xref: /openbmc/linux/lib/list_sort.c (revision c819e2cf)
1 
2 #define pr_fmt(fmt) "list_sort_test: " fmt
3 
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/list_sort.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 
10 #define MAX_LIST_LENGTH_BITS 20
11 
12 /*
13  * Returns a list organized in an intermediate format suited
14  * to chaining of merge() calls: null-terminated, no reserved or
15  * sentinel head node, "prev" links not maintained.
16  */
17 static struct list_head *merge(void *priv,
18 				int (*cmp)(void *priv, struct list_head *a,
19 					struct list_head *b),
20 				struct list_head *a, struct list_head *b)
21 {
22 	struct list_head head, *tail = &head;
23 
24 	while (a && b) {
25 		/* if equal, take 'a' -- important for sort stability */
26 		if ((*cmp)(priv, a, b) <= 0) {
27 			tail->next = a;
28 			a = a->next;
29 		} else {
30 			tail->next = b;
31 			b = b->next;
32 		}
33 		tail = tail->next;
34 	}
35 	tail->next = a?:b;
36 	return head.next;
37 }
38 
39 /*
40  * Combine final list merge with restoration of standard doubly-linked
41  * list structure.  This approach duplicates code from merge(), but
42  * runs faster than the tidier alternatives of either a separate final
43  * prev-link restoration pass, or maintaining the prev links
44  * throughout.
45  */
46 static void merge_and_restore_back_links(void *priv,
47 				int (*cmp)(void *priv, struct list_head *a,
48 					struct list_head *b),
49 				struct list_head *head,
50 				struct list_head *a, struct list_head *b)
51 {
52 	struct list_head *tail = head;
53 	u8 count = 0;
54 
55 	while (a && b) {
56 		/* if equal, take 'a' -- important for sort stability */
57 		if ((*cmp)(priv, a, b) <= 0) {
58 			tail->next = a;
59 			a->prev = tail;
60 			a = a->next;
61 		} else {
62 			tail->next = b;
63 			b->prev = tail;
64 			b = b->next;
65 		}
66 		tail = tail->next;
67 	}
68 	tail->next = a ? : b;
69 
70 	do {
71 		/*
72 		 * In worst cases this loop may run many iterations.
73 		 * Continue callbacks to the client even though no
74 		 * element comparison is needed, so the client's cmp()
75 		 * routine can invoke cond_resched() periodically.
76 		 */
77 		if (unlikely(!(++count)))
78 			(*cmp)(priv, tail->next, tail->next);
79 
80 		tail->next->prev = tail;
81 		tail = tail->next;
82 	} while (tail->next);
83 
84 	tail->next = head;
85 	head->prev = tail;
86 }
87 
88 /**
89  * list_sort - sort a list
90  * @priv: private data, opaque to list_sort(), passed to @cmp
91  * @head: the list to sort
92  * @cmp: the elements comparison function
93  *
94  * This function implements "merge sort", which has O(nlog(n))
95  * complexity.
96  *
97  * The comparison function @cmp must return a negative value if @a
98  * should sort before @b, and a positive value if @a should sort after
99  * @b. If @a and @b are equivalent, and their original relative
100  * ordering is to be preserved, @cmp must return 0.
101  */
102 void list_sort(void *priv, struct list_head *head,
103 		int (*cmp)(void *priv, struct list_head *a,
104 			struct list_head *b))
105 {
106 	struct list_head *part[MAX_LIST_LENGTH_BITS+1]; /* sorted partial lists
107 						-- last slot is a sentinel */
108 	int lev;  /* index into part[] */
109 	int max_lev = 0;
110 	struct list_head *list;
111 
112 	if (list_empty(head))
113 		return;
114 
115 	memset(part, 0, sizeof(part));
116 
117 	head->prev->next = NULL;
118 	list = head->next;
119 
120 	while (list) {
121 		struct list_head *cur = list;
122 		list = list->next;
123 		cur->next = NULL;
124 
125 		for (lev = 0; part[lev]; lev++) {
126 			cur = merge(priv, cmp, part[lev], cur);
127 			part[lev] = NULL;
128 		}
129 		if (lev > max_lev) {
130 			if (unlikely(lev >= ARRAY_SIZE(part)-1)) {
131 				printk_once(KERN_DEBUG "list too long for efficiency\n");
132 				lev--;
133 			}
134 			max_lev = lev;
135 		}
136 		part[lev] = cur;
137 	}
138 
139 	for (lev = 0; lev < max_lev; lev++)
140 		if (part[lev])
141 			list = merge(priv, cmp, part[lev], list);
142 
143 	merge_and_restore_back_links(priv, cmp, head, part[max_lev], list);
144 }
145 EXPORT_SYMBOL(list_sort);
146 
147 #ifdef CONFIG_TEST_LIST_SORT
148 
149 #include <linux/random.h>
150 
151 /*
152  * The pattern of set bits in the list length determines which cases
153  * are hit in list_sort().
