigned long *pivots; 3975 3976 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3977 mas->depth = 0; 3978 mas_set_height(mas); 3979 rcu_assign_pointer(mas->tree->ma_root, entry); 3980 mas->node = MAS_START; 3981 goto done; 3982 } 3983 3984 mas_node_count(mas, 1); 3985 if (mas_is_err(mas)) 3986 return 0; 3987 3988 node = mas_pop_node(mas); 3989 pivots = ma_pivots(node, type); 3990 slots = ma_slots(node, type); 3991 node->parent = ma_parent_ptr( 3992 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3993 mas->node = mt_mk_node(node, type); 3994 rcu_assign_pointer(slots[0], entry); 3995 pivots[0] = mas->last; 3996 mas->depth = 1; 3997 mas_set_height(mas); 3998 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3999 4000 done: 4001 if (xa_is_node(root)) 4002 mte_destroy_walk(root, mas->tree); 4003 4004 return 1; 4005 } 4006 /* 4007 * mas_wr_spanning_store() - Create a subtree with the store operation completed 4008 * and new nodes where necessary, then place the sub-tree in the actual tree. 4009 * Note that mas is expected to point to the node which caused the store to 4010 * span. 4011 * @wr_mas: The maple write state 4012 * 4013 * Return: 0 on error, positive on success. 4014 */ 4015 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 4016 { 4017 struct maple_subtree_state mast; 4018 struct maple_big_node b_node; 4019 struct ma_state *mas; 4020 unsigned char height; 4021 4022 /* Left and Right side of spanning store */ 4023 MA_STATE(l_mas, NULL, 0, 0); 4024 MA_STATE(r_mas, NULL, 0, 0); 4025 4026 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 4027 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 4028 4029 /* 4030 * A store operation that spans multiple nodes is called a spanning 4031 * store and is handled early in the store call stack by the function 4032 * mas_is_span_wr(). When a spanning store is identified, the maple 4033 * state is duplicated. The first maple state walks the left tree path 4034 * to ``index``, the duplicate walks the right tree path to ``last``. 4035 * The data in the two nodes are combined into a single node, two nodes, 4036 * or possibly three nodes (see the 3-way split above). A ``NULL`` 4037 * written to the last entry of a node is considered a spanning store as 4038 * a rebalance is required for the operation to complete and an overflow 4039 * of data may happen. 4040 */ 4041 mas = wr_mas->mas; 4042 trace_ma_op(__func__, mas); 4043 4044 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 4045 return mas_new_root(mas, wr_mas->entry); 4046 /* 4047 * Node rebalancing may occur due to this store, so there may be three new 4048 * entries per level plus a new root. 4049 */ 4050 height = mas_mt_height(mas); 4051 mas_node_count(mas, 1 + height * 3); 4052 if (mas_is_err(mas)) 4053 return 0; 4054 4055 /* 4056 * Set up right side. Need to get to the next offset after the spanning 4057 * store to ensure it's not NULL and to combine both the next node and 4058 * the node with the start together. 4059 */ 4060 r_mas = *mas; 4061 /* Avoid overflow, walk to next slot in the tree. */ 4062 if (r_mas.last + 1) 4063 r_mas.last++; 4064 4065 r_mas.index = r_mas.last; 4066 mas_wr_walk_index(&r_wr_mas); 4067 r_mas.last = r_mas.index = mas->last; 4068 4069 /* Set up left side. */ 4070 l_mas = *mas; 4071 mas_wr_walk_index(&l_wr_mas); 4072 4073 if (!wr_mas->entry) { 4074 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 4075 mas->offset = l_mas.offset; 4076 mas->index = l_mas.index; 4077 mas->last = l_mas.last = r_mas.last; 4078 } 4079 4080 /* expanding NULLs may make this cover the entire range */ 4081 if (!l_mas.index && r_mas.last == ULONG_MAX) { 4082 mas_set_range(mas, 0, ULONG_MAX); 4083 return mas_new_root(mas, wr_mas->entry); 4084 } 4085 4086 memset(&b_node, 0, sizeof(struct maple_big_node)); 4087 /* Copy l_mas and store the value in b_node. */ 4088 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end); 4089 /* Copy r_mas into b_node. */ 4090 if (r_mas.offset <= r_wr_mas.node_end) 4091 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end, 4092 &b_node, b_node.b_end + 1); 4093 else 4094 b_node.b_end++; 4095 4096 /* Stop spanning searches by searching for just index. */ 4097 l_mas.index = l_mas.last = mas->index; 4098 4099 mast.bn = &b_node; 4100 mast.orig_l = &l_mas; 4101 mast.orig_r = &r_mas; 4102 /* Combine l_mas and r_mas and split them up evenly again. */ 4103 return mas_spanning_rebalance(mas, &mast, height + 1); 4104 } 4105 4106 /* 4107 * mas_wr_node_store() - Attempt to store the value in a node 4108 * @wr_mas: The maple write state 4109 * 4110 * Attempts to reuse the node, but may allocate. 4111 * 4112 * Return: True if stored, false otherwise 4113 */ 4114 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas) 4115 { 4116 struct ma_state *mas = wr_mas->mas; 4117 void __rcu **dst_slots; 4118 unsigned long *dst_pivots; 4119 unsigned char dst_offset; 4120 unsigned char new_end = wr_mas->node_end; 4121 unsigned char offset; 4122 unsigned char node_slots = mt_slots[wr_mas->type]; 4123 struct maple_node reuse, *newnode; 4124 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type]; 4125 bool in_rcu = mt_in_rcu(mas->tree); 4126 4127 offset = mas->offset; 4128 if (mas->last == wr_mas->r_max) { 4129 /* runs right to the end of the node */ 4130 if (mas->last == mas->max) 4131 new_end = offset; 4132 /* don't copy this offset */ 4133 wr_mas->offset_end++; 4134 } else if (mas->last < wr_mas->r_max) { 4135 /* new range ends in this range */ 4136 if (unlikely(wr_mas->r_max == ULONG_MAX)) 4137 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type); 4138 4139 new_end++; 4140 } else { 4141 if (wr_mas->end_piv == mas->last) 4142 wr_mas->offset_end++; 4143 4144 new_end -= wr_mas->offset_end - offset - 1; 4145 } 4146 4147 /* new range starts within a range */ 4148 if (wr_mas->r_min < mas->index) 4149 new_end++; 4150 4151 /* Not enough room */ 4152 if (new_end >= node_slots) 4153 return false; 4154 4155 /* Not enough data. */ 4156 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 4157 !(mas->mas_flags & MA_STATE_BULK)) 4158 return false; 4159 4160 /* set up node. */ 4161 if (in_rcu) { 4162 mas_node_count(mas, 1); 4163 if (mas_is_err(mas)) 4164 return false; 4165 4166 newnode = mas_pop_node(mas); 4167 } else { 4168 memset(&reuse, 0, sizeof(struct maple_node)); 4169 newnode = &reuse; 4170 } 4171 4172 newnode->parent = mas_mn(mas)->parent; 4173 dst_pivots = ma_pivots(newnode, wr_mas->type); 4174 dst_slots = ma_slots(newnode, wr_mas->type); 4175 /* Copy from start to insert point */ 4176 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1)); 4177 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1)); 4178 dst_offset = offset; 4179 4180 /* Handle insert of new range starting after old range */ 4181 if (wr_mas->r_min < mas->index) { 4182 mas->offset++; 4183 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content); 4184 dst_pivots[dst_offset++] = mas->index - 1; 4185 } 4186 4187 /* Store the new entry and range end. */ 4188 if (dst_offset < max_piv) 4189 dst_pivots[dst_offset] = mas->last; 4190 mas->offset = dst_offset; 4191 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry); 4192 4193 /* 4194 * this range wrote to the end of the node or it overwrote the rest of 4195 * the data 4196 */ 4197 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) { 4198 new_end = dst_offset; 4199 goto done; 4200 } 4201 4202 dst_offset++; 4203 /* Copy to the end of node if necessary. */ 4204 copy_size = wr_mas->node_end - wr_mas->offset_end + 1; 4205 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end, 4206 sizeof(void *) * copy_size); 4207 if (dst_offset < max_piv) { 4208 if (copy_size > max_piv - dst_offset) 4209 copy_size = max_piv - dst_offset; 4210 4211 memcpy(dst_pivots + dst_offset, 4212 wr_mas->pivots + wr_mas->offset_end, 4213 sizeof(unsigned long) * copy_size); 4214 } 4215 4216 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1)) 4217 dst_pivots[new_end] = mas->max; 4218 4219 done: 4220 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end); 4221 if (in_rcu) { 4222 mte_set_node_dead(mas->node); 4223 mas->node = mt_mk_node(newnode, wr_mas->type); 4224 mas_replace(mas, false); 4225 } else { 4226 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 4227 } 4228 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4229 mas_update_gap(mas); 4230 return true; 4231 } 4232 4233 /* 4234 * mas_wr_slot_store: Attempt to store a value in a slot. 4235 * @wr_mas: the maple write state 4236 * 4237 * Return: True if stored, false otherwise 4238 */ 4239 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 4240 { 4241 struct ma_state *mas = wr_mas->mas; 4242 unsigned long lmax; /* Logical max. */ 4243 unsigned char offset = mas->offset; 4244 4245 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) || 4246 (offset != wr_mas->node_end))) 4247 return false; 4248 4249 if (offset == wr_mas->node_end - 1) 4250 lmax = mas->max; 4251 else 4252 lmax = wr_mas->pivots[offset + 1]; 4253 4254 /* going to overwrite too many slots. */ 4255 if (lmax < mas->last) 4256 return false; 4257 4258 if (wr_mas->r_min == mas->index) { 4259 /* overwriting two or more ranges with one. */ 4260 if (lmax == mas->last) 4261 return false; 4262 4263 /* Overwriting all of offset and a portion of offset + 1. */ 4264 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry); 4265 wr_mas->pivots[offset] = mas->last; 4266 goto done; 4267 } 4268 4269 /* Doesn't end on the next range end. */ 4270 if (lmax != mas->last) 4271 return false; 4272 4273 /* Overwriting a portion of offset and all of offset + 1 */ 4274 if ((offset + 1 < mt_pivots[wr_mas->type]) && 4275 (wr_mas->entry || wr_mas->pivots[offset + 1])) 4276 wr_mas->pivots[offset + 1] = mas->last; 4277 4278 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry); 4279 wr_mas->pivots[offset] = mas->index - 1; 4280 mas->offset++; /* Keep mas accurate. */ 4281 4282 done: 4283 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4284 mas_update_gap(mas); 4285 return true; 4286 } 4287 4288 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4289 { 4290 while ((wr_mas->mas->last > wr_mas->end_piv) && 4291 (wr_mas->offset_end < wr_mas->node_end)) 4292 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end]; 4293 4294 if (wr_mas->mas->last > wr_mas->end_piv) 4295 wr_mas->end_piv = wr_mas->mas->max; 4296 } 4297 4298 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4299 { 4300 struct ma_state *mas = wr_mas->mas; 4301 4302 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end]) 4303 mas->last = wr_mas->end_piv; 4304 4305 /* Check next slot(s) if we are overwriting the end */ 4306 if ((mas->last == wr_mas->end_piv) && 4307 (wr_mas->node_end != wr_mas->offset_end) && 4308 !wr_mas->slots[wr_mas->offset_end + 1]) { 4309 wr_mas->offset_end++; 4310 if (wr_mas->offset_end == wr_mas->node_end) 4311 mas->last = mas->max; 4312 else 4313 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4314 wr_mas->end_piv = mas->last; 4315 } 4316 4317 if (!wr_mas->content) { 4318 /* If this one is null, the next and prev are not */ 4319 mas->index = wr_mas->r_min; 4320 } else { 4321 /* Check prev slot if we are overwriting the start */ 4322 if (mas->index == wr_mas->r_min && mas->offset && 4323 !wr_mas->slots[mas->offset - 1]) { 4324 mas->offset--; 4325 wr_mas->r_min = mas->index = 4326 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4327 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4328 } 4329 } 4330 } 4331 4332 static inline bool mas_wr_append(struct ma_wr_state *wr_mas) 4333 { 4334 unsigned char end = wr_mas->node_end; 4335 unsigned char new_end = end + 1; 4336 struct ma_state *mas = wr_mas->mas; 4337 unsigned char node_pivots = mt_pivots[wr_mas->type]; 4338 4339 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) { 4340 if (new_end < node_pivots) 4341 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4342 4343 if (new_end < node_pivots) 4344 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4345 4346 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry); 4347 mas->offset = new_end; 4348 wr_mas->pivots[end] = mas->index - 1; 4349 4350 return true; 4351 } 4352 4353 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) { 4354 if (new_end < node_pivots) 4355 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4356 4357 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content); 4358 if (new_end < node_pivots) 4359 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4360 4361 wr_mas->pivots[end] = mas->last; 4362 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry); 4363 return true; 4364 } 4365 4366 return false; 4367 } 4368 4369 /* 4370 * mas_wr_bnode() - Slow path for a modification. 