xref: /openbmc/linux/lib/maple_tree.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  */
8 
9 /*
10  * DOC: Interesting implementation details of the Maple Tree
11  *
12  * Each node type has a number of slots for entries and a number of slots for
13  * pivots.  In the case of dense nodes, the pivots are implied by the position
14  * and are simply the slot index + the minimum of the node.
15  *
16  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
17  * indicate that the tree is specifying ranges,  Pivots may appear in the
18  * subtree with an entry attached to the value where as keys are unique to a
19  * specific position of a B-tree.  Pivot values are inclusive of the slot with
20  * the same index.
21  *
22  *
23  * The following illustrates the layout of a range64 nodes slots and pivots.
24  *
25  *
26  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
28  *           │   │   │   │     │    │    │    │    └─ Implied maximum
29  *           │   │   │   │     │    │    │    └─ Pivot 14
30  *           │   │   │   │     │    │    └─ Pivot 13
31  *           │   │   │   │     │    └─ Pivot 12
32  *           │   │   │   │     └─ Pivot 11
33  *           │   │   │   └─ Pivot 2
34  *           │   │   └─ Pivot 1
35  *           │   └─ Pivot 0
36  *           └─  Implied minimum
37  *
38  * Slot contents:
39  *  Internal (non-leaf) nodes contain pointers to other nodes.
40  *  Leaf nodes contain entries.
41  *
42  * The location of interest is often referred to as an offset.  All offsets have
43  * a slot, but the last offset has an implied pivot from the node above (or
44  * UINT_MAX for the root node.
45  *
46  * Ranges complicate certain write activities.  When modifying any of
47  * the B-tree variants, it is known that one entry will either be added or
48  * deleted.  When modifying the Maple Tree, one store operation may overwrite
49  * the entire data set, or one half of the tree, or the middle half of the tree.
50  *
51  */
52 
53 
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
64 
65 #define MA_ROOT_PARENT 1
66 
67 /*
68  * Maple state flags
69  * * MA_STATE_BULK		- Bulk insert mode
70  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
71  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
72  */
73 #define MA_STATE_BULK		1
74 #define MA_STATE_REBALANCE	2
75 #define MA_STATE_PREALLOC	4
76 
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
81 
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 	[maple_dense]		= MAPLE_NODE_SLOTS,
85 	[maple_leaf_64]		= ULONG_MAX,
86 	[maple_range_64]	= ULONG_MAX,
87 	[maple_arange_64]	= ULONG_MAX,
88 };
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
90 #endif
91 
92 static const unsigned char mt_slots[] = {
93 	[maple_dense]		= MAPLE_NODE_SLOTS,
94 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
95 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
96 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
97 };
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
99 
100 static const unsigned char mt_pivots[] = {
101 	[maple_dense]		= 0,
102 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
103 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
104 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
105 };
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107 
108 static const unsigned char mt_min_slots[] = {
109 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
110 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
111 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
112 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
113 };
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115 
116 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
118 
119 struct maple_big_node {
120 	struct maple_pnode *parent;
121 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 	union {
123 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 		struct {
125 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 		};
128 	};
129 	unsigned char b_end;
130 	enum maple_type type;
131 };
132 
133 /*
134  * The maple_subtree_state is used to build a tree to replace a segment of an
135  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
136  * dead node and restart on updates.
137  */
138 struct maple_subtree_state {
139 	struct ma_state *orig_l;	/* Original left side of subtree */
140 	struct ma_state *orig_r;	/* Original right side of subtree */
141 	struct ma_state *l;		/* New left side of subtree */
142 	struct ma_state *m;		/* New middle of subtree (rare) */
143 	struct ma_state *r;		/* New right side of subtree */
144 	struct ma_topiary *free;	/* nodes to be freed */
145 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
146 	struct maple_big_node *bn;
147 };
148 
149 #ifdef CONFIG_KASAN_STACK
150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151 #define noinline_for_kasan noinline_for_stack
152 #else
153 #define noinline_for_kasan inline
154 #endif
155 
156 /* Functions */
157 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158 {
159 	return kmem_cache_alloc(maple_node_cache, gfp);
160 }
161 
162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163 {
164 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
165 }
166 
167 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168 {
169 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170 }
171 
172 static void mt_free_rcu(struct rcu_head *head)
173 {
174 	struct maple_node *node = container_of(head, struct maple_node, rcu);
175 
176 	kmem_cache_free(maple_node_cache, node);
177 }
178 
179 /*
180  * ma_free_rcu() - Use rcu callback to free a maple node
181  * @node: The node to free
182  *
183  * The maple tree uses the parent pointer to indicate this node is no longer in
184  * use and will be freed.
185  */
186 static void ma_free_rcu(struct maple_node *node)
187 {
188 	WARN_ON(node->parent != ma_parent_ptr(node));
189 	call_rcu(&node->rcu, mt_free_rcu);
190 }
191 
192 static void mas_set_height(struct ma_state *mas)
193 {
194 	unsigned int new_flags = mas->tree->ma_flags;
195 
196 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
197 	BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
198 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 	mas->tree->ma_flags = new_flags;
200 }
201 
202 static unsigned int mas_mt_height(struct ma_state *mas)
203 {
204 	return mt_height(mas->tree);
205 }
206 
207 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208 {
209 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 		MAPLE_NODE_TYPE_MASK;
211 }
212 
213 static inline bool ma_is_dense(const enum maple_type type)
214 {
215 	return type < maple_leaf_64;
216 }
217 
218 static inline bool ma_is_leaf(const enum maple_type type)
219 {
220 	return type < maple_range_64;
221 }
222 
223 static inline bool mte_is_leaf(const struct maple_enode *entry)
224 {
225 	return ma_is_leaf(mte_node_type(entry));
226 }
227 
228 /*
229  * We also reserve values with the bottom two bits set to '10' which are
230  * below 4096
231  */
232 static inline bool mt_is_reserved(const void *entry)
233 {
234 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 		xa_is_internal(entry);
236 }
237 
238 static inline void mas_set_err(struct ma_state *mas, long err)
239 {
240 	mas->node = MA_ERROR(err);
241 }
242 
243 static inline bool mas_is_ptr(struct ma_state *mas)
244 {
245 	return mas->node == MAS_ROOT;
246 }
247 
248 static inline bool mas_is_start(struct ma_state *mas)
249 {
250 	return mas->node == MAS_START;
251 }
252 
253 bool mas_is_err(struct ma_state *mas)
254 {
255 	return xa_is_err(mas->node);
256 }
257 
258 static inline bool mas_searchable(struct ma_state *mas)
259 {
260 	if (mas_is_none(mas))
261 		return false;
262 
263 	if (mas_is_ptr(mas))
264 		return false;
265 
266 	return true;
267 }
268 
269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270 {
271 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272 }
273 
274 /*
275  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276  * @entry: The maple encoded node
277  *
278  * Return: a maple topiary pointer
279  */
280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281 {
282 	return (struct maple_topiary *)
283 		((unsigned long)entry & ~MAPLE_NODE_MASK);
284 }
285 
286 /*
287  * mas_mn() - Get the maple state node.
288  * @mas: The maple state
289  *
290  * Return: the maple node (not encoded - bare pointer).
291  */
292 static inline struct maple_node *mas_mn(const struct ma_state *mas)
293 {
294 	return mte_to_node(mas->node);
295 }
296 
297 /*
298  * mte_set_node_dead() - Set a maple encoded node as dead.
299  * @mn: The maple encoded node.
300  */
301 static inline void mte_set_node_dead(struct maple_enode *mn)
302 {
303 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 	smp_wmb(); /* Needed for RCU */
305 }
306 
307 /* Bit 1 indicates the root is a node */
308 #define MAPLE_ROOT_NODE			0x02
309 /* maple_type stored bit 3-6 */
310 #define MAPLE_ENODE_TYPE_SHIFT		0x03
311 /* Bit 2 means a NULL somewhere below */
312 #define MAPLE_ENODE_NULL		0x04
313 
314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 					     enum maple_type type)
316 {
317 	return (void *)((unsigned long)node |
318 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319 }
320 
321 static inline void *mte_mk_root(const struct maple_enode *node)
322 {
323 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324 }
325 
326 static inline void *mte_safe_root(const struct maple_enode *node)
327 {
328 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329 }
330 
331 static inline void *mte_set_full(const struct maple_enode *node)
332 {
333 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
334 }
335 
336 static inline void *mte_clear_full(const struct maple_enode *node)
337 {
338 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339 }
340 
341 static inline bool mte_has_null(const struct maple_enode *node)
342 {
343 	return (unsigned long)node & MAPLE_ENODE_NULL;
344 }
345 
346 static inline bool ma_is_root(struct maple_node *node)
347 {
348 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
349 }
350 
351 static inline bool mte_is_root(const struct maple_enode *node)
352 {
353 	return ma_is_root(mte_to_node(node));
354 }
355 
356 static inline bool mas_is_root_limits(const struct ma_state *mas)
357 {
358 	return !mas->min && mas->max == ULONG_MAX;
359 }
360 
361 static inline bool mt_is_alloc(struct maple_tree *mt)
362 {
363 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364 }
365 
366 /*
367  * The Parent Pointer
368  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
370  * bit values need an extra bit to store the offset.  This extra bit comes from
371  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
372  * indicate if bit 2 is part of the type or the slot.
373  *
374  * Note types:
375  *  0x??1 = Root
376  *  0x?00 = 16 bit nodes
377  *  0x010 = 32 bit nodes
378  *  0x110 = 64 bit nodes
379  *
380  * Slot size and alignment
381  *  0b??1 : Root
382  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
383  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
384  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
385  */
386 
387 #define MAPLE_PARENT_ROOT		0x01
388 
389 #define MAPLE_PARENT_SLOT_SHIFT		0x03
390 #define MAPLE_PARENT_SLOT_MASK		0xF8
391 
392 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
393 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
394 
395 #define MAPLE_PARENT_RANGE64		0x06
396 #define MAPLE_PARENT_RANGE32		0x04
397 #define MAPLE_PARENT_NOT_RANGE16	0x02
398 
399 /*
400  * mte_parent_shift() - Get the parent shift for the slot storage.
401  * @parent: The parent pointer cast as an unsigned long
402  * Return: The shift into that pointer to the star to of the slot
403  */
404 static inline unsigned long mte_parent_shift(unsigned long parent)
405 {
406 	/* Note bit 1 == 0 means 16B */
407 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 		return MAPLE_PARENT_SLOT_SHIFT;
409 
410 	return MAPLE_PARENT_16B_SLOT_SHIFT;
411 }
412 
413 /*
414  * mte_parent_slot_mask() - Get the slot mask for the parent.
415  * @parent: The parent pointer cast as an unsigned long.
416  * Return: The slot mask for that parent.
417  */
418 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419 {
420 	/* Note bit 1 == 0 means 16B */
421 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 		return MAPLE_PARENT_SLOT_MASK;
423 
424 	return MAPLE_PARENT_16B_SLOT_MASK;
425 }
426 
427 /*
428  * mas_parent_enum() - Return the maple_type of the parent from the stored
429  * parent type.
430  * @mas: The maple state
431  * @node: The maple_enode to extract the parent's enum
432  * Return: The node->parent maple_type
433  */
434 static inline
435 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
436 				struct maple_tree *mt)
437 {
438 	unsigned long p_type;
439 
440 	p_type = (unsigned long)p_enode;
441 	if (p_type & MAPLE_PARENT_ROOT)
442 		return 0; /* Validated in the caller. */
443 
444 	p_type &= MAPLE_NODE_MASK;
445 	p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
446 
447 	switch (p_type) {
448 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
449 		if (mt_is_alloc(mt))
450 			return maple_arange_64;
451 		return maple_range_64;
452 	}
453 
454 	return 0;
455 }
456 
457 static inline
458 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
459 {
460 	return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
461 }
462 
463 /*
464  * mte_set_parent() - Set the parent node and encode the slot
465  * @enode: The encoded maple node.
466  * @parent: The encoded maple node that is the parent of @enode.
467  * @slot: The slot that @enode resides in @parent.
468  *
469  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
470  * parent type.
471  */
472 static inline
473 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
474 		    unsigned char slot)
475 {
476 	unsigned long val = (unsigned long)parent;
477 	unsigned long shift;
478 	unsigned long type;
479 	enum maple_type p_type = mte_node_type(parent);
480 
481 	BUG_ON(p_type == maple_dense);
482 	BUG_ON(p_type == maple_leaf_64);
483 
484 	switch (p_type) {
485 	case maple_range_64:
486 	case maple_arange_64:
487 		shift = MAPLE_PARENT_SLOT_SHIFT;
488 		type = MAPLE_PARENT_RANGE64;
489 		break;
490 	default:
491 	case maple_dense:
492 	case maple_leaf_64:
493 		shift = type = 0;
494 		break;
495 	}
496 
497 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
498 	val |= (slot << shift) | type;
499 	mte_to_node(enode)->parent = ma_parent_ptr(val);
500 }
501 
502 /*
503  * mte_parent_slot() - get the parent slot of @enode.
504  * @enode: The encoded maple node.
505  *
506  * Return: The slot in the parent node where @enode resides.
507  */
508 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
509 {
510 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
511 
512 	if (val & MA_ROOT_PARENT)
513 		return 0;
514 
515 	/*
516 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
517 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
518 	 */
519 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
520 }
521 
522 /*
523  * mte_parent() - Get the parent of @node.
524  * @node: The encoded maple node.
525  *
526  * Return: The parent maple node.
527  */
528 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
529 {
530 	return (void *)((unsigned long)
531 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
532 }
533 
534 /*
535  * ma_dead_node() - check if the @enode is dead.
536  * @enode: The encoded maple node
537  *
538  * Return: true if dead, false otherwise.
539  */
540 static inline bool ma_dead_node(const struct maple_node *node)
541 {
542 	struct maple_node *parent;
543 
544 	/* Do not reorder reads from the node prior to the parent check */
545 	smp_rmb();
546 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
547 	return (parent == node);
548 }
549 
550 /*
551  * mte_dead_node() - check if the @enode is dead.
552  * @enode: The encoded maple node
553  *
554  * Return: true if dead, false otherwise.
555  */
556 static inline bool mte_dead_node(const struct maple_enode *enode)
557 {
558 	struct maple_node *parent, *node;
559 
560 	node = mte_to_node(enode);
561 	/* Do not reorder reads from the node prior to the parent check */
562 	smp_rmb();
563 	parent = mte_parent(enode);
564 	return (parent == node);
565 }
566 
567 /*
568  * mas_allocated() - Get the number of nodes allocated in a maple state.
569  * @mas: The maple state
570  *
571  * The ma_state alloc member is overloaded to hold a pointer to the first
572  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
573  * set, then the alloc contains the number of requested nodes.  If there is an
574  * allocated node, then the total allocated nodes is in that node.
575  *
576  * Return: The total number of nodes allocated
577  */
578 static inline unsigned long mas_allocated(const struct ma_state *mas)
579 {
580 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
581 		return 0;
582 
583 	return mas->alloc->total;
584 }
585 
586 /*
587  * mas_set_alloc_req() - Set the requested number of allocations.
588  * @mas: the maple state
589  * @count: the number of allocations.
590  *
591  * The requested number of allocations is either in the first allocated node,
592  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
593  * no allocated node.  Set the request either in the node or do the necessary
594  * encoding to store in @mas->alloc directly.
595  */
596 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
597 {
598 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
599 		if (!count)
600 			mas->alloc = NULL;
601 		else
602 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
603 		return;
604 	}
605 
606 	mas->alloc->request_count = count;
607 }
608 
609 /*
610  * mas_alloc_req() - get the requested number of allocations.
611  * @mas: The maple state
612  *
613  * The alloc count is either stored directly in @mas, or in
614  * @mas->alloc->request_count if there is at least one node allocated.  Decode
615  * the request count if it's stored directly in @mas->alloc.
616  *
617  * Return: The allocation request count.
618  */
619 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
620 {
621 	if ((unsigned long)mas->alloc & 0x1)
622 		return (unsigned long)(mas->alloc) >> 1;
623 	else if (mas->alloc)
624 		return mas->alloc->request_count;
625 	return 0;
626 }
627 
628 /*
629  * ma_pivots() - Get a pointer to the maple node pivots.
630  * @node - the maple node
631  * @type - the node type
632  *
633  * In the event of a dead node, this array may be %NULL
634  *
635  * Return: A pointer to the maple node pivots
636  */
637 static inline unsigned long *ma_pivots(struct maple_node *node,
638 					   enum maple_type type)
639 {
640 	switch (type) {
641 	case maple_arange_64:
642 		return node->ma64.pivot;
643 	case maple_range_64:
644 	case maple_leaf_64:
645 		return node->mr64.pivot;
646 	case maple_dense:
647 		return NULL;
648 	}
649 	return NULL;
650 }
651 
652 /*
653  * ma_gaps() - Get a pointer to the maple node gaps.
654  * @node - the maple node
655  * @type - the node type
656  *
657  * Return: A pointer to the maple node gaps
658  */
659 static inline unsigned long *ma_gaps(struct maple_node *node,
660 				     enum maple_type type)
661 {
662 	switch (type) {
663 	case maple_arange_64:
664 		return node->ma64.gap;
665 	case maple_range_64:
666 	case maple_leaf_64:
667 	case maple_dense:
668 		return NULL;
669 	}
670 	return NULL;
671 }
672 
673 /*
674  * mte_pivot() - Get the pivot at @piv of the maple encoded node.
675  * @mn: The maple encoded node.
676  * @piv: The pivot.
677  *
678  * Return: the pivot at @piv of @mn.
679  */
680 static inline unsigned long mte_pivot(const struct maple_enode *mn,
681 				 unsigned char piv)
682 {
683 	struct maple_node *node = mte_to_node(mn);
684 	enum maple_type type = mte_node_type(mn);
685 
686 	if (piv >= mt_pivots[type]) {
687 		WARN_ON(1);
688 		return 0;
689 	}
690 	switch (type) {
691 	case maple_arange_64:
692 		return node->ma64.pivot[piv];
693 	case maple_range_64:
694 	case maple_leaf_64:
695 		return node->mr64.pivot[piv];
696 	case maple_dense:
697 		return 0;
698 	}
699 	return 0;
700 }
701 
702 /*
703  * mas_safe_pivot() - get the pivot at @piv or mas->max.
704  * @mas: The maple state
705  * @pivots: The pointer to the maple node pivots
706  * @piv: The pivot to fetch
707  * @type: The maple node type
708  *
709  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
710  * otherwise.
711  */
712 static inline unsigned long
713 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
714 	       unsigned char piv, enum maple_type type)
715 {
716 	if (piv >= mt_pivots[type])
717 		return mas->max;
718 
719 	return pivots[piv];
720 }
721 
722 /*
723  * mas_safe_min() - Return the minimum for a given offset.
724  * @mas: The maple state
725  * @pivots: The pointer to the maple node pivots
726  * @offset: The offset into the pivot array
727  *
728  * Return: The minimum range value that is contained in @offset.
729  */
730 static inline unsigned long
731 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
732 {
733 	if (likely(offset))
734 		return pivots[offset - 1] + 1;
735 
736 	return mas->min;
737 }
738 
739 /*
740  * mas_logical_pivot() - Get the logical pivot of a given offset.
741  * @mas: The maple state
742  * @pivots: The pointer to the maple node pivots
743  * @offset: The offset into the pivot array
744  * @type: The maple node type
745  *
746  * When there is no value at a pivot (beyond the end of the data), then the
747  * pivot is actually @mas->max.
748  *
749  * Return: the logical pivot of a given @offset.
750  */
751 static inline unsigned long
752 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
753 		  unsigned char offset, enum maple_type type)
754 {
755 	unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
756 
757 	if (likely(lpiv))
758 		return lpiv;
759 
760 	if (likely(offset))
761 		return mas->max;
762 
763 	return lpiv;
764 }
765 
766 /*
767  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
768  * @mn: The encoded maple node
769  * @piv: The pivot offset
770  * @val: The value of the pivot
771  */
772 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
773 				unsigned long val)
774 {
775 	struct maple_node *node = mte_to_node(mn);
776 	enum maple_type type = mte_node_type(mn);
777 
778 	BUG_ON(piv >= mt_pivots[type]);
779 	switch (type) {
780 	default:
781 	case maple_range_64:
782 	case maple_leaf_64:
783 		node->mr64.pivot[piv] = val;
784 		break;
785 	case maple_arange_64:
786 		node->ma64.pivot[piv] = val;
787 		break;
788 	case maple_dense:
789 		break;
790 	}
791 
792 }
793 
794 /*
795  * ma_slots() - Get a pointer to the maple node slots.
796  * @mn: The maple node
797  * @mt: The maple node type
798  *
799  * Return: A pointer to the maple node slots
800  */
801 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
802 {
803 	switch (mt) {
804 	default:
805 	case maple_arange_64:
806 		return mn->ma64.slot;
807 	case maple_range_64:
808 	case maple_leaf_64:
809 		return mn->mr64.slot;
810 	case maple_dense:
811 		return mn->slot;
812 	}
813 }
814 
815 static inline bool mt_locked(const struct maple_tree *mt)
816 {
817 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
818 		lockdep_is_held(&mt->ma_lock);
819 }
820 
821 static inline void *mt_slot(const struct maple_tree *mt,
822 		void __rcu **slots, unsigned char offset)
823 {
824 	return rcu_dereference_check(slots[offset], mt_locked(mt));
825 }
826 
827 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
828 				   unsigned char offset)
829 {
830 	return rcu_dereference_protected(slots[offset], mt_locked(mt));
831 }
832 /*
833  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
834  * @mas: The maple state
835  * @slots: The pointer to the slots
836  * @offset: The offset into the slots array to fetch
837  *
838  * Return: The entry stored in @slots at the @offset.
839  */
840 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
841 				       unsigned char offset)
842 {
843 	return mt_slot_locked(mas->tree, slots, offset);
844 }
845 
846 /*
847  * mas_slot() - Get the slot value when not holding the maple tree lock.
848  * @mas: The maple state
849  * @slots: The pointer to the slots
850  * @offset: The offset into the slots array to fetch
851  *
852  * Return: The entry stored in @slots at the @offset
853  */
854 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
855 			     unsigned char offset)
856 {
857 	return mt_slot(mas->tree, slots, offset);
858 }
859 
860 /*
861  * mas_root() - Get the maple tree root.
862  * @mas: The maple state.
863  *
864  * Return: The pointer to the root of the tree
865  */
866 static inline void *mas_root(struct ma_state *mas)
867 {
868 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
869 }
870 
871 static inline void *mt_root_locked(struct maple_tree *mt)
872 {
873 	return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
874 }
875 
876 /*
877  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
878  * @mas: The maple state.
879  *
880  * Return: The pointer to the root of the tree
881  */
882 static inline void *mas_root_locked(struct ma_state *mas)
883 {
884 	return mt_root_locked(mas->tree);
885 }
886 
887 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
888 					     enum maple_type mt)
889 {
890 	switch (mt) {
891 	case maple_arange_64:
892 		return &mn->ma64.meta;
893 	default:
894 		return &mn->mr64.meta;
895 	}
896 }
897 
898 /*
899  * ma_set_meta() - Set the metadata information of a node.
900  * @mn: The maple node
901  * @mt: The maple node type
902  * @offset: The offset of the highest sub-gap in this node.
903  * @end: The end of the data in this node.
904  */
905 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
906 			       unsigned char offset, unsigned char end)
907 {
908 	struct maple_metadata *meta = ma_meta(mn, mt);
909 
910 	meta->gap = offset;
911 	meta->end = end;
912 }
913 
914 /*
915  * mt_clear_meta() - clear the metadata information of a node, if it exists
916  * @mt: The maple tree
917  * @mn: The maple node
918  * @type: The maple node type
919  * @offset: The offset of the highest sub-gap in this node.
920  * @end: The end of the data in this node.
921  */
922 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
923 				  enum maple_type type)
924 {
925 	struct maple_metadata *meta;
926 	unsigned long *pivots;
927 	void __rcu **slots;
928 	void *next;
929 
930 	switch (type) {
931 	case maple_range_64:
932 		pivots = mn->mr64.pivot;
933 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
934 			slots = mn->mr64.slot;
935 			next = mt_slot_locked(mt, slots,
936 					      MAPLE_RANGE64_SLOTS - 1);
937 			if (unlikely((mte_to_node(next) &&
938 				      mte_node_type(next))))
939 				return; /* no metadata, could be node */
940 		}
941 		fallthrough;
942 	case maple_arange_64:
943 		meta = ma_meta(mn, type);
944 		break;
945 	default:
946 		return;
947 	}
948 
949 	meta->gap = 0;
950 	meta->end = 0;
951 }
952 
953 /*
954  * ma_meta_end() - Get the data end of a node from the metadata
955  * @mn: The maple node
956  * @mt: The maple node type
957  */
958 static inline unsigned char ma_meta_end(struct maple_node *mn,
959 					enum maple_type mt)
960 {
961 	struct maple_metadata *meta = ma_meta(mn, mt);
962 
963 	return meta->end;
964 }
965 
966 /*
967  * ma_meta_gap() - Get the largest gap location of a node from the metadata
968  * @mn: The maple node
969  * @mt: The maple node type
970  */
971 static inline unsigned char ma_meta_gap(struct maple_node *mn,
972 					enum maple_type mt)
973 {
974 	BUG_ON(mt != maple_arange_64);
975 
976 	return mn->ma64.meta.gap;
977 }
978 
979 /*
980  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
981  * @mn: The maple node
982  * @mn: The maple node type
983  * @offset: The location of the largest gap.
984  */
985 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
986 				   unsigned char offset)
987 {
988 
989 	struct maple_metadata *meta = ma_meta(mn, mt);
990 
991 	meta->gap = offset;
992 }
993 
994 /*
995  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
996  * @mat - the ma_topiary, a linked list of dead nodes.
997  * @dead_enode - the node to be marked as dead and added to the tail of the list
998  *
999  * Add the @dead_enode to the linked list in @mat.
1000  */
1001 static inline void mat_add(struct ma_topiary *mat,
1002 			   struct maple_enode *dead_enode)
1003 {
1004 	mte_set_node_dead(dead_enode);
1005 	mte_to_mat(dead_enode)->next = NULL;
1006 	if (!mat->tail) {
1007 		mat->tail = mat->head = dead_enode;
1008 		return;
1009 	}
1010 
1011 	mte_to_mat(mat->tail)->next = dead_enode;
1012 	mat->tail = dead_enode;
1013 }
1014 
1015 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
1016 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
1017 
1018 /*
1019  * mas_mat_free() - Free all nodes in a dead list.
1020  * @mas - the maple state
1021  * @mat - the ma_topiary linked list of dead nodes to free.
1022  *
1023  * Free walk a dead list.
1024  */
1025 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
1026 {
1027 	struct maple_enode *next;
1028 
1029 	while (mat->head) {
1030 		next = mte_to_mat(mat->head)->next;
1031 		mas_free(mas, mat->head);
1032 		mat->head = next;
1033 	}
1034 }
1035 
1036 /*
1037  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1038  * @mas - the maple state
1039  * @mat - the ma_topiary linked list of dead nodes to free.
1040  *
1041  * Destroy walk a dead list.
1042  */
1043 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1044 {
1045 	struct maple_enode *next;
1046 
1047 	while (mat->head) {
1048 		next = mte_to_mat(mat->head)->next;
1049 		mte_destroy_walk(mat->head, mat->mtree);
1050 		mat->head = next;
1051 	}
1052 }
1053 /*
1054  * mas_descend() - Descend into the slot stored in the ma_state.
1055  * @mas - the maple state.
1056  *
1057  * Note: Not RCU safe, only use in write side or debug code.
