xref: /openbmc/linux/lib/klist.c (revision 4f205687)
1 /*
2  * klist.c - Routines for manipulating klists.
3  *
4  * Copyright (C) 2005 Patrick Mochel
5  *
6  * This file is released under the GPL v2.
7  *
8  * This klist interface provides a couple of structures that wrap around
9  * struct list_head to provide explicit list "head" (struct klist) and list
10  * "node" (struct klist_node) objects. For struct klist, a spinlock is
11  * included that protects access to the actual list itself. struct
12  * klist_node provides a pointer to the klist that owns it and a kref
13  * reference count that indicates the number of current users of that node
14  * in the list.
15  *
16  * The entire point is to provide an interface for iterating over a list
17  * that is safe and allows for modification of the list during the
18  * iteration (e.g. insertion and removal), including modification of the
19  * current node on the list.
20  *
21  * It works using a 3rd object type - struct klist_iter - that is declared
22  * and initialized before an iteration. klist_next() is used to acquire the
23  * next element in the list. It returns NULL if there are no more items.
24  * Internally, that routine takes the klist's lock, decrements the
25  * reference count of the previous klist_node and increments the count of
26  * the next klist_node. It then drops the lock and returns.
27  *
28  * There are primitives for adding and removing nodes to/from a klist.
29  * When deleting, klist_del() will simply decrement the reference count.
30  * Only when the count goes to 0 is the node removed from the list.
31  * klist_remove() will try to delete the node from the list and block until
32  * it is actually removed. This is useful for objects (like devices) that
33  * have been removed from the system and must be freed (but must wait until
34  * all accessors have finished).
35  */
36 
37 #include <linux/klist.h>
38 #include <linux/export.h>
39 #include <linux/sched.h>
40 
41 /*
42  * Use the lowest bit of n_klist to mark deleted nodes and exclude
43  * dead ones from iteration.
44  */
45 #define KNODE_DEAD		1LU
46 #define KNODE_KLIST_MASK	~KNODE_DEAD
47 
48 static struct klist *knode_klist(struct klist_node *knode)
49 {
50 	return (struct klist *)
51 		((unsigned long)knode->n_klist & KNODE_KLIST_MASK);
52 }
53 
54 static bool knode_dead(struct klist_node *knode)
55 {
56 	return (unsigned long)knode->n_klist & KNODE_DEAD;
57 }
58 
59 static void knode_set_klist(struct klist_node *knode, struct klist *klist)
60 {
61 	knode->n_klist = klist;
62 	/* no knode deserves to start its life dead */
63 	WARN_ON(knode_dead(knode));
64 }
65 
66 static void knode_kill(struct klist_node *knode)
67 {
68 	/* and no knode should die twice ever either, see we're very humane */
69 	WARN_ON(knode_dead(knode));
70 	*(unsigned long *)&knode->n_klist |= KNODE_DEAD;
71 }
72 
73 /**
74  * klist_init - Initialize a klist structure.
75  * @k: The klist we're initializing.
76  * @get: The get function for the embedding object (NULL if none)
77  * @put: The put function for the embedding object (NULL if none)
78  *
79  * Initialises the klist structure.  If the klist_node structures are
80  * going to be embedded in refcounted objects (necessary for safe
81  * deletion) then the get/put arguments are used to initialise
82  * functions that take and release references on the embedding
83  * objects.
84  */
85 void klist_init(struct klist *k, void (*get)(struct klist_node *),
86 		void (*put)(struct klist_node *))
87 {
88 	INIT_LIST_HEAD(&k->k_list);
89 	spin_lock_init(&k->k_lock);
90 	k->get = get;
91 	k->put = put;
92 }
93 EXPORT_SYMBOL_GPL(klist_init);
94 
95 static void add_head(struct klist *k, struct klist_node *n)
96 {
97 	spin_lock(&k->k_lock);
98 	list_add(&n->n_node, &k->k_list);
99 	spin_unlock(&k->k_lock);
100 }
101 
102 static void add_tail(struct klist *k, struct klist_node *n)
103 {
104 	spin_lock(&k->k_lock);
105 	list_add_tail(&n->n_node, &k->k_list);
106 	spin_unlock(&k->k_lock);
107 }
108 
109 static void klist_node_init(struct klist *k, struct klist_node *n)
110 {
111 	INIT_LIST_HEAD(&n->n_node);
112 	kref_init(&n->n_ref);
113 	knode_set_klist(n, k);
114 	if (k->get)
115 		k->get(n);
116 }
117 
118 /**
119  * klist_add_head - Initialize a klist_node and add it to front.
120  * @n: node we're adding.
121  * @k: klist it's going on.
