xref: /openbmc/linux/lib/maple_tree.c (revision 1b36955c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  */
8 
9 /*
10  * DOC: Interesting implementation details of the Maple Tree
11  *
12  * Each node type has a number of slots for entries and a number of slots for
13  * pivots.  In the case of dense nodes, the pivots are implied by the position
14  * and are simply the slot index + the minimum of the node.
15  *
16  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
17  * indicate that the tree is specifying ranges,  Pivots may appear in the
18  * subtree with an entry attached to the value where as keys are unique to a
19  * specific position of a B-tree.  Pivot values are inclusive of the slot with
20  * the same index.
21  *
22  *
23  * The following illustrates the layout of a range64 nodes slots and pivots.
24  *
25  *
26  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
28  *           │   │   │   │     │    │    │    │    └─ Implied maximum
29  *           │   │   │   │     │    │    │    └─ Pivot 14
30  *           │   │   │   │     │    │    └─ Pivot 13
31  *           │   │   │   │     │    └─ Pivot 12
32  *           │   │   │   │     └─ Pivot 11
33  *           │   │   │   └─ Pivot 2
34  *           │   │   └─ Pivot 1
35  *           │   └─ Pivot 0
36  *           └─  Implied minimum
37  *
38  * Slot contents:
39  *  Internal (non-leaf) nodes contain pointers to other nodes.
40  *  Leaf nodes contain entries.
41  *
42  * The location of interest is often referred to as an offset.  All offsets have
43  * a slot, but the last offset has an implied pivot from the node above (or
44  * UINT_MAX for the root node.
45  *
46  * Ranges complicate certain write activities.  When modifying any of
47  * the B-tree variants, it is known that one entry will either be added or
48  * deleted.  When modifying the Maple Tree, one store operation may overwrite
49  * the entire data set, or one half of the tree, or the middle half of the tree.
50  *
51  */
52 
53 
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
64 
65 #define MA_ROOT_PARENT 1
66 
67 /*
68  * Maple state flags
69  * * MA_STATE_BULK		- Bulk insert mode
70  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
71  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
72  */
73 #define MA_STATE_BULK		1
74 #define MA_STATE_REBALANCE	2
75 #define MA_STATE_PREALLOC	4
76 
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
81 
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 	[maple_dense]		= MAPLE_NODE_SLOTS,
85 	[maple_leaf_64]		= ULONG_MAX,
86 	[maple_range_64]	= ULONG_MAX,
87 	[maple_arange_64]	= ULONG_MAX,
88 };
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
90 #endif
91 
92 static const unsigned char mt_slots[] = {
93 	[maple_dense]		= MAPLE_NODE_SLOTS,
94 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
95 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
96 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
97 };
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
99 
100 static const unsigned char mt_pivots[] = {
101 	[maple_dense]		= 0,
102 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
103 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
104 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
105 };
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107 
108 static const unsigned char mt_min_slots[] = {
109 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
110 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
111 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
112 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
113 };
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115 
116 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
118 
119 struct maple_big_node {
120 	struct maple_pnode *parent;
121 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 	union {
123 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 		struct {
125 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 		};
128 	};
129 	unsigned char b_end;
130 	enum maple_type type;
131 };
132 
133 /*
134  * The maple_subtree_state is used to build a tree to replace a segment of an
135  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
136  * dead node and restart on updates.
137  */
138 struct maple_subtree_state {
139 	struct ma_state *orig_l;	/* Original left side of subtree */
140 	struct ma_state *orig_r;	/* Original right side of subtree */
141 	struct ma_state *l;		/* New left side of subtree */
142 	struct ma_state *m;		/* New middle of subtree (rare) */
143 	struct ma_state *r;		/* New right side of subtree */
144 	struct ma_topiary *free;	/* nodes to be freed */
145 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
146 	struct maple_big_node *bn;
147 };
148 
149 #ifdef CONFIG_KASAN_STACK
150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151 #define noinline_for_kasan noinline_for_stack
152 #else
153 #define noinline_for_kasan inline
154 #endif
155 
156 /* Functions */
157 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158 {
159 	return kmem_cache_alloc(maple_node_cache, gfp);
160 }
161 
162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163 {
164 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
165 }
166 
167 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168 {
169 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170 }
171 
172 static void mt_free_rcu(struct rcu_head *head)
173 {
174 	struct maple_node *node = container_of(head, struct maple_node, rcu);
175 
176 	kmem_cache_free(maple_node_cache, node);
177 }
178 
179 /*
180  * ma_free_rcu() - Use rcu callback to free a maple node
181  * @node: The node to free
182  *
183  * The maple tree uses the parent pointer to indicate this node is no longer in
184  * use and will be freed.
185  */
186 static void ma_free_rcu(struct maple_node *node)
187 {
188 	WARN_ON(node->parent != ma_parent_ptr(node));
189 	call_rcu(&node->rcu, mt_free_rcu);
190 }
191 
192 static void mas_set_height(struct ma_state *mas)
193 {
194 	unsigned int new_flags = mas->tree->ma_flags;
195 
196 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
197 	MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
198 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 	mas->tree->ma_flags = new_flags;
200 }
201 
202 static unsigned int mas_mt_height(struct ma_state *mas)
203 {
204 	return mt_height(mas->tree);
205 }
206 
207 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208 {
209 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 		MAPLE_NODE_TYPE_MASK;
211 }
212 
213 static inline bool ma_is_dense(const enum maple_type type)
214 {
215 	return type < maple_leaf_64;
216 }
217 
218 static inline bool ma_is_leaf(const enum maple_type type)
219 {
220 	return type < maple_range_64;
221 }
222 
223 static inline bool mte_is_leaf(const struct maple_enode *entry)
224 {
225 	return ma_is_leaf(mte_node_type(entry));
226 }
227 
228 /*
229  * We also reserve values with the bottom two bits set to '10' which are
230  * below 4096
231  */
232 static inline bool mt_is_reserved(const void *entry)
233 {
234 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 		xa_is_internal(entry);
236 }
237 
238 static inline void mas_set_err(struct ma_state *mas, long err)
239 {
240 	mas->node = MA_ERROR(err);
241 }
242 
243 static inline bool mas_is_ptr(const struct ma_state *mas)
244 {
245 	return mas->node == MAS_ROOT;
246 }
247 
248 static inline bool mas_is_start(const struct ma_state *mas)
249 {
250 	return mas->node == MAS_START;
251 }
252 
253 bool mas_is_err(struct ma_state *mas)
254 {
255 	return xa_is_err(mas->node);
256 }
257 
258 static inline bool mas_searchable(struct ma_state *mas)
259 {
260 	if (mas_is_none(mas))
261 		return false;
262 
263 	if (mas_is_ptr(mas))
264 		return false;
265 
266 	return true;
267 }
268 
269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270 {
271 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272 }
273 
274 /*
275  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276  * @entry: The maple encoded node
277  *
278  * Return: a maple topiary pointer
279  */
280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281 {
282 	return (struct maple_topiary *)
283 		((unsigned long)entry & ~MAPLE_NODE_MASK);
284 }
285 
286 /*
287  * mas_mn() - Get the maple state node.
288  * @mas: The maple state
289  *
290  * Return: the maple node (not encoded - bare pointer).
291  */
292 static inline struct maple_node *mas_mn(const struct ma_state *mas)
293 {
294 	return mte_to_node(mas->node);
295 }
296 
297 /*
298  * mte_set_node_dead() - Set a maple encoded node as dead.
299  * @mn: The maple encoded node.
300  */
301 static inline void mte_set_node_dead(struct maple_enode *mn)
302 {
303 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 	smp_wmb(); /* Needed for RCU */
305 }
306 
307 /* Bit 1 indicates the root is a node */
308 #define MAPLE_ROOT_NODE			0x02
309 /* maple_type stored bit 3-6 */
310 #define MAPLE_ENODE_TYPE_SHIFT		0x03
311 /* Bit 2 means a NULL somewhere below */
312 #define MAPLE_ENODE_NULL		0x04
313 
314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 					     enum maple_type type)
316 {
317 	return (void *)((unsigned long)node |
318 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319 }
320 
321 static inline void *mte_mk_root(const struct maple_enode *node)
322 {
323 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324 }
325 
326 static inline void *mte_safe_root(const struct maple_enode *node)
327 {
328 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329 }
330 
331 static inline void *mte_set_full(const struct maple_enode *node)
332 {
333 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
334 }
335 
336 static inline void *mte_clear_full(const struct maple_enode *node)
337 {
338 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339 }
340 
341 static inline bool mte_has_null(const struct maple_enode *node)
342 {
343 	return (unsigned long)node & MAPLE_ENODE_NULL;
344 }
345 
346 static inline bool ma_is_root(struct maple_node *node)
347 {
348 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
349 }
350 
351 static inline bool mte_is_root(const struct maple_enode *node)
352 {
353 	return ma_is_root(mte_to_node(node));
354 }
355 
356 static inline bool mas_is_root_limits(const struct ma_state *mas)
357 {
358 	return !mas->min && mas->max == ULONG_MAX;
359 }
360 
361 static inline bool mt_is_alloc(struct maple_tree *mt)
362 {
363 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364 }
365 
366 /*
367  * The Parent Pointer
368  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
370  * bit values need an extra bit to store the offset.  This extra bit comes from
371  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
372  * indicate if bit 2 is part of the type or the slot.
373  *
374  * Note types:
375  *  0x??1 = Root
376  *  0x?00 = 16 bit nodes
377  *  0x010 = 32 bit nodes
378  *  0x110 = 64 bit nodes
379  *
380  * Slot size and alignment
381  *  0b??1 : Root
382  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
383  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
384  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
385  */
386 
387 #define MAPLE_PARENT_ROOT		0x01
388 
389 #define MAPLE_PARENT_SLOT_SHIFT		0x03
390 #define MAPLE_PARENT_SLOT_MASK		0xF8
391 
392 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
393 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
394 
395 #define MAPLE_PARENT_RANGE64		0x06
396 #define MAPLE_PARENT_RANGE32		0x04
397 #define MAPLE_PARENT_NOT_RANGE16	0x02
398 
399 /*
400  * mte_parent_shift() - Get the parent shift for the slot storage.
401  * @parent: The parent pointer cast as an unsigned long
402  * Return: The shift into that pointer to the star to of the slot
403  */
404 static inline unsigned long mte_parent_shift(unsigned long parent)
405 {
406 	/* Note bit 1 == 0 means 16B */
407 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 		return MAPLE_PARENT_SLOT_SHIFT;
409 
410 	return MAPLE_PARENT_16B_SLOT_SHIFT;
411 }
412 
413 /*
414  * mte_parent_slot_mask() - Get the slot mask for the parent.
415  * @parent: The parent pointer cast as an unsigned long.
416  * Return: The slot mask for that parent.
417  */
418 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419 {
420 	/* Note bit 1 == 0 means 16B */
421 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 		return MAPLE_PARENT_SLOT_MASK;
423 
424 	return MAPLE_PARENT_16B_SLOT_MASK;
425 }
426 
427 /*
428  * mas_parent_type() - Return the maple_type of the parent from the stored
429  * parent type.
430  * @mas: The maple state
431  * @enode: The maple_enode to extract the parent's enum
432  * Return: The node->parent maple_type
433  */
434 static inline
435 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
436 {
437 	unsigned long p_type;
438 
439 	p_type = (unsigned long)mte_to_node(enode)->parent;
440 	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
441 		return 0;
442 
443 	p_type &= MAPLE_NODE_MASK;
444 	p_type &= ~mte_parent_slot_mask(p_type);
445 	switch (p_type) {
446 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
447 		if (mt_is_alloc(mas->tree))
448 			return maple_arange_64;
449 		return maple_range_64;
450 	}
451 
452 	return 0;
453 }
454 
455 /*
456  * mas_set_parent() - Set the parent node and encode the slot
457  * @enode: The encoded maple node.
458  * @parent: The encoded maple node that is the parent of @enode.
459  * @slot: The slot that @enode resides in @parent.
460  *
461  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
462  * parent type.
463  */
464 static inline
465 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
466 		    const struct maple_enode *parent, unsigned char slot)
467 {
468 	unsigned long val = (unsigned long)parent;
469 	unsigned long shift;
470 	unsigned long type;
471 	enum maple_type p_type = mte_node_type(parent);
472 
473 	MAS_BUG_ON(mas, p_type == maple_dense);
474 	MAS_BUG_ON(mas, p_type == maple_leaf_64);
475 
476 	switch (p_type) {
477 	case maple_range_64:
478 	case maple_arange_64:
479 		shift = MAPLE_PARENT_SLOT_SHIFT;
480 		type = MAPLE_PARENT_RANGE64;
481 		break;
482 	default:
483 	case maple_dense:
484 	case maple_leaf_64:
485 		shift = type = 0;
486 		break;
487 	}
488 
489 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
490 	val |= (slot << shift) | type;
491 	mte_to_node(enode)->parent = ma_parent_ptr(val);
492 }
493 
494 /*
495  * mte_parent_slot() - get the parent slot of @enode.
496  * @enode: The encoded maple node.
497  *
498  * Return: The slot in the parent node where @enode resides.
499  */
500 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
501 {
502 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
503 
504 	if (val & MA_ROOT_PARENT)
505 		return 0;
506 
507 	/*
508 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
509 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
510 	 */
511 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
512 }
513 
514 /*
515  * mte_parent() - Get the parent of @node.
516  * @node: The encoded maple node.
517  *
518  * Return: The parent maple node.
519  */
520 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
521 {
522 	return (void *)((unsigned long)
523 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
524 }
525 
526 /*
527  * ma_dead_node() - check if the @enode is dead.
528  * @enode: The encoded maple node
529  *
530  * Return: true if dead, false otherwise.
531  */
532 static inline bool ma_dead_node(const struct maple_node *node)
533 {
534 	struct maple_node *parent;
535 
536 	/* Do not reorder reads from the node prior to the parent check */
537 	smp_rmb();
538 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
539 	return (parent == node);
540 }
541 
542 /*
543  * mte_dead_node() - check if the @enode is dead.
544  * @enode: The encoded maple node
545  *
546  * Return: true if dead, false otherwise.
547  */
548 static inline bool mte_dead_node(const struct maple_enode *enode)
549 {
550 	struct maple_node *parent, *node;
551 
552 	node = mte_to_node(enode);
553 	/* Do not reorder reads from the node prior to the parent check */
554 	smp_rmb();
555 	parent = mte_parent(enode);
556 	return (parent == node);
557 }
558 
559 /*
560  * mas_allocated() - Get the number of nodes allocated in a maple state.
561  * @mas: The maple state
562  *
563  * The ma_state alloc member is overloaded to hold a pointer to the first
564  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
565  * set, then the alloc contains the number of requested nodes.  If there is an
566  * allocated node, then the total allocated nodes is in that node.
567  *
568  * Return: The total number of nodes allocated
569  */
570 static inline unsigned long mas_allocated(const struct ma_state *mas)
571 {
572 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
573 		return 0;
574 
575 	return mas->alloc->total;
576 }
577 
578 /*
579  * mas_set_alloc_req() - Set the requested number of allocations.
580  * @mas: the maple state
581  * @count: the number of allocations.
582  *
583  * The requested number of allocations is either in the first allocated node,
584  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
585  * no allocated node.  Set the request either in the node or do the necessary
586  * encoding to store in @mas->alloc directly.
587  */
588 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
589 {
590 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
591 		if (!count)
592 			mas->alloc = NULL;
593 		else
594 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
595 		return;
596 	}
597 
598 	mas->alloc->request_count = count;
599 }
600 
601 /*
602  * mas_alloc_req() - get the requested number of allocations.
603  * @mas: The maple state
604  *
605  * The alloc count is either stored directly in @mas, or in
606  * @mas->alloc->request_count if there is at least one node allocated.  Decode
607  * the request count if it's stored directly in @mas->alloc.
608  *
609  * Return: The allocation request count.
610  */
611 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
612 {
613 	if ((unsigned long)mas->alloc & 0x1)
614 		return (unsigned long)(mas->alloc) >> 1;
615 	else if (mas->alloc)
616 		return mas->alloc->request_count;
617 	return 0;
618 }
619 
620 /*
621  * ma_pivots() - Get a pointer to the maple node pivots.
622  * @node - the maple node
623  * @type - the node type
624  *
625  * In the event of a dead node, this array may be %NULL
626  *
627  * Return: A pointer to the maple node pivots
628  */
629 static inline unsigned long *ma_pivots(struct maple_node *node,
630 					   enum maple_type type)
631 {
632 	switch (type) {
633 	case maple_arange_64:
634 		return node->ma64.pivot;
635 	case maple_range_64:
636 	case maple_leaf_64:
637 		return node->mr64.pivot;
638 	case maple_dense:
639 		return NULL;
640 	}
641 	return NULL;
642 }
643 
644 /*
645  * ma_gaps() - Get a pointer to the maple node gaps.
646  * @node - the maple node
647  * @type - the node type
648  *
649  * Return: A pointer to the maple node gaps
650  */
651 static inline unsigned long *ma_gaps(struct maple_node *node,
652 				     enum maple_type type)
653 {
654 	switch (type) {
655 	case maple_arange_64:
656 		return node->ma64.gap;
657 	case maple_range_64:
658 	case maple_leaf_64:
659 	case maple_dense:
660 		return NULL;
661 	}
662 	return NULL;
663 }
664 
665 /*
666  * mas_pivot() - Get the pivot at @piv of the maple encoded node.
667  * @mas: The maple state.
668  * @piv: The pivot.
669  *
670  * Return: the pivot at @piv of @mn.
671  */
672 static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv)
673 {
674 	struct maple_node *node = mas_mn(mas);
675 	enum maple_type type = mte_node_type(mas->node);
676 
677 	if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) {
678 		mas_set_err(mas, -EIO);
679 		return 0;
680 	}
681 
682 	switch (type) {
683 	case maple_arange_64:
684 		return node->ma64.pivot[piv];
685 	case maple_range_64:
686 	case maple_leaf_64:
687 		return node->mr64.pivot[piv];
688 	case maple_dense:
689 		return 0;
690 	}
691 	return 0;
692 }
693 
694 /*
695  * mas_safe_pivot() - get the pivot at @piv or mas->max.
696  * @mas: The maple state
697  * @pivots: The pointer to the maple node pivots
698  * @piv: The pivot to fetch
699  * @type: The maple node type
700  *
701  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
702  * otherwise.
703  */
704 static inline unsigned long
705 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
706 	       unsigned char piv, enum maple_type type)
707 {
708 	if (piv >= mt_pivots[type])
709 		return mas->max;
710 
711 	return pivots[piv];
712 }
713 
714 /*
715  * mas_safe_min() - Return the minimum for a given offset.
716  * @mas: The maple state
717  * @pivots: The pointer to the maple node pivots
718  * @offset: The offset into the pivot array
719  *
720  * Return: The minimum range value that is contained in @offset.
721  */
722 static inline unsigned long
723 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
724 {
725 	if (likely(offset))
726 		return pivots[offset - 1] + 1;
727 
728 	return mas->min;
729 }
730 
731 /*
732  * mas_logical_pivot() - Get the logical pivot of a given offset.
733  * @mas: The maple state
734  * @pivots: The pointer to the maple node pivots
735  * @offset: The offset into the pivot array
736  * @type: The maple node type
737  *
738  * When there is no value at a pivot (beyond the end of the data), then the
739  * pivot is actually @mas->max.
740  *
741  * Return: the logical pivot of a given @offset.
742  */
743 static inline unsigned long
744 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
745 		  unsigned char offset, enum maple_type type)
746 {
747 	unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
748 
749 	if (likely(lpiv))
750 		return lpiv;
751 
752 	if (likely(offset))
753 		return mas->max;
754 
755 	return lpiv;
756 }
757 
758 /*
759  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
760  * @mn: The encoded maple node
761  * @piv: The pivot offset
762  * @val: The value of the pivot
763  */
764 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
765 				unsigned long val)
766 {
767 	struct maple_node *node = mte_to_node(mn);
768 	enum maple_type type = mte_node_type(mn);
769 
770 	BUG_ON(piv >= mt_pivots[type]);
771 	switch (type) {
772 	default:
773 	case maple_range_64:
774 	case maple_leaf_64:
775 		node->mr64.pivot[piv] = val;
776 		break;
777 	case maple_arange_64:
778 		node->ma64.pivot[piv] = val;
779 		break;
780 	case maple_dense:
781 		break;
782 	}
783 
784 }
785 
786 /*
787  * ma_slots() - Get a pointer to the maple node slots.
788  * @mn: The maple node
789  * @mt: The maple node type
790  *
791  * Return: A pointer to the maple node slots
792  */
793 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
794 {
795 	switch (mt) {
796 	default:
797 	case maple_arange_64:
798 		return mn->ma64.slot;
799 	case maple_range_64:
800 	case maple_leaf_64:
801 		return mn->mr64.slot;
802 	case maple_dense:
803 		return mn->slot;
804 	}
805 }
806 
807 static inline bool mt_locked(const struct maple_tree *mt)
808 {
809 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
810 		lockdep_is_held(&mt->ma_lock);
811 }
812 
813 static inline void *mt_slot(const struct maple_tree *mt,
814 		void __rcu **slots, unsigned char offset)
815 {
816 	return rcu_dereference_check(slots[offset], mt_locked(mt));
817 }
818 
819 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
820 				   unsigned char offset)
821 {
822 	return rcu_dereference_protected(slots[offset], mt_locked(mt));
823 }
824 /*
825  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
826  * @mas: The maple state
827  * @slots: The pointer to the slots
828  * @offset: The offset into the slots array to fetch
829  *
830  * Return: The entry stored in @slots at the @offset.
831  */
832 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
833 				       unsigned char offset)
834 {
835 	return mt_slot_locked(mas->tree, slots, offset);
836 }
837 
838 /*
839  * mas_slot() - Get the slot value when not holding the maple tree lock.
840  * @mas: The maple state
841  * @slots: The pointer to the slots
842  * @offset: The offset into the slots array to fetch
843  *
844  * Return: The entry stored in @slots at the @offset
845  */
846 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
847 			     unsigned char offset)
848 {
849 	return mt_slot(mas->tree, slots, offset);
850 }
851 
852 /*
853  * mas_root() - Get the maple tree root.
854  * @mas: The maple state.
855  *
856  * Return: The pointer to the root of the tree
857  */
858 static inline void *mas_root(struct ma_state *mas)
859 {
860 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
861 }
862 
863 static inline void *mt_root_locked(struct maple_tree *mt)
864 {
865 	return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
866 }
867 
868 /*
869  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
870  * @mas: The maple state.
871  *
872  * Return: The pointer to the root of the tree
873  */
874 static inline void *mas_root_locked(struct ma_state *mas)
875 {
876 	return mt_root_locked(mas->tree);
877 }
878 
879 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
880 					     enum maple_type mt)
881 {
882 	switch (mt) {
883 	case maple_arange_64:
884 		return &mn->ma64.meta;
885 	default:
886 		return &mn->mr64.meta;
887 	}
888 }
889 
890 /*
891  * ma_set_meta() - Set the metadata information of a node.
892  * @mn: The maple node
893  * @mt: The maple node type
894  * @offset: The offset of the highest sub-gap in this node.
895  * @end: The end of the data in this node.
896  */
897 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
898 			       unsigned char offset, unsigned char end)
899 {
900 	struct maple_metadata *meta = ma_meta(mn, mt);
901 
902 	meta->gap = offset;
903 	meta->end = end;
904 }
905 
906 /*
907  * mt_clear_meta() - clear the metadata information of a node, if it exists
908  * @mt: The maple tree
909  * @mn: The maple node
910  * @type: The maple node type
911  * @offset: The offset of the highest sub-gap in this node.
912  * @end: The end of the data in this node.
913  */
914 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
915 				  enum maple_type type)
916 {
917 	struct maple_metadata *meta;
918 	unsigned long *pivots;
919 	void __rcu **slots;
920 	void *next;
921 
922 	switch (type) {
923 	case maple_range_64:
924 		pivots = mn->mr64.pivot;
925 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
926 			slots = mn->mr64.slot;
927 			next = mt_slot_locked(mt, slots,
928 					      MAPLE_RANGE64_SLOTS - 1);
929 			if (unlikely((mte_to_node(next) &&
930 				      mte_node_type(next))))
931 				return; /* no metadata, could be node */
932 		}
933 		fallthrough;
934 	case maple_arange_64:
935 		meta = ma_meta(mn, type);
936 		break;
937 	default:
938 		return;
939 	}
940 
941 	meta->gap = 0;
942 	meta->end = 0;
943 }
944 
945 /*
946  * ma_meta_end() - Get the data end of a node from the metadata
947  * @mn: The maple node
948  * @mt: The maple node type
949  */
950 static inline unsigned char ma_meta_end(struct maple_node *mn,
951 					enum maple_type mt)
952 {
953 	struct maple_metadata *meta = ma_meta(mn, mt);
954 
955 	return meta->end;
956 }
957 
958 /*
959  * ma_meta_gap() - Get the largest gap location of a node from the metadata
960  * @mn: The maple node
961  * @mt: The maple node type
962  */
963 static inline unsigned char ma_meta_gap(struct maple_node *mn,
964 					enum maple_type mt)
965 {
966 	return mn->ma64.meta.gap;
967 }
968 
969 /*
970  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
971  * @mn: The maple node
972  * @mn: The maple node type
973  * @offset: The location of the largest gap.
974  */
975 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
976 				   unsigned char offset)
977 {
978 
979 	struct maple_metadata *meta = ma_meta(mn, mt);
980 
981 	meta->gap = offset;
982 }
983 
984 /*
985  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
986  * @mat - the ma_topiary, a linked list of dead nodes.
987  * @dead_enode - the node to be marked as dead and added to the tail of the list
988  *
989  * Add the @dead_enode to the linked list in @mat.
990  */
991 static inline void mat_add(struct ma_topiary *mat,
992 			   struct maple_enode *dead_enode)
993 {
994 	mte_set_node_dead(dead_enode);
995 	mte_to_mat(dead_enode)->next = NULL;
996 	if (!mat->tail) {
997 		mat->tail = mat->head = dead_enode;
998 		return;
999 	}
1000 
1001 	mte_to_mat(mat->tail)->next = dead_enode;
1002 	mat->tail = dead_enode;
1003 }
1004 
1005 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
1006 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
1007 
1008 /*
1009  * mas_mat_free() - Free all nodes in a dead list.
1010  * @mas - the maple state
1011  * @mat - the ma_topiary linked list of dead nodes to free.
1012  *
1013  * Free walk a dead list.
1014  */
1015 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
1016 {
1017 	struct maple_enode *next;
1018 
1019 	while (mat->head) {
1020 		next = mte_to_mat(mat->head)->next;
1021 		mas_free(mas, mat->head);
1022 		mat->head = next;
1023 	}
1024 }
1025 
1026 /*
1027  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1028  * @mas - the maple state
1029  * @mat - the ma_topiary linked list of dead nodes to free.
1030  *
1031  * Destroy walk a dead list.
1032  */
1033 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1034 {
1035 	struct maple_enode *next;
1036 
1037 	while (mat->head) {
1038 		next = mte_to_mat(mat->head)->next;
1039 		mte_destroy_walk(mat->head, mat->mtree);
1040 		mat->head = next;
1041 	}
1042 }
1043 /*
1044  * mas_descend() - Descend into the slot stored in the ma_state.
1045  * @mas - the maple state.
1046  *
1047  * Note: Not RCU safe, only use in write side or debug code.
1048  */
1049 static inline void mas_descend(struct ma_state *mas)
1050 {
1051 	enum maple_type type;
1052 	unsigned long *pivots;
1053 	struct maple_node *node;
1054 	void __rcu **slots;
1055 
1056 	node = mas_mn(mas);
1057 	type = mte_node_type(mas->node);
1058 	pivots = ma_pivots(node, type);
1059 	slots = ma_slots(node, type);
1060 
1061 	if (mas->offset)
1062 		mas->min = pivots[mas->offset - 1] + 1;
1063 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1064 	mas->node = mas_slot(mas, slots, mas->offset);
1065 }
1066 
1067 /*
1068  * mte_set_gap() - Set a maple node gap.
