1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bvec.h> 4 #include <linux/uio.h> 5 #include <linux/pagemap.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/splice.h> 9 #include <net/checksum.h> 10 #include <linux/scatterlist.h> 11 #include <linux/instrumented.h> 12 13 #define PIPE_PARANOIA /* for now */ 14 15 #define iterate_iovec(i, n, __v, __p, skip, STEP) { \ 16 size_t left; \ 17 size_t wanted = n; \ 18 __p = i->iov; \ 19 __v.iov_len = min(n, __p->iov_len - skip); \ 20 if (likely(__v.iov_len)) { \ 21 __v.iov_base = __p->iov_base + skip; \ 22 left = (STEP); \ 23 __v.iov_len -= left; \ 24 skip += __v.iov_len; \ 25 n -= __v.iov_len; \ 26 } else { \ 27 left = 0; \ 28 } \ 29 while (unlikely(!left && n)) { \ 30 __p++; \ 31 __v.iov_len = min(n, __p->iov_len); \ 32 if (unlikely(!__v.iov_len)) \ 33 continue; \ 34 __v.iov_base = __p->iov_base; \ 35 left = (STEP); \ 36 __v.iov_len -= left; \ 37 skip = __v.iov_len; \ 38 n -= __v.iov_len; \ 39 } \ 40 n = wanted - n; \ 41 } 42 43 #define iterate_kvec(i, n, __v, __p, skip, STEP) { \ 44 size_t wanted = n; \ 45 __p = i->kvec; \ 46 __v.iov_len = min(n, __p->iov_len - skip); \ 47 if (likely(__v.iov_len)) { \ 48 __v.iov_base = __p->iov_base + skip; \ 49 (void)(STEP); \ 50 skip += __v.iov_len; \ 51 n -= __v.iov_len; \ 52 } \ 53 while (unlikely(n)) { \ 54 __p++; \ 55 __v.iov_len = min(n, __p->iov_len); \ 56 if (unlikely(!__v.iov_len)) \ 57 continue; \ 58 __v.iov_base = __p->iov_base; \ 59 (void)(STEP); \ 60 skip = __v.iov_len; \ 61 n -= __v.iov_len; \ 62 } \ 63 n = wanted; \ 64 } 65 66 #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \ 67 struct bvec_iter __start; \ 68 __start.bi_size = n; \ 69 __start.bi_bvec_done = skip; \ 70 __start.bi_idx = 0; \ 71 for_each_bvec(__v, i->bvec, __bi, __start) { \ 72 if (!__v.bv_len) \ 73 continue; \ 74 (void)(STEP); \ 75 } \ 76 } 77 78 #define iterate_all_kinds(i, n, v, I, B, K) { \ 79 if (likely(n)) { \ 80 size_t skip = i->iov_offset; \ 81 if (unlikely(i->type & ITER_BVEC)) { \ 82 struct bio_vec v; \ 83 struct bvec_iter __bi; \ 84 iterate_bvec(i, n, v, __bi, skip, (B)) \ 85 } else if (unlikely(i->type & ITER_KVEC)) { \ 86 const struct kvec *kvec; \ 87 struct kvec v; \ 88 iterate_kvec(i, n, v, kvec, skip, (K)) \ 89 } else if (unlikely(i->type & ITER_DISCARD)) { \ 90 } else { \ 91 const struct iovec *iov; \ 92 struct iovec v; \ 93 iterate_iovec(i, n, v, iov, skip, (I)) \ 94 } \ 95 } \ 96 } 97 98 #define iterate_and_advance(i, n, v, I, B, K) { \ 99 if (unlikely(i->count < n)) \ 100 n = i->count; \ 101 if (i->count) { \ 102 size_t skip = i->iov_offset; \ 103 if (unlikely(i->type & ITER_BVEC)) { \ 104 const struct bio_vec *bvec = i->bvec; \ 105 struct bio_vec v; \ 106 struct bvec_iter __bi; \ 107 iterate_bvec(i, n, v, __bi, skip, (B)) \ 108 i->bvec = __bvec_iter_bvec(i->bvec, __bi); \ 109 i->nr_segs -= i->bvec - bvec; \ 110 skip = __bi.bi_bvec_done; \ 111 } else if (unlikely(i->type & ITER_KVEC)) { \ 112 const struct kvec *kvec; \ 113 struct kvec v; \ 114 iterate_kvec(i, n, v, kvec, skip, (K)) \ 115 if (skip == kvec->iov_len) { \ 116 kvec++; \ 117 skip = 0; \ 118 } \ 119 i->nr_segs -= kvec - i->kvec; \ 120 i->kvec = kvec; \ 121 } else if (unlikely(i->type & ITER_DISCARD)) { \ 122 skip += n; \ 123 } else { \ 124 const struct iovec *iov; \ 125 struct iovec v; \ 126 iterate_iovec(i, n, v, iov, skip, (I)) \ 127 if (skip == iov->iov_len) { \ 128 iov++; \ 129 skip = 0; \ 130 } \ 131 i->nr_segs -= iov - i->iov; \ 132 i->iov = iov; \ 133 } \ 134 i->count -= n; \ 135 i->iov_offset = skip; \ 136 } \ 137 } 138 139 static int copyout(void __user *to, const void *from, size_t n) 140 { 141 if (access_ok(to, n)) { 142 instrument_copy_to_user(to, from, n); 143 n = raw_copy_to_user(to, from, n); 144 } 145 return n; 146 } 147 148 static int copyin(void *to, const void __user *from, size_t n) 149 { 150 if (access_ok(from, n)) { 151 instrument_copy_from_user(to, from, n); 152 n = raw_copy_from_user(to, from, n); 153 } 154 return n; 155 } 156 157 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes, 158 struct iov_iter *i) 159 { 160 size_t skip, copy, left, wanted; 161 const struct iovec *iov; 162 char __user *buf; 163 void *kaddr, *from; 164 165 if (unlikely(bytes > i->count)) 166 bytes = i->count; 167 168 if (unlikely(!bytes)) 169 return 0; 170 171 might_fault(); 172 wanted = bytes; 173 iov = i->iov; 174 skip = i->iov_offset; 175 buf = iov->iov_base + skip; 176 copy = min(bytes, iov->iov_len - skip); 177 178 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) { 179 kaddr = kmap_atomic(page); 180 from = kaddr + offset; 181 182 /* first chunk, usually the only one */ 183 left = copyout(buf, from, copy); 184 copy -= left; 185 skip += copy; 186 from += copy; 187 bytes -= copy; 188 189 while (unlikely(!left && bytes)) { 190 iov++; 191 buf = iov->iov_base; 192 copy = min(bytes, iov->iov_len); 193 left = copyout(buf, from, copy); 194 copy -= left; 195 skip = copy; 196 from += copy; 197 bytes -= copy; 198 } 199 if (likely(!bytes)) { 200 kunmap_atomic(kaddr); 201 goto done; 202 } 203 offset = from - kaddr; 204 buf += copy; 205 kunmap_atomic(kaddr); 206 copy = min(bytes, iov->iov_len - skip); 207 } 208 /* Too bad - revert to non-atomic kmap */ 209 210 kaddr = kmap(page); 211 from = kaddr + offset; 212 left = copyout(buf, from, copy); 213 copy -= left; 214 skip += copy; 215 from += copy; 216 bytes -= copy; 217 while (unlikely(!left && bytes)) { 218 iov++; 219 buf = iov->iov_base; 220 copy = min(bytes, iov->iov_len); 221 left = copyout(buf, from, copy); 222 copy -= left; 223 skip = copy; 224 from += copy; 225 bytes -= copy; 226 } 227 kunmap(page); 228 229 done: 230 if (skip == iov->iov_len) { 231 iov++; 232 skip = 0; 233 } 234 i->count -= wanted - bytes; 235 i->nr_segs -= iov - i->iov; 236 i->iov = iov; 237 i->iov_offset = skip; 238 return wanted - bytes; 239 } 240 241 