1058  */
1059 static inline void mas_descend(struct ma_state *mas)
1060 {
1061 	enum maple_type type;
1062 	unsigned long *pivots;
1063 	struct maple_node *node;
1064 	void __rcu **slots;
1065 
1066 	node = mas_mn(mas);
1067 	type = mte_node_type(mas->node);
1068 	pivots = ma_pivots(node, type);
1069 	slots = ma_slots(node, type);
1070 
1071 	if (mas->offset)
1072 		mas->min = pivots[mas->offset - 1] + 1;
1073 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1074 	mas->node = mas_slot(mas, slots, mas->offset);
1075 }
1076 
1077 /*
1078  * mte_set_gap() - Set a maple node gap.
1079  * @mn: The encoded maple node
1080  * @gap: The offset of the gap to set
1081  * @val: The gap value
1082  */
1083 static inline void mte_set_gap(const struct maple_enode *mn,
1084 				 unsigned char gap, unsigned long val)
1085 {
1086 	switch (mte_node_type(mn)) {
1087 	default:
1088 		break;
1089 	case maple_arange_64:
1090 		mte_to_node(mn)->ma64.gap[gap] = val;
1091 		break;
1092 	}
1093 }
1094 
1095 /*
1096  * mas_ascend() - Walk up a level of the tree.
1097  * @mas: The maple state
1098  *
1099  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1100  * may cause several levels of walking up to find the correct min and max.
1101  * May find a dead node which will cause a premature return.
1102  * Return: 1 on dead node, 0 otherwise
1103  */
1104 static int mas_ascend(struct ma_state *mas)
1105 {
1106 	struct maple_enode *p_enode; /* parent enode. */
1107 	struct maple_enode *a_enode; /* ancestor enode. */
1108 	struct maple_node *a_node; /* ancestor node. */
1109 	struct maple_node *p_node; /* parent node. */
1110 	unsigned char a_slot;
1111 	enum maple_type a_type;
1112 	unsigned long min, max;
1113 	unsigned long *pivots;
1114 	unsigned char offset;
1115 	bool set_max = false, set_min = false;
1116 
1117 	a_node = mas_mn(mas);
1118 	if (ma_is_root(a_node)) {
1119 		mas->offset = 0;
1120 		return 0;
1121 	}
1122 
1123 	p_node = mte_parent(mas->node);
1124 	if (unlikely(a_node == p_node))
1125 		return 1;
1126 	a_type = mas_parent_enum(mas, mas->node);
1127 	offset = mte_parent_slot(mas->node);
1128 	a_enode = mt_mk_node(p_node, a_type);
1129 
1130 	/* Check to make sure all parent information is still accurate */
1131 	if (p_node != mte_parent(mas->node))
1132 		return 1;
1133 
1134 	mas->node = a_enode;
1135 	mas->offset = offset;
1136 
1137 	if (mte_is_root(a_enode)) {
1138 		mas->max = ULONG_MAX;
1139 		mas->min = 0;
1140 		return 0;
1141 	}
1142 
1143 	min = 0;
1144 	max = ULONG_MAX;
1145 	do {
1146 		p_enode = a_enode;
1147 		a_type = mas_parent_enum(mas, p_enode);
1148 		a_node = mte_parent(p_enode);
1149 		a_slot = mte_parent_slot(p_enode);
1150 		a_enode = mt_mk_node(a_node, a_type);
1151 		pivots = ma_pivots(a_node, a_type);
1152 
1153 		if (unlikely(ma_dead_node(a_node)))
1154 			return 1;
1155 
1156 		if (!set_min && a_slot) {
1157 			set_min = true;
1158 			min = pivots[a_slot - 1] + 1;
1159 		}
1160 
1161 		if (!set_max && a_slot < mt_pivots[a_type]) {
1162 			set_max = true;
1163 			max = pivots[a_slot];
1164 		}
1165 
1166 		if (unlikely(ma_dead_node(a_node)))
1167 			return 1;
1168 
1169 		if (unlikely(ma_is_root(a_node)))
1170 			break;
1171 
1172 	} while (!set_min || !set_max);
1173 
1174 	mas->max = max;
1175 	mas->min = min;
1176 	return 0;
1177 }
1178 
1179 /*
1180  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1181  * @mas: The maple state
1182  *
1183  * Return: A pointer to a maple node.
1184  */
1185 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1186 {
1187 	struct maple_alloc *ret, *node = mas->alloc;
1188 	unsigned long total = mas_allocated(mas);
1189 	unsigned int req = mas_alloc_req(mas);
1190 
1191 	/* nothing or a request pending. */
1192 	if (WARN_ON(!total))
1193 		return NULL;
1194 
1195 	if (total == 1) {
1196 		/* single allocation in this ma_state */
1197 		mas->alloc = NULL;
1198 		ret = node;
1199 		goto single_node;
1200 	}
1201 
1202 	if (node->node_count == 1) {
1203 		/* Single allocation in this node. */
1204 		mas->alloc = node->slot[0];
1205 		mas->alloc->total = node->total - 1;
1206 		ret = node;
1207 		goto new_head;
1208 	}
1209 	node->total--;
1210 	ret = node->slot[--node->node_count];
1211 	node->slot[node->node_count] = NULL;
1212 
1213 single_node:
1214 new_head:
1215 	if (req) {
1216 		req++;
1217 		mas_set_alloc_req(mas, req);
1218 	}
1219 
1220 	memset(ret, 0, sizeof(*ret));
1221 	return (struct maple_node *)ret;
1222 }
1223 
1224 /*
1225  * mas_push_node() - Push a node back on the maple state allocation.
1226  * @mas: The maple state
1227  * @used: The used maple node
1228  *
1229  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1230  * requested node count as necessary.
1231  */
1232 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1233 {
1234 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1235 	struct maple_alloc *head = mas->alloc;
1236 	unsigned long count;
1237 	unsigned int requested = mas_alloc_req(mas);
1238 
1239 	count = mas_allocated(mas);
1240 
1241 	reuse->request_count = 0;
1242 	reuse->node_count = 0;
1243 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1244 		head->slot[head->node_count++] = reuse;
1245 		head->total++;
1246 		goto done;
1247 	}
1248 
1249 	reuse->total = 1;
1250 	if ((head) && !((unsigned long)head & 0x1)) {
1251 		reuse->slot[0] = head;
1252 		reuse->node_count = 1;
1253 		reuse->total += head->total;
1254 	}
1255 
1256 	mas->alloc = reuse;
1257 done:
1258 	if (requested > 1)
1259 		mas_set_alloc_req(mas, requested - 1);
1260 }
1261 
1262 /*
1263  * mas_alloc_nodes() - Allocate nodes into a maple state
1264  * @mas: The maple state
1265  * @gfp: The GFP Flags
1266  */
1267 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1268 {
1269 	struct maple_alloc *node;
1270 	unsigned long allocated = mas_allocated(mas);
1271 	unsigned int requested = mas_alloc_req(mas);
1272 	unsigned int count;
1273 	void **slots = NULL;
1274 	unsigned int max_req = 0;
1275 
1276 	if (!requested)
1277 		return;
1278 
1279 	mas_set_alloc_req(mas, 0);
1280 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1281 		if (allocated)
1282 			return;
1283 		WARN_ON(!allocated);
1284 	}
1285 
1286 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1287 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1288 		if (!node)
1289 			goto nomem_one;
1290 
1291 		if (allocated) {
1292 			node->slot[0] = mas->alloc;
1293 			node->node_count = 1;
1294 		} else {
1295 			node->node_count = 0;
1296 		}
1297 
1298 		mas->alloc = node;
1299 		node->total = ++allocated;
1300 		requested--;
1301 	}
1302 
1303 	node = mas->alloc;
1304 	node->request_count = 0;
1305 	while (requested) {
1306 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1307 		slots = (void **)&node->slot[node->node_count];
1308 		max_req = min(requested, max_req);
1309 		count = mt_alloc_bulk(gfp, max_req, slots);
1310 		if (!count)
1311 			goto nomem_bulk;
1312 
1313 		if (node->node_count == 0) {
1314 			node->slot[0]->node_count = 0;
1315 			node->slot[0]->request_count = 0;
1316 		}
1317 
1318 		node->node_count += count;
1319 		allocated += count;
1320 		node = node->slot[0];
1321 		requested -= count;
1322 	}
1323 	mas->alloc->total = allocated;
1324 	return;
1325 
1326 nomem_bulk:
1327 	/* Clean up potential freed allocations on bulk failure */
1328 	memset(slots, 0, max_req * sizeof(unsigned long));
1329 nomem_one:
1330 	mas_set_alloc_req(mas, requested);
1331 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1332 		mas->alloc->total = allocated;
1333 	mas_set_err(mas, -ENOMEM);
1334 }
1335 
1336 /*
1337  * mas_free() - Free an encoded maple node
1338  * @mas: The maple state
1339  * @used: The encoded maple node to free.
1340  *
1341  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1342  * otherwise.
1343  */
1344 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1345 {
1346 	struct maple_node *tmp = mte_to_node(used);
1347 
1348 	if (mt_in_rcu(mas->tree))
1349 		ma_free_rcu(tmp);
1350 	else
1351 		mas_push_node(mas, tmp);
1352 }
1353 
1354 /*
1355  * mas_node_count() - Check if enough nodes are allocated and request more if
1356  * there is not enough nodes.
1357  * @mas: The maple state
1358  * @count: The number of nodes needed
1359  * @gfp: the gfp flags
1360  */
1361 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1362 {
1363 	unsigned long allocated = mas_allocated(mas);
1364 
1365 	if (allocated < count) {
1366 		mas_set_alloc_req(mas, count - allocated);
1367 		mas_alloc_nodes(mas, gfp);
1368 	}
1369 }
1370 
1371 /*
1372  * mas_node_count() - Check if enough nodes are allocated and request more if
1373  * there is not enough nodes.
1374  * @mas: The maple state
1375  * @count: The number of nodes needed
1376  *
1377  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1378  */
1379 static void mas_node_count(struct ma_state *mas, int count)
1380 {
1381 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1382 }
1383 
1384 /*
1385  * mas_start() - Sets up maple state for operations.
1386  * @mas: The maple state.
1387  *
1388  * If mas->node == MAS_START, then set the min, max and depth to
1389  * defaults.
1390  *
1391  * Return:
1392  * - If mas->node is an error or not MAS_START, return NULL.
1393  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
1394  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
1395  * - If it's a tree:            NULL & mas->node == safe root node.
1396  */
1397 static inline struct maple_enode *mas_start(struct ma_state *mas)
1398 {
1399 	if (likely(mas_is_start(mas))) {
1400 		struct maple_enode *root;
1401 
1402 		mas->min = 0;
1403 		mas->max = ULONG_MAX;
1404 		mas->depth = 0;
1405 
1406 retry:
1407 		root = mas_root(mas);
1408 		/* Tree with nodes */
1409 		if (likely(xa_is_node(root))) {
1410 			mas->depth = 1;
1411 			mas->node = mte_safe_root(root);
1412 			mas->offset = 0;
1413 			if (mte_dead_node(mas->node))
1414 				goto retry;
1415 
1416 			return NULL;
1417 		}
1418 
1419 		/* empty tree */
1420 		if (unlikely(!root)) {
1421 			mas->node = MAS_NONE;
1422 			mas->offset = MAPLE_NODE_SLOTS;
1423 			return NULL;
1424 		}
1425 
1426 		/* Single entry tree */
1427 		mas->node = MAS_ROOT;
1428 		mas->offset = MAPLE_NODE_SLOTS;
1429 
1430 		/* Single entry tree. */
1431 		if (mas->index > 0)
1432 			return NULL;
1433 
1434 		return root;
1435 	}
1436 
1437 	return NULL;
1438 }
1439 
1440 /*
1441  * ma_data_end() - Find the end of the data in a node.
1442  * @node: The maple node
1443  * @type: The maple node type
1444  * @pivots: The array of pivots in the node
1445  * @max: The maximum value in the node
1446  *
1447  * Uses metadata to find the end of the data when possible.
1448  * Return: The zero indexed last slot with data (may be null).
1449  */
1450 static inline unsigned char ma_data_end(struct maple_node *node,
1451 					enum maple_type type,
1452 					unsigned long *pivots,
1453 					unsigned long max)
1454 {
1455 	unsigned char offset;
1456 
1457 	if (!pivots)
1458 		return 0;
1459 
1460 	if (type == maple_arange_64)
1461 		return ma_meta_end(node, type);
1462 
1463 	offset = mt_pivots[type] - 1;
1464 	if (likely(!pivots[offset]))
1465 		return ma_meta_end(node, type);
1466 
1467 	if (likely(pivots[offset] == max))
1468 		return offset;
1469 
1470 	return mt_pivots[type];
1471 }
1472 
1473 /*
1474  * mas_data_end() - Find the end of the data (slot).
1475  * @mas: the maple state
1476  *
1477  * This method is optimized to check the metadata of a node if the node type
1478  * supports data end metadata.
1479  *
1480  * Return: The zero indexed last slot with data (may be null).
1481  */
1482 static inline unsigned char mas_data_end(struct ma_state *mas)
1483 {
1484 	enum maple_type type;
1485 	struct maple_node *node;
1486 	unsigned char offset;
1487 	unsigned long *pivots;
1488 
1489 	type = mte_node_type(mas->node);
1490 	node = mas_mn(mas);
1491 	if (type == maple_arange_64)
1492 		return ma_meta_end(node, type);
1493 
1494 	pivots = ma_pivots(node, type);
1495 	if (unlikely(ma_dead_node(node)))
1496 		return 0;
1497 
1498 	offset = mt_pivots[type] - 1;
1499 	if (likely(!pivots[offset]))
1500 		return ma_meta_end(node, type);
1501 
1502 	if (likely(pivots[offset] == mas->max))
1503 		return offset;
1504 
1505 	return mt_pivots[type];
1506 }
1507 
1508 /*
1509  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1510  * @mas - the maple state
1511  *
1512  * Return: The maximum gap in the leaf.
1513  */
1514 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1515 {
1516 	enum maple_type mt;
1517 	unsigned long pstart, gap, max_gap;
1518 	struct maple_node *mn;
1519 	unsigned long *pivots;
1520 	void __rcu **slots;
1521 	unsigned char i;
1522 	unsigned char max_piv;
1523 
1524 	mt = mte_node_type(mas->node);
1525 	mn = mas_mn(mas);
1526 	slots = ma_slots(mn, mt);
1527 	max_gap = 0;
1528 	if (unlikely(ma_is_dense(mt))) {
1529 		gap = 0;
1530 		for (i = 0; i < mt_slots[mt]; i++) {
1531 			if (slots[i]) {
1532 				if (gap > max_gap)
1533 					max_gap = gap;
1534 				gap = 0;
1535 			} else {
1536 				gap++;
1537 			}
1538 		}
1539 		if (gap > max_gap)
1540 			max_gap = gap;
1541 		return max_gap;
1542 	}
1543 
1544 	/*
1545 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1546 	 * be skipped if there is a gap in slot 0.
1547 	 */
1548 	pivots = ma_pivots(mn, mt);
1549 	if (likely(!slots[0])) {
1550 		max_gap = pivots[0] - mas->min + 1;
1551 		i = 2;
1552 	} else {
1553 		i = 1;
1554 	}
1555 
1556 	/* reduce max_piv as the special case is checked before the loop */
1557 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1558 	/*
1559 	 * Check end implied pivot which can only be a gap on the right most
1560 	 * node.
1561 	 */
1562 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1563 		gap = ULONG_MAX - pivots[max_piv];
1564 		if (gap > max_gap)
1565 			max_gap = gap;
1566 	}
1567 
1568 	for (; i <= max_piv; i++) {
1569 		/* data == no gap. */
1570 		if (likely(slots[i]))
1571 			continue;
1572 
1573 		pstart = pivots[i - 1];
1574 		gap = pivots[i] - pstart;
1575 		if (gap > max_gap)
1576 			max_gap = gap;
1577 
1578 		/* There cannot be two gaps in a row. */
1579 		i++;
1580 	}
1581 	return max_gap;
1582 }
1583 
1584 /*
1585  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1586  * @node: The maple node
1587  * @gaps: The pointer to the gaps
1588  * @mt: The maple node type
1589  * @*off: Pointer to store the offset location of the gap.
1590  *
1591  * Uses the metadata data end to scan backwards across set gaps.
1592  *
1593  * Return: The maximum gap value
1594  */
1595 static inline unsigned long
1596 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1597 	    unsigned char *off)
1598 {
1599 	unsigned char offset, i;
1600 	unsigned long max_gap = 0;
1601 
1602 	i = offset = ma_meta_end(node, mt);
1603 	do {
1604 		if (gaps[i] > max_gap) {
1605 			max_gap = gaps[i];
1606 			offset = i;
1607 		}
1608 	} while (i--);
1609 
1610 	*off = offset;
1611 	return max_gap;
1612 }
1613 
1614 /*
1615  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1616  * @mas: The maple state.
1617  *
1618  * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1619  *
1620  * Return: The gap value.
1621  */
1622 static inline unsigned long mas_max_gap(struct ma_state *mas)
1623 {
1624 	unsigned long *gaps;
1625 	unsigned char offset;
1626 	enum maple_type mt;
1627 	struct maple_node *node;
1628 
1629 	mt = mte_node_type(mas->node);
1630 	if (ma_is_leaf(mt))
1631 		return mas_leaf_max_gap(mas);
1632 
1633 	node = mas_mn(mas);
1634 	offset = ma_meta_gap(node, mt);
1635 	if (offset == MAPLE_ARANGE64_META_MAX)
1636 		return 0;
1637 
1638 	gaps = ma_gaps(node, mt);
1639 	return gaps[offset];
1640 }
1641 
1642 /*
1643  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1644  * @mas: The maple state
1645  * @offset: The gap offset in the parent to set
1646  * @new: The new gap value.
1647  *
1648  * Set the parent gap then continue to set the gap upwards, using the metadata
1649  * of the parent to see if it is necessary to check the node above.
1650  */
1651 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1652 		unsigned long new)
1653 {
1654 	unsigned long meta_gap = 0;
1655 	struct maple_node *pnode;
1656 	struct maple_enode *penode;
1657 	unsigned long *pgaps;
1658 	unsigned char meta_offset;
1659 	enum maple_type pmt;
1660 
1661 	pnode = mte_parent(mas->node);
1662 	pmt = mas_parent_enum(mas, mas->node);
1663 	penode = mt_mk_node(pnode, pmt);
1664 	pgaps = ma_gaps(pnode, pmt);
1665 
1666 ascend:
1667 	meta_offset = ma_meta_gap(pnode, pmt);
1668 	if (meta_offset == MAPLE_ARANGE64_META_MAX)
1669 		meta_gap = 0;
1670 	else
1671 		meta_gap = pgaps[meta_offset];
1672 
1673 	pgaps[offset] = new;
1674 
1675 	if (meta_gap == new)
1676 		return;
1677 
1678 	if (offset != meta_offset) {
1679 		if (meta_gap > new)
1680 			return;
1681 
1682 		ma_set_meta_gap(pnode, pmt, offset);
1683 	} else if (new < meta_gap) {
1684 		meta_offset = 15;
1685 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1686 		ma_set_meta_gap(pnode, pmt, meta_offset);
1687 	}
1688 
1689 	if (ma_is_root(pnode))
1690 		return;
1691 
1692 	/* Go to the parent node. */
1693 	pnode = mte_parent(penode);
1694 	pmt = mas_parent_enum(mas, penode);
1695 	pgaps = ma_gaps(pnode, pmt);
1696 	offset = mte_parent_slot(penode);
1697 	penode = mt_mk_node(pnode, pmt);
1698 	goto ascend;
1699 }
1700 
1701 /*
1702  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1703  * @mas - the maple state.
1704  */
1705 static inline void mas_update_gap(struct ma_state *mas)
1706 {
1707 	unsigned char pslot;
1708 	unsigned long p_gap;
1709 	unsigned long max_gap;
1710 
1711 	if (!mt_is_alloc(mas->tree))
1712 		return;
1713 
1714 	if (mte_is_root(mas->node))
1715 		return;
1716 
1717 	max_gap = mas_max_gap(mas);
1718 
1719 	pslot = mte_parent_slot(mas->node);
1720 	p_gap = ma_gaps(mte_parent(mas->node),
1721 			mas_parent_enum(mas, mas->node))[pslot];
1722 
1723 	if (p_gap != max_gap)
1724 		mas_parent_gap(mas, pslot, max_gap);
1725 }
1726 
1727 /*
1728  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1729  * @parent with the slot encoded.
1730  * @mas - the maple state (for the tree)
1731  * @parent - the maple encoded node containing the children.
1732  */
1733 static inline void mas_adopt_children(struct ma_state *mas,
1734 		struct maple_enode *parent)
1735 {
1736 	enum maple_type type = mte_node_type(parent);
1737 	struct maple_node *node = mas_mn(mas);
1738 	void __rcu **slots = ma_slots(node, type);
1739 	unsigned long *pivots = ma_pivots(node, type);
1740 	struct maple_enode *child;
1741 	unsigned char offset;
1742 
1743 	offset = ma_data_end(node, type, pivots, mas->max);
1744 	do {
1745 		child = mas_slot_locked(mas, slots, offset);
1746 		mte_set_parent(child, parent, offset);
1747 	} while (offset--);
1748 }
1749 
1750 /*
1751  * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the
1752  * parent encoding to locate the maple node in the tree.
1753  * @mas - the ma_state to use for operations.
1754  * @advanced - boolean to adopt the child nodes and free the old node (false) or
1755  * leave the node (true) and handle the adoption and free elsewhere.
1756  */
1757 static inline void mas_replace(struct ma_state *mas, bool advanced)
1758 	__must_hold(mas->tree->lock)
1759 {
1760 	struct maple_node *mn = mas_mn(mas);
1761 	struct maple_enode *old_enode;
1762 	unsigned char offset = 0;
1763 	void __rcu **slots = NULL;
1764 
1765 	if (ma_is_root(mn)) {
1766 		old_enode = mas_root_locked(mas);
1767 	} else {
1768 		offset = mte_parent_slot(mas->node);
1769 		slots = ma_slots(mte_parent(mas->node),
1770 				 mas_parent_enum(mas, mas->node));
1771 		old_enode = mas_slot_locked(mas, slots, offset);
1772 	}
1773 
1774 	if (!advanced && !mte_is_leaf(mas->node))
1775 		mas_adopt_children(mas, mas->node);
1776 
1777 	if (mte_is_root(mas->node)) {
1778 		mn->parent = ma_parent_ptr(
1779 			      ((unsigned long)mas->tree | MA_ROOT_PARENT));
1780 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1781 		mas_set_height(mas);
1782 	} else {
1783 		rcu_assign_pointer(slots[offset], mas->node);
1784 	}
1785 
1786 	if (!advanced) {
1787 		mte_set_node_dead(old_enode);
1788 		mas_free(mas, old_enode);
1789 	}
1790 }
1791 
1792 /*
1793  * mas_new_child() - Find the new child of a node.
1794  * @mas: the maple state
1795  * @child: the maple state to store the child.
1796  */
1797 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1798 	__must_hold(mas->tree->lock)
1799 {
1800 	enum maple_type mt;
1801 	unsigned char offset;
1802 	unsigned char end;
1803 	unsigned long *pivots;
1804 	struct maple_enode *entry;
1805 	struct maple_node *node;
1806 	void __rcu **slots;
1807 
1808 	mt = mte_node_type(mas->node);
1809 	node = mas_mn(mas);
1810 	slots = ma_slots(node, mt);
1811 	pivots = ma_pivots(node, mt);
1812 	end = ma_data_end(node, mt, pivots, mas->max);
1813 	for (offset = mas->offset; offset <= end; offset++) {
1814 		entry = mas_slot_locked(mas, slots, offset);
1815 		if (mte_parent(entry) == node) {
1816 			*child = *mas;
1817 			mas->offset = offset + 1;
1818 			child->offset = offset;
1819 			mas_descend(child);
1820 			child->offset = 0;
1821 			return true;
1822 		}
1823 	}
1824 	return false;
1825 }
1826 
1827 /*
1828  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1829  * old data or set b_node->b_end.
1830  * @b_node: the maple_big_node
1831  * @shift: the shift count
1832  */
1833 static inline void mab_shift_right(struct maple_big_node *b_node,
1834 				 unsigned char shift)
1835 {
1836 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1837 
1838 	memmove(b_node->pivot + shift, b_node->pivot, size);
1839 	memmove(b_node->slot + shift, b_node->slot, size);
1840 	if (b_node->type == maple_arange_64)
1841 		memmove(b_node->gap + shift, b_node->gap, size);
1842 }
1843 
1844 /*
1845  * mab_middle_node() - Check if a middle node is needed (unlikely)
1846  * @b_node: the maple_big_node that contains the data.
1847  * @size: the amount of data in the b_node
1848  * @split: the potential split location
1849  * @slot_count: the size that can be stored in a single node being considered.
1850  *
1851  * Return: true if a middle node is required.
1852  */
1853 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1854 				   unsigned char slot_count)
1855 {
1856 	unsigned char size = b_node->b_end;
1857 
1858 	if (size >= 2 * slot_count)
1859 		return true;
1860 
1861 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1862 		return true;
1863 
1864 	return false;
1865 }
1866 
1867 /*
1868  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1869  * @b_node: the maple_big_node with the data
1870  * @split: the suggested split location
1871  * @slot_count: the number of slots in the node being considered.
1872  *
1873  * Return: the split location.
1874  */
1875 static inline int mab_no_null_split(struct maple_big_node *b_node,
1876 				    unsigned char split, unsigned char slot_count)
1877 {
1878 	if (!b_node->slot[split]) {
1879 		/*
1880 		 * If the split is less than the max slot && the right side will
1881 		 * still be sufficient, then increment the split on NULL.
1882 		 */
1883 		if ((split < slot_count - 1) &&
1884 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1885 			split++;
1886 		else
1887 			split--;
1888 	}
1889 	return split;
1890 }
1891 
1892 /*
1893  * mab_calc_split() - Calculate the split location and if there needs to be two
1894  * splits.
1895  * @bn: The maple_big_node with the data
1896  * @mid_split: The second split, if required.  0 otherwise.
1897  *
1898  * Return: The first split location.  The middle split is set in @mid_split.
1899  */
1900 static inline int mab_calc_split(struct ma_state *mas,
1901 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1902 {
1903 	unsigned char b_end = bn->b_end;
1904 	int split = b_end / 2; /* Assume equal split. */
1905 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1906 
1907 	/*
1908 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1909 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1910 	 * limitation means that the split of a node must be checked for this condition
1911 	 * and be able to put more data in one direction or the other.
1912 	 */
1913 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1914 		*mid_split = 0;
1915 		split = b_end - mt_min_slots[bn->type];
1916 
1917 		if (!ma_is_leaf(bn->type))
1918 			return split;
1919 
1920 		mas->mas_flags |= MA_STATE_REBALANCE;
1921 		if (!bn->slot[split])
1922 			split--;
1923 		return split;
1924 	}
1925 
1926 	/*
1927 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1928 	 * split scenario.  The 3-way split comes about by means of a store of a range
1929 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1930 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1931 	 * also be located in different parent nodes which are also full.  This can
1932 	 * carry upwards all the way to the root in the worst case.
1933 	 */
1934 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1935 		split = b_end / 3;
1936 		*mid_split = split * 2;
1937 	} else {
1938 		slot_min = mt_min_slots[bn->type];
1939 
1940 		*mid_split = 0;
1941 		/*
1942 		 * Avoid having a range less than the slot count unless it
1943 		 * causes one node to be deficient.
1944 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1945 		 */
1946 		while (((bn->pivot[split] - min) < slot_count - 1) &&
1947 		       (split < slot_count - 1) && (b_end - split > slot_min))
1948 			split++;
1949 	}
1950 
1951 	/* Avoid ending a node on a NULL entry */
1952 	split = mab_no_null_split(bn, split, slot_count);
1953 
1954 	if (unlikely(*mid_split))
1955 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1956 
1957 	return split;
1958 }
1959 
1960 /*
1961  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1962  * and set @b_node->b_end to the next free slot.
