xref: /openbmc/linux/lib/iov_iter.c (revision fb5e51c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
21 	size_t off = 0;						\
22 	size_t skip = i->iov_offset;				\
23 	do {							\
24 		len = min(n, __p->iov_len - skip);		\
25 		if (likely(len)) {				\
26 			base = __p->iov_base + skip;		\
27 			len -= (STEP);				\
28 			off += len;				\
29 			skip += len;				\
30 			n -= len;				\
31 			if (skip < __p->iov_len)		\
32 				break;				\
33 		}						\
34 		__p++;						\
35 		skip = 0;					\
36 	} while (n);						\
37 	i->iov_offset = skip;					\
38 	n = off;						\
39 }
40 
41 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
42 	size_t off = 0;						\
43 	unsigned skip = i->iov_offset;				\
44 	while (n) {						\
45 		unsigned offset = p->bv_offset + skip;		\
46 		unsigned left;					\
47 		void *kaddr = kmap_local_page(p->bv_page +	\
48 					offset / PAGE_SIZE);	\
49 		base = kaddr + offset % PAGE_SIZE;		\
50 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
51 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
52 		left = (STEP);					\
53 		kunmap_local(kaddr);				\
54 		len -= left;					\
55 		off += len;					\
56 		skip += len;					\
57 		if (skip == p->bv_len) {			\
58 			skip = 0;				\
59 			p++;					\
60 		}						\
61 		n -= len;					\
62 		if (left)					\
63 			break;					\
64 	}							\
65 	i->iov_offset = skip;					\
66 	n = off;						\
67 }
68 
69 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
70 	__label__ __out;					\
71 	size_t __off = 0;					\
72 	struct page *head = NULL;				\
73 	loff_t start = i->xarray_start + i->iov_offset;		\
74 	unsigned offset = start % PAGE_SIZE;			\
75 	pgoff_t index = start / PAGE_SIZE;			\
76 	int j;							\
77 								\
78 	XA_STATE(xas, i->xarray, index);			\
79 								\
80 	rcu_read_lock();					\
81 	xas_for_each(&xas, head, ULONG_MAX) {			\
82 		unsigned left;					\
83 		if (xas_retry(&xas, head))			\
84 			continue;				\
85 		if (WARN_ON(xa_is_value(head)))			\
86 			break;					\
87 		if (WARN_ON(PageHuge(head)))			\
88 			break;					\
89 		for (j = (head->index < index) ? index - head->index : 0; \
90 		     j < thp_nr_pages(head); j++) {		\
91 			void *kaddr = kmap_local_page(head + j);	\
92 			base = kaddr + offset;			\
93 			len = PAGE_SIZE - offset;		\
94 			len = min(n, len);			\
95 			left = (STEP);				\
96 			kunmap_local(kaddr);			\
97 			len -= left;				\
98 			__off += len;				\
99 			n -= len;				\
100 			if (left || n == 0)			\
101 				goto __out;			\
102 			offset = 0;				\
103 		}						\
104 	}							\
105 __out:								\
106 	rcu_read_unlock();					\
107 	i->iov_offset += __off;						\
108 	n = __off;						\
109 }
110 
111 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
112 	if (unlikely(i->count < n))				\
113 		n = i->count;					\
114 	if (likely(n)) {					\
115 		if (likely(iter_is_iovec(i))) {			\
116 			const struct iovec *iov = i->iov;	\
117 			void __user *base;			\
118 			size_t len;				\
119 			iterate_iovec(i, n, base, len, off,	\
120 						iov, (I))	\
121 			i->nr_segs -= iov - i->iov;		\
122 			i->iov = iov;				\
123 		} else if (iov_iter_is_bvec(i)) {		\
124 			const struct bio_vec *bvec = i->bvec;	\
125 			void *base;				\
126 			size_t len;				\
127 			iterate_bvec(i, n, base, len, off,	\
128 						bvec, (K))	\
129 			i->nr_segs -= bvec - i->bvec;		\
130 			i->bvec = bvec;				\
131 		} else if (iov_iter_is_kvec(i)) {		\
132 			const struct kvec *kvec = i->kvec;	\
133 			void *base;				\
134 			size_t len;				\
135 			iterate_iovec(i, n, base, len, off,	\
136 						kvec, (K))	\
137 			i->nr_segs -= kvec - i->kvec;		\
138 			i->kvec = kvec;				\
139 		} else if (iov_iter_is_xarray(i)) {		\
140 			void *base;				\
141 			size_t len;				\
142 			iterate_xarray(i, n, base, len, off,	\
143 							(K))	\
144 		}						\
145 		i->count -= n;					\
146 	}							\
147 }
148 #define iterate_and_advance(i, n, base, len, off, I, K) \
149 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
150 
151 static int copyout(void __user *to, const void *from, size_t n)
152 {
153 	if (should_fail_usercopy())
154 		return n;
155 	if (access_ok(to, n)) {
156 		instrument_copy_to_user(to, from, n);
157 		n = raw_copy_to_user(to, from, n);
158 	}
159 	return n;
160 }
161 
162 static int copyin(void *to, const void __user *from, size_t n)
163 {
164 	if (should_fail_usercopy())
165 		return n;
166 	if (access_ok(from, n)) {
167 		instrument_copy_from_user(to, from, n);
168 		n = raw_copy_from_user(to, from, n);
169 	}
170 	return n;
171 }
172 
173 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
174 			 struct iov_iter *i)
175 {
176 	size_t skip, copy, left, wanted;
177 	const struct iovec *iov;
178 	char __user *buf;
179 	void *kaddr, *from;
180 
181 	if (unlikely(bytes > i->count))
182 		bytes = i->count;
183 
184 	if (unlikely(!bytes))
185 		return 0;
186 
187 	might_fault();
188 	wanted = bytes;
189 	iov = i->iov;
190 	skip = i->iov_offset;
191 	buf = iov->iov_base + skip;
192 	copy = min(bytes, iov->iov_len - skip);
193 
194 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_writeable(buf, copy)) {
195 		kaddr = kmap_atomic(page);
196 		from = kaddr + offset;
197 
198 		/* first chunk, usually the only one */
199 		left = copyout(buf, from, copy);
200 		copy -= left;
201 		skip += copy;
202 		from += copy;
203 		bytes -= copy;
204 
205 		while (unlikely(!left && bytes)) {
206 			iov++;
207 			buf = iov->iov_base;
208 			copy = min(bytes, iov->iov_len);
209 			left = copyout(buf, from, copy);
210 			copy -= left;
211 			skip = copy;
212 			from += copy;
213 			bytes -= copy;
214 		}
215 		if (likely(!bytes)) {
216 			kunmap_atomic(kaddr);
217 			goto done;
218 		}
219 		offset = from - kaddr;
220 		buf += copy;
221 		kunmap_atomic(kaddr);
222 		copy = min(bytes, iov->iov_len - skip);
223 	}
224 	/* Too bad - revert to non-atomic kmap */
225 
226 	kaddr = kmap(page);
227 	from = kaddr + offset;
228 	left = copyout(buf, from, copy);
229 	copy -= left;
230 	skip += copy;
231 	from += copy;
232 	bytes -= copy;
233 	while (unlikely(!left && bytes)) {
234 		iov++;
235 		buf = iov->iov_base;
236 		copy = min(bytes, iov->iov_len);
237 		left = copyout(buf, from, copy);
238 		copy -= left;
239 		skip = copy;
240 		from += copy;
241 		bytes -= copy;
242 	}
243 	kunmap(page);
244 
245 done:
246 	if (skip == iov->iov_len) {
247 		iov++;
248 		skip = 0;
249 	}
250 	i->count -= wanted - bytes;
251 	i->nr_segs -= iov - i->iov;
252 	i->iov = iov;
253 	i->iov_offset = skip;
254 	return wanted - bytes;
255 }
256 
257 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
258 			 struct iov_iter *i)
259 {
260 	size_t skip, copy, left, wanted;
261 	const struct iovec *iov;
262 	char __user *buf;
263 	void *kaddr, *to;
264 
265 	if (unlikely(bytes > i->count))
266 		bytes = i->count;
267 
268 	if (unlikely(!bytes))
269 		return 0;
270 
271 	might_fault();
272 	wanted = bytes;
273 	iov = i->iov;
274 	skip = i->iov_offset;
275 	buf = iov->iov_base + skip;
276 	copy = min(bytes, iov->iov_len - skip);
277 
278 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_readable(buf, copy)) {
279 		kaddr = kmap_atomic(page);
280 		to = kaddr + offset;
281 
282 		/* first chunk, usually the only one */
283 		left = copyin(to, buf, copy);
284 		copy -= left;
285 		skip += copy;
286 		to += copy;
287 		bytes -= copy;
288 
289 		while (unlikely(!left && bytes)) {
290 			iov++;
291 			buf = iov->iov_base;
292 			copy = min(bytes, iov->iov_len);
293 			left = copyin(to, buf, copy);
294 			copy -= left;
295 			skip = copy;
296 			to += copy;
297 			bytes -= copy;
298 		}
299 		if (likely(!bytes)) {
300 			kunmap_atomic(kaddr);
301 			goto done;
302 		}
303 		offset = to - kaddr;
304 		buf += copy;
305 		kunmap_atomic(kaddr);
306 		copy = min(bytes, iov->iov_len - skip);
307 	}
308 	/* Too bad - revert to non-atomic kmap */
309 
310 	kaddr = kmap(page);
311 	to = kaddr + offset;
312 	left = copyin(to, buf, copy);
313 	copy -= left;
314 	skip += copy;
315 	to += copy;
316 	bytes -= copy;
317 	while (unlikely(!left && bytes)) {
318 		iov++;
319 		buf = iov->iov_base;
320 		copy = min(bytes, iov->iov_len);
321 		left = copyin(to, buf, copy);
322 		copy -= left;
323 		skip = copy;
324 		to += copy;
325 		bytes -= copy;
326 	}
327 	kunmap(page);
328 
329 done:
330 	if (skip == iov->iov_len) {
331 		iov++;
332 		skip = 0;
333 	}
334 	i->count -= wanted - bytes;
335 	i->nr_segs -= iov - i->iov;
336 	i->iov = iov;
337 	i->iov_offset = skip;
338 	return wanted - bytes;
339 }
340 
341 #ifdef PIPE_PARANOIA
342 static bool sanity(const struct iov_iter *i)
343 {
344 	struct pipe_inode_info *pipe = i->pipe;
345 	unsigned int p_head = pipe->head;
346 	unsigned int p_tail = pipe->tail;
347 	unsigned int p_mask = pipe->ring_size - 1;
348 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
349 	unsigned int i_head = i->head;
350 	unsigned int idx;
351 
352 	if (i->iov_offset) {
353 		struct pipe_buffer *p;
354 		if (unlikely(p_occupancy == 0))
355 			goto Bad;	// pipe must be non-empty
356 		if (unlikely(i_head != p_head - 1))
357 			goto Bad;	// must be at the last buffer...
358 
359 		p = &pipe->bufs[i_head & p_mask];
360 		if (unlikely(p->offset + p->len != i->iov_offset))
361 			goto Bad;	// ... at the end of segment
362 	} else {
363 		if (i_head != p_head)
364 			goto Bad;	// must be right after the last buffer
365 	}
366 	return true;
367 Bad:
368 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
369 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
370 			p_head, p_tail, pipe->ring_size);
371 	for (idx = 0; idx < pipe->ring_size; idx++)
372 		printk(KERN_ERR "[%p %p %d %d]\n",
373 			pipe->bufs[idx].ops,
374 			pipe->bufs[idx].page,
375 			pipe->bufs[idx].offset,
376 			pipe->bufs[idx].len);
377 	WARN_ON(1);
378 	return false;
379 }
380 #else
381 #define sanity(i) true
382 #endif
383 
384 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
385 			 struct iov_iter *i)
386 {
387 	struct pipe_inode_info *pipe = i->pipe;
388 	struct pipe_buffer *buf;
389 	unsigned int p_tail = pipe->tail;
390 	unsigned int p_mask = pipe->ring_size - 1;
391 	unsigned int i_head = i->head;
392 	size_t off;
393 
394 	if (unlikely(bytes > i->count))
395 		bytes = i->count;
396 
397 	if (unlikely(!bytes))
398 		return 0;
399 
400 	if (!sanity(i))
401 		return 0;
402 
403 	off = i->iov_offset;
404 	buf = &pipe->bufs[i_head & p_mask];
405 	if (off) {
406 		if (offset == off && buf->page == page) {
407 			/* merge with the last one */
408 			buf->len += bytes;
409 			i->iov_offset += bytes;
410 			goto out;
411 		}
412 		i_head++;
413 		buf = &pipe->bufs[i_head & p_mask];
414 	}
415 	if (pipe_full(i_head, p_tail, pipe->max_usage))
416 		return 0;
417 
418 	buf->ops = &page_cache_pipe_buf_ops;
419 	buf->flags = 0;
420 	get_page(page);
421 	buf->page = page;
422 	buf->offset = offset;
423 	buf->len = bytes;
424 
425 	pipe->head = i_head + 1;
426 	i->iov_offset = offset + bytes;
427 	i->head = i_head;
428 out:
429 	i->count -= bytes;
430 	return bytes;
431 }
432 
433 /*
434  * fault_in_iov_iter_readable - fault in iov iterator for reading
435  * @i: iterator
436  * @size: maximum length
437  *
438  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
439  * @size.  For each iovec, fault in each page that constitutes the iovec.
440  *
441  * Returns the number of bytes not faulted in (like copy_to_user() and
442  * copy_from_user()).
443  *
444  * Always returns 0 for non-userspace iterators.
445  */
446 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
447 {
448 	if (iter_is_iovec(i)) {
449 		size_t count = min(size, iov_iter_count(i));
450 		const struct iovec *p;
451 		size_t skip;
452 
453 		size -= count;
454 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
455 			size_t len = min(count, p->iov_len - skip);
456 			size_t ret;
457 
458 			if (unlikely(!len))
459 				continue;
460 			ret = fault_in_readable(p->iov_base + skip, len);
461 			count -= len - ret;
462 			if (ret)
463 				break;
464 		}
465 		return count + size;
466 	}
467 	return 0;
468 }
469 EXPORT_SYMBOL(fault_in_iov_iter_readable);
470 
471 /*
472  * fault_in_iov_iter_writeable - fault in iov iterator for writing
473  * @i: iterator
474  * @size: maximum length
475  *
476  * Faults in the iterator using get_user_pages(), i.e., without triggering
477  * hardware page faults.  This is primarily useful when we already know that
478  * some or all of the pages in @i aren't in memory.
479  *
480  * Returns the number of bytes not faulted in, like copy_to_user() and
481  * copy_from_user().
482  *
483  * Always returns 0 for non-user-space iterators.
