xref: /openbmc/linux/lib/iov_iter.c (revision f86f8d27)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
21 	size_t off = 0;						\
22 	size_t skip = i->iov_offset;				\
23 	do {							\
24 		len = min(n, __p->iov_len - skip);		\
25 		if (likely(len)) {				\
26 			base = __p->iov_base + skip;		\
27 			len -= (STEP);				\
28 			off += len;				\
29 			skip += len;				\
30 			n -= len;				\
31 			if (skip < __p->iov_len)		\
32 				break;				\
33 		}						\
34 		__p++;						\
35 		skip = 0;					\
36 	} while (n);						\
37 	i->iov_offset = skip;					\
38 	n = off;						\
39 }
40 
41 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
42 	size_t off = 0;						\
43 	unsigned skip = i->iov_offset;				\
44 	while (n) {						\
45 		unsigned offset = p->bv_offset + skip;		\
46 		unsigned left;					\
47 		void *kaddr = kmap_local_page(p->bv_page +	\
48 					offset / PAGE_SIZE);	\
49 		base = kaddr + offset % PAGE_SIZE;		\
50 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
51 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
52 		left = (STEP);					\
53 		kunmap_local(kaddr);				\
54 		len -= left;					\
55 		off += len;					\
56 		skip += len;					\
57 		if (skip == p->bv_len) {			\
58 			skip = 0;				\
59 			p++;					\
60 		}						\
61 		n -= len;					\
62 		if (left)					\
63 			break;					\
64 	}							\
65 	i->iov_offset = skip;					\
66 	n = off;						\
67 }
68 
69 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
70 	__label__ __out;					\
71 	size_t __off = 0;					\
72 	struct page *head = NULL;				\
73 	loff_t start = i->xarray_start + i->iov_offset;		\
74 	unsigned offset = start % PAGE_SIZE;			\
75 	pgoff_t index = start / PAGE_SIZE;			\
76 	int j;							\
77 								\
78 	XA_STATE(xas, i->xarray, index);			\
79 								\
80 	rcu_read_lock();					\
81 	xas_for_each(&xas, head, ULONG_MAX) {			\
82 		unsigned left;					\
83 		if (xas_retry(&xas, head))			\
84 			continue;				\
85 		if (WARN_ON(xa_is_value(head)))			\
86 			break;					\
87 		if (WARN_ON(PageHuge(head)))			\
88 			break;					\
89 		for (j = (head->index < index) ? index - head->index : 0; \
90 		     j < thp_nr_pages(head); j++) {		\
91 			void *kaddr = kmap_local_page(head + j);	\
92 			base = kaddr + offset;			\
93 			len = PAGE_SIZE - offset;		\
94 			len = min(n, len);			\
95 			left = (STEP);				\
96 			kunmap_local(kaddr);			\
97 			len -= left;				\
98 			__off += len;				\
99 			n -= len;				\
100 			if (left || n == 0)			\
101 				goto __out;			\
102 			offset = 0;				\
103 		}						\
104 	}							\
105 __out:								\
106 	rcu_read_unlock();					\
107 	i->iov_offset += __off;						\
108 	n = __off;						\
109 }
110 
111 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
112 	if (unlikely(i->count < n))				\
113 		n = i->count;					\
114 	if (likely(n)) {					\
115 		if (likely(iter_is_iovec(i))) {			\
116 			const struct iovec *iov = i->iov;	\
117 			void __user *base;			\
118 			size_t len;				\
119 			iterate_iovec(i, n, base, len, off,	\
120 						iov, (I))	\
121 			i->nr_segs -= iov - i->iov;		\
122 			i->iov = iov;				\
123 		} else if (iov_iter_is_bvec(i)) {		\
124 			const struct bio_vec *bvec = i->bvec;	\
125 			void *base;				\
126 			size_t len;				\
127 			iterate_bvec(i, n, base, len, off,	\
128 						bvec, (K))	\
129 			i->nr_segs -= bvec - i->bvec;		\
130 			i->bvec = bvec;				\
131 		} else if (iov_iter_is_kvec(i)) {		\
132 			const struct kvec *kvec = i->kvec;	\
133 			void *base;				\
134 			size_t len;				\
135 			iterate_iovec(i, n, base, len, off,	\
136 						kvec, (K))	\
137 			i->nr_segs -= kvec - i->kvec;		\
138 			i->kvec = kvec;				\
139 		} else if (iov_iter_is_xarray(i)) {		\
140 			void *base;				\
141 			size_t len;				\
142 			iterate_xarray(i, n, base, len, off,	\
143 							(K))	\
144 		}						\
145 		i->count -= n;					\
146 	}							\
147 }
148 #define iterate_and_advance(i, n, base, len, off, I, K) \
149 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
150 
151 static int copyout(void __user *to, const void *from, size_t n)
152 {
153 	if (should_fail_usercopy())
154 		return n;
155 	if (access_ok(to, n)) {
156 		instrument_copy_to_user(to, from, n);
157 		n = raw_copy_to_user(to, from, n);
158 	}
159 	return n;
160 }
161 
162 static int copyin(void *to, const void __user *from, size_t n)
163 {
164 	if (should_fail_usercopy())
165 		return n;
166 	if (access_ok(from, n)) {
167 		instrument_copy_from_user(to, from, n);
168 		n = raw_copy_from_user(to, from, n);
169 	}
170 	return n;
171 }
172 
173 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