1069  * @mn: The encoded maple node
1070  * @gap: The offset of the gap to set
1071  * @val: The gap value
1072  */
1073 static inline void mte_set_gap(const struct maple_enode *mn,
1074 				 unsigned char gap, unsigned long val)
1075 {
1076 	switch (mte_node_type(mn)) {
1077 	default:
1078 		break;
1079 	case maple_arange_64:
1080 		mte_to_node(mn)->ma64.gap[gap] = val;
1081 		break;
1082 	}
1083 }
1084 
1085 /*
1086  * mas_ascend() - Walk up a level of the tree.
1087  * @mas: The maple state
1088  *
1089  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1090  * may cause several levels of walking up to find the correct min and max.
1091  * May find a dead node which will cause a premature return.
1092  * Return: 1 on dead node, 0 otherwise
1093  */
1094 static int mas_ascend(struct ma_state *mas)
1095 {
1096 	struct maple_enode *p_enode; /* parent enode. */
1097 	struct maple_enode *a_enode; /* ancestor enode. */
1098 	struct maple_node *a_node; /* ancestor node. */
1099 	struct maple_node *p_node; /* parent node. */
1100 	unsigned char a_slot;
1101 	enum maple_type a_type;
1102 	unsigned long min, max;
1103 	unsigned long *pivots;
1104 	bool set_max = false, set_min = false;
1105 
1106 	a_node = mas_mn(mas);
1107 	if (ma_is_root(a_node)) {
1108 		mas->offset = 0;
1109 		return 0;
1110 	}
1111 
1112 	p_node = mte_parent(mas->node);
1113 	if (unlikely(a_node == p_node))
1114 		return 1;
1115 
1116 	a_type = mas_parent_type(mas, mas->node);
1117 	mas->offset = mte_parent_slot(mas->node);
1118 	a_enode = mt_mk_node(p_node, a_type);
1119 
1120 	/* Check to make sure all parent information is still accurate */
1121 	if (p_node != mte_parent(mas->node))
1122 		return 1;
1123 
1124 	mas->node = a_enode;
1125 
1126 	if (mte_is_root(a_enode)) {
1127 		mas->max = ULONG_MAX;
1128 		mas->min = 0;
1129 		return 0;
1130 	}
1131 
1132 	if (!mas->min)
1133 		set_min = true;
1134 
1135 	if (mas->max == ULONG_MAX)
1136 		set_max = true;
1137 
1138 	min = 0;
1139 	max = ULONG_MAX;
1140 	do {
1141 		p_enode = a_enode;
1142 		a_type = mas_parent_type(mas, p_enode);
1143 		a_node = mte_parent(p_enode);
1144 		a_slot = mte_parent_slot(p_enode);
1145 		a_enode = mt_mk_node(a_node, a_type);
1146 		pivots = ma_pivots(a_node, a_type);
1147 
1148 		if (unlikely(ma_dead_node(a_node)))
1149 			return 1;
1150 
1151 		if (!set_min && a_slot) {
1152 			set_min = true;
1153 			min = pivots[a_slot - 1] + 1;
1154 		}
1155 
1156 		if (!set_max && a_slot < mt_pivots[a_type]) {
1157 			set_max = true;
1158 			max = pivots[a_slot];
1159 		}
1160 
1161 		if (unlikely(ma_dead_node(a_node)))
1162 			return 1;
1163 
1164 		if (unlikely(ma_is_root(a_node)))
1165 			break;
1166 
1167 	} while (!set_min || !set_max);
1168 
1169 	mas->max = max;
1170 	mas->min = min;
1171 	return 0;
1172 }
1173 
1174 /*
1175  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1176  * @mas: The maple state
1177  *
1178  * Return: A pointer to a maple node.
1179  */
1180 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1181 {
1182 	struct maple_alloc *ret, *node = mas->alloc;
1183 	unsigned long total = mas_allocated(mas);
1184 	unsigned int req = mas_alloc_req(mas);
1185 
1186 	/* nothing or a request pending. */
1187 	if (WARN_ON(!total))
1188 		return NULL;
1189 
1190 	if (total == 1) {
1191 		/* single allocation in this ma_state */
1192 		mas->alloc = NULL;
1193 		ret = node;
1194 		goto single_node;
1195 	}
1196 
1197 	if (node->node_count == 1) {
1198 		/* Single allocation in this node. */
1199 		mas->alloc = node->slot[0];
1200 		mas->alloc->total = node->total - 1;
1201 		ret = node;
1202 		goto new_head;
1203 	}
1204 	node->total--;
1205 	ret = node->slot[--node->node_count];
1206 	node->slot[node->node_count] = NULL;
1207 
1208 single_node:
1209 new_head:
1210 	if (req) {
1211 		req++;
1212 		mas_set_alloc_req(mas, req);
1213 	}
1214 
1215 	memset(ret, 0, sizeof(*ret));
1216 	return (struct maple_node *)ret;
1217 }
1218 
1219 /*
1220  * mas_push_node() - Push a node back on the maple state allocation.
1221  * @mas: The maple state
1222  * @used: The used maple node
1223  *
1224  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1225  * requested node count as necessary.
1226  */
1227 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1228 {
1229 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1230 	struct maple_alloc *head = mas->alloc;
1231 	unsigned long count;
1232 	unsigned int requested = mas_alloc_req(mas);
1233 
1234 	count = mas_allocated(mas);
1235 
1236 	reuse->request_count = 0;
1237 	reuse->node_count = 0;
1238 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1239 		head->slot[head->node_count++] = reuse;
1240 		head->total++;
1241 		goto done;
1242 	}
1243 
1244 	reuse->total = 1;
1245 	if ((head) && !((unsigned long)head & 0x1)) {
1246 		reuse->slot[0] = head;
1247 		reuse->node_count = 1;
1248 		reuse->total += head->total;
1249 	}
1250 
1251 	mas->alloc = reuse;
1252 done:
1253 	if (requested > 1)
1254 		mas_set_alloc_req(mas, requested - 1);
1255 }
1256 
1257 /*
1258  * mas_alloc_nodes() - Allocate nodes into a maple state
1259  * @mas: The maple state
1260  * @gfp: The GFP Flags
1261  */
1262 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1263 {
1264 	struct maple_alloc *node;
1265 	unsigned long allocated = mas_allocated(mas);
1266 	unsigned int requested = mas_alloc_req(mas);
1267 	unsigned int count;
1268 	void **slots = NULL;
1269 	unsigned int max_req = 0;
1270 
1271 	if (!requested)
1272 		return;
1273 
1274 	mas_set_alloc_req(mas, 0);
1275 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1276 		if (allocated)
1277 			return;
1278 		WARN_ON(!allocated);
1279 	}
1280 
1281 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1282 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1283 		if (!node)
1284 			goto nomem_one;
1285 
1286 		if (allocated) {
1287 			node->slot[0] = mas->alloc;
1288 			node->node_count = 1;
1289 		} else {
1290 			node->node_count = 0;
1291 		}
1292 
1293 		mas->alloc = node;
1294 		node->total = ++allocated;
1295 		requested--;
1296 	}
1297 
1298 	node = mas->alloc;
1299 	node->request_count = 0;
1300 	while (requested) {
1301 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1302 		slots = (void **)&node->slot[node->node_count];
1303 		max_req = min(requested, max_req);
1304 		count = mt_alloc_bulk(gfp, max_req, slots);
1305 		if (!count)
1306 			goto nomem_bulk;
1307 
1308 		if (node->node_count == 0) {
1309 			node->slot[0]->node_count = 0;
1310 			node->slot[0]->request_count = 0;
1311 		}
1312 
1313 		node->node_count += count;
1314 		allocated += count;
1315 		node = node->slot[0];
1316 		requested -= count;
1317 	}
1318 	mas->alloc->total = allocated;
1319 	return;
1320 
1321 nomem_bulk:
1322 	/* Clean up potential freed allocations on bulk failure */
1323 	memset(slots, 0, max_req * sizeof(unsigned long));
1324 nomem_one:
1325 	mas_set_alloc_req(mas, requested);
1326 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1327 		mas->alloc->total = allocated;
1328 	mas_set_err(mas, -ENOMEM);
1329 }
1330 
1331 /*
1332  * mas_free() - Free an encoded maple node
1333  * @mas: The maple state
1334  * @used: The encoded maple node to free.
1335  *
1336  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1337  * otherwise.
1338  */
1339 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1340 {
1341 	struct maple_node *tmp = mte_to_node(used);
1342 
1343 	if (mt_in_rcu(mas->tree))
1344 		ma_free_rcu(tmp);
1345 	else
1346 		mas_push_node(mas, tmp);
1347 }
1348 
1349 /*
1350  * mas_node_count() - Check if enough nodes are allocated and request more if
1351  * there is not enough nodes.
1352  * @mas: The maple state
1353  * @count: The number of nodes needed
1354  * @gfp: the gfp flags
1355  */
1356 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1357 {
1358 	unsigned long allocated = mas_allocated(mas);
1359 
1360 	if (allocated < count) {
1361 		mas_set_alloc_req(mas, count - allocated);
1362 		mas_alloc_nodes(mas, gfp);
1363 	}
1364 }
1365 
1366 /*
1367  * mas_node_count() - Check if enough nodes are allocated and request more if
1368  * there is not enough nodes.
1369  * @mas: The maple state
1370  * @count: The number of nodes needed
1371  *
1372  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1373  */
1374 static void mas_node_count(struct ma_state *mas, int count)
1375 {
1376 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1377 }
1378 
1379 /*
1380  * mas_start() - Sets up maple state for operations.
1381  * @mas: The maple state.
1382  *
1383  * If mas->node == MAS_START, then set the min, max and depth to
1384  * defaults.
1385  *
1386  * Return:
1387  * - If mas->node is an error or not MAS_START, return NULL.
1388  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
1389  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
1390  * - If it's a tree:            NULL & mas->node == safe root node.
1391  */
1392 static inline struct maple_enode *mas_start(struct ma_state *mas)
1393 {
1394 	if (likely(mas_is_start(mas))) {
1395 		struct maple_enode *root;
1396 
1397 		mas->min = 0;
1398 		mas->max = ULONG_MAX;
1399 
1400 retry:
1401 		mas->depth = 0;
1402 		root = mas_root(mas);
1403 		/* Tree with nodes */
1404 		if (likely(xa_is_node(root))) {
1405 			mas->depth = 1;
1406 			mas->node = mte_safe_root(root);
1407 			mas->offset = 0;
1408 			if (mte_dead_node(mas->node))
1409 				goto retry;
1410 
1411 			return NULL;
1412 		}
1413 
1414 		/* empty tree */
1415 		if (unlikely(!root)) {
1416 			mas->node = MAS_NONE;
1417 			mas->offset = MAPLE_NODE_SLOTS;
1418 			return NULL;
1419 		}
1420 
1421 		/* Single entry tree */
1422 		mas->node = MAS_ROOT;
1423 		mas->offset = MAPLE_NODE_SLOTS;
1424 
1425 		/* Single entry tree. */
1426 		if (mas->index > 0)
1427 			return NULL;
1428 
1429 		return root;
1430 	}
1431 
1432 	return NULL;
1433 }
1434 
1435 /*
1436  * ma_data_end() - Find the end of the data in a node.
1437  * @node: The maple node
1438  * @type: The maple node type
1439  * @pivots: The array of pivots in the node
1440  * @max: The maximum value in the node
1441  *
1442  * Uses metadata to find the end of the data when possible.
1443  * Return: The zero indexed last slot with data (may be null).
1444  */
1445 static inline unsigned char ma_data_end(struct maple_node *node,
1446 					enum maple_type type,
1447 					unsigned long *pivots,
1448 					unsigned long max)
1449 {
1450 	unsigned char offset;
1451 
1452 	if (!pivots)
1453 		return 0;
1454 
1455 	if (type == maple_arange_64)
1456 		return ma_meta_end(node, type);
1457 
1458 	offset = mt_pivots[type] - 1;
1459 	if (likely(!pivots[offset]))
1460 		return ma_meta_end(node, type);
1461 
1462 	if (likely(pivots[offset] == max))
1463 		return offset;
1464 
1465 	return mt_pivots[type];
1466 }
1467 
1468 /*
1469  * mas_data_end() - Find the end of the data (slot).
1470  * @mas: the maple state
1471  *
1472  * This method is optimized to check the metadata of a node if the node type
1473  * supports data end metadata.
1474  *
1475  * Return: The zero indexed last slot with data (may be null).
1476  */
1477 static inline unsigned char mas_data_end(struct ma_state *mas)
1478 {
1479 	enum maple_type type;
1480 	struct maple_node *node;
1481 	unsigned char offset;
1482 	unsigned long *pivots;
1483 
1484 	type = mte_node_type(mas->node);
1485 	node = mas_mn(mas);
1486 	if (type == maple_arange_64)
1487 		return ma_meta_end(node, type);
1488 
1489 	pivots = ma_pivots(node, type);
1490 	if (unlikely(ma_dead_node(node)))
1491 		return 0;
1492 
1493 	offset = mt_pivots[type] - 1;
1494 	if (likely(!pivots[offset]))
1495 		return ma_meta_end(node, type);
1496 
1497 	if (likely(pivots[offset] == mas->max))
1498 		return offset;
1499 
1500 	return mt_pivots[type];
1501 }
1502 
1503 /*
1504  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1505  * @mas - the maple state
1506  *
1507  * Return: The maximum gap in the leaf.
1508  */
1509 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1510 {
1511 	enum maple_type mt;
1512 	unsigned long pstart, gap, max_gap;
1513 	struct maple_node *mn;
1514 	unsigned long *pivots;
1515 	void __rcu **slots;
1516 	unsigned char i;
1517 	unsigned char max_piv;
1518 
1519 	mt = mte_node_type(mas->node);
1520 	mn = mas_mn(mas);
1521 	slots = ma_slots(mn, mt);
1522 	max_gap = 0;
1523 	if (unlikely(ma_is_dense(mt))) {
1524 		gap = 0;
1525 		for (i = 0; i < mt_slots[mt]; i++) {
1526 			if (slots[i]) {
1527 				if (gap > max_gap)
1528 					max_gap = gap;
1529 				gap = 0;
1530 			} else {
1531 				gap++;
1532 			}
1533 		}
1534 		if (gap > max_gap)
1535 			max_gap = gap;
1536 		return max_gap;
1537 	}
1538 
1539 	/*
1540 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1541 	 * be skipped if there is a gap in slot 0.
1542 	 */
1543 	pivots = ma_pivots(mn, mt);
1544 	if (likely(!slots[0])) {
1545 		max_gap = pivots[0] - mas->min + 1;
1546 		i = 2;
1547 	} else {
1548 		i = 1;
1549 	}
1550 
1551 	/* reduce max_piv as the special case is checked before the loop */
1552 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1553 	/*
1554 	 * Check end implied pivot which can only be a gap on the right most
1555 	 * node.
1556 	 */
1557 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1558 		gap = ULONG_MAX - pivots[max_piv];
1559 		if (gap > max_gap)
1560 			max_gap = gap;
1561 	}
1562 
1563 	for (; i <= max_piv; i++) {
1564 		/* data == no gap. */
1565 		if (likely(slots[i]))
1566 			continue;
1567 
1568 		pstart = pivots[i - 1];
1569 		gap = pivots[i] - pstart;
1570 		if (gap > max_gap)
1571 			max_gap = gap;
1572 
1573 		/* There cannot be two gaps in a row. */
1574 		i++;
1575 	}
1576 	return max_gap;
1577 }
1578 
1579 /*
1580  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1581  * @node: The maple node
1582  * @gaps: The pointer to the gaps
1583  * @mt: The maple node type
1584  * @*off: Pointer to store the offset location of the gap.
1585  *
1586  * Uses the metadata data end to scan backwards across set gaps.
1587  *
1588  * Return: The maximum gap value
1589  */
1590 static inline unsigned long
1591 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1592 	    unsigned char *off)
1593 {
1594 	unsigned char offset, i;
1595 	unsigned long max_gap = 0;
1596 
1597 	i = offset = ma_meta_end(node, mt);
1598 	do {
1599 		if (gaps[i] > max_gap) {
1600 			max_gap = gaps[i];
1601 			offset = i;
1602 		}
1603 	} while (i--);
1604 
1605 	*off = offset;
1606 	return max_gap;
1607 }
1608 
1609 /*
1610  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1611  * @mas: The maple state.
1612  *
1613  * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1614  *
1615  * Return: The gap value.
1616  */
1617 static inline unsigned long mas_max_gap(struct ma_state *mas)
1618 {
1619 	unsigned long *gaps;
1620 	unsigned char offset;
1621 	enum maple_type mt;
1622 	struct maple_node *node;
1623 
1624 	mt = mte_node_type(mas->node);
1625 	if (ma_is_leaf(mt))
1626 		return mas_leaf_max_gap(mas);
1627 
1628 	node = mas_mn(mas);
1629 	MAS_BUG_ON(mas, mt != maple_arange_64);
1630 	offset = ma_meta_gap(node, mt);
1631 	if (offset == MAPLE_ARANGE64_META_MAX)
1632 		return 0;
1633 
1634 	gaps = ma_gaps(node, mt);
1635 	return gaps[offset];
1636 }
1637 
1638 /*
1639  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1640  * @mas: The maple state
1641  * @offset: The gap offset in the parent to set
1642  * @new: The new gap value.
1643  *
1644  * Set the parent gap then continue to set the gap upwards, using the metadata
1645  * of the parent to see if it is necessary to check the node above.
1646  */
1647 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1648 		unsigned long new)
1649 {
1650 	unsigned long meta_gap = 0;
1651 	struct maple_node *pnode;
1652 	struct maple_enode *penode;
1653 	unsigned long *pgaps;
1654 	unsigned char meta_offset;
1655 	enum maple_type pmt;
1656 
1657 	pnode = mte_parent(mas->node);
1658 	pmt = mas_parent_type(mas, mas->node);
1659 	penode = mt_mk_node(pnode, pmt);
1660 	pgaps = ma_gaps(pnode, pmt);
1661 
1662 ascend:
1663 	MAS_BUG_ON(mas, pmt != maple_arange_64);
1664 	meta_offset = ma_meta_gap(pnode, pmt);
1665 	if (meta_offset == MAPLE_ARANGE64_META_MAX)
1666 		meta_gap = 0;
1667 	else
1668 		meta_gap = pgaps[meta_offset];
1669 
1670 	pgaps[offset] = new;
1671 
1672 	if (meta_gap == new)
1673 		return;
1674 
1675 	if (offset != meta_offset) {
1676 		if (meta_gap > new)
1677 			return;
1678 
1679 		ma_set_meta_gap(pnode, pmt, offset);
1680 	} else if (new < meta_gap) {
1681 		meta_offset = 15;
1682 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1683 		ma_set_meta_gap(pnode, pmt, meta_offset);
1684 	}
1685 
1686 	if (ma_is_root(pnode))
1687 		return;
1688 
1689 	/* Go to the parent node. */
1690 	pnode = mte_parent(penode);
1691 	pmt = mas_parent_type(mas, penode);
1692 	pgaps = ma_gaps(pnode, pmt);
1693 	offset = mte_parent_slot(penode);
1694 	penode = mt_mk_node(pnode, pmt);
1695 	goto ascend;
1696 }
1697 
1698 /*
1699  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1700  * @mas - the maple state.
1701  */
1702 static inline void mas_update_gap(struct ma_state *mas)
1703 {
1704 	unsigned char pslot;
1705 	unsigned long p_gap;
1706 	unsigned long max_gap;
1707 
1708 	if (!mt_is_alloc(mas->tree))
1709 		return;
1710 
1711 	if (mte_is_root(mas->node))
1712 		return;
1713 
1714 	max_gap = mas_max_gap(mas);
1715 
1716 	pslot = mte_parent_slot(mas->node);
1717 	p_gap = ma_gaps(mte_parent(mas->node),
1718 			mas_parent_type(mas, mas->node))[pslot];
1719 
1720 	if (p_gap != max_gap)
1721 		mas_parent_gap(mas, pslot, max_gap);
1722 }
1723 
1724 /*
1725  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1726  * @parent with the slot encoded.
1727  * @mas - the maple state (for the tree)
1728  * @parent - the maple encoded node containing the children.
1729  */
1730 static inline void mas_adopt_children(struct ma_state *mas,
1731 		struct maple_enode *parent)
1732 {
1733 	enum maple_type type = mte_node_type(parent);
1734 	struct maple_node *node = mas_mn(mas);
1735 	void __rcu **slots = ma_slots(node, type);
1736 	unsigned long *pivots = ma_pivots(node, type);
1737 	struct maple_enode *child;
1738 	unsigned char offset;
1739 
1740 	offset = ma_data_end(node, type, pivots, mas->max);
1741 	do {
1742 		child = mas_slot_locked(mas, slots, offset);
1743 		mas_set_parent(mas, child, parent, offset);
1744 	} while (offset--);
1745 }
1746 
1747 /*
1748  * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the
1749  * parent encoding to locate the maple node in the tree.
1750  * @mas - the ma_state to use for operations.
1751  * @advanced - boolean to adopt the child nodes and free the old node (false) or
1752  * leave the node (true) and handle the adoption and free elsewhere.
1753  */
1754 static inline void mas_replace(struct ma_state *mas, bool advanced)
1755 	__must_hold(mas->tree->ma_lock)
1756 {
1757 	struct maple_node *mn = mas_mn(mas);
1758 	struct maple_enode *old_enode;
1759 	unsigned char offset = 0;
1760 	void __rcu **slots = NULL;
1761 
1762 	if (ma_is_root(mn)) {
1763 		old_enode = mas_root_locked(mas);
1764 	} else {
1765 		offset = mte_parent_slot(mas->node);
1766 		slots = ma_slots(mte_parent(mas->node),
1767 				 mas_parent_type(mas, mas->node));
1768 		old_enode = mas_slot_locked(mas, slots, offset);
1769 	}
1770 
1771 	if (!advanced && !mte_is_leaf(mas->node))
1772 		mas_adopt_children(mas, mas->node);
1773 
1774 	if (mte_is_root(mas->node)) {
1775 		mn->parent = ma_parent_ptr(
1776 			      ((unsigned long)mas->tree | MA_ROOT_PARENT));
1777 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1778 		mas_set_height(mas);
1779 	} else {
1780 		rcu_assign_pointer(slots[offset], mas->node);
1781 	}
1782 
1783 	if (!advanced) {
1784 		mte_set_node_dead(old_enode);
1785 		mas_free(mas, old_enode);
1786 	}
1787 }
1788 
1789 /*
1790  * mas_new_child() - Find the new child of a node.
1791  * @mas: the maple state
1792  * @child: the maple state to store the child.
1793  */
1794 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1795 	__must_hold(mas->tree->ma_lock)
1796 {
1797 	enum maple_type mt;
1798 	unsigned char offset;
1799 	unsigned char end;
1800 	unsigned long *pivots;
1801 	struct maple_enode *entry;
1802 	struct maple_node *node;
1803 	void __rcu **slots;
1804 
1805 	mt = mte_node_type(mas->node);
1806 	node = mas_mn(mas);
1807 	slots = ma_slots(node, mt);
1808 	pivots = ma_pivots(node, mt);
1809 	end = ma_data_end(node, mt, pivots, mas->max);
1810 	for (offset = mas->offset; offset <= end; offset++) {
1811 		entry = mas_slot_locked(mas, slots, offset);
1812 		if (mte_parent(entry) == node) {
1813 			*child = *mas;
1814 			mas->offset = offset + 1;
1815 			child->offset = offset;
1816 			mas_descend(child);
1817 			child->offset = 0;
1818 			return true;
1819 		}
1820 	}
1821 	return false;
1822 }
1823 
1824 /*
1825  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1826  * old data or set b_node->b_end.
1827  * @b_node: the maple_big_node
1828  * @shift: the shift count
1829  */
1830 static inline void mab_shift_right(struct maple_big_node *b_node,
1831 				 unsigned char shift)
1832 {
1833 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1834 
1835 	memmove(b_node->pivot + shift, b_node->pivot, size);
1836 	memmove(b_node->slot + shift, b_node->slot, size);
1837 	if (b_node->type == maple_arange_64)
1838 		memmove(b_node->gap + shift, b_node->gap, size);
1839 }
1840 
1841 /*
1842  * mab_middle_node() - Check if a middle node is needed (unlikely)
1843  * @b_node: the maple_big_node that contains the data.
1844  * @size: the amount of data in the b_node
1845  * @split: the potential split location
1846  * @slot_count: the size that can be stored in a single node being considered.
1847  *
1848  * Return: true if a middle node is required.
1849  */
1850 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1851 				   unsigned char slot_count)
1852 {
1853 	unsigned char size = b_node->b_end;
1854 
1855 	if (size >= 2 * slot_count)
1856 		return true;
1857 
1858 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1859 		return true;
1860 
1861 	return false;
1862 }
1863 
1864 /*
1865  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1866  * @b_node: the maple_big_node with the data
1867  * @split: the suggested split location
1868  * @slot_count: the number of slots in the node being considered.
1869  *
1870  * Return: the split location.
1871  */
1872 static inline int mab_no_null_split(struct maple_big_node *b_node,
1873 				    unsigned char split, unsigned char slot_count)
1874 {
1875 	if (!b_node->slot[split]) {
1876 		/*
1877 		 * If the split is less than the max slot && the right side will
1878 		 * still be sufficient, then increment the split on NULL.
1879 		 */
1880 		if ((split < slot_count - 1) &&
1881 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1882 			split++;
1883 		else
1884 			split--;
1885 	}
1886 	return split;
1887 }
1888 
1889 /*
1890  * mab_calc_split() - Calculate the split location and if there needs to be two
1891  * splits.
1892  * @bn: The maple_big_node with the data
1893  * @mid_split: The second split, if required.  0 otherwise.
1894  *
1895  * Return: The first split location.  The middle split is set in @mid_split.
1896  */
1897 static inline int mab_calc_split(struct ma_state *mas,
1898 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1899 {
1900 	unsigned char b_end = bn->b_end;
1901 	int split = b_end / 2; /* Assume equal split. */
1902 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1903 
1904 	/*
1905 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1906 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1907 	 * limitation means that the split of a node must be checked for this condition
1908 	 * and be able to put more data in one direction or the other.
1909 	 */
1910 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1911 		*mid_split = 0;
1912 		split = b_end - mt_min_slots[bn->type];
1913 
1914 		if (!ma_is_leaf(bn->type))
1915 			return split;
1916 
1917 		mas->mas_flags |= MA_STATE_REBALANCE;
1918 		if (!bn->slot[split])
1919 			split--;
1920 		return split;
1921 	}
1922 
1923 	/*
1924 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1925 	 * split scenario.  The 3-way split comes about by means of a store of a range
1926 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1927 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1928 	 * also be located in different parent nodes which are also full.  This can
1929 	 * carry upwards all the way to the root in the worst case.
1930 	 */
1931 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1932 		split = b_end / 3;
1933 		*mid_split = split * 2;
1934 	} else {
1935 		slot_min = mt_min_slots[bn->type];
1936 
1937 		*mid_split = 0;
1938 		/*
1939 		 * Avoid having a range less than the slot count unless it
1940 		 * causes one node to be deficient.
1941 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1942 		 */
1943 		while ((split < slot_count - 1) &&
1944 		       ((bn->pivot[split] - min) < slot_count - 1) &&
1945 		       (b_end - split > slot_min))
1946 			split++;
1947 	}
1948 
1949 	/* Avoid ending a node on a NULL entry */
1950 	split = mab_no_null_split(bn, split, slot_count);
1951 
1952 	if (unlikely(*mid_split))
1953 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1954 
1955 	return split;
1956 }
1957 
1958 /*
1959  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1960  * and set @b_node->b_end to the next free slot.
1961  * @mas: The maple state
1962  * @mas_start: The starting slot to copy
1963  * @mas_end: The end slot to copy (inclusively)
1964  * @b_node: The maple_big_node to place the data
1965  * @mab_start: The starting location in maple_big_node to store the data.