4371 * @wr_mas: The write maple state 4372 * 4373 * This is where split, rebalance end up. 4374 */ 4375 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4376 { 4377 struct maple_big_node b_node; 4378 4379 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4380 memset(&b_node, 0, sizeof(struct maple_big_node)); 4381 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4382 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end); 4383 } 4384 4385 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4386 { 4387 unsigned char node_slots; 4388 unsigned char node_size; 4389 struct ma_state *mas = wr_mas->mas; 4390 4391 /* Direct replacement */ 4392 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4393 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4394 if (!!wr_mas->entry ^ !!wr_mas->content) 4395 mas_update_gap(mas); 4396 return; 4397 } 4398 4399 /* Attempt to append */ 4400 node_slots = mt_slots[wr_mas->type]; 4401 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2; 4402 if (mas->max == ULONG_MAX) 4403 node_size++; 4404 4405 /* slot and node store will not fit, go to the slow path */ 4406 if (unlikely(node_size >= node_slots)) 4407 goto slow_path; 4408 4409 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) && 4410 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) { 4411 if (!wr_mas->content || !wr_mas->entry) 4412 mas_update_gap(mas); 4413 return; 4414 } 4415 4416 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas)) 4417 return; 4418 else if (mas_wr_node_store(wr_mas)) 4419 return; 4420 4421 if (mas_is_err(mas)) 4422 return; 4423 4424 slow_path: 4425 mas_wr_bnode(wr_mas); 4426 } 4427 4428 /* 4429 * mas_wr_store_entry() - Internal call to store a value 4430 * @mas: The maple state 4431 * @entry: The entry to store. 4432 * 4433 * Return: The contents that was stored at the index. 4434 */ 4435 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4436 { 4437 struct ma_state *mas = wr_mas->mas; 4438 4439 wr_mas->content = mas_start(mas); 4440 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4441 mas_store_root(mas, wr_mas->entry); 4442 return wr_mas->content; 4443 } 4444 4445 if (unlikely(!mas_wr_walk(wr_mas))) { 4446 mas_wr_spanning_store(wr_mas); 4447 return wr_mas->content; 4448 } 4449 4450 /* At this point, we are at the leaf node that needs to be altered. */ 4451 wr_mas->end_piv = wr_mas->r_max; 4452 mas_wr_end_piv(wr_mas); 4453 4454 if (!wr_mas->entry) 4455 mas_wr_extend_null(wr_mas); 4456 4457 /* New root for a single pointer */ 4458 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4459 mas_new_root(mas, wr_mas->entry); 4460 return wr_mas->content; 4461 } 4462 4463 mas_wr_modify(wr_mas); 4464 return wr_mas->content; 4465 } 4466 4467 /** 4468 * mas_insert() - Internal call to insert a value 4469 * @mas: The maple state 4470 * @entry: The entry to store 4471 * 4472 * Return: %NULL or the contents that already exists at the requested index 4473 * otherwise. The maple state needs to be checked for error conditions. 4474 */ 4475 static inline void *mas_insert(struct ma_state *mas, void *entry) 4476 { 4477 MA_WR_STATE(wr_mas, mas, entry); 4478 4479 /* 4480 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4481 * tree. If the insert fits exactly into an existing gap with a value 4482 * of NULL, then the slot only needs to be written with the new value. 4483 * If the range being inserted is adjacent to another range, then only a 4484 * single pivot needs to be inserted (as well as writing the entry). If 4485 * the new range is within a gap but does not touch any other ranges, 4486 * then two pivots need to be inserted: the start - 1, and the end. As 4487 * usual, the entry must be written. Most operations require a new node 4488 * to be allocated and replace an existing node to ensure RCU safety, 4489 * when in RCU mode. The exception to requiring a newly allocated node 4490 * is when inserting at the end of a node (appending). When done 4491 * carefully, appending can reuse the node in place. 4492 */ 4493 wr_mas.content = mas_start(mas); 4494 if (wr_mas.content) 4495 goto exists; 4496 4497 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4498 mas_store_root(mas, entry); 4499 return NULL; 4500 } 4501 4502 /* spanning writes always overwrite something */ 4503 if (!mas_wr_walk(&wr_mas)) 4504 goto exists; 4505 4506 /* At this point, we are at the leaf node that needs to be altered. */ 4507 wr_mas.offset_end = mas->offset; 4508 wr_mas.end_piv = wr_mas.r_max; 4509 4510 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4511 goto exists; 4512 4513 if (!entry) 4514 return NULL; 4515 4516 mas_wr_modify(&wr_mas); 4517 return wr_mas.content; 4518 4519 exists: 4520 mas_set_err(mas, -EEXIST); 4521 return wr_mas.content; 4522 4523 } 4524 4525 /* 4526 * mas_prev_node() - Find the prev non-null entry at the same level in the 4527 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE. 4528 * @mas: The maple state 4529 * @min: The lower limit to search 4530 * 4531 * The prev node value will be mas->node[mas->offset] or MAS_NONE. 4532 * Return: 1 if the node is dead, 0 otherwise. 4533 */ 4534 static inline int mas_prev_node(struct ma_state *mas, unsigned long min) 4535 { 4536 enum maple_type mt; 4537 int offset, level; 4538 void __rcu **slots; 4539 struct maple_node *node; 4540 struct maple_enode *enode; 4541 unsigned long *pivots; 4542 4543 if (mas_is_none(mas)) 4544 return 0; 4545 4546 level = 0; 4547 do { 4548 node = mas_mn(mas); 4549 if (ma_is_root(node)) 4550 goto no_entry; 4551 4552 /* Walk up. */ 4553 if (unlikely(mas_ascend(mas))) 4554 return 1; 4555 offset = mas->offset; 4556 level++; 4557 } while (!offset); 4558 4559 offset--; 4560 mt = mte_node_type(mas->node); 4561 node = mas_mn(mas); 4562 slots = ma_slots(node, mt); 4563 pivots = ma_pivots(node, mt); 4564 if (unlikely(ma_dead_node(node))) 4565 return 1; 4566 4567 mas->max = pivots[offset]; 4568 if (offset) 4569 mas->min = pivots[offset - 1] + 1; 4570 if (unlikely(ma_dead_node(node))) 4571 return 1; 4572 4573 if (mas->max < min) 4574 goto no_entry_min; 4575 4576 while (level > 1) { 4577 level--; 4578 enode = mas_slot(mas, slots, offset); 4579 if (unlikely(ma_dead_node(node))) 4580 return 1; 4581 4582 mas->node = enode; 4583 mt = mte_node_type(mas->node); 4584 node = mas_mn(mas); 4585 slots = ma_slots(node, mt); 4586 pivots = ma_pivots(node, mt); 4587 offset = ma_data_end(node, mt, pivots, mas->max); 4588 if (unlikely(ma_dead_node(node))) 4589 return 1; 4590 4591 if (offset) 4592 mas->min = pivots[offset - 1] + 1; 4593 4594 if (offset < mt_pivots[mt]) 4595 mas->max = pivots[offset]; 4596 4597 if (mas->max < min) 4598 goto no_entry; 4599 } 4600 4601 mas->node = mas_slot(mas, slots, offset); 4602 if (unlikely(ma_dead_node(node))) 4603 return 1; 4604 4605 mas->offset = mas_data_end(mas); 4606 if (unlikely(mte_dead_node(mas->node))) 4607 return 1; 4608 4609 return 0; 4610 4611 no_entry_min: 4612 mas->offset = offset; 4613 if (offset) 4614 mas->min = pivots[offset - 1] + 1; 4615 no_entry: 4616 if (unlikely(ma_dead_node(node))) 4617 return 1; 4618 4619 mas->node = MAS_NONE; 4620 return 0; 4621 } 4622 4623 /* 4624 * mas_next_node() - Get the next node at the same level in the tree. 4625 * @mas: The maple state 4626 * @max: The maximum pivot value to check. 4627 * 4628 * The next value will be mas->node[mas->offset] or MAS_NONE. 4629 * Return: 1 on dead node, 0 otherwise. 4630 */ 4631 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node, 4632 unsigned long max) 4633 { 4634 unsigned long min, pivot; 4635 unsigned long *pivots; 4636 struct maple_enode *enode; 4637 int level = 0; 4638 unsigned char offset; 4639 unsigned char node_end; 4640 enum maple_type mt; 4641 void __rcu **slots; 4642 4643 if (mas->max >= max) 4644 goto no_entry; 4645 4646 level = 0; 4647 do { 4648 if (ma_is_root(node)) 4649 goto no_entry; 4650 4651 min = mas->max + 1; 4652 if (min > max) 4653 goto no_entry; 4654 4655 if (unlikely(mas_ascend(mas))) 4656 return 1; 4657 4658 offset = mas->offset; 4659 level++; 4660 node = mas_mn(mas); 4661 mt = mte_node_type(mas->node); 4662 pivots = ma_pivots(node, mt); 4663 node_end = ma_data_end(node, mt, pivots, mas->max); 4664 if (unlikely(ma_dead_node(node))) 4665 return 1; 4666 4667 } while (unlikely(offset == node_end)); 4668 4669 slots = ma_slots(node, mt); 4670 pivot = mas_safe_pivot(mas, pivots, ++offset, mt); 4671 while (unlikely(level > 1)) { 4672 /* Descend, if necessary */ 4673 enode = mas_slot(mas, slots, offset); 4674 if (unlikely(ma_dead_node(node))) 4675 return 1; 4676 4677 mas->node = enode; 4678 level--; 4679 node = mas_mn(mas); 4680 mt = mte_node_type(mas->node); 4681 slots = ma_slots(node, mt); 4682 pivots = ma_pivots(node, mt); 4683 if (unlikely(ma_dead_node(node))) 4684 return 1; 4685 4686 offset = 0; 4687 pivot = pivots[0]; 4688 } 4689 4690 enode = mas_slot(mas, slots, offset); 4691 if (unlikely(ma_dead_node(node))) 4692 return 1; 4693 4694 mas->node = enode; 4695 mas->min = min; 4696 mas->max = pivot; 4697 return 0; 4698 4699 no_entry: 4700 if (unlikely(ma_dead_node(node))) 4701 return 1; 4702 4703 mas->node = MAS_NONE; 4704 return 0; 4705 } 4706 4707 /* 4708 * mas_next_nentry() - Get the next node entry 4709 * @mas: The maple state 4710 * @max: The maximum value to check 4711 * @*range_start: Pointer to store the start of the range. 4712 * 4713 * Sets @mas->offset to the offset of the next node entry, @mas->last to the 4714 * pivot of the entry. 