174 			 struct iov_iter *i)
175 {
176 	size_t skip, copy, left, wanted;
177 	const struct iovec *iov;
178 	char __user *buf;
179 	void *kaddr, *from;
180 
181 	if (unlikely(bytes > i->count))
182 		bytes = i->count;
183 
184 	if (unlikely(!bytes))
185 		return 0;
186 
187 	might_fault();
188 	wanted = bytes;
189 	iov = i->iov;
190 	skip = i->iov_offset;
191 	buf = iov->iov_base + skip;
192 	copy = min(bytes, iov->iov_len - skip);
193 
194 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_writeable(buf, copy)) {
195 		kaddr = kmap_atomic(page);
196 		from = kaddr + offset;
197 
198 		/* first chunk, usually the only one */
199 		left = copyout(buf, from, copy);
200 		copy -= left;
201 		skip += copy;
202 		from += copy;
203 		bytes -= copy;
204 
205 		while (unlikely(!left && bytes)) {
206 			iov++;
207 			buf = iov->iov_base;
208 			copy = min(bytes, iov->iov_len);
209 			left = copyout(buf, from, copy);
210 			copy -= left;
211 			skip = copy;
212 			from += copy;
213 			bytes -= copy;
214 		}
215 		if (likely(!bytes)) {
216 			kunmap_atomic(kaddr);
217 			goto done;
218 		}
219 		offset = from - kaddr;
220 		buf += copy;
221 		kunmap_atomic(kaddr);
222 		copy = min(bytes, iov->iov_len - skip);
223 	}
224 	/* Too bad - revert to non-atomic kmap */
225 
226 	kaddr = kmap(page);
227 	from = kaddr + offset;
228 	left = copyout(buf, from, copy);
229 	copy -= left;
230 	skip += copy;
231 	from += copy;
232 	bytes -= copy;
233 	while (unlikely(!left && bytes)) {
234 		iov++;
235 		buf = iov->iov_base;
236 		copy = min(bytes, iov->iov_len);
237 		left = copyout(buf, from, copy);
238 		copy -= left;
239 		skip = copy;
240 		from += copy;
241 		bytes -= copy;
242 	}
243 	kunmap(page);
244 
245 done:
246 	if (skip == iov->iov_len) {
247 		iov++;
248 		skip = 0;
249 	}
250 	i->count -= wanted - bytes;
251 	i->nr_segs -= iov - i->iov;
252 	i->iov = iov;
253 	i->iov_offset = skip;
254 	return wanted - bytes;
255 }
256 
257 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
258 			 struct iov_iter *i)
259 {
260 	size_t skip, copy, left, wanted;
261 	const struct iovec *iov;
262 	char __user *buf;
263 	void *kaddr, *to;
264 
265 	if (unlikely(bytes > i->count))
266 		bytes = i->count;
267 
268 	if (unlikely(!bytes))
269 		return 0;
270 
271 	might_fault();
272 	wanted = bytes;
273 	iov = i->iov;
274 	skip = i->iov_offset;
275 	buf = iov->iov_base + skip;
276 	copy = min(bytes, iov->iov_len - skip);
277 
278 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_readable(buf, copy)) {
279 		kaddr = kmap_atomic(page);
280 		to = kaddr + offset;
281 
282 		/* first chunk, usually the only one */
283 		left = copyin(to, buf, copy);
284 		copy -= left;
285 		skip += copy;
286 		to += copy;
287 		bytes -= copy;
288 
289 		while (unlikely(!left && bytes)) {
290 			iov++;
291 			buf = iov->iov_base;
292 			copy = min(bytes, iov->iov_len);
293 			left = copyin(to, buf, copy);
294 			copy -= left;
295 			skip = copy;
296 			to += copy;
297 			bytes -= copy;
298 		}
299 		if (likely(!bytes)) {
300 			kunmap_atomic(kaddr);
301 			goto done;
302 		}
303 		offset = to - kaddr;
304 		buf += copy;
305 		kunmap_atomic(kaddr);
306 		copy = min(bytes, iov->iov_len - skip);
307 	}
308 	/* Too bad - revert to non-atomic kmap */
309 
310 	kaddr = kmap(page);
311 	to = kaddr + offset;
312 	left = copyin(to, buf, copy);
313 	copy -= left;
314 	skip += copy;
315 	to += copy;
316 	bytes -= copy;
317 	while (unlikely(!left && bytes)) {
318 		iov++;
319 		buf = iov->iov_base;
320 		copy = min(bytes, iov->iov_len);
321 		left = copyin(to, buf, copy);
322 		copy -= left;
323 		skip = copy;
324 		to += copy;
325 		bytes -= copy;
326 	}
327 	kunmap(page);
328 
329 done:
330 	if (skip == iov->iov_len) {
331 		iov++;
332 		skip = 0;
333 	}
334 	i->count -= wanted - bytes;
335 	i->nr_segs -= iov - i->iov;
336 	i->iov = iov;
337 	i->iov_offset = skip;
338 	return wanted - bytes;
339 }
340 
341 #ifdef PIPE_PARANOIA
342 static bool sanity(const struct iov_iter *i)
343 {
344 	struct pipe_inode_info *pipe = i->pipe;
345 	unsigned int p_head = pipe->head;
346 	unsigned int p_tail = pipe->tail;
347 	unsigned int p_mask = pipe->ring_size - 1;
348 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
349 	unsigned int i_head = i->head;
350 	unsigned int idx;
351 
352 	if (i->iov_offset) {
353 		struct pipe_buffer *p;
354 		if (unlikely(p_occupancy == 0))
355 			goto Bad;	// pipe must be non-empty
356 		if (unlikely(i_head != p_head - 1))
357 			goto Bad;	// must be at the last buffer...