1966  */
1967 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1968 			unsigned char mas_end, struct maple_big_node *b_node,
1969 			unsigned char mab_start)
1970 {
1971 	enum maple_type mt;
1972 	struct maple_node *node;
1973 	void __rcu **slots;
1974 	unsigned long *pivots, *gaps;
1975 	int i = mas_start, j = mab_start;
1976 	unsigned char piv_end;
1977 
1978 	node = mas_mn(mas);
1979 	mt = mte_node_type(mas->node);
1980 	pivots = ma_pivots(node, mt);
1981 	if (!i) {
1982 		b_node->pivot[j] = pivots[i++];
1983 		if (unlikely(i > mas_end))
1984 			goto complete;
1985 		j++;
1986 	}
1987 
1988 	piv_end = min(mas_end, mt_pivots[mt]);
1989 	for (; i < piv_end; i++, j++) {
1990 		b_node->pivot[j] = pivots[i];
1991 		if (unlikely(!b_node->pivot[j]))
1992 			break;
1993 
1994 		if (unlikely(mas->max == b_node->pivot[j]))
1995 			goto complete;
1996 	}
1997 
1998 	if (likely(i <= mas_end))
1999 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
2000 
2001 complete:
2002 	b_node->b_end = ++j;
2003 	j -= mab_start;
2004 	slots = ma_slots(node, mt);
2005 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
2006 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
2007 		gaps = ma_gaps(node, mt);
2008 		memcpy(b_node->gap + mab_start, gaps + mas_start,
2009 		       sizeof(unsigned long) * j);
2010 	}
2011 }
2012 
2013 /*
2014  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
2015  * @mas: The maple state
2016  * @node: The maple node
2017  * @pivots: pointer to the maple node pivots
2018  * @mt: The maple type
2019  * @end: The assumed end
2020  *
2021  * Note, end may be incremented within this function but not modified at the
2022  * source.  This is fine since the metadata is the last thing to be stored in a
2023  * node during a write.
2024  */
2025 static inline void mas_leaf_set_meta(struct ma_state *mas,
2026 		struct maple_node *node, unsigned long *pivots,
2027 		enum maple_type mt, unsigned char end)
2028 {
2029 	/* There is no room for metadata already */
2030 	if (mt_pivots[mt] <= end)
2031 		return;
2032 
2033 	if (pivots[end] && pivots[end] < mas->max)
2034 		end++;
2035 
2036 	if (end < mt_slots[mt] - 1)
2037 		ma_set_meta(node, mt, 0, end);
2038 }
2039 
2040 /*
2041  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2042  * @b_node: the maple_big_node that has the data
2043  * @mab_start: the start location in @b_node.
2044  * @mab_end: The end location in @b_node (inclusively)
2045  * @mas: The maple state with the maple encoded node.
2046  */
2047 static inline void mab_mas_cp(struct maple_big_node *b_node,
2048 			      unsigned char mab_start, unsigned char mab_end,
2049 			      struct ma_state *mas, bool new_max)
2050 {
2051 	int i, j = 0;
2052 	enum maple_type mt = mte_node_type(mas->node);
2053 	struct maple_node *node = mte_to_node(mas->node);
2054 	void __rcu **slots = ma_slots(node, mt);
2055 	unsigned long *pivots = ma_pivots(node, mt);
2056 	unsigned long *gaps = NULL;
2057 	unsigned char end;
2058 
2059 	if (mab_end - mab_start > mt_pivots[mt])
2060 		mab_end--;
2061 
2062 	if (!pivots[mt_pivots[mt] - 1])
2063 		slots[mt_pivots[mt]] = NULL;
2064 
2065 	i = mab_start;
2066 	do {
2067 		pivots[j++] = b_node->pivot[i++];
2068 	} while (i <= mab_end && likely(b_node->pivot[i]));
2069 
2070 	memcpy(slots, b_node->slot + mab_start,
2071 	       sizeof(void *) * (i - mab_start));
2072 
2073 	if (new_max)
2074 		mas->max = b_node->pivot[i - 1];
2075 
2076 	end = j - 1;
2077 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2078 		unsigned long max_gap = 0;
2079 		unsigned char offset = 15;
2080 
2081 		gaps = ma_gaps(node, mt);
2082 		do {
2083 			gaps[--j] = b_node->gap[--i];
2084 			if (gaps[j] > max_gap) {
2085 				offset = j;
2086 				max_gap = gaps[j];
2087 			}
2088 		} while (j);
2089 
2090 		ma_set_meta(node, mt, offset, end);
2091 	} else {
2092 		mas_leaf_set_meta(mas, node, pivots, mt, end);
2093 	}
2094 }
2095 
2096 /*
2097  * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2098  * @mas: the maple state with the maple encoded node of the sub-tree.
2099  *
2100  * Descend through a sub-tree and adopt children who do not have the correct
2101  * parents set.  Follow the parents which have the correct parents as they are
2102  * the new entries which need to be followed to find other incorrectly set
2103  * parents.
2104  */
2105 static inline void mas_descend_adopt(struct ma_state *mas)
2106 {
2107 	struct ma_state list[3], next[3];
2108 	int i, n;
2109 
2110 	/*
2111 	 * At each level there may be up to 3 correct parent pointers which indicates
2112 	 * the new nodes which need to be walked to find any new nodes at a lower level.
2113 	 */
2114 
2115 	for (i = 0; i < 3; i++) {
2116 		list[i] = *mas;
2117 		list[i].offset = 0;
2118 		next[i].offset = 0;
2119 	}
2120 	next[0] = *mas;
2121 
2122 	while (!mte_is_leaf(list[0].node)) {
2123 		n = 0;
2124 		for (i = 0; i < 3; i++) {
2125 			if (mas_is_none(&list[i]))
2126 				continue;
2127 
2128 			if (i && list[i-1].node == list[i].node)
2129 				continue;
2130 
2131 			while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2132 				n++;
2133 
2134 			mas_adopt_children(&list[i], list[i].node);
2135 		}
2136 
2137 		while (n < 3)
2138 			next[n++].node = MAS_NONE;
2139 
2140 		/* descend by setting the list to the children */
2141 		for (i = 0; i < 3; i++)
2142 			list[i] = next[i];
2143 	}
2144 }
2145 
2146 /*
2147  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2148  * @mas: The maple state
2149  * @end: The maple node end
2150  * @mt: The maple node type
2151  */
2152 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2153 				      enum maple_type mt)
2154 {
2155 	if (!(mas->mas_flags & MA_STATE_BULK))
2156 		return;
2157 
2158 	if (mte_is_root(mas->node))
2159 		return;
2160 
2161 	if (end > mt_min_slots[mt]) {
2162 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2163 		return;
2164 	}
2165 }
2166 
2167 /*
2168  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2169  * data from a maple encoded node.
2170  * @wr_mas: the maple write state
2171  * @b_node: the maple_big_node to fill with data
2172  * @offset_end: the offset to end copying
2173  *
2174  * Return: The actual end of the data stored in @b_node
2175  */
2176 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2177 		struct maple_big_node *b_node, unsigned char offset_end)
2178 {
2179 	unsigned char slot;
2180 	unsigned char b_end;
2181 	/* Possible underflow of piv will wrap back to 0 before use. */
2182 	unsigned long piv;
2183 	struct ma_state *mas = wr_mas->mas;
2184 
2185 	b_node->type = wr_mas->type;
2186 	b_end = 0;
2187 	slot = mas->offset;
2188 	if (slot) {
2189 		/* Copy start data up to insert. */
2190 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2191 		b_end = b_node->b_end;
2192 		piv = b_node->pivot[b_end - 1];
2193 	} else
2194 		piv = mas->min - 1;
2195 
2196 	if (piv + 1 < mas->index) {
2197 		/* Handle range starting after old range */
2198 		b_node->slot[b_end] = wr_mas->content;
2199 		if (!wr_mas->content)
2200 			b_node->gap[b_end] = mas->index - 1 - piv;
2201 		b_node->pivot[b_end++] = mas->index - 1;
2202 	}
2203 
2204 	/* Store the new entry. */
2205 	mas->offset = b_end;
2206 	b_node->slot[b_end] = wr_mas->entry;
2207 	b_node->pivot[b_end] = mas->last;
2208 
2209 	/* Appended. */
2210 	if (mas->last >= mas->max)
2211 		goto b_end;
2212 
2213 	/* Handle new range ending before old range ends */
2214 	piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2215 	if (piv > mas->last) {
2216 		if (piv == ULONG_MAX)
2217 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2218 
2219 		if (offset_end != slot)
2220 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2221 							  offset_end);
2222 
2223 		b_node->slot[++b_end] = wr_mas->content;
2224 		if (!wr_mas->content)
2225 			b_node->gap[b_end] = piv - mas->last + 1;
2226 		b_node->pivot[b_end] = piv;
2227 	}
2228 
2229 	slot = offset_end + 1;
2230 	if (slot > wr_mas->node_end)
2231 		goto b_end;
2232 
2233 	/* Copy end data to the end of the node. */
2234 	mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2235 	b_node->b_end--;
2236 	return;
2237 
2238 b_end:
2239 	b_node->b_end = b_end;
2240 }
2241 
2242 /*
2243  * mas_prev_sibling() - Find the previous node with the same parent.
2244  * @mas: the maple state
2245  *
2246  * Return: True if there is a previous sibling, false otherwise.
2247  */
2248 static inline bool mas_prev_sibling(struct ma_state *mas)
2249 {
2250 	unsigned int p_slot = mte_parent_slot(mas->node);
2251 
2252 	if (mte_is_root(mas->node))
2253 		return false;
2254 
2255 	if (!p_slot)
2256 		return false;
2257 
2258 	mas_ascend(mas);
2259 	mas->offset = p_slot - 1;
2260 	mas_descend(mas);
2261 	return true;
2262 }
2263 
2264 /*
2265  * mas_next_sibling() - Find the next node with the same parent.
2266  * @mas: the maple state
2267  *
2268  * Return: true if there is a next sibling, false otherwise.
2269  */
2270 static inline bool mas_next_sibling(struct ma_state *mas)
2271 {
2272 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2273 
2274 	if (mte_is_root(mas->node))
2275 		return false;
2276 
2277 	parent = *mas;
2278 	mas_ascend(&parent);
2279 	parent.offset = mte_parent_slot(mas->node) + 1;
2280 	if (parent.offset > mas_data_end(&parent))
2281 		return false;
2282 
2283 	*mas = parent;
2284 	mas_descend(mas);
2285 	return true;
2286 }
2287 
2288 /*
2289  * mte_node_or_node() - Return the encoded node or MAS_NONE.
2290  * @enode: The encoded maple node.
2291  *
2292  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2293  *
2294  * Return: @enode or MAS_NONE
2295  */
2296 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2297 {
2298 	if (enode)
2299 		return enode;
2300 
2301 	return ma_enode_ptr(MAS_NONE);
2302 }
2303 
2304 /*
2305  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2306  * @wr_mas: The maple write state
2307  *
2308  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2309  */
2310 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2311 {
2312 	struct ma_state *mas = wr_mas->mas;
2313 	unsigned char count, offset;
2314 
2315 	if (unlikely(ma_is_dense(wr_mas->type))) {
2316 		wr_mas->r_max = wr_mas->r_min = mas->index;
2317 		mas->offset = mas->index = mas->min;
2318 		return;
2319 	}
2320 
2321 	wr_mas->node = mas_mn(wr_mas->mas);
2322 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2323 	count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2324 					       wr_mas->pivots, mas->max);
2325 	offset = mas->offset;
2326 
2327 	while (offset < count && mas->index > wr_mas->pivots[offset])
2328 		offset++;
2329 
2330 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2331 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2332 	wr_mas->offset_end = mas->offset = offset;
2333 }
2334 
2335 /*
2336  * mas_topiary_range() - Add a range of slots to the topiary.
2337  * @mas: The maple state
2338  * @destroy: The topiary to add the slots (usually destroy)
2339  * @start: The starting slot inclusively
2340  * @end: The end slot inclusively
2341  */
2342 static inline void mas_topiary_range(struct ma_state *mas,
2343 	struct ma_topiary *destroy, unsigned char start, unsigned char end)
2344 {
2345 	void __rcu **slots;
2346 	unsigned char offset;
2347 
2348 	MAS_BUG_ON(mas, mte_is_leaf(mas->node));
2349 
2350 	slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2351 	for (offset = start; offset <= end; offset++) {
2352 		struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2353 
2354 		if (mte_dead_node(enode))
2355 			continue;
2356 
2357 		mat_add(destroy, enode);
2358 	}
2359 }
2360 
2361 /*
2362  * mast_topiary() - Add the portions of the tree to the removal list; either to
2363  * be freed or discarded (destroy walk).
2364  * @mast: The maple_subtree_state.
2365  */
2366 static inline void mast_topiary(struct maple_subtree_state *mast)
2367 {
2368 	MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2369 	unsigned char r_start, r_end;
2370 	unsigned char l_start, l_end;
2371 	void __rcu **l_slots, **r_slots;
2372 
2373 	wr_mas.type = mte_node_type(mast->orig_l->node);
2374 	mast->orig_l->index = mast->orig_l->last;
2375 	mas_wr_node_walk(&wr_mas);
2376 	l_start = mast->orig_l->offset + 1;
2377 	l_end = mas_data_end(mast->orig_l);
2378 	r_start = 0;
2379 	r_end = mast->orig_r->offset;
2380 
2381 	if (r_end)
2382 		r_end--;
2383 
2384 	l_slots = ma_slots(mas_mn(mast->orig_l),
2385 			   mte_node_type(mast->orig_l->node));
2386 
2387 	r_slots = ma_slots(mas_mn(mast->orig_r),
2388 			   mte_node_type(mast->orig_r->node));
2389 
2390 	if ((l_start < l_end) &&
2391 	    mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2392 		l_start++;
2393 	}
2394 
2395 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2396 		if (r_end)
2397 			r_end--;
2398 	}
2399 
2400 	if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2401 		return;
2402 
2403 	/* At the node where left and right sides meet, add the parts between */
2404 	if (mast->orig_l->node == mast->orig_r->node) {
2405 		return mas_topiary_range(mast->orig_l, mast->destroy,
2406 					     l_start, r_end);
2407 	}
2408 
2409 	/* mast->orig_r is different and consumed. */
2410 	if (mte_is_leaf(mast->orig_r->node))
2411 		return;
2412 
2413 	if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2414 		l_end--;
2415 
2416 
2417 	if (l_start <= l_end)
2418 		mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2419 
2420 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2421 		r_start++;
2422 
2423 	if (r_start <= r_end)
2424 		mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2425 }
2426 
2427 /*
2428  * mast_rebalance_next() - Rebalance against the next node
2429  * @mast: The maple subtree state
2430  * @old_r: The encoded maple node to the right (next node).
2431  */
2432 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2433 {
2434 	unsigned char b_end = mast->bn->b_end;
2435 
2436 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2437 		   mast->bn, b_end);
2438 	mast->orig_r->last = mast->orig_r->max;
2439 }
2440 
2441 /*
2442  * mast_rebalance_prev() - Rebalance against the previous node
2443  * @mast: The maple subtree state
2444  * @old_l: The encoded maple node to the left (previous node)
2445  */
2446 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2447 {
2448 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2449 	unsigned char b_end = mast->bn->b_end;
2450 
2451 	mab_shift_right(mast->bn, end);
2452 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2453 	mast->l->min = mast->orig_l->min;
2454 	mast->orig_l->index = mast->orig_l->min;
2455 	mast->bn->b_end = end + b_end;
2456 	mast->l->offset += end;
2457 }
2458 
2459 /*
2460  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2461  * the node to the right.  Checking the nodes to the right then the left at each
2462  * level upwards until root is reached.  Free and destroy as needed.
2463  * Data is copied into the @mast->bn.
2464  * @mast: The maple_subtree_state.
2465  */
2466 static inline
2467 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2468 {
2469 	struct ma_state r_tmp = *mast->orig_r;
2470 	struct ma_state l_tmp = *mast->orig_l;
2471 	struct maple_enode *ancestor = NULL;
2472 	unsigned char start, end;
2473 	unsigned char depth = 0;
2474 
2475 	r_tmp = *mast->orig_r;
2476 	l_tmp = *mast->orig_l;
2477 	do {
2478 		mas_ascend(mast->orig_r);
2479 		mas_ascend(mast->orig_l);
2480 		depth++;
2481 		if (!ancestor &&
2482 		    (mast->orig_r->node == mast->orig_l->node)) {
2483 			ancestor = mast->orig_r->node;
2484 			end = mast->orig_r->offset - 1;
2485 			start = mast->orig_l->offset + 1;
2486 		}
2487 
2488 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2489 			if (!ancestor) {
2490 				ancestor = mast->orig_r->node;
2491 				start = 0;
2492 			}
2493 
2494 			mast->orig_r->offset++;
2495 			do {
2496 				mas_descend(mast->orig_r);
2497 				mast->orig_r->offset = 0;
2498 				depth--;
2499 			} while (depth);
2500 
2501 			mast_rebalance_next(mast);
2502 			do {
2503 				unsigned char l_off = 0;
2504 				struct maple_enode *child = r_tmp.node;
2505 
2506 				mas_ascend(&r_tmp);
2507 				if (ancestor == r_tmp.node)
2508 					l_off = start;
2509 
2510 				if (r_tmp.offset)
2511 					r_tmp.offset--;
2512 
2513 				if (l_off < r_tmp.offset)
2514 					mas_topiary_range(&r_tmp, mast->destroy,
2515 							  l_off, r_tmp.offset);
2516 
2517 				if (l_tmp.node != child)
2518 					mat_add(mast->free, child);
2519 
2520 			} while (r_tmp.node != ancestor);
2521 
2522 			*mast->orig_l = l_tmp;
2523 			return true;
2524 
2525 		} else if (mast->orig_l->offset != 0) {
2526 			if (!ancestor) {
2527 				ancestor = mast->orig_l->node;
2528 				end = mas_data_end(mast->orig_l);
2529 			}
2530 
2531 			mast->orig_l->offset--;
2532 			do {
2533 				mas_descend(mast->orig_l);
2534 				mast->orig_l->offset =
2535 					mas_data_end(mast->orig_l);
2536 				depth--;
2537 			} while (depth);
2538 
2539 			mast_rebalance_prev(mast);
2540 			do {
2541 				unsigned char r_off;
2542 				struct maple_enode *child = l_tmp.node;
2543 
2544 				mas_ascend(&l_tmp);
2545 				if (ancestor == l_tmp.node)
2546 					r_off = end;
2547 				else
2548 					r_off = mas_data_end(&l_tmp);
2549 
2550 				if (l_tmp.offset < r_off)
2551 					l_tmp.offset++;
2552 
2553 				if (l_tmp.offset < r_off)
2554 					mas_topiary_range(&l_tmp, mast->destroy,
2555 							  l_tmp.offset, r_off);
2556 
2557 				if (r_tmp.node != child)
2558 					mat_add(mast->free, child);
2559 
2560 			} while (l_tmp.node != ancestor);
2561 
2562 			*mast->orig_r = r_tmp;
2563 			return true;
2564 		}
2565 	} while (!mte_is_root(mast->orig_r->node));
2566 
2567 	*mast->orig_r = r_tmp;
2568 	*mast->orig_l = l_tmp;
2569 	return false;
2570 }
2571 
2572 /*
2573  * mast_ascend_free() - Add current original maple state nodes to the free list
2574  * and ascend.
2575  * @mast: the maple subtree state.
2576  *
2577  * Ascend the original left and right sides and add the previous nodes to the
2578  * free list.  Set the slots to point to the correct location in the new nodes.
2579  */
2580 static inline void
2581 mast_ascend_free(struct maple_subtree_state *mast)
2582 {
2583 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2584 	struct maple_enode *left = mast->orig_l->node;
2585 	struct maple_enode *right = mast->orig_r->node;
2586 
2587 	mas_ascend(mast->orig_l);
2588 	mas_ascend(mast->orig_r);
2589 	mat_add(mast->free, left);
2590 
2591 	if (left != right)
2592 		mat_add(mast->free, right);
2593 
2594 	mast->orig_r->offset = 0;
2595 	mast->orig_r->index = mast->r->max;
2596 	/* last should be larger than or equal to index */
2597 	if (mast->orig_r->last < mast->orig_r->index)
2598 		mast->orig_r->last = mast->orig_r->index;
2599 	/*
2600 	 * The node may not contain the value so set slot to ensure all
2601 	 * of the nodes contents are freed or destroyed.
2602 	 */
2603 	wr_mas.type = mte_node_type(mast->orig_r->node);
2604 	mas_wr_node_walk(&wr_mas);
2605 	/* Set up the left side of things */
2606 	mast->orig_l->offset = 0;
2607 	mast->orig_l->index = mast->l->min;
2608 	wr_mas.mas = mast->orig_l;
2609 	wr_mas.type = mte_node_type(mast->orig_l->node);
2610 	mas_wr_node_walk(&wr_mas);
2611 
2612 	mast->bn->type = wr_mas.type;
2613 }
2614 
2615 /*
2616  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2617  * @mas: the maple state with the allocations.
2618  * @b_node: the maple_big_node with the type encoding.
2619  *
2620  * Use the node type from the maple_big_node to allocate a new node from the
2621  * ma_state.  This function exists mainly for code readability.
2622  *
2623  * Return: A new maple encoded node
2624  */
2625 static inline struct maple_enode
2626 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2627 {
2628 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2629 }
2630 
2631 /*
2632  * mas_mab_to_node() - Set up right and middle nodes
2633  *
2634  * @mas: the maple state that contains the allocations.
2635  * @b_node: the node which contains the data.
2636  * @left: The pointer which will have the left node
2637  * @right: The pointer which may have the right node
2638  * @middle: the pointer which may have the middle node (rare)
2639  * @mid_split: the split location for the middle node
2640  *
2641  * Return: the split of left.
2642  */
2643 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2644 	struct maple_big_node *b_node, struct maple_enode **left,
2645 	struct maple_enode **right, struct maple_enode **middle,
2646 	unsigned char *mid_split, unsigned long min)
2647 {
2648 	unsigned char split = 0;
2649 	unsigned char slot_count = mt_slots[b_node->type];
2650 
2651 	*left = mas_new_ma_node(mas, b_node);
2652 	*right = NULL;
2653 	*middle = NULL;
2654 	*mid_split = 0;
2655 
2656 	if (b_node->b_end < slot_count) {
2657 		split = b_node->b_end;
2658 	} else {
2659 		split = mab_calc_split(mas, b_node, mid_split, min);
2660 		*right = mas_new_ma_node(mas, b_node);
2661 	}
2662 
2663 	if (*mid_split)
2664 		*middle = mas_new_ma_node(mas, b_node);
2665 
2666 	return split;
2667 
2668 }
2669 
2670 /*
2671  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2672  * pointer.
2673  * @b_node - the big node to add the entry
2674  * @mas - the maple state to get the pivot (mas->max)
2675  * @entry - the entry to add, if NULL nothing happens.
2676  */
2677 static inline void mab_set_b_end(struct maple_big_node *b_node,
2678 				 struct ma_state *mas,
2679 				 void *entry)
2680 {
2681 	if (!entry)
2682 		return;
2683 
2684 	b_node->slot[b_node->b_end] = entry;
2685 	if (mt_is_alloc(mas->tree))
2686 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2687 	b_node->pivot[b_node->b_end++] = mas->max;
2688 }
2689 
2690 /*
2691  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2692  * of @mas->node to either @left or @right, depending on @slot and @split
2693  *
2694  * @mas - the maple state with the node that needs a parent
2695  * @left - possible parent 1
2696  * @right - possible parent 2
2697  * @slot - the slot the mas->node was placed
2698  * @split - the split location between @left and @right
2699  */
2700 static inline void mas_set_split_parent(struct ma_state *mas,
2701 					struct maple_enode *left,
2702 					struct maple_enode *right,
2703 					unsigned char *slot, unsigned char split)
2704 {
2705 	if (mas_is_none(mas))
2706 		return;
2707 
2708 	if ((*slot) <= split)
2709 		mas_set_parent(mas, mas->node, left, *slot);
2710 	else if (right)
2711 		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2712 
2713 	(*slot)++;
2714 }
2715 
2716 /*
2717  * mte_mid_split_check() - Check if the next node passes the mid-split
2718  * @**l: Pointer to left encoded maple node.
2719  * @**m: Pointer to middle encoded maple node.
2720  * @**r: Pointer to right encoded maple node.
2721  * @slot: The offset
2722  * @*split: The split location.
2723  * @mid_split: The middle split.
2724  */
2725 static inline void mte_mid_split_check(struct maple_enode **l,
2726 				       struct maple_enode **r,
2727 				       struct maple_enode *right,
2728 				       unsigned char slot,
2729 				       unsigned char *split,
2730 				       unsigned char mid_split)
2731 {
2732 	if (*r == right)
2733 		return;
2734 
2735 	if (slot < mid_split)
2736 		return;
2737 
2738 	*l = *r;
2739 	*r = right;
2740 	*split = mid_split;
2741 }
2742 
2743 /*
2744  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2745  * is taken from @mast->l.
2746  * @mast - the maple subtree state
2747  * @left - the left node
2748  * @right - the right node
2749  * @split - the split location.
2750  */
2751 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2752 					  struct maple_enode *left,
2753 					  struct maple_enode *middle,
2754 					  struct maple_enode *right,
2755 					  unsigned char split,
2756 					  unsigned char mid_split)
2757 {
2758 	unsigned char slot;
2759 	struct maple_enode *l = left;
2760 	struct maple_enode *r = right;
2761 
2762 	if (mas_is_none(mast->l))
2763 		return;
2764 
2765 	if (middle)
2766 		r = middle;
2767 
2768 	slot = mast->l->offset;
2769 
2770 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2771 	mas_set_split_parent(mast->l, l, r, &slot, split);
2772 
2773 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2774 	mas_set_split_parent(mast->m, l, r, &slot, split);
2775 
2776 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2777 	mas_set_split_parent(mast->r, l, r, &slot, split);
2778 }
2779 
2780 /*
2781  * mas_wmb_replace() - Write memory barrier and replace
2782  * @mas: The maple state
2783  * @free: the maple topiary list of nodes to free
2784  * @destroy: The maple topiary list of nodes to destroy (walk and free)
2785  *
2786  * Updates gap as necessary.
2787  */
2788 static inline void mas_wmb_replace(struct ma_state *mas,
2789 				   struct ma_topiary *free,
2790 				   struct ma_topiary *destroy)
2791 {
2792 	/* All nodes must see old data as dead prior to replacing that data */
2793 	smp_wmb(); /* Needed for RCU */
2794 
2795 	/* Insert the new data in the tree */
2796 	mas_replace(mas, true);
2797 
2798 	if (!mte_is_leaf(mas->node))
2799 		mas_descend_adopt(mas);
2800 
2801 	mas_mat_free(mas, free);
2802 
2803 	if (destroy)
2804 		mas_mat_destroy(mas, destroy);
2805 
2806 	if (mte_is_leaf(mas->node))
2807 		return;
2808 
2809 	mas_update_gap(mas);
2810 }
2811 
2812 /*
2813  * mast_new_root() - Set a new tree root during subtree creation
2814  * @mast: The maple subtree state
2815  * @mas: The maple state
2816  */
2817 static inline void mast_new_root(struct maple_subtree_state *mast,
2818 				 struct ma_state *mas)
2819 {
2820 	mas_mn(mast->l)->parent =
2821 		ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2822 	if (!mte_dead_node(mast->orig_l->node) &&
2823 	    !mte_is_root(mast->orig_l->node)) {
2824 		do {
2825 			mast_ascend_free(mast);
2826 			mast_topiary(mast);
2827 		} while (!mte_is_root(mast->orig_l->node));
2828 	}
2829 	if ((mast->orig_l->node != mas->node) &&
2830 		   (mast->l->depth > mas_mt_height(mas))) {
2831 		mat_add(mast->free, mas->node);
2832 	}
2833 }
2834 
2835 /*
2836  * mast_cp_to_nodes() - Copy data out to nodes.