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes, 242 struct iov_iter *i) 243 { 244 size_t skip, copy, left, wanted; 245 const struct iovec *iov; 246 char __user *buf; 247 void *kaddr, *to; 248 249 if (unlikely(bytes > i->count)) 250 bytes = i->count; 251 252 if (unlikely(!bytes)) 253 return 0; 254 255 might_fault(); 256 wanted = bytes; 257 iov = i->iov; 258 skip = i->iov_offset; 259 buf = iov->iov_base + skip; 260 copy = min(bytes, iov->iov_len - skip); 261 262 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) { 263 kaddr = kmap_atomic(page); 264 to = kaddr + offset; 265 266 /* first chunk, usually the only one */ 267 left = copyin(to, buf, copy); 268 copy -= left; 269 skip += copy; 270 to += copy; 271 bytes -= copy; 272 273 while (unlikely(!left && bytes)) { 274 iov++; 275 buf = iov->iov_base; 276 copy = min(bytes, iov->iov_len); 277 left = copyin(to, buf, copy); 278 copy -= left; 279 skip = copy; 280 to += copy; 281 bytes -= copy; 282 } 283 if (likely(!bytes)) { 284 kunmap_atomic(kaddr); 285 goto done; 286 } 287 offset = to - kaddr; 288 buf += copy; 289 kunmap_atomic(kaddr); 290 copy = min(bytes, iov->iov_len - skip); 291 } 292 /* Too bad - revert to non-atomic kmap */ 293 294 kaddr = kmap(page); 295 to = kaddr + offset; 296 left = copyin(to, buf, copy); 297 copy -= left; 298 skip += copy; 299 to += copy; 300 bytes -= copy; 301 while (unlikely(!left && bytes)) { 302 iov++; 303 buf = iov->iov_base; 304 copy = min(bytes, iov->iov_len); 305 left = copyin(to, buf, copy); 306 copy -= left; 307 skip = copy; 308 to += copy; 309 bytes -= copy; 310 } 311 kunmap(page); 312 313 done: 314 if (skip == iov->iov_len) { 315 iov++; 316 skip = 0; 317 } 318 i->count -= wanted - bytes; 319 i->nr_segs -= iov - i->iov; 320 i->iov = iov; 321 i->iov_offset = skip; 322 return wanted - bytes; 323 } 324 325 #ifdef PIPE_PARANOIA 326 static bool sanity(const struct iov_iter *i) 327 { 328 struct pipe_inode_info *pipe = i->pipe; 329 unsigned int p_head = pipe->head; 330 unsigned int p_tail = pipe->tail; 331 unsigned int p_mask = pipe->ring_size - 1; 332 unsigned int p_occupancy = pipe_occupancy(p_head, p_tail); 333 unsigned int i_head = i->head; 334 unsigned int idx; 335 336 if (i->iov_offset) { 337 struct pipe_buffer *p; 338 if (unlikely(p_occupancy == 0)) 339 goto Bad; // pipe must be non-empty 340 if (unlikely(i_head != p_head - 1)) 341 goto Bad; // must be at the last buffer... 342 343 p = &pipe->bufs[i_head & p_mask]; 344 if (unlikely(p->offset + p->len != i->iov_offset)) 345 goto Bad; // ... at the end of segment 346 } else { 347 if (i_head != p_head) 348 goto Bad; // must be right after the last buffer 349 } 350 return true; 351 Bad: 352 printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset); 353 printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n", 354 p_head, p_tail, pipe->ring_size); 355 for (idx = 0; idx < pipe->ring_size; idx++) 356 printk(KERN_ERR "[%p %p %d %d]\n", 357 pipe->bufs[idx].ops, 358 pipe->bufs[idx].page, 359 pipe->bufs[idx].offset, 360 pipe->bufs[idx].len); 361 WARN_ON(1); 362 return false; 363 } 364 #else 365 #define sanity(i) true 366 #endif 367 368 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, 369 struct iov_iter *i) 370 { 371 struct pipe_inode_info *pipe = i->pipe; 372 struct pipe_buffer *buf; 373 unsigned int p_tail = pipe->tail; 374 unsigned int p_mask = pipe->ring_size - 1; 375 unsigned int i_head = i->head; 376 size_t off; 377 378 if (unlikely(bytes > i->count)) 379 bytes = i->count; 380 381 if (unlikely(!bytes)) 382 return 0; 383 384 if (!sanity(i)) 385 return 0; 386 387 off = i->iov_offset; 388 buf = &pipe->bufs[i_head & p_mask]; 389 if (off) { 390 if (offset == off && buf->page == page) { 391 /* merge with the last one */ 392 buf->len += bytes; 393 i->iov_offset += bytes; 394 goto out; 395 } 396 i_head++; 397 buf = &pipe->bufs[i_head & p_mask]; 398 } 399 if (pipe_full(i_head, p_tail, pipe->max_usage)) 400 return 0; 401 402 buf->ops = &page_cache_pipe_buf_ops; 403 get_page(page); 404 buf->page = page; 405 buf->offset = offset; 406 buf->len = bytes; 407 408 pipe->head = i_head + 1; 409 i->iov_offset = offset + bytes; 410 i->head = i_head; 411 out: 412 i->count -= bytes; 413 return bytes; 414 } 415 416 /* 417 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 418 * bytes. For each iovec, fault in each page that constitutes the iovec. 419 * 420 * Return 0 on success, or non-zero if the memory could not be accessed (i.e. 421 * because it is an invalid address). 422 */ 423 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 424 { 425 size_t skip = i->iov_offset; 426 const struct iovec *iov; 427 int err; 428 struct iovec v; 429 430 if (!(i->type & (ITER_BVEC|ITER_KVEC))) { 431 iterate_iovec(i, bytes, v, iov, skip, ({ 432 err = fault_in_pages_readable(v.iov_base, v.iov_len); 433 if (unlikely(err)) 434 return err; 435 0;})) 436 } 437 return 0; 438 } 439 EXPORT_SYMBOL(iov_iter_fault_in_readable); 440 441 void iov_iter_init(struct iov_iter *i, unsigned int direction, 442 const struct iovec *iov, unsigned long nr_segs, 443 size_t count) 444 { 445 WARN_ON(direction & ~(READ | WRITE)); 446 direction &= READ | WRITE; 447 448 /* It will get better. Eventually... */ 449 if (uaccess_kernel()) { 450 i->type = ITER_KVEC | direction; 451 i->kvec = (struct kvec *)iov; 452 } else { 453 i->type = ITER_IOVEC | direction; 454 i->iov = iov; 455 } 456 i->nr_segs = nr_segs; 457 i->iov_offset = 0; 458 i->count = count; 459 } 460 EXPORT_SYMBOL(iov_iter_init); 461 462 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len) 463 { 464 char *from = kmap_atomic(page); 465 memcpy(to, from + offset, len); 466 kunmap_atomic(from); 467 } 468 469 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len) 470 { 471 char *to = kmap_atomic(page); 472 memcpy(to + offset, from, len); 473 kunmap_atomic(to); 474 } 475 476 static void memzero_page(struct