358 
359 		p = &pipe->bufs[i_head & p_mask];
360 		if (unlikely(p->offset + p->len != i->iov_offset))
361 			goto Bad;	// ... at the end of segment
362 	} else {
363 		if (i_head != p_head)
364 			goto Bad;	// must be right after the last buffer
365 	}
366 	return true;
367 Bad:
368 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
369 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
370 			p_head, p_tail, pipe->ring_size);
371 	for (idx = 0; idx < pipe->ring_size; idx++)
372 		printk(KERN_ERR "[%p %p %d %d]\n",
373 			pipe->bufs[idx].ops,
374 			pipe->bufs[idx].page,
375 			pipe->bufs[idx].offset,
376 			pipe->bufs[idx].len);
377 	WARN_ON(1);
378 	return false;
379 }
380 #else
381 #define sanity(i) true
382 #endif
383 
384 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
385 			 struct iov_iter *i)
386 {
387 	struct pipe_inode_info *pipe = i->pipe;
388 	struct pipe_buffer *buf;
389 	unsigned int p_tail = pipe->tail;
390 	unsigned int p_mask = pipe->ring_size - 1;
391 	unsigned int i_head = i->head;
392 	size_t off;
393 
394 	if (unlikely(bytes > i->count))
395 		bytes = i->count;
396 
397 	if (unlikely(!bytes))
398 		return 0;
399 
400 	if (!sanity(i))
401 		return 0;
402 
403 	off = i->iov_offset;
404 	buf = &pipe->bufs[i_head & p_mask];
405 	if (off) {
406 		if (offset == off && buf->page == page) {
407 			/* merge with the last one */
408 			buf->len += bytes;
409 			i->iov_offset += bytes;
410 			goto out;
411 		}
412 		i_head++;
413 		buf = &pipe->bufs[i_head & p_mask];
414 	}
415 	if (pipe_full(i_head, p_tail, pipe->max_usage))
416 		return 0;
417 
418 	buf->ops = &page_cache_pipe_buf_ops;
419 	buf->flags = 0;
420 	get_page(page);
421 	buf->page = page;
422 	buf->offset = offset;
423 	buf->len = bytes;
424 
425 	pipe->head = i_head + 1;
426 	i->iov_offset = offset + bytes;
427 	i->head = i_head;
428 out:
429 	i->count -= bytes;
430 	return bytes;
431 }
432 
433 /*
434  * fault_in_iov_iter_readable - fault in iov iterator for reading
435  * @i: iterator
436  * @size: maximum length
437  *
438  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
439  * @size.  For each iovec, fault in each page that constitutes the iovec.
440  *
441  * Returns the number of bytes not faulted in (like copy_to_user() and
442  * copy_from_user()).
443  *
444  * Always returns 0 for non-userspace iterators.
445  */
446 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
447 {
448 	if (iter_is_iovec(i)) {
449 		size_t count = min(size, iov_iter_count(i));
450 		const struct iovec *p;
451 		size_t skip;
452 
453 		size -= count;
454 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
455 			size_t len = min(count, p->iov_len - skip);
456 			size_t ret;
457 
458 			if (unlikely(!len))
459 				continue;
460 			ret = fault_in_readable(p->iov_base + skip, len);
461 			count -= len - ret;
462 			if (ret)
463 				break;
464 		}
465 		return count + size;
466 	}
467 	return 0;
468 }
469 EXPORT_SYMBOL(fault_in_iov_iter_readable);
470 
471 /*
472  * fault_in_iov_iter_writeable - fault in iov iterator for writing
473  * @i: iterator
474  * @size: maximum length
475  *
476  * Faults in the iterator using get_user_pages(), i.e., without triggering
477  * hardware page faults.  This is primarily useful when we already know that
478  * some or all of the pages in @i aren't in memory.