2837  * @mast: The maple subtree state
2838  * @left: The left encoded maple node
2839  * @middle: The middle encoded maple node
2840  * @right: The right encoded maple node
2841  * @split: The location to split between left and (middle ? middle : right)
2842  * @mid_split: The location to split between middle and right.
2843  */
2844 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2845 	struct maple_enode *left, struct maple_enode *middle,
2846 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2847 {
2848 	bool new_lmax = true;
2849 
2850 	mast->l->node = mte_node_or_none(left);
2851 	mast->m->node = mte_node_or_none(middle);
2852 	mast->r->node = mte_node_or_none(right);
2853 
2854 	mast->l->min = mast->orig_l->min;
2855 	if (split == mast->bn->b_end) {
2856 		mast->l->max = mast->orig_r->max;
2857 		new_lmax = false;
2858 	}
2859 
2860 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2861 
2862 	if (middle) {
2863 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2864 		mast->m->min = mast->bn->pivot[split] + 1;
2865 		split = mid_split;
2866 	}
2867 
2868 	mast->r->max = mast->orig_r->max;
2869 	if (right) {
2870 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2871 		mast->r->min = mast->bn->pivot[split] + 1;
2872 	}
2873 }
2874 
2875 /*
2876  * mast_combine_cp_left - Copy in the original left side of the tree into the
2877  * combined data set in the maple subtree state big node.
2878  * @mast: The maple subtree state
2879  */
2880 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2881 {
2882 	unsigned char l_slot = mast->orig_l->offset;
2883 
2884 	if (!l_slot)
2885 		return;
2886 
2887 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2888 }
2889 
2890 /*
2891  * mast_combine_cp_right: Copy in the original right side of the tree into the
2892  * combined data set in the maple subtree state big node.
2893  * @mast: The maple subtree state
2894  */
2895 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2896 {
2897 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2898 		return;
2899 
2900 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2901 		   mt_slot_count(mast->orig_r->node), mast->bn,
2902 		   mast->bn->b_end);
2903 	mast->orig_r->last = mast->orig_r->max;
2904 }
2905 
2906 /*
2907  * mast_sufficient: Check if the maple subtree state has enough data in the big
2908  * node to create at least one sufficient node
2909  * @mast: the maple subtree state
2910  */
2911 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2912 {
2913 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2914 		return true;
2915 
2916 	return false;
2917 }
2918 
2919 /*
2920  * mast_overflow: Check if there is too much data in the subtree state for a
2921  * single node.
2922  * @mast: The maple subtree state
2923  */
2924 static inline bool mast_overflow(struct maple_subtree_state *mast)
2925 {
2926 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2927 		return true;
2928 
2929 	return false;
2930 }
2931 
2932 static inline void *mtree_range_walk(struct ma_state *mas)
2933 {
2934 	unsigned long *pivots;
2935 	unsigned char offset;
2936 	struct maple_node *node;
2937 	struct maple_enode *next, *last;
2938 	enum maple_type type;
2939 	void __rcu **slots;
2940 	unsigned char end;
2941 	unsigned long max, min;
2942 	unsigned long prev_max, prev_min;
2943 
2944 	next = mas->node;
2945 	min = mas->min;
2946 	max = mas->max;
2947 	do {
2948 		offset = 0;
2949 		last = next;
2950 		node = mte_to_node(next);
2951 		type = mte_node_type(next);
2952 		pivots = ma_pivots(node, type);
2953 		end = ma_data_end(node, type, pivots, max);
2954 		if (unlikely(ma_dead_node(node)))
2955 			goto dead_node;
2956 
2957 		if (pivots[offset] >= mas->index) {
2958 			prev_max = max;
2959 			prev_min = min;
2960 			max = pivots[offset];
2961 			goto next;
2962 		}
2963 
2964 		do {
2965 			offset++;
2966 		} while ((offset < end) && (pivots[offset] < mas->index));
2967 
2968 		prev_min = min;
2969 		min = pivots[offset - 1] + 1;
2970 		prev_max = max;
2971 		if (likely(offset < end && pivots[offset]))
2972 			max = pivots[offset];
2973 
2974 next:
2975 		slots = ma_slots(node, type);
2976 		next = mt_slot(mas->tree, slots, offset);
2977 		if (unlikely(ma_dead_node(node)))
2978 			goto dead_node;
2979 	} while (!ma_is_leaf(type));
2980 
2981 	mas->offset = offset;
2982 	mas->index = min;
2983 	mas->last = max;
2984 	mas->min = prev_min;
2985 	mas->max = prev_max;
2986 	mas->node = last;
2987 	return (void *)next;
2988 
2989 dead_node:
2990 	mas_reset(mas);
2991 	return NULL;
2992 }
2993 
2994 /*
2995  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2996  * @mas: The starting maple state
2997  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2998  * @count: The estimated count of iterations needed.
2999  *
3000  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
3001  * is hit.  First @b_node is split into two entries which are inserted into the
3002  * next iteration of the loop.  @b_node is returned populated with the final
3003  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
3004  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
3005  * to account of what has been copied into the new sub-tree.  The update of
3006  * orig_l_mas->last is used in mas_consume to find the slots that will need to
3007  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
3008  * the new sub-tree in case the sub-tree becomes the full tree.
3009  *
3010  * Return: the number of elements in b_node during the last loop.
3011  */
3012 static int mas_spanning_rebalance(struct ma_state *mas,
3013 		struct maple_subtree_state *mast, unsigned char count)
3014 {
3015 	unsigned char split, mid_split;
3016 	unsigned char slot = 0;
3017 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
3018 
3019 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
3020 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3021 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
3022 	MA_TOPIARY(free, mas->tree);
3023 	MA_TOPIARY(destroy, mas->tree);
3024 
3025 	/*
3026 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
3027 	 * Rebalancing is done by use of the ``struct maple_topiary``.
3028 	 */
3029 	mast->l = &l_mas;
3030 	mast->m = &m_mas;
3031 	mast->r = &r_mas;
3032 	mast->free = &free;
3033 	mast->destroy = &destroy;
3034 	l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
3035 
3036 	/* Check if this is not root and has sufficient data.  */
3037 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
3038 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3039 		mast_spanning_rebalance(mast);
3040 
3041 	mast->orig_l->depth = 0;
3042 
3043 	/*
3044 	 * Each level of the tree is examined and balanced, pushing data to the left or
3045 	 * right, or rebalancing against left or right nodes is employed to avoid
3046 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
3047 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
3048 	 * will have the incorrect parent pointers and currently be in two trees: the
3049 	 * original tree and the partially new tree.  To remedy the parent pointers in
3050 	 * the old tree, the new data is swapped into the active tree and a walk down
3051 	 * the tree is performed and the parent pointers are updated.
3052 	 * See mas_descend_adopt() for more information..
3053 	 */
3054 	while (count--) {
3055 		mast->bn->b_end--;
3056 		mast->bn->type = mte_node_type(mast->orig_l->node);
3057 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3058 					&mid_split, mast->orig_l->min);
3059 		mast_set_split_parents(mast, left, middle, right, split,
3060 				       mid_split);
3061 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3062 
3063 		/*
3064 		 * Copy data from next level in the tree to mast->bn from next
3065 		 * iteration
3066 		 */
3067 		memset(mast->bn, 0, sizeof(struct maple_big_node));
3068 		mast->bn->type = mte_node_type(left);
3069 		mast->orig_l->depth++;
3070 
3071 		/* Root already stored in l->node. */
3072 		if (mas_is_root_limits(mast->l))
3073 			goto new_root;
3074 
3075 		mast_ascend_free(mast);
3076 		mast_combine_cp_left(mast);
3077 		l_mas.offset = mast->bn->b_end;
3078 		mab_set_b_end(mast->bn, &l_mas, left);
3079 		mab_set_b_end(mast->bn, &m_mas, middle);
3080 		mab_set_b_end(mast->bn, &r_mas, right);
3081 
3082 		/* Copy anything necessary out of the right node. */
3083 		mast_combine_cp_right(mast);
3084 		mast_topiary(mast);
3085 		mast->orig_l->last = mast->orig_l->max;
3086 
3087 		if (mast_sufficient(mast))
3088 			continue;
3089 
3090 		if (mast_overflow(mast))
3091 			continue;
3092 
3093 		/* May be a new root stored in mast->bn */
3094 		if (mas_is_root_limits(mast->orig_l))
3095 			break;
3096 
3097 		mast_spanning_rebalance(mast);
3098 
3099 		/* rebalancing from other nodes may require another loop. */
3100 		if (!count)
3101 			count++;
3102 	}
3103 
3104 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3105 				mte_node_type(mast->orig_l->node));
3106 	mast->orig_l->depth++;
3107 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3108 	mas_set_parent(mas, left, l_mas.node, slot);
3109 	if (middle)
3110 		mas_set_parent(mas, middle, l_mas.node, ++slot);
3111 
3112 	if (right)
3113 		mas_set_parent(mas, right, l_mas.node, ++slot);
3114 
3115 	if (mas_is_root_limits(mast->l)) {
3116 new_root:
3117 		mast_new_root(mast, mas);
3118 	} else {
3119 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3120 	}
3121 
3122 	if (!mte_dead_node(mast->orig_l->node))
3123 		mat_add(&free, mast->orig_l->node);
3124 
3125 	mas->depth = mast->orig_l->depth;
3126 	*mast->orig_l = l_mas;
3127 	mte_set_node_dead(mas->node);
3128 
3129 	/* Set up mas for insertion. */
3130 	mast->orig_l->depth = mas->depth;
3131 	mast->orig_l->alloc = mas->alloc;
3132 	*mas = *mast->orig_l;
3133 	mas_wmb_replace(mas, &free, &destroy);
3134 	mtree_range_walk(mas);
3135 	return mast->bn->b_end;
3136 }
3137 
3138 /*
3139  * mas_rebalance() - Rebalance a given node.
3140  * @mas: The maple state
3141  * @b_node: The big maple node.
3142  *
3143  * Rebalance two nodes into a single node or two new nodes that are sufficient.
3144  * Continue upwards until tree is sufficient.
3145  *
3146  * Return: the number of elements in b_node during the last loop.
3147  */
3148 static inline int mas_rebalance(struct ma_state *mas,
3149 				struct maple_big_node *b_node)
3150 {
3151 	char empty_count = mas_mt_height(mas);
3152 	struct maple_subtree_state mast;
3153 	unsigned char shift, b_end = ++b_node->b_end;
3154 
3155 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3156 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3157 
3158 	trace_ma_op(__func__, mas);
3159 
3160 	/*
3161 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
3162 	 * against the node to the right if it exists, otherwise the node to the
3163 	 * left of this node is rebalanced against this node.  If rebalancing
3164 	 * causes just one node to be produced instead of two, then the parent
3165 	 * is also examined and rebalanced if it is insufficient.  Every level
3166 	 * tries to combine the data in the same way.  If one node contains the
3167 	 * entire range of the tree, then that node is used as a new root node.
3168 	 */
3169 	mas_node_count(mas, 1 + empty_count * 3);
3170 	if (mas_is_err(mas))
3171 		return 0;
3172 
3173 	mast.orig_l = &l_mas;
3174 	mast.orig_r = &r_mas;
3175 	mast.bn = b_node;
3176 	mast.bn->type = mte_node_type(mas->node);
3177 
3178 	l_mas = r_mas = *mas;
3179 
3180 	if (mas_next_sibling(&r_mas)) {
3181 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3182 		r_mas.last = r_mas.index = r_mas.max;
3183 	} else {
3184 		mas_prev_sibling(&l_mas);
3185 		shift = mas_data_end(&l_mas) + 1;
3186 		mab_shift_right(b_node, shift);
3187 		mas->offset += shift;
3188 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3189 		b_node->b_end = shift + b_end;
3190 		l_mas.index = l_mas.last = l_mas.min;
3191 	}
3192 
3193 	return mas_spanning_rebalance(mas, &mast, empty_count);
3194 }
3195 
3196 /*
3197  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3198  * state.
3199  * @mas: The maple state
3200  * @end: The end of the left-most node.
3201  *
3202  * During a mass-insert event (such as forking), it may be necessary to
3203  * rebalance the left-most node when it is not sufficient.
3204  */
3205 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3206 {
3207 	enum maple_type mt = mte_node_type(mas->node);
3208 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3209 	struct maple_enode *eparent;
3210 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3211 	void __rcu **l_slots, **slots;
3212 	unsigned long *l_pivs, *pivs, gap;
3213 	bool in_rcu = mt_in_rcu(mas->tree);
3214 
3215 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3216 
3217 	l_mas = *mas;
3218 	mas_prev_sibling(&l_mas);
3219 
3220 	/* set up node. */
3221 	if (in_rcu) {
3222 		/* Allocate for both left and right as well as parent. */
3223 		mas_node_count(mas, 3);
3224 		if (mas_is_err(mas))
3225 			return;
3226 
3227 		newnode = mas_pop_node(mas);
3228 	} else {
3229 		newnode = &reuse;
3230 	}
3231 
3232 	node = mas_mn(mas);
3233 	newnode->parent = node->parent;
3234 	slots = ma_slots(newnode, mt);
3235 	pivs = ma_pivots(newnode, mt);
3236 	left = mas_mn(&l_mas);
3237 	l_slots = ma_slots(left, mt);
3238 	l_pivs = ma_pivots(left, mt);
3239 	if (!l_slots[split])
3240 		split++;
3241 	tmp = mas_data_end(&l_mas) - split;
3242 
3243 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3244 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3245 	pivs[tmp] = l_mas.max;
3246 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3247 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3248 
3249 	l_mas.max = l_pivs[split];
3250 	mas->min = l_mas.max + 1;
3251 	eparent = mt_mk_node(mte_parent(l_mas.node),
3252 			     mas_parent_type(&l_mas, l_mas.node));
3253 	tmp += end;
3254 	if (!in_rcu) {
3255 		unsigned char max_p = mt_pivots[mt];
3256 		unsigned char max_s = mt_slots[mt];
3257 
3258 		if (tmp < max_p)
3259 			memset(pivs + tmp, 0,
3260 			       sizeof(unsigned long) * (max_p - tmp));
3261 
3262 		if (tmp < mt_slots[mt])
3263 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3264 
3265 		memcpy(node, newnode, sizeof(struct maple_node));
3266 		ma_set_meta(node, mt, 0, tmp - 1);
3267 		mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3268 			      l_pivs[split]);
3269 
3270 		/* Remove data from l_pivs. */
3271 		tmp = split + 1;
3272 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3273 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3274 		ma_set_meta(left, mt, 0, split);
3275 
3276 		goto done;
3277 	}
3278 
3279 	/* RCU requires replacing both l_mas, mas, and parent. */
3280 	mas->node = mt_mk_node(newnode, mt);
3281 	ma_set_meta(newnode, mt, 0, tmp);
3282 
3283 	new_left = mas_pop_node(mas);
3284 	new_left->parent = left->parent;
3285 	mt = mte_node_type(l_mas.node);
3286 	slots = ma_slots(new_left, mt);
3287 	pivs = ma_pivots(new_left, mt);
3288 	memcpy(slots, l_slots, sizeof(void *) * split);
3289 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3290 	ma_set_meta(new_left, mt, 0, split);
3291 	l_mas.node = mt_mk_node(new_left, mt);
3292 
3293 	/* replace parent. */
3294 	offset = mte_parent_slot(mas->node);
3295 	mt = mas_parent_type(&l_mas, l_mas.node);
3296 	parent = mas_pop_node(mas);
3297 	slots = ma_slots(parent, mt);
3298 	pivs = ma_pivots(parent, mt);
3299 	memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3300 	rcu_assign_pointer(slots[offset], mas->node);
3301 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3302 	pivs[offset - 1] = l_mas.max;
3303 	eparent = mt_mk_node(parent, mt);
3304 done:
3305 	gap = mas_leaf_max_gap(mas);
3306 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3307 	gap = mas_leaf_max_gap(&l_mas);
3308 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3309 	mas_ascend(mas);
3310 
3311 	if (in_rcu)
3312 		mas_replace(mas, false);
3313 
3314 	mas_update_gap(mas);
3315 }
3316 
3317 /*
3318  * mas_split_final_node() - Split the final node in a subtree operation.
3319  * @mast: the maple subtree state
3320  * @mas: The maple state
3321  * @height: The height of the tree in case it's a new root.
3322  */
3323 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3324 					struct ma_state *mas, int height)
3325 {
3326 	struct maple_enode *ancestor;
3327 
3328 	if (mte_is_root(mas->node)) {
3329 		if (mt_is_alloc(mas->tree))
3330 			mast->bn->type = maple_arange_64;
3331 		else
3332 			mast->bn->type = maple_range_64;
3333 		mas->depth = height;
3334 	}
3335 	/*
3336 	 * Only a single node is used here, could be root.
3337 	 * The Big_node data should just fit in a single node.
3338 	 */
3339 	ancestor = mas_new_ma_node(mas, mast->bn);
3340 	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3341 	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3342 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3343 
3344 	mast->l->node = ancestor;
3345 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3346 	mas->offset = mast->bn->b_end - 1;
3347 	return true;
3348 }
3349 
3350 /*
3351  * mast_fill_bnode() - Copy data into the big node in the subtree state
3352  * @mast: The maple subtree state
3353  * @mas: the maple state
3354  * @skip: The number of entries to skip for new nodes insertion.
3355  */
3356 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3357 					 struct ma_state *mas,
3358 					 unsigned char skip)
3359 {
3360 	bool cp = true;
3361 	struct maple_enode *old = mas->node;
3362 	unsigned char split;
3363 
3364 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3365 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3366 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3367 	mast->bn->b_end = 0;
3368 
3369 	if (mte_is_root(mas->node)) {
3370 		cp = false;
3371 	} else {
3372 		mas_ascend(mas);
3373 		mat_add(mast->free, old);
3374 		mas->offset = mte_parent_slot(mas->node);
3375 	}
3376 
3377 	if (cp && mast->l->offset)
3378 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3379 
3380 	split = mast->bn->b_end;
3381 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3382 	mast->r->offset = mast->bn->b_end;
3383 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3384 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3385 		cp = false;
3386 
3387 	if (cp)
3388 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3389 			   mast->bn, mast->bn->b_end);
3390 
3391 	mast->bn->b_end--;
3392 	mast->bn->type = mte_node_type(mas->node);
3393 }
3394 
3395 /*
3396  * mast_split_data() - Split the data in the subtree state big node into regular
3397  * nodes.
3398  * @mast: The maple subtree state
3399  * @mas: The maple state
3400  * @split: The location to split the big node
3401  */
3402 static inline void mast_split_data(struct maple_subtree_state *mast,
3403 	   struct ma_state *mas, unsigned char split)
3404 {
3405 	unsigned char p_slot;
3406 
3407 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3408 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3409 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3410 	mast->l->offset = mte_parent_slot(mas->node);
3411 	mast->l->max = mast->bn->pivot[split];
3412 	mast->r->min = mast->l->max + 1;
3413 	if (mte_is_leaf(mas->node))
3414 		return;
3415 
3416 	p_slot = mast->orig_l->offset;
3417 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3418 			     &p_slot, split);
3419 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3420 			     &p_slot, split);
3421 }
3422 
3423 /*
3424  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3425  * data to the right or left node if there is room.
3426  * @mas: The maple state
3427  * @height: The current height of the maple state
3428  * @mast: The maple subtree state
3429  * @left: Push left or not.
3430  *
3431  * Keeping the height of the tree low means faster lookups.
3432  *
3433  * Return: True if pushed, false otherwise.
3434  */
3435 static inline bool mas_push_data(struct ma_state *mas, int height,
3436 				 struct maple_subtree_state *mast, bool left)
3437 {
3438 	unsigned char slot_total = mast->bn->b_end;
3439 	unsigned char end, space, split;
3440 
3441 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3442 	tmp_mas = *mas;
3443 	tmp_mas.depth = mast->l->depth;
3444 
3445 	if (left && !mas_prev_sibling(&tmp_mas))
3446 		return false;
3447 	else if (!left && !mas_next_sibling(&tmp_mas))
3448 		return false;
3449 
3450 	end = mas_data_end(&tmp_mas);
3451 	slot_total += end;
3452 	space = 2 * mt_slot_count(mas->node) - 2;
3453 	/* -2 instead of -1 to ensure there isn't a triple split */
3454 	if (ma_is_leaf(mast->bn->type))
3455 		space--;
3456 
3457 	if (mas->max == ULONG_MAX)
3458 		space--;
3459 
3460 	if (slot_total >= space)
3461 		return false;
3462 
3463 	/* Get the data; Fill mast->bn */
3464 	mast->bn->b_end++;
3465 	if (left) {
3466 		mab_shift_right(mast->bn, end + 1);
3467 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3468 		mast->bn->b_end = slot_total + 1;
3469 	} else {
3470 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3471 	}
3472 
3473 	/* Configure mast for splitting of mast->bn */
3474 	split = mt_slots[mast->bn->type] - 2;
3475 	if (left) {
3476 		/*  Switch mas to prev node  */
3477 		mat_add(mast->free, mas->node);
3478 		*mas = tmp_mas;
3479 		/* Start using mast->l for the left side. */
3480 		tmp_mas.node = mast->l->node;
3481 		*mast->l = tmp_mas;
3482 	} else {
3483 		mat_add(mast->free, tmp_mas.node);
3484 		tmp_mas.node = mast->r->node;
3485 		*mast->r = tmp_mas;
3486 		split = slot_total - split;
3487 	}
3488 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3489 	/* Update parent slot for split calculation. */
3490 	if (left)
3491 		mast->orig_l->offset += end + 1;
3492 
3493 	mast_split_data(mast, mas, split);
3494 	mast_fill_bnode(mast, mas, 2);
3495 	mas_split_final_node(mast, mas, height + 1);
3496 	return true;
3497 }
3498 
3499 /*
3500  * mas_split() - Split data that is too big for one node into two.
3501  * @mas: The maple state
3502  * @b_node: The maple big node
3503  * Return: 1 on success, 0 on failure.
3504  */
3505 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3506 {
3507 	struct maple_subtree_state mast;
3508 	int height = 0;
3509 	unsigned char mid_split, split = 0;
3510 
3511 	/*
3512 	 * Splitting is handled differently from any other B-tree; the Maple
3513 	 * Tree splits upwards.  Splitting up means that the split operation
3514 	 * occurs when the walk of the tree hits the leaves and not on the way
3515 	 * down.  The reason for splitting up is that it is impossible to know
3516 	 * how much space will be needed until the leaf is (or leaves are)
3517 	 * reached.  Since overwriting data is allowed and a range could
3518 	 * overwrite more than one range or result in changing one entry into 3
3519 	 * entries, it is impossible to know if a split is required until the
3520 	 * data is examined.
3521 	 *
3522 	 * Splitting is a balancing act between keeping allocations to a minimum
3523 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3524 	 * for an entry followed by a contraction when the entry is removed.  To
3525 	 * accomplish the balance, there are empty slots remaining in both left
3526 	 * and right nodes after a split.
3527 	 */
3528 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3529 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3530 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3531 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3532 	MA_TOPIARY(mat, mas->tree);
3533 
3534 	trace_ma_op(__func__, mas);
3535 	mas->depth = mas_mt_height(mas);
3536 	/* Allocation failures will happen early. */
3537 	mas_node_count(mas, 1 + mas->depth * 2);
3538 	if (mas_is_err(mas))
3539 		return 0;
3540 
3541 	mast.l = &l_mas;
3542 	mast.r = &r_mas;
3543 	mast.orig_l = &prev_l_mas;
3544 	mast.orig_r = &prev_r_mas;
3545 	mast.free = &mat;
3546 	mast.bn = b_node;
3547 
3548 	while (height++ <= mas->depth) {
3549 		if (mt_slots[b_node->type] > b_node->b_end) {
3550 			mas_split_final_node(&mast, mas, height);
3551 			break;
3552 		}
3553 
3554 		l_mas = r_mas = *mas;
3555 		l_mas.node = mas_new_ma_node(mas, b_node);
3556 		r_mas.node = mas_new_ma_node(mas, b_node);
3557 		/*
3558 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3559 		 * left or right node has space to spare.  This is referred to as "pushing left"
3560 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3561 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3562 		 * is a significant savings.
3563 		 */
3564 		/* Try to push left. */
3565 		if (mas_push_data(mas, height, &mast, true))
3566 			break;
3567 
3568 		/* Try to push right. */
3569 		if (mas_push_data(mas, height, &mast, false))
3570 			break;
3571 
3572 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3573 		mast_split_data(&mast, mas, split);
3574 		/*
3575 		 * Usually correct, mab_mas_cp in the above call overwrites
3576 		 * r->max.
3577 		 */
3578 		mast.r->max = mas->max;
3579 		mast_fill_bnode(&mast, mas, 1);
3580 		prev_l_mas = *mast.l;
3581 		prev_r_mas = *mast.r;
3582 	}
3583 
3584 	/* Set the original node as dead */
3585 	mat_add(mast.free, mas->node);
3586 	mas->node = l_mas.node;
3587 	mas_wmb_replace(mas, mast.free, NULL);
3588 	mtree_range_walk(mas);
3589 	return 1;
3590 }
3591 
3592 /*
3593  * mas_reuse_node() - Reuse the node to store the data.
3594  * @wr_mas: The maple write state
3595  * @bn: The maple big node
3596  * @end: The end of the data.
3597  *
3598  * Will always return false in RCU mode.
3599  *
3600  * Return: True if node was reused, false otherwise.
3601  */
3602 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3603 			  struct maple_big_node *bn, unsigned char end)
3604 {
3605 	/* Need to be rcu safe. */
3606 	if (mt_in_rcu(wr_mas->mas->tree))
3607 		return false;
3608 
3609 	if (end > bn->b_end) {
3610 		int clear = mt_slots[wr_mas->type] - bn->b_end;
3611 
3612 		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3613 		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3614 	}
3615 	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3616 	return true;
3617 }
3618 
3619 /*
3620  * mas_commit_b_node() - Commit the big node into the tree.
3621  * @wr_mas: The maple write state
3622  * @b_node: The maple big node
3623  * @end: The end of the data.
3624  */
3625 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3626 			    struct maple_big_node *b_node, unsigned char end)
3627 {
3628 	struct maple_node *node;
3629 	unsigned char b_end = b_node->b_end;
3630 	enum maple_type b_type = b_node->type;
3631 
3632 	if ((b_end < mt_min_slots[b_type]) &&
3633 	    (!mte_is_root(wr_mas->mas->node)) &&
3634 	    (mas_mt_height(wr_mas->mas) > 1))
3635 		return mas_rebalance(wr_mas->mas, b_node);
3636 
3637 	if (b_end >= mt_slots[b_type])
3638 		return mas_split(wr_mas->mas, b_node);
3639 
3640 	if (mas_reuse_node(wr_mas, b_node, end))
3641 		goto reuse_node;
3642 
3643 	mas_node_count(wr_mas->mas, 1);
3644 	if (mas_is_err(wr_mas->mas))
3645 		return 0;
3646 
3647 	node = mas_pop_node(wr_mas->mas);
3648 	node->parent = mas_mn(wr_mas->mas)->parent;
3649 	wr_mas->mas->node = mt_mk_node(node, b_type);
3650 	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3651 	mas_replace(wr_mas->mas, false);
3652 reuse_node:
3653 	mas_update_gap(wr_mas->mas);
3654 	return 1;
3655 }
3656 
3657 /*
3658  * mas_root_expand() - Expand a root to a node
3659  * @mas: The maple state
3660  * @entry: The entry to store into the tree
3661  */
3662 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3663 {
3664 	void *contents = mas_root_locked(mas);
3665 	enum maple_type type = maple_leaf_64;
3666 	struct maple_node *node;
3667 	void __rcu **slots;
3668 	unsigned long *pivots;
3669 	int slot = 0;
3670 
3671 	mas_node_count(mas, 1);
3672 	if (unlikely(mas_is_err(mas)))
3673 		return 0;
3674 
3675 	node = mas_pop_node(mas);
3676 	pivots = ma_pivots(node, type);
3677 	slots = ma_slots(node, type);
3678 	node->parent = ma_parent_ptr(
3679 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3680 	mas->node = mt_mk_node(node, type);
3681 
3682 	if (mas->index) {
3683 		if (contents) {
3684 			rcu_assign_pointer(slots[slot], contents);
3685 			if (likely(mas->index > 1))
3686 				slot++;
3687 		}
3688 		pivots[slot++] = mas->index - 1;
3689 	}
3690 
3691 	rcu_assign_pointer(slots[slot], entry);
3692 	mas->offset = slot;
3693 	pivots[slot] = mas->last;
3694 	if (mas->last != ULONG_MAX)
3695 		pivots[++slot] = ULONG_MAX;
3696 
3697 	mas->depth = 1;
3698 	mas_set_height(mas);
3699 	ma_set_meta(node, maple_leaf_64, 0, slot);
3700 	/* swap the new root into the tree */
3701 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3702 	return slot;
3703 }
3704 
3705 static inline void mas_store_root(struct ma_state *mas, void *entry)
3706 {
3707 	if (likely((mas->last != 0) || (mas->index != 0)))
3708 		mas_root_expand(mas, entry);
3709 	else if (((unsigned long) (entry) & 3) == 2)
3710 		mas_root_expand(mas, entry);
3711 	else {
3712 		rcu_assign_pointer(mas->tree->ma_root, entry);
3713 		mas->node = MAS_START;
3714 	}
3715 }
3716 
3717 /*
3718  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3719  * spans the node.