page *page, size_t offset, size_t len) 477 { 478 char *addr = kmap_atomic(page); 479 memset(addr + offset, 0, len); 480 kunmap_atomic(addr); 481 } 482 483 static inline bool allocated(struct pipe_buffer *buf) 484 { 485 return buf->ops == &default_pipe_buf_ops; 486 } 487 488 static inline void data_start(const struct iov_iter *i, 489 unsigned int *iter_headp, size_t *offp) 490 { 491 unsigned int p_mask = i->pipe->ring_size - 1; 492 unsigned int iter_head = i->head; 493 size_t off = i->iov_offset; 494 495 if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) || 496 off == PAGE_SIZE)) { 497 iter_head++; 498 off = 0; 499 } 500 *iter_headp = iter_head; 501 *offp = off; 502 } 503 504 static size_t push_pipe(struct iov_iter *i, size_t size, 505 int *iter_headp, size_t *offp) 506 { 507 struct pipe_inode_info *pipe = i->pipe; 508 unsigned int p_tail = pipe->tail; 509 unsigned int p_mask = pipe->ring_size - 1; 510 unsigned int iter_head; 511 size_t off; 512 ssize_t left; 513 514 if (unlikely(size > i->count)) 515 size = i->count; 516 if (unlikely(!size)) 517 return 0; 518 519 left = size; 520 data_start(i, &iter_head, &off); 521 *iter_headp = iter_head; 522 *offp = off; 523 if (off) { 524 left -= PAGE_SIZE - off; 525 if (left <= 0) { 526 pipe->bufs[iter_head & p_mask].len += size; 527 return size; 528 } 529 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE; 530 iter_head++; 531 } 532 while (!pipe_full(iter_head, p_tail, pipe->max_usage)) { 533 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask]; 534 struct page *page = alloc_page(GFP_USER); 535 if (!page) 536 break; 537 538 buf->ops = &default_pipe_buf_ops; 539 buf->page = page; 540 buf->offset = 0; 541 buf->len = min_t(ssize_t, left, PAGE_SIZE); 542 left -= buf->len; 543 iter_head++; 544 pipe->head = iter_head; 545 546 if (left == 0) 547 return size; 548 } 549 return size - left; 550 } 551 552 static size_t copy_pipe_to_iter(const void *addr, size_t bytes, 553 struct iov_iter *i) 554 { 555 struct pipe_inode_info *pipe = i->pipe; 556 unsigned int p_mask = pipe->ring_size - 1; 557 unsigned int i_head; 558 size_t n, off; 559 560 if (!sanity(i)) 561 return 0; 562 563 bytes = n = push_pipe(i, bytes, &i_head, &off); 564 if (unlikely(!n)) 565 return 0; 566 do { 567 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 568 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk); 569 i->head = i_head; 570 i->iov_offset = off + chunk; 571 n -= chunk; 572 addr += chunk; 573 off = 0; 574 i_head++; 575 } while (n); 576 i->count -= bytes; 577 return bytes; 578 } 579 580 static __wsum csum_and_memcpy(void *to, const void *from, size_t len, 581 __wsum sum, size_t off) 582 { 583 __wsum next = csum_partial_copy_nocheck(from, to, len, 0); 584 return csum_block_add(sum, next, off); 585 } 586 587 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes, 588 __wsum *csum, struct iov_iter *i) 589 { 590 struct pipe_inode_info *pipe = i->pipe; 591 unsigned int p_mask = pipe->ring_size - 1; 592 unsigned int i_head; 593 size_t n, r; 594 size_t off = 0; 595 __wsum sum = *csum; 596 597 if (!sanity(i)) 598 return 0; 599 600 bytes = n = push_pipe(i, bytes, &i_head, &r); 601 if (unlikely(!n)) 602 return 0; 603 do { 604 size_t chunk = min_t(size_t, n, PAGE_SIZE - r); 605 char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page); 606 sum = csum_and_memcpy(p + r, addr, chunk, sum, off); 607 kunmap_atomic(p); 608 i->head = i_head; 609 i->iov_offset = r + chunk; 610 n -= chunk; 611 off += chunk; 612 addr += chunk; 613 r = 0; 614 i_head++; 615 } while (n); 616 i->count -= bytes; 617 *csum = sum; 618 return bytes; 619 } 620 621 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 622 { 623 const char *from = addr; 624 if (unlikely(iov_iter_is_pipe(i))) 625 return copy_pipe_to_iter(addr, bytes, i); 626 if (iter_is_iovec(i)) 627 might_fault(); 628 iterate_and_advance(i, bytes, v, 629 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 630 memcpy_to_page(v.bv_page, v.bv_offset, 631 (from += v.bv_len) - v.bv_len, v.bv_len), 632 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len) 633 ) 634 635 return bytes; 636 } 637 EXPORT_SYMBOL(_copy_to_iter); 638 639 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE 640 static int copyout_mcsafe(void __user *to, const void *from, size_t n) 641 { 642 if (access_ok(to, n)) { 643 instrument_copy_to_user(to, from, n); 644 n = copy_to_user_mcsafe((__force void *) to, from, n); 645 } 646 return n; 647 } 648 649 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset, 650 const char *from, size_t len) 651 { 652 unsigned long ret; 653 char *to; 654 655 to = kmap_atomic(page); 656 ret = memcpy_mcsafe(to + offset, from, len); 657 kunmap_atomic(to); 658 659 return ret; 660 } 661 662 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes, 663 struct iov_iter *i) 664 { 665 struct pipe_inode_info *pipe = i->pipe; 666 unsigned int p_mask = pipe->ring_size - 1; 667 unsigned int i_head; 668 size_t n, off, xfer = 0; 669 670 if (!sanity(i)) 671 return 0; 672 673 bytes = n = push_pipe(i, bytes, &i_head, &off); 674 if (unlikely(!n)) 675 return 0; 676 do { 677 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 678 unsigned long rem; 679 680 rem = memcpy_mcsafe_to_page(pipe->bufs[i_head & p_mask].page, 681 off, addr, chunk); 682 i->head = i_head; 683 i->iov_offset = off + chunk - rem; 684 xfer += chunk - rem; 685 if (rem) 686 break; 687 n -= chunk; 688 addr += chunk; 689 off = 0; 690 i_head++; 691 } while (n); 692 i->count -= xfer; 693 return xfer; 694 } 695 696 /** 697 * _copy_to_iter_mcsafe - copy to user with source-read error exception handling 698 * @addr: source kernel address 699 * @bytes: total transfer length 700 * @iter: destination iterator 701 * 702 * The pmem driver arranges for filesystem-dax to use this facility via 703 * dax_copy_to_iter() for protecting read/write to persistent memory. 