1963  * @mas: The maple state
1964  * @mas_start: The starting slot to copy
1965  * @mas_end: The end slot to copy (inclusively)
1966  * @b_node: The maple_big_node to place the data
1967  * @mab_start: The starting location in maple_big_node to store the data.
1968  */
1969 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1970 			unsigned char mas_end, struct maple_big_node *b_node,
1971 			unsigned char mab_start)
1972 {
1973 	enum maple_type mt;
1974 	struct maple_node *node;
1975 	void __rcu **slots;
1976 	unsigned long *pivots, *gaps;
1977 	int i = mas_start, j = mab_start;
1978 	unsigned char piv_end;
1979 
1980 	node = mas_mn(mas);
1981 	mt = mte_node_type(mas->node);
1982 	pivots = ma_pivots(node, mt);
1983 	if (!i) {
1984 		b_node->pivot[j] = pivots[i++];
1985 		if (unlikely(i > mas_end))
1986 			goto complete;
1987 		j++;
1988 	}
1989 
1990 	piv_end = min(mas_end, mt_pivots[mt]);
1991 	for (; i < piv_end; i++, j++) {
1992 		b_node->pivot[j] = pivots[i];
1993 		if (unlikely(!b_node->pivot[j]))
1994 			break;
1995 
1996 		if (unlikely(mas->max == b_node->pivot[j]))
1997 			goto complete;
1998 	}
1999 
2000 	if (likely(i <= mas_end))
2001 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
2002 
2003 complete:
2004 	b_node->b_end = ++j;
2005 	j -= mab_start;
2006 	slots = ma_slots(node, mt);
2007 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
2008 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
2009 		gaps = ma_gaps(node, mt);
2010 		memcpy(b_node->gap + mab_start, gaps + mas_start,
2011 		       sizeof(unsigned long) * j);
2012 	}
2013 }
2014 
2015 /*
2016  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
2017  * @mas: The maple state
2018  * @node: The maple node
2019  * @pivots: pointer to the maple node pivots
2020  * @mt: The maple type
2021  * @end: The assumed end
2022  *
2023  * Note, end may be incremented within this function but not modified at the
2024  * source.  This is fine since the metadata is the last thing to be stored in a
2025  * node during a write.
2026  */
2027 static inline void mas_leaf_set_meta(struct ma_state *mas,
2028 		struct maple_node *node, unsigned long *pivots,
2029 		enum maple_type mt, unsigned char end)
2030 {
2031 	/* There is no room for metadata already */
2032 	if (mt_pivots[mt] <= end)
2033 		return;
2034 
2035 	if (pivots[end] && pivots[end] < mas->max)
2036 		end++;
2037 
2038 	if (end < mt_slots[mt] - 1)
2039 		ma_set_meta(node, mt, 0, end);
2040 }
2041 
2042 /*
2043  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2044  * @b_node: the maple_big_node that has the data
2045  * @mab_start: the start location in @b_node.
2046  * @mab_end: The end location in @b_node (inclusively)
2047  * @mas: The maple state with the maple encoded node.
2048  */
2049 static inline void mab_mas_cp(struct maple_big_node *b_node,
2050 			      unsigned char mab_start, unsigned char mab_end,
2051 			      struct ma_state *mas, bool new_max)
2052 {
2053 	int i, j = 0;
2054 	enum maple_type mt = mte_node_type(mas->node);
2055 	struct maple_node *node = mte_to_node(mas->node);
2056 	void __rcu **slots = ma_slots(node, mt);
2057 	unsigned long *pivots = ma_pivots(node, mt);
2058 	unsigned long *gaps = NULL;
2059 	unsigned char end;
2060 
2061 	if (mab_end - mab_start > mt_pivots[mt])
2062 		mab_end--;
2063 
2064 	if (!pivots[mt_pivots[mt] - 1])
2065 		slots[mt_pivots[mt]] = NULL;
2066 
2067 	i = mab_start;
2068 	do {
2069 		pivots[j++] = b_node->pivot[i++];
2070 	} while (i <= mab_end && likely(b_node->pivot[i]));
2071 
2072 	memcpy(slots, b_node->slot + mab_start,
2073 	       sizeof(void *) * (i - mab_start));
2074 
2075 	if (new_max)
2076 		mas->max = b_node->pivot[i - 1];
2077 
2078 	end = j - 1;
2079 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2080 		unsigned long max_gap = 0;
2081 		unsigned char offset = 15;
2082 
2083 		gaps = ma_gaps(node, mt);
2084 		do {
2085 			gaps[--j] = b_node->gap[--i];
2086 			if (gaps[j] > max_gap) {
2087 				offset = j;
2088 				max_gap = gaps[j];
2089 			}
2090 		} while (j);
2091 
2092 		ma_set_meta(node, mt, offset, end);
2093 	} else {
2094 		mas_leaf_set_meta(mas, node, pivots, mt, end);
2095 	}
2096 }
2097 
2098 /*
2099  * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2100  * @mas: the maple state with the maple encoded node of the sub-tree.
2101  *
2102  * Descend through a sub-tree and adopt children who do not have the correct
2103  * parents set.  Follow the parents which have the correct parents as they are
2104  * the new entries which need to be followed to find other incorrectly set
2105  * parents.
2106  */
2107 static inline void mas_descend_adopt(struct ma_state *mas)
2108 {
2109 	struct ma_state list[3], next[3];
2110 	int i, n;
2111 
2112 	/*
2113 	 * At each level there may be up to 3 correct parent pointers which indicates
2114 	 * the new nodes which need to be walked to find any new nodes at a lower level.
2115 	 */
2116 
2117 	for (i = 0; i < 3; i++) {
2118 		list[i] = *mas;
2119 		list[i].offset = 0;
2120 		next[i].offset = 0;
2121 	}
2122 	next[0] = *mas;
2123 
2124 	while (!mte_is_leaf(list[0].node)) {
2125 		n = 0;
2126 		for (i = 0; i < 3; i++) {
2127 			if (mas_is_none(&list[i]))
2128 				continue;
2129 
2130 			if (i && list[i-1].node == list[i].node)
2131 				continue;
2132 
2133 			while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2134 				n++;
2135 
2136 			mas_adopt_children(&list[i], list[i].node);
2137 		}
2138 
2139 		while (n < 3)
2140 			next[n++].node = MAS_NONE;
2141 
2142 		/* descend by setting the list to the children */
2143 		for (i = 0; i < 3; i++)
2144 			list[i] = next[i];
2145 	}
2146 }
2147 
2148 /*
2149  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2150  * @mas: The maple state
2151  * @end: The maple node end
2152  * @mt: The maple node type
2153  */
2154 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2155 				      enum maple_type mt)
2156 {
2157 	if (!(mas->mas_flags & MA_STATE_BULK))
2158 		return;
2159 
2160 	if (mte_is_root(mas->node))
2161 		return;
2162 
2163 	if (end > mt_min_slots[mt]) {
2164 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2165 		return;
2166 	}
2167 }
2168 
2169 /*
2170  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2171  * data from a maple encoded node.
2172  * @wr_mas: the maple write state
2173  * @b_node: the maple_big_node to fill with data
2174  * @offset_end: the offset to end copying
2175  *
2176  * Return: The actual end of the data stored in @b_node
2177  */
2178 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2179 		struct maple_big_node *b_node, unsigned char offset_end)
2180 {
2181 	unsigned char slot;
2182 	unsigned char b_end;
2183 	/* Possible underflow of piv will wrap back to 0 before use. */
2184 	unsigned long piv;
2185 	struct ma_state *mas = wr_mas->mas;
2186 
2187 	b_node->type = wr_mas->type;
2188 	b_end = 0;
2189 	slot = mas->offset;
2190 	if (slot) {
2191 		/* Copy start data up to insert. */
2192 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2193 		b_end = b_node->b_end;
2194 		piv = b_node->pivot[b_end - 1];
2195 	} else
2196 		piv = mas->min - 1;
2197 
2198 	if (piv + 1 < mas->index) {
2199 		/* Handle range starting after old range */
2200 		b_node->slot[b_end] = wr_mas->content;
2201 		if (!wr_mas->content)
2202 			b_node->gap[b_end] = mas->index - 1 - piv;
2203 		b_node->pivot[b_end++] = mas->index - 1;
2204 	}
2205 
2206 	/* Store the new entry. */
2207 	mas->offset = b_end;
2208 	b_node->slot[b_end] = wr_mas->entry;
2209 	b_node->pivot[b_end] = mas->last;
2210 
2211 	/* Appended. */
2212 	if (mas->last >= mas->max)
2213 		goto b_end;
2214 
2215 	/* Handle new range ending before old range ends */
2216 	piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2217 	if (piv > mas->last) {
2218 		if (piv == ULONG_MAX)
2219 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2220 
2221 		if (offset_end != slot)
2222 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2223 							  offset_end);
2224 
2225 		b_node->slot[++b_end] = wr_mas->content;
2226 		if (!wr_mas->content)
2227 			b_node->gap[b_end] = piv - mas->last + 1;
2228 		b_node->pivot[b_end] = piv;
2229 	}
2230 
2231 	slot = offset_end + 1;
2232 	if (slot > wr_mas->node_end)
2233 		goto b_end;
2234 
2235 	/* Copy end data to the end of the node. */
2236 	mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2237 	b_node->b_end--;
2238 	return;
2239 
2240 b_end:
2241 	b_node->b_end = b_end;
2242 }
2243 
2244 /*
2245  * mas_prev_sibling() - Find the previous node with the same parent.
2246  * @mas: the maple state
2247  *
2248  * Return: True if there is a previous sibling, false otherwise.
2249  */
2250 static inline bool mas_prev_sibling(struct ma_state *mas)
2251 {
2252 	unsigned int p_slot = mte_parent_slot(mas->node);
2253 
2254 	if (mte_is_root(mas->node))
2255 		return false;
2256 
2257 	if (!p_slot)
2258 		return false;
2259 
2260 	mas_ascend(mas);
2261 	mas->offset = p_slot - 1;
2262 	mas_descend(mas);
2263 	return true;
2264 }
2265 
2266 /*
2267  * mas_next_sibling() - Find the next node with the same parent.
2268  * @mas: the maple state
2269  *
2270  * Return: true if there is a next sibling, false otherwise.
2271  */
2272 static inline bool mas_next_sibling(struct ma_state *mas)
2273 {
2274 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2275 
2276 	if (mte_is_root(mas->node))
2277 		return false;
2278 
2279 	parent = *mas;
2280 	mas_ascend(&parent);
2281 	parent.offset = mte_parent_slot(mas->node) + 1;
2282 	if (parent.offset > mas_data_end(&parent))
2283 		return false;
2284 
2285 	*mas = parent;
2286 	mas_descend(mas);
2287 	return true;
2288 }
2289 
2290 /*
2291  * mte_node_or_node() - Return the encoded node or MAS_NONE.
2292  * @enode: The encoded maple node.
2293  *
2294  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2295  *
2296  * Return: @enode or MAS_NONE
2297  */
2298 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2299 {
2300 	if (enode)
2301 		return enode;
2302 
2303 	return ma_enode_ptr(MAS_NONE);
2304 }
2305 
2306 /*
2307  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2308  * @wr_mas: The maple write state
2309  *
2310  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2311  */
2312 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2313 {
2314 	struct ma_state *mas = wr_mas->mas;
2315 	unsigned char count;
2316 	unsigned char offset;
2317 	unsigned long index, min, max;
2318 
2319 	if (unlikely(ma_is_dense(wr_mas->type))) {
2320 		wr_mas->r_max = wr_mas->r_min = mas->index;
2321 		mas->offset = mas->index = mas->min;
2322 		return;
2323 	}
2324 
2325 	wr_mas->node = mas_mn(wr_mas->mas);
2326 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2327 	count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2328 					       wr_mas->pivots, mas->max);
2329 	offset = mas->offset;
2330 	min = mas_safe_min(mas, wr_mas->pivots, offset);
2331 	if (unlikely(offset == count))
2332 		goto max;
2333 
2334 	max = wr_mas->pivots[offset];
2335 	index = mas->index;
2336 	if (unlikely(index <= max))
2337 		goto done;
2338 
2339 	if (unlikely(!max && offset))
2340 		goto max;
2341 
2342 	min = max + 1;
2343 	while (++offset < count) {
2344 		max = wr_mas->pivots[offset];
2345 		if (index <= max)
2346 			goto done;
2347 		else if (unlikely(!max))
2348 			break;
2349 
2350 		min = max + 1;
2351 	}
2352 
2353 max:
2354 	max = mas->max;
2355 done:
2356 	wr_mas->r_max = max;
2357 	wr_mas->r_min = min;
2358 	wr_mas->offset_end = mas->offset = offset;
2359 }
2360 
2361 /*
2362  * mas_topiary_range() - Add a range of slots to the topiary.
2363  * @mas: The maple state
2364  * @destroy: The topiary to add the slots (usually destroy)
2365  * @start: The starting slot inclusively
2366  * @end: The end slot inclusively
2367  */
2368 static inline void mas_topiary_range(struct ma_state *mas,
2369 	struct ma_topiary *destroy, unsigned char start, unsigned char end)
2370 {
2371 	void __rcu **slots;
2372 	unsigned char offset;
2373 
2374 	MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2375 	slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2376 	for (offset = start; offset <= end; offset++) {
2377 		struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2378 
2379 		if (mte_dead_node(enode))
2380 			continue;
2381 
2382 		mat_add(destroy, enode);
2383 	}
2384 }
2385 
2386 /*
2387  * mast_topiary() - Add the portions of the tree to the removal list; either to
2388  * be freed or discarded (destroy walk).
2389  * @mast: The maple_subtree_state.
2390  */
2391 static inline void mast_topiary(struct maple_subtree_state *mast)
2392 {
2393 	MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2394 	unsigned char r_start, r_end;
2395 	unsigned char l_start, l_end;
2396 	void __rcu **l_slots, **r_slots;
2397 
2398 	wr_mas.type = mte_node_type(mast->orig_l->node);
2399 	mast->orig_l->index = mast->orig_l->last;
2400 	mas_wr_node_walk(&wr_mas);
2401 	l_start = mast->orig_l->offset + 1;
2402 	l_end = mas_data_end(mast->orig_l);
2403 	r_start = 0;
2404 	r_end = mast->orig_r->offset;
2405 
2406 	if (r_end)
2407 		r_end--;
2408 
2409 	l_slots = ma_slots(mas_mn(mast->orig_l),
2410 			   mte_node_type(mast->orig_l->node));
2411 
2412 	r_slots = ma_slots(mas_mn(mast->orig_r),
2413 			   mte_node_type(mast->orig_r->node));
2414 
2415 	if ((l_start < l_end) &&
2416 	    mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2417 		l_start++;
2418 	}
2419 
2420 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2421 		if (r_end)
2422 			r_end--;
2423 	}
2424 
2425 	if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2426 		return;
2427 
2428 	/* At the node where left and right sides meet, add the parts between */
2429 	if (mast->orig_l->node == mast->orig_r->node) {
2430 		return mas_topiary_range(mast->orig_l, mast->destroy,
2431 					     l_start, r_end);
2432 	}
2433 
2434 	/* mast->orig_r is different and consumed. */
2435 	if (mte_is_leaf(mast->orig_r->node))
2436 		return;
2437 
2438 	if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2439 		l_end--;
2440 
2441 
2442 	if (l_start <= l_end)
2443 		mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2444 
2445 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2446 		r_start++;
2447 
2448 	if (r_start <= r_end)
2449 		mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2450 }
2451 
2452 /*
2453  * mast_rebalance_next() - Rebalance against the next node
2454  * @mast: The maple subtree state
2455  * @old_r: The encoded maple node to the right (next node).
2456  */
2457 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2458 {
2459 	unsigned char b_end = mast->bn->b_end;
2460 
2461 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2462 		   mast->bn, b_end);
2463 	mast->orig_r->last = mast->orig_r->max;
2464 }
2465 
2466 /*
2467  * mast_rebalance_prev() - Rebalance against the previous node
2468  * @mast: The maple subtree state
2469  * @old_l: The encoded maple node to the left (previous node)
2470  */
2471 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2472 {
2473 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2474 	unsigned char b_end = mast->bn->b_end;
2475 
2476 	mab_shift_right(mast->bn, end);
2477 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2478 	mast->l->min = mast->orig_l->min;
2479 	mast->orig_l->index = mast->orig_l->min;
2480 	mast->bn->b_end = end + b_end;
2481 	mast->l->offset += end;
2482 }
2483 
2484 /*
2485  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2486  * the node to the right.  Checking the nodes to the right then the left at each
2487  * level upwards until root is reached.  Free and destroy as needed.
2488  * Data is copied into the @mast->bn.
2489  * @mast: The maple_subtree_state.
2490  */
2491 static inline
2492 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2493 {
2494 	struct ma_state r_tmp = *mast->orig_r;
2495 	struct ma_state l_tmp = *mast->orig_l;
2496 	struct maple_enode *ancestor = NULL;
2497 	unsigned char start, end;
2498 	unsigned char depth = 0;
2499 
2500 	r_tmp = *mast->orig_r;
2501 	l_tmp = *mast->orig_l;
2502 	do {
2503 		mas_ascend(mast->orig_r);
2504 		mas_ascend(mast->orig_l);
2505 		depth++;
2506 		if (!ancestor &&
2507 		    (mast->orig_r->node == mast->orig_l->node)) {
2508 			ancestor = mast->orig_r->node;
2509 			end = mast->orig_r->offset - 1;
2510 			start = mast->orig_l->offset + 1;
2511 		}
2512 
2513 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2514 			if (!ancestor) {
2515 				ancestor = mast->orig_r->node;
2516 				start = 0;
2517 			}
2518 
2519 			mast->orig_r->offset++;
2520 			do {
2521 				mas_descend(mast->orig_r);
2522 				mast->orig_r->offset = 0;
2523 				depth--;
2524 			} while (depth);
2525 
2526 			mast_rebalance_next(mast);
2527 			do {
2528 				unsigned char l_off = 0;
2529 				struct maple_enode *child = r_tmp.node;
2530 
2531 				mas_ascend(&r_tmp);
2532 				if (ancestor == r_tmp.node)
2533 					l_off = start;
2534 
2535 				if (r_tmp.offset)
2536 					r_tmp.offset--;
2537 
2538 				if (l_off < r_tmp.offset)
2539 					mas_topiary_range(&r_tmp, mast->destroy,
2540 							  l_off, r_tmp.offset);
2541 
2542 				if (l_tmp.node != child)
2543 					mat_add(mast->free, child);
2544 
2545 			} while (r_tmp.node != ancestor);
2546 
2547 			*mast->orig_l = l_tmp;
2548 			return true;
2549 
2550 		} else if (mast->orig_l->offset != 0) {
2551 			if (!ancestor) {
2552 				ancestor = mast->orig_l->node;
2553 				end = mas_data_end(mast->orig_l);
2554 			}
2555 
2556 			mast->orig_l->offset--;
2557 			do {
2558 				mas_descend(mast->orig_l);
2559 				mast->orig_l->offset =
2560 					mas_data_end(mast->orig_l);
2561 				depth--;
2562 			} while (depth);
2563 
2564 			mast_rebalance_prev(mast);
2565 			do {
2566 				unsigned char r_off;
2567 				struct maple_enode *child = l_tmp.node;
2568 
2569 				mas_ascend(&l_tmp);
2570 				if (ancestor == l_tmp.node)
2571 					r_off = end;
2572 				else
2573 					r_off = mas_data_end(&l_tmp);
2574 
2575 				if (l_tmp.offset < r_off)
2576 					l_tmp.offset++;
2577 
2578 				if (l_tmp.offset < r_off)
2579 					mas_topiary_range(&l_tmp, mast->destroy,
2580 							  l_tmp.offset, r_off);
2581 
2582 				if (r_tmp.node != child)
2583 					mat_add(mast->free, child);
2584 
2585 			} while (l_tmp.node != ancestor);
2586 
2587 			*mast->orig_r = r_tmp;
2588 			return true;
2589 		}
2590 	} while (!mte_is_root(mast->orig_r->node));
2591 
2592 	*mast->orig_r = r_tmp;
2593 	*mast->orig_l = l_tmp;
2594 	return false;
2595 }
2596 
2597 /*
2598  * mast_ascend_free() - Add current original maple state nodes to the free list
2599  * and ascend.
2600  * @mast: the maple subtree state.
2601  *
2602  * Ascend the original left and right sides and add the previous nodes to the
2603  * free list.  Set the slots to point to the correct location in the new nodes.
2604  */
2605 static inline void
2606 mast_ascend_free(struct maple_subtree_state *mast)
2607 {
2608 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2609 	struct maple_enode *left = mast->orig_l->node;
2610 	struct maple_enode *right = mast->orig_r->node;
2611 
2612 	mas_ascend(mast->orig_l);
2613 	mas_ascend(mast->orig_r);
2614 	mat_add(mast->free, left);
2615 
2616 	if (left != right)
2617 		mat_add(mast->free, right);
2618 
2619 	mast->orig_r->offset = 0;
2620 	mast->orig_r->index = mast->r->max;
2621 	/* last should be larger than or equal to index */
2622 	if (mast->orig_r->last < mast->orig_r->index)
2623 		mast->orig_r->last = mast->orig_r->index;
2624 	/*
2625 	 * The node may not contain the value so set slot to ensure all
2626 	 * of the nodes contents are freed or destroyed.
2627 	 */
2628 	wr_mas.type = mte_node_type(mast->orig_r->node);
2629 	mas_wr_node_walk(&wr_mas);
2630 	/* Set up the left side of things */
2631 	mast->orig_l->offset = 0;
2632 	mast->orig_l->index = mast->l->min;
2633 	wr_mas.mas = mast->orig_l;
2634 	wr_mas.type = mte_node_type(mast->orig_l->node);
2635 	mas_wr_node_walk(&wr_mas);
2636 
2637 	mast->bn->type = wr_mas.type;
2638 }
2639 
2640 /*
2641  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2642  * @mas: the maple state with the allocations.
2643  * @b_node: the maple_big_node with the type encoding.
2644  *
2645  * Use the node type from the maple_big_node to allocate a new node from the
2646  * ma_state.  This function exists mainly for code readability.
2647  *
2648  * Return: A new maple encoded node
2649  */
2650 static inline struct maple_enode
2651 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2652 {
2653 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2654 }
2655 
2656 /*
2657  * mas_mab_to_node() - Set up right and middle nodes
2658  *
2659  * @mas: the maple state that contains the allocations.
2660  * @b_node: the node which contains the data.
2661  * @left: The pointer which will have the left node
2662  * @right: The pointer which may have the right node
2663  * @middle: the pointer which may have the middle node (rare)
2664  * @mid_split: the split location for the middle node
2665  *
2666  * Return: the split of left.
2667  */
2668 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2669 	struct maple_big_node *b_node, struct maple_enode **left,
2670 	struct maple_enode **right, struct maple_enode **middle,
2671 	unsigned char *mid_split, unsigned long min)
2672 {
2673 	unsigned char split = 0;
2674 	unsigned char slot_count = mt_slots[b_node->type];
2675 
2676 	*left = mas_new_ma_node(mas, b_node);
2677 	*right = NULL;
2678 	*middle = NULL;
2679 	*mid_split = 0;
2680 
2681 	if (b_node->b_end < slot_count) {
2682 		split = b_node->b_end;
2683 	} else {
2684 		split = mab_calc_split(mas, b_node, mid_split, min);
2685 		*right = mas_new_ma_node(mas, b_node);
2686 	}
2687 
2688 	if (*mid_split)
2689 		*middle = mas_new_ma_node(mas, b_node);
2690 
2691 	return split;
2692 
2693 }
2694 
2695 /*
2696  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2697  * pointer.
2698  * @b_node - the big node to add the entry
2699  * @mas - the maple state to get the pivot (mas->max)
2700  * @entry - the entry to add, if NULL nothing happens.
2701  */
2702 static inline void mab_set_b_end(struct maple_big_node *b_node,
2703 				 struct ma_state *mas,
2704 				 void *entry)
2705 {
2706 	if (!entry)
2707 		return;
2708 
2709 	b_node->slot[b_node->b_end] = entry;
2710 	if (mt_is_alloc(mas->tree))
2711 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2712 	b_node->pivot[b_node->b_end++] = mas->max;
2713 }
2714 
2715 /*
2716  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2717  * of @mas->node to either @left or @right, depending on @slot and @split
2718  *
2719  * @mas - the maple state with the node that needs a parent
2720  * @left - possible parent 1
2721  * @right - possible parent 2
2722  * @slot - the slot the mas->node was placed
2723  * @split - the split location between @left and @right
2724  */
2725 static inline void mas_set_split_parent(struct ma_state *mas,
2726 					struct maple_enode *left,
2727 					struct maple_enode *right,
2728 					unsigned char *slot, unsigned char split)
2729 {
2730 	if (mas_is_none(mas))
2731 		return;
2732 
2733 	if ((*slot) <= split)
2734 		mte_set_parent(mas->node, left, *slot);
2735 	else if (right)
2736 		mte_set_parent(mas->node, right, (*slot) - split - 1);
2737 
2738 	(*slot)++;
2739 }
2740 
2741 /*
2742  * mte_mid_split_check() - Check if the next node passes the mid-split
2743  * @**l: Pointer to left encoded maple node.
2744  * @**m: Pointer to middle encoded maple node.
2745  * @**r: Pointer to right encoded maple node.
2746  * @slot: The offset
2747  * @*split: The split location.
2748  * @mid_split: The middle split.
2749  */
2750 static inline void mte_mid_split_check(struct maple_enode **l,
2751 				       struct maple_enode **r,
2752 				       struct maple_enode *right,
2753 				       unsigned char slot,
2754 				       unsigned char *split,
2755 				       unsigned char mid_split)
2756 {
2757 	if (*r == right)
2758 		return;
2759 
2760 	if (slot < mid_split)
2761 		return;
2762 
2763 	*l = *r;
2764 	*r = right;
2765 	*split = mid_split;
2766 }
2767 
2768 /*
2769  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2770  * is taken from @mast->l.
2771  * @mast - the maple subtree state
2772  * @left - the left node
2773  * @right - the right node
2774  * @split - the split location.
2775  */
2776 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2777 					  struct maple_enode *left,
2778 					  struct maple_enode *middle,
2779 					  struct maple_enode *right,
2780 					  unsigned char split,
2781 					  unsigned char mid_split)
2782 {
2783 	unsigned char slot;
2784 	struct maple_enode *l = left;
2785 	struct maple_enode *r = right;
2786 
2787 	if (mas_is_none(mast->l))
2788 		return;
2789 
2790 	if (middle)
2791 		r = middle;
2792 
2793 	slot = mast->l->offset;
2794 
2795 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2796 	mas_set_split_parent(mast->l, l, r, &slot, split);
2797 
2798 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2799 	mas_set_split_parent(mast->m, l, r, &slot, split);
2800 
2801 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2802 	mas_set_split_parent(mast->r, l, r, &slot, split);
2803 }
2804 
2805 /*
2806  * mas_wmb_replace() - Write memory barrier and replace
2807  * @mas: The maple state
2808  * @free: the maple topiary list of nodes to free
2809  * @destroy: The maple topiary list of nodes to destroy (walk and free)
2810  *
2811  * Updates gap as necessary.