3720  * @mas: The maple state
3721  * @piv: The pivot value being written
3722  * @type: The maple node type
3723  * @entry: The data to write
3724  *
3725  * Spanning writes are writes that start in one node and end in another OR if
3726  * the write of a %NULL will cause the node to end with a %NULL.
3727  *
3728  * Return: True if this is a spanning write, false otherwise.
3729  */
3730 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3731 {
3732 	unsigned long max = wr_mas->r_max;
3733 	unsigned long last = wr_mas->mas->last;
3734 	enum maple_type type = wr_mas->type;
3735 	void *entry = wr_mas->entry;
3736 
3737 	/* Contained in this pivot, fast path */
3738 	if (last < max)
3739 		return false;
3740 
3741 	if (ma_is_leaf(type)) {
3742 		max = wr_mas->mas->max;
3743 		if (last < max)
3744 			return false;
3745 	}
3746 
3747 	if (last == max) {
3748 		/*
3749 		 * The last entry of leaf node cannot be NULL unless it is the
3750 		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3751 		 */
3752 		if (entry || last == ULONG_MAX)
3753 			return false;
3754 	}
3755 
3756 	trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3757 	return true;
3758 }
3759 
3760 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3761 {
3762 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3763 	mas_wr_node_walk(wr_mas);
3764 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3765 }
3766 
3767 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3768 {
3769 	wr_mas->mas->max = wr_mas->r_max;
3770 	wr_mas->mas->min = wr_mas->r_min;
3771 	wr_mas->mas->node = wr_mas->content;
3772 	wr_mas->mas->offset = 0;
3773 	wr_mas->mas->depth++;
3774 }
3775 /*
3776  * mas_wr_walk() - Walk the tree for a write.
3777  * @wr_mas: The maple write state
3778  *
3779  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3780  *
3781  * Return: True if it's contained in a node, false on spanning write.
3782  */
3783 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3784 {
3785 	struct ma_state *mas = wr_mas->mas;
3786 
3787 	while (true) {
3788 		mas_wr_walk_descend(wr_mas);
3789 		if (unlikely(mas_is_span_wr(wr_mas)))
3790 			return false;
3791 
3792 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3793 						  mas->offset);
3794 		if (ma_is_leaf(wr_mas->type))
3795 			return true;
3796 
3797 		mas_wr_walk_traverse(wr_mas);
3798 	}
3799 
3800 	return true;
3801 }
3802 
3803 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3804 {
3805 	struct ma_state *mas = wr_mas->mas;
3806 
3807 	while (true) {
3808 		mas_wr_walk_descend(wr_mas);
3809 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3810 						  mas->offset);
3811 		if (ma_is_leaf(wr_mas->type))
3812 			return true;
3813 		mas_wr_walk_traverse(wr_mas);
3814 
3815 	}
3816 	return true;
3817 }
3818 /*
3819  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3820  * @l_wr_mas: The left maple write state
3821  * @r_wr_mas: The right maple write state
3822  */
3823 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3824 					    struct ma_wr_state *r_wr_mas)
3825 {
3826 	struct ma_state *r_mas = r_wr_mas->mas;
3827 	struct ma_state *l_mas = l_wr_mas->mas;
3828 	unsigned char l_slot;
3829 
3830 	l_slot = l_mas->offset;
3831 	if (!l_wr_mas->content)
3832 		l_mas->index = l_wr_mas->r_min;
3833 
3834 	if ((l_mas->index == l_wr_mas->r_min) &&
3835 		 (l_slot &&
3836 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3837 		if (l_slot > 1)
3838 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3839 		else
3840 			l_mas->index = l_mas->min;
3841 
3842 		l_mas->offset = l_slot - 1;
3843 	}
3844 
3845 	if (!r_wr_mas->content) {
3846 		if (r_mas->last < r_wr_mas->r_max)
3847 			r_mas->last = r_wr_mas->r_max;
3848 		r_mas->offset++;
3849 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3850 	    (r_mas->last < r_mas->max) &&
3851 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3852 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3853 					     r_wr_mas->type, r_mas->offset + 1);
3854 		r_mas->offset++;
3855 	}
3856 }
3857 
3858 static inline void *mas_state_walk(struct ma_state *mas)
3859 {
3860 	void *entry;
3861 
3862 	entry = mas_start(mas);
3863 	if (mas_is_none(mas))
3864 		return NULL;
3865 
3866 	if (mas_is_ptr(mas))
3867 		return entry;
3868 
3869 	return mtree_range_walk(mas);
3870 }
3871 
3872 /*
3873  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3874  * to date.
3875  *
3876  * @mas: The maple state.
3877  *
3878  * Note: Leaves mas in undesirable state.
3879  * Return: The entry for @mas->index or %NULL on dead node.
3880  */
3881 static inline void *mtree_lookup_walk(struct ma_state *mas)
3882 {
3883 	unsigned long *pivots;
3884 	unsigned char offset;
3885 	struct maple_node *node;
3886 	struct maple_enode *next;
3887 	enum maple_type type;
3888 	void __rcu **slots;
3889 	unsigned char end;
3890 	unsigned long max;
3891 
3892 	next = mas->node;
3893 	max = ULONG_MAX;
3894 	do {
3895 		offset = 0;
3896 		node = mte_to_node(next);
3897 		type = mte_node_type(next);
3898 		pivots = ma_pivots(node, type);
3899 		end = ma_data_end(node, type, pivots, max);
3900 		if (unlikely(ma_dead_node(node)))
3901 			goto dead_node;
3902 		do {
3903 			if (pivots[offset] >= mas->index) {
3904 				max = pivots[offset];
3905 				break;
3906 			}
3907 		} while (++offset < end);
3908 
3909 		slots = ma_slots(node, type);
3910 		next = mt_slot(mas->tree, slots, offset);
3911 		if (unlikely(ma_dead_node(node)))
3912 			goto dead_node;
3913 	} while (!ma_is_leaf(type));
3914 
3915 	return (void *)next;
3916 
3917 dead_node:
3918 	mas_reset(mas);
3919 	return NULL;
3920 }
3921 
3922 /*
3923  * mas_new_root() - Create a new root node that only contains the entry passed
3924  * in.
3925  * @mas: The maple state
3926  * @entry: The entry to store.
3927  *
3928  * Only valid when the index == 0 and the last == ULONG_MAX
3929  *
3930  * Return 0 on error, 1 on success.
3931  */
3932 static inline int mas_new_root(struct ma_state *mas, void *entry)
3933 {
3934 	struct maple_enode *root = mas_root_locked(mas);
3935 	enum maple_type type = maple_leaf_64;
3936 	struct maple_node *node;
3937 	void __rcu **slots;
3938 	unsigned long *pivots;
3939 
3940 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3941 		mas->depth = 0;
3942 		mas_set_height(mas);
3943 		rcu_assign_pointer(mas->tree->ma_root, entry);
3944 		mas->node = MAS_START;
3945 		goto done;
3946 	}
3947 
3948 	mas_node_count(mas, 1);
3949 	if (mas_is_err(mas))
3950 		return 0;
3951 
3952 	node = mas_pop_node(mas);
3953 	pivots = ma_pivots(node, type);
3954 	slots = ma_slots(node, type);
3955 	node->parent = ma_parent_ptr(
3956 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3957 	mas->node = mt_mk_node(node, type);
3958 	rcu_assign_pointer(slots[0], entry);
3959 	pivots[0] = mas->last;
3960 	mas->depth = 1;
3961 	mas_set_height(mas);
3962 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3963 
3964 done:
3965 	if (xa_is_node(root))
3966 		mte_destroy_walk(root, mas->tree);
3967 
3968 	return 1;
3969 }
3970 /*
3971  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3972  * and new nodes where necessary, then place the sub-tree in the actual tree.
3973  * Note that mas is expected to point to the node which caused the store to
3974  * span.
3975  * @wr_mas: The maple write state
3976  *
3977  * Return: 0 on error, positive on success.
3978  */
3979 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3980 {
3981 	struct maple_subtree_state mast;
3982 	struct maple_big_node b_node;
3983 	struct ma_state *mas;
3984 	unsigned char height;
3985 
3986 	/* Left and Right side of spanning store */
3987 	MA_STATE(l_mas, NULL, 0, 0);
3988 	MA_STATE(r_mas, NULL, 0, 0);
3989 
3990 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3991 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3992 
3993 	/*
3994 	 * A store operation that spans multiple nodes is called a spanning
3995 	 * store and is handled early in the store call stack by the function
3996 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3997 	 * state is duplicated.  The first maple state walks the left tree path
3998 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3999 	 * The data in the two nodes are combined into a single node, two nodes,
4000 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
4001 	 * written to the last entry of a node is considered a spanning store as
4002 	 * a rebalance is required for the operation to complete and an overflow
4003 	 * of data may happen.
4004 	 */
4005 	mas = wr_mas->mas;
4006 	trace_ma_op(__func__, mas);
4007 
4008 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
4009 		return mas_new_root(mas, wr_mas->entry);
4010 	/*
4011 	 * Node rebalancing may occur due to this store, so there may be three new
4012 	 * entries per level plus a new root.
4013 	 */
4014 	height = mas_mt_height(mas);
4015 	mas_node_count(mas, 1 + height * 3);
4016 	if (mas_is_err(mas))
4017 		return 0;
4018 
4019 	/*
4020 	 * Set up right side.  Need to get to the next offset after the spanning
4021 	 * store to ensure it's not NULL and to combine both the next node and
4022 	 * the node with the start together.
4023 	 */
4024 	r_mas = *mas;
4025 	/* Avoid overflow, walk to next slot in the tree. */
4026 	if (r_mas.last + 1)
4027 		r_mas.last++;
4028 
4029 	r_mas.index = r_mas.last;
4030 	mas_wr_walk_index(&r_wr_mas);
4031 	r_mas.last = r_mas.index = mas->last;
4032 
4033 	/* Set up left side. */
4034 	l_mas = *mas;
4035 	mas_wr_walk_index(&l_wr_mas);
4036 
4037 	if (!wr_mas->entry) {
4038 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4039 		mas->offset = l_mas.offset;
4040 		mas->index = l_mas.index;
4041 		mas->last = l_mas.last = r_mas.last;
4042 	}
4043 
4044 	/* expanding NULLs may make this cover the entire range */
4045 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
4046 		mas_set_range(mas, 0, ULONG_MAX);
4047 		return mas_new_root(mas, wr_mas->entry);
4048 	}
4049 
4050 	memset(&b_node, 0, sizeof(struct maple_big_node));
4051 	/* Copy l_mas and store the value in b_node. */
4052 	mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4053 	/* Copy r_mas into b_node. */
4054 	if (r_mas.offset <= r_wr_mas.node_end)
4055 		mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4056 			   &b_node, b_node.b_end + 1);
4057 	else
4058 		b_node.b_end++;
4059 
4060 	/* Stop spanning searches by searching for just index. */
4061 	l_mas.index = l_mas.last = mas->index;
4062 
4063 	mast.bn = &b_node;
4064 	mast.orig_l = &l_mas;
4065 	mast.orig_r = &r_mas;
4066 	/* Combine l_mas and r_mas and split them up evenly again. */
4067 	return mas_spanning_rebalance(mas, &mast, height + 1);
4068 }
4069 
4070 /*
4071  * mas_wr_node_store() - Attempt to store the value in a node
4072  * @wr_mas: The maple write state
4073  *
4074  * Attempts to reuse the node, but may allocate.
4075  *
4076  * Return: True if stored, false otherwise
4077  */
4078 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
4079 				     unsigned char new_end)
4080 {
4081 	struct ma_state *mas = wr_mas->mas;
4082 	void __rcu **dst_slots;
4083 	unsigned long *dst_pivots;
4084 	unsigned char dst_offset, offset_end = wr_mas->offset_end;
4085 	struct maple_node reuse, *newnode;
4086 	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
4087 	bool in_rcu = mt_in_rcu(mas->tree);
4088 
4089 	/* Check if there is enough data. The room is enough. */
4090 	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4091 	    !(mas->mas_flags & MA_STATE_BULK))
4092 		return false;
4093 
4094 	if (mas->last == wr_mas->end_piv)
4095 		offset_end++; /* don't copy this offset */
4096 	else if (unlikely(wr_mas->r_max == ULONG_MAX))
4097 		mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4098 
4099 	/* set up node. */
4100 	if (in_rcu) {
4101 		mas_node_count(mas, 1);
4102 		if (mas_is_err(mas))
4103 			return false;
4104 
4105 		newnode = mas_pop_node(mas);
4106 	} else {
4107 		memset(&reuse, 0, sizeof(struct maple_node));
4108 		newnode = &reuse;
4109 	}
4110 
4111 	newnode->parent = mas_mn(mas)->parent;
4112 	dst_pivots = ma_pivots(newnode, wr_mas->type);
4113 	dst_slots = ma_slots(newnode, wr_mas->type);
4114 	/* Copy from start to insert point */
4115 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
4116 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
4117 
4118 	/* Handle insert of new range starting after old range */
4119 	if (wr_mas->r_min < mas->index) {
4120 		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
4121 		dst_pivots[mas->offset++] = mas->index - 1;
4122 	}
4123 
4124 	/* Store the new entry and range end. */
4125 	if (mas->offset < node_pivots)
4126 		dst_pivots[mas->offset] = mas->last;
4127 	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
4128 
4129 	/*
4130 	 * this range wrote to the end of the node or it overwrote the rest of
4131 	 * the data
4132 	 */
4133 	if (offset_end > wr_mas->node_end)
4134 		goto done;
4135 
4136 	dst_offset = mas->offset + 1;
4137 	/* Copy to the end of node if necessary. */
4138 	copy_size = wr_mas->node_end - offset_end + 1;
4139 	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
4140 	       sizeof(void *) * copy_size);
4141 	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
4142 	       sizeof(unsigned long) * (copy_size - 1));
4143 
4144 	if (new_end < node_pivots)
4145 		dst_pivots[new_end] = mas->max;
4146 
4147 done:
4148 	mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4149 	if (in_rcu) {
4150 		mte_set_node_dead(mas->node);
4151 		mas->node = mt_mk_node(newnode, wr_mas->type);
4152 		mas_replace(mas, false);
4153 	} else {
4154 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4155 	}
4156 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4157 	mas_update_gap(mas);
4158 	return true;
4159 }
4160 
4161 /*
4162  * mas_wr_slot_store: Attempt to store a value in a slot.
4163  * @wr_mas: the maple write state
4164  *
4165  * Return: True if stored, false otherwise
4166  */
4167 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4168 {
4169 	struct ma_state *mas = wr_mas->mas;
4170 	unsigned char offset = mas->offset;
4171 	bool gap = false;
4172 
4173 	if (wr_mas->offset_end - offset != 1)
4174 		return false;
4175 
4176 	gap |= !mt_slot_locked(mas->tree, wr_mas->slots, offset);
4177 	gap |= !mt_slot_locked(mas->tree, wr_mas->slots, offset + 1);
4178 
4179 	if (mas->index == wr_mas->r_min) {
4180 		/* Overwriting the range and over a part of the next range. */
4181 		rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4182 		wr_mas->pivots[offset] = mas->last;
4183 	} else {
4184 		/* Overwriting a part of the range and over the next range */
4185 		rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4186 		wr_mas->pivots[offset] = mas->index - 1;
4187 		mas->offset++; /* Keep mas accurate. */
4188 	}
4189 
4190 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4191 	/*
4192 	 * Only update gap when the new entry is empty or there is an empty
4193 	 * entry in the original two ranges.
4194 	 */
4195 	if (!wr_mas->entry || gap)
4196 		mas_update_gap(mas);
4197 
4198 	return true;
4199 }
4200 
4201 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4202 {
4203 	while ((wr_mas->offset_end < wr_mas->node_end) &&
4204 	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4205 		wr_mas->offset_end++;
4206 
4207 	if (wr_mas->offset_end < wr_mas->node_end)
4208 		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4209 	else
4210 		wr_mas->end_piv = wr_mas->mas->max;
4211 }
4212 
4213 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4214 {
4215 	struct ma_state *mas = wr_mas->mas;
4216 
4217 	if (!wr_mas->slots[wr_mas->offset_end]) {
4218 		/* If this one is null, the next and prev are not */
4219 		mas->last = wr_mas->end_piv;
4220 	} else {
4221 		/* Check next slot(s) if we are overwriting the end */
4222 		if ((mas->last == wr_mas->end_piv) &&
4223 		    (wr_mas->node_end != wr_mas->offset_end) &&
4224 		    !wr_mas->slots[wr_mas->offset_end + 1]) {
4225 			wr_mas->offset_end++;
4226 			if (wr_mas->offset_end == wr_mas->node_end)
4227 				mas->last = mas->max;
4228 			else
4229 				mas->last = wr_mas->pivots[wr_mas->offset_end];
4230 			wr_mas->end_piv = mas->last;
4231 		}
4232 	}
4233 
4234 	if (!wr_mas->content) {
4235 		/* If this one is null, the next and prev are not */
4236 		mas->index = wr_mas->r_min;
4237 	} else {
4238 		/* Check prev slot if we are overwriting the start */
4239 		if (mas->index == wr_mas->r_min && mas->offset &&
4240 		    !wr_mas->slots[mas->offset - 1]) {
4241 			mas->offset--;
4242 			wr_mas->r_min = mas->index =
4243 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4244 			wr_mas->r_max = wr_mas->pivots[mas->offset];
4245 		}
4246 	}
4247 }
4248 
4249 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4250 {
4251 	struct ma_state *mas = wr_mas->mas;
4252 	unsigned char new_end = wr_mas->node_end + 2;
4253 
4254 	new_end -= wr_mas->offset_end - mas->offset;
4255 	if (wr_mas->r_min == mas->index)
4256 		new_end--;
4257 
4258 	if (wr_mas->end_piv == mas->last)
4259 		new_end--;
4260 
4261 	return new_end;
4262 }
4263 
4264 /*
4265  * mas_wr_append: Attempt to append
4266  * @wr_mas: the maple write state
4267  *
4268  * This is currently unsafe in rcu mode since the end of the node may be cached
4269  * by readers while the node contents may be updated which could result in
4270  * inaccurate information.
4271  *
4272  * Return: True if appended, false otherwise
4273  */
4274 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4275 {
4276 	unsigned char end = wr_mas->node_end;
4277 	unsigned char new_end = end + 1;
4278 	struct ma_state *mas = wr_mas->mas;
4279 	unsigned char node_pivots = mt_pivots[wr_mas->type];
4280 
4281 	if (mt_in_rcu(mas->tree))
4282 		return false;
4283 
4284 	if (mas->offset != wr_mas->node_end)
4285 		return false;
4286 
4287 	if (new_end < node_pivots) {
4288 		wr_mas->pivots[new_end] = wr_mas->pivots[end];
4289 		ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4290 	}
4291 
4292 	if (mas->last == wr_mas->r_max) {
4293 		/* Append to end of range */
4294 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4295 		wr_mas->pivots[end] = mas->index - 1;
4296 		mas->offset = new_end;
4297 	} else {
4298 		/* Append to start of range */
4299 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4300 		wr_mas->pivots[end] = mas->last;
4301 		rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4302 	}
4303 
4304 	if (!wr_mas->content || !wr_mas->entry)
4305 		mas_update_gap(mas);
4306 
4307 	return  true;
4308 }
4309 
4310 /*
4311  * mas_wr_bnode() - Slow path for a modification.
4312  * @wr_mas: The write maple state
4313  *
4314  * This is where split, rebalance end up.
4315  */
4316 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4317 {
4318 	struct maple_big_node b_node;
4319 
4320 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4321 	memset(&b_node, 0, sizeof(struct maple_big_node));
4322 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4323 	mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4324 }
4325 
4326 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4327 {
4328 	struct ma_state *mas = wr_mas->mas;
4329 	unsigned char new_end;
4330 
4331 	/* Direct replacement */
4332 	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4333 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4334 		if (!!wr_mas->entry ^ !!wr_mas->content)
4335 			mas_update_gap(mas);
4336 		return;
4337 	}
4338 
4339 	/*
4340 	 * new_end exceeds the size of the maple node and cannot enter the fast
4341 	 * path.
4342 	 */
4343 	new_end = mas_wr_new_end(wr_mas);
4344 	if (new_end >= mt_slots[wr_mas->type])
4345 		goto slow_path;
4346 
4347 	/* Attempt to append */
4348 	if (new_end == wr_mas->node_end + 1 && mas_wr_append(wr_mas))
4349 		return;
4350 
4351 	if (new_end == wr_mas->node_end && mas_wr_slot_store(wr_mas))
4352 		return;
4353 
4354 	if (mas_wr_node_store(wr_mas, new_end))
4355 		return;
4356 
4357 	if (mas_is_err(mas))
4358 		return;
4359 
4360 slow_path:
4361 	mas_wr_bnode(wr_mas);
4362 }
4363 
4364 /*
4365  * mas_wr_store_entry() - Internal call to store a value
4366  * @mas: The maple state
4367  * @entry: The entry to store.
4368  *
4369  * Return: The contents that was stored at the index.
4370  */
4371 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4372 {
4373 	struct ma_state *mas = wr_mas->mas;
4374 
4375 	wr_mas->content = mas_start(mas);
4376 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4377 		mas_store_root(mas, wr_mas->entry);
4378 		return wr_mas->content;
4379 	}
4380 
4381 	if (unlikely(!mas_wr_walk(wr_mas))) {
4382 		mas_wr_spanning_store(wr_mas);
4383 		return wr_mas->content;
4384 	}
4385 
4386 	/* At this point, we are at the leaf node that needs to be altered. */
4387 	mas_wr_end_piv(wr_mas);
4388 
4389 	if (!wr_mas->entry)
4390 		mas_wr_extend_null(wr_mas);
4391 
4392 	/* New root for a single pointer */
4393 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4394 		mas_new_root(mas, wr_mas->entry);
4395 		return wr_mas->content;
4396 	}
4397 
4398 	mas_wr_modify(wr_mas);
4399 	return wr_mas->content;
4400 }
4401 
4402 /**
4403  * mas_insert() - Internal call to insert a value
4404  * @mas: The maple state
4405  * @entry: The entry to store
4406  *
4407  * Return: %NULL or the contents that already exists at the requested index
4408  * otherwise.  The maple state needs to be checked for error conditions.
4409  */
4410 static inline void *mas_insert(struct ma_state *mas, void *entry)
4411 {
4412 	MA_WR_STATE(wr_mas, mas, entry);
4413 
4414 	/*
4415 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4416 	 * tree.  If the insert fits exactly into an existing gap with a value
4417 	 * of NULL, then the slot only needs to be written with the new value.
4418 	 * If the range being inserted is adjacent to another range, then only a
4419 	 * single pivot needs to be inserted (as well as writing the entry).  If
4420 	 * the new range is within a gap but does not touch any other ranges,
4421 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4422 	 * usual, the entry must be written.  Most operations require a new node
4423 	 * to be allocated and replace an existing node to ensure RCU safety,
4424 	 * when in RCU mode.  The exception to requiring a newly allocated node
4425 	 * is when inserting at the end of a node (appending).  When done
4426 	 * carefully, appending can reuse the node in place.
4427 	 */
4428 	wr_mas.content = mas_start(mas);
4429 	if (wr_mas.content)
4430 		goto exists;
4431 
4432 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4433 		mas_store_root(mas, entry);
4434 		return NULL;
4435 	}
4436 
4437 	/* spanning writes always overwrite something */
4438 	if (!mas_wr_walk(&wr_mas))
4439 		goto exists;
4440 
4441 	/* At this point, we are at the leaf node that needs to be altered. */
4442 	wr_mas.offset_end = mas->offset;
4443 	wr_mas.end_piv = wr_mas.r_max;
4444 
4445 	if (wr_mas.content || (mas->last > wr_mas.r_max))
4446 		goto exists;
4447 
4448 	if (!entry)
4449 		return NULL;
4450 
4451 	mas_wr_modify(&wr_mas);
4452 	return wr_mas.content;
4453 
4454 exists:
4455 	mas_set_err(mas, -EEXIST);
4456 	return wr_mas.content;
4457 
4458 }
4459 
4460 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4461 {
4462 retry:
4463 	mas_set(mas, index);
4464 	mas_state_walk(mas);
4465 	if (mas_is_start(mas))
4466 		goto retry;
4467 }
4468 
4469 static inline bool mas_rewalk_if_dead(struct ma_state *mas,
4470 		struct maple_node *node, const unsigned long index)
4471 {
4472 	if (unlikely(ma_dead_node(node))) {
4473 		mas_rewalk(mas, index);
4474 		return true;
4475 	}
4476 	return false;
4477 }
4478 
4479 /*
4480  * mas_prev_node() - Find the prev non-null entry at the same level in the
4481  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
4482  * @mas: The maple state
4483  * @min: The lower limit to search
4484  *
4485  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4486  * Return: 1 if the node is dead, 0 otherwise.