4715 * 4716 * Return: The next entry, %NULL otherwise 4717 */ 4718 static inline void *mas_next_nentry(struct ma_state *mas, 4719 struct maple_node *node, unsigned long max, enum maple_type type) 4720 { 4721 unsigned char count; 4722 unsigned long pivot; 4723 unsigned long *pivots; 4724 void __rcu **slots; 4725 void *entry; 4726 4727 if (mas->last == mas->max) { 4728 mas->index = mas->max; 4729 return NULL; 4730 } 4731 4732 slots = ma_slots(node, type); 4733 pivots = ma_pivots(node, type); 4734 count = ma_data_end(node, type, pivots, mas->max); 4735 if (unlikely(ma_dead_node(node))) 4736 return NULL; 4737 4738 mas->index = mas_safe_min(mas, pivots, mas->offset); 4739 if (unlikely(ma_dead_node(node))) 4740 return NULL; 4741 4742 if (mas->index > max) 4743 return NULL; 4744 4745 if (mas->offset > count) 4746 return NULL; 4747 4748 while (mas->offset < count) { 4749 pivot = pivots[mas->offset]; 4750 entry = mas_slot(mas, slots, mas->offset); 4751 if (ma_dead_node(node)) 4752 return NULL; 4753 4754 if (entry) 4755 goto found; 4756 4757 if (pivot >= max) 4758 return NULL; 4759 4760 mas->index = pivot + 1; 4761 mas->offset++; 4762 } 4763 4764 if (mas->index > mas->max) { 4765 mas->index = mas->last; 4766 return NULL; 4767 } 4768 4769 pivot = mas_safe_pivot(mas, pivots, mas->offset, type); 4770 entry = mas_slot(mas, slots, mas->offset); 4771 if (ma_dead_node(node)) 4772 return NULL; 4773 4774 if (!pivot) 4775 return NULL; 4776 4777 if (!entry) 4778 return NULL; 4779 4780 found: 4781 mas->last = pivot; 4782 return entry; 4783 } 4784 4785 static inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4786 { 4787 retry: 4788 mas_set(mas, index); 4789 mas_state_walk(mas); 4790 if (mas_is_start(mas)) 4791 goto retry; 4792 } 4793 4794 /* 4795 * mas_next_entry() - Internal function to get the next entry. 4796 * @mas: The maple state 4797 * @limit: The maximum range start. 4798 * 4799 * Set the @mas->node to the next entry and the range_start to 4800 * the beginning value for the entry. Does not check beyond @limit. 4801 * Sets @mas->index and @mas->last to the limit if it is hit. 4802 * Restarts on dead nodes. 4803 * 4804 * Return: the next entry or %NULL. 4805 */ 4806 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4807 { 4808 void *entry = NULL; 4809 struct maple_enode *prev_node; 4810 struct maple_node *node; 4811 unsigned char offset; 4812 unsigned long last; 4813 enum maple_type mt; 4814 4815 if (mas->index > limit) { 4816 mas->index = mas->last = limit; 4817 mas_pause(mas); 4818 return NULL; 4819 } 4820 last = mas->last; 4821 retry: 4822 offset = mas->offset; 4823 prev_node = mas->node; 4824 node = mas_mn(mas); 4825 mt = mte_node_type(mas->node); 4826 mas->offset++; 4827 if (unlikely(mas->offset >= mt_slots[mt])) { 4828 mas->offset = mt_slots[mt] - 1; 4829 goto next_node; 4830 } 4831 4832 while (!mas_is_none(mas)) { 4833 entry = mas_next_nentry(mas, node, limit, mt); 4834 if (unlikely(ma_dead_node(node))) { 4835 mas_rewalk(mas, last); 4836 goto retry; 4837 } 4838 4839 if (likely(entry)) 4840 return entry; 4841 4842 if (unlikely((mas->index > limit))) 4843 break; 4844 4845 next_node: 4846 prev_node = mas->node; 4847 offset = mas->offset; 4848 if (unlikely(mas_next_node(mas, node, limit))) { 4849 mas_rewalk(mas, last); 4850 goto retry; 4851 } 4852 mas->offset = 0; 4853 node = mas_mn(mas); 4854 mt = mte_node_type(mas->node); 4855 } 4856 4857 mas->index = mas->last = limit; 4858 mas->offset = offset; 4859 mas->node = prev_node; 4860 return NULL; 4861 } 4862 4863 /* 4864 * mas_prev_nentry() - Get the previous node entry. 4865 * @mas: The maple state. 4866 * @limit: The lower limit to check for a value. 4867 * 4868 * Return: the entry, %NULL otherwise. 4869 */ 4870 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit, 4871 unsigned long index) 4872 { 4873 unsigned long pivot, min; 4874 unsigned char offset; 4875 struct maple_node *mn; 4876 enum maple_type mt; 4877 unsigned long *pivots; 4878 void __rcu **slots; 4879 void *entry; 4880 4881 retry: 4882 if (!mas->offset) 4883 return NULL; 4884 4885 mn = mas_mn(mas); 4886 mt = mte_node_type(mas->node); 4887 offset = mas->offset - 1; 4888 if (offset >= mt_slots[mt]) 4889 offset = mt_slots[mt] - 1; 4890 4891 slots = ma_slots(mn, mt); 4892 pivots = ma_pivots(mn, mt); 4893 if (unlikely(ma_dead_node(mn))) { 4894 mas_rewalk(mas, index); 4895 goto retry; 4896 } 4897 4898 if (offset == mt_pivots[mt]) 4899 pivot = mas->max; 4900 else 4901 pivot = pivots[offset]; 4902 4903 if (unlikely(ma_dead_node(mn))) { 4904 mas_rewalk(mas, index); 4905 goto retry; 4906 } 4907 4908 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) || 4909 !pivot)) 4910 pivot = pivots[--offset]; 4911 4912 min = mas_safe_min(mas, pivots, offset); 4913 entry = mas_slot(mas, slots, offset); 4914 if (unlikely(ma_dead_node(mn))) { 4915 mas_rewalk(mas, index); 4916 goto retry; 4917 } 4918 4919 if (likely(entry)) { 4920 mas->offset = offset; 4921 mas->last = pivot; 4922 mas->index = min; 4923 } 4924 return entry; 4925 } 4926 4927 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min) 4928 { 4929 void *entry; 4930 4931 if (mas->index < min) { 4932 mas->index = mas->last = min; 4933 mas->node = MAS_NONE; 4934 return NULL; 4935 } 4936 retry: 4937 while (likely(!mas_is_none(mas))) { 4938 entry = mas_prev_nentry(mas, min, mas->index); 4939 if (unlikely(mas->last < min)) 4940 goto not_found; 4941 4942 if (likely(entry)) 4943 return entry; 4944 4945 if (unlikely(mas_prev_node(mas, min))) { 4946 mas_rewalk(mas, mas->index); 4947 goto retry; 4948 } 4949 4950 mas->offset++; 4951 } 4952 4953 mas->offset--; 4954 not_found: 4955 mas->index = mas->last = min; 4956 return NULL; 4957 } 4958 4959 /* 4960 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4961 * highest gap address of a given size in a given node and descend. 4962 * @mas: The maple state 4963 * @size: The needed size. 4964 * 4965 * Return: True if found in a leaf, false otherwise. 4966 * 4967 */ 4968 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, 4969 unsigned long *gap_min, unsigned long *gap_max) 4970 { 4971 enum maple_type type = mte_node_type(mas->node); 4972 struct maple_node *node = mas_mn(mas); 4973 unsigned long *pivots, *gaps; 4974 void __rcu **slots; 4975 unsigned long gap = 0; 4976 unsigned long max, min; 4977 unsigned char offset; 4978 4979 if (unlikely(mas_is_err(mas))) 4980 return true; 4981 4982 if (ma_is_dense(type)) { 4983 /* dense nodes. */ 4984 mas->offset = (unsigned char)(mas->index - mas->min); 4985 return true; 4986 } 4987 4988 pivots = ma_pivots(node, type); 4989 slots = ma_slots(node, type); 4990 gaps = ma_gaps(node, type); 4991 offset = mas->offset; 4992 min = mas_safe_min(mas, pivots, offset); 4993 /* Skip out of bounds. */ 4994 while (mas->last < min) 4995 min = mas_safe_min(mas, pivots, --offset); 4996 4997 max = mas_safe_pivot(mas, pivots, offset, type); 4998 while (mas->index <= max) { 4999 gap = 0; 5000 if (gaps) 5001 gap = gaps[offset]; 5002 else if (!mas_slot(mas, slots, offset)) 5003 gap = max - min + 1; 5004 5005 if (gap) { 5006 if ((size <= gap) && (size <= mas->last - min + 1)) 5007 break; 5008 5009 if (!gaps) { 5010 /* Skip the next slot, it cannot be a gap. */ 5011 if (offset < 2) 5012 goto ascend; 5013 5014 offset -= 2; 5015 max = pivots[offset]; 5016 min = mas_safe_min(mas, pivots, offset); 5017 continue; 5018 } 5019 } 5020 5021 if (!offset) 5022 goto ascend; 5023 5024 offset--; 5025 max = min - 1; 5026 min = mas_safe_min(mas, pivots, offset); 5027 } 5028 5029 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 5030 goto no_space; 5031 5032 if (unlikely(ma_is_leaf(type))) { 5033 mas->offset = offset; 5034 *gap_min = min; 5035 *gap_max = min + gap - 1; 5036 return true; 5037 } 5038 5039 /* descend, only happens under lock. */ 5040 mas->node = mas_slot(mas, slots, offset); 5041 mas->min = min; 5042 mas->max = max; 5043 mas->offset = mas_data_end(mas); 5044 return false; 5045 5046 ascend: 5047 if (!mte_is_root(mas->node)) 5048 return false; 5049 5050 no_space: 5051 mas_set_err(mas, -EBUSY); 5052 return false; 5053 } 5054 5055 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 5056 { 5057 enum maple_type type = mte_node_type(mas->node); 5058 unsigned long pivot, min, gap = 0; 5059 unsigned char offset, data_end; 5060 unsigned long *gaps, *pivots; 5061 void __rcu **slots; 5062 struct maple_node *node; 5063 bool found = false; 5064 5065 if (ma_is_dense(type)) { 5066 mas->offset = (unsigned char)(mas->index - mas->min); 5067 return true; 5068 } 5069 5070 node = mas_mn(mas); 5071 pivots = ma_pivots(node, type); 5072 slots = ma_slots(node, type); 5073 gaps = ma_gaps(node, type); 5074 offset = mas->offset; 5075 min = mas_safe_min(mas, pivots, offset); 5076 data_end = ma_data_end(node, type, pivots, mas->max); 5077 for (; offset <= data_end; offset++) { 5078 pivot = mas_logical_pivot(mas, pivots, offset, type); 5079 5080 /* Not within lower bounds */ 5081 if (mas->index > pivot) 5082 goto next_slot; 5083 5084 if (gaps) 5085 gap = gaps[offset]; 5086 else if (!mas_slot(mas, slots, offset)) 5087 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 5088 else 5089 goto next_slot; 5090 5091 if (gap >= size) { 5092 if (ma_is_leaf(type)) { 5093 found = true; 5094 goto done; 5095 } 5096 if (mas->index <= pivot) { 5097 mas->node = mas_slot(mas, slots, offset); 5098 mas->min = min; 5099 mas->max = pivot; 5100 offset = 0; 5101 break; 5102 } 5103 } 5104 next_slot: 5105 min = pivot + 1; 5106 if (mas->last <= pivot) { 5107 mas_set_err(mas, -EBUSY); 5108 return true; 5109 } 5110 } 5111 5112 if (mte_is_root(mas->node)) 5113 found = true; 5114 done: 5115 mas->offset = offset; 5116 return found; 5117 } 5118 5119 /** 5120 * mas_walk() - Search for @mas->index in the tree. 5121 * @mas: The maple state. 5122 * 5123 * mas->index and mas->last will be set to the range if there is a value. If 5124 * mas->node is MAS_NONE, reset to MAS_START. 5125 * 5126 * Return: the entry at the location or %NULL. 5127 */ 5128 void *mas_walk(struct ma_state *mas) 5129 { 5130 void *entry; 5131 5132 retry: 5133 entry = mas_state_walk(mas); 5134 if (mas_is_start(mas)) 5135 goto retry; 5136 5137 if (mas_is_ptr(mas)) { 5138 if (!mas->index) { 5139 mas->last = 0; 5140 } else { 5141 mas->index = 1; 5142 mas->last = ULONG_MAX; 5143 } 5144 return entry; 5145 } 5146 5147 if (mas_is_none(mas)) { 5148 mas->index = 0; 5149 mas->last = ULONG_MAX; 5150 } 5151 5152 return entry; 5153 } 5154 EXPORT_SYMBOL_GPL(mas_walk); 5155 5156 static inline bool mas_rewind_node(struct ma_state *mas) 5157 { 5158 unsigned char slot; 5159 5160 do { 5161 if (mte_is_root(mas->node)) { 5162 slot = mas->offset; 5163 if (!slot) 5164 return false; 5165 } else { 5166 mas_ascend(mas); 5167 slot = mas->offset; 5168 } 5169 } while (!slot); 5170 5171 mas->offset = --slot; 5172 return true; 5173 } 5174 5175 /* 5176 * mas_skip_node() - Internal function. Skip over a node. 5177 * @mas: The maple state. 5178 * 5179 * Return: true if there is another node, false otherwise. 