479  *
480  * Returns the number of bytes not faulted in, like copy_to_user() and
481  * copy_from_user().
482  *
483  * Always returns 0 for non-user-space iterators.
484  */
485 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
486 {
487 	if (iter_is_iovec(i)) {
488 		size_t count = min(size, iov_iter_count(i));
489 		const struct iovec *p;
490 		size_t skip;
491 
492 		size -= count;
493 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
494 			size_t len = min(count, p->iov_len - skip);
495 			size_t ret;
496 
497 			if (unlikely(!len))
498 				continue;
499 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
500 			count -= len - ret;
501 			if (ret)
502 				break;
503 		}
504 		return count + size;
505 	}
506 	return 0;
507 }
508 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
509 
510 void iov_iter_init(struct iov_iter *i, unsigned int direction,
511 			const struct iovec *iov, unsigned long nr_segs,
512 			size_t count)
513 {
514 	WARN_ON(direction & ~(READ | WRITE));
515 	*i = (struct iov_iter) {
516 		.iter_type = ITER_IOVEC,
517 		.nofault = false,
518 		.data_source = direction,
519 		.iov = iov,
520 		.nr_segs = nr_segs,
521 		.iov_offset = 0,
522 		.count = count
523 	};
524 }
525 EXPORT_SYMBOL(iov_iter_init);
526 
527 static inline bool allocated(struct pipe_buffer *buf)
528 {
529 	return buf->ops == &default_pipe_buf_ops;
530 }
531 
532 static inline void data_start(const struct iov_iter *i,
533 			      unsigned int *iter_headp, size_t *offp)
534 {
535 	unsigned int p_mask = i->pipe->ring_size - 1;
536 	unsigned int iter_head = i->head;
537 	size_t off = i->iov_offset;
538 
539 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
540 		    off == PAGE_SIZE)) {
541 		iter_head++;
542 		off = 0;
543 	}
544 	*iter_headp = iter_head;
545 	*offp = off;
546 }
547 
548 static size_t push_pipe(struct iov_iter *i, size_t size,
549 			int *iter_headp, size_t *offp)
550 {
551 	struct pipe_inode_info *pipe = i->pipe;
552 	unsigned int p_tail = pipe->tail;
553 	unsigned int p_mask = pipe->ring_size - 1;
554 	unsigned int iter_head;
555 	size_t off;
556 	ssize_t left;
557 
558 	if (unlikely(size > i->count))
559 		size = i->count;
560 	if (unlikely(!size))
561 		return 0;
562 
563 	left = size;
564 	data_start(i, &iter_head, &off);
565 	*iter_headp = iter_head;
566 	*offp = off;
567 	if (off) {
568 		left -= PAGE_SIZE - off;
569 		if (left <= 0) {
570 			pipe->bufs[iter_head & p_mask].len += size;
571 			return size;
572 		}
573 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
574 		iter_head++;
575 	}
576 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
577 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
578 		struct page *page = alloc_page(GFP_USER);
579 		if (!page)
580 			break;
581 
582 		buf->ops = &default_pipe_buf_ops;
583 		buf->flags = 0;
584 		buf->page = page;
585 		buf->offset = 0;
586 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
587 		left -= buf->len;
588 		iter_head++;
589 		pipe->head = iter_head;
590 
591 		if (left == 0)
592 			return size;
593 	}
594 	return size - left;
595 }
596 
597 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
598 				struct iov_iter *i)
599 {
600 	struct pipe_inode_info *pipe = i->pipe;
601 	unsigned int p_mask = pipe->ring_size - 1;
602 	unsigned int i_head;
603 	size_t n, off;
604 
605 	if (!sanity(i))
606 		return 0;
607 
608 	bytes = n = push_pipe(i, bytes, &i_head, &off);
609 	if (unlikely(!n))
610 		return 0;
611 	do {
612 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
613 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
614 		i->head = i_head;
615 		i->iov_offset = off + chunk;
616 		n -= chunk;
617 		addr += chunk;
618 		off = 0;
619 		i_head++;
620 	} while (n);
621 	i->count -= bytes;
622 	return bytes;
623 }
624 
625 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
626 			      __wsum sum, size_t off)
627 {
628 	__wsum next = csum_partial_copy_nocheck(from, to, len);
629 	return csum_block_add(sum, next, off);
630 }
631 
632 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
633 					 struct iov_iter *i, __wsum *sump)
634 {
635 	struct pipe_inode_info *pipe = i->pipe;
636 	unsigned int p_mask = pipe->ring_size - 1;
637 	__wsum sum = *sump;
638 	size_t off = 0;
639 	unsigned int i_head;
640 	size_t r;
641 
642 	if (!sanity(i))
643 		return 0;
644 
645 	bytes = push_pipe(i, bytes, &i_head, &r);
646 	while (bytes) {
647 		size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
648 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
649 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
650 		kunmap_local(p);
651 		i->head = i_head;
652 		i->iov_offset = r + chunk;