4487  */
4488 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4489 {
4490 	enum maple_type mt;
4491 	int offset, level;
4492 	void __rcu **slots;
4493 	struct maple_node *node;
4494 	unsigned long *pivots;
4495 	unsigned long max;
4496 
4497 	node = mas_mn(mas);
4498 	if (!mas->min)
4499 		goto no_entry;
4500 
4501 	max = mas->min - 1;
4502 	if (max < min)
4503 		goto no_entry;
4504 
4505 	level = 0;
4506 	do {
4507 		if (ma_is_root(node))
4508 			goto no_entry;
4509 
4510 		/* Walk up. */
4511 		if (unlikely(mas_ascend(mas)))
4512 			return 1;
4513 		offset = mas->offset;
4514 		level++;
4515 		node = mas_mn(mas);
4516 	} while (!offset);
4517 
4518 	offset--;
4519 	mt = mte_node_type(mas->node);
4520 	while (level > 1) {
4521 		level--;
4522 		slots = ma_slots(node, mt);
4523 		mas->node = mas_slot(mas, slots, offset);
4524 		if (unlikely(ma_dead_node(node)))
4525 			return 1;
4526 
4527 		mt = mte_node_type(mas->node);
4528 		node = mas_mn(mas);
4529 		pivots = ma_pivots(node, mt);
4530 		offset = ma_data_end(node, mt, pivots, max);
4531 		if (unlikely(ma_dead_node(node)))
4532 			return 1;
4533 	}
4534 
4535 	slots = ma_slots(node, mt);
4536 	mas->node = mas_slot(mas, slots, offset);
4537 	pivots = ma_pivots(node, mt);
4538 	if (unlikely(ma_dead_node(node)))
4539 		return 1;
4540 
4541 	if (likely(offset))
4542 		mas->min = pivots[offset - 1] + 1;
4543 	mas->max = max;
4544 	mas->offset = mas_data_end(mas);
4545 	if (unlikely(mte_dead_node(mas->node)))
4546 		return 1;
4547 
4548 	return 0;
4549 
4550 no_entry:
4551 	if (unlikely(ma_dead_node(node)))
4552 		return 1;
4553 
4554 	mas->node = MAS_NONE;
4555 	return 0;
4556 }
4557 
4558 /*
4559  * mas_prev_slot() - Get the entry in the previous slot
4560  *
4561  * @mas: The maple state
4562  * @max: The minimum starting range
4563  *
4564  * Return: The entry in the previous slot which is possibly NULL
4565  */
4566 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4567 {
4568 	void *entry;
4569 	void __rcu **slots;
4570 	unsigned long pivot;
4571 	enum maple_type type;
4572 	unsigned long *pivots;
4573 	struct maple_node *node;
4574 	unsigned long save_point = mas->index;
4575 
4576 retry:
4577 	node = mas_mn(mas);
4578 	type = mte_node_type(mas->node);
4579 	pivots = ma_pivots(node, type);
4580 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4581 		goto retry;
4582 
4583 again:
4584 	if (mas->min <= min) {
4585 		pivot = mas_safe_min(mas, pivots, mas->offset);
4586 
4587 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4588 			goto retry;
4589 
4590 		if (pivot <= min)
4591 			return NULL;
4592 	}
4593 
4594 	if (likely(mas->offset)) {
4595 		mas->offset--;
4596 		mas->last = mas->index - 1;
4597 		mas->index = mas_safe_min(mas, pivots, mas->offset);
4598 	} else  {
4599 		if (mas_prev_node(mas, min)) {
4600 			mas_rewalk(mas, save_point);
4601 			goto retry;
4602 		}
4603 
4604 		if (mas_is_none(mas))
4605 			return NULL;
4606 
4607 		mas->last = mas->max;
4608 		node = mas_mn(mas);
4609 		type = mte_node_type(mas->node);
4610 		pivots = ma_pivots(node, type);
4611 		mas->index = pivots[mas->offset - 1] + 1;
4612 	}
4613 
4614 	slots = ma_slots(node, type);
4615 	entry = mas_slot(mas, slots, mas->offset);
4616 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4617 		goto retry;
4618 
4619 	if (likely(entry))
4620 		return entry;
4621 
4622 	if (!empty)
4623 		goto again;
4624 
4625 	return entry;
4626 }
4627 
4628 /*
4629  * mas_next_node() - Get the next node at the same level in the tree.
4630  * @mas: The maple state
4631  * @max: The maximum pivot value to check.
4632  *
4633  * The next value will be mas->node[mas->offset] or MAS_NONE.
4634  * Return: 1 on dead node, 0 otherwise.
4635  */
4636 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4637 				unsigned long max)
4638 {
4639 	unsigned long min;
4640 	unsigned long *pivots;
4641 	struct maple_enode *enode;
4642 	int level = 0;
4643 	unsigned char node_end;
4644 	enum maple_type mt;
4645 	void __rcu **slots;
4646 
4647 	if (mas->max >= max)
4648 		goto no_entry;
4649 
4650 	min = mas->max + 1;
4651 	level = 0;
4652 	do {
4653 		if (ma_is_root(node))
4654 			goto no_entry;
4655 
4656 		/* Walk up. */
4657 		if (unlikely(mas_ascend(mas)))
4658 			return 1;
4659 
4660 		level++;
4661 		node = mas_mn(mas);
4662 		mt = mte_node_type(mas->node);
4663 		pivots = ma_pivots(node, mt);
4664 		node_end = ma_data_end(node, mt, pivots, mas->max);
4665 		if (unlikely(ma_dead_node(node)))
4666 			return 1;
4667 
4668 	} while (unlikely(mas->offset == node_end));
4669 
4670 	slots = ma_slots(node, mt);
4671 	mas->offset++;
4672 	enode = mas_slot(mas, slots, mas->offset);
4673 	if (unlikely(ma_dead_node(node)))
4674 		return 1;
4675 
4676 	if (level > 1)
4677 		mas->offset = 0;
4678 
4679 	while (unlikely(level > 1)) {
4680 		level--;
4681 		mas->node = enode;
4682 		node = mas_mn(mas);
4683 		mt = mte_node_type(mas->node);
4684 		slots = ma_slots(node, mt);
4685 		enode = mas_slot(mas, slots, 0);
4686 		if (unlikely(ma_dead_node(node)))
4687 			return 1;
4688 	}
4689 
4690 	if (!mas->offset)
4691 		pivots = ma_pivots(node, mt);
4692 
4693 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4694 	if (unlikely(ma_dead_node(node)))
4695 		return 1;
4696 
4697 	mas->node = enode;
4698 	mas->min = min;
4699 	return 0;
4700 
4701 no_entry:
4702 	if (unlikely(ma_dead_node(node)))
4703 		return 1;
4704 
4705 	mas->node = MAS_NONE;
4706 	return 0;
4707 }
4708 
4709 /*
4710  * mas_next_slot() - Get the entry in the next slot
4711  *
4712  * @mas: The maple state
4713  * @max: The maximum starting range
4714  * @empty: Can be empty
4715  *
4716  * Return: The entry in the next slot which is possibly NULL
4717  */
4718 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4719 {
4720 	void __rcu **slots;
4721 	unsigned long *pivots;
4722 	unsigned long pivot;
4723 	enum maple_type type;
4724 	struct maple_node *node;
4725 	unsigned char data_end;
4726 	unsigned long save_point = mas->last;
4727 	void *entry;
4728 
4729 retry:
4730 	node = mas_mn(mas);
4731 	type = mte_node_type(mas->node);
4732 	pivots = ma_pivots(node, type);
4733 	data_end = ma_data_end(node, type, pivots, mas->max);
4734 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4735 		goto retry;
4736 
4737 again:
4738 	if (mas->max >= max) {
4739 		if (likely(mas->offset < data_end))
4740 			pivot = pivots[mas->offset];
4741 		else
4742 			return NULL; /* must be mas->max */
4743 
4744 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4745 			goto retry;
4746 
4747 		if (pivot >= max)
4748 			return NULL;
4749 	}
4750 
4751 	if (likely(mas->offset < data_end)) {
4752 		mas->index = pivots[mas->offset] + 1;
4753 		mas->offset++;
4754 		if (likely(mas->offset < data_end))
4755 			mas->last = pivots[mas->offset];
4756 		else
4757 			mas->last = mas->max;
4758 	} else  {
4759 		if (mas_next_node(mas, node, max)) {
4760 			mas_rewalk(mas, save_point);
4761 			goto retry;
4762 		}
4763 
4764 		if (mas_is_none(mas))
4765 			return NULL;
4766 
4767 		mas->offset = 0;
4768 		mas->index = mas->min;
4769 		node = mas_mn(mas);
4770 		type = mte_node_type(mas->node);
4771 		pivots = ma_pivots(node, type);
4772 		mas->last = pivots[0];
4773 	}
4774 
4775 	slots = ma_slots(node, type);
4776 	entry = mt_slot(mas->tree, slots, mas->offset);
4777 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4778 		goto retry;
4779 
4780 	if (entry)
4781 		return entry;
4782 
4783 	if (!empty) {
4784 		if (!mas->offset)
4785 			data_end = 2;
4786 		goto again;
4787 	}
4788 
4789 	return entry;
4790 }
4791 
4792 /*
4793  * mas_next_entry() - Internal function to get the next entry.
4794  * @mas: The maple state
4795  * @limit: The maximum range start.
4796  *
4797  * Set the @mas->node to the next entry and the range_start to
4798  * the beginning value for the entry.  Does not check beyond @limit.
4799  * Sets @mas->index and @mas->last to the limit if it is hit.
4800  * Restarts on dead nodes.
4801  *
4802  * Return: the next entry or %NULL.
4803  */
4804 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4805 {
4806 	if (mas->last >= limit)
4807 		return NULL;
4808 
4809 	return mas_next_slot(mas, limit, false);
4810 }
4811 
4812 /*
4813  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4814  * highest gap address of a given size in a given node and descend.
4815  * @mas: The maple state
4816  * @size: The needed size.
4817  *
4818  * Return: True if found in a leaf, false otherwise.
4819  *
4820  */
4821 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4822 		unsigned long *gap_min, unsigned long *gap_max)
4823 {
4824 	enum maple_type type = mte_node_type(mas->node);
4825 	struct maple_node *node = mas_mn(mas);
4826 	unsigned long *pivots, *gaps;
4827 	void __rcu **slots;
4828 	unsigned long gap = 0;
4829 	unsigned long max, min;
4830 	unsigned char offset;
4831 
4832 	if (unlikely(mas_is_err(mas)))
4833 		return true;
4834 
4835 	if (ma_is_dense(type)) {
4836 		/* dense nodes. */
4837 		mas->offset = (unsigned char)(mas->index - mas->min);
4838 		return true;
4839 	}
4840 
4841 	pivots = ma_pivots(node, type);
4842 	slots = ma_slots(node, type);
4843 	gaps = ma_gaps(node, type);
4844 	offset = mas->offset;
4845 	min = mas_safe_min(mas, pivots, offset);
4846 	/* Skip out of bounds. */
4847 	while (mas->last < min)
4848 		min = mas_safe_min(mas, pivots, --offset);
4849 
4850 	max = mas_safe_pivot(mas, pivots, offset, type);
4851 	while (mas->index <= max) {
4852 		gap = 0;
4853 		if (gaps)
4854 			gap = gaps[offset];
4855 		else if (!mas_slot(mas, slots, offset))
4856 			gap = max - min + 1;
4857 
4858 		if (gap) {
4859 			if ((size <= gap) && (size <= mas->last - min + 1))
4860 				break;
4861 
4862 			if (!gaps) {
4863 				/* Skip the next slot, it cannot be a gap. */
4864 				if (offset < 2)
4865 					goto ascend;
4866 
4867 				offset -= 2;
4868 				max = pivots[offset];
4869 				min = mas_safe_min(mas, pivots, offset);
4870 				continue;
4871 			}
4872 		}
4873 
4874 		if (!offset)
4875 			goto ascend;
4876 
4877 		offset--;
4878 		max = min - 1;
4879 		min = mas_safe_min(mas, pivots, offset);
4880 	}
4881 
4882 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4883 		goto no_space;
4884 
4885 	if (unlikely(ma_is_leaf(type))) {
4886 		mas->offset = offset;
4887 		*gap_min = min;
4888 		*gap_max = min + gap - 1;
4889 		return true;
4890 	}
4891 
4892 	/* descend, only happens under lock. */
4893 	mas->node = mas_slot(mas, slots, offset);
4894 	mas->min = min;
4895 	mas->max = max;
4896 	mas->offset = mas_data_end(mas);
4897 	return false;
4898 
4899 ascend:
4900 	if (!mte_is_root(mas->node))
4901 		return false;
4902 
4903 no_space:
4904 	mas_set_err(mas, -EBUSY);
4905 	return false;
4906 }
4907 
4908 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4909 {
4910 	enum maple_type type = mte_node_type(mas->node);
4911 	unsigned long pivot, min, gap = 0;
4912 	unsigned char offset, data_end;
4913 	unsigned long *gaps, *pivots;
4914 	void __rcu **slots;
4915 	struct maple_node *node;
4916 	bool found = false;
4917 
4918 	if (ma_is_dense(type)) {
4919 		mas->offset = (unsigned char)(mas->index - mas->min);
4920 		return true;
4921 	}
4922 
4923 	node = mas_mn(mas);
4924 	pivots = ma_pivots(node, type);
4925 	slots = ma_slots(node, type);
4926 	gaps = ma_gaps(node, type);
4927 	offset = mas->offset;
4928 	min = mas_safe_min(mas, pivots, offset);
4929 	data_end = ma_data_end(node, type, pivots, mas->max);
4930 	for (; offset <= data_end; offset++) {
4931 		pivot = mas_logical_pivot(mas, pivots, offset, type);
4932 
4933 		/* Not within lower bounds */
4934 		if (mas->index > pivot)
4935 			goto next_slot;
4936 
4937 		if (gaps)
4938 			gap = gaps[offset];
4939 		else if (!mas_slot(mas, slots, offset))
4940 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4941 		else
4942 			goto next_slot;
4943 
4944 		if (gap >= size) {
4945 			if (ma_is_leaf(type)) {
4946 				found = true;
4947 				goto done;
4948 			}
4949 			if (mas->index <= pivot) {
4950 				mas->node = mas_slot(mas, slots, offset);
4951 				mas->min = min;
4952 				mas->max = pivot;
4953 				offset = 0;
4954 				break;
4955 			}
4956 		}
4957 next_slot:
4958 		min = pivot + 1;
4959 		if (mas->last <= pivot) {
4960 			mas_set_err(mas, -EBUSY);
4961 			return true;
4962 		}
4963 	}
4964 
4965 	if (mte_is_root(mas->node))
4966 		found = true;
4967 done:
4968 	mas->offset = offset;
4969 	return found;
4970 }
4971 
4972 /**
4973  * mas_walk() - Search for @mas->index in the tree.
4974  * @mas: The maple state.
4975  *
4976  * mas->index and mas->last will be set to the range if there is a value.  If
4977  * mas->node is MAS_NONE, reset to MAS_START.
4978  *
4979  * Return: the entry at the location or %NULL.
4980  */
4981 void *mas_walk(struct ma_state *mas)
4982 {
4983 	void *entry;
4984 
4985 	if (mas_is_none(mas) || mas_is_paused(mas) || mas_is_ptr(mas))
4986 		mas->node = MAS_START;
4987 retry:
4988 	entry = mas_state_walk(mas);
4989 	if (mas_is_start(mas)) {
4990 		goto retry;
4991 	} else if (mas_is_none(mas)) {
4992 		mas->index = 0;
4993 		mas->last = ULONG_MAX;
4994 	} else if (mas_is_ptr(mas)) {
4995 		if (!mas->index) {
4996 			mas->last = 0;
4997 			return entry;
4998 		}
4999 
5000 		mas->index = 1;
5001 		mas->last = ULONG_MAX;
5002 		mas->node = MAS_NONE;
5003 		return NULL;
5004 	}
5005 
5006 	return entry;
5007 }
5008 EXPORT_SYMBOL_GPL(mas_walk);
5009 
5010 static inline bool mas_rewind_node(struct ma_state *mas)
5011 {
5012 	unsigned char slot;
5013 
5014 	do {
5015 		if (mte_is_root(mas->node)) {
5016 			slot = mas->offset;
5017 			if (!slot)
5018 				return false;
5019 		} else {
5020 			mas_ascend(mas);
5021 			slot = mas->offset;
5022 		}
5023 	} while (!slot);
5024 
5025 	mas->offset = --slot;
5026 	return true;
5027 }
5028 
5029 /*
5030  * mas_skip_node() - Internal function.  Skip over a node.
5031  * @mas: The maple state.
5032  *
5033  * Return: true if there is another node, false otherwise.
5034  */
5035 static inline bool mas_skip_node(struct ma_state *mas)
5036 {
5037 	if (mas_is_err(mas))
5038 		return false;
5039 
5040 	do {
5041 		if (mte_is_root(mas->node)) {
5042 			if (mas->offset >= mas_data_end(mas)) {
5043 				mas_set_err(mas, -EBUSY);
5044 				return false;
5045 			}
5046 		} else {
5047 			mas_ascend(mas);
5048 		}
5049 	} while (mas->offset >= mas_data_end(mas));
5050 
5051 	mas->offset++;
5052 	return true;
5053 }
5054 
5055 /*
5056  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5057  * @size
5058  * @mas: The maple state
5059  * @size: The size of the gap required
5060  *
5061  * Search between @mas->index and @mas->last for a gap of @size.
5062  */
5063 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5064 {
5065 	struct maple_enode *last = NULL;
5066 
5067 	/*
5068 	 * There are 4 options:
5069 	 * go to child (descend)
5070 	 * go back to parent (ascend)
5071 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5072 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5073 	 */
5074 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5075 		if (last == mas->node)
5076 			mas_skip_node(mas);
5077 		else
5078 			last = mas->node;
5079 	}
5080 }
5081 
5082 /*
5083  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5084  * searching for a gap in an empty tree.
5085  * @mas: The maple state
5086  * @min: the minimum range
5087  * @max: The maximum range
5088  * @size: The size of the gap
5089  * @fwd: Searching forward or back
5090  */
5091 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5092 				unsigned long max, unsigned long size, bool fwd)
5093 {
5094 	if (!unlikely(mas_is_none(mas)) && min == 0) {
5095 		min++;
5096 		/*
5097 		 * At this time, min is increased, we need to recheck whether
5098 		 * the size is satisfied.
5099 		 */
5100 		if (min > max || max - min + 1 < size)
5101 			return -EBUSY;
5102 	}
5103 	/* mas_is_ptr */
5104 
5105 	if (fwd) {
5106 		mas->index = min;
5107 		mas->last = min + size - 1;
5108 	} else {
5109 		mas->last = max;
5110 		mas->index = max - size + 1;
5111 	}
5112 	return 0;
5113 }
5114 
5115 /*
5116  * mas_empty_area() - Get the lowest address within the range that is
5117  * sufficient for the size requested.
5118  * @mas: The maple state
5119  * @min: The lowest value of the range
5120  * @max: The highest value of the range
5121  * @size: The size needed
5122  */
5123 int mas_empty_area(struct ma_state *mas, unsigned long min,
5124 		unsigned long max, unsigned long size)
5125 {
5126 	unsigned char offset;
5127 	unsigned long *pivots;
5128 	enum maple_type mt;
5129 
5130 	if (min > max)
5131 		return -EINVAL;
5132 
5133 	if (size == 0 || max - min < size - 1)
5134 		return -EINVAL;
5135 
5136 	if (mas_is_start(mas))
5137 		mas_start(mas);
5138 	else if (mas->offset >= 2)
5139 		mas->offset -= 2;
5140 	else if (!mas_skip_node(mas))
5141 		return -EBUSY;
5142 
5143 	/* Empty set */
5144 	if (mas_is_none(mas) || mas_is_ptr(mas))
5145 		return mas_sparse_area(mas, min, max, size, true);
5146 
5147 	/* The start of the window can only be within these values */
5148 	mas->index = min;
5149 	mas->last = max;
5150 	mas_awalk(mas, size);
5151 
5152 	if (unlikely(mas_is_err(mas)))
5153 		return xa_err(mas->node);
5154 
5155 	offset = mas->offset;
5156 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5157 		return -EBUSY;
5158 
5159 	mt = mte_node_type(mas->node);
5160 	pivots = ma_pivots(mas_mn(mas), mt);
5161 	min = mas_safe_min(mas, pivots, offset);
5162 	if (mas->index < min)
5163 		mas->index = min;
5164 	mas->last = mas->index + size - 1;
5165 	return 0;
5166 }
5167 EXPORT_SYMBOL_GPL(mas_empty_area);
5168 
5169 /*
5170  * mas_empty_area_rev() - Get the highest address within the range that is
5171  * sufficient for the size requested.
5172  * @mas: The maple state
5173  * @min: The lowest value of the range
5174  * @max: The highest value of the range
5175  * @size: The size needed
5176  */
5177 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5178 		unsigned long max, unsigned long size)
5179 {
5180 	struct maple_enode *last = mas->node;
5181 
5182 	if (min > max)
5183 		return -EINVAL;
5184 
5185 	if (size == 0 || max - min < size - 1)
5186 		return -EINVAL;
5187 
5188 	if (mas_is_start(mas)) {
5189 		mas_start(mas);
5190 		mas->offset = mas_data_end(mas);
5191 	} else if (mas->offset >= 2) {
5192 		mas->offset -= 2;
5193 	} else if (!mas_rewind_node(mas)) {
5194 		return -EBUSY;
5195 	}
5196 
5197 	/* Empty set. */
5198 	if (mas_is_none(mas) || mas_is_ptr(mas))
5199 		return mas_sparse_area(mas, min, max, size, false);
5200 
5201 	/* The start of the window can only be within these values. */
5202 	mas->index = min;
5203 	mas->last = max;
5204 
5205 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5206 		if (last == mas->node) {
5207 			if (!mas_rewind_node(mas))
5208 				return -EBUSY;
5209 		} else {
5210 			last = mas->node;
5211 		}
5212 	}
5213 
5214 	if (mas_is_err(mas))
5215 		return xa_err(mas->node);
5216 
5217 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5218 		return -EBUSY;
5219 
5220 	/* Trim the upper limit to the max. */
5221 	if (max < mas->last)
5222 		mas->last = max;
5223 
5224 	mas->index = mas->last - size + 1;
5225 	return 0;
5226 }
5227 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5228 
5229 /*
5230  * mte_dead_leaves() - Mark all leaves of a node as dead.
5231  * @mas: The maple state
5232  * @slots: Pointer to the slot array
5233  * @type: The maple node type
5234  *
5235  * Must hold the write lock.
5236  *
5237  * Return: The number of leaves marked as dead.
5238  */
5239 static inline
5240 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5241 			      void __rcu **slots)
5242 {
5243 	struct maple_node *node;
5244 	enum maple_type type;
5245 	void *entry;
5246 	int offset;
5247 
5248 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5249 		entry = mt_slot(mt, slots, offset);
5250 		type = mte_node_type(entry);
5251 		node = mte_to_node(entry);
5252 		/* Use both node and type to catch LE & BE metadata */
5253 		if (!node || !type)
5254 			break;
5255 
5256 		mte_set_node_dead(entry);
5257 		node->type = type;
5258 		rcu_assign_pointer(slots[offset], node);
5259 	}
5260 
5261 	return offset;
5262 }
5263 
5264 /**
5265  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5266  * @enode: The maple encoded node
5267  * @offset: The starting offset
5268  *
5269  * Note: This can only be used from the RCU callback context.
5270  */
5271 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5272 {
5273 	struct maple_node *node, *next;
5274 	void __rcu **slots = NULL;
5275 
5276 	next = mte_to_node(*enode);
5277 	do {
5278 		*enode = ma_enode_ptr(next);
5279 		node = mte_to_node(*enode);
5280 		slots = ma_slots(node, node->type);
5281 		next = rcu_dereference_protected(slots[offset],
5282 					lock_is_held(&rcu_callback_map));
5283 		offset = 0;
5284 	} while (!ma_is_leaf(next->type));
5285 
5286 	return slots;
5287 }
5288 
5289 /**
5290  * mt_free_walk() - Walk & free a tree in the RCU callback context
5291  * @head: The RCU head that's within the node.
5292  *
5293  * Note: This can only be used from the RCU callback context.
5294  */
5295 static void mt_free_walk(struct rcu_head *head)
5296 {
5297 	void __rcu **slots;
5298 	struct maple_node *node, *start;
5299 	struct maple_enode *enode;
5300 	unsigned char offset;
5301 	enum maple_type type;
5302 
5303 	node = container_of(head, struct maple_node, rcu);
5304 
5305 	if (ma_is_leaf(node->type))
5306 		goto free_leaf;
5307 
5308 	start = node;
5309 	enode = mt_mk_node(node, node->type);
5310 	slots = mte_dead_walk(&enode, 0);
5311 	node = mte_to_node(enode);
5312 	do {
5313 		mt_free_bulk(node->slot_len, slots);
5314 		offset = node->parent_slot + 1;
5315 		enode = node->piv_parent;
5316 		if (mte_to_node(enode) == node)
5317 			goto free_leaf;
5318 
5319 		type = mte_node_type(enode);
5320 		slots = ma_slots(mte_to_node(enode), type);
5321 		if ((offset < mt_slots[type]) &&
5322 		    rcu_dereference_protected(slots[offset],
5323 					      lock_is_held(&rcu_callback_map)))
5324 			slots = mte_dead_walk(&enode, offset);
5325 		node = mte_to_node(enode);
5326 	} while ((node != start) || (node->slot_len < offset));
5327 
5328 	slots = ma_slots(node, node->type);
5329 	mt_free_bulk(node->slot_len, slots);
5330 
5331 free_leaf:
5332 	mt_free_rcu(&node->rcu);
5333 }
5334 
5335 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5336 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5337 {
5338 	struct maple_node *node;
5339 	struct maple_enode *next = *enode;
5340 	void __rcu **slots = NULL;
5341 	enum maple_type type;
5342 	unsigned char next_offset = 0;
5343 
5344 	do {
5345 		*enode = next;
5346 		node = mte_to_node(*enode);
5347 		type = mte_node_type(*enode);
5348 		slots = ma_slots(node, type);
5349 		next = mt_slot_locked(mt, slots, next_offset);
5350 		if ((mte_dead_node(next)))
5351 			next = mt_slot_locked(mt, slots, ++next_offset);
5352 
5353 		mte_set_node_dead(*enode);
5354 		node->type = type;
5355 		node->piv_parent = prev;
5356 		node->parent_slot = offset;
5357 		offset = next_offset;
5358 		next_offset = 0;
5359 		prev = *enode;
5360 	} while (!mte_is_leaf(next));
5361 
5362 	return slots;
5363 }
5364 
5365 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5366 			    bool free)
5367 {
5368 	void __rcu **slots;
5369 	struct maple_node *node = mte_to_node(enode);
5370 	struct maple_enode *start;
5371 
5372 	if (mte_is_leaf(enode)) {
5373 		node->type = mte_node_type(enode);
5374 		goto free_leaf;
5375 	}
5376 
5377 	start = enode;
5378 	slots = mte_destroy_descend(&enode, mt, start, 0);
5379 	node = mte_to_node(enode); // Updated in the above call.
5380 	do {
5381 		enum maple_type type;
5382 		unsigned char offset;
5383 		struct maple_enode *parent, *tmp;
5384 
5385 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5386 		if (free)
5387 			mt_free_bulk(node->slot_len, slots);
5388 		offset = node->parent_slot + 1;
5389 		enode = node->piv_parent;
5390 		if (mte_to_node(enode) == node)
5391 			goto free_leaf;
5392 
5393 		type = mte_node_type(enode);
5394 		slots = ma_slots(mte_to_node(enode), type);
5395 		if (offset >= mt_slots[type])
5396 			goto next;
5397 
5398 		tmp = mt_slot_locked(mt, slots, offset);
5399 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5400 			parent = enode;
5401 			enode = tmp;
5402 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5403 		}
5404 next:
5405 		node = mte_to_node(enode);
5406 	} while (start != enode);
5407 
5408 	node = mte_to_node(enode);
5409 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5410 	if (free)
5411 		mt_free_bulk(node->slot_len, slots);
5412 
5413 free_leaf:
5414 	if (free)
5415 		mt_free_rcu(&node->rcu);
5416 	else
5417 		mt_clear_meta(mt, node, node->type);
5418 }
5419 
5420 /*
5421  * mte_destroy_walk() - Free a tree or sub-tree.
5422  * @enode: the encoded maple node (maple_enode) to start
5423  * @mt: the tree to free - needed for node types.
5424  *
5425  * Must hold the write lock.
5426  */
5427 static inline void mte_destroy_walk(struct maple_enode *enode,
5428 				    struct maple_tree *mt)
5429 {
5430 	struct maple_node *node = mte_to_node(enode);
5431 
5432 	if (mt_in_rcu(mt)) {
5433 		mt_destroy_walk(enode, mt, false);
5434 		call_rcu(&node->rcu, mt_free_walk);
5435 	} else {
5436 		mt_destroy_walk(enode, mt, true);
5437 	}
5438 }
5439 
5440 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5441 {
5442 	if (unlikely(mas_is_paused(wr_mas->mas)))
5443 		mas_reset(wr_mas->mas);
5444 
5445 	if (!mas_is_start(wr_mas->mas)) {
5446 		if (mas_is_none(wr_mas->mas)) {
5447 			mas_reset(wr_mas->mas);
5448 		} else {
5449 			wr_mas->r_max = wr_mas->mas->max;
5450 			wr_mas->type = mte_node_type(wr_mas->mas->node);
5451 			if (mas_is_span_wr(wr_mas))
5452 				mas_reset(wr_mas->mas);
5453 		}
5454 	}
5455 }
5456 
5457 /* Interface */
5458 
5459 /**
5460  * mas_store() - Store an @entry.