5180 */ 5181 static inline bool mas_skip_node(struct ma_state *mas) 5182 { 5183 if (mas_is_err(mas)) 5184 return false; 5185 5186 do { 5187 if (mte_is_root(mas->node)) { 5188 if (mas->offset >= mas_data_end(mas)) { 5189 mas_set_err(mas, -EBUSY); 5190 return false; 5191 } 5192 } else { 5193 mas_ascend(mas); 5194 } 5195 } while (mas->offset >= mas_data_end(mas)); 5196 5197 mas->offset++; 5198 return true; 5199 } 5200 5201 /* 5202 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5203 * @size 5204 * @mas: The maple state 5205 * @size: The size of the gap required 5206 * 5207 * Search between @mas->index and @mas->last for a gap of @size. 5208 */ 5209 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5210 { 5211 struct maple_enode *last = NULL; 5212 5213 /* 5214 * There are 4 options: 5215 * go to child (descend) 5216 * go back to parent (ascend) 5217 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5218 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5219 */ 5220 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5221 if (last == mas->node) 5222 mas_skip_node(mas); 5223 else 5224 last = mas->node; 5225 } 5226 } 5227 5228 /* 5229 * mas_fill_gap() - Fill a located gap with @entry. 5230 * @mas: The maple state 5231 * @entry: The value to store 5232 * @slot: The offset into the node to store the @entry 5233 * @size: The size of the entry 5234 * @index: The start location 5235 */ 5236 static inline void mas_fill_gap(struct ma_state *mas, void *entry, 5237 unsigned char slot, unsigned long size, unsigned long *index) 5238 { 5239 MA_WR_STATE(wr_mas, mas, entry); 5240 unsigned char pslot = mte_parent_slot(mas->node); 5241 struct maple_enode *mn = mas->node; 5242 unsigned long *pivots; 5243 enum maple_type ptype; 5244 /* 5245 * mas->index is the start address for the search 5246 * which may no longer be needed. 5247 * mas->last is the end address for the search 5248 */ 5249 5250 *index = mas->index; 5251 mas->last = mas->index + size - 1; 5252 5253 /* 5254 * It is possible that using mas->max and mas->min to correctly 5255 * calculate the index and last will cause an issue in the gap 5256 * calculation, so fix the ma_state here 5257 */ 5258 mas_ascend(mas); 5259 ptype = mte_node_type(mas->node); 5260 pivots = ma_pivots(mas_mn(mas), ptype); 5261 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype); 5262 mas->min = mas_safe_min(mas, pivots, pslot); 5263 mas->node = mn; 5264 mas->offset = slot; 5265 mas_wr_store_entry(&wr_mas); 5266 } 5267 5268 /* 5269 * mas_sparse_area() - Internal function. Return upper or lower limit when 5270 * searching for a gap in an empty tree. 5271 * @mas: The maple state 5272 * @min: the minimum range 5273 * @max: The maximum range 5274 * @size: The size of the gap 5275 * @fwd: Searching forward or back 5276 */ 5277 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min, 5278 unsigned long max, unsigned long size, bool fwd) 5279 { 5280 unsigned long start = 0; 5281 5282 if (!unlikely(mas_is_none(mas))) 5283 start++; 5284 /* mas_is_ptr */ 5285 5286 if (start < min) 5287 start = min; 5288 5289 if (fwd) { 5290 mas->index = start; 5291 mas->last = start + size - 1; 5292 return; 5293 } 5294 5295 mas->index = max; 5296 } 5297 5298 /* 5299 * mas_empty_area() - Get the lowest address within the range that is 5300 * sufficient for the size requested. 5301 * @mas: The maple state 5302 * @min: The lowest value of the range 5303 * @max: The highest value of the range 5304 * @size: The size needed 5305 */ 5306 int mas_empty_area(struct ma_state *mas, unsigned long min, 5307 unsigned long max, unsigned long size) 5308 { 5309 unsigned char offset; 5310 unsigned long *pivots; 5311 enum maple_type mt; 5312 5313 if (min >= max) 5314 return -EINVAL; 5315 5316 if (mas_is_start(mas)) 5317 mas_start(mas); 5318 else if (mas->offset >= 2) 5319 mas->offset -= 2; 5320 else if (!mas_skip_node(mas)) 5321 return -EBUSY; 5322 5323 /* Empty set */ 5324 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5325 mas_sparse_area(mas, min, max, size, true); 5326 return 0; 5327 } 5328 5329 /* The start of the window can only be within these values */ 5330 mas->index = min; 5331 mas->last = max; 5332 mas_awalk(mas, size); 5333 5334 if (unlikely(mas_is_err(mas))) 5335 return xa_err(mas->node); 5336 5337 offset = mas->offset; 5338 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5339 return -EBUSY; 5340 5341 mt = mte_node_type(mas->node); 5342 pivots = ma_pivots(mas_mn(mas), mt); 5343 if (offset) 5344 mas->min = pivots[offset - 1] + 1; 5345 5346 if (offset < mt_pivots[mt]) 5347 mas->max = pivots[offset]; 5348 5349 if (mas->index < mas->min) 5350 mas->index = mas->min; 5351 5352 mas->last = mas->index + size - 1; 5353 return 0; 5354 } 5355 EXPORT_SYMBOL_GPL(mas_empty_area); 5356 5357 /* 5358 * mas_empty_area_rev() - Get the highest address within the range that is 5359 * sufficient for the size requested. 5360 * @mas: The maple state 5361 * @min: The lowest value of the range 5362 * @max: The highest value of the range 5363 * @size: The size needed 5364 */ 5365 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5366 unsigned long max, unsigned long size) 5367 { 5368 struct maple_enode *last = mas->node; 5369 5370 if (min >= max) 5371 return -EINVAL; 5372 5373 if (mas_is_start(mas)) { 5374 mas_start(mas); 5375 mas->offset = mas_data_end(mas); 5376 } else if (mas->offset >= 2) { 5377 mas->offset -= 2; 5378 } else if (!mas_rewind_node(mas)) { 5379 return -EBUSY; 5380 } 5381 5382 /* Empty set. */ 5383 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5384 mas_sparse_area(mas, min, max, size, false); 5385 return 0; 5386 } 5387 5388 /* The start of the window can only be within these values. */ 5389 mas->index = min; 5390 mas->last = max; 5391 5392 while (!mas_rev_awalk(mas, size, &min, &max)) { 5393 if (last == mas->node) { 5394 if (!mas_rewind_node(mas)) 5395 return -EBUSY; 5396 } else { 5397 last = mas->node; 5398 } 5399 } 5400 5401 if (mas_is_err(mas)) 5402 return xa_err(mas->node); 5403 5404 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5405 return -EBUSY; 5406 5407 /* Trim the upper limit to the max. */ 5408 if (max <= mas->last) 5409 mas->last = max; 5410 5411 mas->index = mas->last - size + 1; 5412 return 0; 5413 } 5414 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5415 5416 static inline int mas_alloc(struct ma_state *mas, void *entry, 5417 unsigned long size, unsigned long *index) 5418 { 5419 unsigned long min; 5420 5421 mas_start(mas); 5422 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5423 mas_root_expand(mas, entry); 5424 if (mas_is_err(mas)) 5425 return xa_err(mas->node); 5426 5427 if (!mas->index) 5428 return mte_pivot(mas->node, 0); 5429 return mte_pivot(mas->node, 1); 5430 } 5431 5432 /* Must be walking a tree. */ 5433 mas_awalk(mas, size); 5434 if (mas_is_err(mas)) 5435 return xa_err(mas->node); 5436 5437 if (mas->offset == MAPLE_NODE_SLOTS) 5438 goto no_gap; 5439 5440 /* 5441 * At this point, mas->node points to the right node and we have an 5442 * offset that has a sufficient gap. 5443 */ 5444 min = mas->min; 5445 if (mas->offset) 5446 min = mte_pivot(mas->node, mas->offset - 1) + 1; 5447 5448 if (mas->index < min) 5449 mas->index = min; 5450 5451 mas_fill_gap(mas, entry, mas->offset, size, index); 5452 return 0; 5453 5454 no_gap: 5455 return -EBUSY; 5456 } 5457 5458 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min, 5459 unsigned long max, void *entry, 5460 unsigned long size, unsigned long *index) 5461 { 5462 int ret = 0; 5463 5464 ret = mas_empty_area_rev(mas, min, max, size); 5465 if (ret) 5466 return ret; 5467 5468 if (mas_is_err(mas)) 5469 return xa_err(mas->node); 5470 5471 if (mas->offset == MAPLE_NODE_SLOTS) 5472 goto no_gap; 5473 5474 mas_fill_gap(mas, entry, mas->offset, size, index); 5475 return 0; 5476 5477 no_gap: 5478 return -EBUSY; 5479 } 5480 5481 /* 5482 * mte_dead_leaves() - Mark all leaves of a node as dead. 5483 * @mas: The maple state 5484 * @slots: Pointer to the slot array 5485 * @type: The maple node type 5486 * 5487 * Must hold the write lock. 5488 * 5489 * Return: The number of leaves marked as dead. 5490 */ 5491 static inline 5492 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5493 void __rcu **slots) 5494 { 5495 struct maple_node *node; 5496 enum maple_type type; 5497 void *entry; 5498 int offset; 5499 5500 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5501 entry = mt_slot(mt, slots, offset); 5502 type = mte_node_type(entry); 5503 node = mte_to_node(entry); 5504 /* Use both node and type to catch LE & BE metadata */ 5505 if (!node || !type) 5506 break; 5507 5508 mte_set_node_dead(entry); 5509 node->type = type; 5510 rcu_assign_pointer(slots[offset], node); 5511 } 5512 5513 return offset; 5514 } 5515 5516 /** 5517 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5518 * @enode: The maple encoded node 5519 * @offset: The starting offset 5520 * 5521 * Note: This can only be used from the RCU callback context. 5522 */ 5523 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5524 { 5525 struct maple_node *node, *next; 5526 void __rcu **slots = NULL; 5527 5528 next = mte_to_node(*enode); 5529 do { 5530 *enode = ma_enode_ptr(next); 5531 node = mte_to_node(*enode); 5532 slots = ma_slots(node, node->type); 5533 next = rcu_dereference_protected(slots[offset], 5534 lock_is_held(&rcu_callback_map)); 5535 offset = 0; 5536 } while (!ma_is_leaf(next->type)); 5537 5538 return slots; 5539 } 5540 5541 /** 5542 * mt_free_walk() - Walk & free a tree in the RCU callback context 5543 * @head: The RCU head that's within the node. 5544 * 5545 * Note: This can only be used from the RCU callback context. 5546 */ 5547 static void mt_free_walk(struct rcu_head *head) 5548 { 5549 void __rcu **slots; 5550 struct maple_node *node, *start; 5551 struct maple_enode *enode; 5552 unsigned char offset; 5553 enum maple_type type; 5554 5555 node = container_of(head, struct maple_node, rcu); 5556 5557 if (ma_is_leaf(node->type)) 5558 goto free_leaf; 5559 5560 start = node; 5561 enode = mt_mk_node(node, node->type); 5562 slots = mte_dead_walk(&enode, 0); 5563 node = mte_to_node(enode); 5564 do { 5565 mt_free_bulk(node->slot_len, slots); 5566 offset = node->parent_slot + 1; 5567 enode = node->piv_parent; 5568 if (mte_to_node(enode) == node) 5569 goto free_leaf; 5570 5571 type = mte_node_type(enode); 5572 slots = ma_slots(mte_to_node(enode), type); 5573 if ((offset < mt_slots[type]) && 5574 rcu_dereference_protected(slots[offset], 5575 lock_is_held(&rcu_callback_map))) 5576 slots = mte_dead_walk(&enode, offset); 5577 node = mte_to_node(enode); 5578 } while ((node != start) || (node->slot_len < offset)); 5579 5580 slots = ma_slots(node, node->type); 5581 mt_free_bulk(node->slot_len, slots); 5582 5583 free_leaf: 5584 mt_free_rcu(&node->rcu); 5585 } 5586 5587 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5588 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5589 { 5590 struct maple_node *node; 5591 struct maple_enode *next = *enode; 5592 void __rcu **slots = NULL; 5593 enum maple_type type; 5594 unsigned char next_offset = 0; 5595 5596 do { 5597 *enode = next; 5598 node = mte_to_node(*enode); 5599 type = mte_node_type(*enode); 5600 slots = ma_slots(node, type); 5601 next = mt_slot_locked(mt, slots, next_offset); 5602 if ((mte_dead_node(next))) 5603 next = mt_slot_locked(mt, slots, ++next_offset); 5604 5605 mte_set_node_dead(*enode); 5606 node->type = type; 5607 node->piv_parent = prev; 5608 node->parent_slot = offset; 5609 offset = next_offset; 5610 next_offset = 0; 5611 prev = *enode; 5612 } while (!mte_is_leaf(next)); 5613 5614 return slots; 5615 } 5616 5617 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5618 bool free) 5619 { 5620 void __rcu **slots; 5621 struct maple_node *node = mte_to_node(enode); 5622 struct maple_enode *start; 5623 5624 if (mte_is_leaf(enode)) { 5625 node->type = mte_node_type(enode); 5626 goto free_leaf; 5627 } 5628 5629 start = enode; 5630 slots = mte_destroy_descend(&enode, mt, start, 0); 5631 node = mte_to_node(enode); // Updated in the above call. 5632 do { 5633 enum maple_type type; 5634 unsigned char offset; 5635 struct maple_enode *parent, *tmp; 5636 5637 node->slot_len = mte_dead_leaves(enode, mt, slots); 5638 if (free) 5639 mt_free_bulk(node->slot_len, slots); 5640 offset = node->parent_slot + 1; 5641 enode = node->piv_parent; 5642 if (mte_to_node(enode) == node) 5643 goto free_leaf; 5644 5645 type = mte_node_type(enode); 5646 slots = ma_slots(mte_to_node(enode), type); 5647 if (offset >= mt_slots[type]) 5648 goto next; 5649 5650 tmp = mt_slot_locked(mt, slots, offset); 5651 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5652 parent = enode; 5653 enode = tmp; 5654 slots = mte_destroy_descend(&enode, mt, parent, offset); 5655 } 5656 next: 5657 node = mte_to_node(enode); 5658 } while (start != enode); 5659 5660 node = mte_to_node(enode); 5661 node->slot_len = mte_dead_leaves(enode, mt, slots); 5662 if (free) 5663 mt_free_bulk(node->slot_len, slots); 5664 5665 free_leaf: 5666 if (free) 5667 mt_free_rcu(&node->rcu); 5668 else 5669 mt_clear_meta(mt, node, node->type); 5670 } 5671 5672 /* 5673 * mte_destroy_walk() - Free a tree or sub-tree. 5674 * @enode: the encoded maple node (maple_enode) to start 5675 * @mt: the tree to free - needed for node types. 5676 * 5677 * Must hold the write lock. 5678 */ 5679 static inline void mte_destroy_walk(struct maple_enode *enode, 5680 struct maple_tree *mt) 5681 { 5682 struct maple_node *node = mte_to_node(enode); 5683 5684 if (mt_in_rcu(mt)) { 5685 mt_destroy_walk(enode, mt, false); 5686 call_rcu(&node->rcu, mt_free_walk); 5687 } else { 5688 mt_destroy_walk(enode, mt, true); 5689 } 5690 } 5691 5692 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5693 { 5694 if (unlikely(mas_is_paused(wr_mas->mas))) 5695 mas_reset(wr_mas->mas); 5696 5697 if (!mas_is_start(wr_mas->mas)) { 5698 if (mas_is_none(wr_mas->mas)) { 5699 mas_reset(wr_mas->mas); 5700 } else { 5701 wr_mas->r_max = wr_mas->mas->max; 5702 wr_mas->type = mte_node_type(wr_mas->mas->node); 5703 if (mas_is_span_wr(wr_mas)) 5704 mas_reset(wr_mas->mas); 5705 } 5706 } 5707 } 5708 5709 /* Interface */ 5710 5711 /** 5712 * mas_store() - Store an @entry. 5713 * @mas: The maple state. 5714 * @entry: The entry to store. 5715 * 5716 * The @mas->index and @mas->last is used to set the range for the @entry. 5717 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5718 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5719 * 5720 * Return: the first entry between mas->index and mas->last or %NULL. 5721 */ 5722 void *mas_store(struct ma_state *mas, void *entry) 5723 { 5724 MA_WR_STATE(wr_mas, mas, entry); 5725 5726 trace_ma_write(__func__, mas, 0, entry); 5727 #ifdef CONFIG_DEBUG_MAPLE_TREE 5728 if (mas->index > mas->last) 5729 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry); 5730 MT_BUG_ON(mas->tree, mas->index > mas->last); 5731 if (mas->index > mas->last) { 5732 mas_set_err(mas, -EINVAL); 5733 return NULL; 5734 } 5735 5736 #endif 5737 5738 /* 5739 * Storing is the same operation as insert with the added caveat that it 5740 * can overwrite entries. Although this seems simple enough, one may 5741 * want to examine what happens if a single store operation was to 5742 * overwrite multiple entries within a self-balancing B-Tree. 5743 */ 5744 mas_wr_store_setup(&wr_mas); 5745 mas_wr_store_entry(&wr_mas); 5746 return wr_mas.content; 5747 } 5748 EXPORT_SYMBOL_GPL(mas_store); 5749 5750 /** 5751 * mas_store_gfp() - Store a value into the tree. 5752 * @mas: The maple state 5753 * @entry: The entry to store 5754 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5755 * 5756 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5757 * be allocated. 5758 */ 5759 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5760 { 5761 MA_WR_STATE(wr_mas, mas, entry); 5762 5763 mas_wr_store_setup(&wr_mas); 5764 trace_ma_write(__func__, mas, 0, entry); 5765 retry: 5766 mas_wr_store_entry(&wr_mas); 5767 if (unlikely(mas_nomem(mas, gfp))) 5768 goto retry; 5769 5770 if (unlikely(mas_is_err(mas))) 5771 return xa_err(mas->node); 5772 5773 return 0; 5774 } 5775 EXPORT_SYMBOL_GPL(mas_store_gfp); 5776 5777 /** 5778 * mas_store_prealloc() - Store a value into the tree using memory 5779 * preallocated in the maple state. 5780 * @mas: The maple state 5781 * @entry: The entry to store. 5782 */ 5783 void mas_store_prealloc(struct ma_state *mas, void *entry) 5784 { 5785 MA_WR_STATE(wr_mas, mas, entry); 5786 5787 mas_wr_store_setup(&wr_mas); 5788 trace_ma_write(__func__, mas, 0, entry); 5789 mas_wr_store_entry(&wr_mas); 5790 BUG_ON(mas_is_err(mas)); 5791 mas_destroy(mas); 5792 } 5793 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5794 5795 /** 5796 * mas_preallocate() - Preallocate enough nodes for a store operation 5797 * @mas: The maple state 5798 * @gfp: The GFP_FLAGS to use for allocations. 5799 * 5800 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5801 */ 5802 int mas_preallocate(struct ma_state *mas, gfp_t gfp) 5803 { 5804 int ret; 5805 5806 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp); 5807 mas->mas_flags |= MA_STATE_PREALLOC; 5808 if (likely(!mas_is_err(mas))) 5809 return 0; 5810 5811 mas_set_alloc_req(mas, 0); 5812 ret = xa_err(mas->node); 5813 mas_reset(mas); 5814 mas_destroy(mas); 5815 mas_reset(mas); 5816 return ret; 5817 } 5818 5819 /* 5820 * mas_destroy() - destroy a maple state. 5821 * @mas: The maple state 5822 * 5823 * Upon completion, check the left-most node and rebalance against the node to 5824 * the right if necessary. Frees any allocated nodes associated with this maple 5825 * state. 5826 */ 5827 void mas_destroy(struct ma_state *mas) 5828 { 5829 struct maple_alloc *node; 5830 unsigned long total; 5831 5832 /* 5833 * When using mas_for_each() to insert an expected number of elements, 5834 * it is possible that the number inserted is less than the expected 5835 * number. To fix an invalid final node, a check is performed here to 5836 * rebalance the previous node with the final node. 5837 */ 5838 if (mas->mas_flags & MA_STATE_REBALANCE) { 5839 unsigned char end; 5840 5841 if (mas_is_start(mas)) 5842 mas_start(mas); 5843 5844 mtree_range_walk(mas); 5845 end = mas_data_end(mas) + 1; 5846 if (end < mt_min_slot_count(mas->node) - 1) 5847 mas_destroy_rebalance(mas, end); 5848 5849 mas->mas_flags &= ~MA_STATE_REBALANCE; 5850 } 5851 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5852 5853 total = mas_allocated(mas); 5854 while (total) { 5855 node = mas->alloc; 5856 mas->alloc = node->slot[0]; 5857 if (node->node_count > 1) { 5858 size_t count = node->node_count - 1; 5859 5860 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5861 total -= count; 5862 } 5863 kmem_cache_free(maple_node_cache, node); 5864 total--; 5865 } 5866 5867 mas->alloc = NULL; 5868 } 5869 EXPORT_SYMBOL_GPL(mas_destroy); 5870 5871 /* 5872 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5873 * @mas: The maple state 5874 * @nr_entries: The number of expected entries. 5875 * 5876 * This will attempt to pre-allocate enough nodes to store the expected number 5877 * of entries. The allocations will occur using the bulk allocator interface 5878 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5879 * to ensure any unused nodes are freed. 5880 * 5881 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5882 */ 5883 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5884 { 5885 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5886 struct maple_enode *enode = mas->node; 5887 int nr_nodes; 5888 int ret; 5889 5890 /* 5891 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5892 * forking a process and duplicating the VMAs from one tree to a new 5893 * tree. When such a situation arises, it is known that the new tree is 5894 * not going to be used until the entire tree is populated. For 5895 * performance reasons, it is best to use a bulk load with RCU disabled. 5896 * This allows for optimistic splitting that favours the left and reuse 5897 * of nodes during the operation. 5898 */ 5899 5900 /* Optimize splitting for bulk insert in-order */ 5901 mas->mas_flags |= MA_STATE_BULK; 5902 5903 /* 5904 * Avoid overflow, assume a gap between each entry and a trailing null. 5905 * If this is wrong, it just means allocation can happen during 5906 * insertion of entries. 5907 */ 5908 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5909 if (!mt_is_alloc(mas->tree)) 5910 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5911 5912 /* Leaves; reduce slots to keep space for expansion */ 5913 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5914 /* Internal nodes */ 5915 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5916 /* Add working room for split (2 nodes) + new parents */ 5917 mas_node_count(mas, nr_nodes + 3); 5918 5919 /* Detect if allocations run out */ 5920 mas->mas_flags |= MA_STATE_PREALLOC; 5921 5922 if (!mas_is_err(mas)) 5923 return 0; 5924 5925 ret = xa_err(mas->node); 5926 mas->node = enode; 5927 mas_destroy(mas); 5928 return ret; 5929 5930 } 5931 EXPORT_SYMBOL_GPL(mas_expected_entries); 5932 5933 /** 5934 * mas_next() - Get the next entry. 5935 * @mas: The maple state 5936 * @max: The maximum index to check. 5937 * 5938 * Returns the next entry after @mas->index. 5939 * Must hold rcu_read_lock or the write lock. 5940 * Can return the zero entry. 5941 * 5942 * Return: The next entry or %NULL 5943 */ 5944 void *mas_next(struct ma_state *mas, unsigned long max) 5945 { 5946 if (mas_is_none(mas) || mas_is_paused(mas)) 5947 mas->node = MAS_START; 5948 5949 if (mas_is_start(mas)) 5950 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5951 5952 if (mas_is_ptr(mas)) { 5953 if (!mas->index) { 5954 mas->index = 1; 5955 mas->last = ULONG_MAX; 5956 } 5957 return NULL; 5958 } 5959 5960 if (mas->last == ULONG_MAX) 5961 return NULL; 5962 5963 /* Retries on dead nodes handled by mas_next_entry */ 5964 return mas_next_entry(mas, max); 5965 } 5966 EXPORT_SYMBOL_GPL(mas_next); 5967 5968 /** 5969 * mt_next() - get the next value in the maple tree 5970 * @mt: The maple tree 5971 * @index: The start index 5972 * @max: The maximum index to check 5973 * 5974 * Return: The entry at @index or higher, or %NULL if nothing is found. 5975 */ 5976 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5977 { 5978 void *entry = NULL; 5979 MA_STATE(mas, mt, index, index); 5980 5981 rcu_read_lock(); 5982 entry = mas_next(&mas, max); 5983 rcu_read_unlock(); 5984 return entry; 5985 } 5986 EXPORT_SYMBOL_GPL(mt_next); 5987 5988 /** 5989 * mas_prev() - Get the previous entry 5990 * @mas: The maple state 5991 * @min: The minimum value to check. 5992 * 5993 * Must hold rcu_read_lock or the write lock. 5994 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5995 * searchable nodes. 