1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 */ 8 9 /* 10 * DOC: Interesting implementation details of the Maple Tree 11 * 12 * Each node type has a number of slots for entries and a number of slots for 13 * pivots. In the case of dense nodes, the pivots are implied by the position 14 * and are simply the slot index + the minimum of the node. 15 * 16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 17 * indicate that the tree is specifying ranges, Pivots may appear in the 18 * subtree with an entry attached to the value where as keys are unique to a 19 * specific position of a B-tree. Pivot values are inclusive of the slot with 20 * the same index. 21 * 22 * 23 * The following illustrates the layout of a range64 nodes slots and pivots. 24 * 25 * 26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 28 * │ │ │ │ │ │ │ │ └─ Implied maximum 29 * │ │ │ │ │ │ │ └─ Pivot 14 30 * │ │ │ │ │ │ └─ Pivot 13 31 * │ │ │ │ │ └─ Pivot 12 32 * │ │ │ │ └─ Pivot 11 33 * │ │ │ └─ Pivot 2 34 * │ │ └─ Pivot 1 35 * │ └─ Pivot 0 36 * └─ Implied minimum 37 * 38 * Slot contents: 39 * Internal (non-leaf) nodes contain pointers to other nodes. 40 * Leaf nodes contain entries. 41 * 42 * The location of interest is often referred to as an offset. All offsets have 43 * a slot, but the last offset has an implied pivot from the node above (or 44 * UINT_MAX for the root node. 45 * 46 * Ranges complicate certain write activities. When modifying any of 47 * the B-tree variants, it is known that one entry will either be added or 48 * deleted. When modifying the Maple Tree, one store operation may overwrite 49 * the entire data set, or one half of the tree, or the middle half of the tree. 50 * 51 */ 52 53 54 #include <linux/maple_tree.h> 55 #include <linux/xarray.h> 56 #include <linux/types.h> 57 #include <linux/export.h> 58 #include <linux/slab.h> 59 #include <linux/limits.h> 60 #include <asm/barrier.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/maple_tree.h> 64 65 #define MA_ROOT_PARENT 1 66 67 /* 68 * Maple state flags 69 * * MA_STATE_BULK - Bulk insert mode 70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 72 */ 73 #define MA_STATE_BULK 1 74 #define MA_STATE_REBALANCE 2 75 #define MA_STATE_PREALLOC 4 76 77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 78 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 79 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 80 static struct kmem_cache *maple_node_cache; 81 82 #ifdef CONFIG_DEBUG_MAPLE_TREE 83 static const unsigned long mt_max[] = { 84 [maple_dense] = MAPLE_NODE_SLOTS, 85 [maple_leaf_64] = ULONG_MAX, 86 [maple_range_64] = ULONG_MAX, 87 [maple_arange_64] = ULONG_MAX, 88 }; 89 #define mt_node_max(x) mt_max[mte_node_type(x)] 90 #endif 91 92 static const unsigned char mt_slots[] = { 93 [maple_dense] = MAPLE_NODE_SLOTS, 94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 95 [maple_range_64] = MAPLE_RANGE64_SLOTS, 96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 97 }; 98 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 99 100 static const unsigned char mt_pivots[] = { 101 [maple_dense] = 0, 102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 105 }; 106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 107 108 static const unsigned char mt_min_slots[] = { 109 [maple_dense] = MAPLE_NODE_SLOTS / 2, 110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 113 }; 114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 115 116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 118 119 struct maple_big_node { 120 struct maple_pnode *parent; 121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 122 union { 123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 124 struct { 125 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 126 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 127 }; 128 }; 129 unsigned char b_end; 130 enum maple_type type; 131 }; 132 133 /* 134 * The maple_subtree_state is used to build a tree to replace a segment of an 135 * existing tree in a more atomic way. Any walkers of the older tree will hit a 136 * dead node and restart on updates. 137 */ 138 struct maple_subtree_state { 139 struct ma_state *orig_l; /* Original left side of subtree */ 140 struct ma_state *orig_r; /* Original right side of subtree */ 141 struct ma_state *l; /* New left side of subtree */ 142 struct ma_state *m; /* New middle of subtree (rare) */ 143 struct ma_state *r; /* New right side of subtree */ 144 struct ma_topiary *free; /* nodes to be freed */ 145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 146 struct maple_big_node *bn; 147 }; 148 149 /* Functions */ 150 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 151 { 152 return kmem_cache_alloc(maple_node_cache, gfp | __GFP_ZERO); 153 } 154 155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 156 { 157 return kmem_cache_alloc_bulk(maple_node_cache, gfp | __GFP_ZERO, size, 158 nodes); 159 } 160 161 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 162 { 163 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 164 } 165 166 static void mt_free_rcu(struct rcu_head *head) 167 { 168 struct maple_node *node = container_of(head, struct maple_node, rcu); 169 170 kmem_cache_free(maple_node_cache, node); 171 } 172 173 /* 174 * ma_free_rcu() - Use rcu callback to free a maple node 175 * @node: The node to free 176 * 177 * The maple tree uses the parent pointer to indicate this node is no longer in 178 * use and will be freed. 179 */ 180 static void ma_free_rcu(struct maple_node *node) 181 { 182 node->parent = ma_parent_ptr(node); 183 call_rcu(&node->rcu, mt_free_rcu); 184 } 185 186 187 static void mas_set_height(struct ma_state *mas) 188 { 189 unsigned int new_flags = mas->tree->ma_flags; 190 191 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 192 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX); 193 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 194 mas->tree->ma_flags = new_flags; 195 } 196 197 static unsigned int mas_mt_height(struct ma_state *mas) 198 { 199 return mt_height(mas->tree); 200 } 201 202 static inline enum maple_type mte_node_type(const struct maple_enode *entry) 203 { 204 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 205 MAPLE_NODE_TYPE_MASK; 206 } 207 208 static inline bool ma_is_dense(const enum maple_type type) 209 { 210 return type < maple_leaf_64; 211 } 212 213 static inline bool ma_is_leaf(const enum maple_type type) 214 { 215 return type < maple_range_64; 216 } 217 218 static inline bool mte_is_leaf(const struct maple_enode *entry) 219 { 220 return ma_is_leaf(mte_node_type(entry)); 221 } 222 223 /* 224 * We also reserve values with the bottom two bits set to '10' which are 225 * below 4096 226 */ 227 static inline bool mt_is_reserved(const void *entry) 228 { 229 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 230 xa_is_internal(entry); 231 } 232 233 static inline void mas_set_err(struct ma_state *mas, long err) 234 { 235 mas->node = MA_ERROR(err); 236 } 237 238 static inline bool mas_is_ptr(struct ma_state *mas) 239 { 240 return mas->node == MAS_ROOT; 241 } 242 243 static inline bool mas_is_start(struct ma_state *mas) 244 { 245 return mas->node == MAS_START; 246 } 247 248 bool mas_is_err(struct ma_state *mas) 249 { 250 return xa_is_err(mas->node); 251 } 252 253 static inline bool mas_searchable(struct ma_state *mas) 254 { 255 if (mas_is_none(mas)) 256 return false; 257 258 if (mas_is_ptr(mas)) 259 return false; 260 261 return true; 262 } 263 264 static inline struct maple_node *mte_to_node(const struct maple_enode *entry) 265 { 266 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 267 } 268 269 /* 270 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 271 * @entry: The maple encoded node 272 * 273 * Return: a maple topiary pointer 274 */ 275 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 276 { 277 return (struct maple_topiary *) 278 ((unsigned long)entry & ~MAPLE_NODE_MASK); 279 } 280 281 /* 282 * mas_mn() - Get the maple state node. 283 * @mas: The maple state 284 * 285 * Return: the maple node (not encoded - bare pointer). 286 */ 287 static inline struct maple_node *mas_mn(const struct ma_state *mas) 288 { 289 return mte_to_node(mas->node); 290 } 291 292 /* 293 * mte_set_node_dead() - Set a maple encoded node as dead. 294 * @mn: The maple encoded node. 295 */ 296 static inline void mte_set_node_dead(struct maple_enode *mn) 297 { 298 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 299 smp_wmb(); /* Needed for RCU */ 300 } 301 302 /* Bit 1 indicates the root is a node */ 303 #define MAPLE_ROOT_NODE 0x02 304 /* maple_type stored bit 3-6 */ 305 #define MAPLE_ENODE_TYPE_SHIFT 0x03 306 /* Bit 2 means a NULL somewhere below */ 307 #define MAPLE_ENODE_NULL 0x04 308 309 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 310 enum maple_type type) 311 { 312 return (void *)((unsigned long)node | 313 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 314 } 315 316 static inline void *mte_mk_root(const struct maple_enode *node) 317 { 318 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 319 } 320 321 static inline void *mte_safe_root(const struct maple_enode *node) 322 { 323 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 324 } 325 326 static inline void *mte_set_full(const struct maple_enode *node) 327 { 328 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 329 } 330 331 static inline void *mte_clear_full(const struct maple_enode *node) 332 { 333 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 334 } 335 336 static inline bool mte_has_null(const struct maple_enode *node) 337 { 338 return (unsigned long)node & MAPLE_ENODE_NULL; 339 } 340 341 static inline bool ma_is_root(struct maple_node *node) 342 { 343 return ((unsigned long)node->parent & MA_ROOT_PARENT); 344 } 345 346 static inline bool mte_is_root(const struct maple_enode *node) 347 { 348 return ma_is_root(mte_to_node(node)); 349 } 350 351 static inline bool mas_is_root_limits(const struct ma_state *mas) 352 { 353 return !mas->min && mas->max == ULONG_MAX; 354 } 355 356 static inline bool mt_is_alloc(struct maple_tree *mt) 357 { 358 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 359 } 360 361 /* 362 * The Parent Pointer 363 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 364 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 365 * bit values need an extra bit to store the offset. This extra bit comes from 366 * a reuse of the last bit in the node type. This is possible by using bit 1 to 367 * indicate if bit 2 is part of the type or the slot. 368 * 369 * Note types: 370 * 0x??1 = Root 371 * 0x?00 = 16 bit nodes 372 * 0x010 = 32 bit nodes 373 * 0x110 = 64 bit nodes 374 * 375 * Slot size and alignment 376 * 0b??1 : Root 377 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 378 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 379 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 380 */ 381 382 #define MAPLE_PARENT_ROOT 0x01 383 384 #define MAPLE_PARENT_SLOT_SHIFT 0x03 385 #define MAPLE_PARENT_SLOT_MASK 0xF8 386 387 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 388 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 389 390 #define MAPLE_PARENT_RANGE64 0x06 391 #define MAPLE_PARENT_RANGE32 0x04 392 #define MAPLE_PARENT_NOT_RANGE16 0x02 393 394 /* 395 * mte_parent_shift() - Get the parent shift for the slot storage. 396 * @parent: The parent pointer cast as an unsigned long 397 * Return: The shift into that pointer to the star to of the slot 398 */ 399 static inline unsigned long mte_parent_shift(unsigned long parent) 400 { 401 /* Note bit 1 == 0 means 16B */ 402 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 403 return MAPLE_PARENT_SLOT_SHIFT; 404 405 return MAPLE_PARENT_16B_SLOT_SHIFT; 406 } 407 408 /* 409 * mte_parent_slot_mask() - Get the slot mask for the parent. 410 * @parent: The parent pointer cast as an unsigned long. 411 * Return: The slot mask for that parent. 412 */ 413 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 414 { 415 /* Note bit 1 == 0 means 16B */ 416 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 417 return MAPLE_PARENT_SLOT_MASK; 418 419 return MAPLE_PARENT_16B_SLOT_MASK; 420 } 421 422 /* 423 * mas_parent_enum() - Return the maple_type of the parent from the stored 424 * parent type. 425 * @mas: The maple state 426 * @node: The maple_enode to extract the parent's enum 427 * Return: The node->parent maple_type 428 */ 429 static inline 430 enum maple_type mte_parent_enum(struct maple_enode *p_enode, 431 struct maple_tree *mt) 432 { 433 unsigned long p_type; 434 435 p_type = (unsigned long)p_enode; 436 if (p_type & MAPLE_PARENT_ROOT) 437 return 0; /* Validated in the caller. */ 438 439 p_type &= MAPLE_NODE_MASK; 440 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type)); 441 442 switch (p_type) { 443 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 444 if (mt_is_alloc(mt)) 445 return maple_arange_64; 446 return maple_range_64; 447 } 448 449 return 0; 450 } 451 452 static inline 453 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode) 454 { 455 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree); 456 } 457 458 /* 459 * mte_set_parent() - Set the parent node and encode the slot 460 * @enode: The encoded maple node. 461 * @parent: The encoded maple node that is the parent of @enode. 462 * @slot: The slot that @enode resides in @parent. 463 * 464 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 465 * parent type. 466 */ 467 static inline 468 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent, 469 unsigned char slot) 470 { 471 unsigned long val = (unsigned long) parent; 472 unsigned long shift; 473 unsigned long type; 474 enum maple_type p_type = mte_node_type(parent); 475 476 BUG_ON(p_type == maple_dense); 477 BUG_ON(p_type == maple_leaf_64); 478 479 switch (p_type) { 480 case maple_range_64: 481 case maple_arange_64: 482 shift = MAPLE_PARENT_SLOT_SHIFT; 483 type = MAPLE_PARENT_RANGE64; 484 break; 485 default: 486 case maple_dense: 487 case maple_leaf_64: 488 shift = type = 0; 489 break; 490 } 491 492 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 493 val |= (slot << shift) | type; 494 mte_to_node(enode)->parent = ma_parent_ptr(val); 495 } 496 497 /* 498 * mte_parent_slot() - get the parent slot of @enode. 499 * @enode: The encoded maple node. 500 * 501 * Return: The slot in the parent node where @enode resides. 502 */ 503 static inline unsigned int mte_parent_slot(const struct maple_enode *enode) 504 { 505 unsigned long val = (unsigned long) mte_to_node(enode)->parent; 506 507 /* Root. */ 508 if (val & 1) 509 return 0; 510 511 /* 512 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 513 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 514 */ 515 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 516 } 517 518 /* 519 * mte_parent() - Get the parent of @node. 520 * @node: The encoded maple node. 521 * 522 * Return: The parent maple node. 523 */ 524 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 525 { 526 return (void *)((unsigned long) 527 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 528 } 529 530 /* 531 * ma_dead_node() - check if the @enode is dead. 532 * @enode: The encoded maple node 533 * 534 * Return: true if dead, false otherwise. 535 */ 536 static inline bool ma_dead_node(const struct maple_node *node) 537 { 538 struct maple_node *parent = (void *)((unsigned long) 539 node->parent & ~MAPLE_NODE_MASK); 540 541 return (parent == node); 542 } 543 /* 544 * mte_dead_node() - check if the @enode is dead. 545 * @enode: The encoded maple node 546 * 547 * Return: true if dead, false otherwise. 548 */ 549 static inline bool mte_dead_node(const struct maple_enode *enode) 550 { 551 struct maple_node *parent, *node; 552 553 node = mte_to_node(enode); 554 parent = mte_parent(enode); 555 return (parent == node); 556 } 557 558 /* 559 * mas_allocated() - Get the number of nodes allocated in a maple state. 560 * @mas: The maple state 561 * 562 * The ma_state alloc member is overloaded to hold a pointer to the first 563 * allocated node or to the number of requested nodes to allocate. If bit 0 is 564 * set, then the alloc contains the number of requested nodes. If there is an 565 * allocated node, then the total allocated nodes is in that node. 566 * 567 * Return: The total number of nodes allocated 568 */ 569 static inline unsigned long mas_allocated(const struct ma_state *mas) 570 { 571 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 572 return 0; 573 574 return mas->alloc->total; 575 } 576 577 /* 578 * mas_set_alloc_req() - Set the requested number of allocations. 579 * @mas: the maple state 580 * @count: the number of allocations. 581 * 582 * The requested number of allocations is either in the first allocated node, 583 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 584 * no allocated node. Set the request either in the node or do the necessary 585 * encoding to store in @mas->alloc directly. 586 */ 587 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 588 { 589 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 590 if (!count) 591 mas->alloc = NULL; 592 else 593 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 594 return; 595 } 596 597 mas->alloc->request_count = count; 598 } 599 600 /* 601 * mas_alloc_req() - get the requested number of allocations. 602 * @mas: The maple state 603 * 604 * The alloc count is either stored directly in @mas, or in 605 * @mas->alloc->request_count if there is at least one node allocated. Decode 606 * the request count if it's stored directly in @mas->alloc. 607 * 608 * Return: The allocation request count. 609 */ 610 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 611 { 612 if ((unsigned long)mas->alloc & 0x1) 613 return (unsigned long)(mas->alloc) >> 1; 614 else if (mas->alloc) 615 return mas->alloc->request_count; 616 return 0; 617 } 618 619 /* 620 * ma_pivots() - Get a pointer to the maple node pivots. 621 * @node - the maple node 622 * @type - the node type 623 * 624 * Return: A pointer to the maple node pivots 625 */ 626 static inline unsigned long *ma_pivots(struct maple_node *node, 627 enum maple_type type) 628 { 629 switch (type) { 630 case maple_arange_64: 631 return node->ma64.pivot; 632 case maple_range_64: 633 case maple_leaf_64: 634 return node->mr64.pivot; 635 case maple_dense: 636 return NULL; 637 } 638 return NULL; 639 } 640 641 /* 642 * ma_gaps() - Get a pointer to the maple node gaps. 643 * @node - the maple node 644 * @type - the node type 645 * 646 * Return: A pointer to the maple node gaps 647 */ 648 static inline unsigned long *ma_gaps(struct maple_node *node, 649 enum maple_type type) 650 { 651 switch (type) { 652 case maple_arange_64: 653 return node->ma64.gap; 654 case maple_range_64: 655 case maple_leaf_64: 656 case maple_dense: 657 return NULL; 658 } 659 return NULL; 660 } 661 662 /* 663 * mte_pivot() - Get the pivot at @piv of the maple encoded node. 664 * @mn: The maple encoded node. 665 * @piv: The pivot. 666 * 667 * Return: the pivot at @piv of @mn. 668 */ 669 static inline unsigned long mte_pivot(const struct maple_enode *mn, 670 unsigned char piv) 671 { 672 struct maple_node *node = mte_to_node(mn); 673 enum maple_type type = mte_node_type(mn); 674 675 if (piv >= mt_pivots[type]) { 676 WARN_ON(1); 677 return 0; 678 } 679 switch (type) { 680 case maple_arange_64: 681 return node->ma64.pivot[piv]; 682 case maple_range_64: 683 case maple_leaf_64: 684 return node->mr64.pivot[piv]; 685 case maple_dense: 686 return 0; 687 } 688 return 0; 689 } 690 691 /* 692 * mas_safe_pivot() - get the pivot at @piv or mas->max. 693 * @mas: The maple state 694 * @pivots: The pointer to the maple node pivots 695 * @piv: The pivot to fetch 696 * @type: The maple node type 697 * 698 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 699 * otherwise. 700 */ 701 static inline unsigned long 702 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 703 unsigned char piv, enum maple_type type) 704 { 705 if (piv >= mt_pivots[type]) 706 return mas->max; 707 708 return pivots[piv]; 709 } 710 711 /* 712 * mas_safe_min() - Return the minimum for a given offset. 713 * @mas: The maple state 714 * @pivots: The pointer to the maple node pivots 715 * @offset: The offset into the pivot array 716 * 717 * Return: The minimum range value that is contained in @offset. 718 */ 719 static inline unsigned long 720 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 721 { 722 if (likely(offset)) 723 return pivots[offset - 1] + 1; 724 725 return mas->min; 726 } 727 728 /* 729 * mas_logical_pivot() - Get the logical pivot of a given offset. 730 * @mas: The maple state 731 * @pivots: The pointer to the maple node pivots 732 * @offset: The offset into the pivot array 733 * @type: The maple node type 734 * 735 * When there is no value at a pivot (beyond the end of the data), then the 736 * pivot is actually @mas->max. 737 * 738 * Return: the logical pivot of a given @offset. 739 */ 740 static inline unsigned long 741 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots, 742 unsigned char offset, enum maple_type type) 743 { 744 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type); 745 746 if (likely(lpiv)) 747 return lpiv; 748 749 if (likely(offset)) 750 return mas->max; 751 752 return lpiv; 753 } 754 755 /* 756 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 757 * @mn: The encoded maple node 758 * @piv: The pivot offset 759 * @val: The value of the pivot 760 */ 761 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 762 unsigned long val) 763 { 764 struct maple_node *node = mte_to_node(mn); 765 enum maple_type type = mte_node_type(mn); 766 767 BUG_ON(piv >= mt_pivots[type]); 768 switch (type) { 769 default: 770 case maple_range_64: 771 case maple_leaf_64: 772 node->mr64.pivot[piv] = val; 773 break; 774 case maple_arange_64: 775 node->ma64.pivot[piv] = val; 776 break; 777 case maple_dense: 778 break; 779 } 780 781 } 782 783 /* 784 * ma_slots() - Get a pointer to the maple node slots. 785 * @mn: The maple node 786 * @mt: The maple node type 787 * 788 * Return: A pointer to the maple node slots 789 */ 790 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 791 { 792 switch (mt) { 793 default: 794 case maple_arange_64: 795 return mn->ma64.slot; 796 case maple_range_64: 797 case maple_leaf_64: 798 return mn->mr64.slot; 799 case maple_dense: 800 return mn->slot; 801 } 802 } 803 804 static inline bool mt_locked(const struct maple_tree *mt) 805 { 806 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 807 lockdep_is_held(&mt->ma_lock); 808 } 809 810 static inline void *mt_slot(const struct maple_tree *mt, 811 void __rcu **slots, unsigned char offset) 812 { 813 return rcu_dereference_check(slots[offset], mt_locked(mt)); 814 } 815 816 /* 817 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 818 * @mas: The maple state 819 * @slots: The pointer to the slots 820 * @offset: The offset into the slots array to fetch 821 * 822 * Return: The entry stored in @slots at the @offset. 823 */ 824 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots, 825 unsigned char offset) 826 { 827 return rcu_dereference_protected(slots[offset], mt_locked(mas->tree)); 828 } 829 830 /* 831 * mas_slot() - Get the slot value when not holding the maple tree lock. 832 * @mas: The maple state 833 * @slots: The pointer to the slots 834 * @offset: The offset into the slots array to fetch 835 * 836 * Return: The entry stored in @slots at the @offset 837 */ 838 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 839 unsigned char offset) 840 { 841 return mt_slot(mas->tree, slots, offset); 842 } 843 844 /* 845 * mas_root() - Get the maple tree root. 846 * @mas: The maple state. 847 * 848 * Return: The pointer to the root of the tree 849 */ 850 static inline void *mas_root(struct ma_state *mas) 851 { 852 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 853 } 854 855 static inline void *mt_root_locked(struct maple_tree *mt) 856 { 857 return rcu_dereference_protected(mt->ma_root, mt_locked(mt)); 858 } 859 860 /* 861 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 862 * @mas: The maple state. 863 * 864 * Return: The pointer to the root of the tree 865 */ 866 static inline void *mas_root_locked(struct ma_state *mas) 867 { 868 return mt_root_locked(mas->tree); 869 } 870 871 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 872 enum maple_type mt) 873 { 874 switch (mt) { 875 case maple_arange_64: 876 return &mn->ma64.meta; 877 default: 878 return &mn->mr64.meta; 879 } 880 } 881 882 /* 883 * ma_set_meta() - Set the metadata information of a node. 884 * @mn: The maple node 885 * @mt: The maple node type 886 * @offset: The offset of the highest sub-gap in this node. 887 * @end: The end of the data in this node. 888 */ 889 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 890 unsigned char offset, unsigned char end) 891 { 892 struct maple_metadata *meta = ma_meta(mn, mt); 893 894 meta->gap = offset; 895 meta->end = end; 896 } 897 898 /* 899 * ma_meta_end() - Get the data end of a node from the metadata 900 * @mn: The maple node 901 * @mt: The maple node type 902 */ 903 static inline unsigned char ma_meta_end(struct maple_node *mn, 904 enum maple_type mt) 905 { 906 struct maple_metadata *meta = ma_meta(mn, mt); 907 908 return meta->end; 909 } 910 911 /* 912 * ma_meta_gap() - Get the largest gap location of a node from the metadata 913 * @mn: The maple node 914 * @mt: The maple node type 915 */ 916 static inline unsigned char ma_meta_gap(struct maple_node *mn, 917 enum maple_type mt) 918 { 919 BUG_ON(mt != maple_arange_64); 920 921 return mn->ma64.meta.gap; 922 } 923 924 /* 925 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 926 * @mn: The maple node 927 * @mn: The maple node type 928 * @offset: The location of the largest gap. 929 */ 930 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 931 unsigned char offset) 932 { 933 934 struct maple_metadata *meta = ma_meta(mn, mt); 935 936 meta->gap = offset; 937 } 938 939 /* 940 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 941 * @mat - the ma_topiary, a linked list of dead nodes. 