5461  * @mas: The maple state.
5462  * @entry: The entry to store.
5463  *
5464  * The @mas->index and @mas->last is used to set the range for the @entry.
5465  * Note: The @mas should have pre-allocated entries to ensure there is memory to
5466  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5467  *
5468  * Return: the first entry between mas->index and mas->last or %NULL.
5469  */
5470 void *mas_store(struct ma_state *mas, void *entry)
5471 {
5472 	MA_WR_STATE(wr_mas, mas, entry);
5473 
5474 	trace_ma_write(__func__, mas, 0, entry);
5475 #ifdef CONFIG_DEBUG_MAPLE_TREE
5476 	if (MAS_WARN_ON(mas, mas->index > mas->last))
5477 		pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5478 
5479 	if (mas->index > mas->last) {
5480 		mas_set_err(mas, -EINVAL);
5481 		return NULL;
5482 	}
5483 
5484 #endif
5485 
5486 	/*
5487 	 * Storing is the same operation as insert with the added caveat that it
5488 	 * can overwrite entries.  Although this seems simple enough, one may
5489 	 * want to examine what happens if a single store operation was to
5490 	 * overwrite multiple entries within a self-balancing B-Tree.
5491 	 */
5492 	mas_wr_store_setup(&wr_mas);
5493 	mas_wr_store_entry(&wr_mas);
5494 	return wr_mas.content;
5495 }
5496 EXPORT_SYMBOL_GPL(mas_store);
5497 
5498 /**
5499  * mas_store_gfp() - Store a value into the tree.
5500  * @mas: The maple state
5501  * @entry: The entry to store
5502  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5503  *
5504  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5505  * be allocated.
5506  */
5507 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5508 {
5509 	MA_WR_STATE(wr_mas, mas, entry);
5510 
5511 	mas_wr_store_setup(&wr_mas);
5512 	trace_ma_write(__func__, mas, 0, entry);
5513 retry:
5514 	mas_wr_store_entry(&wr_mas);
5515 	if (unlikely(mas_nomem(mas, gfp)))
5516 		goto retry;
5517 
5518 	if (unlikely(mas_is_err(mas)))
5519 		return xa_err(mas->node);
5520 
5521 	return 0;
5522 }
5523 EXPORT_SYMBOL_GPL(mas_store_gfp);
5524 
5525 /**
5526  * mas_store_prealloc() - Store a value into the tree using memory
5527  * preallocated in the maple state.
5528  * @mas: The maple state
5529  * @entry: The entry to store.
5530  */
5531 void mas_store_prealloc(struct ma_state *mas, void *entry)
5532 {
5533 	MA_WR_STATE(wr_mas, mas, entry);
5534 
5535 	mas_wr_store_setup(&wr_mas);
5536 	trace_ma_write(__func__, mas, 0, entry);
5537 	mas_wr_store_entry(&wr_mas);
5538 	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5539 	mas_destroy(mas);
5540 }
5541 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5542 
5543 /**
5544  * mas_preallocate() - Preallocate enough nodes for a store operation
5545  * @mas: The maple state
5546  * @gfp: The GFP_FLAGS to use for allocations.
5547  *
5548  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5549  */
5550 int mas_preallocate(struct ma_state *mas, gfp_t gfp)
5551 {
5552 	int ret;
5553 
5554 	mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5555 	mas->mas_flags |= MA_STATE_PREALLOC;
5556 	if (likely(!mas_is_err(mas)))
5557 		return 0;
5558 
5559 	mas_set_alloc_req(mas, 0);
5560 	ret = xa_err(mas->node);
5561 	mas_reset(mas);
5562 	mas_destroy(mas);
5563 	mas_reset(mas);
5564 	return ret;
5565 }
5566 EXPORT_SYMBOL_GPL(mas_preallocate);
5567 
5568 /*
5569  * mas_destroy() - destroy a maple state.
5570  * @mas: The maple state
5571  *
5572  * Upon completion, check the left-most node and rebalance against the node to
5573  * the right if necessary.  Frees any allocated nodes associated with this maple
5574  * state.
5575  */
5576 void mas_destroy(struct ma_state *mas)
5577 {
5578 	struct maple_alloc *node;
5579 	unsigned long total;
5580 
5581 	/*
5582 	 * When using mas_for_each() to insert an expected number of elements,
5583 	 * it is possible that the number inserted is less than the expected
5584 	 * number.  To fix an invalid final node, a check is performed here to
5585 	 * rebalance the previous node with the final node.
5586 	 */
5587 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5588 		unsigned char end;
5589 
5590 		mas_start(mas);
5591 		mtree_range_walk(mas);
5592 		end = mas_data_end(mas) + 1;
5593 		if (end < mt_min_slot_count(mas->node) - 1)
5594 			mas_destroy_rebalance(mas, end);
5595 
5596 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5597 	}
5598 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5599 
5600 	total = mas_allocated(mas);
5601 	while (total) {
5602 		node = mas->alloc;
5603 		mas->alloc = node->slot[0];
5604 		if (node->node_count > 1) {
5605 			size_t count = node->node_count - 1;
5606 
5607 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5608 			total -= count;
5609 		}
5610 		kmem_cache_free(maple_node_cache, node);
5611 		total--;
5612 	}
5613 
5614 	mas->alloc = NULL;
5615 }
5616 EXPORT_SYMBOL_GPL(mas_destroy);
5617 
5618 /*
5619  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5620  * @mas: The maple state
5621  * @nr_entries: The number of expected entries.
5622  *
5623  * This will attempt to pre-allocate enough nodes to store the expected number
5624  * of entries.  The allocations will occur using the bulk allocator interface
5625  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5626  * to ensure any unused nodes are freed.
5627  *
5628  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5629  */
5630 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5631 {
5632 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5633 	struct maple_enode *enode = mas->node;
5634 	int nr_nodes;
5635 	int ret;
5636 
5637 	/*
5638 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5639 	 * forking a process and duplicating the VMAs from one tree to a new
5640 	 * tree.  When such a situation arises, it is known that the new tree is
5641 	 * not going to be used until the entire tree is populated.  For
5642 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5643 	 * This allows for optimistic splitting that favours the left and reuse
5644 	 * of nodes during the operation.
5645 	 */
5646 
5647 	/* Optimize splitting for bulk insert in-order */
5648 	mas->mas_flags |= MA_STATE_BULK;
5649 
5650 	/*
5651 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5652 	 * If this is wrong, it just means allocation can happen during
5653 	 * insertion of entries.
5654 	 */
5655 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5656 	if (!mt_is_alloc(mas->tree))
5657 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5658 
5659 	/* Leaves; reduce slots to keep space for expansion */
5660 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5661 	/* Internal nodes */
5662 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5663 	/* Add working room for split (2 nodes) + new parents */
5664 	mas_node_count(mas, nr_nodes + 3);
5665 
5666 	/* Detect if allocations run out */
5667 	mas->mas_flags |= MA_STATE_PREALLOC;
5668 
5669 	if (!mas_is_err(mas))
5670 		return 0;
5671 
5672 	ret = xa_err(mas->node);
5673 	mas->node = enode;
5674 	mas_destroy(mas);
5675 	return ret;
5676 
5677 }
5678 EXPORT_SYMBOL_GPL(mas_expected_entries);
5679 
5680 static inline bool mas_next_setup(struct ma_state *mas, unsigned long max,
5681 		void **entry)
5682 {
5683 	bool was_none = mas_is_none(mas);
5684 
5685 	if (mas_is_none(mas) || mas_is_paused(mas))
5686 		mas->node = MAS_START;
5687 
5688 	if (mas_is_start(mas))
5689 		*entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5690 
5691 	if (mas_is_ptr(mas)) {
5692 		*entry = NULL;
5693 		if (was_none && mas->index == 0) {
5694 			mas->index = mas->last = 0;
5695 			return true;
5696 		}
5697 		mas->index = 1;
5698 		mas->last = ULONG_MAX;
5699 		mas->node = MAS_NONE;
5700 		return true;
5701 	}
5702 
5703 	if (mas_is_none(mas))
5704 		return true;
5705 	return false;
5706 }
5707 
5708 /**
5709  * mas_next() - Get the next entry.
5710  * @mas: The maple state
5711  * @max: The maximum index to check.
5712  *
5713  * Returns the next entry after @mas->index.
5714  * Must hold rcu_read_lock or the write lock.
5715  * Can return the zero entry.
5716  *
5717  * Return: The next entry or %NULL
5718  */
5719 void *mas_next(struct ma_state *mas, unsigned long max)
5720 {
5721 	void *entry = NULL;
5722 
5723 	if (mas_next_setup(mas, max, &entry))
5724 		return entry;
5725 
5726 	/* Retries on dead nodes handled by mas_next_slot */
5727 	return mas_next_slot(mas, max, false);
5728 }
5729 EXPORT_SYMBOL_GPL(mas_next);
5730 
5731 /**
5732  * mas_next_range() - Advance the maple state to the next range
5733  * @mas: The maple state
5734  * @max: The maximum index to check.
5735  *
5736  * Sets @mas->index and @mas->last to the range.
5737  * Must hold rcu_read_lock or the write lock.
5738  * Can return the zero entry.
5739  *
5740  * Return: The next entry or %NULL
5741  */
5742 void *mas_next_range(struct ma_state *mas, unsigned long max)
5743 {
5744 	void *entry = NULL;
5745 
5746 	if (mas_next_setup(mas, max, &entry))
5747 		return entry;
5748 
5749 	/* Retries on dead nodes handled by mas_next_slot */
5750 	return mas_next_slot(mas, max, true);
5751 }
5752 EXPORT_SYMBOL_GPL(mas_next_range);
5753 
5754 /**
5755  * mt_next() - get the next value in the maple tree
5756  * @mt: The maple tree
5757  * @index: The start index
5758  * @max: The maximum index to check
5759  *
5760  * Return: The entry at @index or higher, or %NULL if nothing is found.
5761  */
5762 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5763 {
5764 	void *entry = NULL;
5765 	MA_STATE(mas, mt, index, index);
5766 
5767 	rcu_read_lock();
5768 	entry = mas_next(&mas, max);
5769 	rcu_read_unlock();
5770 	return entry;
5771 }
5772 EXPORT_SYMBOL_GPL(mt_next);
5773 
5774 static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min,
5775 		void **entry)
5776 {
5777 	if (mas->index <= min)
5778 		goto none;
5779 
5780 	if (mas_is_none(mas) || mas_is_paused(mas))
5781 		mas->node = MAS_START;
5782 
5783 	if (mas_is_start(mas)) {
5784 		mas_walk(mas);
5785 		if (!mas->index)
5786 			goto none;
5787 	}
5788 
5789 	if (unlikely(mas_is_ptr(mas))) {
5790 		if (!mas->index)
5791 			goto none;
5792 		mas->index = mas->last = 0;
5793 		*entry = mas_root(mas);
5794 		return true;
5795 	}
5796 
5797 	if (mas_is_none(mas)) {
5798 		if (mas->index) {
5799 			/* Walked to out-of-range pointer? */
5800 			mas->index = mas->last = 0;
5801 			mas->node = MAS_ROOT;
5802 			*entry = mas_root(mas);
5803 			return true;
5804 		}
5805 		return true;
5806 	}
5807 
5808 	return false;
5809 
5810 none:
5811 	mas->node = MAS_NONE;
5812 	return true;
5813 }
5814 
5815 /**
5816  * mas_prev() - Get the previous entry
5817  * @mas: The maple state
5818  * @min: The minimum value to check.
5819  *
5820  * Must hold rcu_read_lock or the write lock.
5821  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5822  * searchable nodes.
5823  *
5824  * Return: the previous value or %NULL.
5825  */
5826 void *mas_prev(struct ma_state *mas, unsigned long min)
5827 {
5828 	void *entry = NULL;
5829 
5830 	if (mas_prev_setup(mas, min, &entry))
5831 		return entry;
5832 
5833 	return mas_prev_slot(mas, min, false);
5834 }
5835 EXPORT_SYMBOL_GPL(mas_prev);
5836 
5837 /**
5838  * mas_prev_range() - Advance to the previous range
5839  * @mas: The maple state
5840  * @min: The minimum value to check.
5841  *
5842  * Sets @mas->index and @mas->last to the range.
5843  * Must hold rcu_read_lock or the write lock.
5844  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5845  * searchable nodes.
5846  *
5847  * Return: the previous value or %NULL.
5848  */
5849 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5850 {
5851 	void *entry = NULL;
5852 
5853 	if (mas_prev_setup(mas, min, &entry))
5854 		return entry;
5855 
5856 	return mas_prev_slot(mas, min, true);
5857 }
5858 EXPORT_SYMBOL_GPL(mas_prev_range);
5859 
5860 /**
5861  * mt_prev() - get the previous value in the maple tree
5862  * @mt: The maple tree
5863  * @index: The start index
5864  * @min: The minimum index to check
5865  *
5866  * Return: The entry at @index or lower, or %NULL if nothing is found.
5867  */
5868 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5869 {
5870 	void *entry = NULL;
5871 	MA_STATE(mas, mt, index, index);
5872 
5873 	rcu_read_lock();
5874 	entry = mas_prev(&mas, min);
5875 	rcu_read_unlock();
5876 	return entry;
5877 }
5878 EXPORT_SYMBOL_GPL(mt_prev);
5879 
5880 /**
5881  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5882  * @mas: The maple state to pause
5883  *
5884  * Some users need to pause a walk and drop the lock they're holding in
5885  * order to yield to a higher priority thread or carry out an operation
5886  * on an entry.  Those users should call this function before they drop
5887  * the lock.  It resets the @mas to be suitable for the next iteration
5888  * of the loop after the user has reacquired the lock.  If most entries
5889  * found during a walk require you to call mas_pause(), the mt_for_each()
5890  * iterator may be more appropriate.
5891  *
5892  */
5893 void mas_pause(struct ma_state *mas)
5894 {
5895 	mas->node = MAS_PAUSE;
5896 }
5897 EXPORT_SYMBOL_GPL(mas_pause);
5898 
5899 /**
5900  * mas_find_setup() - Internal function to set up mas_find*().
5901  * @mas: The maple state
5902  * @max: The maximum index
5903  * @entry: Pointer to the entry
5904  *
5905  * Returns: True if entry is the answer, false otherwise.
5906  */
5907 static inline bool mas_find_setup(struct ma_state *mas, unsigned long max,
5908 		void **entry)
5909 {
5910 	*entry = NULL;
5911 
5912 	if (unlikely(mas_is_none(mas))) {
5913 		if (unlikely(mas->last >= max))
5914 			return true;
5915 
5916 		mas->index = mas->last;
5917 		mas->node = MAS_START;
5918 	} else if (unlikely(mas_is_paused(mas))) {
5919 		if (unlikely(mas->last >= max))
5920 			return true;
5921 
5922 		mas->node = MAS_START;
5923 		mas->index = ++mas->last;
5924 	} else if (unlikely(mas_is_ptr(mas)))
5925 		goto ptr_out_of_range;
5926 
5927 	if (unlikely(mas_is_start(mas))) {
5928 		/* First run or continue */
5929 		if (mas->index > max)
5930 			return true;
5931 
5932 		*entry = mas_walk(mas);
5933 		if (*entry)
5934 			return true;
5935 
5936 	}
5937 
5938 	if (unlikely(!mas_searchable(mas))) {
5939 		if (unlikely(mas_is_ptr(mas)))
5940 			goto ptr_out_of_range;
5941 
5942 		return true;
5943 	}
5944 
5945 	if (mas->index == max)
5946 		return true;
5947 
5948 	return false;
5949 
5950 ptr_out_of_range:
5951 	mas->node = MAS_NONE;
5952 	mas->index = 1;
5953 	mas->last = ULONG_MAX;
5954 	return true;
5955 }
5956 
5957 /**
5958  * mas_find() - On the first call, find the entry at or after mas->index up to
5959  * %max.  Otherwise, find the entry after mas->index.
5960  * @mas: The maple state
5961  * @max: The maximum value to check.
5962  *
5963  * Must hold rcu_read_lock or the write lock.
5964  * If an entry exists, last and index are updated accordingly.
5965  * May set @mas->node to MAS_NONE.
5966  *
5967  * Return: The entry or %NULL.
5968  */
5969 void *mas_find(struct ma_state *mas, unsigned long max)
5970 {
5971 	void *entry = NULL;
5972 
5973 	if (mas_find_setup(mas, max, &entry))
5974 		return entry;
5975 
5976 	/* Retries on dead nodes handled by mas_next_slot */
5977 	return mas_next_slot(mas, max, false);
5978 }
5979 EXPORT_SYMBOL_GPL(mas_find);
5980 
5981 /**
5982  * mas_find_range() - On the first call, find the entry at or after
5983  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
5984  * @mas: The maple state
5985  * @max: The maximum value to check.
5986  *
5987  * Must hold rcu_read_lock or the write lock.
5988  * If an entry exists, last and index are updated accordingly.
5989  * May set @mas->node to MAS_NONE.
5990  *
5991  * Return: The entry or %NULL.
5992  */
5993 void *mas_find_range(struct ma_state *mas, unsigned long max)
5994 {
5995 	void *entry;
5996 
5997 	if (mas_find_setup(mas, max, &entry))
5998 		return entry;
5999 
6000 	/* Retries on dead nodes handled by mas_next_slot */
6001 	return mas_next_slot(mas, max, true);
6002 }
6003 EXPORT_SYMBOL_GPL(mas_find_range);
6004 
6005 /**
6006  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6007  * @mas: The maple state
6008  * @min: The minimum index
6009  * @entry: Pointer to the entry
6010  *
6011  * Returns: True if entry is the answer, false otherwise.
6012  */
6013 static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6014 		void **entry)
6015 {
6016 	*entry = NULL;
6017 
6018 	if (unlikely(mas_is_none(mas))) {
6019 		if (mas->index <= min)
6020 			goto none;
6021 
6022 		mas->last = mas->index;
6023 		mas->node = MAS_START;
6024 	}
6025 
6026 	if (unlikely(mas_is_paused(mas))) {
6027 		if (unlikely(mas->index <= min)) {
6028 			mas->node = MAS_NONE;
6029 			return true;
6030 		}
6031 		mas->node = MAS_START;
6032 		mas->last = --mas->index;
6033 	}
6034 
6035 	if (unlikely(mas_is_start(mas))) {
6036 		/* First run or continue */
6037 		if (mas->index < min)
6038 			return true;
6039 
6040 		*entry = mas_walk(mas);
6041 		if (*entry)
6042 			return true;
6043 	}
6044 
6045 	if (unlikely(!mas_searchable(mas))) {
6046 		if (mas_is_ptr(mas))
6047 			goto none;
6048 
6049 		if (mas_is_none(mas)) {
6050 			/*
6051 			 * Walked to the location, and there was nothing so the
6052 			 * previous location is 0.
6053 			 */
6054 			mas->last = mas->index = 0;
6055 			mas->node = MAS_ROOT;
6056 			*entry = mas_root(mas);
6057 			return true;
6058 		}
6059 	}
6060 
6061 	if (mas->index < min)
6062 		return true;
6063 
6064 	return false;
6065 
6066 none:
6067 	mas->node = MAS_NONE;
6068 	return true;
6069 }
6070 
6071 /**
6072  * mas_find_rev: On the first call, find the first non-null entry at or below
6073  * mas->index down to %min.  Otherwise find the first non-null entry below
6074  * mas->index down to %min.
6075  * @mas: The maple state
6076  * @min: The minimum value to check.
6077  *
6078  * Must hold rcu_read_lock or the write lock.
6079  * If an entry exists, last and index are updated accordingly.
6080  * May set @mas->node to MAS_NONE.
6081  *
6082  * Return: The entry or %NULL.
6083  */
6084 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6085 {
6086 	void *entry;
6087 
6088 	if (mas_find_rev_setup(mas, min, &entry))
6089 		return entry;
6090 
6091 	/* Retries on dead nodes handled by mas_prev_slot */
6092 	return mas_prev_slot(mas, min, false);
6093 
6094 }
6095 EXPORT_SYMBOL_GPL(mas_find_rev);
6096 
6097 /**
6098  * mas_find_range_rev: On the first call, find the first non-null entry at or
6099  * below mas->index down to %min.  Otherwise advance to the previous slot after
6100  * mas->index down to %min.
6101  * @mas: The maple state
6102  * @min: The minimum value to check.
6103  *
6104  * Must hold rcu_read_lock or the write lock.
6105  * If an entry exists, last and index are updated accordingly.
6106  * May set @mas->node to MAS_NONE.
6107  *
6108  * Return: The entry or %NULL.
6109  */
6110 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6111 {
6112 	void *entry;
6113 
6114 	if (mas_find_rev_setup(mas, min, &entry))
6115 		return entry;
6116 
6117 	/* Retries on dead nodes handled by mas_prev_slot */
6118 	return mas_prev_slot(mas, min, true);
6119 }
6120 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6121 
6122 /**
6123  * mas_erase() - Find the range in which index resides and erase the entire
6124  * range.
6125  * @mas: The maple state
6126  *
6127  * Must hold the write lock.
6128  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6129  * erases that range.
6130  *
6131  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6132  */
6133 void *mas_erase(struct ma_state *mas)
6134 {
6135 	void *entry;
6136 	MA_WR_STATE(wr_mas, mas, NULL);
6137 
6138 	if (mas_is_none(mas) || mas_is_paused(mas))
6139 		mas->node = MAS_START;
6140 
6141 	/* Retry unnecessary when holding the write lock. */
6142 	entry = mas_state_walk(mas);
6143 	if (!entry)
6144 		return NULL;
6145 
6146 write_retry:
6147 	/* Must reset to ensure spanning writes of last slot are detected */
6148 	mas_reset(mas);
6149 	mas_wr_store_setup(&wr_mas);
6150 	mas_wr_store_entry(&wr_mas);
6151 	if (mas_nomem(mas, GFP_KERNEL))
6152 		goto write_retry;
6153 
6154 	return entry;
6155 }
6156 EXPORT_SYMBOL_GPL(mas_erase);
6157 
6158 /**
6159  * mas_nomem() - Check if there was an error allocating and do the allocation
6160  * if necessary If there are allocations, then free them.
6161  * @mas: The maple state
6162  * @gfp: The GFP_FLAGS to use for allocations
6163  * Return: true on allocation, false otherwise.
6164  */
6165 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6166 	__must_hold(mas->tree->ma_lock)
6167 {
6168 	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6169 		mas_destroy(mas);
6170 		return false;
6171 	}
6172 
6173 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6174 		mtree_unlock(mas->tree);
6175 		mas_alloc_nodes(mas, gfp);
6176 		mtree_lock(mas->tree);
6177 	} else {
6178 		mas_alloc_nodes(mas, gfp);
6179 	}
6180 
6181 	if (!mas_allocated(mas))
6182 		return false;
6183 
6184 	mas->node = MAS_START;
6185 	return true;
6186 }
6187 
6188 void __init maple_tree_init(void)
6189 {
6190 	maple_node_cache = kmem_cache_create("maple_node",
6191 			sizeof(struct maple_node), sizeof(struct maple_node),
6192 			SLAB_PANIC, NULL);
6193 }
6194 
6195 /**
6196  * mtree_load() - Load a value stored in a maple tree
6197  * @mt: The maple tree
6198  * @index: The index to load
6199  *
6200  * Return: the entry or %NULL
6201  */
6202 void *mtree_load(struct maple_tree *mt, unsigned long index)
6203 {
6204 	MA_STATE(mas, mt, index, index);
6205 	void *entry;
6206 
6207 	trace_ma_read(__func__, &mas);
6208 	rcu_read_lock();
6209 retry:
6210 	entry = mas_start(&mas);
6211 	if (unlikely(mas_is_none(&mas)))
6212 		goto unlock;
6213 
6214 	if (unlikely(mas_is_ptr(&mas))) {
6215 		if (index)
6216 			entry = NULL;
6217 
6218 		goto unlock;
6219 	}
6220 
6221 	entry = mtree_lookup_walk(&mas);
6222 	if (!entry && unlikely(mas_is_start(&mas)))
6223 		goto retry;
6224 unlock:
6225 	rcu_read_unlock();
6226 	if (xa_is_zero(entry))
6227 		return NULL;
6228 
6229 	return entry;
6230 }
6231 EXPORT_SYMBOL(mtree_load);
6232 
6233 /**
6234  * mtree_store_range() - Store an entry at a given range.
6235  * @mt: The maple tree
6236  * @index: The start of the range
6237  * @last: The end of the range
6238  * @entry: The entry to store
6239  * @gfp: The GFP_FLAGS to use for allocations
6240  *
6241  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6242  * be allocated.
6243  */
6244 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6245 		unsigned long last, void *entry, gfp_t gfp)
6246 {
6247 	MA_STATE(mas, mt, index, last);
6248 	MA_WR_STATE(wr_mas, &mas, entry);
6249 
6250 	trace_ma_write(__func__, &mas, 0, entry);
6251 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6252 		return -EINVAL;
6253 
6254 	if (index > last)
6255 		return -EINVAL;
6256 
6257 	mtree_lock(mt);
6258 retry:
6259 	mas_wr_store_entry(&wr_mas);
6260 	if (mas_nomem(&mas, gfp))
6261 		goto retry;
6262 
6263 	mtree_unlock(mt);
6264 	if (mas_is_err(&mas))
6265 		return xa_err(mas.node);
6266 
6267 	return 0;
6268 }
6269 EXPORT_SYMBOL(mtree_store_range);
6270 
6271 /**
6272  * mtree_store() - Store an entry at a given index.
6273  * @mt: The maple tree
6274  * @index: The index to store the value
6275  * @entry: The entry to store
6276  * @gfp: The GFP_FLAGS to use for allocations
6277  *
6278  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6279  * be allocated.
6280  */
6281 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6282 		 gfp_t gfp)
6283 {
6284 	return mtree_store_range(mt, index, index, entry, gfp);
6285 }
6286 EXPORT_SYMBOL(mtree_store);
6287 
6288 /**
6289  * mtree_insert_range() - Insert an entry at a give range if there is no value.
6290  * @mt: The maple tree
6291  * @first: The start of the range
6292  * @last: The end of the range
6293  * @entry: The entry to store
6294  * @gfp: The GFP_FLAGS to use for allocations.
6295  *
6296  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6297  * request, -ENOMEM if memory could not be allocated.
6298  */
6299 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6300 		unsigned long last, void *entry, gfp_t gfp)
6301 {
6302 	MA_STATE(ms, mt, first, last);
6303 
6304 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6305 		return -EINVAL;
6306 
6307 	if (first > last)
6308 		return -EINVAL;
6309 
6310 	mtree_lock(mt);
6311 retry:
6312 	mas_insert(&ms, entry);
6313 	if (mas_nomem(&ms, gfp))
6314 		goto retry;
6315 
6316 	mtree_unlock(mt);
6317 	if (mas_is_err(&ms))
6318 		return xa_err(ms.node);
6319 
6320 	return 0;
6321 }
6322 EXPORT_SYMBOL(mtree_insert_range);
6323 
6324 /**
6325  * mtree_insert() - Insert an entry at a give index if there is no value.
6326  * @mt: The maple tree
6327  * @index : The index to store the value
6328  * @entry: The entry to store
6329  * @gfp: The FGP_FLAGS to use for allocations.
6330  *
6331  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6332  * request, -ENOMEM if memory could not be allocated.
6333  */
6334 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6335 		 gfp_t gfp)
6336 {
6337 	return mtree_insert_range(mt, index, index, entry, gfp);
6338 }
6339 EXPORT_SYMBOL(mtree_insert);
6340 
6341 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6342 		void *entry, unsigned long size, unsigned long min,
6343 		unsigned long max, gfp_t gfp)
6344 {
6345 	int ret = 0;
6346 
6347 	MA_STATE(mas, mt, 0, 0);
6348 	if (!mt_is_alloc(mt))
6349 		return -EINVAL;
6350 
6351 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6352 		return -EINVAL;
6353 
6354 	mtree_lock(mt);
6355 retry:
6356 	ret = mas_empty_area(&mas, min, max, size);
6357 	if (ret)
6358 		goto unlock;
6359 
6360 	mas_insert(&mas, entry);
6361 	/*
6362 	 * mas_nomem() may release the lock, causing the allocated area
6363 	 * to be unavailable, so try to allocate a free area again.