5996 * 5997 * Return: the previous value or %NULL. 5998 */ 5999 void *mas_prev(struct ma_state *mas, unsigned long min) 6000 { 6001 if (!mas->index) { 6002 /* Nothing comes before 0 */ 6003 mas->last = 0; 6004 mas->node = MAS_NONE; 6005 return NULL; 6006 } 6007 6008 if (unlikely(mas_is_ptr(mas))) 6009 return NULL; 6010 6011 if (mas_is_none(mas) || mas_is_paused(mas)) 6012 mas->node = MAS_START; 6013 6014 if (mas_is_start(mas)) { 6015 mas_walk(mas); 6016 if (!mas->index) 6017 return NULL; 6018 } 6019 6020 if (mas_is_ptr(mas)) { 6021 if (!mas->index) { 6022 mas->last = 0; 6023 return NULL; 6024 } 6025 6026 mas->index = mas->last = 0; 6027 return mas_root_locked(mas); 6028 } 6029 return mas_prev_entry(mas, min); 6030 } 6031 EXPORT_SYMBOL_GPL(mas_prev); 6032 6033 /** 6034 * mt_prev() - get the previous value in the maple tree 6035 * @mt: The maple tree 6036 * @index: The start index 6037 * @min: The minimum index to check 6038 * 6039 * Return: The entry at @index or lower, or %NULL if nothing is found. 6040 */ 6041 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 6042 { 6043 void *entry = NULL; 6044 MA_STATE(mas, mt, index, index); 6045 6046 rcu_read_lock(); 6047 entry = mas_prev(&mas, min); 6048 rcu_read_unlock(); 6049 return entry; 6050 } 6051 EXPORT_SYMBOL_GPL(mt_prev); 6052 6053 /** 6054 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 6055 * @mas: The maple state to pause 6056 * 6057 * Some users need to pause a walk and drop the lock they're holding in 6058 * order to yield to a higher priority thread or carry out an operation 6059 * on an entry. Those users should call this function before they drop 6060 * the lock. It resets the @mas to be suitable for the next iteration 6061 * of the loop after the user has reacquired the lock. If most entries 6062 * found during a walk require you to call mas_pause(), the mt_for_each() 6063 * iterator may be more appropriate. 6064 * 6065 */ 6066 void mas_pause(struct ma_state *mas) 6067 { 6068 mas->node = MAS_PAUSE; 6069 } 6070 EXPORT_SYMBOL_GPL(mas_pause); 6071 6072 /** 6073 * mas_find() - On the first call, find the entry at or after mas->index up to 6074 * %max. Otherwise, find the entry after mas->index. 6075 * @mas: The maple state 6076 * @max: The maximum value to check. 6077 * 6078 * Must hold rcu_read_lock or the write lock. 6079 * If an entry exists, last and index are updated accordingly. 6080 * May set @mas->node to MAS_NONE. 6081 * 6082 * Return: The entry or %NULL. 6083 */ 6084 void *mas_find(struct ma_state *mas, unsigned long max) 6085 { 6086 if (unlikely(mas_is_paused(mas))) { 6087 if (unlikely(mas->last == ULONG_MAX)) { 6088 mas->node = MAS_NONE; 6089 return NULL; 6090 } 6091 mas->node = MAS_START; 6092 mas->index = ++mas->last; 6093 } 6094 6095 if (unlikely(mas_is_none(mas))) 6096 mas->node = MAS_START; 6097 6098 if (unlikely(mas_is_start(mas))) { 6099 /* First run or continue */ 6100 void *entry; 6101 6102 if (mas->index > max) 6103 return NULL; 6104 6105 entry = mas_walk(mas); 6106 if (entry) 6107 return entry; 6108 } 6109 6110 if (unlikely(!mas_searchable(mas))) 6111 return NULL; 6112 6113 /* Retries on dead nodes handled by mas_next_entry */ 6114 return mas_next_entry(mas, max); 6115 } 6116 EXPORT_SYMBOL_GPL(mas_find); 6117 6118 /** 6119 * mas_find_rev: On the first call, find the first non-null entry at or below 6120 * mas->index down to %min. Otherwise find the first non-null entry below 6121 * mas->index down to %min. 6122 * @mas: The maple state 6123 * @min: The minimum value to check. 6124 * 6125 * Must hold rcu_read_lock or the write lock. 6126 * If an entry exists, last and index are updated accordingly. 6127 * May set @mas->node to MAS_NONE. 6128 * 6129 * Return: The entry or %NULL. 6130 */ 6131 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6132 { 6133 if (unlikely(mas_is_paused(mas))) { 6134 if (unlikely(mas->last == ULONG_MAX)) { 6135 mas->node = MAS_NONE; 6136 return NULL; 6137 } 6138 mas->node = MAS_START; 6139 mas->last = --mas->index; 6140 } 6141 6142 if (unlikely(mas_is_start(mas))) { 6143 /* First run or continue */ 6144 void *entry; 6145 6146 if (mas->index < min) 6147 return NULL; 6148 6149 entry = mas_walk(mas); 6150 if (entry) 6151 return entry; 6152 } 6153 6154 if (unlikely(!mas_searchable(mas))) 6155 return NULL; 6156 6157 if (mas->index < min) 6158 return NULL; 6159 6160 /* Retries on dead nodes handled by mas_prev_entry */ 6161 return mas_prev_entry(mas, min); 6162 } 6163 EXPORT_SYMBOL_GPL(mas_find_rev); 6164 6165 /** 6166 * mas_erase() - Find the range in which index resides and erase the entire 6167 * range. 6168 * @mas: The maple state 6169 * 6170 * Must hold the write lock. 6171 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6172 * erases that range. 6173 * 6174 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6175 */ 6176 void *mas_erase(struct ma_state *mas) 6177 { 6178 void *entry; 6179 MA_WR_STATE(wr_mas, mas, NULL); 6180 6181 if (mas_is_none(mas) || mas_is_paused(mas)) 6182 mas->node = MAS_START; 6183 6184 /* Retry unnecessary when holding the write lock. */ 6185 entry = mas_state_walk(mas); 6186 if (!entry) 6187 return NULL; 6188 6189 write_retry: 6190 /* Must reset to ensure spanning writes of last slot are detected */ 6191 mas_reset(mas); 6192 mas_wr_store_setup(&wr_mas); 6193 mas_wr_store_entry(&wr_mas); 6194 if (mas_nomem(mas, GFP_KERNEL)) 6195 goto write_retry; 6196 6197 return entry; 6198 } 6199 EXPORT_SYMBOL_GPL(mas_erase); 6200 6201 /** 6202 * mas_nomem() - Check if there was an error allocating and do the allocation 6203 * if necessary If there are allocations, then free them. 6204 * @mas: The maple state 6205 * @gfp: The GFP_FLAGS to use for allocations 6206 * Return: true on allocation, false otherwise. 6207 */ 6208 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6209 __must_hold(mas->tree->lock) 6210 { 6211 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6212 mas_destroy(mas); 6213 return false; 6214 } 6215 6216 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6217 mtree_unlock(mas->tree); 6218 mas_alloc_nodes(mas, gfp); 6219 mtree_lock(mas->tree); 6220 } else { 6221 mas_alloc_nodes(mas, gfp); 6222 } 6223 6224 if (!mas_allocated(mas)) 6225 return false; 6226 6227 mas->node = MAS_START; 6228 return true; 6229 } 6230 6231 void __init maple_tree_init(void) 6232 { 6233 maple_node_cache = kmem_cache_create("maple_node", 6234 sizeof(struct maple_node), sizeof(struct maple_node), 6235 SLAB_PANIC, NULL); 6236 } 6237 6238 /** 6239 * mtree_load() - Load a value stored in a maple tree 6240 * @mt: The maple tree 6241 * @index: The index to load 6242 * 6243 * Return: the entry or %NULL 6244 */ 6245 void *mtree_load(struct maple_tree *mt, unsigned long index) 6246 { 6247 MA_STATE(mas, mt, index, index); 6248 void *entry; 6249 6250 trace_ma_read(__func__, &mas); 6251 rcu_read_lock(); 6252 retry: 6253 entry = mas_start(&mas); 6254 if (unlikely(mas_is_none(&mas))) 6255 goto unlock; 6256 6257 if (unlikely(mas_is_ptr(&mas))) { 6258 if (index) 6259 entry = NULL; 6260 6261 goto unlock; 6262 } 6263 6264 entry = mtree_lookup_walk(&mas); 6265 if (!entry && unlikely(mas_is_start(&mas))) 6266 goto retry; 6267 unlock: 6268 rcu_read_unlock(); 6269 if (xa_is_zero(entry)) 6270 return NULL; 6271 6272 return entry; 6273 } 6274 EXPORT_SYMBOL(mtree_load); 6275 6276 /** 6277 * mtree_store_range() - Store an entry at a given range. 6278 * @mt: The maple tree 6279 * @index: The start of the range 6280 * @last: The end of the range 6281 * @entry: The entry to store 6282 * @gfp: The GFP_FLAGS to use for allocations 6283 * 6284 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6285 * be allocated. 6286 */ 6287 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6288 unsigned long last, void *entry, gfp_t gfp) 6289 { 6290 MA_STATE(mas, mt, index, last); 6291 MA_WR_STATE(wr_mas, &mas, entry); 6292 6293 trace_ma_write(__func__, &mas, 0, entry); 6294 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6295 return -EINVAL; 6296 6297 if (index > last) 6298 return -EINVAL; 6299 6300 mtree_lock(mt); 6301 retry: 6302 mas_wr_store_entry(&wr_mas); 6303 if (mas_nomem(&mas, gfp)) 6304 goto retry; 6305 6306 mtree_unlock(mt); 6307 if (mas_is_err(&mas)) 6308 return xa_err(mas.node); 6309 6310 return 0; 6311 } 6312 EXPORT_SYMBOL(mtree_store_range); 6313 6314 /** 6315 * mtree_store() - Store an entry at a given index. 6316 * @mt: The maple tree 6317 * @index: The index to store the value 6318 * @entry: The entry to store 6319 * @gfp: The GFP_FLAGS to use for allocations 6320 * 6321 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6322 * be allocated. 6323 */ 6324 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6325 gfp_t gfp) 6326 { 6327 return mtree_store_range(mt, index, index, entry, gfp); 6328 } 6329 EXPORT_SYMBOL(mtree_store); 6330 6331 /** 6332 * mtree_insert_range() - Insert an entry at a give range if there is no value. 6333 * @mt: The maple tree 6334 * @first: The start of the range 6335 * @last: The end of the range 6336 * @entry: The entry to store 6337 * @gfp: The GFP_FLAGS to use for allocations. 6338 * 6339 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6340 * request, -ENOMEM if memory could not be allocated. 6341 */ 6342 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6343 unsigned long last, void *entry, gfp_t gfp) 6344 { 6345 MA_STATE(ms, mt, first, last); 6346 6347 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6348 return -EINVAL; 6349 6350 if (first > last) 6351 return -EINVAL; 6352 6353 mtree_lock(mt); 6354 retry: 6355 mas_insert(&ms, entry); 6356 if (mas_nomem(&ms, gfp)) 6357 goto retry; 6358 6359 mtree_unlock(mt); 6360 if (mas_is_err(&ms)) 6361 return xa_err(ms.node); 6362 6363 return 0; 6364 } 6365 EXPORT_SYMBOL(mtree_insert_range); 6366 6367 /** 6368 * mtree_insert() - Insert an entry at a give index if there is no value. 6369 * @mt: The maple tree 6370 * @index : The index to store the value 6371 * @entry: The entry to store 6372 * @gfp: The FGP_FLAGS to use for allocations. 6373 * 6374 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6375 * request, -ENOMEM if memory could not be allocated. 6376 */ 6377 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6378 gfp_t gfp) 6379 { 6380 return mtree_insert_range(mt, index, index, entry, gfp); 6381 } 6382 EXPORT_SYMBOL(mtree_insert); 6383 6384 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6385 void *entry, unsigned long size, unsigned long min, 6386 unsigned long max, gfp_t gfp) 6387 { 6388 int ret = 0; 6389 6390 MA_STATE(mas, mt, min, max - size); 6391 if (!mt_is_alloc(mt)) 6392 return -EINVAL; 6393 6394 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6395 return -EINVAL; 6396 6397 if (min > max) 6398 return -EINVAL; 6399 6400 if (max < size) 6401 return -EINVAL; 6402 6403 if (!size) 6404 return -EINVAL; 6405 6406 mtree_lock(mt); 6407 retry: 6408 mas.offset = 0; 6409 mas.index = min; 6410 mas.last = max - size; 6411 ret = mas_alloc(&mas, entry, size, startp); 6412 if (mas_nomem(&mas, gfp)) 6413 goto retry; 6414 6415 mtree_unlock(mt); 6416 return ret; 6417 } 6418 EXPORT_SYMBOL(mtree_alloc_range); 6419 6420 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6421 void *entry, unsigned long size, unsigned long min, 6422 unsigned long max, gfp_t gfp) 6423 { 6424 int ret = 0; 6425 6426 MA_STATE(mas, mt, min, max - size); 6427 if (!mt_is_alloc(mt)) 6428 return -EINVAL; 6429 6430 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6431 return -EINVAL; 6432 6433 if (min >= max) 6434 return -EINVAL; 6435 6436 if (max < size - 1) 6437 return -EINVAL; 6438 6439 if (!size) 6440 return -EINVAL; 6441 6442 mtree_lock(mt); 6443 retry: 6444 ret = mas_rev_alloc(&mas, min, max, entry, size, startp); 6445 if (mas_nomem(&mas, gfp)) 6446 goto retry; 6447 6448 mtree_unlock(mt); 6449 return ret; 6450 } 6451 EXPORT_SYMBOL(mtree_alloc_rrange); 6452 6453 /** 6454 * mtree_erase() - Find an index and erase the entire range. 