942 * @dead_enode - the node to be marked as dead and added to the tail of the list 943 * 944 * Add the @dead_enode to the linked list in @mat. 945 */ 946 static inline void mat_add(struct ma_topiary *mat, 947 struct maple_enode *dead_enode) 948 { 949 mte_set_node_dead(dead_enode); 950 mte_to_mat(dead_enode)->next = NULL; 951 if (!mat->tail) { 952 mat->tail = mat->head = dead_enode; 953 return; 954 } 955 956 mte_to_mat(mat->tail)->next = dead_enode; 957 mat->tail = dead_enode; 958 } 959 960 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 961 static inline void mas_free(struct ma_state *mas, struct maple_enode *used); 962 963 /* 964 * mas_mat_free() - Free all nodes in a dead list. 965 * @mas - the maple state 966 * @mat - the ma_topiary linked list of dead nodes to free. 967 * 968 * Free walk a dead list. 969 */ 970 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat) 971 { 972 struct maple_enode *next; 973 974 while (mat->head) { 975 next = mte_to_mat(mat->head)->next; 976 mas_free(mas, mat->head); 977 mat->head = next; 978 } 979 } 980 981 /* 982 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 983 * @mas - the maple state 984 * @mat - the ma_topiary linked list of dead nodes to free. 985 * 986 * Destroy walk a dead list. 987 */ 988 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 989 { 990 struct maple_enode *next; 991 992 while (mat->head) { 993 next = mte_to_mat(mat->head)->next; 994 mte_destroy_walk(mat->head, mat->mtree); 995 mat->head = next; 996 } 997 } 998 /* 999 * mas_descend() - Descend into the slot stored in the ma_state. 1000 * @mas - the maple state. 1001 * 1002 * Note: Not RCU safe, only use in write side or debug code. 1003 */ 1004 static inline void mas_descend(struct ma_state *mas) 1005 { 1006 enum maple_type type; 1007 unsigned long *pivots; 1008 struct maple_node *node; 1009 void __rcu **slots; 1010 1011 node = mas_mn(mas); 1012 type = mte_node_type(mas->node); 1013 pivots = ma_pivots(node, type); 1014 slots = ma_slots(node, type); 1015 1016 if (mas->offset) 1017 mas->min = pivots[mas->offset - 1] + 1; 1018 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1019 mas->node = mas_slot(mas, slots, mas->offset); 1020 } 1021 1022 /* 1023 * mte_set_gap() - Set a maple node gap. 1024 * @mn: The encoded maple node 1025 * @gap: The offset of the gap to set 1026 * @val: The gap value 1027 */ 1028 static inline void mte_set_gap(const struct maple_enode *mn, 1029 unsigned char gap, unsigned long val) 1030 { 1031 switch (mte_node_type(mn)) { 1032 default: 1033 break; 1034 case maple_arange_64: 1035 mte_to_node(mn)->ma64.gap[gap] = val; 1036 break; 1037 } 1038 } 1039 1040 /* 1041 * mas_ascend() - Walk up a level of the tree. 1042 * @mas: The maple state 1043 * 1044 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1045 * may cause several levels of walking up to find the correct min and max. 1046 * May find a dead node which will cause a premature return. 1047 * Return: 1 on dead node, 0 otherwise 1048 */ 1049 static int mas_ascend(struct ma_state *mas) 1050 { 1051 struct maple_enode *p_enode; /* parent enode. */ 1052 struct maple_enode *a_enode; /* ancestor enode. */ 1053 struct maple_node *a_node; /* ancestor node. */ 1054 struct maple_node *p_node; /* parent node. */ 1055 unsigned char a_slot; 1056 enum maple_type a_type; 1057 unsigned long min, max; 1058 unsigned long *pivots; 1059 unsigned char offset; 1060 bool set_max = false, set_min = false; 1061 1062 a_node = mas_mn(mas); 1063 if (ma_is_root(a_node)) { 1064 mas->offset = 0; 1065 return 0; 1066 } 1067 1068 p_node = mte_parent(mas->node); 1069 if (unlikely(a_node == p_node)) 1070 return 1; 1071 a_type = mas_parent_enum(mas, mas->node); 1072 offset = mte_parent_slot(mas->node); 1073 a_enode = mt_mk_node(p_node, a_type); 1074 1075 /* Check to make sure all parent information is still accurate */ 1076 if (p_node != mte_parent(mas->node)) 1077 return 1; 1078 1079 mas->node = a_enode; 1080 mas->offset = offset; 1081 1082 if (mte_is_root(a_enode)) { 1083 mas->max = ULONG_MAX; 1084 mas->min = 0; 1085 return 0; 1086 } 1087 1088 min = 0; 1089 max = ULONG_MAX; 1090 do { 1091 p_enode = a_enode; 1092 a_type = mas_parent_enum(mas, p_enode); 1093 a_node = mte_parent(p_enode); 1094 a_slot = mte_parent_slot(p_enode); 1095 pivots = ma_pivots(a_node, a_type); 1096 a_enode = mt_mk_node(a_node, a_type); 1097 1098 if (!set_min && a_slot) { 1099 set_min = true; 1100 min = pivots[a_slot - 1] + 1; 1101 } 1102 1103 if (!set_max && a_slot < mt_pivots[a_type]) { 1104 set_max = true; 1105 max = pivots[a_slot]; 1106 } 1107 1108 if (unlikely(ma_dead_node(a_node))) 1109 return 1; 1110 1111 if (unlikely(ma_is_root(a_node))) 1112 break; 1113 1114 } while (!set_min || !set_max); 1115 1116 mas->max = max; 1117 mas->min = min; 1118 return 0; 1119 } 1120 1121 /* 1122 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1123 * @mas: The maple state 1124 * 1125 * Return: A pointer to a maple node. 1126 */ 1127 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1128 { 1129 struct maple_alloc *ret, *node = mas->alloc; 1130 unsigned long total = mas_allocated(mas); 1131 1132 /* nothing or a request pending. */ 1133 if (unlikely(!total)) 1134 return NULL; 1135 1136 if (total == 1) { 1137 /* single allocation in this ma_state */ 1138 mas->alloc = NULL; 1139 ret = node; 1140 goto single_node; 1141 } 1142 1143 if (!node->node_count) { 1144 /* Single allocation in this node. */ 1145 mas->alloc = node->slot[0]; 1146 node->slot[0] = NULL; 1147 mas->alloc->total = node->total - 1; 1148 ret = node; 1149 goto new_head; 1150 } 1151 1152 node->total--; 1153 ret = node->slot[node->node_count]; 1154 node->slot[node->node_count--] = NULL; 1155 1156 single_node: 1157 new_head: 1158 ret->total = 0; 1159 ret->node_count = 0; 1160 if (ret->request_count) { 1161 mas_set_alloc_req(mas, ret->request_count + 1); 1162 ret->request_count = 0; 1163 } 1164 return (struct maple_node *)ret; 1165 } 1166 1167 /* 1168 * mas_push_node() - Push a node back on the maple state allocation. 1169 * @mas: The maple state 1170 * @used: The used maple node 1171 * 1172 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1173 * requested node count as necessary. 1174 */ 1175 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1176 { 1177 struct maple_alloc *reuse = (struct maple_alloc *)used; 1178 struct maple_alloc *head = mas->alloc; 1179 unsigned long count; 1180 unsigned int requested = mas_alloc_req(mas); 1181 1182 memset(reuse, 0, sizeof(*reuse)); 1183 count = mas_allocated(mas); 1184 1185 if (count && (head->node_count < MAPLE_ALLOC_SLOTS - 1)) { 1186 if (head->slot[0]) 1187 head->node_count++; 1188 head->slot[head->node_count] = reuse; 1189 head->total++; 1190 goto done; 1191 } 1192 1193 reuse->total = 1; 1194 if ((head) && !((unsigned long)head & 0x1)) { 1195 head->request_count = 0; 1196 reuse->slot[0] = head; 1197 reuse->total += head->total; 1198 } 1199 1200 mas->alloc = reuse; 1201 done: 1202 if (requested > 1) 1203 mas_set_alloc_req(mas, requested - 1); 1204 } 1205 1206 /* 1207 * mas_alloc_nodes() - Allocate nodes into a maple state 1208 * @mas: The maple state 1209 * @gfp: The GFP Flags 1210 */ 1211 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1212 { 1213 struct maple_alloc *node; 1214 unsigned long allocated = mas_allocated(mas); 1215 unsigned long success = allocated; 1216 unsigned int requested = mas_alloc_req(mas); 1217 unsigned int count; 1218 void **slots = NULL; 1219 unsigned int max_req = 0; 1220 1221 if (!requested) 1222 return; 1223 1224 mas_set_alloc_req(mas, 0); 1225 if (mas->mas_flags & MA_STATE_PREALLOC) { 1226 if (allocated) 1227 return; 1228 WARN_ON(!allocated); 1229 } 1230 1231 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS - 1) { 1232 node = (struct maple_alloc *)mt_alloc_one(gfp); 1233 if (!node) 1234 goto nomem_one; 1235 1236 if (allocated) 1237 node->slot[0] = mas->alloc; 1238 1239 success++; 1240 mas->alloc = node; 1241 requested--; 1242 } 1243 1244 node = mas->alloc; 1245 while (requested) { 1246 max_req = MAPLE_ALLOC_SLOTS; 1247 if (node->slot[0]) { 1248 unsigned int offset = node->node_count + 1; 1249 1250 slots = (void **)&node->slot[offset]; 1251 max_req -= offset; 1252 } else { 1253 slots = (void **)&node->slot; 1254 } 1255 1256 max_req = min(requested, max_req); 1257 count = mt_alloc_bulk(gfp, max_req, slots); 1258 if (!count) 1259 goto nomem_bulk; 1260 1261 node->node_count += count; 1262 /* zero indexed. */ 1263 if (slots == (void **)&node->slot) 1264 node->node_count--; 1265 1266 success += count; 1267 node = node->slot[0]; 1268 requested -= count; 1269 } 1270 mas->alloc->total = success; 1271 return; 1272 1273 nomem_bulk: 1274 /* Clean up potential freed allocations on bulk failure */ 1275 memset(slots, 0, max_req * sizeof(unsigned long)); 1276 nomem_one: 1277 mas_set_alloc_req(mas, requested); 1278 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1279 mas->alloc->total = success; 1280 mas_set_err(mas, -ENOMEM); 1281 return; 1282 1283 } 1284 1285 /* 1286 * mas_free() - Free an encoded maple node 1287 * @mas: The maple state 1288 * @used: The encoded maple node to free. 1289 * 1290 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1291 * otherwise. 1292 */ 1293 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1294 { 1295 struct maple_node *tmp = mte_to_node(used); 1296 1297 if (mt_in_rcu(mas->tree)) 1298 ma_free_rcu(tmp); 1299 else 1300 mas_push_node(mas, tmp); 1301 } 1302 1303 /* 1304 * mas_node_count() - Check if enough nodes are allocated and request more if 1305 * there is not enough nodes. 1306 * @mas: The maple state 1307 * @count: The number of nodes needed 1308 * @gfp: the gfp flags 1309 */ 1310 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1311 { 1312 unsigned long allocated = mas_allocated(mas); 1313 1314 if (allocated < count) { 1315 mas_set_alloc_req(mas, count - allocated); 1316 mas_alloc_nodes(mas, gfp); 1317 } 1318 } 1319 1320 /* 1321 * mas_node_count() - Check if enough nodes are allocated and request more if 1322 * there is not enough nodes. 1323 * @mas: The maple state 1324 * @count: The number of nodes needed 1325 * 1326 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1327 */ 1328 static void mas_node_count(struct ma_state *mas, int count) 1329 { 1330 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1331 } 1332 1333 /* 1334 * mas_start() - Sets up maple state for operations. 1335 * @mas: The maple state. 1336 * 1337 * If mas->node == MAS_START, then set the min, max, depth, and offset to 1338 * defaults. 1339 * 1340 * Return: 1341 * - If mas->node is an error or not MAS_START, return NULL. 1342 * - If it's an empty tree: NULL & mas->node == MAS_NONE 1343 * - If it's a single entry: The entry & mas->node == MAS_ROOT 1344 * - If it's a tree: NULL & mas->node == safe root node. 1345 */ 1346 static inline struct maple_enode *mas_start(struct ma_state *mas) 1347 { 1348 if (likely(mas_is_start(mas))) { 1349 struct maple_enode *root; 1350 1351 mas->node = MAS_NONE; 1352 mas->min = 0; 1353 mas->max = ULONG_MAX; 1354 mas->depth = 0; 1355 mas->offset = 0; 1356 1357 root = mas_root(mas); 1358 /* Tree with nodes */ 1359 if (likely(xa_is_node(root))) { 1360 mas->depth = 1; 1361 mas->node = mte_safe_root(root); 1362 return NULL; 1363 } 1364 1365 /* empty tree */ 1366 if (unlikely(!root)) { 1367 mas->offset = MAPLE_NODE_SLOTS; 1368 return NULL; 1369 } 1370 1371 /* Single entry tree */ 1372 mas->node = MAS_ROOT; 1373 mas->offset = MAPLE_NODE_SLOTS; 1374 1375 /* Single entry tree. */ 1376 if (mas->index > 0) 1377 return NULL; 1378 1379 return root; 1380 } 1381 1382 return NULL; 1383 } 1384 1385 /* 1386 * ma_data_end() - Find the end of the data in a node. 1387 * @node: The maple node 1388 * @type: The maple node type 1389 * @pivots: The array of pivots in the node 1390 * @max: The maximum value in the node 1391 * 1392 * Uses metadata to find the end of the data when possible. 1393 * Return: The zero indexed last slot with data (may be null). 1394 */ 1395 static inline unsigned char ma_data_end(struct maple_node *node, 1396 enum maple_type type, 1397 unsigned long *pivots, 1398 unsigned long max) 1399 { 1400 unsigned char offset; 1401 1402 if (type == maple_arange_64) 1403 return ma_meta_end(node, type); 1404 1405 offset = mt_pivots[type] - 1; 1406 if (likely(!pivots[offset])) 1407 return ma_meta_end(node, type); 1408 1409 if (likely(pivots[offset] == max)) 1410 return offset; 1411 1412 return mt_pivots[type]; 1413 } 1414 1415 /* 1416 * mas_data_end() - Find the end of the data (slot). 1417 * @mas: the maple state 1418 * 1419 * This method is optimized to check the metadata of a node if the node type 1420 * supports data end metadata. 1421 * 1422 * Return: The zero indexed last slot with data (may be null). 1423 */ 1424 static inline unsigned char mas_data_end(struct ma_state *mas) 1425 { 1426 enum maple_type type; 1427 struct maple_node *node; 1428 unsigned char offset; 1429 unsigned long *pivots; 1430 1431 type = mte_node_type(mas->node); 1432 node = mas_mn(mas); 1433 if (type == maple_arange_64) 1434 return ma_meta_end(node, type); 1435 1436 pivots = ma_pivots(node, type); 1437 offset = mt_pivots[type] - 1; 1438 if (likely(!pivots[offset])) 1439 return ma_meta_end(node, type); 1440 1441 if (likely(pivots[offset] == mas->max)) 1442 return offset; 1443 1444 return mt_pivots[type]; 1445 } 1446 1447 /* 1448 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1449 * @mas - the maple state 1450 * 1451 * Return: The maximum gap in the leaf. 1452 */ 1453 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1454 { 1455 enum maple_type mt; 1456 unsigned long pstart, gap, max_gap; 1457 struct maple_node *mn; 1458 unsigned long *pivots; 1459 void __rcu **slots; 1460 unsigned char i; 1461 unsigned char max_piv; 1462 1463 mt = mte_node_type(mas->node); 1464 mn = mas_mn(mas); 1465 slots = ma_slots(mn, mt); 1466 max_gap = 0; 1467 if (unlikely(ma_is_dense(mt))) { 1468 gap = 0; 1469 for (i = 0; i < mt_slots[mt]; i++) { 1470 if (slots[i]) { 1471 if (gap > max_gap) 1472 max_gap = gap; 1473 gap = 0; 1474 } else { 1475 gap++; 1476 } 1477 } 1478 if (gap > max_gap) 1479 max_gap = gap; 1480 return max_gap; 1481 } 1482 1483 /* 1484 * Check the first implied pivot optimizes the loop below and slot 1 may 1485 * be skipped if there is a gap in slot 0. 1486 */ 1487 pivots = ma_pivots(mn, mt); 1488 if (likely(!slots[0])) { 1489 max_gap = pivots[0] - mas->min + 1; 1490 i = 2; 1491 } else { 1492 i = 1; 1493 } 1494 1495 /* reduce max_piv as the special case is checked before the loop */ 1496 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1497 /* 1498 * Check end implied pivot which can only be a gap on the right most 1499 * node. 1500 */ 1501 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1502 gap = ULONG_MAX - pivots[max_piv]; 1503 if (gap > max_gap) 1504 max_gap = gap; 1505 } 1506 1507 for (; i <= max_piv; i++) { 1508 /* data == no gap. */ 1509 if (likely(slots[i])) 1510 continue; 1511 1512 pstart = pivots[i - 1]; 1513 gap = pivots[i] - pstart; 1514 if (gap > max_gap) 1515 max_gap = gap; 1516 1517 /* There cannot be two gaps in a row. */ 1518 i++; 1519 } 1520 return max_gap; 1521 } 1522 1523 /* 1524 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1525 * @node: The maple node 1526 * @gaps: The pointer to the gaps 1527 * @mt: The maple node type 1528 * @*off: Pointer to store the offset location of the gap. 1529 * 1530 * Uses the metadata data end to scan backwards across set gaps. 1531 * 1532 * Return: The maximum gap value 1533 */ 1534 static inline unsigned long 1535 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1536 unsigned char *off) 1537 { 1538 unsigned char offset, i; 1539 unsigned long max_gap = 0; 1540 1541 i = offset = ma_meta_end(node, mt); 1542 do { 1543 if (gaps[i] > max_gap) { 1544 max_gap = gaps[i]; 1545 offset = i; 1546 } 1547 } while (i--); 1548 1549 *off = offset; 1550 return max_gap; 1551 } 1552 1553 /* 1554 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1555 * @mas: The maple state. 1556 * 1557 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap. 1558 * 1559 * Return: The gap value. 1560 */ 1561 static inline unsigned long mas_max_gap(struct ma_state *mas) 1562 { 1563 unsigned long *gaps; 1564 unsigned char offset; 1565 enum maple_type mt; 1566 struct maple_node *node; 1567 1568 mt = mte_node_type(mas->node); 1569 if (ma_is_leaf(mt)) 1570 return mas_leaf_max_gap(mas); 1571 1572 node = mas_mn(mas); 1573 offset = ma_meta_gap(node, mt); 1574 if (offset == MAPLE_ARANGE64_META_MAX) 1575 return 0; 1576 1577 gaps = ma_gaps(node, mt); 1578 return gaps[offset]; 1579 } 1580 1581 /* 1582 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1583 * @mas: The maple state 1584 * @offset: The gap offset in the parent to set 1585 * @new: The new gap value. 1586 * 1587 * Set the parent gap then continue to set the gap upwards, using the metadata 1588 * of the parent to see if it is necessary to check the node above. 1589 */ 1590 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1591 unsigned long new) 1592 { 1593 unsigned long meta_gap = 0; 1594 struct maple_node *pnode; 1595 struct maple_enode *penode; 1596 unsigned long *pgaps; 1597 unsigned char meta_offset; 1598 enum maple_type pmt; 1599 1600 pnode = mte_parent(mas->node); 1601 pmt = mas_parent_enum(mas, mas->node); 1602 penode = mt_mk_node(pnode, pmt); 1603 pgaps = ma_gaps(pnode, pmt); 1604 1605 ascend: 1606 meta_offset = ma_meta_gap(pnode, pmt); 1607 if (meta_offset == MAPLE_ARANGE64_META_MAX) 1608 meta_gap = 0; 1609 else 1610 meta_gap = pgaps[meta_offset]; 1611 1612 pgaps[offset] = new; 1613 1614 if (meta_gap == new) 1615 return; 1616 1617 if (offset != meta_offset) { 1618 if (meta_gap > new) 1619 return; 1620 1621 ma_set_meta_gap(pnode, pmt, offset); 1622 } else if (new < meta_gap) { 1623 meta_offset = 15; 1624 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1625 ma_set_meta_gap(pnode, pmt, meta_offset); 1626 } 1627 1628 if (ma_is_root(pnode)) 1629 return; 1630 1631 /* Go to the parent node. */ 1632 pnode = mte_parent(penode); 1633 pmt = mas_parent_enum(mas, penode); 1634 pgaps = ma_gaps(pnode, pmt); 1635 offset = mte_parent_slot(penode); 1636 penode = mt_mk_node(pnode, pmt); 1637 goto ascend; 1638 } 1639 1640 /* 1641 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1642 * @mas - the maple state. 1643 */ 1644 static inline void mas_update_gap(struct ma_state *mas) 1645 { 1646 unsigned char pslot; 1647 unsigned long p_gap; 1648 unsigned long max_gap; 1649 1650 if (!mt_is_alloc(mas->tree)) 1651 return; 1652 1653 if (mte_is_root(mas->node)) 1654 return; 1655 1656 max_gap = mas_max_gap(mas); 1657 1658 pslot = mte_parent_slot(mas->node); 1659 p_gap = ma_gaps(mte_parent(mas->node), 1660 mas_parent_enum(mas, mas->node))[pslot]; 1661 1662 if (p_gap != max_gap) 1663 mas_parent_gap(mas, pslot, max_gap); 1664 } 1665 1666 /* 1667 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1668 * @parent with the slot encoded. 1669 * @mas - the maple state (for the tree) 1670 * @parent - the maple encoded node containing the children. 1671 */ 1672 static inline void mas_adopt_children(struct ma_state *mas, 1673 struct maple_enode *parent) 1674 { 1675 enum maple_type type = mte_node_type(parent); 1676 struct maple_node *node = mas_mn(mas); 1677 void __rcu **slots = ma_slots(node, type); 1678 unsigned long *pivots = ma_pivots(node, type); 1679 struct maple_enode *child; 1680 unsigned char offset; 1681 1682 offset = ma_data_end(node, type, pivots, mas->max); 1683 do { 1684 child = mas_slot_locked(mas, slots, offset); 1685 mte_set_parent(child, parent, offset); 1686 } while (offset--); 1687 } 1688 1689 /* 1690 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the 1691 * parent encoding to locate the maple node in the tree. 1692 * @mas - the ma_state to use for operations. 1693 * @advanced - boolean to adopt the child nodes and free the old node (false) or 1694 * leave the node (true) and handle the adoption and free elsewhere. 1695 */ 1696 static inline void mas_replace(struct ma_state *mas, bool advanced) 1697 __must_hold(mas->tree->lock) 1698 { 1699 struct maple_node *mn = mas_mn(mas); 1700 struct maple_enode *old_enode; 1701 unsigned char offset = 0; 1702 void __rcu **slots = NULL; 1703 1704 if (ma_is_root(mn)) { 1705 old_enode = mas_root_locked(mas); 1706 } else { 1707 offset = mte_parent_slot(mas->node); 1708 slots = ma_slots(mte_parent(mas->node), 1709 mas_parent_enum(mas, mas->node)); 1710 old_enode = mas_slot_locked(mas, slots, offset); 1711 } 1712 1713 if (!advanced && !mte_is_leaf(mas->node)) 1714 mas_adopt_children(mas, mas->node); 1715 1716 if (mte_is_root(mas->node)) { 1717 mn->parent = ma_parent_ptr( 1718 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 1719 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1720 mas_set_height(mas); 1721 } else { 1722 rcu_assign_pointer(slots[offset], mas->node); 1723 } 1724 1725 if (!advanced) 1726 mas_free(mas, old_enode); 1727 } 1728 1729 /* 1730 * mas_new_child() - Find the new child of a node. 1731 * @mas: the maple state 1732 * @child: the maple state to store the child. 1733 */ 1734 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child) 1735 __must_hold(mas->tree->lock) 1736 { 1737 enum maple_type mt; 1738 unsigned char offset; 1739 unsigned char end; 1740 unsigned long *pivots; 1741 struct maple_enode *entry; 1742 struct maple_node *node; 1743 void __rcu **slots; 1744 1745 mt = mte_node_type(mas->node); 1746 node = mas_mn(mas); 1747 slots = ma_slots(node, mt); 1748 pivots = ma_pivots(node, mt); 1749 end = ma_data_end(node, mt, pivots, mas->max); 1750 for (offset = mas->offset; offset <= end; offset++) { 1751 entry = mas_slot_locked(mas, slots, offset); 1752 if (mte_parent(entry) == node) { 1753 *child = *mas; 1754 mas->offset = offset + 1; 1755 child->offset = offset; 1756 mas_descend(child); 1757 child->offset = 0; 1758 return true; 1759 } 1760 } 1761 return false; 1762 } 1763 1764 /* 1765 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1766 * old data or set b_node->b_end. 1767 * @b_node: the maple_big_node 1768 * @shift: the shift count 1769 */ 1770 static inline void mab_shift_right(struct maple_big_node *b_node, 1771 unsigned char shift) 1772 { 1773 unsigned long size = b_node->b_end * sizeof(unsigned long); 1774 1775 memmove(b_node->pivot + shift, b_node->pivot, size); 1776 memmove(b_node->slot + shift, b_node->slot, size); 1777 if (b_node->type == maple_arange_64) 1778 memmove(b_node->gap + shift, b_node->gap, size); 1779 } 1780 1781 /* 1782 * mab_middle_node() - Check if a middle node is needed (unlikely) 1783 * @b_node: the maple_big_node that contains the data. 1784 * @size: the amount of data in the b_node 1785 * @split: the potential split location 1786 * @slot_count: the size that can be stored in a single node being considered. 1787 * 1788 * Return: true if a middle node is required. 1789 */ 1790 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1791 unsigned char slot_count) 1792 { 1793 unsigned char size = b_node->b_end; 1794 1795 if (size >= 2 * slot_count) 1796 return true; 1797 1798 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1799 return true; 1800 1801 return false; 1802 } 1803 1804 /* 1805 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1806 * @b_node: the maple_big_node with the data 1807 * @split: the suggested split location 1808 * @slot_count: the number of slots in the node being considered. 1809 * 1810 * Return: the split location. 1811 */ 1812 static inline int mab_no_null_split(struct maple_big_node *b_node, 1813 unsigned char split, unsigned char slot_count) 1814 { 1815 if (!b_node->slot[split]) { 1816 /* 1817 * If the split is less than the max slot && the right side will 1818 * still be sufficient, then increment the split on NULL. 1819 */ 1820 if ((split < slot_count - 1) && 1821 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1822 split++; 1823 else 1824 split--; 1825 } 1826 return split; 1827 } 1828 1829 /* 1830 * mab_calc_split() - Calculate the split location and if there needs to be two 1831 * splits. 1832 * @bn: The maple_big_node with the data 1833 * @mid_split: The second split, if required. 0 otherwise. 1834 * 1835 * Return: The first split location. The middle split is set in @mid_split. 