2812  */
2813 static inline void mas_wmb_replace(struct ma_state *mas,
2814 				   struct ma_topiary *free,
2815 				   struct ma_topiary *destroy)
2816 {
2817 	/* All nodes must see old data as dead prior to replacing that data */
2818 	smp_wmb(); /* Needed for RCU */
2819 
2820 	/* Insert the new data in the tree */
2821 	mas_replace(mas, true);
2822 
2823 	if (!mte_is_leaf(mas->node))
2824 		mas_descend_adopt(mas);
2825 
2826 	mas_mat_free(mas, free);
2827 
2828 	if (destroy)
2829 		mas_mat_destroy(mas, destroy);
2830 
2831 	if (mte_is_leaf(mas->node))
2832 		return;
2833 
2834 	mas_update_gap(mas);
2835 }
2836 
2837 /*
2838  * mast_new_root() - Set a new tree root during subtree creation
2839  * @mast: The maple subtree state
2840  * @mas: The maple state
2841  */
2842 static inline void mast_new_root(struct maple_subtree_state *mast,
2843 				 struct ma_state *mas)
2844 {
2845 	mas_mn(mast->l)->parent =
2846 		ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2847 	if (!mte_dead_node(mast->orig_l->node) &&
2848 	    !mte_is_root(mast->orig_l->node)) {
2849 		do {
2850 			mast_ascend_free(mast);
2851 			mast_topiary(mast);
2852 		} while (!mte_is_root(mast->orig_l->node));
2853 	}
2854 	if ((mast->orig_l->node != mas->node) &&
2855 		   (mast->l->depth > mas_mt_height(mas))) {
2856 		mat_add(mast->free, mas->node);
2857 	}
2858 }
2859 
2860 /*
2861  * mast_cp_to_nodes() - Copy data out to nodes.
2862  * @mast: The maple subtree state
2863  * @left: The left encoded maple node
2864  * @middle: The middle encoded maple node
2865  * @right: The right encoded maple node
2866  * @split: The location to split between left and (middle ? middle : right)
2867  * @mid_split: The location to split between middle and right.
2868  */
2869 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2870 	struct maple_enode *left, struct maple_enode *middle,
2871 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2872 {
2873 	bool new_lmax = true;
2874 
2875 	mast->l->node = mte_node_or_none(left);
2876 	mast->m->node = mte_node_or_none(middle);
2877 	mast->r->node = mte_node_or_none(right);
2878 
2879 	mast->l->min = mast->orig_l->min;
2880 	if (split == mast->bn->b_end) {
2881 		mast->l->max = mast->orig_r->max;
2882 		new_lmax = false;
2883 	}
2884 
2885 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2886 
2887 	if (middle) {
2888 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2889 		mast->m->min = mast->bn->pivot[split] + 1;
2890 		split = mid_split;
2891 	}
2892 
2893 	mast->r->max = mast->orig_r->max;
2894 	if (right) {
2895 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2896 		mast->r->min = mast->bn->pivot[split] + 1;
2897 	}
2898 }
2899 
2900 /*
2901  * mast_combine_cp_left - Copy in the original left side of the tree into the
2902  * combined data set in the maple subtree state big node.
2903  * @mast: The maple subtree state
2904  */
2905 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2906 {
2907 	unsigned char l_slot = mast->orig_l->offset;
2908 
2909 	if (!l_slot)
2910 		return;
2911 
2912 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2913 }
2914 
2915 /*
2916  * mast_combine_cp_right: Copy in the original right side of the tree into the
2917  * combined data set in the maple subtree state big node.
2918  * @mast: The maple subtree state
2919  */
2920 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2921 {
2922 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2923 		return;
2924 
2925 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2926 		   mt_slot_count(mast->orig_r->node), mast->bn,
2927 		   mast->bn->b_end);
2928 	mast->orig_r->last = mast->orig_r->max;
2929 }
2930 
2931 /*
2932  * mast_sufficient: Check if the maple subtree state has enough data in the big
2933  * node to create at least one sufficient node
2934  * @mast: the maple subtree state
2935  */
2936 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2937 {
2938 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2939 		return true;
2940 
2941 	return false;
2942 }
2943 
2944 /*
2945  * mast_overflow: Check if there is too much data in the subtree state for a
2946  * single node.
2947  * @mast: The maple subtree state
2948  */
2949 static inline bool mast_overflow(struct maple_subtree_state *mast)
2950 {
2951 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2952 		return true;
2953 
2954 	return false;
2955 }
2956 
2957 static inline void *mtree_range_walk(struct ma_state *mas)
2958 {
2959 	unsigned long *pivots;
2960 	unsigned char offset;
2961 	struct maple_node *node;
2962 	struct maple_enode *next, *last;
2963 	enum maple_type type;
2964 	void __rcu **slots;
2965 	unsigned char end;
2966 	unsigned long max, min;
2967 	unsigned long prev_max, prev_min;
2968 
2969 	next = mas->node;
2970 	min = mas->min;
2971 	max = mas->max;
2972 	do {
2973 		offset = 0;
2974 		last = next;
2975 		node = mte_to_node(next);
2976 		type = mte_node_type(next);
2977 		pivots = ma_pivots(node, type);
2978 		end = ma_data_end(node, type, pivots, max);
2979 		if (unlikely(ma_dead_node(node)))
2980 			goto dead_node;
2981 
2982 		if (pivots[offset] >= mas->index) {
2983 			prev_max = max;
2984 			prev_min = min;
2985 			max = pivots[offset];
2986 			goto next;
2987 		}
2988 
2989 		do {
2990 			offset++;
2991 		} while ((offset < end) && (pivots[offset] < mas->index));
2992 
2993 		prev_min = min;
2994 		min = pivots[offset - 1] + 1;
2995 		prev_max = max;
2996 		if (likely(offset < end && pivots[offset]))
2997 			max = pivots[offset];
2998 
2999 next:
3000 		slots = ma_slots(node, type);
3001 		next = mt_slot(mas->tree, slots, offset);
3002 		if (unlikely(ma_dead_node(node)))
3003 			goto dead_node;
3004 	} while (!ma_is_leaf(type));
3005 
3006 	mas->offset = offset;
3007 	mas->index = min;
3008 	mas->last = max;
3009 	mas->min = prev_min;
3010 	mas->max = prev_max;
3011 	mas->node = last;
3012 	return (void *)next;
3013 
3014 dead_node:
3015 	mas_reset(mas);
3016 	return NULL;
3017 }
3018 
3019 /*
3020  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
3021  * @mas: The starting maple state
3022  * @mast: The maple_subtree_state, keeps track of 4 maple states.
3023  * @count: The estimated count of iterations needed.
3024  *
3025  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
3026  * is hit.  First @b_node is split into two entries which are inserted into the
3027  * next iteration of the loop.  @b_node is returned populated with the final
3028  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
3029  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
3030  * to account of what has been copied into the new sub-tree.  The update of
3031  * orig_l_mas->last is used in mas_consume to find the slots that will need to
3032  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
3033  * the new sub-tree in case the sub-tree becomes the full tree.
3034  *
3035  * Return: the number of elements in b_node during the last loop.
3036  */
3037 static int mas_spanning_rebalance(struct ma_state *mas,
3038 		struct maple_subtree_state *mast, unsigned char count)
3039 {
3040 	unsigned char split, mid_split;
3041 	unsigned char slot = 0;
3042 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
3043 
3044 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
3045 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3046 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
3047 	MA_TOPIARY(free, mas->tree);
3048 	MA_TOPIARY(destroy, mas->tree);
3049 
3050 	/*
3051 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
3052 	 * Rebalancing is done by use of the ``struct maple_topiary``.
3053 	 */
3054 	mast->l = &l_mas;
3055 	mast->m = &m_mas;
3056 	mast->r = &r_mas;
3057 	mast->free = &free;
3058 	mast->destroy = &destroy;
3059 	l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
3060 
3061 	/* Check if this is not root and has sufficient data.  */
3062 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
3063 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3064 		mast_spanning_rebalance(mast);
3065 
3066 	mast->orig_l->depth = 0;
3067 
3068 	/*
3069 	 * Each level of the tree is examined and balanced, pushing data to the left or
3070 	 * right, or rebalancing against left or right nodes is employed to avoid
3071 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
3072 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
3073 	 * will have the incorrect parent pointers and currently be in two trees: the
3074 	 * original tree and the partially new tree.  To remedy the parent pointers in
3075 	 * the old tree, the new data is swapped into the active tree and a walk down
3076 	 * the tree is performed and the parent pointers are updated.
3077 	 * See mas_descend_adopt() for more information..
3078 	 */
3079 	while (count--) {
3080 		mast->bn->b_end--;
3081 		mast->bn->type = mte_node_type(mast->orig_l->node);
3082 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3083 					&mid_split, mast->orig_l->min);
3084 		mast_set_split_parents(mast, left, middle, right, split,
3085 				       mid_split);
3086 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3087 
3088 		/*
3089 		 * Copy data from next level in the tree to mast->bn from next
3090 		 * iteration
3091 		 */
3092 		memset(mast->bn, 0, sizeof(struct maple_big_node));
3093 		mast->bn->type = mte_node_type(left);
3094 		mast->orig_l->depth++;
3095 
3096 		/* Root already stored in l->node. */
3097 		if (mas_is_root_limits(mast->l))
3098 			goto new_root;
3099 
3100 		mast_ascend_free(mast);
3101 		mast_combine_cp_left(mast);
3102 		l_mas.offset = mast->bn->b_end;
3103 		mab_set_b_end(mast->bn, &l_mas, left);
3104 		mab_set_b_end(mast->bn, &m_mas, middle);
3105 		mab_set_b_end(mast->bn, &r_mas, right);
3106 
3107 		/* Copy anything necessary out of the right node. */
3108 		mast_combine_cp_right(mast);
3109 		mast_topiary(mast);
3110 		mast->orig_l->last = mast->orig_l->max;
3111 
3112 		if (mast_sufficient(mast))
3113 			continue;
3114 
3115 		if (mast_overflow(mast))
3116 			continue;
3117 
3118 		/* May be a new root stored in mast->bn */
3119 		if (mas_is_root_limits(mast->orig_l))
3120 			break;
3121 
3122 		mast_spanning_rebalance(mast);
3123 
3124 		/* rebalancing from other nodes may require another loop. */
3125 		if (!count)
3126 			count++;
3127 	}
3128 
3129 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3130 				mte_node_type(mast->orig_l->node));
3131 	mast->orig_l->depth++;
3132 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3133 	mte_set_parent(left, l_mas.node, slot);
3134 	if (middle)
3135 		mte_set_parent(middle, l_mas.node, ++slot);
3136 
3137 	if (right)
3138 		mte_set_parent(right, l_mas.node, ++slot);
3139 
3140 	if (mas_is_root_limits(mast->l)) {
3141 new_root:
3142 		mast_new_root(mast, mas);
3143 	} else {
3144 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3145 	}
3146 
3147 	if (!mte_dead_node(mast->orig_l->node))
3148 		mat_add(&free, mast->orig_l->node);
3149 
3150 	mas->depth = mast->orig_l->depth;
3151 	*mast->orig_l = l_mas;
3152 	mte_set_node_dead(mas->node);
3153 
3154 	/* Set up mas for insertion. */
3155 	mast->orig_l->depth = mas->depth;
3156 	mast->orig_l->alloc = mas->alloc;
3157 	*mas = *mast->orig_l;
3158 	mas_wmb_replace(mas, &free, &destroy);
3159 	mtree_range_walk(mas);
3160 	return mast->bn->b_end;
3161 }
3162 
3163 /*
3164  * mas_rebalance() - Rebalance a given node.
3165  * @mas: The maple state
3166  * @b_node: The big maple node.
3167  *
3168  * Rebalance two nodes into a single node or two new nodes that are sufficient.
3169  * Continue upwards until tree is sufficient.
3170  *
3171  * Return: the number of elements in b_node during the last loop.
3172  */
3173 static inline int mas_rebalance(struct ma_state *mas,
3174 				struct maple_big_node *b_node)
3175 {
3176 	char empty_count = mas_mt_height(mas);
3177 	struct maple_subtree_state mast;
3178 	unsigned char shift, b_end = ++b_node->b_end;
3179 
3180 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3181 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3182 
3183 	trace_ma_op(__func__, mas);
3184 
3185 	/*
3186 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
3187 	 * against the node to the right if it exists, otherwise the node to the
3188 	 * left of this node is rebalanced against this node.  If rebalancing
3189 	 * causes just one node to be produced instead of two, then the parent
3190 	 * is also examined and rebalanced if it is insufficient.  Every level
3191 	 * tries to combine the data in the same way.  If one node contains the
3192 	 * entire range of the tree, then that node is used as a new root node.
3193 	 */
3194 	mas_node_count(mas, 1 + empty_count * 3);
3195 	if (mas_is_err(mas))
3196 		return 0;
3197 
3198 	mast.orig_l = &l_mas;
3199 	mast.orig_r = &r_mas;
3200 	mast.bn = b_node;
3201 	mast.bn->type = mte_node_type(mas->node);
3202 
3203 	l_mas = r_mas = *mas;
3204 
3205 	if (mas_next_sibling(&r_mas)) {
3206 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3207 		r_mas.last = r_mas.index = r_mas.max;
3208 	} else {
3209 		mas_prev_sibling(&l_mas);
3210 		shift = mas_data_end(&l_mas) + 1;
3211 		mab_shift_right(b_node, shift);
3212 		mas->offset += shift;
3213 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3214 		b_node->b_end = shift + b_end;
3215 		l_mas.index = l_mas.last = l_mas.min;
3216 	}
3217 
3218 	return mas_spanning_rebalance(mas, &mast, empty_count);
3219 }
3220 
3221 /*
3222  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3223  * state.
3224  * @mas: The maple state
3225  * @end: The end of the left-most node.
3226  *
3227  * During a mass-insert event (such as forking), it may be necessary to
3228  * rebalance the left-most node when it is not sufficient.
3229  */
3230 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3231 {
3232 	enum maple_type mt = mte_node_type(mas->node);
3233 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3234 	struct maple_enode *eparent;
3235 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3236 	void __rcu **l_slots, **slots;
3237 	unsigned long *l_pivs, *pivs, gap;
3238 	bool in_rcu = mt_in_rcu(mas->tree);
3239 
3240 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3241 
3242 	l_mas = *mas;
3243 	mas_prev_sibling(&l_mas);
3244 
3245 	/* set up node. */
3246 	if (in_rcu) {
3247 		/* Allocate for both left and right as well as parent. */
3248 		mas_node_count(mas, 3);
3249 		if (mas_is_err(mas))
3250 			return;
3251 
3252 		newnode = mas_pop_node(mas);
3253 	} else {
3254 		newnode = &reuse;
3255 	}
3256 
3257 	node = mas_mn(mas);
3258 	newnode->parent = node->parent;
3259 	slots = ma_slots(newnode, mt);
3260 	pivs = ma_pivots(newnode, mt);
3261 	left = mas_mn(&l_mas);
3262 	l_slots = ma_slots(left, mt);
3263 	l_pivs = ma_pivots(left, mt);
3264 	if (!l_slots[split])
3265 		split++;
3266 	tmp = mas_data_end(&l_mas) - split;
3267 
3268 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3269 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3270 	pivs[tmp] = l_mas.max;
3271 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3272 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3273 
3274 	l_mas.max = l_pivs[split];
3275 	mas->min = l_mas.max + 1;
3276 	eparent = mt_mk_node(mte_parent(l_mas.node),
3277 			     mas_parent_enum(&l_mas, l_mas.node));
3278 	tmp += end;
3279 	if (!in_rcu) {
3280 		unsigned char max_p = mt_pivots[mt];
3281 		unsigned char max_s = mt_slots[mt];
3282 
3283 		if (tmp < max_p)
3284 			memset(pivs + tmp, 0,
3285 			       sizeof(unsigned long *) * (max_p - tmp));
3286 
3287 		if (tmp < mt_slots[mt])
3288 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3289 
3290 		memcpy(node, newnode, sizeof(struct maple_node));
3291 		ma_set_meta(node, mt, 0, tmp - 1);
3292 		mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3293 			      l_pivs[split]);
3294 
3295 		/* Remove data from l_pivs. */
3296 		tmp = split + 1;
3297 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3298 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3299 		ma_set_meta(left, mt, 0, split);
3300 
3301 		goto done;
3302 	}
3303 
3304 	/* RCU requires replacing both l_mas, mas, and parent. */
3305 	mas->node = mt_mk_node(newnode, mt);
3306 	ma_set_meta(newnode, mt, 0, tmp);
3307 
3308 	new_left = mas_pop_node(mas);
3309 	new_left->parent = left->parent;
3310 	mt = mte_node_type(l_mas.node);
3311 	slots = ma_slots(new_left, mt);
3312 	pivs = ma_pivots(new_left, mt);
3313 	memcpy(slots, l_slots, sizeof(void *) * split);
3314 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3315 	ma_set_meta(new_left, mt, 0, split);
3316 	l_mas.node = mt_mk_node(new_left, mt);
3317 
3318 	/* replace parent. */
3319 	offset = mte_parent_slot(mas->node);
3320 	mt = mas_parent_enum(&l_mas, l_mas.node);
3321 	parent = mas_pop_node(mas);
3322 	slots = ma_slots(parent, mt);
3323 	pivs = ma_pivots(parent, mt);
3324 	memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3325 	rcu_assign_pointer(slots[offset], mas->node);
3326 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3327 	pivs[offset - 1] = l_mas.max;
3328 	eparent = mt_mk_node(parent, mt);
3329 done:
3330 	gap = mas_leaf_max_gap(mas);
3331 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3332 	gap = mas_leaf_max_gap(&l_mas);
3333 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3334 	mas_ascend(mas);
3335 
3336 	if (in_rcu)
3337 		mas_replace(mas, false);
3338 
3339 	mas_update_gap(mas);
3340 }
3341 
3342 /*
3343  * mas_split_final_node() - Split the final node in a subtree operation.
3344  * @mast: the maple subtree state
3345  * @mas: The maple state
3346  * @height: The height of the tree in case it's a new root.
3347  */
3348 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3349 					struct ma_state *mas, int height)
3350 {
3351 	struct maple_enode *ancestor;
3352 
3353 	if (mte_is_root(mas->node)) {
3354 		if (mt_is_alloc(mas->tree))
3355 			mast->bn->type = maple_arange_64;
3356 		else
3357 			mast->bn->type = maple_range_64;
3358 		mas->depth = height;
3359 	}
3360 	/*
3361 	 * Only a single node is used here, could be root.
3362 	 * The Big_node data should just fit in a single node.
3363 	 */
3364 	ancestor = mas_new_ma_node(mas, mast->bn);
3365 	mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3366 	mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3367 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3368 
3369 	mast->l->node = ancestor;
3370 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3371 	mas->offset = mast->bn->b_end - 1;
3372 	return true;
3373 }
3374 
3375 /*
3376  * mast_fill_bnode() - Copy data into the big node in the subtree state
3377  * @mast: The maple subtree state
3378  * @mas: the maple state
3379  * @skip: The number of entries to skip for new nodes insertion.
3380  */
3381 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3382 					 struct ma_state *mas,
3383 					 unsigned char skip)
3384 {
3385 	bool cp = true;
3386 	struct maple_enode *old = mas->node;
3387 	unsigned char split;
3388 
3389 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3390 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3391 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3392 	mast->bn->b_end = 0;
3393 
3394 	if (mte_is_root(mas->node)) {
3395 		cp = false;
3396 	} else {
3397 		mas_ascend(mas);
3398 		mat_add(mast->free, old);
3399 		mas->offset = mte_parent_slot(mas->node);
3400 	}
3401 
3402 	if (cp && mast->l->offset)
3403 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3404 
3405 	split = mast->bn->b_end;
3406 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3407 	mast->r->offset = mast->bn->b_end;
3408 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3409 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3410 		cp = false;
3411 
3412 	if (cp)
3413 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3414 			   mast->bn, mast->bn->b_end);
3415 
3416 	mast->bn->b_end--;
3417 	mast->bn->type = mte_node_type(mas->node);
3418 }
3419 
3420 /*
3421  * mast_split_data() - Split the data in the subtree state big node into regular
3422  * nodes.
3423  * @mast: The maple subtree state
3424  * @mas: The maple state
3425  * @split: The location to split the big node
3426  */
3427 static inline void mast_split_data(struct maple_subtree_state *mast,
3428 	   struct ma_state *mas, unsigned char split)
3429 {
3430 	unsigned char p_slot;
3431 
3432 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3433 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3434 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3435 	mast->l->offset = mte_parent_slot(mas->node);
3436 	mast->l->max = mast->bn->pivot[split];
3437 	mast->r->min = mast->l->max + 1;
3438 	if (mte_is_leaf(mas->node))
3439 		return;
3440 
3441 	p_slot = mast->orig_l->offset;
3442 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3443 			     &p_slot, split);
3444 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3445 			     &p_slot, split);
3446 }
3447 
3448 /*
3449  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3450  * data to the right or left node if there is room.
3451  * @mas: The maple state
3452  * @height: The current height of the maple state
3453  * @mast: The maple subtree state
3454  * @left: Push left or not.
3455  *
3456  * Keeping the height of the tree low means faster lookups.
3457  *
3458  * Return: True if pushed, false otherwise.
3459  */
3460 static inline bool mas_push_data(struct ma_state *mas, int height,
3461 				 struct maple_subtree_state *mast, bool left)
3462 {
3463 	unsigned char slot_total = mast->bn->b_end;
3464 	unsigned char end, space, split;
3465 
3466 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3467 	tmp_mas = *mas;
3468 	tmp_mas.depth = mast->l->depth;
3469 
3470 	if (left && !mas_prev_sibling(&tmp_mas))
3471 		return false;
3472 	else if (!left && !mas_next_sibling(&tmp_mas))
3473 		return false;
3474 
3475 	end = mas_data_end(&tmp_mas);
3476 	slot_total += end;
3477 	space = 2 * mt_slot_count(mas->node) - 2;
3478 	/* -2 instead of -1 to ensure there isn't a triple split */
3479 	if (ma_is_leaf(mast->bn->type))
3480 		space--;
3481 
3482 	if (mas->max == ULONG_MAX)
3483 		space--;
3484 
3485 	if (slot_total >= space)
3486 		return false;
3487 
3488 	/* Get the data; Fill mast->bn */
3489 	mast->bn->b_end++;
3490 	if (left) {
3491 		mab_shift_right(mast->bn, end + 1);
3492 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3493 		mast->bn->b_end = slot_total + 1;
3494 	} else {
3495 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3496 	}
3497 
3498 	/* Configure mast for splitting of mast->bn */
3499 	split = mt_slots[mast->bn->type] - 2;
3500 	if (left) {
3501 		/*  Switch mas to prev node  */
3502 		mat_add(mast->free, mas->node);
3503 		*mas = tmp_mas;
3504 		/* Start using mast->l for the left side. */
3505 		tmp_mas.node = mast->l->node;
3506 		*mast->l = tmp_mas;
3507 	} else {
3508 		mat_add(mast->free, tmp_mas.node);
3509 		tmp_mas.node = mast->r->node;
3510 		*mast->r = tmp_mas;
3511 		split = slot_total - split;
3512 	}
3513 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3514 	/* Update parent slot for split calculation. */
3515 	if (left)
3516 		mast->orig_l->offset += end + 1;
3517 
3518 	mast_split_data(mast, mas, split);
3519 	mast_fill_bnode(mast, mas, 2);
3520 	mas_split_final_node(mast, mas, height + 1);
3521 	return true;
3522 }
3523 
3524 /*
3525  * mas_split() - Split data that is too big for one node into two.
3526  * @mas: The maple state
3527  * @b_node: The maple big node
3528  * Return: 1 on success, 0 on failure.
3529  */
3530 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3531 {
3532 	struct maple_subtree_state mast;
3533 	int height = 0;
3534 	unsigned char mid_split, split = 0;
3535 
3536 	/*
3537 	 * Splitting is handled differently from any other B-tree; the Maple
3538 	 * Tree splits upwards.  Splitting up means that the split operation
3539 	 * occurs when the walk of the tree hits the leaves and not on the way
3540 	 * down.  The reason for splitting up is that it is impossible to know
3541 	 * how much space will be needed until the leaf is (or leaves are)
3542 	 * reached.  Since overwriting data is allowed and a range could
3543 	 * overwrite more than one range or result in changing one entry into 3
3544 	 * entries, it is impossible to know if a split is required until the
3545 	 * data is examined.
3546 	 *
3547 	 * Splitting is a balancing act between keeping allocations to a minimum
3548 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3549 	 * for an entry followed by a contraction when the entry is removed.  To
3550 	 * accomplish the balance, there are empty slots remaining in both left
3551 	 * and right nodes after a split.
3552 	 */
3553 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3554 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3555 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3556 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3557 	MA_TOPIARY(mat, mas->tree);
3558 
3559 	trace_ma_op(__func__, mas);
3560 	mas->depth = mas_mt_height(mas);
3561 	/* Allocation failures will happen early. */
3562 	mas_node_count(mas, 1 + mas->depth * 2);
3563 	if (mas_is_err(mas))
3564 		return 0;
3565 
3566 	mast.l = &l_mas;
3567 	mast.r = &r_mas;
3568 	mast.orig_l = &prev_l_mas;
3569 	mast.orig_r = &prev_r_mas;
3570 	mast.free = &mat;
3571 	mast.bn = b_node;
3572 
3573 	while (height++ <= mas->depth) {
3574 		if (mt_slots[b_node->type] > b_node->b_end) {
3575 			mas_split_final_node(&mast, mas, height);
3576 			break;
3577 		}
3578 
3579 		l_mas = r_mas = *mas;
3580 		l_mas.node = mas_new_ma_node(mas, b_node);
3581 		r_mas.node = mas_new_ma_node(mas, b_node);
3582 		/*
3583 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3584 		 * left or right node has space to spare.  This is referred to as "pushing left"
3585 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3586 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3587 		 * is a significant savings.
3588 		 */
3589 		/* Try to push left. */
3590 		if (mas_push_data(mas, height, &mast, true))
3591 			break;
3592 
3593 		/* Try to push right. */
3594 		if (mas_push_data(mas, height, &mast, false))
3595 			break;
3596 
3597 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3598 		mast_split_data(&mast, mas, split);
3599 		/*
3600 		 * Usually correct, mab_mas_cp in the above call overwrites
3601 		 * r->max.
3602 		 */
3603 		mast.r->max = mas->max;
3604 		mast_fill_bnode(&mast, mas, 1);
3605 		prev_l_mas = *mast.l;
3606 		prev_r_mas = *mast.r;
3607 	}
3608 
3609 	/* Set the original node as dead */
3610 	mat_add(mast.free, mas->node);
3611 	mas->node = l_mas.node;
3612 	mas_wmb_replace(mas, mast.free, NULL);
3613 	mtree_range_walk(mas);
3614 	return 1;
3615 }
3616 
3617 /*
3618  * mas_reuse_node() - Reuse the node to store the data.
3619  * @wr_mas: The maple write state
3620  * @bn: The maple big node
3621  * @end: The end of the data.
3622  *
3623  * Will always return false in RCU mode.
3624  *
3625  * Return: True if node was reused, false otherwise.
3626  */
3627 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3628 			  struct maple_big_node *bn, unsigned char end)
3629 {
3630 	/* Need to be rcu safe. */
3631 	if (mt_in_rcu(wr_mas->mas->tree))
3632 		return false;
3633 
3634 	if (end > bn->b_end) {
3635 		int clear = mt_slots[wr_mas->type] - bn->b_end;
3636 
3637 		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3638 		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3639 	}
3640 	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3641 	return true;
3642 }
3643 
3644 /*
3645  * mas_commit_b_node() - Commit the big node into the tree.
3646  * @wr_mas: The maple write state
3647  * @b_node: The maple big node
3648  * @end: The end of the data.