6364 	 */
6365 	if (mas_nomem(&mas, gfp))
6366 		goto retry;
6367 
6368 	if (mas_is_err(&mas))
6369 		ret = xa_err(mas.node);
6370 	else
6371 		*startp = mas.index;
6372 
6373 unlock:
6374 	mtree_unlock(mt);
6375 	return ret;
6376 }
6377 EXPORT_SYMBOL(mtree_alloc_range);
6378 
6379 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6380 		void *entry, unsigned long size, unsigned long min,
6381 		unsigned long max, gfp_t gfp)
6382 {
6383 	int ret = 0;
6384 
6385 	MA_STATE(mas, mt, 0, 0);
6386 	if (!mt_is_alloc(mt))
6387 		return -EINVAL;
6388 
6389 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6390 		return -EINVAL;
6391 
6392 	mtree_lock(mt);
6393 retry:
6394 	ret = mas_empty_area_rev(&mas, min, max, size);
6395 	if (ret)
6396 		goto unlock;
6397 
6398 	mas_insert(&mas, entry);
6399 	/*
6400 	 * mas_nomem() may release the lock, causing the allocated area
6401 	 * to be unavailable, so try to allocate a free area again.
6402 	 */
6403 	if (mas_nomem(&mas, gfp))
6404 		goto retry;
6405 
6406 	if (mas_is_err(&mas))
6407 		ret = xa_err(mas.node);
6408 	else
6409 		*startp = mas.index;
6410 
6411 unlock:
6412 	mtree_unlock(mt);
6413 	return ret;
6414 }
6415 EXPORT_SYMBOL(mtree_alloc_rrange);
6416 
6417 /**
6418  * mtree_erase() - Find an index and erase the entire range.
6419  * @mt: The maple tree
6420  * @index: The index to erase
6421  *
6422  * Erasing is the same as a walk to an entry then a store of a NULL to that
6423  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6424  *
6425  * Return: The entry stored at the @index or %NULL
6426  */
6427 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6428 {
6429 	void *entry = NULL;
6430 
6431 	MA_STATE(mas, mt, index, index);
6432 	trace_ma_op(__func__, &mas);
6433 
6434 	mtree_lock(mt);
6435 	entry = mas_erase(&mas);
6436 	mtree_unlock(mt);
6437 
6438 	return entry;
6439 }
6440 EXPORT_SYMBOL(mtree_erase);
6441 
6442 /**
6443  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6444  * @mt: The maple tree
6445  *
6446  * Note: Does not handle locking.
6447  */
6448 void __mt_destroy(struct maple_tree *mt)
6449 {
6450 	void *root = mt_root_locked(mt);
6451 
6452 	rcu_assign_pointer(mt->ma_root, NULL);
6453 	if (xa_is_node(root))
6454 		mte_destroy_walk(root, mt);
6455 
6456 	mt->ma_flags = 0;
6457 }
6458 EXPORT_SYMBOL_GPL(__mt_destroy);
6459 
6460 /**
6461  * mtree_destroy() - Destroy a maple tree
6462  * @mt: The maple tree
6463  *
6464  * Frees all resources used by the tree.  Handles locking.
6465  */
6466 void mtree_destroy(struct maple_tree *mt)
6467 {
6468 	mtree_lock(mt);
6469 	__mt_destroy(mt);
6470 	mtree_unlock(mt);
6471 }
6472 EXPORT_SYMBOL(mtree_destroy);
6473 
6474 /**
6475  * mt_find() - Search from the start up until an entry is found.
6476  * @mt: The maple tree
6477  * @index: Pointer which contains the start location of the search
6478  * @max: The maximum value to check
6479  *
6480  * Handles locking.  @index will be incremented to one beyond the range.
6481  *
6482  * Return: The entry at or after the @index or %NULL
6483  */
6484 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6485 {
6486 	MA_STATE(mas, mt, *index, *index);
6487 	void *entry;
6488 #ifdef CONFIG_DEBUG_MAPLE_TREE
6489 	unsigned long copy = *index;
6490 #endif
6491 
6492 	trace_ma_read(__func__, &mas);
6493 
6494 	if ((*index) > max)
6495 		return NULL;
6496 
6497 	rcu_read_lock();
6498 retry:
6499 	entry = mas_state_walk(&mas);
6500 	if (mas_is_start(&mas))
6501 		goto retry;
6502 
6503 	if (unlikely(xa_is_zero(entry)))
6504 		entry = NULL;
6505 
6506 	if (entry)
6507 		goto unlock;
6508 
6509 	while (mas_searchable(&mas) && (mas.last < max)) {
6510 		entry = mas_next_entry(&mas, max);
6511 		if (likely(entry && !xa_is_zero(entry)))
6512 			break;
6513 	}
6514 
6515 	if (unlikely(xa_is_zero(entry)))
6516 		entry = NULL;
6517 unlock:
6518 	rcu_read_unlock();
6519 	if (likely(entry)) {
6520 		*index = mas.last + 1;
6521 #ifdef CONFIG_DEBUG_MAPLE_TREE
6522 		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6523 			pr_err("index not increased! %lx <= %lx\n",
6524 			       *index, copy);
6525 #endif
6526 	}
6527 
6528 	return entry;
6529 }
6530 EXPORT_SYMBOL(mt_find);
6531 
6532 /**
6533  * mt_find_after() - Search from the start up until an entry is found.
6534  * @mt: The maple tree
6535  * @index: Pointer which contains the start location of the search
6536  * @max: The maximum value to check
6537  *
6538  * Handles locking, detects wrapping on index == 0
6539  *
6540  * Return: The entry at or after the @index or %NULL
6541  */
6542 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6543 		    unsigned long max)
6544 {
6545 	if (!(*index))
6546 		return NULL;
6547 
6548 	return mt_find(mt, index, max);
6549 }
6550 EXPORT_SYMBOL(mt_find_after);
6551 
6552 #ifdef CONFIG_DEBUG_MAPLE_TREE
6553 atomic_t maple_tree_tests_run;
6554 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6555 atomic_t maple_tree_tests_passed;
6556 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6557 
6558 #ifndef __KERNEL__
6559 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6560 void mt_set_non_kernel(unsigned int val)
6561 {
6562 	kmem_cache_set_non_kernel(maple_node_cache, val);
6563 }
6564 
6565 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6566 unsigned long mt_get_alloc_size(void)
6567 {
6568 	return kmem_cache_get_alloc(maple_node_cache);
6569 }
6570 
6571 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6572 void mt_zero_nr_tallocated(void)
6573 {
6574 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6575 }
6576 
6577 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6578 unsigned int mt_nr_tallocated(void)
6579 {
6580 	return kmem_cache_nr_tallocated(maple_node_cache);
6581 }
6582 
6583 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6584 unsigned int mt_nr_allocated(void)
6585 {
6586 	return kmem_cache_nr_allocated(maple_node_cache);
6587 }
6588 
6589 /*
6590  * mas_dead_node() - Check if the maple state is pointing to a dead node.
6591  * @mas: The maple state
6592  * @index: The index to restore in @mas.
6593  *
6594  * Used in test code.
6595  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6596  */
6597 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6598 {
6599 	if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6600 		return 0;
6601 
6602 	if (likely(!mte_dead_node(mas->node)))
6603 		return 0;
6604 
6605 	mas_rewalk(mas, index);
6606 	return 1;
6607 }
6608 
6609 void mt_cache_shrink(void)
6610 {
6611 }
6612 #else
6613 /*
6614  * mt_cache_shrink() - For testing, don't use this.
6615  *
6616  * Certain testcases can trigger an OOM when combined with other memory
6617  * debugging configuration options.  This function is used to reduce the
6618  * possibility of an out of memory even due to kmem_cache objects remaining
6619  * around for longer than usual.
6620  */
6621 void mt_cache_shrink(void)
6622 {
6623 	kmem_cache_shrink(maple_node_cache);
6624 
6625 }
6626 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6627 
6628 #endif /* not defined __KERNEL__ */
6629 /*
6630  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6631  * @mas: The maple state
6632  * @offset: The offset into the slot array to fetch.
6633  *
6634  * Return: The entry stored at @offset.
6635  */
6636 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6637 		unsigned char offset)
6638 {
6639 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6640 			offset);
6641 }
6642 
6643 
6644 /*
6645  * mas_first_entry() - Go the first leaf and find the first entry.
6646  * @mas: the maple state.
6647  * @limit: the maximum index to check.
6648  * @*r_start: Pointer to set to the range start.
6649  *
6650  * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6651  *
6652  * Return: The first entry or MAS_NONE.
6653  */
6654 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6655 		unsigned long limit, enum maple_type mt)
6656 
6657 {
6658 	unsigned long max;
6659 	unsigned long *pivots;
6660 	void __rcu **slots;
6661 	void *entry = NULL;
6662 
6663 	mas->index = mas->min;
6664 	if (mas->index > limit)
6665 		goto none;
6666 
6667 	max = mas->max;
6668 	mas->offset = 0;
6669 	while (likely(!ma_is_leaf(mt))) {
6670 		MAS_WARN_ON(mas, mte_dead_node(mas->node));
6671 		slots = ma_slots(mn, mt);
6672 		entry = mas_slot(mas, slots, 0);
6673 		pivots = ma_pivots(mn, mt);
6674 		if (unlikely(ma_dead_node(mn)))
6675 			return NULL;
6676 		max = pivots[0];
6677 		mas->node = entry;
6678 		mn = mas_mn(mas);
6679 		mt = mte_node_type(mas->node);
6680 	}
6681 	MAS_WARN_ON(mas, mte_dead_node(mas->node));
6682 
6683 	mas->max = max;
6684 	slots = ma_slots(mn, mt);
6685 	entry = mas_slot(mas, slots, 0);
6686 	if (unlikely(ma_dead_node(mn)))
6687 		return NULL;
6688 
6689 	/* Slot 0 or 1 must be set */
6690 	if (mas->index > limit)
6691 		goto none;
6692 
6693 	if (likely(entry))
6694 		return entry;
6695 
6696 	mas->offset = 1;
6697 	entry = mas_slot(mas, slots, 1);
6698 	pivots = ma_pivots(mn, mt);
6699 	if (unlikely(ma_dead_node(mn)))
6700 		return NULL;
6701 
6702 	mas->index = pivots[0] + 1;
6703 	if (mas->index > limit)
6704 		goto none;
6705 
6706 	if (likely(entry))
6707 		return entry;
6708 
6709 none:
6710 	if (likely(!ma_dead_node(mn)))
6711 		mas->node = MAS_NONE;
6712 	return NULL;
6713 }
6714 
6715 /* Depth first search, post-order */
6716 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6717 {
6718 
6719 	struct maple_enode *p = MAS_NONE, *mn = mas->node;
6720 	unsigned long p_min, p_max;
6721 
6722 	mas_next_node(mas, mas_mn(mas), max);
6723 	if (!mas_is_none(mas))
6724 		return;
6725 
6726 	if (mte_is_root(mn))
6727 		return;
6728 
6729 	mas->node = mn;
6730 	mas_ascend(mas);
6731 	do {
6732 		p = mas->node;
6733 		p_min = mas->min;
6734 		p_max = mas->max;
6735 		mas_prev_node(mas, 0);
6736 	} while (!mas_is_none(mas));
6737 
6738 	mas->node = p;
6739 	mas->max = p_max;
6740 	mas->min = p_min;
6741 }
6742 
6743 /* Tree validations */
6744 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6745 		unsigned long min, unsigned long max, unsigned int depth,
6746 		enum mt_dump_format format);
6747 static void mt_dump_range(unsigned long min, unsigned long max,
6748 			  unsigned int depth, enum mt_dump_format format)
6749 {
6750 	static const char spaces[] = "                                ";
6751 
6752 	switch(format) {
6753 	case mt_dump_hex:
6754 		if (min == max)
6755 			pr_info("%.*s%lx: ", depth * 2, spaces, min);
6756 		else
6757 			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
6758 		break;
6759 	default:
6760 	case mt_dump_dec:
6761 		if (min == max)
6762 			pr_info("%.*s%lu: ", depth * 2, spaces, min);
6763 		else
6764 			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6765 	}
6766 }
6767 
6768 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6769 			  unsigned int depth, enum mt_dump_format format)
6770 {
6771 	mt_dump_range(min, max, depth, format);
6772 
6773 	if (xa_is_value(entry))
6774 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6775 				xa_to_value(entry), entry);
6776 	else if (xa_is_zero(entry))
6777 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
6778 	else if (mt_is_reserved(entry))
6779 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6780 	else
6781 		pr_cont("%p\n", entry);
6782 }
6783 
6784 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6785 		unsigned long min, unsigned long max, unsigned int depth,
6786 		enum mt_dump_format format)
6787 {
6788 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6789 	bool leaf = mte_is_leaf(entry);
6790 	unsigned long first = min;
6791 	int i;
6792 
6793 	pr_cont(" contents: ");
6794 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
6795 		switch(format) {
6796 		case mt_dump_hex:
6797 			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6798 			break;
6799 		default:
6800 		case mt_dump_dec:
6801 			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6802 		}
6803 	}
6804 	pr_cont("%p\n", node->slot[i]);
6805 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6806 		unsigned long last = max;
6807 
6808 		if (i < (MAPLE_RANGE64_SLOTS - 1))
6809 			last = node->pivot[i];
6810 		else if (!node->slot[i] && max != mt_node_max(entry))
6811 			break;
6812 		if (last == 0 && i > 0)
6813 			break;
6814 		if (leaf)
6815 			mt_dump_entry(mt_slot(mt, node->slot, i),
6816 					first, last, depth + 1, format);
6817 		else if (node->slot[i])
6818 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6819 					first, last, depth + 1, format);
6820 
6821 		if (last == max)
6822 			break;
6823 		if (last > max) {
6824 			switch(format) {
6825 			case mt_dump_hex:
6826 				pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
6827 					node, last, max, i);
6828 				break;
6829 			default:
6830 			case mt_dump_dec:
6831 				pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6832 					node, last, max, i);
6833 			}
6834 		}
6835 		first = last + 1;
6836 	}
6837 }
6838 
6839 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6840 	unsigned long min, unsigned long max, unsigned int depth,
6841 	enum mt_dump_format format)
6842 {
6843 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6844 	bool leaf = mte_is_leaf(entry);
6845 	unsigned long first = min;
6846 	int i;
6847 
6848 	pr_cont(" contents: ");
6849 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6850 		pr_cont("%lu ", node->gap[i]);
6851 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6852 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6853 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6854 	pr_cont("%p\n", node->slot[i]);
6855 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6856 		unsigned long last = max;
6857 
6858 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
6859 			last = node->pivot[i];
6860 		else if (!node->slot[i])
6861 			break;
6862 		if (last == 0 && i > 0)
6863 			break;
6864 		if (leaf)
6865 			mt_dump_entry(mt_slot(mt, node->slot, i),
6866 					first, last, depth + 1, format);
6867 		else if (node->slot[i])
6868 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6869 					first, last, depth + 1, format);
6870 
6871 		if (last == max)
6872 			break;
6873 		if (last > max) {
6874 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6875 					node, last, max, i);
6876 			break;
6877 		}
6878 		first = last + 1;
6879 	}
6880 }
6881 
6882 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6883 		unsigned long min, unsigned long max, unsigned int depth,
6884 		enum mt_dump_format format)
6885 {
6886 	struct maple_node *node = mte_to_node(entry);
6887 	unsigned int type = mte_node_type(entry);
6888 	unsigned int i;
6889 
6890 	mt_dump_range(min, max, depth, format);
6891 
6892 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6893 			node ? node->parent : NULL);
6894 	switch (type) {
6895 	case maple_dense:
6896 		pr_cont("\n");
6897 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6898 			if (min + i > max)
6899 				pr_cont("OUT OF RANGE: ");
6900 			mt_dump_entry(mt_slot(mt, node->slot, i),
6901 					min + i, min + i, depth, format);
6902 		}
6903 		break;
6904 	case maple_leaf_64:
6905 	case maple_range_64:
6906 		mt_dump_range64(mt, entry, min, max, depth, format);
6907 		break;
6908 	case maple_arange_64:
6909 		mt_dump_arange64(mt, entry, min, max, depth, format);
6910 		break;
6911 
6912 	default:
6913 		pr_cont(" UNKNOWN TYPE\n");
6914 	}
6915 }
6916 
6917 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
6918 {
6919 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6920 
6921 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6922 		 mt, mt->ma_flags, mt_height(mt), entry);
6923 	if (!xa_is_node(entry))
6924 		mt_dump_entry(entry, 0, 0, 0, format);
6925 	else if (entry)
6926 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
6927 }
6928 EXPORT_SYMBOL_GPL(mt_dump);
6929 
6930 /*
6931  * Calculate the maximum gap in a node and check if that's what is reported in
6932  * the parent (unless root).
6933  */
6934 static void mas_validate_gaps(struct ma_state *mas)
6935 {
6936 	struct maple_enode *mte = mas->node;
6937 	struct maple_node *p_mn;
6938 	unsigned long gap = 0, max_gap = 0;
6939 	unsigned long p_end, p_start = mas->min;
6940 	unsigned char p_slot;
6941 	unsigned long *gaps = NULL;
6942 	unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6943 	int i;
6944 
6945 	if (ma_is_dense(mte_node_type(mte))) {
6946 		for (i = 0; i < mt_slot_count(mte); i++) {
6947 			if (mas_get_slot(mas, i)) {
6948 				if (gap > max_gap)
6949 					max_gap = gap;
6950 				gap = 0;
6951 				continue;
6952 			}
6953 			gap++;
6954 		}
6955 		goto counted;
6956 	}
6957 
6958 	gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6959 	for (i = 0; i < mt_slot_count(mte); i++) {
6960 		p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6961 
6962 		if (!gaps) {
6963 			if (mas_get_slot(mas, i)) {
6964 				gap = 0;
6965 				goto not_empty;
6966 			}
6967 
6968 			gap += p_end - p_start + 1;
6969 		} else {
6970 			void *entry = mas_get_slot(mas, i);
6971 
6972 			gap = gaps[i];
6973 			if (!entry) {
6974 				if (gap != p_end - p_start + 1) {
6975 					pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6976 						mas_mn(mas), i,
6977 						mas_get_slot(mas, i), gap,
6978 						p_end, p_start);
6979 					mt_dump(mas->tree, mt_dump_hex);
6980 
6981 					MT_BUG_ON(mas->tree,
6982 						gap != p_end - p_start + 1);
6983 				}
6984 			} else {
6985 				if (gap > p_end - p_start + 1) {
6986 					pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6987 					mas_mn(mas), i, gap, p_end, p_start,
6988 					p_end - p_start + 1);
6989 					MT_BUG_ON(mas->tree,
6990 						gap > p_end - p_start + 1);
6991 				}
6992 			}
6993 		}
6994 
6995 		if (gap > max_gap)
6996 			max_gap = gap;
6997 not_empty:
6998 		p_start = p_end + 1;
6999 		if (p_end >= mas->max)
7000 			break;
7001 	}
7002 
7003 counted:
7004 	if (mte_is_root(mte))
7005 		return;
7006 
7007 	p_slot = mte_parent_slot(mas->node);
7008 	p_mn = mte_parent(mte);
7009 	MT_BUG_ON(mas->tree, max_gap > mas->max);
7010 	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7011 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7012 		mt_dump(mas->tree, mt_dump_hex);
7013 	}
7014 
7015 	MT_BUG_ON(mas->tree,
7016 		  ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap);
7017 }
7018 
7019 static void mas_validate_parent_slot(struct ma_state *mas)
7020 {
7021 	struct maple_node *parent;
7022 	struct maple_enode *node;
7023 	enum maple_type p_type;
7024 	unsigned char p_slot;
7025 	void __rcu **slots;
7026 	int i;
7027 
7028 	if (mte_is_root(mas->node))
7029 		return;
7030 
7031 	p_slot = mte_parent_slot(mas->node);
7032 	p_type = mas_parent_type(mas, mas->node);
7033 	parent = mte_parent(mas->node);
7034 	slots = ma_slots(parent, p_type);
7035 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7036 
7037 	/* Check prev/next parent slot for duplicate node entry */
7038 
7039 	for (i = 0; i < mt_slots[p_type]; i++) {
7040 		node = mas_slot(mas, slots, i);
7041 		if (i == p_slot) {
7042 			if (node != mas->node)
7043 				pr_err("parent %p[%u] does not have %p\n",
7044 					parent, i, mas_mn(mas));
7045 			MT_BUG_ON(mas->tree, node != mas->node);
7046 		} else if (node == mas->node) {
7047 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7048 			       mas_mn(mas), parent, i, p_slot);
7049 			MT_BUG_ON(mas->tree, node == mas->node);
7050 		}
7051 	}
7052 }
7053 
7054 static void mas_validate_child_slot(struct ma_state *mas)
7055 {
7056 	enum maple_type type = mte_node_type(mas->node);
7057 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7058 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7059 	struct maple_enode *child;
7060 	unsigned char i;
7061 
7062 	if (mte_is_leaf(mas->node))
7063 		return;
7064 
7065 	for (i = 0; i < mt_slots[type]; i++) {
7066 		child = mas_slot(mas, slots, i);
7067 		if (!pivots[i] || pivots[i] == mas->max)
7068 			break;
7069 
7070 		if (!child)
7071 			break;
7072 
7073 		if (mte_parent_slot(child) != i) {
7074 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7075 			       mas_mn(mas), i, mte_to_node(child),
7076 			       mte_parent_slot(child));
7077 			MT_BUG_ON(mas->tree, 1);
7078 		}
7079 
7080 		if (mte_parent(child) != mte_to_node(mas->node)) {
7081 			pr_err("child %p has parent %p not %p\n",
7082 			       mte_to_node(child), mte_parent(child),
7083 			       mte_to_node(mas->node));
7084 			MT_BUG_ON(mas->tree, 1);
7085 		}
7086 	}
7087 }
7088 
7089 /*
7090  * Validate all pivots are within mas->min and mas->max.
7091  */
7092 static void mas_validate_limits(struct ma_state *mas)
7093 {
7094 	int i;
7095 	unsigned long prev_piv = 0;
7096 	enum maple_type type = mte_node_type(mas->node);
7097 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7098 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7099 
7100 	/* all limits are fine here. */
7101 	if (mte_is_root(mas->node))
7102 		return;
7103 
7104 	for (i = 0; i < mt_slots[type]; i++) {
7105 		unsigned long piv;
7106 
7107 		piv = mas_safe_pivot(mas, pivots, i, type);
7108 
7109 		if (!piv && (i != 0))
7110 			break;
7111 
7112 		if (!mte_is_leaf(mas->node)) {
7113 			void *entry = mas_slot(mas, slots, i);
7114 
7115 			if (!entry)
7116 				pr_err("%p[%u] cannot be null\n",
7117 				       mas_mn(mas), i);
7118 
7119 			MT_BUG_ON(mas->tree, !entry);
7120 		}
7121 
7122 		if (prev_piv > piv) {
7123 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7124 				mas_mn(mas), i, piv, prev_piv);
7125 			MAS_WARN_ON(mas, piv < prev_piv);
7126 		}
7127 
7128 		if (piv < mas->min) {
7129 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7130 				piv, mas->min);
7131 			MAS_WARN_ON(mas, piv < mas->min);
7132 		}
7133 		if (piv > mas->max) {
7134 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7135 				piv, mas->max);
7136 			MAS_WARN_ON(mas, piv > mas->max);
7137 		}
7138 		prev_piv = piv;
7139 		if (piv == mas->max)
7140 			break;
7141 	}
7142 	for (i += 1; i < mt_slots[type]; i++) {
7143 		void *entry = mas_slot(mas, slots, i);
7144 
7145 		if (entry && (i != mt_slots[type] - 1)) {
7146 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7147 			       i, entry);
7148 			MT_BUG_ON(mas->tree, entry != NULL);
7149 		}
7150 
7151 		if (i < mt_pivots[type]) {
7152 			unsigned long piv = pivots[i];
7153 
7154 			if (!piv)
7155 				continue;
7156 
7157 			pr_err("%p[%u] should not have piv %lu\n",
7158 			       mas_mn(mas), i, piv);
7159 			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7160 		}
7161 	}
7162 }
7163 
7164 static void mt_validate_nulls(struct maple_tree *mt)
7165 {
7166 	void *entry, *last = (void *)1;
7167 	unsigned char offset = 0;
7168 	void __rcu **slots;
7169 	MA_STATE(mas, mt, 0, 0);
7170 
7171 	mas_start(&mas);
7172 	if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7173 		return;
7174 
7175 	while (!mte_is_leaf(mas.node))
7176 		mas_descend(&mas);
7177 
7178 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7179 	do {
7180 		entry = mas_slot(&mas, slots, offset);
7181 		if (!last && !entry) {
7182 			pr_err("Sequential nulls end at %p[%u]\n",
7183 				mas_mn(&mas), offset);
7184 		}
7185 		MT_BUG_ON(mt, !last && !entry);
7186 		last = entry;
7187 		if (offset == mas_data_end(&mas)) {
7188 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7189 			if (mas_is_none(&mas))
7190 				return;
7191 			offset = 0;
7192 			slots = ma_slots(mte_to_node(mas.node),
7193 					 mte_node_type(mas.node));
7194 		} else {
7195 			offset++;
7196 		}
7197 
7198 	} while (!mas_is_none(&mas));
7199 }
7200 
7201 /*
7202  * validate a maple tree by checking:
7203  * 1. The limits (pivots are within mas->min to mas->max)
7204  * 2. The gap is correctly set in the parents
7205  */
7206 void mt_validate(struct maple_tree *mt)
7207 {
7208 	unsigned char end;
7209 
7210 	MA_STATE(mas, mt, 0, 0);
7211 	rcu_read_lock();
7212 	mas_start(&mas);
7213 	if (!mas_searchable(&mas))
7214 		goto done;
7215 
7216 	mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7217 	while (!mas_is_none(&mas)) {
7218 		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7219 		if (!mte_is_root(mas.node)) {
7220 			end = mas_data_end(&mas);
7221 			if (MAS_WARN_ON(&mas,
7222 					(end < mt_min_slot_count(mas.node)) &&
7223 					(mas.max != ULONG_MAX))) {
7224 				pr_err("Invalid size %u of %p\n", end,
7225 				       mas_mn(&mas));
7226 			}
7227 		}
7228 		mas_validate_parent_slot(&mas);
7229 		mas_validate_child_slot(&mas);
7230 		mas_validate_limits(&mas);
7231 		if (mt_is_alloc(mt))
7232 			mas_validate_gaps(&mas);
7233 		mas_dfs_postorder(&mas, ULONG_MAX);
7234 	}
7235 	mt_validate_nulls(mt);
7236 done:
7237 	rcu_read_unlock();
7238 
7239 }
7240 EXPORT_SYMBOL_GPL(mt_validate);
7241 
7242 void mas_dump(const struct ma_state *mas)
7243 {
7244 	pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7245 	if (mas_is_none(mas))
7246 		pr_err("(MAS_NONE) ");
7247 	else if (mas_is_ptr(mas))
7248 		pr_err("(MAS_ROOT) ");
7249 	else if (mas_is_start(mas))
7250 		 pr_err("(MAS_START) ");
7251 	else if (mas_is_paused(mas))
7252 		pr_err("(MAS_PAUSED) ");
7253 
7254 	pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last);
7255 	pr_err("     min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7256 	       mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7257 	if (mas->index > mas->last)
7258 		pr_err("Check index & last\n");
7259 }
7260 EXPORT_SYMBOL_GPL(mas_dump);
7261 
7262 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7263 {
7264 	pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7265 	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7266 	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7267 	       wr_mas->type, wr_mas->offset_end, wr_mas->node_end,
7268 	       wr_mas->end_piv);
7269 }
7270 EXPORT_SYMBOL_GPL(mas_wr_dump);
7271 
7272 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7273