1836 */ 1837 static inline int mab_calc_split(struct ma_state *mas, 1838 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1839 { 1840 unsigned char b_end = bn->b_end; 1841 int split = b_end / 2; /* Assume equal split. */ 1842 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1843 1844 /* 1845 * To support gap tracking, all NULL entries are kept together and a node cannot 1846 * end on a NULL entry, with the exception of the left-most leaf. The 1847 * limitation means that the split of a node must be checked for this condition 1848 * and be able to put more data in one direction or the other. 1849 */ 1850 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1851 *mid_split = 0; 1852 split = b_end - mt_min_slots[bn->type]; 1853 1854 if (!ma_is_leaf(bn->type)) 1855 return split; 1856 1857 mas->mas_flags |= MA_STATE_REBALANCE; 1858 if (!bn->slot[split]) 1859 split--; 1860 return split; 1861 } 1862 1863 /* 1864 * Although extremely rare, it is possible to enter what is known as the 3-way 1865 * split scenario. The 3-way split comes about by means of a store of a range 1866 * that overwrites the end and beginning of two full nodes. The result is a set 1867 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1868 * also be located in different parent nodes which are also full. This can 1869 * carry upwards all the way to the root in the worst case. 1870 */ 1871 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1872 split = b_end / 3; 1873 *mid_split = split * 2; 1874 } else { 1875 slot_min = mt_min_slots[bn->type]; 1876 1877 *mid_split = 0; 1878 /* 1879 * Avoid having a range less than the slot count unless it 1880 * causes one node to be deficient. 1881 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1882 */ 1883 while (((bn->pivot[split] - min) < slot_count - 1) && 1884 (split < slot_count - 1) && (b_end - split > slot_min)) 1885 split++; 1886 } 1887 1888 /* Avoid ending a node on a NULL entry */ 1889 split = mab_no_null_split(bn, split, slot_count); 1890 if (!(*mid_split)) 1891 return split; 1892 1893 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1894 1895 return split; 1896 } 1897 1898 /* 1899 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1900 * and set @b_node->b_end to the next free slot. 1901 * @mas: The maple state 1902 * @mas_start: The starting slot to copy 1903 * @mas_end: The end slot to copy (inclusively) 1904 * @b_node: The maple_big_node to place the data 1905 * @mab_start: The starting location in maple_big_node to store the data. 1906 */ 1907 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1908 unsigned char mas_end, struct maple_big_node *b_node, 1909 unsigned char mab_start) 1910 { 1911 enum maple_type mt; 1912 struct maple_node *node; 1913 void __rcu **slots; 1914 unsigned long *pivots, *gaps; 1915 int i = mas_start, j = mab_start; 1916 unsigned char piv_end; 1917 1918 node = mas_mn(mas); 1919 mt = mte_node_type(mas->node); 1920 pivots = ma_pivots(node, mt); 1921 if (!i) { 1922 b_node->pivot[j] = pivots[i++]; 1923 if (unlikely(i > mas_end)) 1924 goto complete; 1925 j++; 1926 } 1927 1928 piv_end = min(mas_end, mt_pivots[mt]); 1929 for (; i < piv_end; i++, j++) { 1930 b_node->pivot[j] = pivots[i]; 1931 if (unlikely(!b_node->pivot[j])) 1932 break; 1933 1934 if (unlikely(mas->max == b_node->pivot[j])) 1935 goto complete; 1936 } 1937 1938 if (likely(i <= mas_end)) 1939 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1940 1941 complete: 1942 b_node->b_end = ++j; 1943 j -= mab_start; 1944 slots = ma_slots(node, mt); 1945 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1946 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1947 gaps = ma_gaps(node, mt); 1948 memcpy(b_node->gap + mab_start, gaps + mas_start, 1949 sizeof(unsigned long) * j); 1950 } 1951 } 1952 1953 /* 1954 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1955 * @mas: The maple state 1956 * @node: The maple node 1957 * @pivots: pointer to the maple node pivots 1958 * @mt: The maple type 1959 * @end: The assumed end 1960 * 1961 * Note, end may be incremented within this function but not modified at the 1962 * source. This is fine since the metadata is the last thing to be stored in a 1963 * node during a write. 1964 */ 1965 static inline void mas_leaf_set_meta(struct ma_state *mas, 1966 struct maple_node *node, unsigned long *pivots, 1967 enum maple_type mt, unsigned char end) 1968 { 1969 /* There is no room for metadata already */ 1970 if (mt_pivots[mt] <= end) 1971 return; 1972 1973 if (pivots[end] && pivots[end] < mas->max) 1974 end++; 1975 1976 if (end < mt_slots[mt] - 1) 1977 ma_set_meta(node, mt, 0, end); 1978 } 1979 1980 /* 1981 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 1982 * @b_node: the maple_big_node that has the data 1983 * @mab_start: the start location in @b_node. 1984 * @mab_end: The end location in @b_node (inclusively) 1985 * @mas: The maple state with the maple encoded node. 1986 */ 1987 static inline void mab_mas_cp(struct maple_big_node *b_node, 1988 unsigned char mab_start, unsigned char mab_end, 1989 struct ma_state *mas, bool new_max) 1990 { 1991 int i, j = 0; 1992 enum maple_type mt = mte_node_type(mas->node); 1993 struct maple_node *node = mte_to_node(mas->node); 1994 void __rcu **slots = ma_slots(node, mt); 1995 unsigned long *pivots = ma_pivots(node, mt); 1996 unsigned long *gaps = NULL; 1997 unsigned char end; 1998 1999 if (mab_end - mab_start > mt_pivots[mt]) 2000 mab_end--; 2001 2002 if (!pivots[mt_pivots[mt] - 1]) 2003 slots[mt_pivots[mt]] = NULL; 2004 2005 i = mab_start; 2006 do { 2007 pivots[j++] = b_node->pivot[i++]; 2008 } while (i <= mab_end && likely(b_node->pivot[i])); 2009 2010 memcpy(slots, b_node->slot + mab_start, 2011 sizeof(void *) * (i - mab_start)); 2012 2013 if (new_max) 2014 mas->max = b_node->pivot[i - 1]; 2015 2016 end = j - 1; 2017 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2018 unsigned long max_gap = 0; 2019 unsigned char offset = 15; 2020 2021 gaps = ma_gaps(node, mt); 2022 do { 2023 gaps[--j] = b_node->gap[--i]; 2024 if (gaps[j] > max_gap) { 2025 offset = j; 2026 max_gap = gaps[j]; 2027 } 2028 } while (j); 2029 2030 ma_set_meta(node, mt, offset, end); 2031 } else { 2032 mas_leaf_set_meta(mas, node, pivots, mt, end); 2033 } 2034 } 2035 2036 /* 2037 * mas_descend_adopt() - Descend through a sub-tree and adopt children. 2038 * @mas: the maple state with the maple encoded node of the sub-tree. 2039 * 2040 * Descend through a sub-tree and adopt children who do not have the correct 2041 * parents set. Follow the parents which have the correct parents as they are 2042 * the new entries which need to be followed to find other incorrectly set 2043 * parents. 2044 */ 2045 static inline void mas_descend_adopt(struct ma_state *mas) 2046 { 2047 struct ma_state list[3], next[3]; 2048 int i, n; 2049 2050 /* 2051 * At each level there may be up to 3 correct parent pointers which indicates 2052 * the new nodes which need to be walked to find any new nodes at a lower level. 2053 */ 2054 2055 for (i = 0; i < 3; i++) { 2056 list[i] = *mas; 2057 list[i].offset = 0; 2058 next[i].offset = 0; 2059 } 2060 next[0] = *mas; 2061 2062 while (!mte_is_leaf(list[0].node)) { 2063 n = 0; 2064 for (i = 0; i < 3; i++) { 2065 if (mas_is_none(&list[i])) 2066 continue; 2067 2068 if (i && list[i-1].node == list[i].node) 2069 continue; 2070 2071 while ((n < 3) && (mas_new_child(&list[i], &next[n]))) 2072 n++; 2073 2074 mas_adopt_children(&list[i], list[i].node); 2075 } 2076 2077 while (n < 3) 2078 next[n++].node = MAS_NONE; 2079 2080 /* descend by setting the list to the children */ 2081 for (i = 0; i < 3; i++) 2082 list[i] = next[i]; 2083 } 2084 } 2085 2086 /* 2087 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2088 * @mas: The maple state 2089 * @end: The maple node end 2090 * @mt: The maple node type 2091 */ 2092 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2093 enum maple_type mt) 2094 { 2095 if (!(mas->mas_flags & MA_STATE_BULK)) 2096 return; 2097 2098 if (mte_is_root(mas->node)) 2099 return; 2100 2101 if (end > mt_min_slots[mt]) { 2102 mas->mas_flags &= ~MA_STATE_REBALANCE; 2103 return; 2104 } 2105 } 2106 2107 /* 2108 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2109 * data from a maple encoded node. 2110 * @wr_mas: the maple write state 2111 * @b_node: the maple_big_node to fill with data 2112 * @offset_end: the offset to end copying 2113 * 2114 * Return: The actual end of the data stored in @b_node 2115 */ 2116 static inline void mas_store_b_node(struct ma_wr_state *wr_mas, 2117 struct maple_big_node *b_node, unsigned char offset_end) 2118 { 2119 unsigned char slot; 2120 unsigned char b_end; 2121 /* Possible underflow of piv will wrap back to 0 before use. */ 2122 unsigned long piv; 2123 struct ma_state *mas = wr_mas->mas; 2124 2125 b_node->type = wr_mas->type; 2126 b_end = 0; 2127 slot = mas->offset; 2128 if (slot) { 2129 /* Copy start data up to insert. */ 2130 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2131 b_end = b_node->b_end; 2132 piv = b_node->pivot[b_end - 1]; 2133 } else 2134 piv = mas->min - 1; 2135 2136 if (piv + 1 < mas->index) { 2137 /* Handle range starting after old range */ 2138 b_node->slot[b_end] = wr_mas->content; 2139 if (!wr_mas->content) 2140 b_node->gap[b_end] = mas->index - 1 - piv; 2141 b_node->pivot[b_end++] = mas->index - 1; 2142 } 2143 2144 /* Store the new entry. */ 2145 mas->offset = b_end; 2146 b_node->slot[b_end] = wr_mas->entry; 2147 b_node->pivot[b_end] = mas->last; 2148 2149 /* Appended. */ 2150 if (mas->last >= mas->max) 2151 goto b_end; 2152 2153 /* Handle new range ending before old range ends */ 2154 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2155 if (piv > mas->last) { 2156 if (piv == ULONG_MAX) 2157 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2158 2159 if (offset_end != slot) 2160 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2161 offset_end); 2162 2163 b_node->slot[++b_end] = wr_mas->content; 2164 if (!wr_mas->content) 2165 b_node->gap[b_end] = piv - mas->last + 1; 2166 b_node->pivot[b_end] = piv; 2167 } 2168 2169 slot = offset_end + 1; 2170 if (slot > wr_mas->node_end) 2171 goto b_end; 2172 2173 /* Copy end data to the end of the node. */ 2174 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end); 2175 b_node->b_end--; 2176 return; 2177 2178 b_end: 2179 b_node->b_end = b_end; 2180 } 2181 2182 /* 2183 * mas_prev_sibling() - Find the previous node with the same parent. 2184 * @mas: the maple state 2185 * 2186 * Return: True if there is a previous sibling, false otherwise. 2187 */ 2188 static inline bool mas_prev_sibling(struct ma_state *mas) 2189 { 2190 unsigned int p_slot = mte_parent_slot(mas->node); 2191 2192 if (mte_is_root(mas->node)) 2193 return false; 2194 2195 if (!p_slot) 2196 return false; 2197 2198 mas_ascend(mas); 2199 mas->offset = p_slot - 1; 2200 mas_descend(mas); 2201 return true; 2202 } 2203 2204 /* 2205 * mas_next_sibling() - Find the next node with the same parent. 2206 * @mas: the maple state 2207 * 2208 * Return: true if there is a next sibling, false otherwise. 2209 */ 2210 static inline bool mas_next_sibling(struct ma_state *mas) 2211 { 2212 MA_STATE(parent, mas->tree, mas->index, mas->last); 2213 2214 if (mte_is_root(mas->node)) 2215 return false; 2216 2217 parent = *mas; 2218 mas_ascend(&parent); 2219 parent.offset = mte_parent_slot(mas->node) + 1; 2220 if (parent.offset > mas_data_end(&parent)) 2221 return false; 2222 2223 *mas = parent; 2224 mas_descend(mas); 2225 return true; 2226 } 2227 2228 /* 2229 * mte_node_or_node() - Return the encoded node or MAS_NONE. 2230 * @enode: The encoded maple node. 2231 * 2232 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state. 2233 * 2234 * Return: @enode or MAS_NONE 2235 */ 2236 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode) 2237 { 2238 if (enode) 2239 return enode; 2240 2241 return ma_enode_ptr(MAS_NONE); 2242 } 2243 2244 /* 2245 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2246 * @wr_mas: The maple write state 2247 * 2248 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2249 */ 2250 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2251 { 2252 struct ma_state *mas = wr_mas->mas; 2253 unsigned char count; 2254 unsigned char offset; 2255 unsigned long index, min, max; 2256 2257 if (unlikely(ma_is_dense(wr_mas->type))) { 2258 wr_mas->r_max = wr_mas->r_min = mas->index; 2259 mas->offset = mas->index = mas->min; 2260 return; 2261 } 2262 2263 wr_mas->node = mas_mn(wr_mas->mas); 2264 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2265 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type, 2266 wr_mas->pivots, mas->max); 2267 offset = mas->offset; 2268 min = mas_safe_min(mas, wr_mas->pivots, offset); 2269 if (unlikely(offset == count)) 2270 goto max; 2271 2272 max = wr_mas->pivots[offset]; 2273 index = mas->index; 2274 if (unlikely(index <= max)) 2275 goto done; 2276 2277 if (unlikely(!max && offset)) 2278 goto max; 2279 2280 min = max + 1; 2281 while (++offset < count) { 2282 max = wr_mas->pivots[offset]; 2283 if (index <= max) 2284 goto done; 2285 else if (unlikely(!max)) 2286 break; 2287 2288 min = max + 1; 2289 } 2290 2291 max: 2292 max = mas->max; 2293 done: 2294 wr_mas->r_max = max; 2295 wr_mas->r_min = min; 2296 wr_mas->offset_end = mas->offset = offset; 2297 } 2298 2299 /* 2300 * mas_topiary_range() - Add a range of slots to the topiary. 2301 * @mas: The maple state 2302 * @destroy: The topiary to add the slots (usually destroy) 2303 * @start: The starting slot inclusively 2304 * @end: The end slot inclusively 2305 */ 2306 static inline void mas_topiary_range(struct ma_state *mas, 2307 struct ma_topiary *destroy, unsigned char start, unsigned char end) 2308 { 2309 void __rcu **slots; 2310 unsigned char offset; 2311 2312 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node)); 2313 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node)); 2314 for (offset = start; offset <= end; offset++) { 2315 struct maple_enode *enode = mas_slot_locked(mas, slots, offset); 2316 2317 if (mte_dead_node(enode)) 2318 continue; 2319 2320 mat_add(destroy, enode); 2321 } 2322 } 2323 2324 /* 2325 * mast_topiary() - Add the portions of the tree to the removal list; either to 2326 * be freed or discarded (destroy walk). 2327 * @mast: The maple_subtree_state. 2328 */ 2329 static inline void mast_topiary(struct maple_subtree_state *mast) 2330 { 2331 MA_WR_STATE(wr_mas, mast->orig_l, NULL); 2332 unsigned char r_start, r_end; 2333 unsigned char l_start, l_end; 2334 void __rcu **l_slots, **r_slots; 2335 2336 wr_mas.type = mte_node_type(mast->orig_l->node); 2337 mast->orig_l->index = mast->orig_l->last; 2338 mas_wr_node_walk(&wr_mas); 2339 l_start = mast->orig_l->offset + 1; 2340 l_end = mas_data_end(mast->orig_l); 2341 r_start = 0; 2342 r_end = mast->orig_r->offset; 2343 2344 if (r_end) 2345 r_end--; 2346 2347 l_slots = ma_slots(mas_mn(mast->orig_l), 2348 mte_node_type(mast->orig_l->node)); 2349 2350 r_slots = ma_slots(mas_mn(mast->orig_r), 2351 mte_node_type(mast->orig_r->node)); 2352 2353 if ((l_start < l_end) && 2354 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) { 2355 l_start++; 2356 } 2357 2358 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) { 2359 if (r_end) 2360 r_end--; 2361 } 2362 2363 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node)) 2364 return; 2365 2366 /* At the node where left and right sides meet, add the parts between */ 2367 if (mast->orig_l->node == mast->orig_r->node) { 2368 return mas_topiary_range(mast->orig_l, mast->destroy, 2369 l_start, r_end); 2370 } 2371 2372 /* mast->orig_r is different and consumed. */ 2373 if (mte_is_leaf(mast->orig_r->node)) 2374 return; 2375 2376 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end))) 2377 l_end--; 2378 2379 2380 if (l_start <= l_end) 2381 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end); 2382 2383 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start))) 2384 r_start++; 2385 2386 if (r_start <= r_end) 2387 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end); 2388 } 2389 2390 /* 2391 * mast_rebalance_next() - Rebalance against the next node 2392 * @mast: The maple subtree state 2393 * @old_r: The encoded maple node to the right (next node). 2394 */ 2395 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2396 { 2397 unsigned char b_end = mast->bn->b_end; 2398 2399 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2400 mast->bn, b_end); 2401 mast->orig_r->last = mast->orig_r->max; 2402 } 2403 2404 /* 2405 * mast_rebalance_prev() - Rebalance against the previous node 2406 * @mast: The maple subtree state 2407 * @old_l: The encoded maple node to the left (previous node) 2408 */ 2409 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2410 { 2411 unsigned char end = mas_data_end(mast->orig_l) + 1; 2412 unsigned char b_end = mast->bn->b_end; 2413 2414 mab_shift_right(mast->bn, end); 2415 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2416 mast->l->min = mast->orig_l->min; 2417 mast->orig_l->index = mast->orig_l->min; 2418 mast->bn->b_end = end + b_end; 2419 mast->l->offset += end; 2420 } 2421 2422 /* 2423 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2424 * the node to the right. Checking the nodes to the right then the left at each 2425 * level upwards until root is reached. Free and destroy as needed. 2426 * Data is copied into the @mast->bn. 2427 * @mast: The maple_subtree_state. 2428 */ 2429 static inline 2430 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2431 { 2432 struct ma_state r_tmp = *mast->orig_r; 2433 struct ma_state l_tmp = *mast->orig_l; 2434 struct maple_enode *ancestor = NULL; 2435 unsigned char start, end; 2436 unsigned char depth = 0; 2437 2438 r_tmp = *mast->orig_r; 2439 l_tmp = *mast->orig_l; 2440 do { 2441 mas_ascend(mast->orig_r); 2442 mas_ascend(mast->orig_l); 2443 depth++; 2444 if (!ancestor && 2445 (mast->orig_r->node == mast->orig_l->node)) { 2446 ancestor = mast->orig_r->node; 2447 end = mast->orig_r->offset - 1; 2448 start = mast->orig_l->offset + 1; 2449 } 2450 2451 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2452 if (!ancestor) { 2453 ancestor = mast->orig_r->node; 2454 start = 0; 2455 } 2456 2457 mast->orig_r->offset++; 2458 do { 2459 mas_descend(mast->orig_r); 2460 mast->orig_r->offset = 0; 2461 depth--; 2462 } while (depth); 2463 2464 mast_rebalance_next(mast); 2465 do { 2466 unsigned char l_off = 0; 2467 struct maple_enode *child = r_tmp.node; 2468 2469 mas_ascend(&r_tmp); 2470 if (ancestor == r_tmp.node) 2471 l_off = start; 2472 2473 if (r_tmp.offset) 2474 r_tmp.offset--; 2475 2476 if (l_off < r_tmp.offset) 2477 mas_topiary_range(&r_tmp, mast->destroy, 2478 l_off, r_tmp.offset); 2479 2480 if (l_tmp.node != child) 2481 mat_add(mast->free, child); 2482 2483 } while (r_tmp.node != ancestor); 2484 2485 *mast->orig_l = l_tmp; 2486 return true; 2487 2488 } else if (mast->orig_l->offset != 0) { 2489 if (!ancestor) { 2490 ancestor = mast->orig_l->node; 2491 end = mas_data_end(mast->orig_l); 2492 } 2493 2494 mast->orig_l->offset--; 2495 do { 2496 mas_descend(mast->orig_l); 2497 mast->orig_l->offset = 2498 mas_data_end(mast->orig_l); 2499 depth--; 2500 } while (depth); 2501 2502 mast_rebalance_prev(mast); 2503 do { 2504 unsigned char r_off; 2505 struct maple_enode *child = l_tmp.node; 2506 2507 mas_ascend(&l_tmp); 2508 if (ancestor == l_tmp.node) 2509 r_off = end; 2510 else 2511 r_off = mas_data_end(&l_tmp); 2512 2513 if (l_tmp.offset < r_off) 2514 l_tmp.offset++; 2515 2516 if (l_tmp.offset < r_off) 2517 mas_topiary_range(&l_tmp, mast->destroy, 2518 l_tmp.offset, r_off); 2519 2520 if (r_tmp.node != child) 2521 mat_add(mast->free, child); 2522 2523 } while (l_tmp.node != ancestor); 2524 2525 *mast->orig_r = r_tmp; 2526 return true; 2527 } 2528 } while (!mte_is_root(mast->orig_r->node)); 2529 2530 *mast->orig_r = r_tmp; 2531 *mast->orig_l = l_tmp; 2532 return false; 2533 } 2534 2535 /* 2536 * mast_ascend_free() - Add current original maple state nodes to the free list 2537 * and ascend. 2538 * @mast: the maple subtree state. 2539 * 2540 * Ascend the original left and right sides and add the previous nodes to the 2541 * free list. Set the slots to point to the correct location in the new nodes. 2542 */ 2543 static inline void 2544 mast_ascend_free(struct maple_subtree_state *mast) 2545 { 2546 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2547 struct maple_enode *left = mast->orig_l->node; 2548 struct maple_enode *right = mast->orig_r->node; 2549 2550 mas_ascend(mast->orig_l); 2551 mas_ascend(mast->orig_r); 2552 mat_add(mast->free, left); 2553 2554 if (left != right) 2555 mat_add(mast->free, right); 2556 2557 mast->orig_r->offset = 0; 2558 mast->orig_r->index = mast->r->max; 2559 /* last should be larger than or equal to index */ 2560 if (mast->orig_r->last < mast->orig_r->index) 2561 mast->orig_r->last = mast->orig_r->index; 2562 /* 2563 * The node may not contain the value so set slot to ensure all 2564 * of the nodes contents are freed or destroyed. 2565 */ 2566 wr_mas.type = mte_node_type(mast->orig_r->node); 2567 mas_wr_node_walk(&wr_mas); 2568 /* Set up the left side of things */ 2569 mast->orig_l->offset = 0; 2570 mast->orig_l->index = mast->l->min; 2571 wr_mas.mas = mast->orig_l; 2572 wr_mas.type = mte_node_type(mast->orig_l->node); 2573 mas_wr_node_walk(&wr_mas); 2574 2575 mast->bn->type = wr_mas.type; 2576 } 2577 2578 /* 2579 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2580 * @mas: the maple state with the allocations. 2581 * @b_node: the maple_big_node with the type encoding. 2582 * 2583 * Use the node type from the maple_big_node to allocate a new node from the 2584 * ma_state. This function exists mainly for code readability. 2585 * 2586 * Return: A new maple encoded node 2587 */ 2588 static inline struct maple_enode 2589 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2590 { 2591 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2592 } 2593 2594 /* 2595 * mas_mab_to_node() - Set up right and middle nodes 2596 * 2597 * @mas: the maple state that contains the allocations. 2598 * @b_node: the node which contains the data. 2599 * @left: The pointer which will have the left node 2600 * @right: The pointer which may have the right node 2601 * @middle: the pointer which may have the middle node (rare) 2602 * @mid_split: the split location for the middle node 2603 * 2604 * Return: the split of left. 2605 */ 2606 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2607 struct maple_big_node *b_node, struct maple_enode **left, 2608 struct maple_enode **right, struct maple_enode **middle, 2609 unsigned char *mid_split, unsigned long min) 2610 { 2611 unsigned char split = 0; 2612 unsigned char slot_count = mt_slots[b_node->type]; 2613 2614 *left = mas_new_ma_node(mas, b_node); 2615 *right = NULL; 2616 *middle = NULL; 2617 *mid_split = 0; 2618 2619 if (b_node->b_end < slot_count) { 2620 split = b_node->b_end; 2621 } else { 2622 split = mab_calc_split(mas, b_node, mid_split, min); 2623 *right = mas_new_ma_node(mas, b_node); 2624 } 2625 2626 if (*mid_split) 2627 *middle = mas_new_ma_node(mas, b_node); 2628 2629 return split; 2630 2631 } 2632 2633 /* 2634 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2635 * pointer. 2636 * @b_node - the big node to add the entry 2637 * @mas - the maple state to get the pivot (mas->max) 2638 * @entry - the entry to add, if NULL nothing happens. 2639 */ 2640 static inline void mab_set_b_end(struct maple_big_node *b_node, 2641 struct ma_state *mas, 2642 void *entry) 2643 { 2644 if (!entry) 2645 return; 2646 2647 b_node->slot[b_node->b_end] = entry; 2648 if (mt_is_alloc(mas->tree)) 2649 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2650 b_node->pivot[b_node->b_end++] = mas->max; 2651 } 2652 2653 /* 2654 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2655 * of @mas->node to either @left or @right, depending on @slot and @split 2656 * 2657 * @mas - the maple state with the node that needs a parent 2658 * @left - possible parent 1 2659 * @right - possible parent 2 2660 * @slot - the slot the mas->node was placed 2661 * @split - the split location between @left and @right 2662 */ 2663 static inline void mas_set_split_parent(struct ma_state *mas, 2664 struct maple_enode *left, 2665 struct maple_enode *right, 2666 unsigned char *slot, unsigned char split) 2667 { 2668 if (mas_is_none(mas)) 2669 return; 2670 2671 if ((*slot) <= split) 2672 mte_set_parent(mas->node, left, *slot); 2673 else if (right) 2674 mte_set_parent(mas->node, right, (*slot) - split - 1); 2675 2676 (*slot)++; 2677 } 2678 2679 /* 2680 * mte_mid_split_check() - Check if the next node passes the mid-split 2681 * @**l: Pointer to left encoded maple node. 2682 * @**m: Pointer to middle encoded maple node. 2683 * @**r: Pointer to right encoded maple node. 2684 * @slot: The offset 2685 * @*split: The split location. 2686 * @mid_split: The middle split. 