3649  */
3650 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3651 			    struct maple_big_node *b_node, unsigned char end)
3652 {
3653 	struct maple_node *node;
3654 	unsigned char b_end = b_node->b_end;
3655 	enum maple_type b_type = b_node->type;
3656 
3657 	if ((b_end < mt_min_slots[b_type]) &&
3658 	    (!mte_is_root(wr_mas->mas->node)) &&
3659 	    (mas_mt_height(wr_mas->mas) > 1))
3660 		return mas_rebalance(wr_mas->mas, b_node);
3661 
3662 	if (b_end >= mt_slots[b_type])
3663 		return mas_split(wr_mas->mas, b_node);
3664 
3665 	if (mas_reuse_node(wr_mas, b_node, end))
3666 		goto reuse_node;
3667 
3668 	mas_node_count(wr_mas->mas, 1);
3669 	if (mas_is_err(wr_mas->mas))
3670 		return 0;
3671 
3672 	node = mas_pop_node(wr_mas->mas);
3673 	node->parent = mas_mn(wr_mas->mas)->parent;
3674 	wr_mas->mas->node = mt_mk_node(node, b_type);
3675 	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3676 	mas_replace(wr_mas->mas, false);
3677 reuse_node:
3678 	mas_update_gap(wr_mas->mas);
3679 	return 1;
3680 }
3681 
3682 /*
3683  * mas_root_expand() - Expand a root to a node
3684  * @mas: The maple state
3685  * @entry: The entry to store into the tree
3686  */
3687 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3688 {
3689 	void *contents = mas_root_locked(mas);
3690 	enum maple_type type = maple_leaf_64;
3691 	struct maple_node *node;
3692 	void __rcu **slots;
3693 	unsigned long *pivots;
3694 	int slot = 0;
3695 
3696 	mas_node_count(mas, 1);
3697 	if (unlikely(mas_is_err(mas)))
3698 		return 0;
3699 
3700 	node = mas_pop_node(mas);
3701 	pivots = ma_pivots(node, type);
3702 	slots = ma_slots(node, type);
3703 	node->parent = ma_parent_ptr(
3704 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3705 	mas->node = mt_mk_node(node, type);
3706 
3707 	if (mas->index) {
3708 		if (contents) {
3709 			rcu_assign_pointer(slots[slot], contents);
3710 			if (likely(mas->index > 1))
3711 				slot++;
3712 		}
3713 		pivots[slot++] = mas->index - 1;
3714 	}
3715 
3716 	rcu_assign_pointer(slots[slot], entry);
3717 	mas->offset = slot;
3718 	pivots[slot] = mas->last;
3719 	if (mas->last != ULONG_MAX)
3720 		slot++;
3721 	mas->depth = 1;
3722 	mas_set_height(mas);
3723 	ma_set_meta(node, maple_leaf_64, 0, slot);
3724 	/* swap the new root into the tree */
3725 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3726 	return slot;
3727 }
3728 
3729 static inline void mas_store_root(struct ma_state *mas, void *entry)
3730 {
3731 	if (likely((mas->last != 0) || (mas->index != 0)))
3732 		mas_root_expand(mas, entry);
3733 	else if (((unsigned long) (entry) & 3) == 2)
3734 		mas_root_expand(mas, entry);
3735 	else {
3736 		rcu_assign_pointer(mas->tree->ma_root, entry);
3737 		mas->node = MAS_START;
3738 	}
3739 }
3740 
3741 /*
3742  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3743  * spans the node.
3744  * @mas: The maple state
3745  * @piv: The pivot value being written
3746  * @type: The maple node type
3747  * @entry: The data to write
3748  *
3749  * Spanning writes are writes that start in one node and end in another OR if
3750  * the write of a %NULL will cause the node to end with a %NULL.
3751  *
3752  * Return: True if this is a spanning write, false otherwise.
3753  */
3754 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3755 {
3756 	unsigned long max;
3757 	unsigned long last = wr_mas->mas->last;
3758 	unsigned long piv = wr_mas->r_max;
3759 	enum maple_type type = wr_mas->type;
3760 	void *entry = wr_mas->entry;
3761 
3762 	/* Contained in this pivot */
3763 	if (piv > last)
3764 		return false;
3765 
3766 	max = wr_mas->mas->max;
3767 	if (unlikely(ma_is_leaf(type))) {
3768 		/* Fits in the node, but may span slots. */
3769 		if (last < max)
3770 			return false;
3771 
3772 		/* Writes to the end of the node but not null. */
3773 		if ((last == max) && entry)
3774 			return false;
3775 
3776 		/*
3777 		 * Writing ULONG_MAX is not a spanning write regardless of the
3778 		 * value being written as long as the range fits in the node.
3779 		 */
3780 		if ((last == ULONG_MAX) && (last == max))
3781 			return false;
3782 	} else if (piv == last) {
3783 		if (entry)
3784 			return false;
3785 
3786 		/* Detect spanning store wr walk */
3787 		if (last == ULONG_MAX)
3788 			return false;
3789 	}
3790 
3791 	trace_ma_write(__func__, wr_mas->mas, piv, entry);
3792 
3793 	return true;
3794 }
3795 
3796 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3797 {
3798 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3799 	mas_wr_node_walk(wr_mas);
3800 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3801 }
3802 
3803 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3804 {
3805 	wr_mas->mas->max = wr_mas->r_max;
3806 	wr_mas->mas->min = wr_mas->r_min;
3807 	wr_mas->mas->node = wr_mas->content;
3808 	wr_mas->mas->offset = 0;
3809 	wr_mas->mas->depth++;
3810 }
3811 /*
3812  * mas_wr_walk() - Walk the tree for a write.
3813  * @wr_mas: The maple write state
3814  *
3815  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3816  *
3817  * Return: True if it's contained in a node, false on spanning write.
3818  */
3819 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3820 {
3821 	struct ma_state *mas = wr_mas->mas;
3822 
3823 	while (true) {
3824 		mas_wr_walk_descend(wr_mas);
3825 		if (unlikely(mas_is_span_wr(wr_mas)))
3826 			return false;
3827 
3828 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3829 						  mas->offset);
3830 		if (ma_is_leaf(wr_mas->type))
3831 			return true;
3832 
3833 		mas_wr_walk_traverse(wr_mas);
3834 	}
3835 
3836 	return true;
3837 }
3838 
3839 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3840 {
3841 	struct ma_state *mas = wr_mas->mas;
3842 
3843 	while (true) {
3844 		mas_wr_walk_descend(wr_mas);
3845 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3846 						  mas->offset);
3847 		if (ma_is_leaf(wr_mas->type))
3848 			return true;
3849 		mas_wr_walk_traverse(wr_mas);
3850 
3851 	}
3852 	return true;
3853 }
3854 /*
3855  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3856  * @l_wr_mas: The left maple write state
3857  * @r_wr_mas: The right maple write state
3858  */
3859 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3860 					    struct ma_wr_state *r_wr_mas)
3861 {
3862 	struct ma_state *r_mas = r_wr_mas->mas;
3863 	struct ma_state *l_mas = l_wr_mas->mas;
3864 	unsigned char l_slot;
3865 
3866 	l_slot = l_mas->offset;
3867 	if (!l_wr_mas->content)
3868 		l_mas->index = l_wr_mas->r_min;
3869 
3870 	if ((l_mas->index == l_wr_mas->r_min) &&
3871 		 (l_slot &&
3872 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3873 		if (l_slot > 1)
3874 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3875 		else
3876 			l_mas->index = l_mas->min;
3877 
3878 		l_mas->offset = l_slot - 1;
3879 	}
3880 
3881 	if (!r_wr_mas->content) {
3882 		if (r_mas->last < r_wr_mas->r_max)
3883 			r_mas->last = r_wr_mas->r_max;
3884 		r_mas->offset++;
3885 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3886 	    (r_mas->last < r_mas->max) &&
3887 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3888 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3889 					     r_wr_mas->type, r_mas->offset + 1);
3890 		r_mas->offset++;
3891 	}
3892 }
3893 
3894 static inline void *mas_state_walk(struct ma_state *mas)
3895 {
3896 	void *entry;
3897 
3898 	entry = mas_start(mas);
3899 	if (mas_is_none(mas))
3900 		return NULL;
3901 
3902 	if (mas_is_ptr(mas))
3903 		return entry;
3904 
3905 	return mtree_range_walk(mas);
3906 }
3907 
3908 /*
3909  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3910  * to date.
3911  *
3912  * @mas: The maple state.
3913  *
3914  * Note: Leaves mas in undesirable state.
3915  * Return: The entry for @mas->index or %NULL on dead node.
3916  */
3917 static inline void *mtree_lookup_walk(struct ma_state *mas)
3918 {
3919 	unsigned long *pivots;
3920 	unsigned char offset;
3921 	struct maple_node *node;
3922 	struct maple_enode *next;
3923 	enum maple_type type;
3924 	void __rcu **slots;
3925 	unsigned char end;
3926 	unsigned long max;
3927 
3928 	next = mas->node;
3929 	max = ULONG_MAX;
3930 	do {
3931 		offset = 0;
3932 		node = mte_to_node(next);
3933 		type = mte_node_type(next);
3934 		pivots = ma_pivots(node, type);
3935 		end = ma_data_end(node, type, pivots, max);
3936 		if (unlikely(ma_dead_node(node)))
3937 			goto dead_node;
3938 		do {
3939 			if (pivots[offset] >= mas->index) {
3940 				max = pivots[offset];
3941 				break;
3942 			}
3943 		} while (++offset < end);
3944 
3945 		slots = ma_slots(node, type);
3946 		next = mt_slot(mas->tree, slots, offset);
3947 		if (unlikely(ma_dead_node(node)))
3948 			goto dead_node;
3949 	} while (!ma_is_leaf(type));
3950 
3951 	return (void *)next;
3952 
3953 dead_node:
3954 	mas_reset(mas);
3955 	return NULL;
3956 }
3957 
3958 /*
3959  * mas_new_root() - Create a new root node that only contains the entry passed
3960  * in.
3961  * @mas: The maple state
3962  * @entry: The entry to store.
3963  *
3964  * Only valid when the index == 0 and the last == ULONG_MAX
3965  *
3966  * Return 0 on error, 1 on success.
3967  */
3968 static inline int mas_new_root(struct ma_state *mas, void *entry)
3969 {
3970 	struct maple_enode *root = mas_root_locked(mas);
3971 	enum maple_type type = maple_leaf_64;
3972 	struct maple_node *node;
3973 	void __rcu **slots;
3974 	unsigned long *pivots;
3975 
3976 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3977 		mas->depth = 0;
3978 		mas_set_height(mas);
3979 		rcu_assign_pointer(mas->tree->ma_root, entry);
3980 		mas->node = MAS_START;
3981 		goto done;
3982 	}
3983 
3984 	mas_node_count(mas, 1);
3985 	if (mas_is_err(mas))
3986 		return 0;
3987 
3988 	node = mas_pop_node(mas);
3989 	pivots = ma_pivots(node, type);
3990 	slots = ma_slots(node, type);
3991 	node->parent = ma_parent_ptr(
3992 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3993 	mas->node = mt_mk_node(node, type);
3994 	rcu_assign_pointer(slots[0], entry);
3995 	pivots[0] = mas->last;
3996 	mas->depth = 1;
3997 	mas_set_height(mas);
3998 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3999 
4000 done:
4001 	if (xa_is_node(root))
4002 		mte_destroy_walk(root, mas->tree);
4003 
4004 	return 1;
4005 }
4006 /*
4007  * mas_wr_spanning_store() - Create a subtree with the store operation completed
4008  * and new nodes where necessary, then place the sub-tree in the actual tree.
4009  * Note that mas is expected to point to the node which caused the store to
4010  * span.
4011  * @wr_mas: The maple write state
4012  *
4013  * Return: 0 on error, positive on success.
4014  */
4015 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
4016 {
4017 	struct maple_subtree_state mast;
4018 	struct maple_big_node b_node;
4019 	struct ma_state *mas;
4020 	unsigned char height;
4021 
4022 	/* Left and Right side of spanning store */
4023 	MA_STATE(l_mas, NULL, 0, 0);
4024 	MA_STATE(r_mas, NULL, 0, 0);
4025 
4026 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
4027 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
4028 
4029 	/*
4030 	 * A store operation that spans multiple nodes is called a spanning
4031 	 * store and is handled early in the store call stack by the function
4032 	 * mas_is_span_wr().  When a spanning store is identified, the maple
4033 	 * state is duplicated.  The first maple state walks the left tree path
4034 	 * to ``index``, the duplicate walks the right tree path to ``last``.
4035 	 * The data in the two nodes are combined into a single node, two nodes,
4036 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
4037 	 * written to the last entry of a node is considered a spanning store as
4038 	 * a rebalance is required for the operation to complete and an overflow
4039 	 * of data may happen.
4040 	 */
4041 	mas = wr_mas->mas;
4042 	trace_ma_op(__func__, mas);
4043 
4044 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
4045 		return mas_new_root(mas, wr_mas->entry);
4046 	/*
4047 	 * Node rebalancing may occur due to this store, so there may be three new
4048 	 * entries per level plus a new root.
4049 	 */
4050 	height = mas_mt_height(mas);
4051 	mas_node_count(mas, 1 + height * 3);
4052 	if (mas_is_err(mas))
4053 		return 0;
4054 
4055 	/*
4056 	 * Set up right side.  Need to get to the next offset after the spanning
4057 	 * store to ensure it's not NULL and to combine both the next node and
4058 	 * the node with the start together.
4059 	 */
4060 	r_mas = *mas;
4061 	/* Avoid overflow, walk to next slot in the tree. */
4062 	if (r_mas.last + 1)
4063 		r_mas.last++;
4064 
4065 	r_mas.index = r_mas.last;
4066 	mas_wr_walk_index(&r_wr_mas);
4067 	r_mas.last = r_mas.index = mas->last;
4068 
4069 	/* Set up left side. */
4070 	l_mas = *mas;
4071 	mas_wr_walk_index(&l_wr_mas);
4072 
4073 	if (!wr_mas->entry) {
4074 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4075 		mas->offset = l_mas.offset;
4076 		mas->index = l_mas.index;
4077 		mas->last = l_mas.last = r_mas.last;
4078 	}
4079 
4080 	/* expanding NULLs may make this cover the entire range */
4081 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
4082 		mas_set_range(mas, 0, ULONG_MAX);
4083 		return mas_new_root(mas, wr_mas->entry);
4084 	}
4085 
4086 	memset(&b_node, 0, sizeof(struct maple_big_node));
4087 	/* Copy l_mas and store the value in b_node. */
4088 	mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4089 	/* Copy r_mas into b_node. */
4090 	if (r_mas.offset <= r_wr_mas.node_end)
4091 		mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4092 			   &b_node, b_node.b_end + 1);
4093 	else
4094 		b_node.b_end++;
4095 
4096 	/* Stop spanning searches by searching for just index. */
4097 	l_mas.index = l_mas.last = mas->index;
4098 
4099 	mast.bn = &b_node;
4100 	mast.orig_l = &l_mas;
4101 	mast.orig_r = &r_mas;
4102 	/* Combine l_mas and r_mas and split them up evenly again. */
4103 	return mas_spanning_rebalance(mas, &mast, height + 1);
4104 }
4105 
4106 /*
4107  * mas_wr_node_store() - Attempt to store the value in a node
4108  * @wr_mas: The maple write state
4109  *
4110  * Attempts to reuse the node, but may allocate.
4111  *
4112  * Return: True if stored, false otherwise
4113  */
4114 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4115 {
4116 	struct ma_state *mas = wr_mas->mas;
4117 	void __rcu **dst_slots;
4118 	unsigned long *dst_pivots;
4119 	unsigned char dst_offset;
4120 	unsigned char new_end = wr_mas->node_end;
4121 	unsigned char offset;
4122 	unsigned char node_slots = mt_slots[wr_mas->type];
4123 	struct maple_node reuse, *newnode;
4124 	unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4125 	bool in_rcu = mt_in_rcu(mas->tree);
4126 
4127 	offset = mas->offset;
4128 	if (mas->last == wr_mas->r_max) {
4129 		/* runs right to the end of the node */
4130 		if (mas->last == mas->max)
4131 			new_end = offset;
4132 		/* don't copy this offset */
4133 		wr_mas->offset_end++;
4134 	} else if (mas->last < wr_mas->r_max) {
4135 		/* new range ends in this range */
4136 		if (unlikely(wr_mas->r_max == ULONG_MAX))
4137 			mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4138 
4139 		new_end++;
4140 	} else {
4141 		if (wr_mas->end_piv == mas->last)
4142 			wr_mas->offset_end++;
4143 
4144 		new_end -= wr_mas->offset_end - offset - 1;
4145 	}
4146 
4147 	/* new range starts within a range */
4148 	if (wr_mas->r_min < mas->index)
4149 		new_end++;
4150 
4151 	/* Not enough room */
4152 	if (new_end >= node_slots)
4153 		return false;
4154 
4155 	/* Not enough data. */
4156 	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4157 	    !(mas->mas_flags & MA_STATE_BULK))
4158 		return false;
4159 
4160 	/* set up node. */
4161 	if (in_rcu) {
4162 		mas_node_count(mas, 1);
4163 		if (mas_is_err(mas))
4164 			return false;
4165 
4166 		newnode = mas_pop_node(mas);
4167 	} else {
4168 		memset(&reuse, 0, sizeof(struct maple_node));
4169 		newnode = &reuse;
4170 	}
4171 
4172 	newnode->parent = mas_mn(mas)->parent;
4173 	dst_pivots = ma_pivots(newnode, wr_mas->type);
4174 	dst_slots = ma_slots(newnode, wr_mas->type);
4175 	/* Copy from start to insert point */
4176 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4177 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4178 	dst_offset = offset;
4179 
4180 	/* Handle insert of new range starting after old range */
4181 	if (wr_mas->r_min < mas->index) {
4182 		mas->offset++;
4183 		rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4184 		dst_pivots[dst_offset++] = mas->index - 1;
4185 	}
4186 
4187 	/* Store the new entry and range end. */
4188 	if (dst_offset < max_piv)
4189 		dst_pivots[dst_offset] = mas->last;
4190 	mas->offset = dst_offset;
4191 	rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4192 
4193 	/*
4194 	 * this range wrote to the end of the node or it overwrote the rest of
4195 	 * the data
4196 	 */
4197 	if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4198 		new_end = dst_offset;
4199 		goto done;
4200 	}
4201 
4202 	dst_offset++;
4203 	/* Copy to the end of node if necessary. */
4204 	copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4205 	memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4206 	       sizeof(void *) * copy_size);
4207 	if (dst_offset < max_piv) {
4208 		if (copy_size > max_piv - dst_offset)
4209 			copy_size = max_piv - dst_offset;
4210 
4211 		memcpy(dst_pivots + dst_offset,
4212 		       wr_mas->pivots + wr_mas->offset_end,
4213 		       sizeof(unsigned long) * copy_size);
4214 	}
4215 
4216 	if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4217 		dst_pivots[new_end] = mas->max;
4218 
4219 done:
4220 	mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4221 	if (in_rcu) {
4222 		mte_set_node_dead(mas->node);
4223 		mas->node = mt_mk_node(newnode, wr_mas->type);
4224 		mas_replace(mas, false);
4225 	} else {
4226 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4227 	}
4228 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4229 	mas_update_gap(mas);
4230 	return true;
4231 }
4232 
4233 /*
4234  * mas_wr_slot_store: Attempt to store a value in a slot.
4235  * @wr_mas: the maple write state
4236  *
4237  * Return: True if stored, false otherwise
4238  */
4239 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4240 {
4241 	struct ma_state *mas = wr_mas->mas;
4242 	unsigned long lmax; /* Logical max. */
4243 	unsigned char offset = mas->offset;
4244 
4245 	if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4246 				  (offset != wr_mas->node_end)))
4247 		return false;
4248 
4249 	if (offset == wr_mas->node_end - 1)
4250 		lmax = mas->max;
4251 	else
4252 		lmax = wr_mas->pivots[offset + 1];
4253 
4254 	/* going to overwrite too many slots. */
4255 	if (lmax < mas->last)
4256 		return false;
4257 
4258 	if (wr_mas->r_min == mas->index) {
4259 		/* overwriting two or more ranges with one. */
4260 		if (lmax == mas->last)
4261 			return false;
4262 
4263 		/* Overwriting all of offset and a portion of offset + 1. */
4264 		rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4265 		wr_mas->pivots[offset] = mas->last;
4266 		goto done;
4267 	}
4268 
4269 	/* Doesn't end on the next range end. */
4270 	if (lmax != mas->last)
4271 		return false;
4272 
4273 	/* Overwriting a portion of offset and all of offset + 1 */
4274 	if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4275 	    (wr_mas->entry || wr_mas->pivots[offset + 1]))
4276 		wr_mas->pivots[offset + 1] = mas->last;
4277 
4278 	rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4279 	wr_mas->pivots[offset] = mas->index - 1;
4280 	mas->offset++; /* Keep mas accurate. */
4281 
4282 done:
4283 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4284 	mas_update_gap(mas);
4285 	return true;
4286 }
4287 
4288 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4289 {
4290 	while ((wr_mas->mas->last > wr_mas->end_piv) &&
4291 	       (wr_mas->offset_end < wr_mas->node_end))
4292 		wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4293 
4294 	if (wr_mas->mas->last > wr_mas->end_piv)
4295 		wr_mas->end_piv = wr_mas->mas->max;
4296 }
4297 
4298 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4299 {
4300 	struct ma_state *mas = wr_mas->mas;
4301 
4302 	if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4303 		mas->last = wr_mas->end_piv;
4304 
4305 	/* Check next slot(s) if we are overwriting the end */
4306 	if ((mas->last == wr_mas->end_piv) &&
4307 	    (wr_mas->node_end != wr_mas->offset_end) &&
4308 	    !wr_mas->slots[wr_mas->offset_end + 1]) {
4309 		wr_mas->offset_end++;
4310 		if (wr_mas->offset_end == wr_mas->node_end)
4311 			mas->last = mas->max;
4312 		else
4313 			mas->last = wr_mas->pivots[wr_mas->offset_end];
4314 		wr_mas->end_piv = mas->last;
4315 	}
4316 
4317 	if (!wr_mas->content) {
4318 		/* If this one is null, the next and prev are not */
4319 		mas->index = wr_mas->r_min;
4320 	} else {
4321 		/* Check prev slot if we are overwriting the start */
4322 		if (mas->index == wr_mas->r_min && mas->offset &&
4323 		    !wr_mas->slots[mas->offset - 1]) {
4324 			mas->offset--;
4325 			wr_mas->r_min = mas->index =
4326 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4327 			wr_mas->r_max = wr_mas->pivots[mas->offset];
4328 		}
4329 	}
4330 }
4331 
4332 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4333 {
4334 	unsigned char end = wr_mas->node_end;
4335 	unsigned char new_end = end + 1;
4336 	struct ma_state *mas = wr_mas->mas;
4337 	unsigned char node_pivots = mt_pivots[wr_mas->type];
4338 
4339 	if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4340 		if (new_end < node_pivots)
4341 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4342 
4343 		if (new_end < node_pivots)
4344 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4345 
4346 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4347 		mas->offset = new_end;
4348 		wr_mas->pivots[end] = mas->index - 1;
4349 
4350 		return true;
4351 	}
4352 
4353 	if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4354 		if (new_end < node_pivots)
4355 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4356 
4357 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4358 		if (new_end < node_pivots)
4359 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4360 
4361 		wr_mas->pivots[end] = mas->last;
4362 		rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4363 		return true;
4364 	}
4365 
4366 	return false;
4367 }
4368 
4369 /*
4370  * mas_wr_bnode() - Slow path for a modification.
4371  * @wr_mas: The write maple state
4372  *
4373  * This is where split, rebalance end up.
4374  */
4375 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4376 {
4377 	struct maple_big_node b_node;
4378 
4379 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4380 	memset(&b_node, 0, sizeof(struct maple_big_node));
4381 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4382 	mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4383 }
4384 
4385 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4386 {
4387 	unsigned char node_slots;
4388 	unsigned char node_size;
4389 	struct ma_state *mas = wr_mas->mas;
4390 
4391 	/* Direct replacement */
4392 	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4393 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4394 		if (!!wr_mas->entry ^ !!wr_mas->content)
4395 			mas_update_gap(mas);
4396 		return;
4397 	}
4398 
4399 	/* Attempt to append */
4400 	node_slots = mt_slots[wr_mas->type];
4401 	node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4402 	if (mas->max == ULONG_MAX)
4403 		node_size++;
4404 
4405 	/* slot and node store will not fit, go to the slow path */
4406 	if (unlikely(node_size >= node_slots))
4407 		goto slow_path;
4408 
4409 	if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4410 	    (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4411 		if (!wr_mas->content || !wr_mas->entry)
4412 			mas_update_gap(mas);
4413 		return;
4414 	}
4415 
4416 	if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4417 		return;
4418 	else if (mas_wr_node_store(wr_mas))
4419 		return;
4420 
4421 	if (mas_is_err(mas))
4422 		return;
4423 
4424 slow_path:
4425 	mas_wr_bnode(wr_mas);
4426 }
4427 
4428 /*
4429  * mas_wr_store_entry() - Internal call to store a value
4430  * @mas: The maple state
4431  * @entry: The entry to store.
4432  *
4433  * Return: The contents that was stored at the index.
4434  */
4435 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4436 {
4437 	struct ma_state *mas = wr_mas->mas;
4438 
4439 	wr_mas->content = mas_start(mas);
4440 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4441 		mas_store_root(mas, wr_mas->entry);
4442 		return wr_mas->content;
4443 	}
4444 
4445 	if (unlikely(!mas_wr_walk(wr_mas))) {
4446 		mas_wr_spanning_store(wr_mas);
4447 		return wr_mas->content;
4448 	}
4449 
4450 	/* At this point, we are at the leaf node that needs to be altered. */
4451 	wr_mas->end_piv = wr_mas->r_max;
4452 	mas_wr_end_piv(wr_mas);
4453 
4454 	if (!wr_mas->entry)
4455 		mas_wr_extend_null(wr_mas);
4456 
4457 	/* New root for a single pointer */
4458 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4459 		mas_new_root(mas, wr_mas->entry);
4460 		return wr_mas->content;
4461 	}
4462 
4463 	mas_wr_modify(wr_mas);
4464 	return wr_mas->content;
4465 }
4466 
4467 /**
4468  * mas_insert() - Internal call to insert a value
4469  * @mas: The maple state
4470  * @entry: The entry to store
4471  *
4472  * Return: %NULL or the contents that already exists at the requested index
4473  * otherwise.  The maple state needs to be checked for error conditions.
4474  */
4475 static inline void *mas_insert(struct ma_state *mas, void *entry)
4476 {
4477 	MA_WR_STATE(wr_mas, mas, entry);
4478 
4479 	/*
4480 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4481 	 * tree.  If the insert fits exactly into an existing gap with a value
4482 	 * of NULL, then the slot only needs to be written with the new value.
4483 	 * If the range being inserted is adjacent to another range, then only a
4484 	 * single pivot needs to be inserted (as well as writing the entry).  If
4485 	 * the new range is within a gap but does not touch any other ranges,
4486 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4487 	 * usual, the entry must be written.  Most operations require a new node
4488 	 * to be allocated and replace an existing node to ensure RCU safety,
4489 	 * when in RCU mode.  The exception to requiring a newly allocated node
4490 	 * is when inserting at the end of a node (appending).  When done
4491 	 * carefully, appending can reuse the node in place.
4492 	 */
4493 	wr_mas.content = mas_start(mas);
4494 	if (wr_mas.content)
4495 		goto exists;
4496 
4497 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4498 		mas_store_root(mas, entry);
4499 		return NULL;
4500 	}
4501 
4502 	/* spanning writes always overwrite something */
4503 	if (!mas_wr_walk(&wr_mas))
4504 		goto exists;
4505 
4506 	/* At this point, we are at the leaf node that needs to be altered. */
4507 	wr_mas.offset_end = mas->offset;
4508 	wr_mas.end_piv = wr_mas.r_max;
4509 
4510 	if (wr_mas.content || (mas->last > wr_mas.r_max))
4511 		goto exists;
4512 
4513 	if (!entry)
4514 		return NULL;
4515 
4516 	mas_wr_modify(&wr_mas);
4517 	return wr_mas.content;
4518 
4519 exists:
4520 	mas_set_err(mas, -EEXIST);
4521 	return wr_mas.content;
4522 
4523 }
4524 
4525 /*
4526  * mas_prev_node() - Find the prev non-null entry at the same level in the
4527  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
4528  * @mas: The maple state
4529  * @min: The lower limit to search
4530  *
4531  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4532  * Return: 1 if the node is dead, 0 otherwise.