6455 * @mt: The maple tree 6456 * @index: The index to erase 6457 * 6458 * Erasing is the same as a walk to an entry then a store of a NULL to that 6459 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6460 * 6461 * Return: The entry stored at the @index or %NULL 6462 */ 6463 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6464 { 6465 void *entry = NULL; 6466 6467 MA_STATE(mas, mt, index, index); 6468 trace_ma_op(__func__, &mas); 6469 6470 mtree_lock(mt); 6471 entry = mas_erase(&mas); 6472 mtree_unlock(mt); 6473 6474 return entry; 6475 } 6476 EXPORT_SYMBOL(mtree_erase); 6477 6478 /** 6479 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6480 * @mt: The maple tree 6481 * 6482 * Note: Does not handle locking. 6483 */ 6484 void __mt_destroy(struct maple_tree *mt) 6485 { 6486 void *root = mt_root_locked(mt); 6487 6488 rcu_assign_pointer(mt->ma_root, NULL); 6489 if (xa_is_node(root)) 6490 mte_destroy_walk(root, mt); 6491 6492 mt->ma_flags = 0; 6493 } 6494 EXPORT_SYMBOL_GPL(__mt_destroy); 6495 6496 /** 6497 * mtree_destroy() - Destroy a maple tree 6498 * @mt: The maple tree 6499 * 6500 * Frees all resources used by the tree. Handles locking. 6501 */ 6502 void mtree_destroy(struct maple_tree *mt) 6503 { 6504 mtree_lock(mt); 6505 __mt_destroy(mt); 6506 mtree_unlock(mt); 6507 } 6508 EXPORT_SYMBOL(mtree_destroy); 6509 6510 /** 6511 * mt_find() - Search from the start up until an entry is found. 6512 * @mt: The maple tree 6513 * @index: Pointer which contains the start location of the search 6514 * @max: The maximum value to check 6515 * 6516 * Handles locking. @index will be incremented to one beyond the range. 6517 * 6518 * Return: The entry at or after the @index or %NULL 6519 */ 6520 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6521 { 6522 MA_STATE(mas, mt, *index, *index); 6523 void *entry; 6524 #ifdef CONFIG_DEBUG_MAPLE_TREE 6525 unsigned long copy = *index; 6526 #endif 6527 6528 trace_ma_read(__func__, &mas); 6529 6530 if ((*index) > max) 6531 return NULL; 6532 6533 rcu_read_lock(); 6534 retry: 6535 entry = mas_state_walk(&mas); 6536 if (mas_is_start(&mas)) 6537 goto retry; 6538 6539 if (unlikely(xa_is_zero(entry))) 6540 entry = NULL; 6541 6542 if (entry) 6543 goto unlock; 6544 6545 while (mas_searchable(&mas) && (mas.index < max)) { 6546 entry = mas_next_entry(&mas, max); 6547 if (likely(entry && !xa_is_zero(entry))) 6548 break; 6549 } 6550 6551 if (unlikely(xa_is_zero(entry))) 6552 entry = NULL; 6553 unlock: 6554 rcu_read_unlock(); 6555 if (likely(entry)) { 6556 *index = mas.last + 1; 6557 #ifdef CONFIG_DEBUG_MAPLE_TREE 6558 if ((*index) && (*index) <= copy) 6559 pr_err("index not increased! %lx <= %lx\n", 6560 *index, copy); 6561 MT_BUG_ON(mt, (*index) && ((*index) <= copy)); 6562 #endif 6563 } 6564 6565 return entry; 6566 } 6567 EXPORT_SYMBOL(mt_find); 6568 6569 /** 6570 * mt_find_after() - Search from the start up until an entry is found. 6571 * @mt: The maple tree 6572 * @index: Pointer which contains the start location of the search 6573 * @max: The maximum value to check 6574 * 6575 * Handles locking, detects wrapping on index == 0 6576 * 6577 * Return: The entry at or after the @index or %NULL 6578 */ 6579 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6580 unsigned long max) 6581 { 6582 if (!(*index)) 6583 return NULL; 6584 6585 return mt_find(mt, index, max); 6586 } 6587 EXPORT_SYMBOL(mt_find_after); 6588 6589 #ifdef CONFIG_DEBUG_MAPLE_TREE 6590 atomic_t maple_tree_tests_run; 6591 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6592 atomic_t maple_tree_tests_passed; 6593 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6594 6595 #ifndef __KERNEL__ 6596 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6597 void mt_set_non_kernel(unsigned int val) 6598 { 6599 kmem_cache_set_non_kernel(maple_node_cache, val); 6600 } 6601 6602 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 6603 unsigned long mt_get_alloc_size(void) 6604 { 6605 return kmem_cache_get_alloc(maple_node_cache); 6606 } 6607 6608 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 6609 void mt_zero_nr_tallocated(void) 6610 { 6611 kmem_cache_zero_nr_tallocated(maple_node_cache); 6612 } 6613 6614 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 6615 unsigned int mt_nr_tallocated(void) 6616 { 6617 return kmem_cache_nr_tallocated(maple_node_cache); 6618 } 6619 6620 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 6621 unsigned int mt_nr_allocated(void) 6622 { 6623 return kmem_cache_nr_allocated(maple_node_cache); 6624 } 6625 6626 /* 6627 * mas_dead_node() - Check if the maple state is pointing to a dead node. 6628 * @mas: The maple state 6629 * @index: The index to restore in @mas. 6630 * 6631 * Used in test code. 6632 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise. 6633 */ 6634 static inline int mas_dead_node(struct ma_state *mas, unsigned long index) 6635 { 6636 if (unlikely(!mas_searchable(mas) || mas_is_start(mas))) 6637 return 0; 6638 6639 if (likely(!mte_dead_node(mas->node))) 6640 return 0; 6641 6642 mas_rewalk(mas, index); 6643 return 1; 6644 } 6645 6646 void mt_cache_shrink(void) 6647 { 6648 } 6649 #else 6650 /* 6651 * mt_cache_shrink() - For testing, don't use this. 6652 * 6653 * Certain testcases can trigger an OOM when combined with other memory 6654 * debugging configuration options. This function is used to reduce the 6655 * possibility of an out of memory even due to kmem_cache objects remaining 6656 * around for longer than usual. 6657 */ 6658 void mt_cache_shrink(void) 6659 { 6660 kmem_cache_shrink(maple_node_cache); 6661 6662 } 6663 EXPORT_SYMBOL_GPL(mt_cache_shrink); 6664 6665 #endif /* not defined __KERNEL__ */ 6666 /* 6667 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 6668 * @mas: The maple state 6669 * @offset: The offset into the slot array to fetch. 6670 * 6671 * Return: The entry stored at @offset. 6672 */ 6673 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 6674 unsigned char offset) 6675 { 6676 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 6677 offset); 6678 } 6679 6680 6681 /* 6682 * mas_first_entry() - Go the first leaf and find the first entry. 6683 * @mas: the maple state. 6684 * @limit: the maximum index to check. 6685 * @*r_start: Pointer to set to the range start. 6686 * 6687 * Sets mas->offset to the offset of the entry, r_start to the range minimum. 6688 * 6689 * Return: The first entry or MAS_NONE. 6690 */ 6691 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn, 6692 unsigned long limit, enum maple_type mt) 6693 6694 { 6695 unsigned long max; 6696 unsigned long *pivots; 6697 void __rcu **slots; 6698 void *entry = NULL; 6699 6700 mas->index = mas->min; 6701 if (mas->index > limit) 6702 goto none; 6703 6704 max = mas->max; 6705 mas->offset = 0; 6706 while (likely(!ma_is_leaf(mt))) { 6707 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6708 slots = ma_slots(mn, mt); 6709 entry = mas_slot(mas, slots, 0); 6710 pivots = ma_pivots(mn, mt); 6711 if (unlikely(ma_dead_node(mn))) 6712 return NULL; 6713 max = pivots[0]; 6714 mas->node = entry; 6715 mn = mas_mn(mas); 6716 mt = mte_node_type(mas->node); 6717 } 6718 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6719 6720 mas->max = max; 6721 slots = ma_slots(mn, mt); 6722 entry = mas_slot(mas, slots, 0); 6723 if (unlikely(ma_dead_node(mn))) 6724 return NULL; 6725 6726 /* Slot 0 or 1 must be set */ 6727 if (mas->index > limit) 6728 goto none; 6729 6730 if (likely(entry)) 6731 return entry; 6732 6733 mas->offset = 1; 6734 entry = mas_slot(mas, slots, 1); 6735 pivots = ma_pivots(mn, mt); 6736 if (unlikely(ma_dead_node(mn))) 6737 return NULL; 6738 6739 mas->index = pivots[0] + 1; 6740 if (mas->index > limit) 6741 goto none; 6742 6743 if (likely(entry)) 6744 return entry; 6745 6746 none: 6747 if (likely(!ma_dead_node(mn))) 6748 mas->node = MAS_NONE; 6749 return NULL; 6750 } 6751 6752 /* Depth first search, post-order */ 6753 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 6754 { 6755 6756 struct maple_enode *p = MAS_NONE, *mn = mas->node; 6757 unsigned long p_min, p_max; 6758 6759 mas_next_node(mas, mas_mn(mas), max); 6760 if (!mas_is_none(mas)) 6761 return; 6762 6763 if (mte_is_root(mn)) 6764 return; 6765 6766 mas->node = mn; 6767 mas_ascend(mas); 6768 while (mas->node != MAS_NONE) { 6769 p = mas->node; 6770 p_min = mas->min; 6771 p_max = mas->max; 6772 mas_prev_node(mas, 0); 6773 } 6774 6775 if (p == MAS_NONE) 6776 return; 6777 6778 mas->node = p; 6779 mas->max = p_max; 6780 mas->min = p_min; 6781 } 6782 6783 /* Tree validations */ 6784 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6785 unsigned long min, unsigned long max, unsigned int depth); 6786 static void mt_dump_range(unsigned long min, unsigned long max, 6787 unsigned int depth) 6788 { 6789 static const char spaces[] = " "; 6790 6791 if (min == max) 6792 pr_info("%.