2687 */ 2688 static inline void mte_mid_split_check(struct maple_enode **l, 2689 struct maple_enode **r, 2690 struct maple_enode *right, 2691 unsigned char slot, 2692 unsigned char *split, 2693 unsigned char mid_split) 2694 { 2695 if (*r == right) 2696 return; 2697 2698 if (slot < mid_split) 2699 return; 2700 2701 *l = *r; 2702 *r = right; 2703 *split = mid_split; 2704 } 2705 2706 /* 2707 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2708 * is taken from @mast->l. 2709 * @mast - the maple subtree state 2710 * @left - the left node 2711 * @right - the right node 2712 * @split - the split location. 2713 */ 2714 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2715 struct maple_enode *left, 2716 struct maple_enode *middle, 2717 struct maple_enode *right, 2718 unsigned char split, 2719 unsigned char mid_split) 2720 { 2721 unsigned char slot; 2722 struct maple_enode *l = left; 2723 struct maple_enode *r = right; 2724 2725 if (mas_is_none(mast->l)) 2726 return; 2727 2728 if (middle) 2729 r = middle; 2730 2731 slot = mast->l->offset; 2732 2733 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2734 mas_set_split_parent(mast->l, l, r, &slot, split); 2735 2736 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2737 mas_set_split_parent(mast->m, l, r, &slot, split); 2738 2739 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2740 mas_set_split_parent(mast->r, l, r, &slot, split); 2741 } 2742 2743 /* 2744 * mas_wmb_replace() - Write memory barrier and replace 2745 * @mas: The maple state 2746 * @free: the maple topiary list of nodes to free 2747 * @destroy: The maple topiary list of nodes to destroy (walk and free) 2748 * 2749 * Updates gap as necessary. 2750 */ 2751 static inline void mas_wmb_replace(struct ma_state *mas, 2752 struct ma_topiary *free, 2753 struct ma_topiary *destroy) 2754 { 2755 /* All nodes must see old data as dead prior to replacing that data */ 2756 smp_wmb(); /* Needed for RCU */ 2757 2758 /* Insert the new data in the tree */ 2759 mas_replace(mas, true); 2760 2761 if (!mte_is_leaf(mas->node)) 2762 mas_descend_adopt(mas); 2763 2764 mas_mat_free(mas, free); 2765 2766 if (destroy) 2767 mas_mat_destroy(mas, destroy); 2768 2769 if (mte_is_leaf(mas->node)) 2770 return; 2771 2772 mas_update_gap(mas); 2773 } 2774 2775 /* 2776 * mast_new_root() - Set a new tree root during subtree creation 2777 * @mast: The maple subtree state 2778 * @mas: The maple state 2779 */ 2780 static inline void mast_new_root(struct maple_subtree_state *mast, 2781 struct ma_state *mas) 2782 { 2783 mas_mn(mast->l)->parent = 2784 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT)); 2785 if (!mte_dead_node(mast->orig_l->node) && 2786 !mte_is_root(mast->orig_l->node)) { 2787 do { 2788 mast_ascend_free(mast); 2789 mast_topiary(mast); 2790 } while (!mte_is_root(mast->orig_l->node)); 2791 } 2792 if ((mast->orig_l->node != mas->node) && 2793 (mast->l->depth > mas_mt_height(mas))) { 2794 mat_add(mast->free, mas->node); 2795 } 2796 } 2797 2798 /* 2799 * mast_cp_to_nodes() - Copy data out to nodes. 2800 * @mast: The maple subtree state 2801 * @left: The left encoded maple node 2802 * @middle: The middle encoded maple node 2803 * @right: The right encoded maple node 2804 * @split: The location to split between left and (middle ? middle : right) 2805 * @mid_split: The location to split between middle and right. 2806 */ 2807 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2808 struct maple_enode *left, struct maple_enode *middle, 2809 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2810 { 2811 bool new_lmax = true; 2812 2813 mast->l->node = mte_node_or_none(left); 2814 mast->m->node = mte_node_or_none(middle); 2815 mast->r->node = mte_node_or_none(right); 2816 2817 mast->l->min = mast->orig_l->min; 2818 if (split == mast->bn->b_end) { 2819 mast->l->max = mast->orig_r->max; 2820 new_lmax = false; 2821 } 2822 2823 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2824 2825 if (middle) { 2826 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2827 mast->m->min = mast->bn->pivot[split] + 1; 2828 split = mid_split; 2829 } 2830 2831 mast->r->max = mast->orig_r->max; 2832 if (right) { 2833 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2834 mast->r->min = mast->bn->pivot[split] + 1; 2835 } 2836 } 2837 2838 /* 2839 * mast_combine_cp_left - Copy in the original left side of the tree into the 2840 * combined data set in the maple subtree state big node. 2841 * @mast: The maple subtree state 2842 */ 2843 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2844 { 2845 unsigned char l_slot = mast->orig_l->offset; 2846 2847 if (!l_slot) 2848 return; 2849 2850 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2851 } 2852 2853 /* 2854 * mast_combine_cp_right: Copy in the original right side of the tree into the 2855 * combined data set in the maple subtree state big node. 2856 * @mast: The maple subtree state 2857 */ 2858 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2859 { 2860 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2861 return; 2862 2863 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2864 mt_slot_count(mast->orig_r->node), mast->bn, 2865 mast->bn->b_end); 2866 mast->orig_r->last = mast->orig_r->max; 2867 } 2868 2869 /* 2870 * mast_sufficient: Check if the maple subtree state has enough data in the big 2871 * node to create at least one sufficient node 2872 * @mast: the maple subtree state 2873 */ 2874 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2875 { 2876 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2877 return true; 2878 2879 return false; 2880 } 2881 2882 /* 2883 * mast_overflow: Check if there is too much data in the subtree state for a 2884 * single node. 2885 * @mast: The maple subtree state 2886 */ 2887 static inline bool mast_overflow(struct maple_subtree_state *mast) 2888 { 2889 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2890 return true; 2891 2892 return false; 2893 } 2894 2895 static inline void *mtree_range_walk(struct ma_state *mas) 2896 { 2897 unsigned long *pivots; 2898 unsigned char offset; 2899 struct maple_node *node; 2900 struct maple_enode *next, *last; 2901 enum maple_type type; 2902 void __rcu **slots; 2903 unsigned char end; 2904 unsigned long max, min; 2905 unsigned long prev_max, prev_min; 2906 2907 next = mas->node; 2908 min = mas->min; 2909 max = mas->max; 2910 do { 2911 offset = 0; 2912 last = next; 2913 node = mte_to_node(next); 2914 type = mte_node_type(next); 2915 pivots = ma_pivots(node, type); 2916 end = ma_data_end(node, type, pivots, max); 2917 if (unlikely(ma_dead_node(node))) 2918 goto dead_node; 2919 2920 if (pivots[offset] >= mas->index) { 2921 prev_max = max; 2922 prev_min = min; 2923 max = pivots[offset]; 2924 goto next; 2925 } 2926 2927 do { 2928 offset++; 2929 } while ((offset < end) && (pivots[offset] < mas->index)); 2930 2931 prev_min = min; 2932 min = pivots[offset - 1] + 1; 2933 prev_max = max; 2934 if (likely(offset < end && pivots[offset])) 2935 max = pivots[offset]; 2936 2937 next: 2938 slots = ma_slots(node, type); 2939 next = mt_slot(mas->tree, slots, offset); 2940 if (unlikely(ma_dead_node(node))) 2941 goto dead_node; 2942 } while (!ma_is_leaf(type)); 2943 2944 mas->offset = offset; 2945 mas->index = min; 2946 mas->last = max; 2947 mas->min = prev_min; 2948 mas->max = prev_max; 2949 mas->node = last; 2950 return (void *) next; 2951 2952 dead_node: 2953 mas_reset(mas); 2954 return NULL; 2955 } 2956 2957 /* 2958 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2959 * @mas: The starting maple state 2960 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2961 * @count: The estimated count of iterations needed. 2962 * 2963 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2964 * is hit. First @b_node is split into two entries which are inserted into the 2965 * next iteration of the loop. @b_node is returned populated with the final 2966 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2967 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2968 * to account of what has been copied into the new sub-tree. The update of 2969 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2970 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2971 * the new sub-tree in case the sub-tree becomes the full tree. 2972 * 2973 * Return: the number of elements in b_node during the last loop. 2974 */ 2975 static int mas_spanning_rebalance(struct ma_state *mas, 2976 struct maple_subtree_state *mast, unsigned char count) 2977 { 2978 unsigned char split, mid_split; 2979 unsigned char slot = 0; 2980 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2981 2982 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 2983 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2984 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 2985 MA_TOPIARY(free, mas->tree); 2986 MA_TOPIARY(destroy, mas->tree); 2987 2988 /* 2989 * The tree needs to be rebalanced and leaves need to be kept at the same level. 2990 * Rebalancing is done by use of the ``struct maple_topiary``. 2991 */ 2992 mast->l = &l_mas; 2993 mast->m = &m_mas; 2994 mast->r = &r_mas; 2995 mast->free = &free; 2996 mast->destroy = &destroy; 2997 l_mas.node = r_mas.node = m_mas.node = MAS_NONE; 2998 2999 /* Check if this is not root and has sufficient data. */ 3000 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 3001 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 3002 mast_spanning_rebalance(mast); 3003 3004 mast->orig_l->depth = 0; 3005 3006 /* 3007 * Each level of the tree is examined and balanced, pushing data to the left or 3008 * right, or rebalancing against left or right nodes is employed to avoid 3009 * rippling up the tree to limit the amount of churn. Once a new sub-section of 3010 * the tree is created, there may be a mix of new and old nodes. The old nodes 3011 * will have the incorrect parent pointers and currently be in two trees: the 3012 * original tree and the partially new tree. To remedy the parent pointers in 3013 * the old tree, the new data is swapped into the active tree and a walk down 3014 * the tree is performed and the parent pointers are updated. 3015 * See mas_descend_adopt() for more information.. 3016 */ 3017 while (count--) { 3018 mast->bn->b_end--; 3019 mast->bn->type = mte_node_type(mast->orig_l->node); 3020 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 3021 &mid_split, mast->orig_l->min); 3022 mast_set_split_parents(mast, left, middle, right, split, 3023 mid_split); 3024 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 3025 3026 /* 3027 * Copy data from next level in the tree to mast->bn from next 3028 * iteration 3029 */ 3030 memset(mast->bn, 0, sizeof(struct maple_big_node)); 3031 mast->bn->type = mte_node_type(left); 3032 mast->orig_l->depth++; 3033 3034 /* Root already stored in l->node. */ 3035 if (mas_is_root_limits(mast->l)) 3036 goto new_root; 3037 3038 mast_ascend_free(mast); 3039 mast_combine_cp_left(mast); 3040 l_mas.offset = mast->bn->b_end; 3041 mab_set_b_end(mast->bn, &l_mas, left); 3042 mab_set_b_end(mast->bn, &m_mas, middle); 3043 mab_set_b_end(mast->bn, &r_mas, right); 3044 3045 /* Copy anything necessary out of the right node. */ 3046 mast_combine_cp_right(mast); 3047 mast_topiary(mast); 3048 mast->orig_l->last = mast->orig_l->max; 3049 3050 if (mast_sufficient(mast)) 3051 continue; 3052 3053 if (mast_overflow(mast)) 3054 continue; 3055 3056 /* May be a new root stored in mast->bn */ 3057 if (mas_is_root_limits(mast->orig_l)) 3058 break; 3059 3060 mast_spanning_rebalance(mast); 3061 3062 /* rebalancing from other nodes may require another loop. */ 3063 if (!count) 3064 count++; 3065 } 3066 3067 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 3068 mte_node_type(mast->orig_l->node)); 3069 mast->orig_l->depth++; 3070 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 3071 mte_set_parent(left, l_mas.node, slot); 3072 if (middle) 3073 mte_set_parent(middle, l_mas.node, ++slot); 3074 3075 if (right) 3076 mte_set_parent(right, l_mas.node, ++slot); 3077 3078 if (mas_is_root_limits(mast->l)) { 3079 new_root: 3080 mast_new_root(mast, mas); 3081 } else { 3082 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 3083 } 3084 3085 if (!mte_dead_node(mast->orig_l->node)) 3086 mat_add(&free, mast->orig_l->node); 3087 3088 mas->depth = mast->orig_l->depth; 3089 *mast->orig_l = l_mas; 3090 mte_set_node_dead(mas->node); 3091 3092 /* Set up mas for insertion. */ 3093 mast->orig_l->depth = mas->depth; 3094 mast->orig_l->alloc = mas->alloc; 3095 *mas = *mast->orig_l; 3096 mas_wmb_replace(mas, &free, &destroy); 3097 mtree_range_walk(mas); 3098 return mast->bn->b_end; 3099 } 3100 3101 /* 3102 * mas_rebalance() - Rebalance a given node. 3103 * @mas: The maple state 3104 * @b_node: The big maple node. 3105 * 3106 * Rebalance two nodes into a single node or two new nodes that are sufficient. 3107 * Continue upwards until tree is sufficient. 3108 * 3109 * Return: the number of elements in b_node during the last loop. 3110 */ 3111 static inline int mas_rebalance(struct ma_state *mas, 3112 struct maple_big_node *b_node) 3113 { 3114 char empty_count = mas_mt_height(mas); 3115 struct maple_subtree_state mast; 3116 unsigned char shift, b_end = ++b_node->b_end; 3117 3118 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3119 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3120 3121 trace_ma_op(__func__, mas); 3122 3123 /* 3124 * Rebalancing occurs if a node is insufficient. Data is rebalanced 3125 * against the node to the right if it exists, otherwise the node to the 3126 * left of this node is rebalanced against this node. If rebalancing 3127 * causes just one node to be produced instead of two, then the parent 3128 * is also examined and rebalanced if it is insufficient. Every level 3129 * tries to combine the data in the same way. If one node contains the 3130 * entire range of the tree, then that node is used as a new root node. 3131 */ 3132 mas_node_count(mas, 1 + empty_count * 3); 3133 if (mas_is_err(mas)) 3134 return 0; 3135 3136 mast.orig_l = &l_mas; 3137 mast.orig_r = &r_mas; 3138 mast.bn = b_node; 3139 mast.bn->type = mte_node_type(mas->node); 3140 3141 l_mas = r_mas = *mas; 3142 3143 if (mas_next_sibling(&r_mas)) { 3144 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 3145 r_mas.last = r_mas.index = r_mas.max; 3146 } else { 3147 mas_prev_sibling(&l_mas); 3148 shift = mas_data_end(&l_mas) + 1; 3149 mab_shift_right(b_node, shift); 3150 mas->offset += shift; 3151 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3152 b_node->b_end = shift + b_end; 3153 l_mas.index = l_mas.last = l_mas.min; 3154 } 3155 3156 return mas_spanning_rebalance(mas, &mast, empty_count); 3157 } 3158 3159 /* 3160 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3161 * state. 3162 * @mas: The maple state 3163 * @end: The end of the left-most node. 3164 * 3165 * During a mass-insert event (such as forking), it may be necessary to 3166 * rebalance the left-most node when it is not sufficient. 3167 */ 3168 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3169 { 3170 enum maple_type mt = mte_node_type(mas->node); 3171 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3172 struct maple_enode *eparent; 3173 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3174 void __rcu **l_slots, **slots; 3175 unsigned long *l_pivs, *pivs, gap; 3176 bool in_rcu = mt_in_rcu(mas->tree); 3177 3178 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3179 3180 l_mas = *mas; 3181 mas_prev_sibling(&l_mas); 3182 3183 /* set up node. */ 3184 if (in_rcu) { 3185 /* Allocate for both left and right as well as parent. */ 3186 mas_node_count(mas, 3); 3187 if (mas_is_err(mas)) 3188 return; 3189 3190 newnode = mas_pop_node(mas); 3191 } else { 3192 newnode = &reuse; 3193 } 3194 3195 node = mas_mn(mas); 3196 newnode->parent = node->parent; 3197 slots = ma_slots(newnode, mt); 3198 pivs = ma_pivots(newnode, mt); 3199 left = mas_mn(&l_mas); 3200 l_slots = ma_slots(left, mt); 3201 l_pivs = ma_pivots(left, mt); 3202 if (!l_slots[split]) 3203 split++; 3204 tmp = mas_data_end(&l_mas) - split; 3205 3206 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3207 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3208 pivs[tmp] = l_mas.max; 3209 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3210 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3211 3212 l_mas.max = l_pivs[split]; 3213 mas->min = l_mas.max + 1; 3214 eparent = mt_mk_node(mte_parent(l_mas.node), 3215 mas_parent_enum(&l_mas, l_mas.node)); 3216 tmp += end; 3217 if (!in_rcu) { 3218 unsigned char max_p = mt_pivots[mt]; 3219 unsigned char max_s = mt_slots[mt]; 3220 3221 if (tmp < max_p) 3222 memset(pivs + tmp, 0, 3223 sizeof(unsigned long *) * (max_p - tmp)); 3224 3225 if (tmp < mt_slots[mt]) 3226 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3227 3228 memcpy(node, newnode, sizeof(struct maple_node)); 3229 ma_set_meta(node, mt, 0, tmp - 1); 3230 mte_set_pivot(eparent, mte_parent_slot(l_mas.node), 3231 l_pivs[split]); 3232 3233 /* Remove data from l_pivs. */ 3234 tmp = split + 1; 3235 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3236 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3237 ma_set_meta(left, mt, 0, split); 3238 3239 goto done; 3240 } 3241 3242 /* RCU requires replacing both l_mas, mas, and parent. */ 3243 mas->node = mt_mk_node(newnode, mt); 3244 ma_set_meta(newnode, mt, 0, tmp); 3245 3246 new_left = mas_pop_node(mas); 3247 new_left->parent = left->parent; 3248 mt = mte_node_type(l_mas.node); 3249 slots = ma_slots(new_left, mt); 3250 pivs = ma_pivots(new_left, mt); 3251 memcpy(slots, l_slots, sizeof(void *) * split); 3252 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3253 ma_set_meta(new_left, mt, 0, split); 3254 l_mas.node = mt_mk_node(new_left, mt); 3255 3256 /* replace parent. */ 3257 offset = mte_parent_slot(mas->node); 3258 mt = mas_parent_enum(&l_mas, l_mas.node); 3259 parent = mas_pop_node(mas); 3260 slots = ma_slots(parent, mt); 3261 pivs = ma_pivots(parent, mt); 3262 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node)); 3263 rcu_assign_pointer(slots[offset], mas->node); 3264 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3265 pivs[offset - 1] = l_mas.max; 3266 eparent = mt_mk_node(parent, mt); 3267 done: 3268 gap = mas_leaf_max_gap(mas); 3269 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3270 gap = mas_leaf_max_gap(&l_mas); 3271 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3272 mas_ascend(mas); 3273 3274 if (in_rcu) 3275 mas_replace(mas, false); 3276 3277 mas_update_gap(mas); 3278 } 3279 3280 /* 3281 * mas_split_final_node() - Split the final node in a subtree operation. 3282 * @mast: the maple subtree state 3283 * @mas: The maple state 3284 * @height: The height of the tree in case it's a new root. 3285 */ 3286 static inline bool mas_split_final_node(struct maple_subtree_state *mast, 3287 struct ma_state *mas, int height) 3288 { 3289 struct maple_enode *ancestor; 3290 3291 if (mte_is_root(mas->node)) { 3292 if (mt_is_alloc(mas->tree)) 3293 mast->bn->type = maple_arange_64; 3294 else 3295 mast->bn->type = maple_range_64; 3296 mas->depth = height; 3297 } 3298 /* 3299 * Only a single node is used here, could be root. 3300 * The Big_node data should just fit in a single node. 3301 */ 3302 ancestor = mas_new_ma_node(mas, mast->bn); 3303 mte_set_parent(mast->l->node, ancestor, mast->l->offset); 3304 mte_set_parent(mast->r->node, ancestor, mast->r->offset); 3305 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3306 3307 mast->l->node = ancestor; 3308 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3309 mas->offset = mast->bn->b_end - 1; 3310 return true; 3311 } 3312 3313 /* 3314 * mast_fill_bnode() - Copy data into the big node in the subtree state 3315 * @mast: The maple subtree state 3316 * @mas: the maple state 3317 * @skip: The number of entries to skip for new nodes insertion. 3318 */ 3319 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3320 struct ma_state *mas, 3321 unsigned char skip) 3322 { 3323 bool cp = true; 3324 struct maple_enode *old = mas->node; 3325 unsigned char split; 3326 3327 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3328 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3329 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3330 mast->bn->b_end = 0; 3331 3332 if (mte_is_root(mas->node)) { 3333 cp = false; 3334 } else { 3335 mas_ascend(mas); 3336 mat_add(mast->free, old); 3337 mas->offset = mte_parent_slot(mas->node); 3338 } 3339 3340 if (cp && mast->l->offset) 3341 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3342 3343 split = mast->bn->b_end; 3344 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3345 mast->r->offset = mast->bn->b_end; 3346 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3347 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3348 cp = false; 3349 3350 if (cp) 3351 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3352 mast->bn, mast->bn->b_end); 3353 3354 mast->bn->b_end--; 3355 mast->bn->type = mte_node_type(mas->node); 3356 } 3357 3358 /* 3359 * mast_split_data() - Split the data in the subtree state big node into regular 3360 * nodes. 3361 * @mast: The maple subtree state 3362 * @mas: The maple state 3363 * @split: The location to split the big node 3364 */ 3365 static inline void mast_split_data(struct maple_subtree_state *mast, 3366 struct ma_state *mas, unsigned char split) 3367 { 3368 unsigned char p_slot; 3369 3370 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3371 mte_set_pivot(mast->r->node, 0, mast->r->max); 3372 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3373 mast->l->offset = mte_parent_slot(mas->node); 3374 mast->l->max = mast->bn->pivot[split]; 3375 mast->r->min = mast->l->max + 1; 3376 if (mte_is_leaf(mas->node)) 3377 return; 3378 3379 p_slot = mast->orig_l->offset; 3380 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3381 &p_slot, split); 3382 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3383 &p_slot, split); 3384 } 3385 3386 /* 3387 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3388 * data to the right or left node if there is room. 3389 * @mas: The maple state 3390 * @height: The current height of the maple state 3391 * @mast: The maple subtree state 3392 * @left: Push left or not. 3393 * 3394 * Keeping the height of the tree low means faster lookups. 3395 * 3396 * Return: True if pushed, false otherwise. 3397 */ 3398 static inline bool mas_push_data(struct ma_state *mas, int height, 3399 struct maple_subtree_state *mast, bool left) 3400 { 3401 unsigned char slot_total = mast->bn->b_end; 3402 unsigned char end, space, split; 3403 3404 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3405 tmp_mas = *mas; 3406 tmp_mas.depth = mast->l->depth; 3407 3408 if (left && !mas_prev_sibling(&tmp_mas)) 3409 return false; 3410 else if (!left && !mas_next_sibling(&tmp_mas)) 3411 return false; 3412 3413 end = mas_data_end(&tmp_mas); 3414 slot_total += end; 3415 space = 2 * mt_slot_count(mas->node) - 2; 3416 /* -2 instead of -1 to ensure there isn't a triple split */ 3417 if (ma_is_leaf(mast->bn->type)) 3418 space--; 3419 3420 if (mas->max == ULONG_MAX) 3421 space--; 3422 3423 if (slot_total >= space) 3424 return false; 3425 3426 /* Get the data; Fill mast->bn */ 3427 mast->bn->b_end++; 3428 if (left) { 3429 mab_shift_right(mast->bn, end + 1); 3430 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3431 mast->bn->b_end = slot_total + 1; 3432 } else { 3433 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3434 } 3435 3436 /* Configure mast for splitting of mast->bn */ 3437 split = mt_slots[mast->bn->type] - 2; 3438 if (left) { 3439 /* Switch mas to prev node */ 3440 mat_add(mast->free, mas->node); 3441 *mas = tmp_mas; 3442 /* Start using mast->l for the left side. */ 3443 tmp_mas.node = mast->l->node; 3444 *mast->l = tmp_mas; 3445 } else { 3446 mat_add(mast->free, tmp_mas.node); 3447 tmp_mas.node = mast->r->node; 3448 *mast->r = tmp_mas; 3449 split = slot_total - split; 3450 } 3451 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3452 /* Update parent slot for split calculation. */ 3453 if (left) 3454 mast->orig_l->offset += end + 1; 3455 3456 mast_split_data(mast, mas, split); 3457 mast_fill_bnode(mast, mas, 2); 3458 mas_split_final_node(mast, mas, height + 1); 3459 return true; 3460 } 3461 3462 /* 3463 * mas_split() - Split data that is too big for one node into two. 3464 * @mas: The maple state 3465 * @b_node: The maple big node 3466 * Return: 1 on success, 0 on failure. 3467 */ 3468 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3469 { 3470 3471 struct maple_subtree_state mast; 3472 int height = 0; 3473 unsigned char mid_split, split = 0; 3474 3475 /* 3476 * Splitting is handled differently from any other B-tree; the Maple 3477 * Tree splits upwards. Splitting up means that the split operation 3478 * occurs when the walk of the tree hits the leaves and not on the way 3479 * down. The reason for splitting up is that it is impossible to know 3480 * how much space will be needed until the leaf is (or leaves are) 3481 * reached. Since overwriting data is allowed and a range could 3482 * overwrite more than one range or result in changing one entry into 3 3483 * entries, it is impossible to know if a split is required until the 3484 * data is examined. 3485 * 3486 * Splitting is a balancing act between keeping allocations to a minimum 3487 * and avoiding a 'jitter' event where a tree is expanded to make room 3488 * for an entry followed by a contraction when the entry is removed. To 3489 * accomplish the balance, there are empty slots remaining in both left 3490 * and right nodes after a split. 