653 		bytes -= chunk;
654 		off += chunk;
655 		r = 0;
656 		i_head++;
657 	}
658 	*sump = sum;
659 	i->count -= off;
660 	return off;
661 }
662 
663 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
664 {
665 	if (unlikely(iov_iter_is_pipe(i)))
666 		return copy_pipe_to_iter(addr, bytes, i);
667 	if (iter_is_iovec(i))
668 		might_fault();
669 	iterate_and_advance(i, bytes, base, len, off,
670 		copyout(base, addr + off, len),
671 		memcpy(base, addr + off, len)
672 	)
673 
674 	return bytes;
675 }
676 EXPORT_SYMBOL(_copy_to_iter);
677 
678 #ifdef CONFIG_ARCH_HAS_COPY_MC
679 static int copyout_mc(void __user *to, const void *from, size_t n)
680 {
681 	if (access_ok(to, n)) {
682 		instrument_copy_to_user(to, from, n);
683 		n = copy_mc_to_user((__force void *) to, from, n);
684 	}
685 	return n;
686 }
687 
688 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
689 				struct iov_iter *i)
690 {
691 	struct pipe_inode_info *pipe = i->pipe;
692 	unsigned int p_mask = pipe->ring_size - 1;
693 	unsigned int i_head;
694 	size_t n, off, xfer = 0;
695 
696 	if (!sanity(i))
697 		return 0;
698 
699 	n = push_pipe(i, bytes, &i_head, &off);
700 	while (n) {
701 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
702 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
703 		unsigned long rem;
704 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
705 		chunk -= rem;
706 		kunmap_local(p);
707 		i->head = i_head;
708 		i->iov_offset = off + chunk;
709 		xfer += chunk;
710 		if (rem)
711 			break;
712 		n -= chunk;
713 		off = 0;
714 		i_head++;
715 	}
716 	i->count -= xfer;
717 	return xfer;
718 }
719 
720 /**
721  * _copy_mc_to_iter - copy to iter with source memory error exception handling
722  * @addr: source kernel address
723  * @bytes: total transfer length
724  * @i: destination iterator
725  *
726  * The pmem driver deploys this for the dax operation
727  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
728  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
729  * successfully copied.
730  *
731  * The main differences between this and typical _copy_to_iter().
732  *
733  * * Typical tail/residue handling after a fault retries the copy
734  *   byte-by-byte until the fault happens again. Re-triggering machine
735  *   checks is potentially fatal so the implementation uses source
736  *   alignment and poison alignment assumptions to avoid re-triggering
737  *   hardware exceptions.
738  *
739  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
740  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
741  *   a short copy.
742  *
743  * Return: number of bytes copied (may be %0)
744  */
745 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
746 {
747 	if (unlikely(iov_iter_is_pipe(i)))
748 		return copy_mc_pipe_to_iter(addr, bytes, i);
749 	if (iter_is_iovec(i))
750 		might_fault();
751 	__iterate_and_advance(i, bytes, base, len, off,
752 		copyout_mc(base, addr + off, len),
753 		copy_mc_to_kernel(base, addr + off, len)
754 	)
755 
756 	return bytes;
757 }
758 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
759 #endif /* CONFIG_ARCH_HAS_COPY_MC */
760 
761 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
762 {
763 	if (unlikely(iov_iter_is_pipe(i))) {
764 		WARN_ON(1);
765 		return 0;
766 	}
767 	if (iter_is_iovec(i))
768 		might_fault();
769 	iterate_and_advance(i, bytes, base, len, off,
770 		copyin(addr + off, base, len),
771 		memcpy(addr + off, base, len)
772 	)
773 
774 	return bytes;
775 }
776 EXPORT_SYMBOL(_copy_from_iter);
777 
778 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
779 {
780 	if (unlikely(iov_iter_is_pipe(i))) {
781 		WARN_ON(1);
782 		return 0;
783 	}
784 	iterate_and_advance(i, bytes, base, len, off,
785 		__copy_from_user_inatomic_nocache(addr + off, base, len),
786 		memcpy(addr + off, base, len)
787 	)
788 
789 	return bytes;
790 }
791 EXPORT_SYMBOL(_copy_from_iter_nocache);
792 
793 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
794 /**
795  * _copy_from_iter_flushcache - write destination through cpu cache
796  * @addr: destination kernel address
797  * @bytes: total transfer length
798  * @i: source iterator
799  *
800  * The pmem driver arranges for filesystem-dax to use this facility via
801  * dax_copy_from_iter() for ensuring that writes to persistent memory
802  * are flushed through the CPU cache. It is differentiated from
803  * _copy_from_iter_nocache() in that guarantees all data is flushed for
804  * all iterator types. The _copy_from_iter_nocache() only attempts to
805  * bypass the cache for the ITER_IOVEC case, and on some archs may use
806  * instructions that strand dirty-data in the cache.