4533  */
4534 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4535 {
4536 	enum maple_type mt;
4537 	int offset, level;
4538 	void __rcu **slots;
4539 	struct maple_node *node;
4540 	struct maple_enode *enode;
4541 	unsigned long *pivots;
4542 
4543 	if (mas_is_none(mas))
4544 		return 0;
4545 
4546 	level = 0;
4547 	do {
4548 		node = mas_mn(mas);
4549 		if (ma_is_root(node))
4550 			goto no_entry;
4551 
4552 		/* Walk up. */
4553 		if (unlikely(mas_ascend(mas)))
4554 			return 1;
4555 		offset = mas->offset;
4556 		level++;
4557 	} while (!offset);
4558 
4559 	offset--;
4560 	mt = mte_node_type(mas->node);
4561 	node = mas_mn(mas);
4562 	slots = ma_slots(node, mt);
4563 	pivots = ma_pivots(node, mt);
4564 	if (unlikely(ma_dead_node(node)))
4565 		return 1;
4566 
4567 	mas->max = pivots[offset];
4568 	if (offset)
4569 		mas->min = pivots[offset - 1] + 1;
4570 	if (unlikely(ma_dead_node(node)))
4571 		return 1;
4572 
4573 	if (mas->max < min)
4574 		goto no_entry_min;
4575 
4576 	while (level > 1) {
4577 		level--;
4578 		enode = mas_slot(mas, slots, offset);
4579 		if (unlikely(ma_dead_node(node)))
4580 			return 1;
4581 
4582 		mas->node = enode;
4583 		mt = mte_node_type(mas->node);
4584 		node = mas_mn(mas);
4585 		slots = ma_slots(node, mt);
4586 		pivots = ma_pivots(node, mt);
4587 		offset = ma_data_end(node, mt, pivots, mas->max);
4588 		if (unlikely(ma_dead_node(node)))
4589 			return 1;
4590 
4591 		if (offset)
4592 			mas->min = pivots[offset - 1] + 1;
4593 
4594 		if (offset < mt_pivots[mt])
4595 			mas->max = pivots[offset];
4596 
4597 		if (mas->max < min)
4598 			goto no_entry;
4599 	}
4600 
4601 	mas->node = mas_slot(mas, slots, offset);
4602 	if (unlikely(ma_dead_node(node)))
4603 		return 1;
4604 
4605 	mas->offset = mas_data_end(mas);
4606 	if (unlikely(mte_dead_node(mas->node)))
4607 		return 1;
4608 
4609 	return 0;
4610 
4611 no_entry_min:
4612 	mas->offset = offset;
4613 	if (offset)
4614 		mas->min = pivots[offset - 1] + 1;
4615 no_entry:
4616 	if (unlikely(ma_dead_node(node)))
4617 		return 1;
4618 
4619 	mas->node = MAS_NONE;
4620 	return 0;
4621 }
4622 
4623 /*
4624  * mas_next_node() - Get the next node at the same level in the tree.
4625  * @mas: The maple state
4626  * @max: The maximum pivot value to check.
4627  *
4628  * The next value will be mas->node[mas->offset] or MAS_NONE.
4629  * Return: 1 on dead node, 0 otherwise.
4630  */
4631 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4632 				unsigned long max)
4633 {
4634 	unsigned long min, pivot;
4635 	unsigned long *pivots;
4636 	struct maple_enode *enode;
4637 	int level = 0;
4638 	unsigned char offset;
4639 	unsigned char node_end;
4640 	enum maple_type mt;
4641 	void __rcu **slots;
4642 
4643 	if (mas->max >= max)
4644 		goto no_entry;
4645 
4646 	level = 0;
4647 	do {
4648 		if (ma_is_root(node))
4649 			goto no_entry;
4650 
4651 		min = mas->max + 1;
4652 		if (min > max)
4653 			goto no_entry;
4654 
4655 		if (unlikely(mas_ascend(mas)))
4656 			return 1;
4657 
4658 		offset = mas->offset;
4659 		level++;
4660 		node = mas_mn(mas);
4661 		mt = mte_node_type(mas->node);
4662 		pivots = ma_pivots(node, mt);
4663 		node_end = ma_data_end(node, mt, pivots, mas->max);
4664 		if (unlikely(ma_dead_node(node)))
4665 			return 1;
4666 
4667 	} while (unlikely(offset == node_end));
4668 
4669 	slots = ma_slots(node, mt);
4670 	pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4671 	while (unlikely(level > 1)) {
4672 		/* Descend, if necessary */
4673 		enode = mas_slot(mas, slots, offset);
4674 		if (unlikely(ma_dead_node(node)))
4675 			return 1;
4676 
4677 		mas->node = enode;
4678 		level--;
4679 		node = mas_mn(mas);
4680 		mt = mte_node_type(mas->node);
4681 		slots = ma_slots(node, mt);
4682 		pivots = ma_pivots(node, mt);
4683 		if (unlikely(ma_dead_node(node)))
4684 			return 1;
4685 
4686 		offset = 0;
4687 		pivot = pivots[0];
4688 	}
4689 
4690 	enode = mas_slot(mas, slots, offset);
4691 	if (unlikely(ma_dead_node(node)))
4692 		return 1;
4693 
4694 	mas->node = enode;
4695 	mas->min = min;
4696 	mas->max = pivot;
4697 	return 0;
4698 
4699 no_entry:
4700 	if (unlikely(ma_dead_node(node)))
4701 		return 1;
4702 
4703 	mas->node = MAS_NONE;
4704 	return 0;
4705 }
4706 
4707 /*
4708  * mas_next_nentry() - Get the next node entry
4709  * @mas: The maple state
4710  * @max: The maximum value to check
4711  * @*range_start: Pointer to store the start of the range.
4712  *
4713  * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4714  * pivot of the entry.
4715  *
4716  * Return: The next entry, %NULL otherwise
4717  */
4718 static inline void *mas_next_nentry(struct ma_state *mas,
4719 	    struct maple_node *node, unsigned long max, enum maple_type type)
4720 {
4721 	unsigned char count;
4722 	unsigned long pivot;
4723 	unsigned long *pivots;
4724 	void __rcu **slots;
4725 	void *entry;
4726 
4727 	if (mas->last == mas->max) {
4728 		mas->index = mas->max;
4729 		return NULL;
4730 	}
4731 
4732 	slots = ma_slots(node, type);
4733 	pivots = ma_pivots(node, type);
4734 	count = ma_data_end(node, type, pivots, mas->max);
4735 	if (unlikely(ma_dead_node(node)))
4736 		return NULL;
4737 
4738 	mas->index = mas_safe_min(mas, pivots, mas->offset);
4739 	if (unlikely(ma_dead_node(node)))
4740 		return NULL;
4741 
4742 	if (mas->index > max)
4743 		return NULL;
4744 
4745 	if (mas->offset > count)
4746 		return NULL;
4747 
4748 	while (mas->offset < count) {
4749 		pivot = pivots[mas->offset];
4750 		entry = mas_slot(mas, slots, mas->offset);
4751 		if (ma_dead_node(node))
4752 			return NULL;
4753 
4754 		if (entry)
4755 			goto found;
4756 
4757 		if (pivot >= max)
4758 			return NULL;
4759 
4760 		mas->index = pivot + 1;
4761 		mas->offset++;
4762 	}
4763 
4764 	if (mas->index > mas->max) {
4765 		mas->index = mas->last;
4766 		return NULL;
4767 	}
4768 
4769 	pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4770 	entry = mas_slot(mas, slots, mas->offset);
4771 	if (ma_dead_node(node))
4772 		return NULL;
4773 
4774 	if (!pivot)
4775 		return NULL;
4776 
4777 	if (!entry)
4778 		return NULL;
4779 
4780 found:
4781 	mas->last = pivot;
4782 	return entry;
4783 }
4784 
4785 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4786 {
4787 retry:
4788 	mas_set(mas, index);
4789 	mas_state_walk(mas);
4790 	if (mas_is_start(mas))
4791 		goto retry;
4792 }
4793 
4794 /*
4795  * mas_next_entry() - Internal function to get the next entry.
4796  * @mas: The maple state
4797  * @limit: The maximum range start.
4798  *
4799  * Set the @mas->node to the next entry and the range_start to
4800  * the beginning value for the entry.  Does not check beyond @limit.
4801  * Sets @mas->index and @mas->last to the limit if it is hit.
4802  * Restarts on dead nodes.
4803  *
4804  * Return: the next entry or %NULL.
4805  */
4806 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4807 {
4808 	void *entry = NULL;
4809 	struct maple_enode *prev_node;
4810 	struct maple_node *node;
4811 	unsigned char offset;
4812 	unsigned long last;
4813 	enum maple_type mt;
4814 
4815 	if (mas->index > limit) {
4816 		mas->index = mas->last = limit;
4817 		mas_pause(mas);
4818 		return NULL;
4819 	}
4820 	last = mas->last;
4821 retry:
4822 	offset = mas->offset;
4823 	prev_node = mas->node;
4824 	node = mas_mn(mas);
4825 	mt = mte_node_type(mas->node);
4826 	mas->offset++;
4827 	if (unlikely(mas->offset >= mt_slots[mt])) {
4828 		mas->offset = mt_slots[mt] - 1;
4829 		goto next_node;
4830 	}
4831 
4832 	while (!mas_is_none(mas)) {
4833 		entry = mas_next_nentry(mas, node, limit, mt);
4834 		if (unlikely(ma_dead_node(node))) {
4835 			mas_rewalk(mas, last);
4836 			goto retry;
4837 		}
4838 
4839 		if (likely(entry))
4840 			return entry;
4841 
4842 		if (unlikely((mas->index > limit)))
4843 			break;
4844 
4845 next_node:
4846 		prev_node = mas->node;
4847 		offset = mas->offset;
4848 		if (unlikely(mas_next_node(mas, node, limit))) {
4849 			mas_rewalk(mas, last);
4850 			goto retry;
4851 		}
4852 		mas->offset = 0;
4853 		node = mas_mn(mas);
4854 		mt = mte_node_type(mas->node);
4855 	}
4856 
4857 	mas->index = mas->last = limit;
4858 	mas->offset = offset;
4859 	mas->node = prev_node;
4860 	return NULL;
4861 }
4862 
4863 /*
4864  * mas_prev_nentry() - Get the previous node entry.
4865  * @mas: The maple state.
4866  * @limit: The lower limit to check for a value.
4867  *
4868  * Return: the entry, %NULL otherwise.
4869  */
4870 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4871 				    unsigned long index)
4872 {
4873 	unsigned long pivot, min;
4874 	unsigned char offset;
4875 	struct maple_node *mn;
4876 	enum maple_type mt;
4877 	unsigned long *pivots;
4878 	void __rcu **slots;
4879 	void *entry;
4880 
4881 retry:
4882 	if (!mas->offset)
4883 		return NULL;
4884 
4885 	mn = mas_mn(mas);
4886 	mt = mte_node_type(mas->node);
4887 	offset = mas->offset - 1;
4888 	if (offset >= mt_slots[mt])
4889 		offset = mt_slots[mt] - 1;
4890 
4891 	slots = ma_slots(mn, mt);
4892 	pivots = ma_pivots(mn, mt);
4893 	if (unlikely(ma_dead_node(mn))) {
4894 		mas_rewalk(mas, index);
4895 		goto retry;
4896 	}
4897 
4898 	if (offset == mt_pivots[mt])
4899 		pivot = mas->max;
4900 	else
4901 		pivot = pivots[offset];
4902 
4903 	if (unlikely(ma_dead_node(mn))) {
4904 		mas_rewalk(mas, index);
4905 		goto retry;
4906 	}
4907 
4908 	while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4909 	       !pivot))
4910 		pivot = pivots[--offset];
4911 
4912 	min = mas_safe_min(mas, pivots, offset);
4913 	entry = mas_slot(mas, slots, offset);
4914 	if (unlikely(ma_dead_node(mn))) {
4915 		mas_rewalk(mas, index);
4916 		goto retry;
4917 	}
4918 
4919 	if (likely(entry)) {
4920 		mas->offset = offset;
4921 		mas->last = pivot;
4922 		mas->index = min;
4923 	}
4924 	return entry;
4925 }
4926 
4927 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4928 {
4929 	void *entry;
4930 
4931 	if (mas->index < min) {
4932 		mas->index = mas->last = min;
4933 		mas->node = MAS_NONE;
4934 		return NULL;
4935 	}
4936 retry:
4937 	while (likely(!mas_is_none(mas))) {
4938 		entry = mas_prev_nentry(mas, min, mas->index);
4939 		if (unlikely(mas->last < min))
4940 			goto not_found;
4941 
4942 		if (likely(entry))
4943 			return entry;
4944 
4945 		if (unlikely(mas_prev_node(mas, min))) {
4946 			mas_rewalk(mas, mas->index);
4947 			goto retry;
4948 		}
4949 
4950 		mas->offset++;
4951 	}
4952 
4953 	mas->offset--;
4954 not_found:
4955 	mas->index = mas->last = min;
4956 	return NULL;
4957 }
4958 
4959 /*
4960  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4961  * highest gap address of a given size in a given node and descend.
4962  * @mas: The maple state
4963  * @size: The needed size.
4964  *
4965  * Return: True if found in a leaf, false otherwise.
4966  *
4967  */
4968 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4969 		unsigned long *gap_min, unsigned long *gap_max)
4970 {
4971 	enum maple_type type = mte_node_type(mas->node);
4972 	struct maple_node *node = mas_mn(mas);
4973 	unsigned long *pivots, *gaps;
4974 	void __rcu **slots;
4975 	unsigned long gap = 0;
4976 	unsigned long max, min;
4977 	unsigned char offset;
4978 
4979 	if (unlikely(mas_is_err(mas)))
4980 		return true;
4981 
4982 	if (ma_is_dense(type)) {
4983 		/* dense nodes. */
4984 		mas->offset = (unsigned char)(mas->index - mas->min);
4985 		return true;
4986 	}
4987 
4988 	pivots = ma_pivots(node, type);
4989 	slots = ma_slots(node, type);
4990 	gaps = ma_gaps(node, type);
4991 	offset = mas->offset;
4992 	min = mas_safe_min(mas, pivots, offset);
4993 	/* Skip out of bounds. */
4994 	while (mas->last < min)
4995 		min = mas_safe_min(mas, pivots, --offset);
4996 
4997 	max = mas_safe_pivot(mas, pivots, offset, type);
4998 	while (mas->index <= max) {
4999 		gap = 0;
5000 		if (gaps)
5001 			gap = gaps[offset];
5002 		else if (!mas_slot(mas, slots, offset))
5003 			gap = max - min + 1;
5004 
5005 		if (gap) {
5006 			if ((size <= gap) && (size <= mas->last - min + 1))
5007 				break;
5008 
5009 			if (!gaps) {
5010 				/* Skip the next slot, it cannot be a gap. */
5011 				if (offset < 2)
5012 					goto ascend;
5013 
5014 				offset -= 2;
5015 				max = pivots[offset];
5016 				min = mas_safe_min(mas, pivots, offset);
5017 				continue;
5018 			}
5019 		}
5020 
5021 		if (!offset)
5022 			goto ascend;
5023 
5024 		offset--;
5025 		max = min - 1;
5026 		min = mas_safe_min(mas, pivots, offset);
5027 	}
5028 
5029 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
5030 		goto no_space;
5031 
5032 	if (unlikely(ma_is_leaf(type))) {
5033 		mas->offset = offset;
5034 		*gap_min = min;
5035 		*gap_max = min + gap - 1;
5036 		return true;
5037 	}
5038 
5039 	/* descend, only happens under lock. */
5040 	mas->node = mas_slot(mas, slots, offset);
5041 	mas->min = min;
5042 	mas->max = max;
5043 	mas->offset = mas_data_end(mas);
5044 	return false;
5045 
5046 ascend:
5047 	if (!mte_is_root(mas->node))
5048 		return false;
5049 
5050 no_space:
5051 	mas_set_err(mas, -EBUSY);
5052 	return false;
5053 }
5054 
5055 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
5056 {
5057 	enum maple_type type = mte_node_type(mas->node);
5058 	unsigned long pivot, min, gap = 0;
5059 	unsigned char offset, data_end;
5060 	unsigned long *gaps, *pivots;
5061 	void __rcu **slots;
5062 	struct maple_node *node;
5063 	bool found = false;
5064 
5065 	if (ma_is_dense(type)) {
5066 		mas->offset = (unsigned char)(mas->index - mas->min);
5067 		return true;
5068 	}
5069 
5070 	node = mas_mn(mas);
5071 	pivots = ma_pivots(node, type);
5072 	slots = ma_slots(node, type);
5073 	gaps = ma_gaps(node, type);
5074 	offset = mas->offset;
5075 	min = mas_safe_min(mas, pivots, offset);
5076 	data_end = ma_data_end(node, type, pivots, mas->max);
5077 	for (; offset <= data_end; offset++) {
5078 		pivot = mas_logical_pivot(mas, pivots, offset, type);
5079 
5080 		/* Not within lower bounds */
5081 		if (mas->index > pivot)
5082 			goto next_slot;
5083 
5084 		if (gaps)
5085 			gap = gaps[offset];
5086 		else if (!mas_slot(mas, slots, offset))
5087 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5088 		else
5089 			goto next_slot;
5090 
5091 		if (gap >= size) {
5092 			if (ma_is_leaf(type)) {
5093 				found = true;
5094 				goto done;
5095 			}
5096 			if (mas->index <= pivot) {
5097 				mas->node = mas_slot(mas, slots, offset);
5098 				mas->min = min;
5099 				mas->max = pivot;
5100 				offset = 0;
5101 				break;
5102 			}
5103 		}
5104 next_slot:
5105 		min = pivot + 1;
5106 		if (mas->last <= pivot) {
5107 			mas_set_err(mas, -EBUSY);
5108 			return true;
5109 		}
5110 	}
5111 
5112 	if (mte_is_root(mas->node))
5113 		found = true;
5114 done:
5115 	mas->offset = offset;
5116 	return found;
5117 }
5118 
5119 /**
5120  * mas_walk() - Search for @mas->index in the tree.
5121  * @mas: The maple state.
5122  *
5123  * mas->index and mas->last will be set to the range if there is a value.  If
5124  * mas->node is MAS_NONE, reset to MAS_START.
5125  *
5126  * Return: the entry at the location or %NULL.
5127  */
5128 void *mas_walk(struct ma_state *mas)
5129 {
5130 	void *entry;
5131 
5132 retry:
5133 	entry = mas_state_walk(mas);
5134 	if (mas_is_start(mas))
5135 		goto retry;
5136 
5137 	if (mas_is_ptr(mas)) {
5138 		if (!mas->index) {
5139 			mas->last = 0;
5140 		} else {
5141 			mas->index = 1;
5142 			mas->last = ULONG_MAX;
5143 		}
5144 		return entry;
5145 	}
5146 
5147 	if (mas_is_none(mas)) {
5148 		mas->index = 0;
5149 		mas->last = ULONG_MAX;
5150 	}
5151 
5152 	return entry;
5153 }
5154 EXPORT_SYMBOL_GPL(mas_walk);
5155 
5156 static inline bool mas_rewind_node(struct ma_state *mas)
5157 {
5158 	unsigned char slot;
5159 
5160 	do {
5161 		if (mte_is_root(mas->node)) {
5162 			slot = mas->offset;
5163 			if (!slot)
5164 				return false;
5165 		} else {
5166 			mas_ascend(mas);
5167 			slot = mas->offset;
5168 		}
5169 	} while (!slot);
5170 
5171 	mas->offset = --slot;
5172 	return true;
5173 }
5174 
5175 /*
5176  * mas_skip_node() - Internal function.  Skip over a node.
5177  * @mas: The maple state.
5178  *
5179  * Return: true if there is another node, false otherwise.
5180  */
5181 static inline bool mas_skip_node(struct ma_state *mas)
5182 {
5183 	if (mas_is_err(mas))
5184 		return false;
5185 
5186 	do {
5187 		if (mte_is_root(mas->node)) {
5188 			if (mas->offset >= mas_data_end(mas)) {
5189 				mas_set_err(mas, -EBUSY);
5190 				return false;
5191 			}
5192 		} else {
5193 			mas_ascend(mas);
5194 		}
5195 	} while (mas->offset >= mas_data_end(mas));
5196 
5197 	mas->offset++;
5198 	return true;
5199 }
5200 
5201 /*
5202  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5203  * @size
5204  * @mas: The maple state
5205  * @size: The size of the gap required
5206  *
5207  * Search between @mas->index and @mas->last for a gap of @size.
5208  */
5209 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5210 {
5211 	struct maple_enode *last = NULL;
5212 
5213 	/*
5214 	 * There are 4 options:
5215 	 * go to child (descend)
5216 	 * go back to parent (ascend)
5217 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5218 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5219 	 */
5220 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5221 		if (last == mas->node)
5222 			mas_skip_node(mas);
5223 		else
5224 			last = mas->node;
5225 	}
5226 }
5227 
5228 /*
5229  * mas_fill_gap() - Fill a located gap with @entry.
5230  * @mas: The maple state
5231  * @entry: The value to store
5232  * @slot: The offset into the node to store the @entry
5233  * @size: The size of the entry
5234  * @index: The start location
5235  */
5236 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5237 		unsigned char slot, unsigned long size, unsigned long *index)
5238 {
5239 	MA_WR_STATE(wr_mas, mas, entry);
5240 	unsigned char pslot = mte_parent_slot(mas->node);
5241 	struct maple_enode *mn = mas->node;
5242 	unsigned long *pivots;
5243 	enum maple_type ptype;
5244 	/*
5245 	 * mas->index is the start address for the search
5246 	 *  which may no longer be needed.
5247 	 * mas->last is the end address for the search
5248 	 */
5249 
5250 	*index = mas->index;
5251 	mas->last = mas->index + size - 1;
5252 
5253 	/*
5254 	 * It is possible that using mas->max and mas->min to correctly
5255 	 * calculate the index and last will cause an issue in the gap
5256 	 * calculation, so fix the ma_state here
5257 	 */
5258 	mas_ascend(mas);
5259 	ptype = mte_node_type(mas->node);
5260 	pivots = ma_pivots(mas_mn(mas), ptype);
5261 	mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5262 	mas->min = mas_safe_min(mas, pivots, pslot);
5263 	mas->node = mn;
5264 	mas->offset = slot;
5265 	mas_wr_store_entry(&wr_mas);
5266 }
5267 
5268 /*
5269  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5270  * searching for a gap in an empty tree.
5271  * @mas: The maple state
5272  * @min: the minimum range
5273  * @max: The maximum range
5274  * @size: The size of the gap
5275  * @fwd: Searching forward or back
5276  */
5277 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5278 				unsigned long max, unsigned long size, bool fwd)
5279 {
5280 	unsigned long start = 0;
5281 
5282 	if (!unlikely(mas_is_none(mas)))
5283 		start++;
5284 	/* mas_is_ptr */
5285 
5286 	if (start < min)
5287 		start = min;
5288 
5289 	if (fwd) {
5290 		mas->index = start;
5291 		mas->last = start + size - 1;
5292 		return;
5293 	}
5294 
5295 	mas->index = max;
5296 }
5297 
5298 /*
5299  * mas_empty_area() - Get the lowest address within the range that is
5300  * sufficient for the size requested.
5301  * @mas: The maple state
5302  * @min: The lowest value of the range
5303  * @max: The highest value of the range
5304  * @size: The size needed
5305  */
5306 int mas_empty_area(struct ma_state *mas, unsigned long min,
5307 		unsigned long max, unsigned long size)
5308 {
5309 	unsigned char offset;
5310 	unsigned long *pivots;
5311 	enum maple_type mt;
5312 
5313 	if (min >= max)
5314 		return -EINVAL;
5315 
5316 	if (mas_is_start(mas))
5317 		mas_start(mas);
5318 	else if (mas->offset >= 2)
5319 		mas->offset -= 2;
5320 	else if (!mas_skip_node(mas))
5321 		return -EBUSY;
5322 
5323 	/* Empty set */
5324 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5325 		mas_sparse_area(mas, min, max, size, true);
5326 		return 0;
5327 	}
5328 
5329 	/* The start of the window can only be within these values */
5330 	mas->index = min;
5331 	mas->last = max;
5332 	mas_awalk(mas, size);
5333 
5334 	if (unlikely(mas_is_err(mas)))
5335 		return xa_err(mas->node);
5336 
5337 	offset = mas->offset;
5338 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5339 		return -EBUSY;
5340 
5341 	mt = mte_node_type(mas->node);
5342 	pivots = ma_pivots(mas_mn(mas), mt);
5343 	if (offset)
5344 		mas->min = pivots[offset - 1] + 1;
5345 
5346 	if (offset < mt_pivots[mt])
5347 		mas->max = pivots[offset];
5348 
5349 	if (mas->index < mas->min)
5350 		mas->index = mas->min;
5351 
5352 	mas->last = mas->index + size - 1;
5353 	return 0;
5354 }
5355 EXPORT_SYMBOL_GPL(mas_empty_area);
5356 
5357 /*
5358  * mas_empty_area_rev() - Get the highest address within the range that is
5359  * sufficient for the size requested.
5360  * @mas: The maple state
5361  * @min: The lowest value of the range
5362  * @max: The highest value of the range
5363  * @size: The size needed
5364  */
5365 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5366 		unsigned long max, unsigned long size)
5367 {
5368 	struct maple_enode *last = mas->node;
5369 
5370 	if (min >= max)
5371 		return -EINVAL;
5372 
5373 	if (mas_is_start(mas)) {
5374 		mas_start(mas);
5375 		mas->offset = mas_data_end(mas);
5376 	} else if (mas->offset >= 2) {
5377 		mas->offset -= 2;
5378 	} else if (!mas_rewind_node(mas)) {
5379 		return -EBUSY;
5380 	}
5381 
5382 	/* Empty set. */
5383 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5384 		mas_sparse_area(mas, min, max, size, false);
5385 		return 0;
5386 	}
5387 
5388 	/* The start of the window can only be within these values. */
5389 	mas->index = min;
5390 	mas->last = max;
5391 
5392 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5393 		if (last == mas->node) {
5394 			if (!mas_rewind_node(mas))
5395 				return -EBUSY;
5396 		} else {
5397 			last = mas->node;
5398 		}
5399 	}
5400 
5401 	if (mas_is_err(mas))
5402 		return xa_err(mas->node);
5403 
5404 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5405 		return -EBUSY;
5406 
5407 	/* Trim the upper limit to the max. */
5408 	if (max <= mas->last)
5409 		mas->last = max;
5410 
5411 	mas->index = mas->last - size + 1;
5412 	return 0;
5413 }
5414 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5415 
5416 static inline int mas_alloc(struct ma_state *mas, void *entry,
5417 		unsigned long size, unsigned long *index)
5418 {
5419 	unsigned long min;
5420 
5421 	mas_start(mas);
5422 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5423 		mas_root_expand(mas, entry);
5424 		if (mas_is_err(mas))
5425 			return xa_err(mas->node);
5426 
5427 		if (!mas->index)
5428 			return mte_pivot(mas->node, 0);
5429 		return mte_pivot(mas->node, 1);
5430 	}
5431 
5432 	/* Must be walking a tree. */
5433 	mas_awalk(mas, size);
5434 	if (mas_is_err(mas))
5435 		return xa_err(mas->node);
5436 
5437 	if (mas->offset == MAPLE_NODE_SLOTS)
5438 		goto no_gap;
5439 
5440 	/*
5441 	 * At this point, mas->node points to the right node and we have an
5442 	 * offset that has a sufficient gap.