704 * Unless / until an architecture can guarantee identical performance 705 * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a 706 * performance regression to switch more users to the mcsafe version. 707 * 708 * Otherwise, the main differences between this and typical _copy_to_iter(). 709 * 710 * * Typical tail/residue handling after a fault retries the copy 711 * byte-by-byte until the fault happens again. Re-triggering machine 712 * checks is potentially fatal so the implementation uses source 713 * alignment and poison alignment assumptions to avoid re-triggering 714 * hardware exceptions. 715 * 716 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. 717 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return 718 * a short copy. 719 * 720 * See MCSAFE_TEST for self-test. 721 */ 722 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i) 723 { 724 const char *from = addr; 725 unsigned long rem, curr_addr, s_addr = (unsigned long) addr; 726 727 if (unlikely(iov_iter_is_pipe(i))) 728 return copy_pipe_to_iter_mcsafe(addr, bytes, i); 729 if (iter_is_iovec(i)) 730 might_fault(); 731 iterate_and_advance(i, bytes, v, 732 copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 733 ({ 734 rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset, 735 (from += v.bv_len) - v.bv_len, v.bv_len); 736 if (rem) { 737 curr_addr = (unsigned long) from; 738 bytes = curr_addr - s_addr - rem; 739 return bytes; 740 } 741 }), 742 ({ 743 rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, 744 v.iov_len); 745 if (rem) { 746 curr_addr = (unsigned long) from; 747 bytes = curr_addr - s_addr - rem; 748 return bytes; 749 } 750 }) 751 ) 752 753 return bytes; 754 } 755 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe); 756 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */ 757 758 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 759 { 760 char *to = addr; 761 if (unlikely(iov_iter_is_pipe(i))) { 762 WARN_ON(1); 763 return 0; 764 } 765 if (iter_is_iovec(i)) 766 might_fault(); 767 iterate_and_advance(i, bytes, v, 768 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 769 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 770 v.bv_offset, v.bv_len), 771 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 772 ) 773 774 return bytes; 775 } 776 EXPORT_SYMBOL(_copy_from_iter); 777 778 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) 779 { 780 char *to = addr; 781 if (unlikely(iov_iter_is_pipe(i))) { 782 WARN_ON(1); 783 return false; 784 } 785 if (unlikely(i->count < bytes)) 786 return false; 787 788 if (iter_is_iovec(i)) 789 might_fault(); 790 iterate_all_kinds(i, bytes, v, ({ 791 if (copyin((to += v.iov_len) - v.iov_len, 792 v.iov_base, v.iov_len)) 793 return false; 794 0;}), 795 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 796 v.bv_offset, v.bv_len), 797 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 798 ) 799 800 iov_iter_advance(i, bytes); 801 return true; 802 } 803 EXPORT_SYMBOL(_copy_from_iter_full); 804 805 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 806 { 807 char *to = addr; 808 if (unlikely(iov_iter_is_pipe(i))) { 809 WARN_ON(1); 810 return 0; 811 } 812 iterate_and_advance(i, bytes, v, 813 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 814 v.iov_base, v.iov_len), 815 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 816 v.bv_offset, v.bv_len), 817 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 818 ) 819 820 return bytes; 821 } 822 EXPORT_SYMBOL(_copy_from_iter_nocache); 823 824 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 825 /** 826 * _copy_from_iter_flushcache - write destination through cpu cache 827 * @addr: destination kernel address 828 * @bytes: total transfer length 829 * @iter: source iterator 830 * 831 * The pmem driver arranges for filesystem-dax to use this facility via 832 * dax_copy_from_iter() for ensuring that writes to persistent memory 833 * are flushed through the CPU cache. It is differentiated from 834 * _copy_from_iter_nocache() in that guarantees all data is flushed for 835 * all iterator types. The _copy_from_iter_nocache() only attempts to 836 * bypass the cache for the ITER_IOVEC case, and on some archs may use 837 * instructions that strand dirty-data in the cache. 838 */ 839 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 840 { 841 char *to = addr; 842 if (unlikely(iov_iter_is_pipe(i))) { 843 WARN_ON(1); 844 return 0; 845 } 846 iterate_and_advance(i, bytes, v, 847 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len, 848 v.iov_base, v.iov_len), 849 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page, 850 v.bv_offset, v.bv_len), 851 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, 852 v.iov_len) 853 ) 854 855 return bytes; 856 } 857 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 858 #endif 859 860 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) 861 { 862 char *to = addr; 863 if (unlikely(iov_iter_is_pipe(i))) { 864 WARN_ON(1); 865 return false; 866 } 867 if (unlikely(i->count < bytes)) 868 return false; 869 iterate_all_kinds(i, bytes, v, ({ 870 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 871 v.iov_base, v.iov_len)) 872 return false; 873 0;}), 874 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 875 v.bv_offset, v.bv_len), 876 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 877 ) 878 879 iov_iter_advance(i, bytes); 880 return true; 881 } 882 EXPORT_SYMBOL(_copy_from_iter_full_nocache); 883 884 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 885 { 886 struct page *head; 887 size_t v = n + offset; 888 889 /* 890 * The general case needs to access the page order in order 891 * to compute the page size. 892 * However, we mostly deal with order-0 pages and thus can 893 * avoid a possible cache line miss for requests that fit all 894 * page orders. 