484  */
485 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
486 {
487 	if (iter_is_iovec(i)) {
488 		size_t count = min(size, iov_iter_count(i));
489 		const struct iovec *p;
490 		size_t skip;
491 
492 		size -= count;
493 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
494 			size_t len = min(count, p->iov_len - skip);
495 			size_t ret;
496 
497 			if (unlikely(!len))
498 				continue;
499 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
500 			count -= len - ret;
501 			if (ret)
502 				break;
503 		}
504 		return count + size;
505 	}
506 	return 0;
507 }
508 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
509 
510 void iov_iter_init(struct iov_iter *i, unsigned int direction,
511 			const struct iovec *iov, unsigned long nr_segs,
512 			size_t count)
513 {
514 	WARN_ON(direction & ~(READ | WRITE));
515 	*i = (struct iov_iter) {
516 		.iter_type = ITER_IOVEC,
517 		.nofault = false,
518 		.data_source = direction,
519 		.iov = iov,
520 		.nr_segs = nr_segs,
521 		.iov_offset = 0,
522 		.count = count
523 	};
524 }
525 EXPORT_SYMBOL(iov_iter_init);
526 
527 static inline bool allocated(struct pipe_buffer *buf)
528 {
529 	return buf->ops == &default_pipe_buf_ops;
530 }
531 
532 static inline void data_start(const struct iov_iter *i,
533 			      unsigned int *iter_headp, size_t *offp)
534 {
535 	unsigned int p_mask = i->pipe->ring_size - 1;
536 	unsigned int iter_head = i->head;
537 	size_t off = i->iov_offset;
538 
539 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
540 		    off == PAGE_SIZE)) {
541 		iter_head++;
542 		off = 0;
543 	}
544 	*iter_headp = iter_head;
545 	*offp = off;
546 }
547 
548 static size_t push_pipe(struct iov_iter *i, size_t size,
549 			int *iter_headp, size_t *offp)
550 {
551 	struct pipe_inode_info *pipe = i->pipe;
552 	unsigned int p_tail = pipe->tail;
553 	unsigned int p_mask = pipe->ring_size - 1;
554 	unsigned int iter_head;
555 	size_t off;
556 	ssize_t left;
557 
558 	if (unlikely(size > i->count))
559 		size = i->count;
560 	if (unlikely(!size))
561 		return 0;
562 
563 	left = size;
564 	data_start(i, &iter_head, &off);
565 	*iter_headp = iter_head;
566 	*offp = off;
567 	if (off) {
568 		left -= PAGE_SIZE - off;
569 		if (left <= 0) {
570 			pipe->bufs[iter_head & p_mask].len += size;
571 			return size;
572 		}
573 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
574 		iter_head++;
575 	}
576 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
577 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
578 		struct page *page = alloc_page(GFP_USER);
579 		if (!page)
580 			break;
581 
582 		buf->ops = &default_pipe_buf_ops;
583 		buf->flags = 0;
584 		buf->page = page;
585 		buf->offset = 0;
586 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
587 		left -= buf->len;
588 		iter_head++;
589 		pipe->head = iter_head;
590 
591 		if (left == 0)
592 			return size;
593 	}
594 	return size - left;
595 }
596 
597 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
598 				struct iov_iter *i)
599 {
600 	struct pipe_inode_info *pipe = i->pipe;
601 	unsigned int p_mask = pipe->ring_size - 1;
602 	unsigned int i_head;
603 	size_t n, off;
604 
605 	if (!sanity(i))
606 		return 0;
607 
608 	bytes = n = push_pipe(i, bytes, &i_head, &off);
609 	if (unlikely(!n))
610 		return 0;
611 	do {
612 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
613 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
614 		i->head = i_head;
615 		i->iov_offset = off + chunk;
616 		n -= chunk;
617 		addr += chunk;
618 		off = 0;
619 		i_head++;
620 	} while (n);
621 	i->count -= bytes;
622 	return bytes;
623 }
624 
625 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
626 			      __wsum sum, size_t off)
627 {
628 	__wsum next = csum_partial_copy_nocheck(from, to, len);
629 	return csum_block_add(sum, next, off);
630 }
631 
632 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
633 					 struct iov_iter *i, __wsum *sump)
634 {
635 	struct pipe_inode_info *pipe = i->pipe;
636 	unsigned int p_mask = pipe->ring_size - 1;
637 	__wsum sum = *sump;
638 	size_t off = 0;
639 	unsigned int i_head;
640 	size_t r;
641 
642 	if (!sanity(i))
643 		return 0;
644 
645 	bytes = push_pipe(i, bytes, &i_head, &r);
646 	while (bytes) {
647 		size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
648 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
649 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
650 		kunmap_local(p);
651 		i->head = i_head;
652 		i->iov_offset = r + chunk;
653 		bytes -= chunk;
654 		off += chunk;
655 		r = 0;
656 		i_head++;
657 	}
658 	*sump = sum;
659 	i->count -= off;
660 	return off;
661 }
662 
663 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
664 {
665 	if (unlikely(iov_iter_is_pipe(i)))
666 		return copy_pipe_to_iter(addr, bytes, i);
667 	if (iter_is_iovec(i))
668 		might_fault();
669 	iterate_and_advance(i, bytes, base, len, off,
670 		copyout(base, addr + off, len),
671 		memcpy(base, addr + off, len)
672 	)
673 
674 	return bytes;
675 }
676 EXPORT_SYMBOL(_copy_to_iter);
677 
678 #ifdef CONFIG_ARCH_HAS_COPY_MC
679 static int copyout_mc(void __user *to, const void *from, size_t n)
680 {
681 	if (access_ok(to, n)) {
682 		instrument_copy_to_user(to, from, n);
683 		n = copy_mc_to_user((__force void *) to, from, n);
684 	}
685 	return n;
686 }
687 
688 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
689 				struct iov_iter *i)
690 {
691 	struct pipe_inode_info *pipe = i->pipe;
692 	unsigned int p_mask = pipe->ring_size - 1;
693 	unsigned int i_head;
694 	size_t n, off, xfer = 0;
695 
696 	if (!sanity(i))
697 		return 0;
698 
699 	n = push_pipe(i, bytes, &i_head, &off);
700 	while (n) {
701 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
702 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
703 		unsigned long rem;
704 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
705 		chunk -= rem;
706 		kunmap_local(p);
707 		i->head = i_head;
708 		i->iov_offset = off + chunk;
709 		xfer += chunk;
710 		if (rem)
711 			break;
712 		n -= chunk;
713 		off = 0;
714 		i_head++;
715 	}
716 	i->count -= xfer;
717 	return xfer;
718 }
719 
720 /**
721  * _copy_mc_to_iter - copy to iter with source memory error exception handling
722  * @addr: source kernel address
723  * @bytes: total transfer length
724  * @i: destination iterator
725  *
726  * The pmem driver deploys this for the dax operation
727  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
728  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
729  * successfully copied.
730  *
731  * The main differences between this and typical _copy_to_iter().
732  *
733  * * Typical tail/residue handling after a fault retries the copy
734  *   byte-by-byte until the fault happens again. Re-triggering machine
735  *   checks is potentially fatal so the implementation uses source
736  *   alignment and poison alignment assumptions to avoid re-triggering
737  *   hardware exceptions.
738  *
739  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
740  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
741  *   a short copy.
742  *
743  * Return: number of bytes copied (may be %0)
744  */
745 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
746 {
747 	if (unlikely(iov_iter_is_pipe(i)))
748 		return copy_mc_pipe_to_iter(addr, bytes, i);
749 	if (iter_is_iovec(i))
750 		might_fault();
751 	__iterate_and_advance(i, bytes, base, len, off,
752 		copyout_mc(base, addr + off, len),
753 		copy_mc_to_kernel(base, addr + off, len)
754 	)
755 
756 	return bytes;
757 }
758 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
759 #endif /* CONFIG_ARCH_HAS_COPY_MC */
760 
761 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
762 {
763 	if (unlikely(iov_iter_is_pipe(i))) {
764 		WARN_ON(1);
765 		return 0;
766 	}
767 	if (iter_is_iovec(i))
768 		might_fault();
769 	iterate_and_advance(i, bytes, base, len, off,
770 		copyin(addr + off, base, len),
771 		memcpy(addr + off, base, len)
772 	)
773 
774 	return bytes;
775 }
776 EXPORT_SYMBOL(_copy_from_iter);
777 
778 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
779 {
780 	if (unlikely(iov_iter_is_pipe(i))) {
781 		WARN_ON(1);
782 		return 0;
783 	}
784 	iterate_and_advance(i, bytes, base, len, off,
785 		__copy_from_user_inatomic_nocache(addr + off, base, len),
786 		memcpy(addr + off, base, len)
787 	)
788 
789 	return bytes;
790 }
791 EXPORT_SYMBOL(_copy_from_iter_nocache);
792 
793 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
794 /**
795  * _copy_from_iter_flushcache - write destination through cpu cache
796  * @addr: destination kernel address
797  * @bytes: total transfer length
798  * @i: source iterator
799  *
800  * The pmem driver arranges for filesystem-dax to use this facility via
801  * dax_copy_from_iter() for ensuring that writes to persistent memory
802  * are flushed through the CPU cache. It is differentiated from
803  * _copy_from_iter_nocache() in that guarantees all data is flushed for
804  * all iterator types. The _copy_from_iter_nocache() only attempts to
805  * bypass the cache for the ITER_IOVEC case, and on some archs may use
806  * instructions that strand dirty-data in the cache.