3491 */ 3492 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3493 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3494 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3495 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3496 MA_TOPIARY(mat, mas->tree); 3497 3498 trace_ma_op(__func__, mas); 3499 mas->depth = mas_mt_height(mas); 3500 /* Allocation failures will happen early. */ 3501 mas_node_count(mas, 1 + mas->depth * 2); 3502 if (mas_is_err(mas)) 3503 return 0; 3504 3505 mast.l = &l_mas; 3506 mast.r = &r_mas; 3507 mast.orig_l = &prev_l_mas; 3508 mast.orig_r = &prev_r_mas; 3509 mast.free = &mat; 3510 mast.bn = b_node; 3511 3512 while (height++ <= mas->depth) { 3513 if (mt_slots[b_node->type] > b_node->b_end) { 3514 mas_split_final_node(&mast, mas, height); 3515 break; 3516 } 3517 3518 l_mas = r_mas = *mas; 3519 l_mas.node = mas_new_ma_node(mas, b_node); 3520 r_mas.node = mas_new_ma_node(mas, b_node); 3521 /* 3522 * Another way that 'jitter' is avoided is to terminate a split up early if the 3523 * left or right node has space to spare. This is referred to as "pushing left" 3524 * or "pushing right" and is similar to the B* tree, except the nodes left or 3525 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3526 * is a significant savings. 3527 */ 3528 /* Try to push left. */ 3529 if (mas_push_data(mas, height, &mast, true)) 3530 break; 3531 3532 /* Try to push right. */ 3533 if (mas_push_data(mas, height, &mast, false)) 3534 break; 3535 3536 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3537 mast_split_data(&mast, mas, split); 3538 /* 3539 * Usually correct, mab_mas_cp in the above call overwrites 3540 * r->max. 3541 */ 3542 mast.r->max = mas->max; 3543 mast_fill_bnode(&mast, mas, 1); 3544 prev_l_mas = *mast.l; 3545 prev_r_mas = *mast.r; 3546 } 3547 3548 /* Set the original node as dead */ 3549 mat_add(mast.free, mas->node); 3550 mas->node = l_mas.node; 3551 mas_wmb_replace(mas, mast.free, NULL); 3552 mtree_range_walk(mas); 3553 return 1; 3554 } 3555 3556 /* 3557 * mas_reuse_node() - Reuse the node to store the data. 3558 * @wr_mas: The maple write state 3559 * @bn: The maple big node 3560 * @end: The end of the data. 3561 * 3562 * Will always return false in RCU mode. 3563 * 3564 * Return: True if node was reused, false otherwise. 3565 */ 3566 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3567 struct maple_big_node *bn, unsigned char end) 3568 { 3569 /* Need to be rcu safe. */ 3570 if (mt_in_rcu(wr_mas->mas->tree)) 3571 return false; 3572 3573 if (end > bn->b_end) { 3574 int clear = mt_slots[wr_mas->type] - bn->b_end; 3575 3576 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3577 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3578 } 3579 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3580 return true; 3581 } 3582 3583 /* 3584 * mas_commit_b_node() - Commit the big node into the tree. 3585 * @wr_mas: The maple write state 3586 * @b_node: The maple big node 3587 * @end: The end of the data. 3588 */ 3589 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas, 3590 struct maple_big_node *b_node, unsigned char end) 3591 { 3592 struct maple_node *node; 3593 unsigned char b_end = b_node->b_end; 3594 enum maple_type b_type = b_node->type; 3595 3596 if ((b_end < mt_min_slots[b_type]) && 3597 (!mte_is_root(wr_mas->mas->node)) && 3598 (mas_mt_height(wr_mas->mas) > 1)) 3599 return mas_rebalance(wr_mas->mas, b_node); 3600 3601 if (b_end >= mt_slots[b_type]) 3602 return mas_split(wr_mas->mas, b_node); 3603 3604 if (mas_reuse_node(wr_mas, b_node, end)) 3605 goto reuse_node; 3606 3607 mas_node_count(wr_mas->mas, 1); 3608 if (mas_is_err(wr_mas->mas)) 3609 return 0; 3610 3611 node = mas_pop_node(wr_mas->mas); 3612 node->parent = mas_mn(wr_mas->mas)->parent; 3613 wr_mas->mas->node = mt_mk_node(node, b_type); 3614 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3615 mas_replace(wr_mas->mas, false); 3616 reuse_node: 3617 mas_update_gap(wr_mas->mas); 3618 return 1; 3619 } 3620 3621 /* 3622 * mas_root_expand() - Expand a root to a node 3623 * @mas: The maple state 3624 * @entry: The entry to store into the tree 3625 */ 3626 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3627 { 3628 void *contents = mas_root_locked(mas); 3629 enum maple_type type = maple_leaf_64; 3630 struct maple_node *node; 3631 void __rcu **slots; 3632 unsigned long *pivots; 3633 int slot = 0; 3634 3635 mas_node_count(mas, 1); 3636 if (unlikely(mas_is_err(mas))) 3637 return 0; 3638 3639 node = mas_pop_node(mas); 3640 pivots = ma_pivots(node, type); 3641 slots = ma_slots(node, type); 3642 node->parent = ma_parent_ptr( 3643 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3644 mas->node = mt_mk_node(node, type); 3645 3646 if (mas->index) { 3647 if (contents) { 3648 rcu_assign_pointer(slots[slot], contents); 3649 if (likely(mas->index > 1)) 3650 slot++; 3651 } 3652 pivots[slot++] = mas->index - 1; 3653 } 3654 3655 rcu_assign_pointer(slots[slot], entry); 3656 mas->offset = slot; 3657 pivots[slot] = mas->last; 3658 if (mas->last != ULONG_MAX) 3659 slot++; 3660 mas->depth = 1; 3661 mas_set_height(mas); 3662 3663 /* swap the new root into the tree */ 3664 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3665 ma_set_meta(node, maple_leaf_64, 0, slot); 3666 return slot; 3667 } 3668 3669 static inline void mas_store_root(struct ma_state *mas, void *entry) 3670 { 3671 if (likely((mas->last != 0) || (mas->index != 0))) 3672 mas_root_expand(mas, entry); 3673 else if (((unsigned long) (entry) & 3) == 2) 3674 mas_root_expand(mas, entry); 3675 else { 3676 rcu_assign_pointer(mas->tree->ma_root, entry); 3677 mas->node = MAS_START; 3678 } 3679 } 3680 3681 /* 3682 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3683 * spans the node. 3684 * @mas: The maple state 3685 * @piv: The pivot value being written 3686 * @type: The maple node type 3687 * @entry: The data to write 3688 * 3689 * Spanning writes are writes that start in one node and end in another OR if 3690 * the write of a %NULL will cause the node to end with a %NULL. 3691 * 3692 * Return: True if this is a spanning write, false otherwise. 3693 */ 3694 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3695 { 3696 unsigned long max; 3697 unsigned long last = wr_mas->mas->last; 3698 unsigned long piv = wr_mas->r_max; 3699 enum maple_type type = wr_mas->type; 3700 void *entry = wr_mas->entry; 3701 3702 /* Contained in this pivot */ 3703 if (piv > last) 3704 return false; 3705 3706 max = wr_mas->mas->max; 3707 if (unlikely(ma_is_leaf(type))) { 3708 /* Fits in the node, but may span slots. */ 3709 if (last < max) 3710 return false; 3711 3712 /* Writes to the end of the node but not null. */ 3713 if ((last == max) && entry) 3714 return false; 3715 3716 /* 3717 * Writing ULONG_MAX is not a spanning write regardless of the 3718 * value being written as long as the range fits in the node. 3719 */ 3720 if ((last == ULONG_MAX) && (last == max)) 3721 return false; 3722 } else if (piv == last) { 3723 if (entry) 3724 return false; 3725 3726 /* Detect spanning store wr walk */ 3727 if (last == ULONG_MAX) 3728 return false; 3729 } 3730 3731 trace_ma_write(__func__, wr_mas->mas, piv, entry); 3732 3733 return true; 3734 } 3735 3736 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3737 { 3738 wr_mas->type = mte_node_type(wr_mas->mas->node); 3739 mas_wr_node_walk(wr_mas); 3740 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3741 } 3742 3743 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3744 { 3745 wr_mas->mas->max = wr_mas->r_max; 3746 wr_mas->mas->min = wr_mas->r_min; 3747 wr_mas->mas->node = wr_mas->content; 3748 wr_mas->mas->offset = 0; 3749 wr_mas->mas->depth++; 3750 } 3751 /* 3752 * mas_wr_walk() - Walk the tree for a write. 3753 * @wr_mas: The maple write state 3754 * 3755 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3756 * 3757 * Return: True if it's contained in a node, false on spanning write. 3758 */ 3759 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3760 { 3761 struct ma_state *mas = wr_mas->mas; 3762 3763 while (true) { 3764 mas_wr_walk_descend(wr_mas); 3765 if (unlikely(mas_is_span_wr(wr_mas))) 3766 return false; 3767 3768 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3769 mas->offset); 3770 if (ma_is_leaf(wr_mas->type)) 3771 return true; 3772 3773 mas_wr_walk_traverse(wr_mas); 3774 } 3775 3776 return true; 3777 } 3778 3779 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3780 { 3781 struct ma_state *mas = wr_mas->mas; 3782 3783 while (true) { 3784 mas_wr_walk_descend(wr_mas); 3785 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3786 mas->offset); 3787 if (ma_is_leaf(wr_mas->type)) 3788 return true; 3789 mas_wr_walk_traverse(wr_mas); 3790 3791 } 3792 return true; 3793 } 3794 /* 3795 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3796 * @l_wr_mas: The left maple write state 3797 * @r_wr_mas: The right maple write state 3798 */ 3799 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3800 struct ma_wr_state *r_wr_mas) 3801 { 3802 struct ma_state *r_mas = r_wr_mas->mas; 3803 struct ma_state *l_mas = l_wr_mas->mas; 3804 unsigned char l_slot; 3805 3806 l_slot = l_mas->offset; 3807 if (!l_wr_mas->content) 3808 l_mas->index = l_wr_mas->r_min; 3809 3810 if ((l_mas->index == l_wr_mas->r_min) && 3811 (l_slot && 3812 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3813 if (l_slot > 1) 3814 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3815 else 3816 l_mas->index = l_mas->min; 3817 3818 l_mas->offset = l_slot - 1; 3819 } 3820 3821 if (!r_wr_mas->content) { 3822 if (r_mas->last < r_wr_mas->r_max) 3823 r_mas->last = r_wr_mas->r_max; 3824 r_mas->offset++; 3825 } else if ((r_mas->last == r_wr_mas->r_max) && 3826 (r_mas->last < r_mas->max) && 3827 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3828 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3829 r_wr_mas->type, r_mas->offset + 1); 3830 r_mas->offset++; 3831 } 3832 } 3833 3834 static inline void *mas_state_walk(struct ma_state *mas) 3835 { 3836 void *entry; 3837 3838 entry = mas_start(mas); 3839 if (mas_is_none(mas)) 3840 return NULL; 3841 3842 if (mas_is_ptr(mas)) 3843 return entry; 3844 3845 return mtree_range_walk(mas); 3846 } 3847 3848 /* 3849 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3850 * to date. 3851 * 3852 * @mas: The maple state. 3853 * 3854 * Note: Leaves mas in undesirable state. 3855 * Return: The entry for @mas->index or %NULL on dead node. 3856 */ 3857 static inline void *mtree_lookup_walk(struct ma_state *mas) 3858 { 3859 unsigned long *pivots; 3860 unsigned char offset; 3861 struct maple_node *node; 3862 struct maple_enode *next; 3863 enum maple_type type; 3864 void __rcu **slots; 3865 unsigned char end; 3866 unsigned long max; 3867 3868 next = mas->node; 3869 max = ULONG_MAX; 3870 do { 3871 offset = 0; 3872 node = mte_to_node(next); 3873 type = mte_node_type(next); 3874 pivots = ma_pivots(node, type); 3875 end = ma_data_end(node, type, pivots, max); 3876 if (unlikely(ma_dead_node(node))) 3877 goto dead_node; 3878 3879 if (pivots[offset] >= mas->index) 3880 goto next; 3881 3882 do { 3883 offset++; 3884 } while ((offset < end) && (pivots[offset] < mas->index)); 3885 3886 if (likely(offset > end)) 3887 max = pivots[offset]; 3888 3889 next: 3890 slots = ma_slots(node, type); 3891 next = mt_slot(mas->tree, slots, offset); 3892 if (unlikely(ma_dead_node(node))) 3893 goto dead_node; 3894 } while (!ma_is_leaf(type)); 3895 3896 return (void *) next; 3897 3898 dead_node: 3899 mas_reset(mas); 3900 return NULL; 3901 } 3902 3903 /* 3904 * mas_new_root() - Create a new root node that only contains the entry passed 3905 * in. 3906 * @mas: The maple state 3907 * @entry: The entry to store. 3908 * 3909 * Only valid when the index == 0 and the last == ULONG_MAX 3910 * 3911 * Return 0 on error, 1 on success. 3912 */ 3913 static inline int mas_new_root(struct ma_state *mas, void *entry) 3914 { 3915 struct maple_enode *root = mas_root_locked(mas); 3916 enum maple_type type = maple_leaf_64; 3917 struct maple_node *node; 3918 void __rcu **slots; 3919 unsigned long *pivots; 3920 3921 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3922 mas->depth = 0; 3923 mas_set_height(mas); 3924 rcu_assign_pointer(mas->tree->ma_root, entry); 3925 mas->node = MAS_START; 3926 goto done; 3927 } 3928 3929 mas_node_count(mas, 1); 3930 if (mas_is_err(mas)) 3931 return 0; 3932 3933 node = mas_pop_node(mas); 3934 pivots = ma_pivots(node, type); 3935 slots = ma_slots(node, type); 3936 node->parent = ma_parent_ptr( 3937 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3938 mas->node = mt_mk_node(node, type); 3939 rcu_assign_pointer(slots[0], entry); 3940 pivots[0] = mas->last; 3941 mas->depth = 1; 3942 mas_set_height(mas); 3943 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3944 3945 done: 3946 if (xa_is_node(root)) 3947 mte_destroy_walk(root, mas->tree); 3948 3949 return 1; 3950 } 3951 /* 3952 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3953 * and new nodes where necessary, then place the sub-tree in the actual tree. 3954 * Note that mas is expected to point to the node which caused the store to 3955 * span. 3956 * @wr_mas: The maple write state 3957 * 3958 * Return: 0 on error, positive on success. 3959 */ 3960 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3961 { 3962 struct maple_subtree_state mast; 3963 struct maple_big_node b_node; 3964 struct ma_state *mas; 3965 unsigned char height; 3966 3967 /* Left and Right side of spanning store */ 3968 MA_STATE(l_mas, NULL, 0, 0); 3969 MA_STATE(r_mas, NULL, 0, 0); 3970 3971 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3972 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3973 3974 /* 3975 * A store operation that spans multiple nodes is called a spanning 3976 * store and is handled early in the store call stack by the function 3977 * mas_is_span_wr(). When a spanning store is identified, the maple 3978 * state is duplicated. The first maple state walks the left tree path 3979 * to ``index``, the duplicate walks the right tree path to ``last``. 3980 * The data in the two nodes are combined into a single node, two nodes, 3981 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3982 * written to the last entry of a node is considered a spanning store as 3983 * a rebalance is required for the operation to complete and an overflow 3984 * of data may happen. 3985 */ 3986 mas = wr_mas->mas; 3987 trace_ma_op(__func__, mas); 3988 3989 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3990 return mas_new_root(mas, wr_mas->entry); 3991 /* 3992 * Node rebalancing may occur due to this store, so there may be three new 3993 * entries per level plus a new root. 3994 */ 3995 height = mas_mt_height(mas); 3996 mas_node_count(mas, 1 + height * 3); 3997 if (mas_is_err(mas)) 3998 return 0; 3999 4000 /* 4001 * Set up right side. Need to get to the next offset after the spanning 4002 * store to ensure it's not NULL and to combine both the next node and 4003 * the node with the start together. 4004 */ 4005 r_mas = *mas; 4006 /* Avoid overflow, walk to next slot in the tree. */ 4007 if (r_mas.last + 1) 4008 r_mas.last++; 4009 4010 r_mas.index = r_mas.last; 4011 mas_wr_walk_index(&r_wr_mas); 4012 r_mas.last = r_mas.index = mas->last; 4013 4014 /* Set up left side. */ 4015 l_mas = *mas; 4016 mas_wr_walk_index(&l_wr_mas); 4017 4018 if (!wr_mas->entry) { 4019 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 4020 mas->offset = l_mas.offset; 4021 mas->index = l_mas.index; 4022 mas->last = l_mas.last = r_mas.last; 4023 } 4024 4025 /* expanding NULLs may make this cover the entire range */ 4026 if (!l_mas.index && r_mas.last == ULONG_MAX) { 4027 mas_set_range(mas, 0, ULONG_MAX); 4028 return mas_new_root(mas, wr_mas->entry); 4029 } 4030 4031 memset(&b_node, 0, sizeof(struct maple_big_node)); 4032 /* Copy l_mas and store the value in b_node. */ 4033 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end); 4034 /* Copy r_mas into b_node. */ 4035 if (r_mas.offset <= r_wr_mas.node_end) 4036 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end, 4037 &b_node, b_node.b_end + 1); 4038 else 4039 b_node.b_end++; 4040 4041 /* Stop spanning searches by searching for just index. */ 4042 l_mas.index = l_mas.last = mas->index; 4043 4044 mast.bn = &b_node; 4045 mast.orig_l = &l_mas; 4046 mast.orig_r = &r_mas; 4047 /* Combine l_mas and r_mas and split them up evenly again. */ 4048 return mas_spanning_rebalance(mas, &mast, height + 1); 4049 } 4050 4051 /* 4052 * mas_wr_node_store() - Attempt to store the value in a node 4053 * @wr_mas: The maple write state 4054 * 4055 * Attempts to reuse the node, but may allocate. 4056 * 4057 * Return: True if stored, false otherwise 4058 */ 4059 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas) 4060 { 4061 struct ma_state *mas = wr_mas->mas; 4062 void __rcu **dst_slots; 4063 unsigned long *dst_pivots; 4064 unsigned char dst_offset; 4065 unsigned char new_end = wr_mas->node_end; 4066 unsigned char offset; 4067 unsigned char node_slots = mt_slots[wr_mas->type]; 4068 struct maple_node reuse, *newnode; 4069 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type]; 4070 bool in_rcu = mt_in_rcu(mas->tree); 4071 4072 offset = mas->offset; 4073 if (mas->last == wr_mas->r_max) { 4074 /* runs right to the end of the node */ 4075 if (mas->last == mas->max) 4076 new_end = offset; 4077 /* don't copy this offset */ 4078 wr_mas->offset_end++; 4079 } else if (mas->last < wr_mas->r_max) { 4080 /* new range ends in this range */ 4081 if (unlikely(wr_mas->r_max == ULONG_MAX)) 4082 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type); 4083 4084 new_end++; 4085 } else { 4086 if (wr_mas->end_piv == mas->last) 4087 wr_mas->offset_end++; 4088 4089 new_end -= wr_mas->offset_end - offset - 1; 4090 } 4091 4092 /* new range starts within a range */ 4093 if (wr_mas->r_min < mas->index) 4094 new_end++; 4095 4096 /* Not enough room */ 4097 if (new_end >= node_slots) 4098 return false; 4099 4100 /* Not enough data. */ 4101 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 4102 !(mas->mas_flags & MA_STATE_BULK)) 4103 return false; 4104 4105 /* set up node. */ 4106 if (in_rcu) { 4107 mas_node_count(mas, 1); 4108 if (mas_is_err(mas)) 4109 return false; 4110 4111 newnode = mas_pop_node(mas); 4112 } else { 4113 memset(&reuse, 0, sizeof(struct maple_node)); 4114 newnode = &reuse; 4115 } 4116 4117 newnode->parent = mas_mn(mas)->parent; 4118 dst_pivots = ma_pivots(newnode, wr_mas->type); 4119 dst_slots = ma_slots(newnode, wr_mas->type); 4120 /* Copy from start to insert point */ 4121 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1)); 4122 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1)); 4123 dst_offset = offset; 4124 4125 /* Handle insert of new range starting after old range */ 4126 if (wr_mas->r_min < mas->index) { 4127 mas->offset++; 4128 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content); 4129 dst_pivots[dst_offset++] = mas->index - 1; 4130 } 4131 4132 /* Store the new entry and range end. */ 4133 if (dst_offset < max_piv) 4134 dst_pivots[dst_offset] = mas->last; 4135 mas->offset = dst_offset; 4136 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry); 4137 4138 /* 4139 * this range wrote to the end of the node or it overwrote the rest of 4140 * the data 4141 */ 4142 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) { 4143 new_end = dst_offset; 4144 goto done; 4145 } 4146 4147 dst_offset++; 4148 /* Copy to the end of node if necessary. */ 4149 copy_size = wr_mas->node_end - wr_mas->offset_end + 1; 4150 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end, 4151 sizeof(void *) * copy_size); 4152 if (dst_offset < max_piv) { 4153 if (copy_size > max_piv - dst_offset) 4154 copy_size = max_piv - dst_offset; 4155 4156 memcpy(dst_pivots + dst_offset, 4157 wr_mas->pivots + wr_mas->offset_end, 4158 sizeof(unsigned long) * copy_size); 4159 } 4160 4161 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1)) 4162 dst_pivots[new_end] = mas->max; 4163 4164 done: 4165 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end); 4166 if (in_rcu) { 4167 mas->node = mt_mk_node(newnode, wr_mas->type); 4168 mas_replace(mas, false); 4169 } else { 4170 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 4171 } 4172 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4173 mas_update_gap(mas); 4174 return true; 4175 } 4176 4177 /* 4178 * mas_wr_slot_store: Attempt to store a value in a slot. 4179 * @wr_mas: the maple write state 4180 * 4181 * Return: True if stored, false otherwise 4182 */ 4183 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 4184 { 4185 struct ma_state *mas = wr_mas->mas; 4186 unsigned long lmax; /* Logical max. */ 4187 unsigned char offset = mas->offset; 4188 4189 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) || 4190 (offset != wr_mas->node_end))) 4191 return false; 4192 4193 if (offset == wr_mas->node_end - 1) 4194 lmax = mas->max; 4195 else 4196 lmax = wr_mas->pivots[offset + 1]; 4197 4198 /* going to overwrite too many slots. */ 4199 if (lmax < mas->last) 4200 return false; 4201 4202 if (wr_mas->r_min == mas->index) { 4203 /* overwriting two or more ranges with one. */ 4204 if (lmax == mas->last) 4205 return false; 4206 4207 /* Overwriting all of offset and a portion of offset + 1. */ 4208 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry); 4209 wr_mas->pivots[offset] = mas->last; 4210 goto done; 4211 } 4212 4213 /* Doesn't end on the next range end. */ 4214 if (lmax != mas->last) 4215 return false; 4216 4217 /* Overwriting a portion of offset and all of offset + 1 */ 4218 if ((offset + 1 < mt_pivots[wr_mas->type]) && 4219 (wr_mas->entry || wr_mas->pivots[offset + 1])) 4220 wr_mas->pivots[offset + 1] = mas->last; 4221 4222 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry); 4223 wr_mas->pivots[offset] = mas->index - 1; 4224 mas->offset++; /* Keep mas accurate. */ 4225 4226 done: 4227 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4228 mas_update_gap(mas); 4229 return true; 4230 } 4231 4232 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4233 { 4234 while ((wr_mas->mas->last > wr_mas->end_piv) && 4235 (wr_mas->offset_end < wr_mas->node_end)) 4236 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end]; 4237 4238 if (wr_mas->mas->last > wr_mas->end_piv) 4239 wr_mas->end_piv = wr_mas->mas->max; 4240 } 4241 4242 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4243 { 4244 struct ma_state *mas = wr_mas->mas; 4245 4246 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end]) 4247 mas->last = wr_mas->end_piv; 4248 4249 /* Check next slot(s) if we are overwriting the end */ 4250 if ((mas->last == wr_mas->end_piv) && 4251 (wr_mas->node_end != wr_mas->offset_end) && 4252 !wr_mas->slots[wr_mas->offset_end + 1]) { 4253 wr_mas->offset_end++; 4254 if (wr_mas->offset_end == wr_mas->node_end) 4255 mas->last = mas->max; 4256 else 4257 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4258 wr_mas->end_piv = mas->last; 4259 } 4260 4261 if (!wr_mas->content) { 4262 /* If this one is null, the next and prev are not */ 4263 mas->index = wr_mas->r_min; 4264 } else { 4265 /* Check prev slot if we are overwriting the start */ 4266 if (mas->index == wr_mas->r_min && mas->offset && 4267 !wr_mas->slots[mas->offset - 1]) { 4268 mas->offset--; 4269 wr_mas->r_min = mas->index = 4270 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4271 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4272 } 4273 } 4274 } 4275 4276 static inline bool mas_wr_append(struct ma_wr_state *wr_mas) 4277 { 4278 unsigned char end = wr_mas->node_end; 4279 unsigned char new_end = end + 1; 4280 struct ma_state *mas = wr_mas->mas; 4281 unsigned char node_pivots = mt_pivots[wr_mas->type]; 4282 4283 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) { 4284 if (new_end < node_pivots) 4285 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4286 4287 if (new_end < node_pivots) 4288 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4289 4290 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry); 4291 mas->offset = new_end; 4292 wr_mas->pivots[end] = mas->index - 1; 4293 4294 return true; 4295 } 4296 4297 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) { 4298 if (new_end < node_pivots) 4299 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4300 4301 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content); 4302 if (new_end < node_pivots) 4303 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4304 4305 wr_mas->pivots[end] = mas->last; 4306 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry); 4307 return true; 4308 } 4309 4310 return false; 4311 } 4312 4313 /* 4314 * mas_wr_bnode() - Slow path for a modification. 