807  *
808  * Return: number of bytes copied (may be %0)
809  */
810 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
811 {
812 	if (unlikely(iov_iter_is_pipe(i))) {
813 		WARN_ON(1);
814 		return 0;
815 	}
816 	iterate_and_advance(i, bytes, base, len, off,
817 		__copy_from_user_flushcache(addr + off, base, len),
818 		memcpy_flushcache(addr + off, base, len)
819 	)
820 
821 	return bytes;
822 }
823 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
824 #endif
825 
826 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
827 {
828 	struct page *head;
829 	size_t v = n + offset;
830 
831 	/*
832 	 * The general case needs to access the page order in order
833 	 * to compute the page size.
834 	 * However, we mostly deal with order-0 pages and thus can
835 	 * avoid a possible cache line miss for requests that fit all
836 	 * page orders.
837 	 */
838 	if (n <= v && v <= PAGE_SIZE)
839 		return true;
840 
841 	head = compound_head(page);
842 	v += (page - head) << PAGE_SHIFT;
843 
844 	if (likely(n <= v && v <= (page_size(head))))
845 		return true;
846 	WARN_ON(1);
847 	return false;
848 }
849 
850 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
851 			 struct iov_iter *i)
852 {
853 	if (likely(iter_is_iovec(i)))
854 		return copy_page_to_iter_iovec(page, offset, bytes, i);
855 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
856 		void *kaddr = kmap_local_page(page);
857 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
858 		kunmap_local(kaddr);
859 		return wanted;
860 	}
861 	if (iov_iter_is_pipe(i))
862 		return copy_page_to_iter_pipe(page, offset, bytes, i);
863 	if (unlikely(iov_iter_is_discard(i))) {
864 		if (unlikely(i->count < bytes))
865 			bytes = i->count;
866 		i->count -= bytes;
867 		return bytes;
868 	}
869 	WARN_ON(1);
870 	return 0;
871 }
872 
873 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
874 			 struct iov_iter *i)
875 {
876 	size_t res = 0;
877 	if (unlikely(!page_copy_sane(page, offset, bytes)))
878 		return 0;
879 	page += offset / PAGE_SIZE; // first subpage
880 	offset %= PAGE_SIZE;
881 	while (1) {
882 		size_t n = __copy_page_to_iter(page, offset,
883 				min(bytes, (size_t)PAGE_SIZE - offset), i);
884 		res += n;
885 		bytes -= n;
886 		if (!bytes || !n)
887 			break;
888 		offset += n;
889 		if (offset == PAGE_SIZE) {
890 			page++;
891 			offset = 0;
892 		}
893 	}
894 	return res;
895 }
896 EXPORT_SYMBOL(copy_page_to_iter);
897 
898 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
899 			 struct iov_iter *i)
900 {
901 	if (unlikely(!page_copy_sane(page, offset, bytes)))
902 		return 0;
903 	if (likely(iter_is_iovec(i)))
904 		return copy_page_from_iter_iovec(page, offset, bytes, i);
905 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
906 		void *kaddr = kmap_local_page(page);
907 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
908 		kunmap_local(kaddr);
909 		return wanted;
910 	}
911 	WARN_ON(1);
912 	return 0;
913 }
914 EXPORT_SYMBOL(copy_page_from_iter);
915 
916 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
917 {
918 	struct pipe_inode_info *pipe = i->pipe;
919 	unsigned int p_mask = pipe->ring_size - 1;
920 	unsigned int i_head;
921 	size_t n, off;
922 
923 	if (!sanity(i))
924 		return 0;
925 
926 	bytes = n = push_pipe(i, bytes, &i_head, &off);
927 	if (unlikely(!n))
928 		return 0;
929 
930 	do {
931 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
932 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
933 		memset(p + off, 0, chunk);
934 		kunmap_local(p);
935 		i->head = i_head;
936 		i->iov_offset = off + chunk;
937 		n -= chunk;
938 		off = 0;
939 		i_head++;
940 	} while (n);
941 	i->count -= bytes;
942 	return bytes;
943 }
944 
945 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
946 {
947 	if (unlikely(iov_iter_is_pipe(i)))
948 		return pipe_zero(bytes, i);
949 	iterate_and_advance(i, bytes, base, len, count,
950 		clear_user(base, len),
951 		memset(base, 0, len)
952 	)
953 
954 	return bytes;
955 }
956 EXPORT_SYMBOL(iov_iter_zero);
957 
958 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
959 				  struct iov_iter *i)
960 {
961 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
962 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
963 		kunmap_atomic(kaddr);
964 		return 0;
965 	}
966 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
967 		kunmap_atomic(kaddr);
968 		WARN_ON(1);
969 		return 0;
970 	}
971 	iterate_and_advance(i, bytes, base, len, off,