895 */ 896 if (n <= v && v <= PAGE_SIZE) 897 return true; 898 899 head = compound_head(page); 900 v += (page - head) << PAGE_SHIFT; 901 902 if (likely(n <= v && v <= (page_size(head)))) 903 return true; 904 WARN_ON(1); 905 return false; 906 } 907 908 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 909 struct iov_iter *i) 910 { 911 if (unlikely(!page_copy_sane(page, offset, bytes))) 912 return 0; 913 if (i->type & (ITER_BVEC|ITER_KVEC)) { 914 void *kaddr = kmap_atomic(page); 915 size_t wanted = copy_to_iter(kaddr + offset, bytes, i); 916 kunmap_atomic(kaddr); 917 return wanted; 918 } else if (unlikely(iov_iter_is_discard(i))) 919 return bytes; 920 else if (likely(!iov_iter_is_pipe(i))) 921 return copy_page_to_iter_iovec(page, offset, bytes, i); 922 else 923 return copy_page_to_iter_pipe(page, offset, bytes, i); 924 } 925 EXPORT_SYMBOL(copy_page_to_iter); 926 927 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 928 struct iov_iter *i) 929 { 930 if (unlikely(!page_copy_sane(page, offset, bytes))) 931 return 0; 932 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 933 WARN_ON(1); 934 return 0; 935 } 936 if (i->type & (ITER_BVEC|ITER_KVEC)) { 937 void *kaddr = kmap_atomic(page); 938 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i); 939 kunmap_atomic(kaddr); 940 return wanted; 941 } else 942 return copy_page_from_iter_iovec(page, offset, bytes, i); 943 } 944 EXPORT_SYMBOL(copy_page_from_iter); 945 946 static size_t pipe_zero(size_t bytes, struct iov_iter *i) 947 { 948 struct pipe_inode_info *pipe = i->pipe; 949 unsigned int p_mask = pipe->ring_size - 1; 950 unsigned int i_head; 951 size_t n, off; 952 953 if (!sanity(i)) 954 return 0; 955 956 bytes = n = push_pipe(i, bytes, &i_head, &off); 957 if (unlikely(!n)) 958 return 0; 959 960 do { 961 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 962 memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk); 963 i->head = i_head; 964 i->iov_offset = off + chunk; 965 n -= chunk; 966 off = 0; 967 i_head++; 968 } while (n); 969 i->count -= bytes; 970 return bytes; 971 } 972 973 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 974 { 975 if (unlikely(iov_iter_is_pipe(i))) 976 return pipe_zero(bytes, i); 977 iterate_and_advance(i, bytes, v, 978 clear_user(v.iov_base, v.iov_len), 979 memzero_page(v.bv_page, v.bv_offset, v.bv_len), 980 memset(v.iov_base, 0, v.iov_len) 981 ) 982 983 return bytes; 984 } 985 EXPORT_SYMBOL(iov_iter_zero); 986 987 size_t iov_iter_copy_from_user_atomic(struct page *page, 988 struct iov_iter *i, unsigned long offset, size_t bytes) 989 { 990 char *kaddr = kmap_atomic(page), *p = kaddr + offset; 991 if (unlikely(!page_copy_sane(page, offset, bytes))) { 992 kunmap_atomic(kaddr); 993 return 0; 994 } 995 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 996 kunmap_atomic(kaddr); 997 WARN_ON(1); 998 return 0; 999 } 1000 iterate_all_kinds(i, bytes, v, 1001 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 1002 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page, 1003 v.bv_offset, v.bv_len), 1004 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 1005 ) 1006 kunmap_atomic(kaddr); 1007 return bytes; 1008 } 1009 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1010 1011 static inline void pipe_truncate(struct iov_iter *i) 1012 { 1013 struct pipe_inode_info *pipe = i->pipe; 1014 unsigned int p_tail = pipe->tail; 1015 unsigned int p_head = pipe->head; 1016 unsigned int p_mask = pipe->ring_size - 1; 1017 1018 if (!pipe_empty(p_head, p_tail)) { 1019 struct pipe_buffer *buf; 1020 unsigned int i_head = i->head; 1021 size_t off = i->iov_offset; 1022 1023 if (off) { 1024 buf = &pipe->bufs[i_head & p_mask]; 1025 buf->len = off - buf->offset; 1026 i_head++; 1027 } 1028 while (p_head != i_head) { 1029 p_head--; 1030 pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]); 1031 } 1032 1033 pipe->head = p_head; 1034 } 1035 } 1036 1037 static void pipe_advance(struct iov_iter *i, size_t size) 1038 { 1039 struct pipe_inode_info *pipe = i->pipe; 1040 if (unlikely(i->count < size)) 1041 size = i->count; 1042 if (size) { 1043 struct pipe_buffer *buf; 1044 unsigned int p_mask = pipe->ring_size - 1; 1045 unsigned int i_head = i->head; 1046 size_t off = i->iov_offset, left = size; 1047 1048 if (off) /* make it relative to the beginning of buffer */ 1049 left += off - pipe->bufs[i_head & p_mask].offset; 1050 while (1) { 1051 buf = &pipe->bufs[i_head & p_mask]; 1052 if (left <= buf->len) 1053 break; 1054 left -= buf->len; 1055 i_head++; 1056 } 1057 i->head = i_head; 1058 i->iov_offset = buf->offset + left; 1059 } 1060 i->count -= size; 1061 /* ... and discard everything past that point */ 1062 pipe_truncate(i); 1063 } 1064 1065 void iov_iter_advance(struct iov_iter *i, size_t size) 1066 { 1067 if (unlikely(iov_iter_is_pipe(i))) { 1068 pipe_advance(i, size); 1069 return; 1070 } 1071 if (unlikely(iov_iter_is_discard(i))) { 1072 i->count -= size; 1073 return; 1074 } 1075 iterate_and_advance(i, size, v, 0, 0, 0) 1076 } 1077 EXPORT_SYMBOL(iov_iter_advance); 1078 1079 void iov_iter_revert(struct iov_iter *i, size_t unroll) 1080 { 1081 if (!unroll) 1082 return; 1083 if (WARN_ON(unroll > MAX_RW_COUNT)) 1084 return; 1085 i->count += unroll; 1086 if (unlikely(iov_iter_is_pipe(i))) { 1087 struct pipe_inode_info *pipe = i->pipe; 1088 unsigned int p_mask = pipe->ring_size - 1; 1089 unsigned int i_head = i->head; 1090 size_t off = i->iov_offset; 1091 while (1) { 1092 struct pipe_buffer *b = &pipe->bufs[i_head & p_mask]; 1093 size_t n = off - b->offset; 1094 if (unroll < n) { 1095 off -= unroll; 1096 break; 1097 } 1098 unroll -= n; 1099 if (!unroll && i_head == i->start_head) { 1100 off = 0; 1101 break; 1102 } 1103 i_head--; 1104 b = &pipe->bufs[i_head & p_mask]; 1105 off = b->offset + b->len; 1106 } 1107 i->iov_offset = off; 1108 i->head = i_head; 1109 pipe_truncate(i); 1110 return; 1111 } 1112 if (unlikely(iov_iter_is_discard(i))) 1113 return; 1114 if (unroll <= i->iov_offset) { 1115 i->iov_offset -= unroll; 1116 return; 1117 } 1118 unroll -= i->iov_offset; 1119 if (iov_iter_is_bvec(i)) { 1120 const struct bio_vec *bvec = i->bvec; 1121 while (1) { 1122 size_t n = (--bvec)->bv_len; 1123 i->nr_segs++; 1124 if (unroll <= n) { 1125 i->bvec = bvec; 1126 i->iov_offset = n - unroll; 1127 return; 1128 } 1129 unroll -= n; 1130 } 1131 } else { /* same logics for iovec and kvec */ 1132 const struct iovec *iov = i->iov; 1133 while (1) { 1134 size_t n = (--iov)->iov_len; 1135 i->nr_segs++; 1136 if (unroll <= n) { 1137 i->iov = iov; 1138 i->iov_offset = n - unroll; 1139 return; 1140 } 1141 unroll -= n; 1142 } 1143 } 1144 } 1145 EXPORT_SYMBOL(iov_iter_revert); 1146 1147 /* 1148 * Return the count of just the current iov_iter segment. 