5443 	 */
5444 	min = mas->min;
5445 	if (mas->offset)
5446 		min = mte_pivot(mas->node, mas->offset - 1) + 1;
5447 
5448 	if (mas->index < min)
5449 		mas->index = min;
5450 
5451 	mas_fill_gap(mas, entry, mas->offset, size, index);
5452 	return 0;
5453 
5454 no_gap:
5455 	return -EBUSY;
5456 }
5457 
5458 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5459 				unsigned long max, void *entry,
5460 				unsigned long size, unsigned long *index)
5461 {
5462 	int ret = 0;
5463 
5464 	ret = mas_empty_area_rev(mas, min, max, size);
5465 	if (ret)
5466 		return ret;
5467 
5468 	if (mas_is_err(mas))
5469 		return xa_err(mas->node);
5470 
5471 	if (mas->offset == MAPLE_NODE_SLOTS)
5472 		goto no_gap;
5473 
5474 	mas_fill_gap(mas, entry, mas->offset, size, index);
5475 	return 0;
5476 
5477 no_gap:
5478 	return -EBUSY;
5479 }
5480 
5481 /*
5482  * mte_dead_leaves() - Mark all leaves of a node as dead.
5483  * @mas: The maple state
5484  * @slots: Pointer to the slot array
5485  * @type: The maple node type
5486  *
5487  * Must hold the write lock.
5488  *
5489  * Return: The number of leaves marked as dead.
5490  */
5491 static inline
5492 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5493 			      void __rcu **slots)
5494 {
5495 	struct maple_node *node;
5496 	enum maple_type type;
5497 	void *entry;
5498 	int offset;
5499 
5500 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5501 		entry = mt_slot(mt, slots, offset);
5502 		type = mte_node_type(entry);
5503 		node = mte_to_node(entry);
5504 		/* Use both node and type to catch LE & BE metadata */
5505 		if (!node || !type)
5506 			break;
5507 
5508 		mte_set_node_dead(entry);
5509 		node->type = type;
5510 		rcu_assign_pointer(slots[offset], node);
5511 	}
5512 
5513 	return offset;
5514 }
5515 
5516 /**
5517  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5518  * @enode: The maple encoded node
5519  * @offset: The starting offset
5520  *
5521  * Note: This can only be used from the RCU callback context.
5522  */
5523 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5524 {
5525 	struct maple_node *node, *next;
5526 	void __rcu **slots = NULL;
5527 
5528 	next = mte_to_node(*enode);
5529 	do {
5530 		*enode = ma_enode_ptr(next);
5531 		node = mte_to_node(*enode);
5532 		slots = ma_slots(node, node->type);
5533 		next = rcu_dereference_protected(slots[offset],
5534 					lock_is_held(&rcu_callback_map));
5535 		offset = 0;
5536 	} while (!ma_is_leaf(next->type));
5537 
5538 	return slots;
5539 }
5540 
5541 /**
5542  * mt_free_walk() - Walk & free a tree in the RCU callback context
5543  * @head: The RCU head that's within the node.
5544  *
5545  * Note: This can only be used from the RCU callback context.
5546  */
5547 static void mt_free_walk(struct rcu_head *head)
5548 {
5549 	void __rcu **slots;
5550 	struct maple_node *node, *start;
5551 	struct maple_enode *enode;
5552 	unsigned char offset;
5553 	enum maple_type type;
5554 
5555 	node = container_of(head, struct maple_node, rcu);
5556 
5557 	if (ma_is_leaf(node->type))
5558 		goto free_leaf;
5559 
5560 	start = node;
5561 	enode = mt_mk_node(node, node->type);
5562 	slots = mte_dead_walk(&enode, 0);
5563 	node = mte_to_node(enode);
5564 	do {
5565 		mt_free_bulk(node->slot_len, slots);
5566 		offset = node->parent_slot + 1;
5567 		enode = node->piv_parent;
5568 		if (mte_to_node(enode) == node)
5569 			goto free_leaf;
5570 
5571 		type = mte_node_type(enode);
5572 		slots = ma_slots(mte_to_node(enode), type);
5573 		if ((offset < mt_slots[type]) &&
5574 		    rcu_dereference_protected(slots[offset],
5575 					      lock_is_held(&rcu_callback_map)))
5576 			slots = mte_dead_walk(&enode, offset);
5577 		node = mte_to_node(enode);
5578 	} while ((node != start) || (node->slot_len < offset));
5579 
5580 	slots = ma_slots(node, node->type);
5581 	mt_free_bulk(node->slot_len, slots);
5582 
5583 free_leaf:
5584 	mt_free_rcu(&node->rcu);
5585 }
5586 
5587 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5588 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5589 {
5590 	struct maple_node *node;
5591 	struct maple_enode *next = *enode;
5592 	void __rcu **slots = NULL;
5593 	enum maple_type type;
5594 	unsigned char next_offset = 0;
5595 
5596 	do {
5597 		*enode = next;
5598 		node = mte_to_node(*enode);
5599 		type = mte_node_type(*enode);
5600 		slots = ma_slots(node, type);
5601 		next = mt_slot_locked(mt, slots, next_offset);
5602 		if ((mte_dead_node(next)))
5603 			next = mt_slot_locked(mt, slots, ++next_offset);
5604 
5605 		mte_set_node_dead(*enode);
5606 		node->type = type;
5607 		node->piv_parent = prev;
5608 		node->parent_slot = offset;
5609 		offset = next_offset;
5610 		next_offset = 0;
5611 		prev = *enode;
5612 	} while (!mte_is_leaf(next));
5613 
5614 	return slots;
5615 }
5616 
5617 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5618 			    bool free)
5619 {
5620 	void __rcu **slots;
5621 	struct maple_node *node = mte_to_node(enode);
5622 	struct maple_enode *start;
5623 
5624 	if (mte_is_leaf(enode)) {
5625 		node->type = mte_node_type(enode);
5626 		goto free_leaf;
5627 	}
5628 
5629 	start = enode;
5630 	slots = mte_destroy_descend(&enode, mt, start, 0);
5631 	node = mte_to_node(enode); // Updated in the above call.
5632 	do {
5633 		enum maple_type type;
5634 		unsigned char offset;
5635 		struct maple_enode *parent, *tmp;
5636 
5637 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5638 		if (free)
5639 			mt_free_bulk(node->slot_len, slots);
5640 		offset = node->parent_slot + 1;
5641 		enode = node->piv_parent;
5642 		if (mte_to_node(enode) == node)
5643 			goto free_leaf;
5644 
5645 		type = mte_node_type(enode);
5646 		slots = ma_slots(mte_to_node(enode), type);
5647 		if (offset >= mt_slots[type])
5648 			goto next;
5649 
5650 		tmp = mt_slot_locked(mt, slots, offset);
5651 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5652 			parent = enode;
5653 			enode = tmp;
5654 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5655 		}
5656 next:
5657 		node = mte_to_node(enode);
5658 	} while (start != enode);
5659 
5660 	node = mte_to_node(enode);
5661 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5662 	if (free)
5663 		mt_free_bulk(node->slot_len, slots);
5664 
5665 free_leaf:
5666 	if (free)
5667 		mt_free_rcu(&node->rcu);
5668 	else
5669 		mt_clear_meta(mt, node, node->type);
5670 }
5671 
5672 /*
5673  * mte_destroy_walk() - Free a tree or sub-tree.
5674  * @enode: the encoded maple node (maple_enode) to start
5675  * @mt: the tree to free - needed for node types.
5676  *
5677  * Must hold the write lock.
5678  */
5679 static inline void mte_destroy_walk(struct maple_enode *enode,
5680 				    struct maple_tree *mt)
5681 {
5682 	struct maple_node *node = mte_to_node(enode);
5683 
5684 	if (mt_in_rcu(mt)) {
5685 		mt_destroy_walk(enode, mt, false);
5686 		call_rcu(&node->rcu, mt_free_walk);
5687 	} else {
5688 		mt_destroy_walk(enode, mt, true);
5689 	}
5690 }
5691 
5692 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5693 {
5694 	if (unlikely(mas_is_paused(wr_mas->mas)))
5695 		mas_reset(wr_mas->mas);
5696 
5697 	if (!mas_is_start(wr_mas->mas)) {
5698 		if (mas_is_none(wr_mas->mas)) {
5699 			mas_reset(wr_mas->mas);
5700 		} else {
5701 			wr_mas->r_max = wr_mas->mas->max;
5702 			wr_mas->type = mte_node_type(wr_mas->mas->node);
5703 			if (mas_is_span_wr(wr_mas))
5704 				mas_reset(wr_mas->mas);
5705 		}
5706 	}
5707 }
5708 
5709 /* Interface */
5710 
5711 /**
5712  * mas_store() - Store an @entry.
5713  * @mas: The maple state.
5714  * @entry: The entry to store.
5715  *
5716  * The @mas->index and @mas->last is used to set the range for the @entry.
5717  * Note: The @mas should have pre-allocated entries to ensure there is memory to
5718  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5719  *
5720  * Return: the first entry between mas->index and mas->last or %NULL.
5721  */
5722 void *mas_store(struct ma_state *mas, void *entry)
5723 {
5724 	MA_WR_STATE(wr_mas, mas, entry);
5725 
5726 	trace_ma_write(__func__, mas, 0, entry);
5727 #ifdef CONFIG_DEBUG_MAPLE_TREE
5728 	if (mas->index > mas->last)
5729 		pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5730 	MT_BUG_ON(mas->tree, mas->index > mas->last);
5731 	if (mas->index > mas->last) {
5732 		mas_set_err(mas, -EINVAL);
5733 		return NULL;
5734 	}
5735 
5736 #endif
5737 
5738 	/*
5739 	 * Storing is the same operation as insert with the added caveat that it
5740 	 * can overwrite entries.  Although this seems simple enough, one may
5741 	 * want to examine what happens if a single store operation was to
5742 	 * overwrite multiple entries within a self-balancing B-Tree.
5743 	 */
5744 	mas_wr_store_setup(&wr_mas);
5745 	mas_wr_store_entry(&wr_mas);
5746 	return wr_mas.content;
5747 }
5748 EXPORT_SYMBOL_GPL(mas_store);
5749 
5750 /**
5751  * mas_store_gfp() - Store a value into the tree.
5752  * @mas: The maple state
5753  * @entry: The entry to store
5754  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5755  *
5756  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5757  * be allocated.
5758  */
5759 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5760 {
5761 	MA_WR_STATE(wr_mas, mas, entry);
5762 
5763 	mas_wr_store_setup(&wr_mas);
5764 	trace_ma_write(__func__, mas, 0, entry);
5765 retry:
5766 	mas_wr_store_entry(&wr_mas);
5767 	if (unlikely(mas_nomem(mas, gfp)))
5768 		goto retry;
5769 
5770 	if (unlikely(mas_is_err(mas)))
5771 		return xa_err(mas->node);
5772 
5773 	return 0;
5774 }
5775 EXPORT_SYMBOL_GPL(mas_store_gfp);
5776 
5777 /**
5778  * mas_store_prealloc() - Store a value into the tree using memory
5779  * preallocated in the maple state.
5780  * @mas: The maple state
5781  * @entry: The entry to store.
5782  */
5783 void mas_store_prealloc(struct ma_state *mas, void *entry)
5784 {
5785 	MA_WR_STATE(wr_mas, mas, entry);
5786 
5787 	mas_wr_store_setup(&wr_mas);
5788 	trace_ma_write(__func__, mas, 0, entry);
5789 	mas_wr_store_entry(&wr_mas);
5790 	BUG_ON(mas_is_err(mas));
5791 	mas_destroy(mas);
5792 }
5793 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5794 
5795 /**
5796  * mas_preallocate() - Preallocate enough nodes for a store operation
5797  * @mas: The maple state
5798  * @gfp: The GFP_FLAGS to use for allocations.
5799  *
5800  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5801  */
5802 int mas_preallocate(struct ma_state *mas, gfp_t gfp)
5803 {
5804 	int ret;
5805 
5806 	mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5807 	mas->mas_flags |= MA_STATE_PREALLOC;
5808 	if (likely(!mas_is_err(mas)))
5809 		return 0;
5810 
5811 	mas_set_alloc_req(mas, 0);
5812 	ret = xa_err(mas->node);
5813 	mas_reset(mas);
5814 	mas_destroy(mas);
5815 	mas_reset(mas);
5816 	return ret;
5817 }
5818 
5819 /*
5820  * mas_destroy() - destroy a maple state.
5821  * @mas: The maple state
5822  *
5823  * Upon completion, check the left-most node and rebalance against the node to
5824  * the right if necessary.  Frees any allocated nodes associated with this maple
5825  * state.
5826  */
5827 void mas_destroy(struct ma_state *mas)
5828 {
5829 	struct maple_alloc *node;
5830 	unsigned long total;
5831 
5832 	/*
5833 	 * When using mas_for_each() to insert an expected number of elements,
5834 	 * it is possible that the number inserted is less than the expected
5835 	 * number.  To fix an invalid final node, a check is performed here to
5836 	 * rebalance the previous node with the final node.
5837 	 */
5838 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5839 		unsigned char end;
5840 
5841 		if (mas_is_start(mas))
5842 			mas_start(mas);
5843 
5844 		mtree_range_walk(mas);
5845 		end = mas_data_end(mas) + 1;
5846 		if (end < mt_min_slot_count(mas->node) - 1)
5847 			mas_destroy_rebalance(mas, end);
5848 
5849 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5850 	}
5851 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5852 
5853 	total = mas_allocated(mas);
5854 	while (total) {
5855 		node = mas->alloc;
5856 		mas->alloc = node->slot[0];
5857 		if (node->node_count > 1) {
5858 			size_t count = node->node_count - 1;
5859 
5860 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5861 			total -= count;
5862 		}
5863 		kmem_cache_free(maple_node_cache, node);
5864 		total--;
5865 	}
5866 
5867 	mas->alloc = NULL;
5868 }
5869 EXPORT_SYMBOL_GPL(mas_destroy);
5870 
5871 /*
5872  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5873  * @mas: The maple state
5874  * @nr_entries: The number of expected entries.
5875  *
5876  * This will attempt to pre-allocate enough nodes to store the expected number
5877  * of entries.  The allocations will occur using the bulk allocator interface
5878  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5879  * to ensure any unused nodes are freed.
5880  *
5881  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5882  */
5883 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5884 {
5885 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5886 	struct maple_enode *enode = mas->node;
5887 	int nr_nodes;
5888 	int ret;
5889 
5890 	/*
5891 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5892 	 * forking a process and duplicating the VMAs from one tree to a new
5893 	 * tree.  When such a situation arises, it is known that the new tree is
5894 	 * not going to be used until the entire tree is populated.  For
5895 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5896 	 * This allows for optimistic splitting that favours the left and reuse
5897 	 * of nodes during the operation.
5898 	 */
5899 
5900 	/* Optimize splitting for bulk insert in-order */
5901 	mas->mas_flags |= MA_STATE_BULK;
5902 
5903 	/*
5904 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5905 	 * If this is wrong, it just means allocation can happen during
5906 	 * insertion of entries.
5907 	 */
5908 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5909 	if (!mt_is_alloc(mas->tree))
5910 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5911 
5912 	/* Leaves; reduce slots to keep space for expansion */
5913 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5914 	/* Internal nodes */
5915 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5916 	/* Add working room for split (2 nodes) + new parents */
5917 	mas_node_count(mas, nr_nodes + 3);
5918 
5919 	/* Detect if allocations run out */
5920 	mas->mas_flags |= MA_STATE_PREALLOC;
5921 
5922 	if (!mas_is_err(mas))
5923 		return 0;
5924 
5925 	ret = xa_err(mas->node);
5926 	mas->node = enode;
5927 	mas_destroy(mas);
5928 	return ret;
5929 
5930 }
5931 EXPORT_SYMBOL_GPL(mas_expected_entries);
5932 
5933 /**
5934  * mas_next() - Get the next entry.
5935  * @mas: The maple state
5936  * @max: The maximum index to check.
5937  *
5938  * Returns the next entry after @mas->index.
5939  * Must hold rcu_read_lock or the write lock.
5940  * Can return the zero entry.
5941  *
5942  * Return: The next entry or %NULL
5943  */
5944 void *mas_next(struct ma_state *mas, unsigned long max)
5945 {
5946 	if (mas_is_none(mas) || mas_is_paused(mas))
5947 		mas->node = MAS_START;
5948 
5949 	if (mas_is_start(mas))
5950 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5951 
5952 	if (mas_is_ptr(mas)) {
5953 		if (!mas->index) {
5954 			mas->index = 1;
5955 			mas->last = ULONG_MAX;
5956 		}
5957 		return NULL;
5958 	}
5959 
5960 	if (mas->last == ULONG_MAX)
5961 		return NULL;
5962 
5963 	/* Retries on dead nodes handled by mas_next_entry */
5964 	return mas_next_entry(mas, max);
5965 }
5966 EXPORT_SYMBOL_GPL(mas_next);
5967 
5968 /**
5969  * mt_next() - get the next value in the maple tree
5970  * @mt: The maple tree
5971  * @index: The start index
5972  * @max: The maximum index to check
5973  *
5974  * Return: The entry at @index or higher, or %NULL if nothing is found.
5975  */
5976 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5977 {
5978 	void *entry = NULL;
5979 	MA_STATE(mas, mt, index, index);
5980 
5981 	rcu_read_lock();
5982 	entry = mas_next(&mas, max);
5983 	rcu_read_unlock();
5984 	return entry;
5985 }
5986 EXPORT_SYMBOL_GPL(mt_next);
5987 
5988 /**
5989  * mas_prev() - Get the previous entry
5990  * @mas: The maple state
5991  * @min: The minimum value to check.
5992  *
5993  * Must hold rcu_read_lock or the write lock.
5994  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5995  * searchable nodes.
5996  *
5997  * Return: the previous value or %NULL.
5998  */
5999 void *mas_prev(struct ma_state *mas, unsigned long min)
6000 {
6001 	if (!mas->index) {
6002 		/* Nothing comes before 0 */
6003 		mas->last = 0;
6004 		mas->node = MAS_NONE;
6005 		return NULL;
6006 	}
6007 
6008 	if (unlikely(mas_is_ptr(mas)))
6009 		return NULL;
6010 
6011 	if (mas_is_none(mas) || mas_is_paused(mas))
6012 		mas->node = MAS_START;
6013 
6014 	if (mas_is_start(mas)) {
6015 		mas_walk(mas);
6016 		if (!mas->index)
6017 			return NULL;
6018 	}
6019 
6020 	if (mas_is_ptr(mas)) {
6021 		if (!mas->index) {
6022 			mas->last = 0;
6023 			return NULL;
6024 		}
6025 
6026 		mas->index = mas->last = 0;
6027 		return mas_root_locked(mas);
6028 	}
6029 	return mas_prev_entry(mas, min);
6030 }
6031 EXPORT_SYMBOL_GPL(mas_prev);
6032 
6033 /**
6034  * mt_prev() - get the previous value in the maple tree
6035  * @mt: The maple tree
6036  * @index: The start index
6037  * @min: The minimum index to check
6038  *
6039  * Return: The entry at @index or lower, or %NULL if nothing is found.
6040  */
6041 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
6042 {
6043 	void *entry = NULL;
6044 	MA_STATE(mas, mt, index, index);
6045 
6046 	rcu_read_lock();
6047 	entry = mas_prev(&mas, min);
6048 	rcu_read_unlock();
6049 	return entry;
6050 }
6051 EXPORT_SYMBOL_GPL(mt_prev);
6052 
6053 /**
6054  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
6055  * @mas: The maple state to pause
6056  *
6057  * Some users need to pause a walk and drop the lock they're holding in
6058  * order to yield to a higher priority thread or carry out an operation
6059  * on an entry.  Those users should call this function before they drop
6060  * the lock.  It resets the @mas to be suitable for the next iteration
6061  * of the loop after the user has reacquired the lock.  If most entries
6062  * found during a walk require you to call mas_pause(), the mt_for_each()
6063  * iterator may be more appropriate.
6064  *
6065  */
6066 void mas_pause(struct ma_state *mas)
6067 {
6068 	mas->node = MAS_PAUSE;
6069 }
6070 EXPORT_SYMBOL_GPL(mas_pause);
6071 
6072 /**
6073  * mas_find() - On the first call, find the entry at or after mas->index up to
6074  * %max.  Otherwise, find the entry after mas->index.
6075  * @mas: The maple state
6076  * @max: The maximum value to check.
6077  *
6078  * Must hold rcu_read_lock or the write lock.
6079  * If an entry exists, last and index are updated accordingly.
6080  * May set @mas->node to MAS_NONE.
6081  *
6082  * Return: The entry or %NULL.
6083  */
6084 void *mas_find(struct ma_state *mas, unsigned long max)
6085 {
6086 	if (unlikely(mas_is_paused(mas))) {
6087 		if (unlikely(mas->last == ULONG_MAX)) {
6088 			mas->node = MAS_NONE;
6089 			return NULL;
6090 		}
6091 		mas->node = MAS_START;
6092 		mas->index = ++mas->last;
6093 	}
6094 
6095 	if (unlikely(mas_is_none(mas)))
6096 		mas->node = MAS_START;
6097 
6098 	if (unlikely(mas_is_start(mas))) {
6099 		/* First run or continue */
6100 		void *entry;
6101 
6102 		if (mas->index > max)
6103 			return NULL;
6104 
6105 		entry = mas_walk(mas);
6106 		if (entry)
6107 			return entry;
6108 	}
6109 
6110 	if (unlikely(!mas_searchable(mas)))
6111 		return NULL;
6112 
6113 	/* Retries on dead nodes handled by mas_next_entry */
6114 	return mas_next_entry(mas, max);
6115 }
6116 EXPORT_SYMBOL_GPL(mas_find);
6117 
6118 /**
6119  * mas_find_rev: On the first call, find the first non-null entry at or below
6120  * mas->index down to %min.  Otherwise find the first non-null entry below
6121  * mas->index down to %min.
6122  * @mas: The maple state
6123  * @min: The minimum value to check.
6124  *
6125  * Must hold rcu_read_lock or the write lock.
6126  * If an entry exists, last and index are updated accordingly.
6127  * May set @mas->node to MAS_NONE.
6128  *
6129  * Return: The entry or %NULL.
6130  */
6131 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6132 {
6133 	if (unlikely(mas_is_paused(mas))) {
6134 		if (unlikely(mas->last == ULONG_MAX)) {
6135 			mas->node = MAS_NONE;
6136 			return NULL;
6137 		}
6138 		mas->node = MAS_START;
6139 		mas->last = --mas->index;
6140 	}
6141 
6142 	if (unlikely(mas_is_start(mas))) {
6143 		/* First run or continue */
6144 		void *entry;
6145 
6146 		if (mas->index < min)
6147 			return NULL;
6148 
6149 		entry = mas_walk(mas);
6150 		if (entry)
6151 			return entry;
6152 	}
6153 
6154 	if (unlikely(!mas_searchable(mas)))
6155 		return NULL;
6156 
6157 	if (mas->index < min)
6158 		return NULL;
6159 
6160 	/* Retries on dead nodes handled by mas_prev_entry */
6161 	return mas_prev_entry(mas, min);
6162 }
6163 EXPORT_SYMBOL_GPL(mas_find_rev);
6164 
6165 /**
6166  * mas_erase() - Find the range in which index resides and erase the entire
6167  * range.
6168  * @mas: The maple state
6169  *
6170  * Must hold the write lock.
6171  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6172  * erases that range.
6173  *
6174  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6175  */
6176 void *mas_erase(struct ma_state *mas)
6177 {
6178 	void *entry;
6179 	MA_WR_STATE(wr_mas, mas, NULL);
6180 
6181 	if (mas_is_none(mas) || mas_is_paused(mas))
6182 		mas->node = MAS_START;
6183 
6184 	/* Retry unnecessary when holding the write lock. */
6185 	entry = mas_state_walk(mas);
6186 	if (!entry)
6187 		return NULL;
6188 
6189 write_retry:
6190 	/* Must reset to ensure spanning writes of last slot are detected */
6191 	mas_reset(mas);
6192 	mas_wr_store_setup(&wr_mas);
6193 	mas_wr_store_entry(&wr_mas);
6194 	if (mas_nomem(mas, GFP_KERNEL))
6195 		goto write_retry;
6196 
6197 	return entry;
6198 }
6199 EXPORT_SYMBOL_GPL(mas_erase);
6200 
6201 /**
6202  * mas_nomem() - Check if there was an error allocating and do the allocation
6203  * if necessary If there are allocations, then free them.
6204  * @mas: The maple state
6205  * @gfp: The GFP_FLAGS to use for allocations
6206  * Return: true on allocation, false otherwise.
6207  */
6208 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6209 	__must_hold(mas->tree->lock)
6210 {
6211 	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6212 		mas_destroy(mas);
6213 		return false;
6214 	}
6215 
6216 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6217 		mtree_unlock(mas->tree);
6218 		mas_alloc_nodes(mas, gfp);
6219 		mtree_lock(mas->tree);
6220 	} else {
6221 		mas_alloc_nodes(mas, gfp);
6222 	}
6223 
6224 	if (!mas_allocated(mas))
6225 		return false;
6226 
6227 	mas->node = MAS_START;
6228 	return true;
6229 }
6230 
6231 void __init maple_tree_init(void)
6232 {
6233 	maple_node_cache = kmem_cache_create("maple_node",
6234 			sizeof(struct maple_node), sizeof(struct maple_node),
6235 			SLAB_PANIC, NULL);
6236 }
6237 
6238 /**
6239  * mtree_load() - Load a value stored in a maple tree
6240  * @mt: The maple tree
6241  * @index: The index to load
6242  *
6243  * Return: the entry or %NULL
6244  */
6245 void *mtree_load(struct maple_tree *mt, unsigned long index)
6246 {
6247 	MA_STATE(mas, mt, index, index);
6248 	void *entry;
6249 
6250 	trace_ma_read(__func__, &mas);
6251 	rcu_read_lock();
6252 retry:
6253 	entry = mas_start(&mas);
6254 	if (unlikely(mas_is_none(&mas)))
6255 		goto unlock;
6256 
6257 	if (unlikely(mas_is_ptr(&mas))) {
6258 		if (index)
6259 			entry = NULL;
6260 
6261 		goto unlock;
6262 	}
6263 
6264 	entry = mtree_lookup_walk(&mas);
6265 	if (!entry && unlikely(mas_is_start(&mas)))
6266 		goto retry;
6267 unlock:
6268 	rcu_read_unlock();
6269 	if (xa_is_zero(entry))
6270 		return NULL;
6271 
6272 	return entry;
6273 }
6274 EXPORT_SYMBOL(mtree_load);
6275 
6276 /**
6277  * mtree_store_range() - Store an entry at a given range.
6278  * @mt: The maple tree
6279  * @index: The start of the range
6280  * @last: The end of the range
6281  * @entry: The entry to store
6282  * @gfp: The GFP_FLAGS to use for allocations
6283  *
6284  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6285  * be allocated.
6286  */
6287 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6288 		unsigned long last, void *entry, gfp_t gfp)
6289 {
6290 	MA_STATE(mas, mt, index, last);
6291 	MA_WR_STATE(wr_mas, &mas, entry);
6292 
6293 	trace_ma_write(__func__, &mas, 0, entry);
6294 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6295 		return -EINVAL;
6296 
6297 	if (index > last)
6298 		return -EINVAL;
6299 
6300 	mtree_lock(mt);
6301 retry:
6302 	mas_wr_store_entry(&wr_mas);
6303 	if (mas_nomem(&mas, gfp))
6304 		goto retry;
6305 
6306 	mtree_unlock(mt);
6307 	if (mas_is_err(&mas))
6308 		return xa_err(mas.node);
6309 
6310 	return 0;
6311 }
6312 EXPORT_SYMBOL(mtree_store_range);
6313 
6314 /**
6315  * mtree_store() - Store an entry at a given index.
6316  * @mt: The maple tree
6317  * @index: The index to store the value
6318  * @entry: The entry to store
6319  * @gfp: The GFP_FLAGS to use for allocations
6320  *
6321  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6322  * be allocated.
