xref: /openbmc/linux/lib/list_sort.c (revision 75020f2d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/bug.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/string.h>
7 #include <linux/list_sort.h>
8 #include <linux/list.h>
9 
10 /*
11  * Returns a list organized in an intermediate format suited
12  * to chaining of merge() calls: null-terminated, no reserved or
13  * sentinel head node, "prev" links not maintained.
14  */
15 __attribute__((nonnull(2,3,4)))
16 static struct list_head *merge(void *priv, list_cmp_func_t cmp,
17 				struct list_head *a, struct list_head *b)
18 {
19 	struct list_head *head, **tail = &head;
20 
21 	for (;;) {
22 		/* if equal, take 'a' -- important for sort stability */
23 		if (cmp(priv, a, b) <= 0) {
24 			*tail = a;
25 			tail = &a->next;
26 			a = a->next;
27 			if (!a) {
28 				*tail = b;
29 				break;
30 			}
31 		} else {
32 			*tail = b;
33 			tail = &b->next;
34 			b = b->next;
35 			if (!b) {
36 				*tail = a;
37 				break;
38 			}
39 		}
40 	}
41 	return head;
42 }
43 
44 /*
45  * Combine final list merge with restoration of standard doubly-linked
46  * list structure.  This approach duplicates code from merge(), but
47  * runs faster than the tidier alternatives of either a separate final
48  * prev-link restoration pass, or maintaining the prev links
49  * throughout.
50  */
51 __attribute__((nonnull(2,3,4,5)))
52 static void merge_final(void *priv, list_cmp_func_t cmp, struct list_head *head,
53 			struct list_head *a, struct list_head *b)
54 {
55 	struct list_head *tail = head;
56 	u8 count = 0;
57 
58 	for (;;) {
59 		/* if equal, take 'a' -- important for sort stability */
60 		if (cmp(priv, a, b) <= 0) {
61 			tail->next = a;
62 			a->prev = tail;
63 			tail = a;
64 			a = a->next;
65 			if (!a)
66 				break;
67 		} else {
68 			tail->next = b;
69 			b->prev = tail;
70 			tail = b;
71 			b = b->next;
72 			if (!b) {
73 				b = a;
74 				break;
75 			}
76 		}
77 	}
78 
79 	/* Finish linking remainder of list b on to tail */
80 	tail->next = b;
81 	do {
82 		/*
83 		 * If the merge is highly unbalanced (e.g. the input is
84 		 * already sorted), this loop may run many iterations.
85 		 * Continue callbacks to the client even though no
86 		 * element comparison is needed, so the client's cmp()
87 		 * routine can invoke cond_resched() periodically.
88 		 */
89 		if (unlikely(!++count))
90 			cmp(priv, b, b);
91 		b->prev = tail;
92 		tail = b;
93 		b = b->next;
94 	} while (b);
95 
96 	/* And the final links to make a circular doubly-linked list */
97 	tail->next = head;
98 	head->prev = tail;
99 }
100 
101 /**
102  * list_sort - sort a list
103  * @priv: private data, opaque to list_sort(), passed to @cmp
104  * @head: the list to sort
105  * @cmp: the elements comparison function
106  *
107  * The comparison funtion @cmp must return > 0 if @a should sort after
108  * @b ("@a > @b" if you want an ascending sort), and <= 0 if @a should
109  * sort before @b *or* their original order should be preserved.  It is
110  * always called with the element that came first in the input in @a,
111  * and list_sort is a stable sort, so it is not necessary to distinguish
112  * the @a < @b and @a == @b cases.
113  *
114  * This is compatible with two styles of @cmp function:
115  * - The traditional style which returns <0 / =0 / >0, or
116  * - Returning a boolean 0/1.
117  * The latter offers a chance to save a few cycles in the comparison
118  * (which is used by e.g. plug_ctx_cmp() in block/blk-mq.c).
119  *
120  * A good way to write a multi-word comparison is::
121  *
122  *	if (a->high != b->high)
123  *		return a->high > b->high;
124  *	if (a->middle != b->middle)
125  *		return a->middle > b->middle;
126  *	return a->low > b->low;
127  *
128  *
129  * This mergesort is as eager as possible while always performing at least
130  * 2:1 balanced merges.  Given two pending sublists of size 2^k, they are
131  * merged to a size-2^(k+1) list as soon as we have 2^k following elements.
132  *
133  * Thus, it will avoid cache thrashing as long as 3*2^k elements can
134  * fit into the cache.  Not quite as good as a fully-eager bottom-up
135  * mergesort, but it does use 0.2*n fewer comparisons, so is faster in
136  * the common case that everything fits into L1.
137  *
138  *
139  * The merging is controlled by "count", the number of elements in the
140  * pending lists.  This is beautifully simple code, but rather subtle.