807  *
808  * Return: number of bytes copied (may be %0)
809  */
810 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
811 {
812 	if (unlikely(iov_iter_is_pipe(i))) {
813 		WARN_ON(1);
814 		return 0;
815 	}
816 	iterate_and_advance(i, bytes, base, len, off,
817 		__copy_from_user_flushcache(addr + off, base, len),
818 		memcpy_flushcache(addr + off, base, len)
819 	)
820 
821 	return bytes;
822 }
823 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
824 #endif
825 
826 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
827 {
828 	struct page *head;
829 	size_t v = n + offset;
830 
831 	/*
832 	 * The general case needs to access the page order in order
833 	 * to compute the page size.
834 	 * However, we mostly deal with order-0 pages and thus can
835 	 * avoid a possible cache line miss for requests that fit all
836 	 * page orders.
837 	 */
838 	if (n <= v && v <= PAGE_SIZE)
839 		return true;
840 
841 	head = compound_head(page);
842 	v += (page - head) << PAGE_SHIFT;
843 
844 	if (likely(n <= v && v <= (page_size(head))))
845 		return true;
846 	WARN_ON(1);
847 	return false;
848 }
849 
850 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
851 			 struct iov_iter *i)
852 {
853 	if (likely(iter_is_iovec(i)))
854 		return copy_page_to_iter_iovec(page, offset, bytes, i);
855 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
856 		void *kaddr = kmap_local_page(page);
857 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
858 		kunmap_local(kaddr);
859 		return wanted;
860 	}
861 	if (iov_iter_is_pipe(i))
862 		return copy_page_to_iter_pipe(page, offset, bytes, i);
863 	if (unlikely(iov_iter_is_discard(i))) {
864 		if (unlikely(i->count < bytes))
865 			bytes = i->count;
866 		i->count -= bytes;
867 		return bytes;
868 	}
869 	WARN_ON(1);
870 	return 0;
871 }
872 
873 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
874 			 struct iov_iter *i)
875 {
876 	size_t res = 0;
877 	if (unlikely(!page_copy_sane(page, offset, bytes)))
878 		return 0;
879 	page += offset / PAGE_SIZE; // first subpage
880 	offset %= PAGE_SIZE;
881 	while (1) {
882 		size_t n = __copy_page_to_iter(page, offset,
883 				min(bytes, (size_t)PAGE_SIZE - offset), i);
884 		res += n;
885 		bytes -= n;
886 		if (!bytes || !n)
887 			break;
888 		offset += n;
889 		if (offset == PAGE_SIZE) {
890 			page++;
891 			offset = 0;
892 		}
893 	}
894 	return res;
895 }
896 EXPORT_SYMBOL(copy_page_to_iter);
897 
898 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
899 			 struct iov_iter *i)
900 {
901 	if (unlikely(!page_copy_sane(page, offset, bytes)))
902 		return 0;
903 	if (likely(iter_is_iovec(i)))
904 		return copy_page_from_iter_iovec(page, offset, bytes, i);
905 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
906 		void *kaddr = kmap_local_page(page);
907 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
908 		kunmap_local(kaddr);
909 		return wanted;
910 	}
911 	WARN_ON(1);
912 	return 0;
913 }
914 EXPORT_SYMBOL(copy_page_from_iter);
915 
916 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
917 {
918 	struct pipe_inode_info *pipe = i->pipe;
919 	unsigned int p_mask = pipe->ring_size - 1;
920 	unsigned int i_head;
921 	size_t n, off;
922 
923 	if (!sanity(i))
924 		return 0;
925 
926 	bytes = n = push_pipe(i, bytes, &i_head, &off);
927 	if (unlikely(!n))
928 		return 0;
929 
930 	do {
931 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
932 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
933 		memset(p + off, 0, chunk);
934 		kunmap_local(p);
935 		i->head = i_head;
936 		i->iov_offset = off + chunk;
937 		n -= chunk;
938 		off = 0;
939 		i_head++;
940 	} while (n);
941 	i->count -= bytes;
942 	return bytes;
943 }
944 
945 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
946 {
947 	if (unlikely(iov_iter_is_pipe(i)))
948 		return pipe_zero(bytes, i);
949 	iterate_and_advance(i, bytes, base, len, count,
950 		clear_user(base, len),
951 		memset(base, 0, len)
952 	)
953 
954 	return bytes;
955 }
956 EXPORT_SYMBOL(iov_iter_zero);
957 
958 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
959 				  struct iov_iter *i)
960 {
961 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
962 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
963 		kunmap_atomic(kaddr);
964 		return 0;
965 	}
966 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
967 		kunmap_atomic(kaddr);
968 		WARN_ON(1);
969 		return 0;
970 	}
971 	iterate_and_advance(i, bytes, base, len, off,
972 		copyin(p + off, base, len),
973 		memcpy(p + off, base, len)
974 	)
975 	kunmap_atomic(kaddr);
976 	return bytes;
977 }
978 EXPORT_SYMBOL(copy_page_from_iter_atomic);
979 
980 static inline void pipe_truncate(struct iov_iter *i)
981 {
982 	struct pipe_inode_info *pipe = i->pipe;
983 	unsigned int p_tail = pipe->tail;
984 	unsigned int p_head = pipe->head;
985 	unsigned int p_mask = pipe->ring_size - 1;
986 
987 	if (!pipe_empty(p_head, p_tail)) {
988 		struct pipe_buffer *buf;
989 		unsigned int i_head = i->head;
990 		size_t off = i->iov_offset;
991 
992 		if (off) {
993 			buf = &pipe->bufs[i_head & p_mask];
994 			buf->len = off - buf->offset;
995 			i_head++;
996 		}
997 		while (p_head != i_head) {
998 			p_head--;
999 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1000 		}
1001 
1002 		pipe->head = p_head;
1003 	}
1004 }
1005 
1006 static void pipe_advance(struct iov_iter *i, size_t size)
1007 {
1008 	struct pipe_inode_info *pipe = i->pipe;
1009 	if (size) {
1010 		struct pipe_buffer *buf;
1011 		unsigned int p_mask = pipe->ring_size - 1;
1012 		unsigned int i_head = i->head;
1013 		size_t off = i->iov_offset, left = size;
1014 
1015 		if (off) /* make it relative to the beginning of buffer */
1016 			left += off - pipe->bufs[i_head & p_mask].offset;
1017 		while (1) {
1018 			buf = &pipe->bufs[i_head & p_mask];
1019 			if (left <= buf->len)
1020 				break;
1021 			left -= buf->len;
1022 			i_head++;
1023 		}
1024 		i->head = i_head;
1025 		i->iov_offset = buf->offset + left;
1026 	}
1027 	i->count -= size;
1028 	/* ... and discard everything past that point */
1029 	pipe_truncate(i);
1030 }
1031 
1032 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
1033 {
1034 	struct bvec_iter bi;
1035 
1036 	bi.bi_size = i->count;
1037 	bi.bi_bvec_done = i->iov_offset;
1038 	bi.bi_idx = 0;
1039 	bvec_iter_advance(i->bvec, &bi, size);
1040 
1041 	i->bvec += bi.bi_idx;