1149 */ 1150 size_t iov_iter_single_seg_count(const struct iov_iter *i) 1151 { 1152 if (unlikely(iov_iter_is_pipe(i))) 1153 return i->count; // it is a silly place, anyway 1154 if (i->nr_segs == 1) 1155 return i->count; 1156 if (unlikely(iov_iter_is_discard(i))) 1157 return i->count; 1158 else if (iov_iter_is_bvec(i)) 1159 return min(i->count, i->bvec->bv_len - i->iov_offset); 1160 else 1161 return min(i->count, i->iov->iov_len - i->iov_offset); 1162 } 1163 EXPORT_SYMBOL(iov_iter_single_seg_count); 1164 1165 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 1166 const struct kvec *kvec, unsigned long nr_segs, 1167 size_t count) 1168 { 1169 WARN_ON(direction & ~(READ | WRITE)); 1170 i->type = ITER_KVEC | (direction & (READ | WRITE)); 1171 i->kvec = kvec; 1172 i->nr_segs = nr_segs; 1173 i->iov_offset = 0; 1174 i->count = count; 1175 } 1176 EXPORT_SYMBOL(iov_iter_kvec); 1177 1178 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 1179 const struct bio_vec *bvec, unsigned long nr_segs, 1180 size_t count) 1181 { 1182 WARN_ON(direction & ~(READ | WRITE)); 1183 i->type = ITER_BVEC | (direction & (READ | WRITE)); 1184 i->bvec = bvec; 1185 i->nr_segs = nr_segs; 1186 i->iov_offset = 0; 1187 i->count = count; 1188 } 1189 EXPORT_SYMBOL(iov_iter_bvec); 1190 1191 void iov_iter_pipe(struct iov_iter *i, unsigned int direction, 1192 struct pipe_inode_info *pipe, 1193 size_t count) 1194 { 1195 BUG_ON(direction != READ); 1196 WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size)); 1197 i->type = ITER_PIPE | READ; 1198 i->pipe = pipe; 1199 i->head = pipe->head; 1200 i->iov_offset = 0; 1201 i->count = count; 1202 i->start_head = i->head; 1203 } 1204 EXPORT_SYMBOL(iov_iter_pipe); 1205 1206 /** 1207 * iov_iter_discard - Initialise an I/O iterator that discards data 1208 * @i: The iterator to initialise. 1209 * @direction: The direction of the transfer. 1210 * @count: The size of the I/O buffer in bytes. 1211 * 1212 * Set up an I/O iterator that just discards everything that's written to it. 1213 * It's only available as a READ iterator. 1214 */ 1215 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 1216 { 1217 BUG_ON(direction != READ); 1218 i->type = ITER_DISCARD | READ; 1219 i->count = count; 1220 i->iov_offset = 0; 1221 } 1222 EXPORT_SYMBOL(iov_iter_discard); 1223 1224 unsigned long iov_iter_alignment(const struct iov_iter *i) 1225 { 1226 unsigned long res = 0; 1227 size_t size = i->count; 1228 1229 if (unlikely(iov_iter_is_pipe(i))) { 1230 unsigned int p_mask = i->pipe->ring_size - 1; 1231 1232 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask])) 1233 return size | i->iov_offset; 1234 return size; 1235 } 1236 iterate_all_kinds(i, size, v, 1237 (res |= (unsigned long)v.iov_base | v.iov_len, 0), 1238 res |= v.bv_offset | v.bv_len, 1239 res |= (unsigned long)v.iov_base | v.iov_len 1240 ) 1241 return res; 1242 } 1243 EXPORT_SYMBOL(iov_iter_alignment); 1244 1245 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 1246 { 1247 unsigned long res = 0; 1248 size_t size = i->count; 1249 1250 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1251 WARN_ON(1); 1252 return ~0U; 1253 } 1254 1255 iterate_all_kinds(i, size, v, 1256 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1257 (size != v.iov_len ? size : 0), 0), 1258 (res |= (!res ? 0 : (unsigned long)v.bv_offset) | 1259 (size != v.bv_len ? size : 0)), 1260 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1261 (size != v.iov_len ? size : 0)) 1262 ); 1263 return res; 1264 } 1265 EXPORT_SYMBOL(iov_iter_gap_alignment); 1266 1267 static inline ssize_t __pipe_get_pages(struct iov_iter *i, 1268 size_t maxsize, 1269 struct page **pages, 1270 int iter_head, 1271 size_t *start) 1272 { 1273 struct pipe_inode_info *pipe = i->pipe; 1274 unsigned int p_mask = pipe->ring_size - 1; 1275 ssize_t n = push_pipe(i, maxsize, &iter_head, start); 1276 if (!n) 1277 return -EFAULT; 1278 1279 maxsize = n; 1280 n += *start; 1281 while (n > 0) { 1282 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page); 1283 iter_head++; 1284 n -= PAGE_SIZE; 1285 } 1286 1287 return maxsize; 1288 } 1289 1290 static ssize_t pipe_get_pages(struct iov_iter *i, 1291 struct page **pages, size_t maxsize, unsigned maxpages, 1292 size_t *start) 1293 { 1294 unsigned int iter_head, npages; 1295 size_t capacity; 1296 1297 if (!maxsize) 1298 return 0; 1299 1300 if (!sanity(i)) 1301 return -EFAULT; 1302 1303 data_start(i, &iter_head, start); 1304 /* Amount of free space: some of this one + all after this one */ 1305 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); 1306 capacity = min(npages, maxpages) * PAGE_SIZE - *start; 1307 1308 return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start); 1309 } 1310 1311 ssize_t iov_iter_get_pages(struct iov_iter *i, 1312 struct page **pages, size_t maxsize, unsigned maxpages, 1313 size_t *start) 1314 { 1315 if (maxsize > i->count) 1316 maxsize = i->count; 1317 1318 if (unlikely(iov_iter_is_pipe(i))) 1319 return pipe_get_pages(i, pages, maxsize, maxpages, start); 1320 