141  *
142  * Each time we increment "count", we set one bit (bit k) and clear
143  * bits k-1 .. 0.  Each time this happens (except the very first time
144  * for each bit, when count increments to 2^k), we merge two lists of
145  * size 2^k into one list of size 2^(k+1).
146  *
147  * This merge happens exactly when the count reaches an odd multiple of
148  * 2^k, which is when we have 2^k elements pending in smaller lists,
149  * so it's safe to merge away two lists of size 2^k.
150  *
151  * After this happens twice, we have created two lists of size 2^(k+1),
152  * which will be merged into a list of size 2^(k+2) before we create
153  * a third list of size 2^(k+1), so there are never more than two pending.
154  *
155  * The number of pending lists of size 2^k is determined by the
156  * state of bit k of "count" plus two extra pieces of information:
157  *
158  * - The state of bit k-1 (when k == 0, consider bit -1 always set), and
159  * - Whether the higher-order bits are zero or non-zero (i.e.
160  *   is count >= 2^(k+1)).
161  *
162  * There are six states we distinguish.  "x" represents some arbitrary
163  * bits, and "y" represents some arbitrary non-zero bits:
164  * 0:  00x: 0 pending of size 2^k;           x pending of sizes < 2^k
165  * 1:  01x: 0 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
166  * 2: x10x: 0 pending of size 2^k; 2^k     + x pending of sizes < 2^k
167  * 3: x11x: 1 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
168  * 4: y00x: 1 pending of size 2^k; 2^k     + x pending of sizes < 2^k
169  * 5: y01x: 2 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
170  * (merge and loop back to state 2)
171  *
172  * We gain lists of size 2^k in the 2->3 and 4->5 transitions (because
173  * bit k-1 is set while the more significant bits are non-zero) and
174  * merge them away in the 5->2 transition.  Note in particular that just
175  * before the 5->2 transition, all lower-order bits are 11 (state 3),
176  * so there is one list of each smaller size.
177  *
178  * When we reach the end of the input, we merge all the pending
179  * lists, from smallest to largest.  If you work through cases 2 to
180  * 5 above, you can see that the number of elements we merge with a list
181  * of size 2^k varies from 2^(k-1) (cases 3 and 5 when x == 0) to
182  * 2^(k+1) - 1 (second merge of case 5 when x == 2^(k-1) - 1).
183  */
184 __attribute__((nonnull(2,3)))
185 void list_sort(void *priv, struct list_head *head, list_cmp_func_t cmp)
186 {
187 	struct list_head *list = head->next, *pending = NULL;
188 	size_t count = 0;	/* Count of pending */
189 
190 	if (list == head->prev)	/* Zero or one elements */
191 		return;
192 
193 	/* Convert to a null-terminated singly-linked list. */
194 	head->prev->next = NULL;
195 
196 	/*
197 	 * Data structure invariants:
198 	 * - All lists are singly linked and null-terminated; prev
199 	 *   pointers are not maintained.
200 	 * - pending is a prev-linked "list of lists" of sorted
201 	 *   sublists awaiting further merging.
202 	 * - Each of the sorted sublists is power-of-two in size.
203 	 * - Sublists are sorted by size and age, smallest & newest at front.
204 	 * - There are zero to two sublists of each size.
205 	 * - A pair of pending sublists are merged as soon as the number
206 	 *   of following pending elements equals their size (i.e.
207 	 *   each time count reaches an odd multiple of that size).
208 	 *   That ensures each later final merge will be at worst 2:1.
209 	 * - Each round consists of:
210 	 *   - Merging the two sublists selected by the highest bit
211 	 *     which flips when count is incremented, and
212 	 *   - Adding an element from the input as a size-1 sublist.
213 	 */
214 	do {
215 		size_t bits;
216 		struct list_head **tail = &pending;
217 
218 		/* Find the least-significant clear bit in count */
219 		for (bits = count; bits & 1; bits >>= 1)
220 			tail = &(*tail)->prev;
221 		/* Do the indicated merge */
222 		if (likely(bits)) {
223 			struct list_head *a = *tail, *b = a->prev;
224 
225 			a = merge(priv, cmp, b, a);
226 			/* Install the merged result in place of the inputs */
227 			a->prev = b->prev;
228 			*tail = a;
229 		}
230 
231 		/* Move one element from input list to pending */
232 		list->prev = pending;
233 		pending = list;
234 		list = list->next;
235 		pending->next = NULL;
236 		count++;
237 	} while (list);
238 
239 	/* End of input; merge together all the pending lists. */
240 	list = pending;
241 	pending = pending->prev;
242 	for (;;) {
243 		struct list_head *next = pending->prev;
244 
245 		if (!next)
246 			break;
247 		list = merge(priv, cmp, pending, list);
248 		pending = next;
249 	}
250 	/* The final merge, rebuilding prev links */
251 	merge_final(priv, cmp, head, pending, list);
252 }
253 EXPORT_SYMBOL(list_sort);
254