1042 	i->nr_segs -= bi.bi_idx;
1043 	i->count = bi.bi_size;
1044 	i->iov_offset = bi.bi_bvec_done;
1045 }
1046 
1047 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
1048 {
1049 	const struct iovec *iov, *end;
1050 
1051 	if (!i->count)
1052 		return;
1053 	i->count -= size;
1054 
1055 	size += i->iov_offset; // from beginning of current segment
1056 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1057 		if (likely(size < iov->iov_len))
1058 			break;
1059 		size -= iov->iov_len;
1060 	}
1061 	i->iov_offset = size;
1062 	i->nr_segs -= iov - i->iov;
1063 	i->iov = iov;
1064 }
1065 
1066 void iov_iter_advance(struct iov_iter *i, size_t size)
1067 {
1068 	if (unlikely(i->count < size))
1069 		size = i->count;
1070 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1071 		/* iovec and kvec have identical layouts */
1072 		iov_iter_iovec_advance(i, size);
1073 	} else if (iov_iter_is_bvec(i)) {
1074 		iov_iter_bvec_advance(i, size);
1075 	} else if (iov_iter_is_pipe(i)) {
1076 		pipe_advance(i, size);
1077 	} else if (unlikely(iov_iter_is_xarray(i))) {
1078 		i->iov_offset += size;
1079 		i->count -= size;
1080 	} else if (iov_iter_is_discard(i)) {
1081 		i->count -= size;
1082 	}
1083 }
1084 EXPORT_SYMBOL(iov_iter_advance);
1085 
1086 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1087 {
1088 	if (!unroll)
1089 		return;
1090 	if (WARN_ON(unroll > MAX_RW_COUNT))
1091 		return;
1092 	i->count += unroll;
1093 	if (unlikely(iov_iter_is_pipe(i))) {
1094 		struct pipe_inode_info *pipe = i->pipe;
1095 		unsigned int p_mask = pipe->ring_size - 1;
1096 		unsigned int i_head = i->head;
1097 		size_t off = i->iov_offset;
1098 		while (1) {
1099 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1100 			size_t n = off - b->offset;
1101 			if (unroll < n) {
1102 				off -= unroll;
1103 				break;
1104 			}
1105 			unroll -= n;
1106 			if (!unroll && i_head == i->start_head) {
1107 				off = 0;
1108 				break;
1109 			}
1110 			i_head--;
1111 			b = &pipe->bufs[i_head & p_mask];
1112 			off = b->offset + b->len;
1113 		}
1114 		i->iov_offset = off;
1115 		i->head = i_head;
1116 		pipe_truncate(i);
1117 		return;
1118 	}
1119 	if (unlikely(iov_iter_is_discard(i)))
1120 		return;
1121 	if (unroll <= i->iov_offset) {
1122 		i->iov_offset -= unroll;
1123 		return;
1124 	}
1125 	unroll -= i->iov_offset;
1126 	if (iov_iter_is_xarray(i)) {
1127 		BUG(); /* We should never go beyond the start of the specified
1128 			* range since we might then be straying into pages that
1129 			* aren't pinned.
1130 			*/
1131 	} else if (iov_iter_is_bvec(i)) {
1132 		const struct bio_vec *bvec = i->bvec;
1133 		while (1) {
1134 			size_t n = (--bvec)->bv_len;
1135 			i->nr_segs++;
1136 			if (unroll <= n) {
1137 				i->bvec = bvec;
1138 				i->iov_offset = n - unroll;
1139 				return;
1140 			}
1141 			unroll -= n;
1142 		}
1143 	} else { /* same logics for iovec and kvec */
1144 		const struct iovec *iov = i->iov;
1145 		while (1) {
1146 			size_t n = (--iov)->iov_len;
1147 			i->nr_segs++;
1148 			if (unroll <= n) {
1149 				i->iov = iov;
1150 				i->iov_offset = n - unroll;
1151 				return;
1152 			}
1153 			unroll -= n;
1154 		}
1155 	}
1156 }
1157 EXPORT_SYMBOL(iov_iter_revert);
1158 
1159 /*
1160  * Return the count of just the current iov_iter segment.
1161  */
1162 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1163 {
1164 	if (i->nr_segs > 1) {
1165 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1166 			return min(i->count, i->iov->iov_len - i->iov_offset);
1167 		if (iov_iter_is_bvec(i))
1168 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1169 	}
1170 	return i->count;
1171 }
1172 EXPORT_SYMBOL(iov_iter_single_seg_count);
1173 
1174 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1175 			const struct kvec *kvec, unsigned long nr_segs,
1176 			size_t count)
1177 {
1178 	WARN_ON(direction & ~(READ | WRITE));
1179 	*i = (struct iov_iter){
1180 		.iter_type = ITER_KVEC,
1181 		.data_source = direction,
1182 		.kvec = kvec,
1183 		.nr_segs = nr_segs,
1184 		.iov_offset = 0,
1185 		.count = count
1186 	};
1187 }
1188 EXPORT_SYMBOL(iov_iter_kvec);
1189 
1190 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1191 			const struct bio_vec *bvec, unsigned long nr_segs,
1192 			size_t count)
1193 {
1194 	WARN_ON(direction & ~(READ | WRITE));
1195 	*i = (struct iov_iter){
1196 		.iter_type = ITER_BVEC,
1197 		.data_source = direction,
1198 		.bvec = bvec,
1199 		.nr_segs = nr_segs,
1200 		.iov_offset = 0,
1201 		.count = count
1202 	};
1203 }
1204 EXPORT_SYMBOL(iov_iter_bvec);
1205 
1206 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1207 			struct pipe_inode_info *pipe,
1208 			size_t count)
1209 {
1210 	BUG_ON(direction != READ);
1211 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1212 	*i = (struct iov_iter){
1213 		.iter_type = ITER_PIPE,
1214 		.data_source = false,
1215 		.pipe = pipe,
1216 		.head = pipe->head,
1217 		.start_head = pipe->head,
1218 		.iov_offset = 0,
1219 		.count = count
1220 	};
1221 }
1222 EXPORT_SYMBOL(iov_iter_pipe);
1223 
1224 /**
1225  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1226  * @i: The iterator to initialise.
1227  * @direction: The direction of the transfer.
1228  * @xarray: The xarray to access.
1229  * @start: The start file position.
1230  * @count: The size of the I/O buffer in bytes.
1231  *
1232  * Set up an I/O iterator to either draw data out of the pages attached to an
1233  * inode or to inject data into those pages.  The pages *must* be prevented
1234  * from evaporation, either by taking a ref on them or locking them by the
1235  * caller.
1236  */
1237 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1238 		     struct xarray *xarray, loff_t start, size_t count)
1239 {
1240 	BUG_ON(direction & ~1);
1241 	*i = (struct iov_iter) {
1242 		.iter_type = ITER_XARRAY,
1243 		.data_source = direction,
1244 		.xarray = xarray,
1245 		.xarray_start = start,
1246 		.count = count,
1247 		.iov_offset = 0
1248 	};
1249 }
1250 EXPORT_SYMBOL(iov_iter_xarray);
1251 
1252 /**
1253  * iov_iter_discard - Initialise an I/O iterator that discards data
1254  * @i: The iterator to initialise.
1255  * @direction: The direction of the transfer.
1256  * @count: The size of the I/O buffer in bytes.
1257  *
1258  * Set up an I/O iterator that just discards everything that's written to it.
1259  * It's only available as a READ iterator.