154  */
155 #define TEST_LIST_LEN (512+128+2) /* not including head */
156 
157 #define TEST_POISON1 0xDEADBEEF
158 #define TEST_POISON2 0xA324354C
159 
160 struct debug_el {
161 	unsigned int poison1;
162 	struct list_head list;
163 	unsigned int poison2;
164 	int value;
165 	unsigned serial;
166 };
167 
168 /* Array, containing pointers to all elements in the test list */
169 static struct debug_el **elts __initdata;
170 
171 static int __init check(struct debug_el *ela, struct debug_el *elb)
172 {
173 	if (ela->serial >= TEST_LIST_LEN) {
174 		pr_err("error: incorrect serial %d\n", ela->serial);
175 		return -EINVAL;
176 	}
177 	if (elb->serial >= TEST_LIST_LEN) {
178 		pr_err("error: incorrect serial %d\n", elb->serial);
179 		return -EINVAL;
180 	}
181 	if (elts[ela->serial] != ela || elts[elb->serial] != elb) {
182 		pr_err("error: phantom element\n");
183 		return -EINVAL;
184 	}
185 	if (ela->poison1 != TEST_POISON1 || ela->poison2 != TEST_POISON2) {
186 		pr_err("error: bad poison: %#x/%#x\n",
187 			ela->poison1, ela->poison2);
188 		return -EINVAL;
189 	}
190 	if (elb->poison1 != TEST_POISON1 || elb->poison2 != TEST_POISON2) {
191 		pr_err("error: bad poison: %#x/%#x\n",
192 			elb->poison1, elb->poison2);
193 		return -EINVAL;
194 	}
195 	return 0;
196 }
197 
198 static int __init cmp(void *priv, struct list_head *a, struct list_head *b)
199 {
200 	struct debug_el *ela, *elb;
201 
202 	ela = container_of(a, struct debug_el, list);
203 	elb = container_of(b, struct debug_el, list);
204 
205 	check(ela, elb);
206 	return ela->value - elb->value;
207 }
208 
209 static int __init list_sort_test(void)
210 {
211 	int i, count = 1, err = -ENOMEM;
212 	struct debug_el *el;
213 	struct list_head *cur;
214 	LIST_HEAD(head);
215 
216 	pr_debug("start testing list_sort()\n");
217 
218 	elts = kcalloc(TEST_LIST_LEN, sizeof(*elts), GFP_KERNEL);
219 	if (!elts) {
220 		pr_err("error: cannot allocate memory\n");
221 		return err;
222 	}
223 
224 	for (i = 0; i < TEST_LIST_LEN; i++) {
225 		el = kmalloc(sizeof(*el), GFP_KERNEL);
226 		if (!el) {
227 			pr_err("error: cannot allocate memory\n");
228 			goto exit;
229 		}
230 		 /* force some equivalencies */
231 		el->value = prandom_u32() % (TEST_LIST_LEN / 3);
232 		el->serial = i;
233 		el->poison1 = TEST_POISON1;
234 		el->poison2 = TEST_POISON2;
235 		elts[i] = el;
236 		list_add_tail(&el->list, &head);
237 	}
238 
239 	list_sort(NULL, &head, cmp);
240 
241 	err = -EINVAL;
242 	for (cur = head.next; cur->next != &head; cur = cur->next) {
243 		struct debug_el *el1;
244 		int cmp_result;
245 
246 		if (cur->next->prev != cur) {
247 			pr_err("error: list is corrupted\n");
248 			goto exit;
249 		}
250 
251 		cmp_result = cmp(NULL, cur, cur->next);
252 		if (cmp_result > 0) {
253 			pr_err("error: list is not sorted\n");
254 			goto exit;
255 		}
256 
257 		el = container_of(cur, struct debug_el, list);
258 		el1 = container_of(cur->next, struct debug_el, list);
259 		if (cmp_result == 0 && el->serial >= el1->serial) {
260 			pr_err("error: order of equivalent elements not "
261 				"preserved\n");
262 			goto exit;
263 		}
264 
265 		if (check(el, el1)) {
266 			pr_err("error: element check failed\n");
267 			goto exit;
268 		}
269 		count++;
270 	}
271 	if (head.prev != cur) {
272 		pr_err("error: list is corrupted\n");
273 		goto exit;
274 	}
275 
276 
277 	if (count != TEST_LIST_LEN) {
278 		pr_err("error: bad list length %d", count);
279 		goto exit;
280 	}
281 
282 	err = 0;
283 exit:
284 	for (i = 0; i < TEST_LIST_LEN; i++)
285 		kfree(elts[i]);
286 	kfree(elts);
287 	return err;
288 }
289 module_init(list_sort_test);
290 #endif /* CONFIG_TEST_LIST_SORT */
291