*s%lu: ", depth * 2, spaces, min); 6793 else 6794 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 6795 } 6796 6797 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 6798 unsigned int depth) 6799 { 6800 mt_dump_range(min, max, depth); 6801 6802 if (xa_is_value(entry)) 6803 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 6804 xa_to_value(entry), entry); 6805 else if (xa_is_zero(entry)) 6806 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 6807 else if (mt_is_reserved(entry)) 6808 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 6809 else 6810 pr_cont("%p\n", entry); 6811 } 6812 6813 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 6814 unsigned long min, unsigned long max, unsigned int depth) 6815 { 6816 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 6817 bool leaf = mte_is_leaf(entry); 6818 unsigned long first = min; 6819 int i; 6820 6821 pr_cont(" contents: "); 6822 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) 6823 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6824 pr_cont("%p\n", node->slot[i]); 6825 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 6826 unsigned long last = max; 6827 6828 if (i < (MAPLE_RANGE64_SLOTS - 1)) 6829 last = node->pivot[i]; 6830 else if (!node->slot[i] && max != mt_node_max(entry)) 6831 break; 6832 if (last == 0 && i > 0) 6833 break; 6834 if (leaf) 6835 mt_dump_entry(mt_slot(mt, node->slot, i), 6836 first, last, depth + 1); 6837 else if (node->slot[i]) 6838 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6839 first, last, depth + 1); 6840 6841 if (last == max) 6842 break; 6843 if (last > max) { 6844 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6845 node, last, max, i); 6846 break; 6847 } 6848 first = last + 1; 6849 } 6850 } 6851 6852 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 6853 unsigned long min, unsigned long max, unsigned int depth) 6854 { 6855 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 6856 bool leaf = mte_is_leaf(entry); 6857 unsigned long first = min; 6858 int i; 6859 6860 pr_cont(" contents: "); 6861 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) 6862 pr_cont("%lu ", node->gap[i]); 6863 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 6864 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) 6865 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6866 pr_cont("%p\n", node->slot[i]); 6867 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 6868 unsigned long last = max; 6869 6870 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 6871 last = node->pivot[i]; 6872 else if (!node->slot[i]) 6873 break; 6874 if (last == 0 && i > 0) 6875 break; 6876 if (leaf) 6877 mt_dump_entry(mt_slot(mt, node->slot, i), 6878 first, last, depth + 1); 6879 else if (node->slot[i]) 6880 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6881 first, last, depth + 1); 6882 6883 if (last == max) 6884 break; 6885 if (last > max) { 6886 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6887 node, last, max, i); 6888 break; 6889 } 6890 first = last + 1; 6891 } 6892 } 6893 6894 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6895 unsigned long min, unsigned long max, unsigned int depth) 6896 { 6897 struct maple_node *node = mte_to_node(entry); 6898 unsigned int type = mte_node_type(entry); 6899 unsigned int i; 6900 6901 mt_dump_range(min, max, depth); 6902 6903 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 6904 node ? node->parent : NULL); 6905 switch (type) { 6906 case maple_dense: 6907 pr_cont("\n"); 6908 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 6909 if (min + i > max) 6910 pr_cont("OUT OF RANGE: "); 6911 mt_dump_entry(mt_slot(mt, node->slot, i), 6912 min + i, min + i, depth); 6913 } 6914 break; 6915 case maple_leaf_64: 6916 case maple_range_64: 6917 mt_dump_range64(mt, entry, min, max, depth); 6918 break; 6919 case maple_arange_64: 6920 mt_dump_arange64(mt, entry, min, max, depth); 6921 break; 6922 6923 default: 6924 pr_cont(" UNKNOWN TYPE\n"); 6925 } 6926 } 6927 6928 void mt_dump(const struct maple_tree *mt) 6929 { 6930 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 6931 6932 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 6933 mt, mt->ma_flags, mt_height(mt), entry); 6934 if (!xa_is_node(entry)) 6935 mt_dump_entry(entry, 0, 0, 0); 6936 else if (entry) 6937 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0); 6938 } 6939 EXPORT_SYMBOL_GPL(mt_dump); 6940 6941 /* 6942 * Calculate the maximum gap in a node and check if that's what is reported in 6943 * the parent (unless root). 6944 */ 6945 static void mas_validate_gaps(struct ma_state *mas) 6946 { 6947 struct maple_enode *mte = mas->node; 6948 struct maple_node *p_mn; 6949 unsigned long gap = 0, max_gap = 0; 6950 unsigned long p_end, p_start = mas->min; 6951 unsigned char p_slot; 6952 unsigned long *gaps = NULL; 6953 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte)); 6954 int i; 6955 6956 if (ma_is_dense(mte_node_type(mte))) { 6957 for (i = 0; i < mt_slot_count(mte); i++) { 6958 if (mas_get_slot(mas, i)) { 6959 if (gap > max_gap) 6960 max_gap = gap; 6961 gap = 0; 6962 continue; 6963 } 6964 gap++; 6965 } 6966 goto counted; 6967 } 6968 6969 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte)); 6970 for (i = 0; i < mt_slot_count(mte); i++) { 6971 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte)); 6972 6973 if (!gaps) { 6974 if (mas_get_slot(mas, i)) { 6975 gap = 0; 6976 goto not_empty; 6977 } 6978 6979 gap += p_end - p_start + 1; 6980 } else { 6981 void *entry = mas_get_slot(mas, i); 6982 6983 gap = gaps[i]; 6984 if (!entry) { 6985 if (gap != p_end - p_start + 1) { 6986 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n", 6987 mas_mn(mas), i, 6988 mas_get_slot(mas, i), gap, 6989 p_end, p_start); 6990 mt_dump(mas->tree); 6991 6992 MT_BUG_ON(mas->tree, 6993 gap != p_end - p_start + 1); 6994 } 6995 } else { 6996 if (gap > p_end - p_start + 1) { 6997 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 6998 mas_mn(mas), i, gap, p_end, p_start, 6999 p_end - p_start + 1); 7000 MT_BUG_ON(mas->tree, 7001 gap > p_end - p_start + 1); 7002 } 7003 } 7004 } 7005 7006 if (gap > max_gap) 7007 max_gap = gap; 7008 not_empty: 7009 p_start = p_end + 1; 7010 if (p_end >= mas->max) 7011 break; 7012 } 7013 7014 counted: 7015 if (mte_is_root(mte)) 7016 return; 7017 7018 p_slot = mte_parent_slot(mas->node); 7019 p_mn = mte_parent(mte); 7020 MT_BUG_ON(mas->tree, max_gap > mas->max); 7021 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) { 7022 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 7023 mt_dump(mas->tree); 7024 } 7025 7026 MT_BUG_ON(mas->tree, 7027 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap); 7028 } 7029 7030 static void mas_validate_parent_slot(struct ma_state *mas) 7031 { 7032 struct maple_node *parent; 7033 struct maple_enode *node; 7034 enum maple_type p_type = mas_parent_enum(mas, mas->node); 7035 unsigned char p_slot = mte_parent_slot(mas->node); 7036 void __rcu **slots; 7037 int i; 7038 7039 if (mte_is_root(mas->node)) 7040 return; 7041 7042 parent = mte_parent(mas->node); 7043 slots = ma_slots(parent, p_type); 7044 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 7045 7046 /* Check prev/next parent slot for duplicate node entry */ 7047 7048 for (i = 0; i < mt_slots[p_type]; i++) { 7049 node = mas_slot(mas, slots, i); 7050 if (i == p_slot) { 7051 if (node != mas->node) 7052 pr_err("parent %p[%u] does not have %p\n", 7053 parent, i, mas_mn(mas)); 7054 MT_BUG_ON(mas->tree, node != mas->node); 7055 } else if (node == mas->node) { 7056 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 7057 mas_mn(mas), parent, i, p_slot); 7058 MT_BUG_ON(mas->tree, node == mas->node); 7059 } 7060 } 7061 } 7062 7063 static void mas_validate_child_slot(struct ma_state *mas) 7064 { 7065 enum maple_type type = mte_node_type(mas->node); 7066 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7067 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 7068 struct maple_enode *child; 7069 unsigned char i; 7070 7071 if (mte_is_leaf(mas->node)) 7072 return; 7073 7074 for (i = 0; i < mt_slots[type]; i++) { 7075 child = mas_slot(mas, slots, i); 7076 if (!pivots[i] || pivots[i] == mas->max) 7077 break; 7078 7079 if (!child) 7080 break; 7081 7082 if (mte_parent_slot(child) != i) { 7083 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7084 mas_mn(mas), i, mte_to_node(child), 7085 mte_parent_slot(child)); 7086 MT_BUG_ON(mas->tree, 1); 7087 } 7088 7089 if (mte_parent(child) != mte_to_node(mas->node)) { 7090 pr_err("child %p has parent %p not %p\n", 7091 mte_to_node(child), mte_parent(child), 7092 mte_to_node(mas->node)); 7093 MT_BUG_ON(mas->tree, 1); 7094 } 7095 } 7096 } 7097 7098 /* 7099 * Validate all pivots are within mas->min and mas->max. 7100 */ 7101 static void mas_validate_limits(struct ma_state *mas) 7102 { 7103 int i; 7104 unsigned long prev_piv = 0; 7105 enum maple_type type = mte_node_type(mas->node); 7106 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7107 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7108 7109 /* all limits are fine here. */ 7110 if (mte_is_root(mas->node)) 7111 return; 7112 7113 for (i = 0; i < mt_slots[type]; i++) { 7114 unsigned long piv; 7115 7116 piv = mas_safe_pivot(mas, pivots, i, type); 7117 7118 if (!piv && (i != 0)) 7119 break; 7120 7121 if (!mte_is_leaf(mas->node)) { 7122 void *entry = mas_slot(mas, slots, i); 7123 7124 if (!entry) 7125 pr_err("%p[%u] cannot be null\n", 7126 mas_mn(mas), i); 7127 7128 MT_BUG_ON(mas->tree, !entry); 7129 } 7130 7131 if (prev_piv > piv) { 7132 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7133 mas_mn(mas), i, piv, prev_piv); 7134 MT_BUG_ON(mas->tree, piv < prev_piv); 7135 } 7136 7137 if (piv < mas->min) { 7138 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7139 piv, mas->min); 7140 MT_BUG_ON(mas->tree, piv < mas->min); 7141 } 7142 if (piv > mas->max) { 7143 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7144 piv, mas->max); 7145 MT_BUG_ON(mas->tree, piv > mas->max); 7146 } 7147 prev_piv = piv; 7148 if (piv == mas->max) 7149 break; 7150 } 7151 for (i += 1; i < mt_slots[type]; i++) { 7152 void *entry = mas_slot(mas, slots, i); 7153 7154 if (entry && (i != mt_slots[type] - 1)) { 7155 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7156 i, entry); 7157 MT_BUG_ON(mas->tree, entry != NULL); 7158 } 7159 7160 if (i < mt_pivots[type]) { 7161 unsigned long piv = pivots[i]; 7162 7163 if (!piv) 7164 continue; 7165 7166 pr_err("%p[%u] should not have piv %lu\n", 7167 mas_mn(mas), i, piv); 7168 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1); 7169 } 7170 } 7171 } 7172 7173 static void mt_validate_nulls(struct maple_tree *mt) 7174 { 7175 void *entry, *last = (void *)1; 7176 unsigned char offset = 0; 7177 void __rcu **slots; 7178 MA_STATE(mas, mt, 0, 0); 7179 7180 mas_start(&mas); 7181 if (mas_is_none(&mas) || (mas.node == MAS_ROOT)) 7182 return; 7183 7184 while (!mte_is_leaf(mas.node)) 7185 mas_descend(&mas); 7186 7187 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7188 do { 7189 entry = mas_slot(&mas, slots, offset); 7190 if (!last && !entry) { 7191 pr_err("Sequential nulls end at %p[%u]\n", 7192 mas_mn(&mas), offset); 7193 } 7194 MT_BUG_ON(mt, !last && !entry); 7195 last = entry; 7196 if (offset == mas_data_end(&mas)) { 7197 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7198 if (mas_is_none(&mas)) 7199 return; 7200 offset = 0; 7201 slots = ma_slots(mte_to_node(mas.node), 7202 mte_node_type(mas.node)); 7203 } else { 7204 offset++; 7205 } 7206 7207 } while (!mas_is_none(&mas)); 7208 } 7209 7210 /* 7211 * validate a maple tree by checking: 7212 * 1. The limits (pivots are within mas->min to mas->max) 7213 * 2. The gap is correctly set in the parents 7214 */ 7215 void mt_validate(struct maple_tree *mt) 7216 { 7217 unsigned char end; 7218 7219 MA_STATE(mas, mt, 0, 0); 7220 rcu_read_lock(); 7221 mas_start(&mas); 7222 if (!mas_searchable(&mas)) 7223 goto done; 7224 7225 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node)); 7226 while (!mas_is_none(&mas)) { 7227 MT_BUG_ON(mas.tree, mte_dead_node(mas.node)); 7228 if (!mte_is_root(mas.node)) { 7229 end = mas_data_end(&mas); 7230 if ((end < mt_min_slot_count(mas.node)) && 7231 (mas.max != ULONG_MAX)) { 7232 pr_err("Invalid size %u of %p\n", end, 7233 mas_mn(&mas)); 7234 MT_BUG_ON(mas.tree, 1); 7235 } 7236 7237 } 7238 mas_validate_parent_slot(&mas); 7239 mas_validate_child_slot(&mas); 7240 mas_validate_limits(&mas); 7241 if (mt_is_alloc(mt)) 7242 mas_validate_gaps(&mas); 7243 mas_dfs_postorder(&mas, ULONG_MAX); 7244 } 7245 mt_validate_nulls(mt); 7246 done: 7247 rcu_read_unlock(); 7248 7249 } 7250 EXPORT_SYMBOL_GPL(mt_validate); 7251 7252 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7253