972 		copyin(p + off, base, len),
973 		memcpy(p + off, base, len)
974 	)
975 	kunmap_atomic(kaddr);
976 	return bytes;
977 }
978 EXPORT_SYMBOL(copy_page_from_iter_atomic);
979 
980 static inline void pipe_truncate(struct iov_iter *i)
981 {
982 	struct pipe_inode_info *pipe = i->pipe;
983 	unsigned int p_tail = pipe->tail;
984 	unsigned int p_head = pipe->head;
985 	unsigned int p_mask = pipe->ring_size - 1;
986 
987 	if (!pipe_empty(p_head, p_tail)) {
988 		struct pipe_buffer *buf;
989 		unsigned int i_head = i->head;
990 		size_t off = i->iov_offset;
991 
992 		if (off) {
993 			buf = &pipe->bufs[i_head & p_mask];
994 			buf->len = off - buf->offset;
995 			i_head++;
996 		}
997 		while (p_head != i_head) {
998 			p_head--;
999 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1000 		}
1001 
1002 		pipe->head = p_head;
1003 	}
1004 }
1005 
1006 static void pipe_advance(struct iov_iter *i, size_t size)
1007 {
1008 	struct pipe_inode_info *pipe = i->pipe;
1009 	if (size) {
1010 		struct pipe_buffer *buf;
1011 		unsigned int p_mask = pipe->ring_size - 1;
1012 		unsigned int i_head = i->head;
1013 		size_t off = i->iov_offset, left = size;
1014 
1015 		if (off) /* make it relative to the beginning of buffer */
1016 			left += off - pipe->bufs[i_head & p_mask].offset;
1017 		while (1) {
1018 			buf = &pipe->bufs[i_head & p_mask];
1019 			if (left <= buf->len)
1020 				break;
1021 			left -= buf->len;
1022 			i_head++;
1023 		}
1024 		i->head = i_head;
1025 		i->iov_offset = buf->offset + left;
1026 	}
1027 	i->count -= size;
1028 	/* ... and discard everything past that point */
1029 	pipe_truncate(i);
1030 }
1031 
1032 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
1033 {
1034 	struct bvec_iter bi;
1035 
1036 	bi.bi_size = i->count;
1037 	bi.bi_bvec_done = i->iov_offset;
1038 	bi.bi_idx = 0;
1039 	bvec_iter_advance(i->bvec, &bi, size);
1040 
1041 	i->bvec += bi.bi_idx;
1042 	i->nr_segs -= bi.bi_idx;
1043 	i->count = bi.bi_size;
1044 	i->iov_offset = bi.bi_bvec_done;
1045 }
1046 
1047 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
1048 {
1049 	const struct iovec *iov, *end;
1050 
1051 	if (!i->count)
1052 		return;
1053 	i->count -= size;
1054 
1055 	size += i->iov_offset; // from beginning of current segment
1056 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1057 		if (likely(size < iov->iov_len))
1058 			break;
1059 		size -= iov->iov_len;
1060 	}
1061 	i->iov_offset = size;
1062 	i->nr_segs -= iov - i->iov;
1063 	i->iov = iov;
1064 }
1065 
1066 void iov_iter_advance(struct iov_iter *i, size_t size)
1067 {
1068 	if (unlikely(i->count < size))
1069 		size = i->count;
1070 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1071 		/* iovec and kvec have identical layouts */
1072 		iov_iter_iovec_advance(i, size);
1073 	} else if (iov_iter_is_bvec(i)) {
1074 		iov_iter_bvec_advance(i, size);
1075 	} else if (iov_iter_is_pipe(i)) {
1076 		pipe_advance(i, size);
1077 	} else if (unlikely(iov_iter_is_xarray(i))) {
1078 		i->iov_offset += size;
1079 		i->count -= size;
1080 	} else if (iov_iter_is_discard(i)) {
1081 		i->count -= size;
1082 	}
1083 }
1084 EXPORT_SYMBOL(iov_iter_advance);
1085 
1086 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1087 {
1088 	if (!unroll)
1089 		return;
1090 	if (WARN_ON(unroll > MAX_RW_COUNT))
1091 		return;
1092 	i->count += unroll;
1093 	if (unlikely(iov_iter_is_pipe(i))) {
1094 		struct pipe_inode_info *pipe = i->pipe;
1095 		unsigned int p_mask = pipe->ring_size - 1;
1096 		unsigned int i_head = i->head;
1097 		size_t off = i->iov_offset;
1098 		while (1) {
1099 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1100 			size_t n = off - b->offset;
1101 			if (unroll < n) {
1102 				off -= unroll;
1103 				break;
1104 			}
1105 			unroll -= n;
1106 			if (!unroll && i_head == i->start_head) {
1107 				off = 0;
1108 				break;
1109 			}
1110 			i_head--;
1111 			b = &pipe->bufs[i_head & p_mask];
1112 			off = b->offset + b->len;
1113 		}
1114 		i->iov_offset = off;
1115 		i->head = i_head;
1116 		pipe_truncate(i);
1117 		return;
1118 	}
1119 	if (unlikely(iov_iter_is_discard(i)))
1120 		return;
1121 	if (unroll <= i->iov_offset) {
1122 		i->iov_offset -= unroll;
1123 		return;
1124 	}
1125 	unroll -= i->iov_offset;
1126 	if (iov_iter_is_xarray(i)) {
1127 		BUG(); /* We should never go beyond the start of the specified
1128 			* range since we might then be straying into pages that
1129 			* aren't pinned.