122  */
123 void klist_add_head(struct klist_node *n, struct klist *k)
124 {
125 	klist_node_init(k, n);
126 	add_head(k, n);
127 }
128 EXPORT_SYMBOL_GPL(klist_add_head);
129 
130 /**
131  * klist_add_tail - Initialize a klist_node and add it to back.
132  * @n: node we're adding.
133  * @k: klist it's going on.
134  */
135 void klist_add_tail(struct klist_node *n, struct klist *k)
136 {
137 	klist_node_init(k, n);
138 	add_tail(k, n);
139 }
140 EXPORT_SYMBOL_GPL(klist_add_tail);
141 
142 /**
143  * klist_add_behind - Init a klist_node and add it after an existing node
144  * @n: node we're adding.
145  * @pos: node to put @n after
146  */
147 void klist_add_behind(struct klist_node *n, struct klist_node *pos)
148 {
149 	struct klist *k = knode_klist(pos);
150 
151 	klist_node_init(k, n);
152 	spin_lock(&k->k_lock);
153 	list_add(&n->n_node, &pos->n_node);
154 	spin_unlock(&k->k_lock);
155 }
156 EXPORT_SYMBOL_GPL(klist_add_behind);
157 
158 /**
159  * klist_add_before - Init a klist_node and add it before an existing node
160  * @n: node we're adding.
161  * @pos: node to put @n after
162  */
163 void klist_add_before(struct klist_node *n, struct klist_node *pos)
164 {
165 	struct klist *k = knode_klist(pos);
166 
167 	klist_node_init(k, n);
168 	spin_lock(&k->k_lock);
169 	list_add_tail(&n->n_node, &pos->n_node);
170 	spin_unlock(&k->k_lock);
171 }
172 EXPORT_SYMBOL_GPL(klist_add_before);
173 
174 struct klist_waiter {
175 	struct list_head list;
176 	struct klist_node *node;
177 	struct task_struct *process;
178 	int woken;
179 };
180 
181 static DEFINE_SPINLOCK(klist_remove_lock);
182 static LIST_HEAD(klist_remove_waiters);
183 
184 static void klist_release(struct kref *kref)
185 {
186 	struct klist_waiter *waiter, *tmp;
187 	struct klist_node *n = container_of(kref, struct klist_node, n_ref);
188 
189 	WARN_ON(!knode_dead(n));
190 	list_del(&n->n_node);
191 	spin_lock(&klist_remove_lock);
192 	list_for_each_entry_safe(waiter, tmp, &klist_remove_waiters, list) {
193 		if (waiter->node != n)
194 			continue;
195 
196 		list_del(&waiter->list);
197 		waiter->woken = 1;
198 		mb();
199 		wake_up_process(waiter->process);
200 	}
201 	spin_unlock(&klist_remove_lock);
202 	knode_set_klist(n, NULL);
203 }
204 
205 static int klist_dec_and_del(struct klist_node *n)
206 {
207 	return kref_put(&n->n_ref, klist_release);
208 }
209 
210 static void klist_put(struct klist_node *n, bool kill)
211 {
212 	struct klist *k = knode_klist(n);
213 	void (*put)(struct klist_node *) = k->put;
214 
215 	spin_lock(&k->k_lock);
216 	if (kill)
217 		knode_kill(n);
218 	if (!klist_dec_and_del(n))
219 		put = NULL;
220 	spin_unlock(&k->k_lock);
221 	if (put)
222 		put(n);
223 }
224 
225 /**
226  * klist_del - Decrement the reference count of node and try to remove.
227  * @n: node we're deleting.
228  */
229 void klist_del(struct klist_node *n)
230 {
231 	klist_put(n, true);
232 }
233 EXPORT_SYMBOL_GPL(klist_del);
234 
235 /**
236  * klist_remove - Decrement the refcount of node and wait for it to go away.
237  * @n: node we're removing.
238  */
239 void klist_remove(struct klist_node *n)
240 {
241 	struct klist_waiter waiter;
242 
243 	waiter.node = n;
244 	waiter.process = current;
245 	waiter.woken = 0;
246 	spin_lock(&klist_remove_lock);
247 	list_add(&waiter.list, &klist_remove_waiters);
248 	spin_unlock(&klist_remove_lock);
249 
250 	klist_del(n);
251 
252 	for (;;) {
253 		set_current_state(TASK_UNINTERRUPTIBLE);
254 		if (waiter.woken)
255 			break;
256 		schedule();
257 	}
258 	__set_current_state(TASK_RUNNING);
259 }
260 EXPORT_SYMBOL_GPL(klist_remove);
261 
262 /**
263  * klist_node_attached - Say whether a node is bound to a list or not.
264  * @n: Node that we're testing.