6323  */
6324 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6325 		 gfp_t gfp)
6326 {
6327 	return mtree_store_range(mt, index, index, entry, gfp);
6328 }
6329 EXPORT_SYMBOL(mtree_store);
6330 
6331 /**
6332  * mtree_insert_range() - Insert an entry at a give range if there is no value.
6333  * @mt: The maple tree
6334  * @first: The start of the range
6335  * @last: The end of the range
6336  * @entry: The entry to store
6337  * @gfp: The GFP_FLAGS to use for allocations.
6338  *
6339  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6340  * request, -ENOMEM if memory could not be allocated.
6341  */
6342 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6343 		unsigned long last, void *entry, gfp_t gfp)
6344 {
6345 	MA_STATE(ms, mt, first, last);
6346 
6347 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6348 		return -EINVAL;
6349 
6350 	if (first > last)
6351 		return -EINVAL;
6352 
6353 	mtree_lock(mt);
6354 retry:
6355 	mas_insert(&ms, entry);
6356 	if (mas_nomem(&ms, gfp))
6357 		goto retry;
6358 
6359 	mtree_unlock(mt);
6360 	if (mas_is_err(&ms))
6361 		return xa_err(ms.node);
6362 
6363 	return 0;
6364 }
6365 EXPORT_SYMBOL(mtree_insert_range);
6366 
6367 /**
6368  * mtree_insert() - Insert an entry at a give index if there is no value.
6369  * @mt: The maple tree
6370  * @index : The index to store the value
6371  * @entry: The entry to store
6372  * @gfp: The FGP_FLAGS to use for allocations.
6373  *
6374  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6375  * request, -ENOMEM if memory could not be allocated.
6376  */
6377 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6378 		 gfp_t gfp)
6379 {
6380 	return mtree_insert_range(mt, index, index, entry, gfp);
6381 }
6382 EXPORT_SYMBOL(mtree_insert);
6383 
6384 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6385 		void *entry, unsigned long size, unsigned long min,
6386 		unsigned long max, gfp_t gfp)
6387 {
6388 	int ret = 0;
6389 
6390 	MA_STATE(mas, mt, min, max - size);
6391 	if (!mt_is_alloc(mt))
6392 		return -EINVAL;
6393 
6394 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6395 		return -EINVAL;
6396 
6397 	if (min > max)
6398 		return -EINVAL;
6399 
6400 	if (max < size)
6401 		return -EINVAL;
6402 
6403 	if (!size)
6404 		return -EINVAL;
6405 
6406 	mtree_lock(mt);
6407 retry:
6408 	mas.offset = 0;
6409 	mas.index = min;
6410 	mas.last = max - size;
6411 	ret = mas_alloc(&mas, entry, size, startp);
6412 	if (mas_nomem(&mas, gfp))
6413 		goto retry;
6414 
6415 	mtree_unlock(mt);
6416 	return ret;
6417 }
6418 EXPORT_SYMBOL(mtree_alloc_range);
6419 
6420 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6421 		void *entry, unsigned long size, unsigned long min,
6422 		unsigned long max, gfp_t gfp)
6423 {
6424 	int ret = 0;
6425 
6426 	MA_STATE(mas, mt, min, max - size);
6427 	if (!mt_is_alloc(mt))
6428 		return -EINVAL;
6429 
6430 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6431 		return -EINVAL;
6432 
6433 	if (min >= max)
6434 		return -EINVAL;
6435 
6436 	if (max < size - 1)
6437 		return -EINVAL;
6438 
6439 	if (!size)
6440 		return -EINVAL;
6441 
6442 	mtree_lock(mt);
6443 retry:
6444 	ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6445 	if (mas_nomem(&mas, gfp))
6446 		goto retry;
6447 
6448 	mtree_unlock(mt);
6449 	return ret;
6450 }
6451 EXPORT_SYMBOL(mtree_alloc_rrange);
6452 
6453 /**
6454  * mtree_erase() - Find an index and erase the entire range.
6455  * @mt: The maple tree
6456  * @index: The index to erase
6457  *
6458  * Erasing is the same as a walk to an entry then a store of a NULL to that
6459  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6460  *
6461  * Return: The entry stored at the @index or %NULL
6462  */
6463 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6464 {
6465 	void *entry = NULL;
6466 
6467 	MA_STATE(mas, mt, index, index);
6468 	trace_ma_op(__func__, &mas);
6469 
6470 	mtree_lock(mt);
6471 	entry = mas_erase(&mas);
6472 	mtree_unlock(mt);
6473 
6474 	return entry;
6475 }
6476 EXPORT_SYMBOL(mtree_erase);
6477 
6478 /**
6479  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6480  * @mt: The maple tree
6481  *
6482  * Note: Does not handle locking.
6483  */
6484 void __mt_destroy(struct maple_tree *mt)
6485 {
6486 	void *root = mt_root_locked(mt);
6487 
6488 	rcu_assign_pointer(mt->ma_root, NULL);
6489 	if (xa_is_node(root))
6490 		mte_destroy_walk(root, mt);
6491 
6492 	mt->ma_flags = 0;
6493 }
6494 EXPORT_SYMBOL_GPL(__mt_destroy);
6495 
6496 /**
6497  * mtree_destroy() - Destroy a maple tree
6498  * @mt: The maple tree
6499  *
6500  * Frees all resources used by the tree.  Handles locking.
6501  */
6502 void mtree_destroy(struct maple_tree *mt)
6503 {
6504 	mtree_lock(mt);
6505 	__mt_destroy(mt);
6506 	mtree_unlock(mt);
6507 }
6508 EXPORT_SYMBOL(mtree_destroy);
6509 
6510 /**
6511  * mt_find() - Search from the start up until an entry is found.
6512  * @mt: The maple tree
6513  * @index: Pointer which contains the start location of the search
6514  * @max: The maximum value to check
6515  *
6516  * Handles locking.  @index will be incremented to one beyond the range.
6517  *
6518  * Return: The entry at or after the @index or %NULL
6519  */
6520 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6521 {
6522 	MA_STATE(mas, mt, *index, *index);
6523 	void *entry;
6524 #ifdef CONFIG_DEBUG_MAPLE_TREE
6525 	unsigned long copy = *index;
6526 #endif
6527 
6528 	trace_ma_read(__func__, &mas);
6529 
6530 	if ((*index) > max)
6531 		return NULL;
6532 
6533 	rcu_read_lock();
6534 retry:
6535 	entry = mas_state_walk(&mas);
6536 	if (mas_is_start(&mas))
6537 		goto retry;
6538 
6539 	if (unlikely(xa_is_zero(entry)))
6540 		entry = NULL;
6541 
6542 	if (entry)
6543 		goto unlock;
6544 
6545 	while (mas_searchable(&mas) && (mas.index < max)) {
6546 		entry = mas_next_entry(&mas, max);
6547 		if (likely(entry && !xa_is_zero(entry)))
6548 			break;
6549 	}
6550 
6551 	if (unlikely(xa_is_zero(entry)))
6552 		entry = NULL;
6553 unlock:
6554 	rcu_read_unlock();
6555 	if (likely(entry)) {
6556 		*index = mas.last + 1;
6557 #ifdef CONFIG_DEBUG_MAPLE_TREE
6558 		if ((*index) && (*index) <= copy)
6559 			pr_err("index not increased! %lx <= %lx\n",
6560 			       *index, copy);
6561 		MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6562 #endif
6563 	}
6564 
6565 	return entry;
6566 }
6567 EXPORT_SYMBOL(mt_find);
6568 
6569 /**
6570  * mt_find_after() - Search from the start up until an entry is found.
6571  * @mt: The maple tree
6572  * @index: Pointer which contains the start location of the search
6573  * @max: The maximum value to check
6574  *
6575  * Handles locking, detects wrapping on index == 0
6576  *
6577  * Return: The entry at or after the @index or %NULL
6578  */
6579 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6580 		    unsigned long max)
6581 {
6582 	if (!(*index))
6583 		return NULL;
6584 
6585 	return mt_find(mt, index, max);
6586 }
6587 EXPORT_SYMBOL(mt_find_after);
6588 
6589 #ifdef CONFIG_DEBUG_MAPLE_TREE
6590 atomic_t maple_tree_tests_run;
6591 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6592 atomic_t maple_tree_tests_passed;
6593 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6594 
6595 #ifndef __KERNEL__
6596 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6597 void mt_set_non_kernel(unsigned int val)
6598 {
6599 	kmem_cache_set_non_kernel(maple_node_cache, val);
6600 }
6601 
6602 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6603 unsigned long mt_get_alloc_size(void)
6604 {
6605 	return kmem_cache_get_alloc(maple_node_cache);
6606 }
6607 
6608 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6609 void mt_zero_nr_tallocated(void)
6610 {
6611 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6612 }
6613 
6614 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6615 unsigned int mt_nr_tallocated(void)
6616 {
6617 	return kmem_cache_nr_tallocated(maple_node_cache);
6618 }
6619 
6620 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6621 unsigned int mt_nr_allocated(void)
6622 {
6623 	return kmem_cache_nr_allocated(maple_node_cache);
6624 }
6625 
6626 /*
6627  * mas_dead_node() - Check if the maple state is pointing to a dead node.
6628  * @mas: The maple state
6629  * @index: The index to restore in @mas.
6630  *
6631  * Used in test code.
6632  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6633  */
6634 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6635 {
6636 	if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6637 		return 0;
6638 
6639 	if (likely(!mte_dead_node(mas->node)))
6640 		return 0;
6641 
6642 	mas_rewalk(mas, index);
6643 	return 1;
6644 }
6645 
6646 void mt_cache_shrink(void)
6647 {
6648 }
6649 #else
6650 /*
6651  * mt_cache_shrink() - For testing, don't use this.
6652  *
6653  * Certain testcases can trigger an OOM when combined with other memory
6654  * debugging configuration options.  This function is used to reduce the
6655  * possibility of an out of memory even due to kmem_cache objects remaining
6656  * around for longer than usual.
6657  */
6658 void mt_cache_shrink(void)
6659 {
6660 	kmem_cache_shrink(maple_node_cache);
6661 
6662 }
6663 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6664 
6665 #endif /* not defined __KERNEL__ */
6666 /*
6667  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6668  * @mas: The maple state
6669  * @offset: The offset into the slot array to fetch.
6670  *
6671  * Return: The entry stored at @offset.
6672  */
6673 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6674 		unsigned char offset)
6675 {
6676 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6677 			offset);
6678 }
6679 
6680 
6681 /*
6682  * mas_first_entry() - Go the first leaf and find the first entry.
6683  * @mas: the maple state.
6684  * @limit: the maximum index to check.
6685  * @*r_start: Pointer to set to the range start.
6686  *
6687  * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6688  *
6689  * Return: The first entry or MAS_NONE.
6690  */
6691 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6692 		unsigned long limit, enum maple_type mt)
6693 
6694 {
6695 	unsigned long max;
6696 	unsigned long *pivots;
6697 	void __rcu **slots;
6698 	void *entry = NULL;
6699 
6700 	mas->index = mas->min;
6701 	if (mas->index > limit)
6702 		goto none;
6703 
6704 	max = mas->max;
6705 	mas->offset = 0;
6706 	while (likely(!ma_is_leaf(mt))) {
6707 		MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6708 		slots = ma_slots(mn, mt);
6709 		entry = mas_slot(mas, slots, 0);
6710 		pivots = ma_pivots(mn, mt);
6711 		if (unlikely(ma_dead_node(mn)))
6712 			return NULL;
6713 		max = pivots[0];
6714 		mas->node = entry;
6715 		mn = mas_mn(mas);
6716 		mt = mte_node_type(mas->node);
6717 	}
6718 	MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6719 
6720 	mas->max = max;
6721 	slots = ma_slots(mn, mt);
6722 	entry = mas_slot(mas, slots, 0);
6723 	if (unlikely(ma_dead_node(mn)))
6724 		return NULL;
6725 
6726 	/* Slot 0 or 1 must be set */
6727 	if (mas->index > limit)
6728 		goto none;
6729 
6730 	if (likely(entry))
6731 		return entry;
6732 
6733 	mas->offset = 1;
6734 	entry = mas_slot(mas, slots, 1);
6735 	pivots = ma_pivots(mn, mt);
6736 	if (unlikely(ma_dead_node(mn)))
6737 		return NULL;
6738 
6739 	mas->index = pivots[0] + 1;
6740 	if (mas->index > limit)
6741 		goto none;
6742 
6743 	if (likely(entry))
6744 		return entry;
6745 
6746 none:
6747 	if (likely(!ma_dead_node(mn)))
6748 		mas->node = MAS_NONE;
6749 	return NULL;
6750 }
6751 
6752 /* Depth first search, post-order */
6753 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6754 {
6755 
6756 	struct maple_enode *p = MAS_NONE, *mn = mas->node;
6757 	unsigned long p_min, p_max;
6758 
6759 	mas_next_node(mas, mas_mn(mas), max);
6760 	if (!mas_is_none(mas))
6761 		return;
6762 
6763 	if (mte_is_root(mn))
6764 		return;
6765 
6766 	mas->node = mn;
6767 	mas_ascend(mas);
6768 	while (mas->node != MAS_NONE) {
6769 		p = mas->node;
6770 		p_min = mas->min;
6771 		p_max = mas->max;
6772 		mas_prev_node(mas, 0);
6773 	}
6774 
6775 	if (p == MAS_NONE)
6776 		return;
6777 
6778 	mas->node = p;
6779 	mas->max = p_max;
6780 	mas->min = p_min;
6781 }
6782 
6783 /* Tree validations */
6784 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6785 		unsigned long min, unsigned long max, unsigned int depth);
6786 static void mt_dump_range(unsigned long min, unsigned long max,
6787 			  unsigned int depth)
6788 {
6789 	static const char spaces[] = "                                ";
6790 
6791 	if (min == max)
6792 		pr_info("%.*s%lu: ", depth * 2, spaces, min);
6793 	else
6794 		pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6795 }
6796 
6797 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6798 			  unsigned int depth)
6799 {
6800 	mt_dump_range(min, max, depth);
6801 
6802 	if (xa_is_value(entry))
6803 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6804 				xa_to_value(entry), entry);
6805 	else if (xa_is_zero(entry))
6806 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
6807 	else if (mt_is_reserved(entry))
6808 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6809 	else
6810 		pr_cont("%p\n", entry);
6811 }
6812 
6813 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6814 			unsigned long min, unsigned long max, unsigned int depth)
6815 {
6816 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6817 	bool leaf = mte_is_leaf(entry);
6818 	unsigned long first = min;
6819 	int i;
6820 
6821 	pr_cont(" contents: ");
6822 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6823 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6824 	pr_cont("%p\n", node->slot[i]);
6825 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6826 		unsigned long last = max;
6827 
6828 		if (i < (MAPLE_RANGE64_SLOTS - 1))
6829 			last = node->pivot[i];
6830 		else if (!node->slot[i] && max != mt_node_max(entry))
6831 			break;
6832 		if (last == 0 && i > 0)
6833 			break;
6834 		if (leaf)
6835 			mt_dump_entry(mt_slot(mt, node->slot, i),
6836 					first, last, depth + 1);
6837 		else if (node->slot[i])
6838 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6839 					first, last, depth + 1);
6840 
6841 		if (last == max)
6842 			break;
6843 		if (last > max) {
6844 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6845 					node, last, max, i);
6846 			break;
6847 		}
6848 		first = last + 1;
6849 	}
6850 }
6851 
6852 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6853 			unsigned long min, unsigned long max, unsigned int depth)
6854 {
6855 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6856 	bool leaf = mte_is_leaf(entry);
6857 	unsigned long first = min;
6858 	int i;
6859 
6860 	pr_cont(" contents: ");
6861 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6862 		pr_cont("%lu ", node->gap[i]);
6863 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6864 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6865 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6866 	pr_cont("%p\n", node->slot[i]);
6867 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6868 		unsigned long last = max;
6869 
6870 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
6871 			last = node->pivot[i];
6872 		else if (!node->slot[i])
6873 			break;
6874 		if (last == 0 && i > 0)
6875 			break;
6876 		if (leaf)
6877 			mt_dump_entry(mt_slot(mt, node->slot, i),
6878 					first, last, depth + 1);
6879 		else if (node->slot[i])
6880 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6881 					first, last, depth + 1);
6882 
6883 		if (last == max)
6884 			break;
6885 		if (last > max) {
6886 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6887 					node, last, max, i);
6888 			break;
6889 		}
6890 		first = last + 1;
6891 	}
6892 }
6893 
6894 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6895 		unsigned long min, unsigned long max, unsigned int depth)
6896 {
6897 	struct maple_node *node = mte_to_node(entry);
6898 	unsigned int type = mte_node_type(entry);
6899 	unsigned int i;
6900 
6901 	mt_dump_range(min, max, depth);
6902 
6903 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6904 			node ? node->parent : NULL);
6905 	switch (type) {
6906 	case maple_dense:
6907 		pr_cont("\n");
6908 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6909 			if (min + i > max)
6910 				pr_cont("OUT OF RANGE: ");
6911 			mt_dump_entry(mt_slot(mt, node->slot, i),
6912 					min + i, min + i, depth);
6913 		}
6914 		break;
6915 	case maple_leaf_64:
6916 	case maple_range_64:
6917 		mt_dump_range64(mt, entry, min, max, depth);
6918 		break;
6919 	case maple_arange_64:
6920 		mt_dump_arange64(mt, entry, min, max, depth);
6921 		break;
6922 
6923 	default:
6924 		pr_cont(" UNKNOWN TYPE\n");
6925 	}
6926 }
6927 
6928 void mt_dump(const struct maple_tree *mt)
6929 {
6930 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6931 
6932 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6933 		 mt, mt->ma_flags, mt_height(mt), entry);
6934 	if (!xa_is_node(entry))
6935 		mt_dump_entry(entry, 0, 0, 0);
6936 	else if (entry)
6937 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
6938 }
6939 EXPORT_SYMBOL_GPL(mt_dump);
6940 
6941 /*
6942  * Calculate the maximum gap in a node and check if that's what is reported in
6943  * the parent (unless root).
6944  */
6945 static void mas_validate_gaps(struct ma_state *mas)
6946 {
6947 	struct maple_enode *mte = mas->node;
6948 	struct maple_node *p_mn;
6949 	unsigned long gap = 0, max_gap = 0;
6950 	unsigned long p_end, p_start = mas->min;
6951 	unsigned char p_slot;
6952 	unsigned long *gaps = NULL;
6953 	unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6954 	int i;
6955 
6956 	if (ma_is_dense(mte_node_type(mte))) {
6957 		for (i = 0; i < mt_slot_count(mte); i++) {
6958 			if (mas_get_slot(mas, i)) {
6959 				if (gap > max_gap)
6960 					max_gap = gap;
6961 				gap = 0;
6962 				continue;
6963 			}
6964 			gap++;
6965 		}
6966 		goto counted;
6967 	}
6968 
6969 	gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6970 	for (i = 0; i < mt_slot_count(mte); i++) {
6971 		p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6972 
6973 		if (!gaps) {
6974 			if (mas_get_slot(mas, i)) {
6975 				gap = 0;
6976 				goto not_empty;
6977 			}
6978 
6979 			gap += p_end - p_start + 1;
6980 		} else {
6981 			void *entry = mas_get_slot(mas, i);
6982 
6983 			gap = gaps[i];
6984 			if (!entry) {
6985 				if (gap != p_end - p_start + 1) {
6986 					pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6987 						mas_mn(mas), i,
6988 						mas_get_slot(mas, i), gap,
6989 						p_end, p_start);
6990 					mt_dump(mas->tree);
6991 
6992 					MT_BUG_ON(mas->tree,
6993 						gap != p_end - p_start + 1);
6994 				}
6995 			} else {
6996 				if (gap > p_end - p_start + 1) {
6997 					pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6998 					mas_mn(mas), i, gap, p_end, p_start,
6999 					p_end - p_start + 1);
7000 					MT_BUG_ON(mas->tree,
7001 						gap > p_end - p_start + 1);
7002 				}
7003 			}
7004 		}
7005 
7006 		if (gap > max_gap)
7007 			max_gap = gap;
7008 not_empty:
7009 		p_start = p_end + 1;
7010 		if (p_end >= mas->max)
7011 			break;
7012 	}
7013 
7014 counted:
7015 	if (mte_is_root(mte))
7016 		return;
7017 
7018 	p_slot = mte_parent_slot(mas->node);
7019 	p_mn = mte_parent(mte);
7020 	MT_BUG_ON(mas->tree, max_gap > mas->max);
7021 	if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
7022 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7023 		mt_dump(mas->tree);
7024 	}
7025 
7026 	MT_BUG_ON(mas->tree,
7027 		  ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
7028 }
7029 
7030 static void mas_validate_parent_slot(struct ma_state *mas)
7031 {
7032 	struct maple_node *parent;
7033 	struct maple_enode *node;
7034 	enum maple_type p_type = mas_parent_enum(mas, mas->node);
7035 	unsigned char p_slot = mte_parent_slot(mas->node);
7036 	void __rcu **slots;
7037 	int i;
7038 
7039 	if (mte_is_root(mas->node))
7040 		return;
7041 
7042 	parent = mte_parent(mas->node);
7043 	slots = ma_slots(parent, p_type);
7044 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7045 
7046 	/* Check prev/next parent slot for duplicate node entry */
7047 
7048 	for (i = 0; i < mt_slots[p_type]; i++) {
7049 		node = mas_slot(mas, slots, i);
7050 		if (i == p_slot) {
7051 			if (node != mas->node)
7052 				pr_err("parent %p[%u] does not have %p\n",
7053 					parent, i, mas_mn(mas));
7054 			MT_BUG_ON(mas->tree, node != mas->node);
7055 		} else if (node == mas->node) {
7056 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7057 			       mas_mn(mas), parent, i, p_slot);
7058 			MT_BUG_ON(mas->tree, node == mas->node);
7059 		}
7060 	}
7061 }
7062 
7063 static void mas_validate_child_slot(struct ma_state *mas)
7064 {
7065 	enum maple_type type = mte_node_type(mas->node);
7066 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7067 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7068 	struct maple_enode *child;
7069 	unsigned char i;
7070 
7071 	if (mte_is_leaf(mas->node))
7072 		return;
7073 
7074 	for (i = 0; i < mt_slots[type]; i++) {
7075 		child = mas_slot(mas, slots, i);
7076 		if (!pivots[i] || pivots[i] == mas->max)
7077 			break;
7078 
7079 		if (!child)
7080 			break;
7081 
7082 		if (mte_parent_slot(child) != i) {
7083 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7084 			       mas_mn(mas), i, mte_to_node(child),
7085 			       mte_parent_slot(child));
7086 			MT_BUG_ON(mas->tree, 1);
7087 		}
7088 
7089 		if (mte_parent(child) != mte_to_node(mas->node)) {
7090 			pr_err("child %p has parent %p not %p\n",
7091 			       mte_to_node(child), mte_parent(child),
7092 			       mte_to_node(mas->node));
7093 			MT_BUG_ON(mas->tree, 1);
7094 		}
7095 	}
7096 }
7097 
7098 /*
7099  * Validate all pivots are within mas->min and mas->max.
7100  */
7101 static void mas_validate_limits(struct ma_state *mas)
7102 {
7103 	int i;
7104 	unsigned long prev_piv = 0;
7105 	enum maple_type type = mte_node_type(mas->node);
7106 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7107 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7108 
7109 	/* all limits are fine here. */
7110 	if (mte_is_root(mas->node))
7111 		return;
7112 
7113 	for (i = 0; i < mt_slots[type]; i++) {
7114 		unsigned long piv;
7115 
7116 		piv = mas_safe_pivot(mas, pivots, i, type);
7117 
7118 		if (!piv && (i != 0))
7119 			break;
7120 
7121 		if (!mte_is_leaf(mas->node)) {
7122 			void *entry = mas_slot(mas, slots, i);
7123 
7124 			if (!entry)
7125 				pr_err("%p[%u] cannot be null\n",
7126 				       mas_mn(mas), i);
7127 
7128 			MT_BUG_ON(mas->tree, !entry);
7129 		}
7130 
7131 		if (prev_piv > piv) {
7132 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7133 				mas_mn(mas), i, piv, prev_piv);
7134 			MT_BUG_ON(mas->tree, piv < prev_piv);
7135 		}
7136 
7137 		if (piv < mas->min) {
7138 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7139 				piv, mas->min);
7140 			MT_BUG_ON(mas->tree, piv < mas->min);
7141 		}
7142 		if (piv > mas->max) {
7143 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7144 				piv, mas->max);
7145 			MT_BUG_ON(mas->tree, piv > mas->max);
7146 		}
7147 		prev_piv = piv;
7148 		if (piv == mas->max)
7149 			break;
7150 	}
7151 	for (i += 1; i < mt_slots[type]; i++) {
7152 		void *entry = mas_slot(mas, slots, i);
7153 
7154 		if (entry && (i != mt_slots[type] - 1)) {
7155 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7156 			       i, entry);
7157 			MT_BUG_ON(mas->tree, entry != NULL);
7158 		}
7159 
7160 		if (i < mt_pivots[type]) {
7161 			unsigned long piv = pivots[i];
7162 
7163 			if (!piv)
7164 				continue;
7165 
7166 			pr_err("%p[%u] should not have piv %lu\n",
7167 			       mas_mn(mas), i, piv);
7168 			MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7169 		}
7170 	}
7171 }
7172 
7173 static void mt_validate_nulls(struct maple_tree *mt)
7174 {
7175 	void *entry, *last = (void *)1;
7176 	unsigned char offset = 0;
7177 	void __rcu **slots;
7178 	MA_STATE(mas, mt, 0, 0);
7179 
7180 	mas_start(&mas);
7181 	if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7182 		return;
7183 
7184 	while (!mte_is_leaf(mas.node))
7185 		mas_descend(&mas);
7186 
7187 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7188 	do {
7189 		entry = mas_slot(&mas, slots, offset);
7190 		if (!last && !entry) {
7191 			pr_err("Sequential nulls end at %p[%u]\n",
7192 				mas_mn(&mas), offset);
7193 		}
7194 		MT_BUG_ON(mt, !last && !entry);
7195 		last = entry;
7196 		if (offset == mas_data_end(&mas)) {
7197 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7198 			if (mas_is_none(&mas))
7199 				return;
7200 			offset = 0;
7201 			slots = ma_slots(mte_to_node(mas.node),
7202 					 mte_node_type(mas.node));
7203 		} else {
7204 			offset++;
7205 		}
7206 
7207 	} while (!mas_is_none(&mas));
7208 }
7209 
7210 /*
7211  * validate a maple tree by checking:
7212  * 1. The limits (pivots are within mas->min to mas->max)
7213  * 2. The gap is correctly set in the parents
7214  */
7215 void mt_validate(struct maple_tree *mt)
7216 {
7217 	unsigned char end;
7218 
7219 	MA_STATE(mas, mt, 0, 0);
7220 	rcu_read_lock();
7221 	mas_start(&mas);
7222 	if (!mas_searchable(&mas))
7223 		goto done;
7224 
7225 	mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7226 	while (!mas_is_none(&mas)) {
7227 		MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7228 		if (!mte_is_root(mas.node)) {
7229 			end = mas_data_end(&mas);
7230 			if ((end < mt_min_slot_count(mas.node)) &&
7231 			    (mas.max != ULONG_MAX)) {
7232 				pr_err("Invalid size %u of %p\n", end,
7233 				mas_mn(&mas));
7234 				MT_BUG_ON(mas.tree, 1);
7235 			}
7236 
7237 		}
7238 		mas_validate_parent_slot(&mas);
7239 		mas_validate_child_slot(&mas);
7240 		mas_validate_limits(&mas);
7241 		if (mt_is_alloc(mt))
7242 			mas_validate_gaps(&mas);
7243 		mas_dfs_postorder(&mas, ULONG_MAX);
7244 	}
7245 	mt_validate_nulls(mt);
7246 done:
7247 	rcu_read_unlock();
7248 
7249 }
7250 EXPORT_SYMBOL_GPL(mt_validate);
7251 
7252 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7253