4315 * @wr_mas: The write maple state 4316 * 4317 * This is where split, rebalance end up. 4318 */ 4319 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4320 { 4321 struct maple_big_node b_node; 4322 4323 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4324 memset(&b_node, 0, sizeof(struct maple_big_node)); 4325 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4326 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end); 4327 } 4328 4329 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4330 { 4331 unsigned char node_slots; 4332 unsigned char node_size; 4333 struct ma_state *mas = wr_mas->mas; 4334 4335 /* Direct replacement */ 4336 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4337 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4338 if (!!wr_mas->entry ^ !!wr_mas->content) 4339 mas_update_gap(mas); 4340 return; 4341 } 4342 4343 /* Attempt to append */ 4344 node_slots = mt_slots[wr_mas->type]; 4345 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2; 4346 if (mas->max == ULONG_MAX) 4347 node_size++; 4348 4349 /* slot and node store will not fit, go to the slow path */ 4350 if (unlikely(node_size >= node_slots)) 4351 goto slow_path; 4352 4353 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) && 4354 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) { 4355 if (!wr_mas->content || !wr_mas->entry) 4356 mas_update_gap(mas); 4357 return; 4358 } 4359 4360 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas)) 4361 return; 4362 else if (mas_wr_node_store(wr_mas)) 4363 return; 4364 4365 if (mas_is_err(mas)) 4366 return; 4367 4368 slow_path: 4369 mas_wr_bnode(wr_mas); 4370 } 4371 4372 /* 4373 * mas_wr_store_entry() - Internal call to store a value 4374 * @mas: The maple state 4375 * @entry: The entry to store. 4376 * 4377 * Return: The contents that was stored at the index. 4378 */ 4379 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4380 { 4381 struct ma_state *mas = wr_mas->mas; 4382 4383 wr_mas->content = mas_start(mas); 4384 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4385 mas_store_root(mas, wr_mas->entry); 4386 return wr_mas->content; 4387 } 4388 4389 if (unlikely(!mas_wr_walk(wr_mas))) { 4390 mas_wr_spanning_store(wr_mas); 4391 return wr_mas->content; 4392 } 4393 4394 /* At this point, we are at the leaf node that needs to be altered. */ 4395 wr_mas->end_piv = wr_mas->r_max; 4396 mas_wr_end_piv(wr_mas); 4397 4398 if (!wr_mas->entry) 4399 mas_wr_extend_null(wr_mas); 4400 4401 /* New root for a single pointer */ 4402 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4403 mas_new_root(mas, wr_mas->entry); 4404 return wr_mas->content; 4405 } 4406 4407 mas_wr_modify(wr_mas); 4408 return wr_mas->content; 4409 } 4410 4411 /** 4412 * mas_insert() - Internal call to insert a value 4413 * @mas: The maple state 4414 * @entry: The entry to store 4415 * 4416 * Return: %NULL or the contents that already exists at the requested index 4417 * otherwise. The maple state needs to be checked for error conditions. 4418 */ 4419 static inline void *mas_insert(struct ma_state *mas, void *entry) 4420 { 4421 MA_WR_STATE(wr_mas, mas, entry); 4422 4423 /* 4424 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4425 * tree. If the insert fits exactly into an existing gap with a value 4426 * of NULL, then the slot only needs to be written with the new value. 4427 * If the range being inserted is adjacent to another range, then only a 4428 * single pivot needs to be inserted (as well as writing the entry). If 4429 * the new range is within a gap but does not touch any other ranges, 4430 * then two pivots need to be inserted: the start - 1, and the end. As 4431 * usual, the entry must be written. Most operations require a new node 4432 * to be allocated and replace an existing node to ensure RCU safety, 4433 * when in RCU mode. The exception to requiring a newly allocated node 4434 * is when inserting at the end of a node (appending). When done 4435 * carefully, appending can reuse the node in place. 4436 */ 4437 wr_mas.content = mas_start(mas); 4438 if (wr_mas.content) 4439 goto exists; 4440 4441 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4442 mas_store_root(mas, entry); 4443 return NULL; 4444 } 4445 4446 /* spanning writes always overwrite something */ 4447 if (!mas_wr_walk(&wr_mas)) 4448 goto exists; 4449 4450 /* At this point, we are at the leaf node that needs to be altered. */ 4451 wr_mas.offset_end = mas->offset; 4452 wr_mas.end_piv = wr_mas.r_max; 4453 4454 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4455 goto exists; 4456 4457 if (!entry) 4458 return NULL; 4459 4460 mas_wr_modify(&wr_mas); 4461 return wr_mas.content; 4462 4463 exists: 4464 mas_set_err(mas, -EEXIST); 4465 return wr_mas.content; 4466 4467 } 4468 4469 /* 4470 * mas_prev_node() - Find the prev non-null entry at the same level in the 4471 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE. 4472 * @mas: The maple state 4473 * @min: The lower limit to search 4474 * 4475 * The prev node value will be mas->node[mas->offset] or MAS_NONE. 4476 * Return: 1 if the node is dead, 0 otherwise. 4477 */ 4478 static inline int mas_prev_node(struct ma_state *mas, unsigned long min) 4479 { 4480 enum maple_type mt; 4481 int offset, level; 4482 void __rcu **slots; 4483 struct maple_node *node; 4484 struct maple_enode *enode; 4485 unsigned long *pivots; 4486 4487 if (mas_is_none(mas)) 4488 return 0; 4489 4490 level = 0; 4491 do { 4492 node = mas_mn(mas); 4493 if (ma_is_root(node)) 4494 goto no_entry; 4495 4496 /* Walk up. */ 4497 if (unlikely(mas_ascend(mas))) 4498 return 1; 4499 offset = mas->offset; 4500 level++; 4501 } while (!offset); 4502 4503 offset--; 4504 mt = mte_node_type(mas->node); 4505 node = mas_mn(mas); 4506 slots = ma_slots(node, mt); 4507 pivots = ma_pivots(node, mt); 4508 mas->max = pivots[offset]; 4509 if (offset) 4510 mas->min = pivots[offset - 1] + 1; 4511 if (unlikely(ma_dead_node(node))) 4512 return 1; 4513 4514 if (mas->max < min) 4515 goto no_entry_min; 4516 4517 while (level > 1) { 4518 level--; 4519 enode = mas_slot(mas, slots, offset); 4520 if (unlikely(ma_dead_node(node))) 4521 return 1; 4522 4523 mas->node = enode; 4524 mt = mte_node_type(mas->node); 4525 node = mas_mn(mas); 4526 slots = ma_slots(node, mt); 4527 pivots = ma_pivots(node, mt); 4528 offset = ma_data_end(node, mt, pivots, mas->max); 4529 if (offset) 4530 mas->min = pivots[offset - 1] + 1; 4531 4532 if (offset < mt_pivots[mt]) 4533 mas->max = pivots[offset]; 4534 4535 if (mas->max < min) 4536 goto no_entry; 4537 } 4538 4539 mas->node = mas_slot(mas, slots, offset); 4540 if (unlikely(ma_dead_node(node))) 4541 return 1; 4542 4543 mas->offset = mas_data_end(mas); 4544 if (unlikely(mte_dead_node(mas->node))) 4545 return 1; 4546 4547 return 0; 4548 4549 no_entry_min: 4550 mas->offset = offset; 4551 if (offset) 4552 mas->min = pivots[offset - 1] + 1; 4553 no_entry: 4554 if (unlikely(ma_dead_node(node))) 4555 return 1; 4556 4557 mas->node = MAS_NONE; 4558 return 0; 4559 } 4560 4561 /* 4562 * mas_next_node() - Get the next node at the same level in the tree. 4563 * @mas: The maple state 4564 * @max: The maximum pivot value to check. 4565 * 4566 * The next value will be mas->node[mas->offset] or MAS_NONE. 4567 * Return: 1 on dead node, 0 otherwise. 4568 */ 4569 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node, 4570 unsigned long max) 4571 { 4572 unsigned long min, pivot; 4573 unsigned long *pivots; 4574 struct maple_enode *enode; 4575 int level = 0; 4576 unsigned char offset; 4577 enum maple_type mt; 4578 void __rcu **slots; 4579 4580 if (mas->max >= max) 4581 goto no_entry; 4582 4583 level = 0; 4584 do { 4585 if (ma_is_root(node)) 4586 goto no_entry; 4587 4588 min = mas->max + 1; 4589 if (min > max) 4590 goto no_entry; 4591 4592 if (unlikely(mas_ascend(mas))) 4593 return 1; 4594 4595 offset = mas->offset; 4596 level++; 4597 node = mas_mn(mas); 4598 mt = mte_node_type(mas->node); 4599 pivots = ma_pivots(node, mt); 4600 } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max))); 4601 4602 slots = ma_slots(node, mt); 4603 pivot = mas_safe_pivot(mas, pivots, ++offset, mt); 4604 while (unlikely(level > 1)) { 4605 /* Descend, if necessary */ 4606 enode = mas_slot(mas, slots, offset); 4607 if (unlikely(ma_dead_node(node))) 4608 return 1; 4609 4610 mas->node = enode; 4611 level--; 4612 node = mas_mn(mas); 4613 mt = mte_node_type(mas->node); 4614 slots = ma_slots(node, mt); 4615 pivots = ma_pivots(node, mt); 4616 offset = 0; 4617 pivot = pivots[0]; 4618 } 4619 4620 enode = mas_slot(mas, slots, offset); 4621 if (unlikely(ma_dead_node(node))) 4622 return 1; 4623 4624 mas->node = enode; 4625 mas->min = min; 4626 mas->max = pivot; 4627 return 0; 4628 4629 no_entry: 4630 if (unlikely(ma_dead_node(node))) 4631 return 1; 4632 4633 mas->node = MAS_NONE; 4634 return 0; 4635 } 4636 4637 /* 4638 * mas_next_nentry() - Get the next node entry 4639 * @mas: The maple state 4640 * @max: The maximum value to check 4641 * @*range_start: Pointer to store the start of the range. 4642 * 4643 * Sets @mas->offset to the offset of the next node entry, @mas->last to the 4644 * pivot of the entry. 4645 * 4646 * Return: The next entry, %NULL otherwise 4647 */ 4648 static inline void *mas_next_nentry(struct ma_state *mas, 4649 struct maple_node *node, unsigned long max, enum maple_type type) 4650 { 4651 unsigned char count; 4652 unsigned long pivot; 4653 unsigned long *pivots; 4654 void __rcu **slots; 4655 void *entry; 4656 4657 if (mas->last == mas->max) { 4658 mas->index = mas->max; 4659 return NULL; 4660 } 4661 4662 pivots = ma_pivots(node, type); 4663 slots = ma_slots(node, type); 4664 mas->index = mas_safe_min(mas, pivots, mas->offset); 4665 if (ma_dead_node(node)) 4666 return NULL; 4667 4668 if (mas->index > max) 4669 return NULL; 4670 4671 count = ma_data_end(node, type, pivots, mas->max); 4672 if (mas->offset > count) 4673 return NULL; 4674 4675 while (mas->offset < count) { 4676 pivot = pivots[mas->offset]; 4677 entry = mas_slot(mas, slots, mas->offset); 4678 if (ma_dead_node(node)) 4679 return NULL; 4680 4681 if (entry) 4682 goto found; 4683 4684 if (pivot >= max) 4685 return NULL; 4686 4687 mas->index = pivot + 1; 4688 mas->offset++; 4689 } 4690 4691 if (mas->index > mas->max) { 4692 mas->index = mas->last; 4693 return NULL; 4694 } 4695 4696 pivot = mas_safe_pivot(mas, pivots, mas->offset, type); 4697 entry = mas_slot(mas, slots, mas->offset); 4698 if (ma_dead_node(node)) 4699 return NULL; 4700 4701 if (!pivot) 4702 return NULL; 4703 4704 if (!entry) 4705 return NULL; 4706 4707 found: 4708 mas->last = pivot; 4709 return entry; 4710 } 4711 4712 static inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4713 { 4714 4715 retry: 4716 mas_set(mas, index); 4717 mas_state_walk(mas); 4718 if (mas_is_start(mas)) 4719 goto retry; 4720 4721 return; 4722 4723 } 4724 4725 /* 4726 * mas_next_entry() - Internal function to get the next entry. 4727 * @mas: The maple state 4728 * @limit: The maximum range start. 4729 * 4730 * Set the @mas->node to the next entry and the range_start to 4731 * the beginning value for the entry. Does not check beyond @limit. 4732 * Sets @mas->index and @mas->last to the limit if it is hit. 4733 * Restarts on dead nodes. 4734 * 4735 * Return: the next entry or %NULL. 4736 */ 4737 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4738 { 4739 void *entry = NULL; 4740 struct maple_enode *prev_node; 4741 struct maple_node *node; 4742 unsigned char offset; 4743 unsigned long last; 4744 enum maple_type mt; 4745 4746 last = mas->last; 4747 retry: 4748 offset = mas->offset; 4749 prev_node = mas->node; 4750 node = mas_mn(mas); 4751 mt = mte_node_type(mas->node); 4752 mas->offset++; 4753 if (unlikely(mas->offset >= mt_slots[mt])) { 4754 mas->offset = mt_slots[mt] - 1; 4755 goto next_node; 4756 } 4757 4758 while (!mas_is_none(mas)) { 4759 entry = mas_next_nentry(mas, node, limit, mt); 4760 if (unlikely(ma_dead_node(node))) { 4761 mas_rewalk(mas, last); 4762 goto retry; 4763 } 4764 4765 if (likely(entry)) 4766 return entry; 4767 4768 if (unlikely((mas->index > limit))) 4769 break; 4770 4771 next_node: 4772 prev_node = mas->node; 4773 offset = mas->offset; 4774 if (unlikely(mas_next_node(mas, node, limit))) { 4775 mas_rewalk(mas, last); 4776 goto retry; 4777 } 4778 mas->offset = 0; 4779 node = mas_mn(mas); 4780 mt = mte_node_type(mas->node); 4781 } 4782 4783 mas->index = mas->last = limit; 4784 mas->offset = offset; 4785 mas->node = prev_node; 4786 return NULL; 4787 } 4788 4789 /* 4790 * mas_prev_nentry() - Get the previous node entry. 4791 * @mas: The maple state. 4792 * @limit: The lower limit to check for a value. 4793 * 4794 * Return: the entry, %NULL otherwise. 4795 */ 4796 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit, 4797 unsigned long index) 4798 { 4799 unsigned long pivot, min; 4800 unsigned char offset; 4801 struct maple_node *mn; 4802 enum maple_type mt; 4803 unsigned long *pivots; 4804 void __rcu **slots; 4805 void *entry; 4806 4807 retry: 4808 if (!mas->offset) 4809 return NULL; 4810 4811 mn = mas_mn(mas); 4812 mt = mte_node_type(mas->node); 4813 offset = mas->offset - 1; 4814 if (offset >= mt_slots[mt]) 4815 offset = mt_slots[mt] - 1; 4816 4817 slots = ma_slots(mn, mt); 4818 pivots = ma_pivots(mn, mt); 4819 if (offset == mt_pivots[mt]) 4820 pivot = mas->max; 4821 else 4822 pivot = pivots[offset]; 4823 4824 if (unlikely(ma_dead_node(mn))) { 4825 mas_rewalk(mas, index); 4826 goto retry; 4827 } 4828 4829 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) || 4830 !pivot)) 4831 pivot = pivots[--offset]; 4832 4833 min = mas_safe_min(mas, pivots, offset); 4834 entry = mas_slot(mas, slots, offset); 4835 if (unlikely(ma_dead_node(mn))) { 4836 mas_rewalk(mas, index); 4837 goto retry; 4838 } 4839 4840 if (likely(entry)) { 4841 mas->offset = offset; 4842 mas->last = pivot; 4843 mas->index = min; 4844 } 4845 return entry; 4846 } 4847 4848 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min) 4849 { 4850 void *entry; 4851 4852 retry: 4853 while (likely(!mas_is_none(mas))) { 4854 entry = mas_prev_nentry(mas, min, mas->index); 4855 if (unlikely(mas->last < min)) 4856 goto not_found; 4857 4858 if (likely(entry)) 4859 return entry; 4860 4861 if (unlikely(mas_prev_node(mas, min))) { 4862 mas_rewalk(mas, mas->index); 4863 goto retry; 4864 } 4865 4866 mas->offset++; 4867 } 4868 4869 mas->offset--; 4870 not_found: 4871 mas->index = mas->last = min; 4872 return NULL; 4873 } 4874 4875 /* 4876 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4877 * highest gap address of a given size in a given node and descend. 4878 * @mas: The maple state 4879 * @size: The needed size. 4880 * 4881 * Return: True if found in a leaf, false otherwise. 4882 * 4883 */ 4884 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size) 4885 { 4886 enum maple_type type = mte_node_type(mas->node); 4887 struct maple_node *node = mas_mn(mas); 4888 unsigned long *pivots, *gaps; 4889 void __rcu **slots; 4890 unsigned long gap = 0; 4891 unsigned long max, min; 4892 unsigned char offset; 4893 4894 if (unlikely(mas_is_err(mas))) 4895 return true; 4896 4897 if (ma_is_dense(type)) { 4898 /* dense nodes. */ 4899 mas->offset = (unsigned char)(mas->index - mas->min); 4900 return true; 4901 } 4902 4903 pivots = ma_pivots(node, type); 4904 slots = ma_slots(node, type); 4905 gaps = ma_gaps(node, type); 4906 offset = mas->offset; 4907 min = mas_safe_min(mas, pivots, offset); 4908 /* Skip out of bounds. */ 4909 while (mas->last < min) 4910 min = mas_safe_min(mas, pivots, --offset); 4911 4912 max = mas_safe_pivot(mas, pivots, offset, type); 4913 while (mas->index <= max) { 4914 gap = 0; 4915 if (gaps) 4916 gap = gaps[offset]; 4917 else if (!mas_slot(mas, slots, offset)) 4918 gap = max - min + 1; 4919 4920 if (gap) { 4921 if ((size <= gap) && (size <= mas->last - min + 1)) 4922 break; 4923 4924 if (!gaps) { 4925 /* Skip the next slot, it cannot be a gap. */ 4926 if (offset < 2) 4927 goto ascend; 4928 4929 offset -= 2; 4930 max = pivots[offset]; 4931 min = mas_safe_min(mas, pivots, offset); 4932 continue; 4933 } 4934 } 4935 4936 if (!offset) 4937 goto ascend; 4938 4939 offset--; 4940 max = min - 1; 4941 min = mas_safe_min(mas, pivots, offset); 4942 } 4943 4944 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 4945 goto no_space; 4946 4947 if (unlikely(ma_is_leaf(type))) { 4948 mas->offset = offset; 4949 mas->min = min; 4950 mas->max = min + gap - 1; 4951 return true; 4952 } 4953 4954 /* descend, only happens under lock. */ 4955 mas->node = mas_slot(mas, slots, offset); 4956 mas->min = min; 4957 mas->max = max; 4958 mas->offset = mas_data_end(mas); 4959 return false; 4960 4961 ascend: 4962 if (!mte_is_root(mas->node)) 4963 return false; 4964 4965 no_space: 4966 mas_set_err(mas, -EBUSY); 4967 return false; 4968 } 4969 4970 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4971 { 4972 enum maple_type type = mte_node_type(mas->node); 4973 unsigned long pivot, min, gap = 0; 4974 unsigned char offset; 4975 unsigned long *gaps; 4976 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 4977 void __rcu **slots = ma_slots(mas_mn(mas), type); 4978 bool found = false; 4979 4980 if (ma_is_dense(type)) { 4981 mas->offset = (unsigned char)(mas->index - mas->min); 4982 return true; 4983 } 4984 4985 gaps = ma_gaps(mte_to_node(mas->node), type); 4986 offset = mas->offset; 4987 min = mas_safe_min(mas, pivots, offset); 4988 for (; offset < mt_slots[type]; offset++) { 4989 pivot = mas_safe_pivot(mas, pivots, offset, type); 4990 if (offset && !pivot) 4991 break; 4992 4993 /* Not within lower bounds */ 4994 if (mas->index > pivot) 4995 goto next_slot; 4996 4997 if (gaps) 4998 gap = gaps[offset]; 4999 else if (!mas_slot(mas, slots, offset)) 5000 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 5001 else 5002 goto next_slot; 5003 5004 if (gap >= size) { 5005 if (ma_is_leaf(type)) { 5006 found = true; 5007 goto done; 5008 } 5009 if (mas->index <= pivot) { 5010 mas->node = mas_slot(mas, slots, offset); 5011 mas->min = min; 5012 mas->max = pivot; 5013 offset = 0; 5014 break; 5015 } 5016 } 5017 next_slot: 5018 min = pivot + 1; 5019 if (mas->last <= pivot) { 5020 mas_set_err(mas, -EBUSY); 5021 return true; 5022 } 5023 } 5024 5025 if (mte_is_root(mas->node)) 5026 found = true; 5027 done: 5028 mas->offset = offset; 5029 return found; 5030 } 5031 5032 /** 5033 * mas_walk() - Search for @mas->index in the tree. 5034 * @mas: The maple state. 5035 * 5036 * mas->index and mas->last will be set to the range if there is a value. If 5037 * mas->node is MAS_NONE, reset to MAS_START. 5038 * 5039 * Return: the entry at the location or %NULL. 5040 */ 5041 void *mas_walk(struct ma_state *mas) 5042 { 5043 void *entry; 5044 5045 retry: 5046 entry = mas_state_walk(mas); 5047 if (mas_is_start(mas)) 5048 goto retry; 5049 5050 if (mas_is_ptr(mas)) { 5051 if (!mas->index) { 5052 mas->last = 0; 5053 } else { 5054 mas->index = 1; 5055 mas->last = ULONG_MAX; 5056 } 5057 return entry; 5058 } 5059 5060 if (mas_is_none(mas)) { 5061 mas->index = 0; 5062 mas->last = ULONG_MAX; 5063 } 5064 5065 return entry; 5066 } 5067 EXPORT_SYMBOL_GPL(mas_walk); 5068 5069 static inline bool mas_rewind_node(struct ma_state *mas) 5070 { 5071 unsigned char slot; 5072 5073 do { 5074 if (mte_is_root(mas->node)) { 5075 slot = mas->offset; 5076 if (!slot) 5077 return false; 5078 } else { 5079 mas_ascend(mas); 5080 slot = mas->offset; 5081 } 5082 } while (!slot); 5083 5084 mas->offset = --slot; 5085 return true; 5086 } 5087 5088 /* 5089 * mas_skip_node() - Internal function. Skip over a node. 5090 * @mas: The maple state. 5091 * 5092 * Return: true if there is another node, false otherwise. 5093 */ 5094 static inline bool mas_skip_node(struct ma_state *mas) 5095 { 5096 unsigned char slot, slot_count; 5097 unsigned long *pivots; 5098 enum maple_type mt; 5099 5100 mt = mte_node_type(mas->node); 5101 slot_count = mt_slots[mt] - 1; 5102 do { 5103 if (mte_is_root(mas->node)) { 5104 slot = mas->offset; 5105 if (slot > slot_count) { 5106 mas_set_err(mas, -EBUSY); 5107 return false; 5108 } 5109 } else { 5110 mas_ascend(mas); 5111 slot = mas->offset; 5112 mt = mte_node_type(mas->node); 5113 slot_count = mt_slots[mt] - 1; 5114 } 5115 } while (slot > slot_count); 5116 5117 mas->offset = ++slot; 5118 pivots = ma_pivots(mas_mn(mas), mt); 5119 if (slot > 0) 5120 mas->min = pivots[slot - 1] + 1; 5121 5122 if (slot <= slot_count) 5123 mas->max = pivots[slot]; 5124 5125 return true; 5126 } 5127 5128 /* 5129 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5130 * @size 5131 * @mas: The maple state 5132 * @size: The size of the gap required 5133 * 5134 * Search between @mas->index and @mas->last for a gap of @size. 5135 */ 5136 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5137 { 5138 struct maple_enode *last = NULL; 5139 5140 /* 5141 * There are 4 options: 5142 * go to child (descend) 5143 * go back to parent (ascend) 5144 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5145 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5146 */ 5147 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5148 if (last == mas->node) 5149 mas_skip_node(mas); 5150 else 5151 last = mas->node; 5152 } 5153 } 5154 5155 /* 5156 * mas_fill_gap() - Fill a located gap with @entry. 5157 * @mas: The maple state 5158 * @entry: The value to store 5159 * @slot: The offset into the node to store the @entry 5160 * @size: The size of the entry 5161 * @index: The start location 5162 */ 5163 static inline void mas_fill_gap(struct ma_state *mas, void *entry, 5164 unsigned char slot, unsigned long size, unsigned long *index) 5165 { 5166 MA_WR_STATE(wr_mas, mas, entry); 5167 unsigned char pslot = mte_parent_slot(mas->node); 5168 struct maple_enode *mn = mas->node; 5169 unsigned long *pivots; 5170 enum maple_type ptype; 5171 /* 5172 * mas->index is the start address for the search 5173 * which may no longer be needed. 5174 * mas->last is the end address for the search 5175 */ 5176 5177 *index = mas->index; 5178 mas->last = mas->index + size - 1; 5179 5180 /* 5181 * It is possible that using mas->max and mas->min to correctly 5182 * calculate the index and last will cause an issue in the gap 5183 * calculation, so fix the ma_state here 5184 */ 5185 mas_ascend(mas); 5186 ptype = mte_node_type(mas->node); 5187 pivots = ma_pivots(mas_mn(mas), ptype); 5188 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype); 5189 mas->min = mas_safe_min(mas, pivots, pslot); 5190 mas->node = mn; 5191 mas->offset = slot; 5192 mas_wr_store_entry(&wr_mas); 5193 } 5194 5195 /* 5196 * mas_sparse_area() - Internal function. Return upper or lower limit when 5197 * searching for a gap in an empty tree. 5198 * @mas: The maple state 5199 * @min: the minimum range 5200 * @max: The maximum range 5201 * @size: The size of the gap 5202 * @fwd: Searching forward or back 5203 */ 5204 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min, 5205 unsigned long max, unsigned long size, bool fwd) 5206 { 5207 unsigned long start = 0; 5208 5209 if (!unlikely(mas_is_none(mas))) 5210 start++; 5211 /* mas_is_ptr */ 5212 5213 if (start < min) 5214 start = min; 5215 5216 if (fwd) { 5217 mas->index = start; 5218 mas->last = start + size - 1; 5219 return; 5220 } 5221 5222 mas->index = max; 5223 } 5224 5225 /* 5226 * mas_empty_area() - Get the lowest address within the range that is 5227 * sufficient for the size requested. 5228 * @mas: The maple state 5229 * @min: The lowest value of the range 5230 * @max: The highest value of the range 5231 * @size: The size needed 5232 */ 5233 int mas_empty_area(struct ma_state *mas, unsigned long min, 5234 unsigned long max, unsigned long size) 5235 { 5236 unsigned char offset; 5237 unsigned long *pivots; 5238 enum maple_type mt; 5239 5240 if (mas_is_start(mas)) 5241 mas_start(mas); 5242 else if (mas->offset >= 2) 5243 mas->offset -= 2; 5244 else if (!mas_skip_node(mas)) 5245 return -EBUSY; 5246 5247 /* Empty set */ 5248 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5249 mas_sparse_area(mas, min, max, size, true); 5250 return 0; 5251 } 5252 5253 /* The start of the window can only be within these values */ 5254 mas->index = min; 5255 mas->last = max; 5256 mas_awalk(mas, size); 5257 5258 if (unlikely(mas_is_err(mas))) 5259 return xa_err(mas->node); 5260 5261 offset = mas->offset; 5262 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5263 return -EBUSY; 5264 5265 mt = mte_node_type(mas->node); 5266 pivots = ma_pivots(mas_mn(mas), mt); 5267 if (offset) 5268 mas->min = pivots[offset - 1] + 1; 5269 5270 if (offset < mt_pivots[mt]) 5271 mas->max = pivots[offset]; 5272 5273 if (mas->index < mas->min) 5274 mas->index = mas->min; 5275 5276 mas->last = mas->index + size - 1; 5277 return 0; 5278 } 5279 EXPORT_SYMBOL_GPL(mas_empty_area); 5280 5281 /* 5282 * mas_empty_area_rev() - Get the highest address within the range that is 5283 * sufficient for the size requested. 