if (unlikely(iov_iter_is_discard(i))) 1321 return -EFAULT; 1322 1323 iterate_all_kinds(i, maxsize, v, ({ 1324 unsigned long addr = (unsigned long)v.iov_base; 1325 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1326 int n; 1327 int res; 1328 1329 if (len > maxpages * PAGE_SIZE) 1330 len = maxpages * PAGE_SIZE; 1331 addr &= ~(PAGE_SIZE - 1); 1332 n = DIV_ROUND_UP(len, PAGE_SIZE); 1333 res = get_user_pages_fast(addr, n, 1334 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, 1335 pages); 1336 if (unlikely(res < 0)) 1337 return res; 1338 return (res == n ? len : res * PAGE_SIZE) - *start; 1339 0;}),({ 1340 /* can't be more than PAGE_SIZE */ 1341 *start = v.bv_offset; 1342 get_page(*pages = v.bv_page); 1343 return v.bv_len; 1344 }),({ 1345 return -EFAULT; 1346 }) 1347 ) 1348 return 0; 1349 } 1350 EXPORT_SYMBOL(iov_iter_get_pages); 1351 1352 static struct page **get_pages_array(size_t n) 1353 { 1354 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL); 1355 } 1356 1357 static ssize_t pipe_get_pages_alloc(struct iov_iter *i, 1358 struct page ***pages, size_t maxsize, 1359 size_t *start) 1360 { 1361 struct page **p; 1362 unsigned int iter_head, npages; 1363 ssize_t n; 1364 1365 if (!maxsize) 1366 return 0; 1367 1368 if (!sanity(i)) 1369 return -EFAULT; 1370 1371 data_start(i, &iter_head, start); 1372 /* Amount of free space: some of this one + all after this one */ 1373 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); 1374 n = npages * PAGE_SIZE - *start; 1375 if (maxsize > n) 1376 maxsize = n; 1377 else 1378 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE); 1379 p = get_pages_array(npages); 1380 if (!p) 1381 return -ENOMEM; 1382 n = __pipe_get_pages(i, maxsize, p, iter_head, start); 1383 if (n > 0) 1384 *pages = p; 1385 else 1386 kvfree(p); 1387 return n; 1388 } 1389 1390 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, 1391 struct page ***pages, size_t maxsize, 1392 size_t *start) 1393 { 1394 struct page **p; 1395 1396 if (maxsize > i->count) 1397 maxsize = i->count; 1398 1399 if (unlikely(iov_iter_is_pipe(i))) 1400 return pipe_get_pages_alloc(i, pages, maxsize, start); 1401 if (unlikely(iov_iter_is_discard(i))) 1402 return -EFAULT; 1403 1404 iterate_all_kinds(i, maxsize, v, ({ 1405 unsigned long addr = (unsigned long)v.iov_base; 1406 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1407 int n; 1408 int res; 1409 1410 addr &= ~(PAGE_SIZE - 1); 1411 n = DIV_ROUND_UP(len, PAGE_SIZE); 1412 p = get_pages_array(n); 1413 if (!p) 1414 return -ENOMEM; 1415 res = get_user_pages_fast(addr, n, 1416 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p); 1417 if (unlikely(res < 0)) { 1418 kvfree(p); 1419 return res; 1420 } 1421 *pages = p; 1422 return (res == n ? len : res * PAGE_SIZE) - *start; 1423 0;}),({ 1424 /* can't be more than PAGE_SIZE */ 1425 *start = v.bv_offset; 1426 *pages = p = get_pages_array(1); 1427 if (!p) 1428 return -ENOMEM; 1429 get_page(*p = v.bv_page); 1430 return v.bv_len; 1431 }),({ 1432 return -EFAULT; 1433 }) 1434 ) 1435 return 0; 1436 } 1437 EXPORT_SYMBOL(iov_iter_get_pages_alloc); 1438 1439 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, 1440 struct iov_iter *i) 1441 { 1442 char *to = addr; 1443 __wsum sum, next; 1444 size_t off = 0; 1445 sum = *csum; 1446 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1447 WARN_ON(1); 1448 return 0; 1449 } 1450 iterate_and_advance(i, bytes, v, ({ 1451 int err = 0; 1452 next = csum_and_copy_from_user(v.iov_base, 1453 (to += v.iov_len) - v.iov_len, 1454 v.iov_len, 0, &err); 1455 if (!err) { 1456 sum = csum_block_add(sum, next, off); 1457 off += v.iov_len; 1458 } 1459 err ? v.iov_len : 0; 1460 }), ({ 1461 char *p = kmap_atomic(v.bv_page); 1462 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, 1463 p + v.bv_offset, v.bv_len, 1464 sum, off); 1465 kunmap_atomic(p); 1466 off += v.bv_len; 1467 }),({ 1468 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, 1469 v.iov_base, v.iov_len, 1470 sum, off); 1471 off += v.iov_len; 1472 }) 1473 ) 1474 *csum = sum; 1475 return bytes; 1476 } 1477 EXPORT_SYMBOL(csum_and_copy_from_iter); 1478 1479 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, 1480 struct iov_iter *i) 1481 { 1482 char *to = addr; 1483 __wsum sum, next; 1484 size_t off = 0; 1485 sum = *csum; 1486 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1487 WARN_ON(1); 1488 return false; 1489 } 1490 if (unlikely(i->count < bytes)) 1491 return false; 1492 iterate_all_kinds(i, bytes, v, ({ 1493 int err = 0; 1494 next = csum_and_copy_from_user(v.iov_base, 1495 (to += v.iov_len) - v.iov_len, 1496 v.iov_len, 0, &err); 1497 if (err) 1498 return false; 1499 sum = csum_block_add(sum, next, off); 1500 off += v.iov_len; 1501 0; 1502 }), ({ 1503 char *p = kmap_atomic(v.bv_page); 1504 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, 1505 p + v.bv_offset, v.bv_len, 1506 sum, off); 1507 kunmap_atomic(p); 1508 off += v.bv_len; 1509 }),({ 1510 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, 1511 v.iov_base, v.iov_len, 1512 sum, off); 1513 off += v.iov_len; 1514 }) 1515 ) 1516 *csum = sum; 1517 iov_iter_advance(i, bytes); 1518 return true; 1519 } 1520 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 1521 1522 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump, 1523 struct iov_iter *i) 1524 { 1525 const char *from = addr; 1526 __wsum *csum = csump; 1527 __wsum sum, next; 1528 size_t off = 0; 1529 1530 if (unlikely(iov_iter_is_pipe(i))) 1531 return csum_and_copy_to_pipe_iter(addr, bytes, csum, i); 1532 1533 sum = *csum; 1534 if (unlikely(iov_iter_is_discard(i))) { 1535 WARN_ON(1); /* for now */ 1536 return 0; 1537 } 1538 iterate_and_advance(i, bytes, v, ({ 1539 int err = 0; 1540 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len, 1541 v.iov_base, 1542 v.iov_len, 0, &err); 1543 if (!err) { 1544 sum = csum_block_add(sum, next, off); 