1260  */
1261 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1262 {
1263 	BUG_ON(direction != READ);
1264 	*i = (struct iov_iter){
1265 		.iter_type = ITER_DISCARD,
1266 		.data_source = false,
1267 		.count = count,
1268 		.iov_offset = 0
1269 	};
1270 }
1271 EXPORT_SYMBOL(iov_iter_discard);
1272 
1273 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1274 {
1275 	unsigned long res = 0;
1276 	size_t size = i->count;
1277 	size_t skip = i->iov_offset;
1278 	unsigned k;
1279 
1280 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1281 		size_t len = i->iov[k].iov_len - skip;
1282 		if (len) {
1283 			res |= (unsigned long)i->iov[k].iov_base + skip;
1284 			if (len > size)
1285 				len = size;
1286 			res |= len;
1287 			size -= len;
1288 			if (!size)
1289 				break;
1290 		}
1291 	}
1292 	return res;
1293 }
1294 
1295 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1296 {
1297 	unsigned res = 0;
1298 	size_t size = i->count;
1299 	unsigned skip = i->iov_offset;
1300 	unsigned k;
1301 
1302 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1303 		size_t len = i->bvec[k].bv_len - skip;
1304 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1305 		if (len > size)
1306 			len = size;
1307 		res |= len;
1308 		size -= len;
1309 		if (!size)
1310 			break;
1311 	}
1312 	return res;
1313 }
1314 
1315 unsigned long iov_iter_alignment(const struct iov_iter *i)
1316 {
1317 	/* iovec and kvec have identical layouts */
1318 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1319 		return iov_iter_alignment_iovec(i);
1320 
1321 	if (iov_iter_is_bvec(i))
1322 		return iov_iter_alignment_bvec(i);
1323 
1324 	if (iov_iter_is_pipe(i)) {
1325 		unsigned int p_mask = i->pipe->ring_size - 1;
1326 		size_t size = i->count;
1327 
1328 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1329 			return size | i->iov_offset;
1330 		return size;
1331 	}
1332 
1333 	if (iov_iter_is_xarray(i))
1334 		return (i->xarray_start + i->iov_offset) | i->count;
1335 
1336 	return 0;
1337 }
1338 EXPORT_SYMBOL(iov_iter_alignment);
1339 
1340 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1341 {
1342 	unsigned long res = 0;
1343 	unsigned long v = 0;
1344 	size_t size = i->count;
1345 	unsigned k;
1346 
1347 	if (WARN_ON(!iter_is_iovec(i)))
1348 		return ~0U;
1349 
1350 	for (k = 0; k < i->nr_segs; k++) {
1351 		if (i->iov[k].iov_len) {
1352 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1353 			if (v) // if not the first one
1354 				res |= base | v; // this start | previous end
1355 			v = base + i->iov[k].iov_len;
1356 			if (size <= i->iov[k].iov_len)
1357 				break;
1358 			size -= i->iov[k].iov_len;
1359 		}
1360 	}
1361 	return res;
1362 }
1363 EXPORT_SYMBOL(iov_iter_gap_alignment);
1364 
1365 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1366 				size_t maxsize,
1367 				struct page **pages,
1368 				int iter_head,
1369 				size_t *start)
1370 {
1371 	struct pipe_inode_info *pipe = i->pipe;
1372 	unsigned int p_mask = pipe->ring_size - 1;
1373 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1374 	if (!n)
1375 		return -EFAULT;
1376 
1377 	maxsize = n;
1378 	n += *start;
1379 	while (n > 0) {
1380 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1381 		iter_head++;
1382 		n -= PAGE_SIZE;
1383 	}
1384 
1385 	return maxsize;
1386 }
1387 
1388 static ssize_t pipe_get_pages(struct iov_iter *i,
1389 		   struct page **pages, size_t maxsize, unsigned maxpages,
1390 		   size_t *start)
1391 {
1392 	unsigned int iter_head, npages;
1393 	size_t capacity;
1394 
1395 	if (!sanity(i))
1396 		return -EFAULT;
1397 
1398 	data_start(i, &iter_head, start);
1399 	/* Amount of free space: some of this one + all after this one */
1400 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1401 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1402 
1403 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1404 }
1405 
1406 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1407 					  pgoff_t index, unsigned int nr_pages)
1408 {
1409 	XA_STATE(xas, xa, index);
1410 	struct page *page;
1411 	unsigned int ret = 0;
1412 
1413 	rcu_read_lock();
1414 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1415 		if (xas_retry(&xas, page))
1416 			continue;
1417 
1418 		/* Has the page moved or been split? */
1419 		if (unlikely(page != xas_reload(&xas))) {
1420 			xas_reset(&xas);
1421 			continue;
1422 		}
1423 
1424 		pages[ret] = find_subpage(page, xas.xa_index);
1425 		get_page(pages[ret]);
1426 		if (++ret == nr_pages)
1427 			break;
1428 	}
1429 	rcu_read_unlock();
1430 	return ret;
1431 }
1432 
1433 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1434 				     struct page **pages, size_t maxsize,
1435 				     unsigned maxpages, size_t *_start_offset)
1436 {
1437 	unsigned nr, offset;
1438 	pgoff_t index, count;
1439 	size_t size = maxsize;
1440 	loff_t pos;
1441 
1442 	if (!size || !maxpages)
1443 		return 0;
1444 
1445 	pos = i->xarray_start + i->iov_offset;
1446 	index = pos >> PAGE_SHIFT;
1447 	offset = pos & ~PAGE_MASK;
1448 	*_start_offset = offset;
1449 
1450 	count = 1;
1451 	if (size > PAGE_SIZE - offset) {
1452 		size -= PAGE_SIZE - offset;
1453 		count += size >> PAGE_SHIFT;
1454 		size &= ~PAGE_MASK;
1455 		if (size)
1456 			count++;
1457 	}
1458 
1459 	if (count > maxpages)
1460 		count = maxpages;
1461 
1462 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1463 	if (nr == 0)
1464 		return 0;
1465 
1466 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1467 }
1468 
1469 /* must be done on non-empty ITER_IOVEC one */
1470 static unsigned long first_iovec_segment(const struct iov_iter *i,
1471 					 size_t *size, size_t *start,
1472 					 size_t maxsize, unsigned maxpages)
1473 {
1474 	size_t skip;
1475 	long k;
1476 
1477 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1478 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1479 		size_t len = i->iov[k].iov_len - skip;
1480 
1481 		if (unlikely(!len))
1482 			continue;
1483 		if (len > maxsize)
1484 			len = maxsize;
1485 		len += (*start = addr % PAGE_SIZE);
1486 		if (len > maxpages * PAGE_SIZE)
1487 			len = maxpages * PAGE_SIZE;
1488 		*size = len;
1489 		return addr & PAGE_MASK;
1490 	}
1491 	BUG(); // if it had been empty, we wouldn't get called
1492 }
1493 
1494 /* must be done on non-empty ITER_BVEC one */
1495 static struct page *first_bvec_segment(const struct iov_iter *i,
1496 				       size_t *size, size_t *start,
1497 				       size_t maxsize, unsigned maxpages)
1498 {
1499 	struct page *page;
1500 	size_t skip = i->iov_offset, len;
1501 
1502 	len = i->bvec->bv_len - skip;
1503 	if (len > maxsize)
1504 		len = maxsize;
1505 	skip += i->bvec->bv_offset;
1506 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1507 	len += (*start = skip % PAGE_SIZE);
1508 	if (len > maxpages * PAGE_SIZE)
1509 		len = maxpages * PAGE_SIZE;
1510 	*size = len;
1511 	return page;
1512 }
1513 
1514 ssize_t iov_iter_get_pages(struct iov_iter *i,
1515 		   struct page **pages, size_t maxsize, unsigned maxpages,
1516 		   size_t *start)
1517 {
1518 	size_t len;
1519 	int n, res;
1520 
1521 	if (maxsize > i->count)
1522 		maxsize = i->count;
1523 	if (!maxsize)
1524 		return 0;
1525 
1526 	if (likely(iter_is_iovec(i))) {
1527 		unsigned int gup_flags = 0;
1528 		unsigned long addr;
1529 
1530 		if (iov_iter_rw(i) != WRITE)
1531 			gup_flags |= FOLL_WRITE;
1532 		if (i->nofault)
1533 			gup_flags |= FOLL_NOFAULT;
1534 
1535 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1536 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1537 		res = get_user_pages_fast(addr, n, gup_flags, pages);
1538 		if (unlikely(res <= 0))
1539 			return res;
1540 		return (res == n ? len : res * PAGE_SIZE) - *start;