5284 * @mas: The maple state 5285 * @min: The lowest value of the range 5286 * @max: The highest value of the range 5287 * @size: The size needed 5288 */ 5289 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5290 unsigned long max, unsigned long size) 5291 { 5292 struct maple_enode *last = mas->node; 5293 5294 if (mas_is_start(mas)) { 5295 mas_start(mas); 5296 mas->offset = mas_data_end(mas); 5297 } else if (mas->offset >= 2) { 5298 mas->offset -= 2; 5299 } else if (!mas_rewind_node(mas)) { 5300 return -EBUSY; 5301 } 5302 5303 /* Empty set. */ 5304 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5305 mas_sparse_area(mas, min, max, size, false); 5306 return 0; 5307 } 5308 5309 /* The start of the window can only be within these values. */ 5310 mas->index = min; 5311 mas->last = max; 5312 5313 while (!mas_rev_awalk(mas, size)) { 5314 if (last == mas->node) { 5315 if (!mas_rewind_node(mas)) 5316 return -EBUSY; 5317 } else { 5318 last = mas->node; 5319 } 5320 } 5321 5322 if (mas_is_err(mas)) 5323 return xa_err(mas->node); 5324 5325 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5326 return -EBUSY; 5327 5328 /* 5329 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If 5330 * the maximum is outside the window we are searching, then use the last 5331 * location in the search. 5332 * mas->max and mas->min is the range of the gap. 5333 * mas->index and mas->last are currently set to the search range. 5334 */ 5335 5336 /* Trim the upper limit to the max. */ 5337 if (mas->max <= mas->last) 5338 mas->last = mas->max; 5339 5340 mas->index = mas->last - size + 1; 5341 return 0; 5342 } 5343 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5344 5345 static inline int mas_alloc(struct ma_state *mas, void *entry, 5346 unsigned long size, unsigned long *index) 5347 { 5348 unsigned long min; 5349 5350 mas_start(mas); 5351 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5352 mas_root_expand(mas, entry); 5353 if (mas_is_err(mas)) 5354 return xa_err(mas->node); 5355 5356 if (!mas->index) 5357 return mte_pivot(mas->node, 0); 5358 return mte_pivot(mas->node, 1); 5359 } 5360 5361 /* Must be walking a tree. */ 5362 mas_awalk(mas, size); 5363 if (mas_is_err(mas)) 5364 return xa_err(mas->node); 5365 5366 if (mas->offset == MAPLE_NODE_SLOTS) 5367 goto no_gap; 5368 5369 /* 5370 * At this point, mas->node points to the right node and we have an 5371 * offset that has a sufficient gap. 5372 */ 5373 min = mas->min; 5374 if (mas->offset) 5375 min = mte_pivot(mas->node, mas->offset - 1) + 1; 5376 5377 if (mas->index < min) 5378 mas->index = min; 5379 5380 mas_fill_gap(mas, entry, mas->offset, size, index); 5381 return 0; 5382 5383 no_gap: 5384 return -EBUSY; 5385 } 5386 5387 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min, 5388 unsigned long max, void *entry, 5389 unsigned long size, unsigned long *index) 5390 { 5391 int ret = 0; 5392 5393 ret = mas_empty_area_rev(mas, min, max, size); 5394 if (ret) 5395 return ret; 5396 5397 if (mas_is_err(mas)) 5398 return xa_err(mas->node); 5399 5400 if (mas->offset == MAPLE_NODE_SLOTS) 5401 goto no_gap; 5402 5403 mas_fill_gap(mas, entry, mas->offset, size, index); 5404 return 0; 5405 5406 no_gap: 5407 return -EBUSY; 5408 } 5409 5410 /* 5411 * mas_dead_leaves() - Mark all leaves of a node as dead. 5412 * @mas: The maple state 5413 * @slots: Pointer to the slot array 5414 * 5415 * Must hold the write lock. 5416 * 5417 * Return: The number of leaves marked as dead. 5418 */ 5419 static inline 5420 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots) 5421 { 5422 struct maple_node *node; 5423 enum maple_type type; 5424 void *entry; 5425 int offset; 5426 5427 for (offset = 0; offset < mt_slot_count(mas->node); offset++) { 5428 entry = mas_slot_locked(mas, slots, offset); 5429 type = mte_node_type(entry); 5430 node = mte_to_node(entry); 5431 /* Use both node and type to catch LE & BE metadata */ 5432 if (!node || !type) 5433 break; 5434 5435 mte_set_node_dead(entry); 5436 smp_wmb(); /* Needed for RCU */ 5437 node->type = type; 5438 rcu_assign_pointer(slots[offset], node); 5439 } 5440 5441 return offset; 5442 } 5443 5444 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset) 5445 { 5446 struct maple_node *node, *next; 5447 void __rcu **slots = NULL; 5448 5449 next = mas_mn(mas); 5450 do { 5451 mas->node = ma_enode_ptr(next); 5452 node = mas_mn(mas); 5453 slots = ma_slots(node, node->type); 5454 next = mas_slot_locked(mas, slots, offset); 5455 offset = 0; 5456 } while (!ma_is_leaf(next->type)); 5457 5458 return slots; 5459 } 5460 5461 static void mt_free_walk(struct rcu_head *head) 5462 { 5463 void __rcu **slots; 5464 struct maple_node *node, *start; 5465 struct maple_tree mt; 5466 unsigned char offset; 5467 enum maple_type type; 5468 MA_STATE(mas, &mt, 0, 0); 5469 5470 node = container_of(head, struct maple_node, rcu); 5471 5472 if (ma_is_leaf(node->type)) 5473 goto free_leaf; 5474 5475 mt_init_flags(&mt, node->ma_flags); 5476 mas_lock(&mas); 5477 start = node; 5478 mas.node = mt_mk_node(node, node->type); 5479 slots = mas_dead_walk(&mas, 0); 5480 node = mas_mn(&mas); 5481 do { 5482 mt_free_bulk(node->slot_len, slots); 5483 offset = node->parent_slot + 1; 5484 mas.node = node->piv_parent; 5485 if (mas_mn(&mas) == node) 5486 goto start_slots_free; 5487 5488 type = mte_node_type(mas.node); 5489 slots = ma_slots(mte_to_node(mas.node), type); 5490 if ((offset < mt_slots[type]) && (slots[offset])) 5491 slots = mas_dead_walk(&mas, offset); 5492 5493 node = mas_mn(&mas); 5494 } while ((node != start) || (node->slot_len < offset)); 5495 5496 slots = ma_slots(node, node->type); 5497 mt_free_bulk(node->slot_len, slots); 5498 5499 start_slots_free: 5500 mas_unlock(&mas); 5501 free_leaf: 5502 mt_free_rcu(&node->rcu); 5503 } 5504 5505 static inline void __rcu **mas_destroy_descend(struct ma_state *mas, 5506 struct maple_enode *prev, unsigned char offset) 5507 { 5508 struct maple_node *node; 5509 struct maple_enode *next = mas->node; 5510 void __rcu **slots = NULL; 5511 5512 do { 5513 mas->node = next; 5514 node = mas_mn(mas); 5515 slots = ma_slots(node, mte_node_type(mas->node)); 5516 next = mas_slot_locked(mas, slots, 0); 5517 if ((mte_dead_node(next))) 5518 next = mas_slot_locked(mas, slots, 1); 5519 5520 mte_set_node_dead(mas->node); 5521 node->type = mte_node_type(mas->node); 5522 node->piv_parent = prev; 5523 node->parent_slot = offset; 5524 offset = 0; 5525 prev = mas->node; 5526 } while (!mte_is_leaf(next)); 5527 5528 return slots; 5529 } 5530 5531 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags, 5532 bool free) 5533 { 5534 void __rcu **slots; 5535 struct maple_node *node = mte_to_node(enode); 5536 struct maple_enode *start; 5537 struct maple_tree mt; 5538 5539 MA_STATE(mas, &mt, 0, 0); 5540 5541 if (mte_is_leaf(enode)) 5542 goto free_leaf; 5543 5544 mt_init_flags(&mt, ma_flags); 5545 mas_lock(&mas); 5546 5547 mas.node = start = enode; 5548 slots = mas_destroy_descend(&mas, start, 0); 5549 node = mas_mn(&mas); 5550 do { 5551 enum maple_type type; 5552 unsigned char offset; 5553 struct maple_enode *parent, *tmp; 5554 5555 node->slot_len = mas_dead_leaves(&mas, slots); 5556 if (free) 5557 mt_free_bulk(node->slot_len, slots); 5558 offset = node->parent_slot + 1; 5559 mas.node = node->piv_parent; 5560 if (mas_mn(&mas) == node) 5561 goto start_slots_free; 5562 5563 type = mte_node_type(mas.node); 5564 slots = ma_slots(mte_to_node(mas.node), type); 5565 if (offset >= mt_slots[type]) 5566 goto next; 5567 5568 tmp = mas_slot_locked(&mas, slots, offset); 5569 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5570 parent = mas.node; 5571 mas.node = tmp; 5572 slots = mas_destroy_descend(&mas, parent, offset); 5573 } 5574 next: 5575 node = mas_mn(&mas); 5576 } while (start != mas.node); 5577 5578 node = mas_mn(&mas); 5579 node->slot_len = mas_dead_leaves(&mas, slots); 5580 if (free) 5581 mt_free_bulk(node->slot_len, slots); 5582 5583 start_slots_free: 5584 mas_unlock(&mas); 5585 5586 free_leaf: 5587 if (free) 5588 mt_free_rcu(&node->rcu); 5589 } 5590 5591 /* 5592 * mte_destroy_walk() - Free a tree or sub-tree. 5593 * @enode - the encoded maple node (maple_enode) to start 5594 * @mn - the tree to free - needed for node types. 5595 * 5596 * Must hold the write lock. 5597 */ 5598 static inline void mte_destroy_walk(struct maple_enode *enode, 5599 struct maple_tree *mt) 5600 { 5601 struct maple_node *node = mte_to_node(enode); 5602 5603 if (mt_in_rcu(mt)) { 5604 mt_destroy_walk(enode, mt->ma_flags, false); 5605 call_rcu(&node->rcu, mt_free_walk); 5606 } else { 5607 mt_destroy_walk(enode, mt->ma_flags, true); 5608 } 5609 } 5610 5611 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5612 { 5613 if (!mas_is_start(wr_mas->mas)) { 5614 if (mas_is_none(wr_mas->mas)) { 5615 mas_reset(wr_mas->mas); 5616 } else { 5617 wr_mas->r_max = wr_mas->mas->max; 5618 wr_mas->type = mte_node_type(wr_mas->mas->node); 5619 if (mas_is_span_wr(wr_mas)) 5620 mas_reset(wr_mas->mas); 5621 } 5622 } 5623 5624 } 5625 5626 /* Interface */ 5627 5628 /** 5629 * mas_store() - Store an @entry. 5630 * @mas: The maple state. 5631 * @entry: The entry to store. 5632 * 5633 * The @mas->index and @mas->last is used to set the range for the @entry. 5634 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5635 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5636 * 5637 * Return: the first entry between mas->index and mas->last or %NULL. 5638 */ 5639 void *mas_store(struct ma_state *mas, void *entry) 5640 { 5641 MA_WR_STATE(wr_mas, mas, entry); 5642 5643 trace_ma_write(__func__, mas, 0, entry); 5644 #ifdef CONFIG_DEBUG_MAPLE_TREE 5645 if (mas->index > mas->last) 5646 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry); 5647 MT_BUG_ON(mas->tree, mas->index > mas->last); 5648 if (mas->index > mas->last) { 5649 mas_set_err(mas, -EINVAL); 5650 return NULL; 5651 } 5652 5653 #endif 5654 5655 /* 5656 * Storing is the same operation as insert with the added caveat that it 5657 * can overwrite entries. Although this seems simple enough, one may 5658 * want to examine what happens if a single store operation was to 5659 * overwrite multiple entries within a self-balancing B-Tree. 5660 */ 5661 mas_wr_store_setup(&wr_mas); 5662 mas_wr_store_entry(&wr_mas); 5663 return wr_mas.content; 5664 } 5665 EXPORT_SYMBOL_GPL(mas_store); 5666 5667 /** 5668 * mas_store_gfp() - Store a value into the tree. 5669 * @mas: The maple state 5670 * @entry: The entry to store 5671 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5672 * 5673 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5674 * be allocated. 5675 */ 5676 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5677 { 5678 MA_WR_STATE(wr_mas, mas, entry); 5679 5680 mas_wr_store_setup(&wr_mas); 5681 trace_ma_write(__func__, mas, 0, entry); 5682 retry: 5683 mas_wr_store_entry(&wr_mas); 5684 if (unlikely(mas_nomem(mas, gfp))) 5685 goto retry; 5686 5687 if (unlikely(mas_is_err(mas))) 5688 return xa_err(mas->node); 5689 5690 return 0; 5691 } 5692 EXPORT_SYMBOL_GPL(mas_store_gfp); 5693 5694 /** 5695 * mas_store_prealloc() - Store a value into the tree using memory 5696 * preallocated in the maple state. 5697 * @mas: The maple state 5698 * @entry: The entry to store. 5699 */ 5700 void mas_store_prealloc(struct ma_state *mas, void *entry) 5701 { 5702 MA_WR_STATE(wr_mas, mas, entry); 5703 5704 mas_wr_store_setup(&wr_mas); 5705 trace_ma_write(__func__, mas, 0, entry); 5706 mas_wr_store_entry(&wr_mas); 5707 BUG_ON(mas_is_err(mas)); 5708 mas_destroy(mas); 5709 } 5710 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5711 5712 /** 5713 * mas_preallocate() - Preallocate enough nodes for a store operation 5714 * @mas: The maple state 5715 * @entry: The entry that will be stored 5716 * @gfp: The GFP_FLAGS to use for allocations. 5717 * 5718 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5719 */ 5720 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) 5721 { 5722 int ret; 5723 5724 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp); 5725 mas->mas_flags |= MA_STATE_PREALLOC; 5726 if (likely(!mas_is_err(mas))) 5727 return 0; 5728 5729 mas_set_alloc_req(mas, 0); 5730 ret = xa_err(mas->node); 5731 mas_reset(mas); 5732 mas_destroy(mas); 5733 mas_reset(mas); 5734 return ret; 5735 } 5736 5737 /* 5738 * mas_destroy() - destroy a maple state. 5739 * @mas: The maple state 5740 * 5741 * Upon completion, check the left-most node and rebalance against the node to 5742 * the right if necessary. Frees any allocated nodes associated with this maple 5743 * state. 5744 */ 5745 void mas_destroy(struct ma_state *mas) 5746 { 5747 struct maple_alloc *node; 5748 5749 /* 5750 * When using mas_for_each() to insert an expected number of elements, 5751 * it is possible that the number inserted is less than the expected 5752 * number. To fix an invalid final node, a check is performed here to 5753 * rebalance the previous node with the final node. 5754 */ 5755 if (mas->mas_flags & MA_STATE_REBALANCE) { 5756 unsigned char end; 5757 5758 if (mas_is_start(mas)) 5759 mas_start(mas); 5760 5761 mtree_range_walk(mas); 5762 end = mas_data_end(mas) + 1; 5763 if (end < mt_min_slot_count(mas->node) - 1) 5764 mas_destroy_rebalance(mas, end); 5765 5766 mas->mas_flags &= ~MA_STATE_REBALANCE; 5767 } 5768 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5769 5770 while (mas->alloc && !((unsigned long)mas->alloc & 0x1)) { 5771 node = mas->alloc; 5772 mas->alloc = node->slot[0]; 5773 if (node->node_count > 0) 5774 mt_free_bulk(node->node_count, 5775 (void __rcu **)&node->slot[1]); 5776 kmem_cache_free(maple_node_cache, node); 5777 } 5778 mas->alloc = NULL; 5779 } 5780 EXPORT_SYMBOL_GPL(mas_destroy); 5781 5782 /* 5783 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5784 * @mas: The maple state 5785 * @nr_entries: The number of expected entries. 5786 * 5787 * This will attempt to pre-allocate enough nodes to store the expected number 5788 * of entries. The allocations will occur using the bulk allocator interface 5789 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5790 * to ensure any unused nodes are freed. 5791 * 5792 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5793 */ 5794 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5795 { 5796 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5797 struct maple_enode *enode = mas->node; 5798 int nr_nodes; 5799 int ret; 5800 5801 /* 5802 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5803 * forking a process and duplicating the VMAs from one tree to a new 5804 * tree. When such a situation arises, it is known that the new tree is 5805 * not going to be used until the entire tree is populated. For 5806 * performance reasons, it is best to use a bulk load with RCU disabled. 5807 * This allows for optimistic splitting that favours the left and reuse 5808 * of nodes during the operation. 5809 */ 5810 5811 /* Optimize splitting for bulk insert in-order */ 5812 mas->mas_flags |= MA_STATE_BULK; 5813 5814 /* 5815 * Avoid overflow, assume a gap between each entry and a trailing null. 5816 * If this is wrong, it just means allocation can happen during 5817 * insertion of entries. 5818 */ 5819 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5820 if (!mt_is_alloc(mas->tree)) 5821 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5822 5823 /* Leaves; reduce slots to keep space for expansion */ 5824 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5825 /* Internal nodes */ 5826 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5827 /* Add working room for split (2 nodes) + new parents */ 5828 mas_node_count(mas, nr_nodes + 3); 5829 5830 /* Detect if allocations run out */ 5831 mas->mas_flags |= MA_STATE_PREALLOC; 5832 5833 if (!mas_is_err(mas)) 5834 return 0; 5835 5836 ret = xa_err(mas->node); 5837 mas->node = enode; 5838 mas_destroy(mas); 5839 return ret; 5840 5841 } 5842 EXPORT_SYMBOL_GPL(mas_expected_entries); 5843 5844 /** 5845 * mas_next() - Get the next entry. 5846 * @mas: The maple state 5847 * @max: The maximum index to check. 5848 * 5849 * Returns the next entry after @mas->index. 5850 * Must hold rcu_read_lock or the write lock. 5851 * Can return the zero entry. 5852 * 5853 * Return: The next entry or %NULL 5854 */ 5855 void *mas_next(struct ma_state *mas, unsigned long max) 5856 { 5857 if (mas_is_none(mas) || mas_is_paused(mas)) 5858 mas->node = MAS_START; 5859 5860 if (mas_is_start(mas)) 5861 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5862 5863 if (mas_is_ptr(mas)) { 5864 if (!mas->index) { 5865 mas->index = 1; 5866 mas->last = ULONG_MAX; 5867 } 5868 return NULL; 5869 } 5870 5871 if (mas->last == ULONG_MAX) 5872 return NULL; 5873 5874 /* Retries on dead nodes handled by mas_next_entry */ 5875 return mas_next_entry(mas, max); 5876 } 5877 EXPORT_SYMBOL_GPL(mas_next); 5878 5879 /** 5880 * mt_next() - get the next value in the maple tree 5881 * @mt: The maple tree 5882 * @index: The start index 5883 * @max: The maximum index to check 5884 * 5885 * Return: The entry at @index or higher, or %NULL if nothing is found. 5886 */ 5887 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5888 { 5889 void *entry = NULL; 5890 MA_STATE(mas, mt, index, index); 5891 5892 rcu_read_lock(); 5893 entry = mas_next(&mas, max); 5894 rcu_read_unlock(); 5895 return entry; 5896 } 5897 EXPORT_SYMBOL_GPL(mt_next); 5898 5899 /** 5900 * mas_prev() - Get the previous entry 5901 * @mas: The maple state 5902 * @min: The minimum value to check. 5903 * 5904 * Must hold rcu_read_lock or the write lock. 5905 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5906 * searchable nodes. 5907 * 5908 * Return: the previous value or %NULL. 5909 */ 5910 void *mas_prev(struct ma_state *mas, unsigned long min) 5911 { 5912 if (!mas->index) { 5913 /* Nothing comes before 0 */ 5914 mas->last = 0; 5915 return NULL; 5916 } 5917 5918 if (unlikely(mas_is_ptr(mas))) 5919 return NULL; 5920 5921 if (mas_is_none(mas) || mas_is_paused(mas)) 5922 mas->node = MAS_START; 5923 5924 if (mas_is_start(mas)) { 5925 mas_walk(mas); 5926 if (!mas->index) 5927 return NULL; 5928 } 5929 5930 if (mas_is_ptr(mas)) { 5931 if (!mas->index) { 5932 mas->last = 0; 5933 return NULL; 5934 } 5935 5936 mas->index = mas->last = 0; 5937 return mas_root_locked(mas); 5938 } 5939 return mas_prev_entry(mas, min); 5940 } 5941 EXPORT_SYMBOL_GPL(mas_prev); 5942 5943 /** 5944 * mt_prev() - get the previous value in the maple tree 5945 * @mt: The maple tree 5946 * @index: The start index 5947 * @min: The minimum index to check 5948 * 5949 * Return: The entry at @index or lower, or %NULL if nothing is found. 5950 */ 5951 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5952 { 5953 void *entry = NULL; 5954 MA_STATE(mas, mt, index, index); 5955 5956 rcu_read_lock(); 5957 entry = mas_prev(&mas, min); 5958 rcu_read_unlock(); 5959 return entry; 5960 } 5961 EXPORT_SYMBOL_GPL(mt_prev); 5962 5963 /** 5964 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5965 * @mas: The maple state to pause 5966 * 5967 * Some users need to pause a walk and drop the lock they're holding in 5968 * order to yield to a higher priority thread or carry out an operation 5969 * on an entry. Those users should call this function before they drop 5970 * the lock. It resets the @mas to be suitable for the next iteration 5971 * of the loop after the user has reacquired the lock. If most entries 5972 * found during a walk require you to call mas_pause(), the mt_for_each() 5973 * iterator may be more appropriate. 5974 * 5975 */ 5976 void mas_pause(struct ma_state *mas) 5977 { 5978 mas->node = MAS_PAUSE; 5979 } 5980 EXPORT_SYMBOL_GPL(mas_pause); 5981 5982 /** 5983 * mas_find() - On the first call, find the entry at or after mas->index up to 5984 * %max. Otherwise, find the entry after mas->index. 5985 * @mas: The maple state 5986 * @max: The maximum value to check. 5987 * 5988 * Must hold rcu_read_lock or the write lock. 5989 * If an entry exists, last and index are updated accordingly. 5990 * May set @mas->node to MAS_NONE. 5991 * 5992 * Return: The entry or %NULL. 5993 */ 5994 void *mas_find(struct ma_state *mas, unsigned long max) 5995 { 5996 if (unlikely(mas_is_paused(mas))) { 5997 if (unlikely(mas->last == ULONG_MAX)) { 5998 mas->node = MAS_NONE; 5999 return NULL; 6000 } 6001 mas->node = MAS_START; 6002 mas->index = ++mas->last; 6003 } 6004 6005 if (unlikely(mas_is_start(mas))) { 6006 /* First run or continue */ 6007 void *entry; 6008 6009 if (mas->index > max) 6010 return NULL; 6011 6012 entry = mas_walk(mas); 6013 if (entry) 6014 return entry; 6015 } 6016 6017 if (unlikely(!mas_searchable(mas))) 6018 return NULL; 6019 6020 /* Retries on dead nodes handled by mas_next_entry */ 6021 return mas_next_entry(mas, max); 6022 } 6023 EXPORT_SYMBOL_GPL(mas_find); 6024 6025 /** 6026 * mas_find_rev: On the first call, find the first non-null entry at or below 6027 * mas->index down to %min. Otherwise find the first non-null entry below 6028 * mas->index down to %min. 6029 * @mas: The maple state 6030 * @min: The minimum value to check. 6031 * 6032 * Must hold rcu_read_lock or the write lock. 6033 * If an entry exists, last and index are updated accordingly. 6034 * May set @mas->node to MAS_NONE. 6035 * 6036 * Return: The entry or %NULL. 6037 */ 6038 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6039 { 6040 if (unlikely(mas_is_paused(mas))) { 6041 if (unlikely(mas->last == ULONG_MAX)) { 6042 mas->node = MAS_NONE; 6043 return NULL; 6044 } 6045 mas->node = MAS_START; 6046 mas->last = --mas->index; 6047 } 6048 6049 if (unlikely(mas_is_start(mas))) { 6050 /* First run or continue */ 6051 void *entry; 6052 6053 if (mas->index < min) 6054 return NULL; 6055 6056 entry = mas_walk(mas); 6057 if (entry) 6058 return entry; 6059 } 6060 6061 if (unlikely(!mas_searchable(mas))) 6062 return NULL; 6063 6064 if (mas->index < min) 6065 return NULL; 6066 6067 /* Retries on dead nodes handled by mas_prev_entry */ 6068 return mas_prev_entry(mas, min); 6069 } 6070 EXPORT_SYMBOL_GPL(mas_find_rev); 6071 6072 /** 6073 * mas_erase() - Find the range in which index resides and erase the entire 6074 * range. 6075 * @mas: The maple state 6076 * 6077 * Must hold the write lock. 6078 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6079 * erases that range. 6080 * 6081 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6082 */ 6083 void *mas_erase(struct ma_state *mas) 6084 { 6085 void *entry; 6086 MA_WR_STATE(wr_mas, mas, NULL); 6087 6088 if (mas_is_none(mas) || mas_is_paused(mas)) 6089 mas->node = MAS_START; 6090 6091 /* Retry unnecessary when holding the write lock. */ 6092 entry = mas_state_walk(mas); 6093 if (!entry) 6094 return NULL; 6095 6096 write_retry: 6097 /* Must reset to ensure spanning writes of last slot are detected */ 6098 mas_reset(mas); 6099 mas_wr_store_setup(&wr_mas); 6100 mas_wr_store_entry(&wr_mas); 6101 if (mas_nomem(mas, GFP_KERNEL)) 6102 goto write_retry; 6103 6104 return entry; 6105 } 6106 EXPORT_SYMBOL_GPL(mas_erase); 6107 6108 /** 6109 * mas_nomem() - Check if there was an error allocating and do the allocation 6110 * if necessary If there are allocations, then free them. 6111 * @mas: The maple state 6112 * @gfp: The GFP_FLAGS to use for allocations 6113 * Return: true on allocation, false otherwise. 6114 */ 6115 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6116 __must_hold(mas->tree->lock) 6117 { 6118 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6119 mas_destroy(mas); 6120 return false; 6121 } 6122 6123 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6124 mtree_unlock(mas->tree); 6125 mas_alloc_nodes(mas, gfp); 6126 mtree_lock(mas->tree); 6127 } else { 6128 mas_alloc_nodes(mas, gfp); 6129 } 6130 6131 if (!mas_allocated(mas)) 6132 return false; 6133 6134 mas->node = MAS_START; 6135 return true; 6136 } 6137 6138 void __init maple_tree_init(void) 6139 { 6140 maple_node_cache = kmem_cache_create("maple_node", 6141 sizeof(struct maple_node), sizeof(struct maple_node), 6142 SLAB_PANIC, NULL); 6143 } 6144 6145 /** 6146 * mtree_load() - Load a value stored in a maple tree 6147 * @mt: The maple tree 6148 * @index: The index to load 6149 * 6150 * Return: the entry or %NULL 6151 */ 6152 void *mtree_load(struct maple_tree *mt, unsigned long index) 6153 { 6154 MA_STATE(mas, mt, index, index); 6155 void *entry; 6156 6157 trace_ma_read(__func__, &mas); 6158 rcu_read_lock(); 6159 retry: 6160 entry = mas_start(&mas); 6161 if (unlikely(mas_is_none(&mas))) 6162 goto unlock; 6163 6164 if (unlikely(mas_is_ptr(&mas))) { 6165 if (index) 6166 entry = NULL; 6167 6168 goto unlock; 6169 } 6170 6171 entry = mtree_lookup_walk(&mas); 6172 if (!entry && unlikely(mas_is_start(&mas))) 6173 goto retry; 6174 unlock: 6175 rcu_read_unlock(); 6176 if (xa_is_zero(entry)) 6177 return NULL; 6178 6179 return entry; 6180 } 6181 EXPORT_SYMBOL(mtree_load); 6182 6183 /** 6184 * mtree_store_range() - Store an entry at a given range. 6185 * @mt: The maple tree 6186 * @index: The start of the range 6187 * @last: The end of the range 6188 * @entry: The entry to store 6189 * @gfp: The GFP_FLAGS to use for allocations 6190 * 6191 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6192 * be allocated. 6193 */ 6194 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6195 unsigned long last, void *entry, gfp_t gfp) 6196 { 6197 MA_STATE(mas, mt, index, last); 6198 MA_WR_STATE(wr_mas, &mas, entry); 6199 6200 trace_ma_write(__func__, &mas, 0, entry); 6201 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6202 return -EINVAL; 6203 6204 if (index > last) 6205 return -EINVAL; 6206 6207 mtree_lock(mt); 6208 retry: 6209 mas_wr_store_entry(&wr_mas); 6210 if (mas_nomem(&mas, gfp)) 6211 goto retry; 6212 6213 mtree_unlock(mt); 6214 if (mas_is_err(&mas)) 6215 return xa_err(mas.node); 6216 6217 return 0; 6218 } 6219 EXPORT_SYMBOL(mtree_store_range); 6220 6221 /** 6222 * mtree_store() - Store an entry at a given index. 