265  */
266 int klist_node_attached(struct klist_node *n)
267 {
268 	return (n->n_klist != NULL);
269 }
270 EXPORT_SYMBOL_GPL(klist_node_attached);
271 
272 /**
273  * klist_iter_init_node - Initialize a klist_iter structure.
274  * @k: klist we're iterating.
275  * @i: klist_iter we're filling.
276  * @n: node to start with.
277  *
278  * Similar to klist_iter_init(), but starts the action off with @n,
279  * instead of with the list head.
280  */
281 void klist_iter_init_node(struct klist *k, struct klist_iter *i,
282 			  struct klist_node *n)
283 {
284 	i->i_klist = k;
285 	i->i_cur = NULL;
286 	if (n && kref_get_unless_zero(&n->n_ref))
287 		i->i_cur = n;
288 }
289 EXPORT_SYMBOL_GPL(klist_iter_init_node);
290 
291 /**
292  * klist_iter_init - Iniitalize a klist_iter structure.
293  * @k: klist we're iterating.
294  * @i: klist_iter structure we're filling.
295  *
296  * Similar to klist_iter_init_node(), but start with the list head.
297  */
298 void klist_iter_init(struct klist *k, struct klist_iter *i)
299 {
300 	klist_iter_init_node(k, i, NULL);
301 }
302 EXPORT_SYMBOL_GPL(klist_iter_init);
303 
304 /**
305  * klist_iter_exit - Finish a list iteration.
306  * @i: Iterator structure.
307  *
308  * Must be called when done iterating over list, as it decrements the
309  * refcount of the current node. Necessary in case iteration exited before
310  * the end of the list was reached, and always good form.
311  */
312 void klist_iter_exit(struct klist_iter *i)
313 {
314 	if (i->i_cur) {
315 		klist_put(i->i_cur, false);
316 		i->i_cur = NULL;
317 	}
318 }
319 EXPORT_SYMBOL_GPL(klist_iter_exit);
320 
321 static struct klist_node *to_klist_node(struct list_head *n)
322 {
323 	return container_of(n, struct klist_node, n_node);
324 }
325 
326 /**
327  * klist_prev - Ante up prev node in list.
328  * @i: Iterator structure.
329  *
330  * First grab list lock. Decrement the reference count of the previous
331  * node, if there was one. Grab the prev node, increment its reference
332  * count, drop the lock, and return that prev node.
333  */
334 struct klist_node *klist_prev(struct klist_iter *i)
335 {
336 	void (*put)(struct klist_node *) = i->i_klist->put;
337 	struct klist_node *last = i->i_cur;
338 	struct klist_node *prev;
339 
340 	spin_lock(&i->i_klist->k_lock);
341 
342 	if (last) {
343 		prev = to_klist_node(last->n_node.prev);
344 		if (!klist_dec_and_del(last))
345 			put = NULL;
346 	} else
347 		prev = to_klist_node(i->i_klist->k_list.prev);
348 
349 	i->i_cur = NULL;
350 	while (prev != to_klist_node(&i->i_klist->k_list)) {
351 		if (likely(!knode_dead(prev))) {
352 			kref_get(&prev->n_ref);
353 			i->i_cur = prev;
354 			break;
355 		}
356 		prev = to_klist_node(prev->n_node.prev);
357 	}
358 
359 	spin_unlock(&i->i_klist->k_lock);
360 
361 	if (put && last)
362 		put(last);
363 	return i->i_cur;
364 }
365 EXPORT_SYMBOL_GPL(klist_prev);
366 
367 /**
368  * klist_next - Ante up next node in list.
369  * @i: Iterator structure.
370  *
371  * First grab list lock. Decrement the reference count of the previous
372  * node, if there was one. Grab the next node, increment its reference
373  * count, drop the lock, and return that next node.
374  */
375 struct klist_node *klist_next(struct klist_iter *i)
376 {
377 	void (*put)(struct klist_node *) = i->i_klist->put;
378 	struct klist_node *last = i->i_cur;
379 	struct klist_node *next;
380 
381 	spin_lock(&i->i_klist->k_lock);
382 
383 	if (last) {
384 		next = to_klist_node(last->n_node.next);
385 		if (!klist_dec_and_del(last))
386 			put = NULL;
387 	} else
388 		next = to_klist_node(i->i_klist->k_list.next);
389 
390 	i->i_cur = NULL;
391 	while (next != to_klist_node(&i->i_klist->k_list)) {
392 		if (likely(!knode_dead(next))) {
393 			kref_get(&next->n_ref);
394 			i->i_cur = next;
395 			break;
396 		}
397 		next = to_klist_node(next->n_node.next);
398 	}
399 
400 	spin_unlock(&i->i_klist->k_lock);
401 
402 	if (put && last)
403 		put(last);
404 	return i->i_cur;
405 }
406 EXPORT_SYMBOL_GPL(klist_next);
407