1541 	}
1542 	if (iov_iter_is_bvec(i)) {
1543 		struct page *page;
1544 
1545 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1546 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1547 		while (n--)
1548 			get_page(*pages++ = page++);
1549 		return len - *start;
1550 	}
1551 	if (iov_iter_is_pipe(i))
1552 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1553 	if (iov_iter_is_xarray(i))
1554 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1555 	return -EFAULT;
1556 }
1557 EXPORT_SYMBOL(iov_iter_get_pages);
1558 
1559 static struct page **get_pages_array(size_t n)
1560 {
1561 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1562 }
1563 
1564 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1565 		   struct page ***pages, size_t maxsize,
1566 		   size_t *start)
1567 {
1568 	struct page **p;
1569 	unsigned int iter_head, npages;
1570 	ssize_t n;
1571 
1572 	if (!sanity(i))
1573 		return -EFAULT;
1574 
1575 	data_start(i, &iter_head, start);
1576 	/* Amount of free space: some of this one + all after this one */
1577 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1578 	n = npages * PAGE_SIZE - *start;
1579 	if (maxsize > n)
1580 		maxsize = n;
1581 	else
1582 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1583 	p = get_pages_array(npages);
1584 	if (!p)
1585 		return -ENOMEM;
1586 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1587 	if (n > 0)
1588 		*pages = p;
1589 	else
1590 		kvfree(p);
1591 	return n;
1592 }
1593 
1594 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1595 					   struct page ***pages, size_t maxsize,
1596 					   size_t *_start_offset)
1597 {
1598 	struct page **p;
1599 	unsigned nr, offset;
1600 	pgoff_t index, count;
1601 	size_t size = maxsize;
1602 	loff_t pos;
1603 
1604 	if (!size)
1605 		return 0;
1606 
1607 	pos = i->xarray_start + i->iov_offset;
1608 	index = pos >> PAGE_SHIFT;
1609 	offset = pos & ~PAGE_MASK;
1610 	*_start_offset = offset;
1611 
1612 	count = 1;
1613 	if (size > PAGE_SIZE - offset) {
1614 		size -= PAGE_SIZE - offset;
1615 		count += size >> PAGE_SHIFT;
1616 		size &= ~PAGE_MASK;
1617 		if (size)
1618 			count++;
1619 	}
1620 
1621 	p = get_pages_array(count);
1622 	if (!p)
1623 		return -ENOMEM;
1624 	*pages = p;
1625 
1626 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1627 	if (nr == 0)
1628 		return 0;
1629 
1630 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1631 }
1632 
1633 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1634 		   struct page ***pages, size_t maxsize,
1635 		   size_t *start)
1636 {
1637 	struct page **p;
1638 	size_t len;
1639 	int n, res;
1640 
1641 	if (maxsize > i->count)
1642 		maxsize = i->count;
1643 	if (!maxsize)
1644 		return 0;
1645 
1646 	if (likely(iter_is_iovec(i))) {
1647 		unsigned int gup_flags = 0;
1648 		unsigned long addr;
1649 
1650 		if (iov_iter_rw(i) != WRITE)
1651 			gup_flags |= FOLL_WRITE;
1652 		if (i->nofault)
1653 			gup_flags |= FOLL_NOFAULT;
1654 
1655 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1656 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1657 		p = get_pages_array(n);
1658 		if (!p)
1659 			return -ENOMEM;
1660 		res = get_user_pages_fast(addr, n, gup_flags, p);
1661 		if (unlikely(res <= 0)) {
1662 			kvfree(p);
1663 			*pages = NULL;
1664 			return res;
1665 		}
1666 		*pages = p;
1667 		return (res == n ? len : res * PAGE_SIZE) - *start;
1668 	}
1669 	if (iov_iter_is_bvec(i)) {
1670 		struct page *page;
1671 
1672 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1673 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1674 		*pages = p = get_pages_array(n);
1675 		if (!p)
1676 			return -ENOMEM;
1677 		while (n--)
1678 			get_page(*p++ = page++);
1679 		return len - *start;
1680 	}
1681 	if (iov_iter_is_pipe(i))
1682 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1683 	if (iov_iter_is_xarray(i))
1684 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1685 	return -EFAULT;
1686 }
1687 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1688 
1689 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1690 			       struct iov_iter *i)
1691 {
1692 	__wsum sum, next;
1693 	sum = *csum;
1694 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1695 		WARN_ON(1);
1696 		return 0;
1697 	}
1698 	iterate_and_advance(i, bytes, base, len, off, ({
1699 		next = csum_and_copy_from_user(base, addr + off, len);
1700 		sum = csum_block_add(sum, next, off);
1701 		next ? 0 : len;
1702 	}), ({
1703 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1704 	})
1705 	)
1706 	*csum = sum;
1707 	return bytes;
1708 }
1709 EXPORT_SYMBOL(csum_and_copy_from_iter);
1710 
1711 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1712 			     struct iov_iter *i)
1713 {
1714 	struct csum_state *csstate = _csstate;
1715 	__wsum sum, next;
1716 
1717 	if (unlikely(iov_iter_is_discard(i))) {
1718 		WARN_ON(1);	/* for now */
1719 		return 0;
1720 	}
1721 
1722 	sum = csum_shift(csstate->csum, csstate->off);
1723 	if (unlikely(iov_iter_is_pipe(i)))
1724 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1725 	else iterate_and_advance(i, bytes, base, len, off, ({
1726 		next = csum_and_copy_to_user(addr + off, base, len);
1727 		sum = csum_block_add(sum, next, off);
1728 		next ? 0 : len;
1729 	}), ({
1730 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1731 	})
1732 	)
1733 	csstate->csum = csum_shift(sum, csstate->off);
1734 	csstate->off += bytes;
1735 	return bytes;
1736 }
1737 EXPORT_SYMBOL(csum_and_copy_to_iter);
1738 
1739 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1740 		struct iov_iter *i)
1741 {
1742 #ifdef CONFIG_CRYPTO_HASH
1743 	struct ahash_request *hash = hashp;
1744 	struct scatterlist sg;
1745 	size_t copied;
1746 
1747 	copied = copy_to_iter(addr, bytes, i);
1748 	sg_init_one(&sg, addr, copied);
1749 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1750 	crypto_ahash_update(hash);
1751 	return copied;
1752 #else
1753 	return 0;
1754 #endif
1755 }
1756 EXPORT_SYMBOL(hash_and_copy_to_iter);
1757 
1758 static int iov_npages(const struct iov_iter *i, int maxpages)
1759 {
1760 	size_t skip = i->iov_offset, size = i->count;
1761 	const struct iovec *p;
1762 	int npages = 0;
1763 
1764 	for (p = i->iov; size; skip = 0, p++) {
1765 		unsigned offs = offset_in_page(p->iov_base + skip);
1766 		size_t len = min(p->iov_len - skip, size);
1767 
1768 		if (len) {
1769 			size -= len;
1770 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1771 			if (unlikely(npages > maxpages))
1772 				return maxpages;
1773 		}
1774 	}
1775 	return npages;
1776 }
1777 
1778 static int bvec_npages(const struct iov_iter *i, int maxpages)
1779 {
1780 	size_t skip = i->iov_offset, size = i->count;
1781 	const struct bio_vec *p;
1782 	int npages = 0;
1783 
1784 	for (p = i->bvec; size; skip = 0, p++) {
1785 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1786 		size_t len = min(p->bv_len - skip, size);
1787 
1788 		size -= len;
1789 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1790 		if (unlikely(npages > maxpages))
1791 			return maxpages;
1792 	}
1793 	return npages;
1794 }
1795 
1796 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1797 {
1798 	if (unlikely(!i->count))
1799 		return 0;
1800 	/* iovec and kvec have identical layouts */
1801 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1802 		return iov_npages(i, maxpages);
1803 	if (iov_iter_is_bvec(i))
1804 		return bvec_npages(i, maxpages);
1805 	if (iov_iter_is_pipe(i)) {
1806 		unsigned int iter_head;
1807 		int npages;
1808 		size_t off;
1809 
1810 		if (!sanity(i))
1811 			return 0;
1812 
1813 		data_start(i, &iter_head, &off);
1814 		/* some of this one + all after this one */