6223 * @mt: The maple tree 6224 * @index: The index to store the value 6225 * @entry: The entry to store 6226 * @gfp: The GFP_FLAGS to use for allocations 6227 * 6228 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6229 * be allocated. 6230 */ 6231 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6232 gfp_t gfp) 6233 { 6234 return mtree_store_range(mt, index, index, entry, gfp); 6235 } 6236 EXPORT_SYMBOL(mtree_store); 6237 6238 /** 6239 * mtree_insert_range() - Insert an entry at a give range if there is no value. 6240 * @mt: The maple tree 6241 * @first: The start of the range 6242 * @last: The end of the range 6243 * @entry: The entry to store 6244 * @gfp: The GFP_FLAGS to use for allocations. 6245 * 6246 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6247 * request, -ENOMEM if memory could not be allocated. 6248 */ 6249 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6250 unsigned long last, void *entry, gfp_t gfp) 6251 { 6252 MA_STATE(ms, mt, first, last); 6253 6254 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6255 return -EINVAL; 6256 6257 if (first > last) 6258 return -EINVAL; 6259 6260 mtree_lock(mt); 6261 retry: 6262 mas_insert(&ms, entry); 6263 if (mas_nomem(&ms, gfp)) 6264 goto retry; 6265 6266 mtree_unlock(mt); 6267 if (mas_is_err(&ms)) 6268 return xa_err(ms.node); 6269 6270 return 0; 6271 } 6272 EXPORT_SYMBOL(mtree_insert_range); 6273 6274 /** 6275 * mtree_insert() - Insert an entry at a give index if there is no value. 6276 * @mt: The maple tree 6277 * @index : The index to store the value 6278 * @entry: The entry to store 6279 * @gfp: The FGP_FLAGS to use for allocations. 6280 * 6281 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6282 * request, -ENOMEM if memory could not be allocated. 6283 */ 6284 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6285 gfp_t gfp) 6286 { 6287 return mtree_insert_range(mt, index, index, entry, gfp); 6288 } 6289 EXPORT_SYMBOL(mtree_insert); 6290 6291 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6292 void *entry, unsigned long size, unsigned long min, 6293 unsigned long max, gfp_t gfp) 6294 { 6295 int ret = 0; 6296 6297 MA_STATE(mas, mt, min, max - size); 6298 if (!mt_is_alloc(mt)) 6299 return -EINVAL; 6300 6301 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6302 return -EINVAL; 6303 6304 if (min > max) 6305 return -EINVAL; 6306 6307 if (max < size) 6308 return -EINVAL; 6309 6310 if (!size) 6311 return -EINVAL; 6312 6313 mtree_lock(mt); 6314 retry: 6315 mas.offset = 0; 6316 mas.index = min; 6317 mas.last = max - size; 6318 ret = mas_alloc(&mas, entry, size, startp); 6319 if (mas_nomem(&mas, gfp)) 6320 goto retry; 6321 6322 mtree_unlock(mt); 6323 return ret; 6324 } 6325 EXPORT_SYMBOL(mtree_alloc_range); 6326 6327 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6328 void *entry, unsigned long size, unsigned long min, 6329 unsigned long max, gfp_t gfp) 6330 { 6331 int ret = 0; 6332 6333 MA_STATE(mas, mt, min, max - size); 6334 if (!mt_is_alloc(mt)) 6335 return -EINVAL; 6336 6337 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6338 return -EINVAL; 6339 6340 if (min >= max) 6341 return -EINVAL; 6342 6343 if (max < size - 1) 6344 return -EINVAL; 6345 6346 if (!size) 6347 return -EINVAL; 6348 6349 mtree_lock(mt); 6350 retry: 6351 ret = mas_rev_alloc(&mas, min, max, entry, size, startp); 6352 if (mas_nomem(&mas, gfp)) 6353 goto retry; 6354 6355 mtree_unlock(mt); 6356 return ret; 6357 } 6358 EXPORT_SYMBOL(mtree_alloc_rrange); 6359 6360 /** 6361 * mtree_erase() - Find an index and erase the entire range. 6362 * @mt: The maple tree 6363 * @index: The index to erase 6364 * 6365 * Erasing is the same as a walk to an entry then a store of a NULL to that 6366 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6367 * 6368 * Return: The entry stored at the @index or %NULL 6369 */ 6370 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6371 { 6372 void *entry = NULL; 6373 6374 MA_STATE(mas, mt, index, index); 6375 trace_ma_op(__func__, &mas); 6376 6377 mtree_lock(mt); 6378 entry = mas_erase(&mas); 6379 mtree_unlock(mt); 6380 6381 return entry; 6382 } 6383 EXPORT_SYMBOL(mtree_erase); 6384 6385 /** 6386 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6387 * @mt: The maple tree 6388 * 6389 * Note: Does not handle locking. 6390 */ 6391 void __mt_destroy(struct maple_tree *mt) 6392 { 6393 void *root = mt_root_locked(mt); 6394 6395 rcu_assign_pointer(mt->ma_root, NULL); 6396 if (xa_is_node(root)) 6397 mte_destroy_walk(root, mt); 6398 6399 mt->ma_flags = 0; 6400 } 6401 EXPORT_SYMBOL_GPL(__mt_destroy); 6402 6403 /** 6404 * mtree_destroy() - Destroy a maple tree 6405 * @mt: The maple tree 6406 * 6407 * Frees all resources used by the tree. Handles locking. 6408 */ 6409 void mtree_destroy(struct maple_tree *mt) 6410 { 6411 mtree_lock(mt); 6412 __mt_destroy(mt); 6413 mtree_unlock(mt); 6414 } 6415 EXPORT_SYMBOL(mtree_destroy); 6416 6417 /** 6418 * mt_find() - Search from the start up until an entry is found. 6419 * @mt: The maple tree 6420 * @index: Pointer which contains the start location of the search 6421 * @max: The maximum value to check 6422 * 6423 * Handles locking. @index will be incremented to one beyond the range. 6424 * 6425 * Return: The entry at or after the @index or %NULL 6426 */ 6427 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6428 { 6429 MA_STATE(mas, mt, *index, *index); 6430 void *entry; 6431 #ifdef CONFIG_DEBUG_MAPLE_TREE 6432 unsigned long copy = *index; 6433 #endif 6434 6435 trace_ma_read(__func__, &mas); 6436 6437 if ((*index) > max) 6438 return NULL; 6439 6440 rcu_read_lock(); 6441 retry: 6442 entry = mas_state_walk(&mas); 6443 if (mas_is_start(&mas)) 6444 goto retry; 6445 6446 if (unlikely(xa_is_zero(entry))) 6447 entry = NULL; 6448 6449 if (entry) 6450 goto unlock; 6451 6452 while (mas_searchable(&mas) && (mas.index < max)) { 6453 entry = mas_next_entry(&mas, max); 6454 if (likely(entry && !xa_is_zero(entry))) 6455 break; 6456 } 6457 6458 if (unlikely(xa_is_zero(entry))) 6459 entry = NULL; 6460 unlock: 6461 rcu_read_unlock(); 6462 if (likely(entry)) { 6463 *index = mas.last + 1; 6464 #ifdef CONFIG_DEBUG_MAPLE_TREE 6465 if ((*index) && (*index) <= copy) 6466 pr_err("index not increased! %lx <= %lx\n", 6467 *index, copy); 6468 MT_BUG_ON(mt, (*index) && ((*index) <= copy)); 6469 #endif 6470 } 6471 6472 return entry; 6473 } 6474 EXPORT_SYMBOL(mt_find); 6475 6476 /** 6477 * mt_find_after() - Search from the start up until an entry is found. 6478 * @mt: The maple tree 6479 * @index: Pointer which contains the start location of the search 6480 * @max: The maximum value to check 6481 * 6482 * Handles locking, detects wrapping on index == 0 6483 * 6484 * Return: The entry at or after the @index or %NULL 6485 */ 6486 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6487 unsigned long max) 6488 { 6489 if (!(*index)) 6490 return NULL; 6491 6492 return mt_find(mt, index, max); 6493 } 6494 EXPORT_SYMBOL(mt_find_after); 6495 6496 #ifdef CONFIG_DEBUG_MAPLE_TREE 6497 atomic_t maple_tree_tests_run; 6498 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6499 atomic_t maple_tree_tests_passed; 6500 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6501 6502 #ifndef __KERNEL__ 6503 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6504 void mt_set_non_kernel(unsigned int val) 6505 { 6506 kmem_cache_set_non_kernel(maple_node_cache, val); 6507 } 6508 6509 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 6510 unsigned long mt_get_alloc_size(void) 6511 { 6512 return kmem_cache_get_alloc(maple_node_cache); 6513 } 6514 6515 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 6516 void mt_zero_nr_tallocated(void) 6517 { 6518 kmem_cache_zero_nr_tallocated(maple_node_cache); 6519 } 6520 6521 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 6522 unsigned int mt_nr_tallocated(void) 6523 { 6524 return kmem_cache_nr_tallocated(maple_node_cache); 6525 } 6526 6527 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 6528 unsigned int mt_nr_allocated(void) 6529 { 6530 return kmem_cache_nr_allocated(maple_node_cache); 6531 } 6532 6533 /* 6534 * mas_dead_node() - Check if the maple state is pointing to a dead node. 6535 * @mas: The maple state 6536 * @index: The index to restore in @mas. 6537 * 6538 * Used in test code. 6539 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise. 6540 */ 6541 static inline int mas_dead_node(struct ma_state *mas, unsigned long index) 6542 { 6543 if (unlikely(!mas_searchable(mas) || mas_is_start(mas))) 6544 return 0; 6545 6546 if (likely(!mte_dead_node(mas->node))) 6547 return 0; 6548 6549 mas_rewalk(mas, index); 6550 return 1; 6551 } 6552 6553 void mt_cache_shrink(void) 6554 { 6555 } 6556 #else 6557 /* 6558 * mt_cache_shrink() - For testing, don't use this. 6559 * 6560 * Certain testcases can trigger an OOM when combined with other memory 6561 * debugging configuration options. This function is used to reduce the 6562 * possibility of an out of memory even due to kmem_cache objects remaining 6563 * around for longer than usual. 6564 */ 6565 void mt_cache_shrink(void) 6566 { 6567 kmem_cache_shrink(maple_node_cache); 6568 6569 } 6570 EXPORT_SYMBOL_GPL(mt_cache_shrink); 6571 6572 #endif /* not defined __KERNEL__ */ 6573 /* 6574 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 6575 * @mas: The maple state 6576 * @offset: The offset into the slot array to fetch. 6577 * 6578 * Return: The entry stored at @offset. 6579 */ 6580 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 6581 unsigned char offset) 6582 { 6583 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 6584 offset); 6585 } 6586 6587 6588 /* 6589 * mas_first_entry() - Go the first leaf and find the first entry. 6590 * @mas: the maple state. 6591 * @limit: the maximum index to check. 6592 * @*r_start: Pointer to set to the range start. 6593 * 6594 * Sets mas->offset to the offset of the entry, r_start to the range minimum. 6595 * 6596 * Return: The first entry or MAS_NONE. 6597 */ 6598 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn, 6599 unsigned long limit, enum maple_type mt) 6600 6601 { 6602 unsigned long max; 6603 unsigned long *pivots; 6604 void __rcu **slots; 6605 void *entry = NULL; 6606 6607 mas->index = mas->min; 6608 if (mas->index > limit) 6609 goto none; 6610 6611 max = mas->max; 6612 mas->offset = 0; 6613 while (likely(!ma_is_leaf(mt))) { 6614 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6615 slots = ma_slots(mn, mt); 6616 pivots = ma_pivots(mn, mt); 6617 max = pivots[0]; 6618 entry = mas_slot(mas, slots, 0); 6619 if (unlikely(ma_dead_node(mn))) 6620 return NULL; 6621 mas->node = entry; 6622 mn = mas_mn(mas); 6623 mt = mte_node_type(mas->node); 6624 } 6625 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6626 6627 mas->max = max; 6628 slots = ma_slots(mn, mt); 6629 entry = mas_slot(mas, slots, 0); 6630 if (unlikely(ma_dead_node(mn))) 6631 return NULL; 6632 6633 /* Slot 0 or 1 must be set */ 6634 if (mas->index > limit) 6635 goto none; 6636 6637 if (likely(entry)) 6638 return entry; 6639 6640 pivots = ma_pivots(mn, mt); 6641 mas->index = pivots[0] + 1; 6642 mas->offset = 1; 6643 entry = mas_slot(mas, slots, 1); 6644 if (unlikely(ma_dead_node(mn))) 6645 return NULL; 6646 6647 if (mas->index > limit) 6648 goto none; 6649 6650 if (likely(entry)) 6651 return entry; 6652 6653 none: 6654 if (likely(!ma_dead_node(mn))) 6655 mas->node = MAS_NONE; 6656 return NULL; 6657 } 6658 6659 /* Depth first search, post-order */ 6660 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 6661 { 6662 6663 struct maple_enode *p = MAS_NONE, *mn = mas->node; 6664 unsigned long p_min, p_max; 6665 6666 mas_next_node(mas, mas_mn(mas), max); 6667 if (!mas_is_none(mas)) 6668 return; 6669 6670 if (mte_is_root(mn)) 6671 return; 6672 6673 mas->node = mn; 6674 mas_ascend(mas); 6675 while (mas->node != MAS_NONE) { 6676 p = mas->node; 6677 p_min = mas->min; 6678 p_max = mas->max; 6679 mas_prev_node(mas, 0); 6680 } 6681 6682 if (p == MAS_NONE) 6683 return; 6684 6685 mas->node = p; 6686 mas->max = p_max; 6687 mas->min = p_min; 6688 } 6689 6690 /* Tree validations */ 6691 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6692 unsigned long min, unsigned long max, unsigned int depth); 6693 static void mt_dump_range(unsigned long min, unsigned long max, 6694 unsigned int depth) 6695 { 6696 static const char spaces[] = " "; 6697 6698 if (min == max) 6699 pr_info("%.*s%lu: ", depth * 2, spaces, min); 6700 else 6701 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 6702 } 6703 6704 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 6705 unsigned int depth) 6706 { 6707 mt_dump_range(min, max, depth); 6708 6709 if (xa_is_value(entry)) 6710 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 6711 xa_to_value(entry), entry); 6712 else if (xa_is_zero(entry)) 6713 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 6714 else if (mt_is_reserved(entry)) 6715 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 6716 else 6717 pr_cont("%p\n", entry); 6718 } 6719 6720 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 6721 unsigned long min, unsigned long max, unsigned int depth) 6722 { 6723 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 6724 bool leaf = mte_is_leaf(entry); 6725 unsigned long first = min; 6726 int i; 6727 6728 pr_cont(" contents: "); 6729 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) 6730 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6731 pr_cont("%p\n", node->slot[i]); 6732 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 6733 unsigned long last = max; 6734 6735 if (i < (MAPLE_RANGE64_SLOTS - 1)) 6736 last = node->pivot[i]; 6737 else if (!node->slot[i] && max != mt_max[mte_node_type(entry)]) 6738 break; 6739 if (last == 0 && i > 0) 6740 break; 6741 if (leaf) 6742 mt_dump_entry(mt_slot(mt, node->slot, i), 6743 first, last, depth + 1); 6744 else if (node->slot[i]) 6745 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6746 first, last, depth + 1); 6747 6748 if (last == max) 6749 break; 6750 if (last > max) { 6751 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6752 node, last, max, i); 6753 break; 6754 } 6755 first = last + 1; 6756 } 6757 } 6758 6759 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 6760 unsigned long min, unsigned long max, unsigned int depth) 6761 { 6762 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 6763 bool leaf = mte_is_leaf(entry); 6764 unsigned long first = min; 6765 int i; 6766 6767 pr_cont(" contents: "); 6768 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) 6769 pr_cont("%lu ", node->gap[i]); 6770 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 6771 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) 6772 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6773 pr_cont("%p\n", node->slot[i]); 6774 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 6775 unsigned long last = max; 6776 6777 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 6778 last = node->pivot[i]; 6779 else if (!node->slot[i]) 6780 break; 6781 if (last == 0 && i > 0) 6782 break; 6783 if (leaf) 6784 mt_dump_entry(mt_slot(mt, node->slot, i), 6785 first, last, depth + 1); 6786 else if (node->slot[i]) 6787 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6788 first, last, depth + 1); 6789 6790 if (last == max) 6791 break; 6792 if (last > max) { 6793 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6794 node, last, max, i); 6795 break; 6796 } 6797 first = last + 1; 6798 } 6799 } 6800 6801 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6802 unsigned long min, unsigned long max, unsigned int depth) 6803 { 6804 struct maple_node *node = mte_to_node(entry); 6805 unsigned int type = mte_node_type(entry); 6806 unsigned int i; 6807 6808 mt_dump_range(min, max, depth); 6809 6810 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 6811 node ? node->parent : NULL); 6812 switch (type) { 6813 case maple_dense: 6814 pr_cont("\n"); 6815 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 6816 if (min + i > max) 6817 pr_cont("OUT OF RANGE: "); 6818 mt_dump_entry(mt_slot(mt, node->slot, i), 6819 min + i, min + i, depth); 6820 } 6821 break; 6822 case maple_leaf_64: 6823 case maple_range_64: 6824 mt_dump_range64(mt, entry, min, max, depth); 6825 break; 6826 case maple_arange_64: 6827 mt_dump_arange64(mt, entry, min, max, depth); 6828 break; 6829 6830 default: 6831 pr_cont(" UNKNOWN TYPE\n"); 6832 } 6833 } 6834 6835 void mt_dump(const struct maple_tree *mt) 6836 { 6837 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 6838 6839 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 6840 mt, mt->ma_flags, mt_height(mt), entry); 6841 if (!xa_is_node(entry)) 6842 mt_dump_entry(entry, 0, 0, 0); 6843 else if (entry) 6844 mt_dump_node(mt, entry, 0, mt_max[mte_node_type(entry)], 0); 6845 } 6846 EXPORT_SYMBOL_GPL(mt_dump); 6847 6848 /* 6849 * Calculate the maximum gap in a node and check if that's what is reported in 6850 * the parent (unless root). 6851 */ 6852 static void mas_validate_gaps(struct ma_state *mas) 6853 { 6854 struct maple_enode *mte = mas->node; 6855 struct maple_node *p_mn; 6856 unsigned long gap = 0, max_gap = 0; 6857 unsigned long p_end, p_start = mas->min; 6858 unsigned char p_slot; 6859 unsigned long *gaps = NULL; 6860 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte)); 6861 int i; 6862 6863 if (ma_is_dense(mte_node_type(mte))) { 6864 for (i = 0; i < mt_slot_count(mte); i++) { 6865 if (mas_get_slot(mas, i)) { 6866 if (gap > max_gap) 6867 max_gap = gap; 6868 gap = 0; 6869 continue; 6870 } 6871 gap++; 6872 } 6873 goto counted; 6874 } 6875 6876 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte)); 6877 for (i = 0; i < mt_slot_count(mte); i++) { 6878 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte)); 6879 6880 if (!gaps) { 6881 if (mas_get_slot(mas, i)) { 6882 gap = 0; 6883 goto not_empty; 6884 } 6885 6886 gap += p_end - p_start + 1; 6887 } else { 6888 void *entry = mas_get_slot(mas, i); 6889 6890 gap = gaps[i]; 6891 if (!entry) { 6892 if (gap != p_end - p_start + 1) { 6893 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n", 6894 mas_mn(mas), i, 6895 mas_get_slot(mas, i), gap, 6896 p_end, p_start); 6897 mt_dump(mas->tree); 6898 6899 MT_BUG_ON(mas->tree, 6900 gap != p_end - p_start + 1); 6901 } 6902 } else { 6903 if (gap > p_end - p_start + 1) { 6904 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 6905 mas_mn(mas), i, gap, p_end, p_start, 6906 p_end - p_start + 1); 6907 MT_BUG_ON(mas->tree, 6908 gap > p_end - p_start + 1); 6909 } 6910 } 6911 } 6912 6913 if (gap > max_gap) 6914 max_gap = gap; 6915 not_empty: 6916 p_start = p_end + 1; 6917 if (p_end >= mas->max) 6918 break; 6919 } 6920 6921 counted: 6922 if (mte_is_root(mte)) 6923 return; 6924 6925 p_slot = mte_parent_slot(mas->node); 6926 p_mn = mte_parent(mte); 6927 MT_BUG_ON(mas->tree, max_gap > mas->max); 6928 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) { 6929 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 6930 mt_dump(mas->tree); 6931 } 6932 6933 MT_BUG_ON(mas->tree, 6934 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap); 6935 } 6936 6937 static void mas_validate_parent_slot(struct ma_state *mas) 6938 { 6939 struct maple_node *parent; 6940 struct maple_enode *node; 6941 enum maple_type p_type = mas_parent_enum(mas, mas->node); 6942 unsigned char p_slot = mte_parent_slot(mas->node); 6943 void __rcu **slots; 6944 int i; 6945 6946 if (mte_is_root(mas->node)) 6947 return; 6948 6949 parent = mte_parent(mas->node); 6950 slots = ma_slots(parent, p_type); 6951 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 6952 6953 /* Check prev/next parent slot for duplicate node entry */ 6954 6955 for (i = 0; i < mt_slots[p_type]; i++) { 6956 node = mas_slot(mas, slots, i); 6957 if (i == p_slot) { 6958 if (node != mas->node) 6959 pr_err("parent %p[%u] does not have %p\n", 6960 parent, i, mas_mn(mas)); 6961 MT_BUG_ON(mas->tree, node != mas->node); 6962 } else if (node == mas->node) { 6963 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 6964 mas_mn(mas), parent, i, p_slot); 6965 MT_BUG_ON(mas->tree, node == mas->node); 6966 } 6967 } 6968 } 6969 6970 static void mas_validate_child_slot(struct ma_state *mas) 6971 { 6972 enum maple_type type = mte_node_type(mas->node); 6973 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 6974 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 6975 struct maple_enode *child; 6976 unsigned char i; 6977 6978 if (mte_is_leaf(mas->node)) 6979 return; 6980 6981 for (i = 0; i < mt_slots[type]; i++) { 6982 child = mas_slot(mas, slots, i); 6983 if (!pivots[i] || pivots[i] == mas->max) 6984 break; 6985 6986 if (!child) 6987 break; 6988 6989 if (mte_parent_slot(child) != i) { 6990 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 6991 mas_mn(mas), i, mte_to_node(child), 6992 mte_parent_slot(child)); 6993 MT_BUG_ON(mas->tree, 1); 6994 } 6995 6996 if (mte_parent(child) != mte_to_node(mas->node)) { 6997 pr_err("child %p has parent %p not %p\n", 6998 mte_to_node(child), mte_parent(child), 6999 mte_to_node(mas->node)); 7000 MT_BUG_ON(mas->tree, 1); 7001 } 7002 } 7003 } 7004 7005 /* 7006 * Validate all pivots are within mas->min and mas->max. 7007 */ 7008 static void mas_validate_limits(struct ma_state *mas) 7009 { 7010 int i; 7011 unsigned long prev_piv = 0; 7012 enum maple_type type = mte_node_type(mas->node); 7013 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7014 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7015 7016 /* all limits are fine here. */ 7017 if (mte_is_root(mas->node)) 7018 return; 7019 7020 for (i = 0; i < mt_slots[type]; i++) { 7021 unsigned long piv; 7022 7023 piv = mas_safe_pivot(mas, pivots, i, type); 7024 7025 if (!piv && (i != 0)) 7026 break; 7027 7028 if (!mte_is_leaf(mas->node)) { 7029 void *entry = mas_slot(mas, slots, i); 7030 7031 if (!entry) 7032 pr_err("%p[%u] cannot be null\n", 7033 mas_mn(mas), i); 7034 7035 MT_BUG_ON(mas->tree, !entry); 7036 } 7037 7038 if (prev_piv > piv) { 7039 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7040 mas_mn(mas), i, piv, prev_piv); 7041 MT_BUG_ON(mas->tree, piv < prev_piv); 7042 } 7043 7044 if (piv < mas->min) { 7045 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7046 piv, mas->min); 7047 MT_BUG_ON(mas->tree, piv < mas->min); 7048 } 7049 if (piv > mas->max) { 7050 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7051 piv, mas->max); 7052 MT_BUG_ON(mas->tree, piv > mas->max); 7053 } 7054 prev_piv = piv; 7055 if (piv == mas->max) 7056 break; 7057 } 7058 for (i += 1; i < mt_slots[type]; i++) { 7059 void *entry = mas_slot(mas, slots, i); 7060 7061 if (entry && (i != mt_slots[type] - 1)) { 7062 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7063 i, entry); 7064 MT_BUG_ON(mas->tree, entry != NULL); 7065 } 7066 7067 if (i < mt_pivots[type]) { 7068 unsigned long piv = pivots[i]; 7069 7070 if (!piv) 7071 continue; 7072 7073 pr_err("%p[%u] should not have piv %lu\n", 7074 mas_mn(mas), i, piv); 7075 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1); 7076 } 7077 } 7078 } 7079 7080 static void mt_validate_nulls(struct maple_tree *mt) 7081 { 7082 void *entry, *last = (void *)1; 7083 unsigned char offset = 0; 7084 void __rcu **slots; 7085 MA_STATE(mas, mt, 0, 0); 7086 7087 mas_start(&mas); 7088 if (mas_is_none(&mas) || (mas.node == MAS_ROOT)) 7089 return; 7090 7091 while (!mte_is_leaf(mas.node)) 7092 mas_descend(&mas); 7093 7094 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7095 do { 7096 entry = mas_slot(&mas, slots, offset); 7097 if (!last && !entry) { 7098 pr_err("Sequential nulls end at %p[%u]\n", 7099 mas_mn(&mas), offset); 7100 } 7101 MT_BUG_ON(mt, !last && !entry); 7102 last = entry; 7103 if (offset == mas_data_end(&mas)) { 7104 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7105 if (mas_is_none(&mas)) 7106 return; 7107 offset = 0; 7108 slots = ma_slots(mte_to_node(mas.node), 7109 mte_node_type(mas.node)); 7110 } else { 7111 offset++; 7112 } 7113 7114 } while (!mas_is_none(&mas)); 7115 } 7116 7117 /* 7118 * validate a maple tree by checking: 7119 * 1. The limits (pivots are within mas->min to mas->max) 7120 * 2. The gap is correctly set in the parents 7121 */ 7122 void mt_validate(struct maple_tree *mt) 7123 { 7124 unsigned char end; 7125 7126 MA_STATE(mas, mt, 0, 0); 7127 rcu_read_lock(); 7128 mas_start(&mas); 7129 if (!mas_searchable(&mas)) 7130 goto done; 7131 7132 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node)); 7133 while (!mas_is_none(&mas)) { 7134 MT_BUG_ON(mas.tree, mte_dead_node(mas.node)); 7135 if (!mte_is_root(mas.node)) { 7136 end = mas_data_end(&mas); 7137 if ((end < mt_min_slot_count(mas.node)) && 7138 (mas.max != ULONG_MAX)) { 7139 pr_err("Invalid size %u of %p\n", end, 7140 mas_mn(&mas)); 7141 MT_BUG_ON(mas.tree, 1); 7142 } 7143 7144 } 7145 mas_validate_parent_slot(&mas); 7146 mas_validate_child_slot(&mas); 7147 mas_validate_limits(&mas); 7148 if (mt_is_alloc(mt)) 7149 mas_validate_gaps(&mas); 7150 mas_dfs_postorder(&mas, ULONG_MAX); 7151 } 7152 mt_validate_nulls(mt); 7153 done: 7154 rcu_read_unlock(); 7155 7156 } 7157 EXPORT_SYMBOL_GPL(mt_validate); 7158 7159 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7160