1545 off += v.iov_len; 1546 } 1547 err ? v.iov_len : 0; 1548 }), ({ 1549 char *p = kmap_atomic(v.bv_page); 1550 sum = csum_and_memcpy(p + v.bv_offset, 1551 (from += v.bv_len) - v.bv_len, 1552 v.bv_len, sum, off); 1553 kunmap_atomic(p); 1554 off += v.bv_len; 1555 }),({ 1556 sum = csum_and_memcpy(v.iov_base, 1557 (from += v.iov_len) - v.iov_len, 1558 v.iov_len, sum, off); 1559 off += v.iov_len; 1560 }) 1561 ) 1562 *csum = sum; 1563 return bytes; 1564 } 1565 EXPORT_SYMBOL(csum_and_copy_to_iter); 1566 1567 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, 1568 struct iov_iter *i) 1569 { 1570 #ifdef CONFIG_CRYPTO 1571 struct ahash_request *hash = hashp; 1572 struct scatterlist sg; 1573 size_t copied; 1574 1575 copied = copy_to_iter(addr, bytes, i); 1576 sg_init_one(&sg, addr, copied); 1577 ahash_request_set_crypt(hash, &sg, NULL, copied); 1578 crypto_ahash_update(hash); 1579 return copied; 1580 #else 1581 return 0; 1582 #endif 1583 } 1584 EXPORT_SYMBOL(hash_and_copy_to_iter); 1585 1586 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1587 { 1588 size_t size = i->count; 1589 int npages = 0; 1590 1591 if (!size) 1592 return 0; 1593 if (unlikely(iov_iter_is_discard(i))) 1594 return 0; 1595 1596 if (unlikely(iov_iter_is_pipe(i))) { 1597 struct pipe_inode_info *pipe = i->pipe; 1598 unsigned int iter_head; 1599 size_t off; 1600 1601 if (!sanity(i)) 1602 return 0; 1603 1604 data_start(i, &iter_head, &off); 1605 /* some of this one + all after this one */ 1606 npages = pipe_space_for_user(iter_head, pipe->tail, pipe); 1607 if (npages >= maxpages) 1608 return maxpages; 1609 } else iterate_all_kinds(i, size, v, ({ 1610 unsigned long p = (unsigned long)v.iov_base; 1611 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1612 - p / PAGE_SIZE; 1613 if (npages >= maxpages) 1614 return maxpages; 1615 0;}),({ 1616 npages++; 1617 if (npages >= maxpages) 1618 return maxpages; 1619 }),({ 1620 unsigned long p = (unsigned long)v.iov_base; 1621 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1622 - p / PAGE_SIZE; 1623 if (npages >= maxpages) 1624 return maxpages; 1625 }) 1626 ) 1627 return npages; 1628 } 1629 EXPORT_SYMBOL(iov_iter_npages); 1630 1631 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1632 { 1633 *new = *old; 1634 if (unlikely(iov_iter_is_pipe(new))) { 1635 WARN_ON(1); 1636 return NULL; 1637 } 1638 if (unlikely(iov_iter_is_discard(new))) 1639 return NULL; 1640 if (iov_iter_is_bvec(new)) 1641 return new->bvec = kmemdup(new->bvec, 1642 new->nr_segs * sizeof(struct bio_vec), 1643 flags); 1644 else 1645 /* iovec and kvec have identical layout */ 1646 return new->iov = kmemdup(new->iov, 1647 new->nr_segs * sizeof(struct iovec), 1648 flags); 1649 } 1650 EXPORT_SYMBOL(dup_iter); 1651 1652 /** 1653 * import_iovec() - Copy an array of &struct iovec from userspace 1654 * into the kernel, check that it is valid, and initialize a new 1655 * &struct iov_iter iterator to access it. 1656 * 1657 * @type: One of %READ or %WRITE. 1658 * @uvector: Pointer to the userspace array. 1659 * @nr_segs: Number of elements in userspace array. 1660 * @fast_segs: Number of elements in @iov. 1661 * @iov: (input and output parameter) Pointer to pointer to (usually small 1662 * on-stack) kernel array. 1663 * @i: Pointer to iterator that will be initialized on success. 1664 * 1665 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1666 * then this function places %NULL in *@iov on return. Otherwise, a new 1667 * array will be allocated and the result placed in *@iov. This means that 1668 * the caller may call kfree() on *@iov regardless of whether the small 1669 * on-stack array was used or not (and regardless of whether this function 1670 * returns an error or not). 1671 * 1672 * Return: Negative error code on error, bytes imported on success 1673 */ 1674 ssize_t import_iovec(int type, const struct iovec __user * uvector, 1675 unsigned nr_segs, unsigned fast_segs, 1676 struct iovec **iov, struct iov_iter *i) 1677 { 1678 ssize_t n; 1679 struct iovec *p; 1680 n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1681 *iov, &p); 1682 if (n < 0) { 1683 if (p != *iov) 1684 kfree(p); 1685 *iov = NULL; 1686 return n; 1687 } 1688 iov_iter_init(i, type, p, nr_segs, n); 1689 *iov = p == *iov ? NULL : p; 1690 return n; 1691 } 1692 EXPORT_SYMBOL(import_iovec); 1693 1694 #ifdef CONFIG_COMPAT 1695 #include <linux/compat.h> 1696 1697 ssize_t compat_import_iovec(int type, 1698 const struct compat_iovec __user * uvector, 1699 unsigned nr_segs, unsigned fast_segs, 1700 struct iovec **iov, struct iov_iter *i) 1701 { 1702 ssize_t n; 1703 struct iovec *p; 1704 n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1705 *iov, &p); 1706 if (n < 0) { 1707 if (p != *iov) 1708 kfree(p); 1709 *iov = NULL; 1710 return n; 1711 } 1712 iov_iter_init(i, type, p, nr_segs, n); 1713 *iov = p == *iov ? NULL : p; 1714 return n; 1715 } 1716 EXPORT_SYMBOL(compat_import_iovec); 1717 #endif 1718 1719 int import_single_range(int rw, void __user *buf, size_t len, 1720 struct iovec *iov, struct iov_iter *i) 1721 { 1722 if (len > MAX_RW_COUNT) 1723 len = MAX_RW_COUNT; 1724 if (unlikely(!access_ok(buf, len))) 1725 return -EFAULT; 1726 1727 iov->iov_base = buf; 1728 iov->iov_len = len; 1729 iov_iter_init(i, rw, iov, 1, len); 1730 return 0; 1731 } 1732 EXPORT_SYMBOL(import_single_range); 1733 1734 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes, 1735 int (*f)(struct kvec *vec, void *context), 1736 void *context) 1737 { 1738 struct kvec w; 1739 int err = -EINVAL; 1740 if (!bytes) 1741 return 0; 1742 1743 iterate_all_kinds(i, bytes, v, -EINVAL, ({ 1744 w.iov_base = kmap(v.bv_page) + v.bv_offset; 1745 w.iov_len = v.bv_len; 1746 err = f(&w, context); 1747 kunmap(v.bv_page); 1748 err;}), ({ 1749 w = v; 1750 err = f(&w, context);}) 1751 ) 1752 return err; 1753 } 1754 EXPORT_SYMBOL(iov_iter_for_each_range); 1755