1815 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1816 		return min(npages, maxpages);
1817 	}
1818 	if (iov_iter_is_xarray(i)) {
1819 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1820 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1821 		return min(npages, maxpages);
1822 	}
1823 	return 0;
1824 }
1825 EXPORT_SYMBOL(iov_iter_npages);
1826 
1827 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1828 {
1829 	*new = *old;
1830 	if (unlikely(iov_iter_is_pipe(new))) {
1831 		WARN_ON(1);
1832 		return NULL;
1833 	}
1834 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1835 		return NULL;
1836 	if (iov_iter_is_bvec(new))
1837 		return new->bvec = kmemdup(new->bvec,
1838 				    new->nr_segs * sizeof(struct bio_vec),
1839 				    flags);
1840 	else
1841 		/* iovec and kvec have identical layout */
1842 		return new->iov = kmemdup(new->iov,
1843 				   new->nr_segs * sizeof(struct iovec),
1844 				   flags);
1845 }
1846 EXPORT_SYMBOL(dup_iter);
1847 
1848 static int copy_compat_iovec_from_user(struct iovec *iov,
1849 		const struct iovec __user *uvec, unsigned long nr_segs)
1850 {
1851 	const struct compat_iovec __user *uiov =
1852 		(const struct compat_iovec __user *)uvec;
1853 	int ret = -EFAULT, i;
1854 
1855 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1856 		return -EFAULT;
1857 
1858 	for (i = 0; i < nr_segs; i++) {
1859 		compat_uptr_t buf;
1860 		compat_ssize_t len;
1861 
1862 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1863 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1864 
1865 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1866 		if (len < 0) {
1867 			ret = -EINVAL;
1868 			goto uaccess_end;
1869 		}
1870 		iov[i].iov_base = compat_ptr(buf);
1871 		iov[i].iov_len = len;
1872 	}
1873 
1874 	ret = 0;
1875 uaccess_end:
1876 	user_access_end();
1877 	return ret;
1878 }
1879 
1880 static int copy_iovec_from_user(struct iovec *iov,
1881 		const struct iovec __user *uvec, unsigned long nr_segs)
1882 {
1883 	unsigned long seg;
1884 
1885 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1886 		return -EFAULT;
1887 	for (seg = 0; seg < nr_segs; seg++) {
1888 		if ((ssize_t)iov[seg].iov_len < 0)
1889 			return -EINVAL;
1890 	}
1891 
1892 	return 0;
1893 }
1894 
1895 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1896 		unsigned long nr_segs, unsigned long fast_segs,
1897 		struct iovec *fast_iov, bool compat)
1898 {
1899 	struct iovec *iov = fast_iov;
1900 	int ret;
1901 
1902 	/*
1903 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1904 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1905 	 * traditionally returned zero for zero segments, so...
1906 	 */
1907 	if (nr_segs == 0)
1908 		return iov;
1909 	if (nr_segs > UIO_MAXIOV)
1910 		return ERR_PTR(-EINVAL);
1911 	if (nr_segs > fast_segs) {
1912 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1913 		if (!iov)
1914 			return ERR_PTR(-ENOMEM);
1915 	}
1916 
1917 	if (compat)
1918 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1919 	else
1920 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1921 	if (ret) {
1922 		if (iov != fast_iov)
1923 			kfree(iov);
1924 		return ERR_PTR(ret);
1925 	}
1926 
1927 	return iov;
1928 }
1929 
1930 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1931 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1932 		 struct iov_iter *i, bool compat)
1933 {
1934 	ssize_t total_len = 0;
1935 	unsigned long seg;
1936 	struct iovec *iov;
1937 
1938 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1939 	if (IS_ERR(iov)) {
1940 		*iovp = NULL;
1941 		return PTR_ERR(iov);
1942 	}
1943 
1944 	/*
1945 	 * According to the Single Unix Specification we should return EINVAL if
1946 	 * an element length is < 0 when cast to ssize_t or if the total length
1947 	 * would overflow the ssize_t return value of the system call.
1948 	 *
1949 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1950 	 * overflow case.
1951 	 */
1952 	for (seg = 0; seg < nr_segs; seg++) {
1953 		ssize_t len = (ssize_t)iov[seg].iov_len;
1954 
1955 		if (!access_ok(iov[seg].iov_base, len)) {
1956 			if (iov != *iovp)
1957 				kfree(iov);
1958 			*iovp = NULL;
1959 			return -EFAULT;
1960 		}
1961 
1962 		if (len > MAX_RW_COUNT - total_len) {
1963 			len = MAX_RW_COUNT - total_len;
1964 			iov[seg].iov_len = len;
1965 		}
1966 		total_len += len;
1967 	}
1968 
1969 	iov_iter_init(i, type, iov, nr_segs, total_len);
1970 	if (iov == *iovp)
1971 		*iovp = NULL;
1972 	else
1973 		*iovp = iov;
1974 	return total_len;
1975 }
1976 
1977 /**
1978  * import_iovec() - Copy an array of &struct iovec from userspace
1979  *     into the kernel, check that it is valid, and initialize a new
1980  *     &struct iov_iter iterator to access it.
1981  *
1982  * @type: One of %READ or %WRITE.
1983  * @uvec: Pointer to the userspace array.
1984  * @nr_segs: Number of elements in userspace array.
1985  * @fast_segs: Number of elements in @iov.
1986  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1987  *     on-stack) kernel array.
1988  * @i: Pointer to iterator that will be initialized on success.
1989  *
1990  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1991  * then this function places %NULL in *@iov on return. Otherwise, a new
1992  * array will be allocated and the result placed in *@iov. This means that
1993  * the caller may call kfree() on *@iov regardless of whether the small
1994  * on-stack array was used or not (and regardless of whether this function
1995  * returns an error or not).
1996  *
1997  * Return: Negative error code on error, bytes imported on success
1998  */
1999 ssize_t import_iovec(int type, const struct iovec __user *uvec,
2000 		 unsigned nr_segs, unsigned fast_segs,
2001 		 struct iovec **iovp, struct iov_iter *i)
2002 {
2003 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
2004 			      in_compat_syscall());
2005 }
2006 EXPORT_SYMBOL(import_iovec);
2007 
2008 int import_single_range(int rw, void __user *buf, size_t len,
2009 		 struct iovec *iov, struct iov_iter *i)
2010 {
2011 	if (len > MAX_RW_COUNT)
2012 		len = MAX_RW_COUNT;
2013 	if (unlikely(!access_ok(buf, len)))
2014 		return -EFAULT;
2015 
2016 	iov->iov_base = buf;
2017 	iov->iov_len = len;
2018 	iov_iter_init(i, rw, iov, 1, len);
2019 	return 0;
2020 }
2021 EXPORT_SYMBOL(import_single_range);
2022 
2023 /**
2024  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
2025  *     iov_iter_save_state() was called.
2026  *
2027  * @i: &struct iov_iter to restore
2028  * @state: state to restore from
2029  *
2030  * Used after iov_iter_save_state() to bring restore @i, if operations may
2031  * have advanced it.
2032  *
2033  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
2034  */
2035 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
2036 {
2037 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
2038 			 !iov_iter_is_kvec(i))
2039 		return;
2040 	i->iov_offset = state->iov_offset;
2041 	i->count = state->count;
2042 	/*
2043 	 * For the *vec iters, nr_segs + iov is constant - if we increment
2044 	 * the vec, then we also decrement the nr_segs count. Hence we don't
2045 	 * need to track both of these, just one is enough and we can deduct
2046 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
2047 	 * size, so we can just increment the iov pointer as they are unionzed.
2048 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
2049 	 * not. Be safe and handle it separately.
2050 	 */
2051 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
2052 	if (iov_iter_is_bvec(i))
2053 		i->bvec -= state->nr_segs - i->nr_segs;
2054 	else
2055 		i->iov -= state->nr_segs - i->nr_segs;
2056 	i->nr_segs = state->nr_segs;
2057 }
2058