1130 			*/
1131 	} else if (iov_iter_is_bvec(i)) {
1132 		const struct bio_vec *bvec = i->bvec;
1133 		while (1) {
1134 			size_t n = (--bvec)->bv_len;
1135 			i->nr_segs++;
1136 			if (unroll <= n) {
1137 				i->bvec = bvec;
1138 				i->iov_offset = n - unroll;
1139 				return;
1140 			}
1141 			unroll -= n;
1142 		}
1143 	} else { /* same logics for iovec and kvec */
1144 		const struct iovec *iov = i->iov;
1145 		while (1) {
1146 			size_t n = (--iov)->iov_len;
1147 			i->nr_segs++;
1148 			if (unroll <= n) {
1149 				i->iov = iov;
1150 				i->iov_offset = n - unroll;
1151 				return;
1152 			}
1153 			unroll -= n;
1154 		}
1155 	}
1156 }
1157 EXPORT_SYMBOL(iov_iter_revert);
1158 
1159 /*
1160  * Return the count of just the current iov_iter segment.
1161  */
1162 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1163 {
1164 	if (i->nr_segs > 1) {
1165 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1166 			return min(i->count, i->iov->iov_len - i->iov_offset);
1167 		if (iov_iter_is_bvec(i))
1168 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1169 	}
1170 	return i->count;
1171 }
1172 EXPORT_SYMBOL(iov_iter_single_seg_count);
1173 
1174 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1175 			const struct kvec *kvec, unsigned long nr_segs,
1176 			size_t count)
1177 {
1178 	WARN_ON(direction & ~(READ | WRITE));
1179 	*i = (struct iov_iter){
1180 		.iter_type = ITER_KVEC,
1181 		.data_source = direction,
1182 		.kvec = kvec,
1183 		.nr_segs = nr_segs,
1184 		.iov_offset = 0,
1185 		.count = count
1186 	};
1187 }
1188 EXPORT_SYMBOL(iov_iter_kvec);
1189 
1190 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1191 			const struct bio_vec *bvec, unsigned long nr_segs,
1192 			size_t count)
1193 {
1194 	WARN_ON(direction & ~(READ | WRITE));
1195 	*i = (struct iov_iter){
1196 		.iter_type = ITER_BVEC,
1197 		.data_source = direction,
1198 		.bvec = bvec,
1199 		.nr_segs = nr_segs,
1200 		.iov_offset = 0,
1201 		.count = count
1202 	};
1203 }
1204 EXPORT_SYMBOL(iov_iter_bvec);
1205 
1206 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1207 			struct pipe_inode_info *pipe,
1208 			size_t count)
1209 {
1210 	BUG_ON(direction != READ);
1211 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1212 	*i = (struct iov_iter){
1213 		.iter_type = ITER_PIPE,
1214 		.data_source = false,
1215 		.pipe = pipe,
1216 		.head = pipe->head,
1217 		.start_head = pipe->head,
1218 		.iov_offset = 0,
1219 		.count = count
1220 	};
1221 }
1222 EXPORT_SYMBOL(iov_iter_pipe);
1223 
1224 /**
1225  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1226  * @i: The iterator to initialise.
1227  * @direction: The direction of the transfer.
1228  * @xarray: The xarray to access.
1229  * @start: The start file position.
1230  * @count: The size of the I/O buffer in bytes.
1231  *
1232  * Set up an I/O iterator to either draw data out of the pages attached to an
1233  * inode or to inject data into those pages.  The pages *must* be prevented
1234  * from evaporation, either by taking a ref on them or locking them by the
1235  * caller.
1236  */
1237 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1238 		     struct xarray *xarray, loff_t start, size_t count)
1239 {
1240 	BUG_ON(direction & ~1);
1241 	*i = (struct iov_iter) {
1242 		.iter_type = ITER_XARRAY,
1243 		.data_source = direction,
1244 		.xarray = xarray,
1245 		.xarray_start = start,
1246 		.count = count,
1247 		.iov_offset = 0
1248 	};
1249 }
1250 EXPORT_SYMBOL(iov_iter_xarray);
1251 
1252 /**
1253  * iov_iter_discard - Initialise an I/O iterator that discards data
1254  * @i: The iterator to initialise.
1255  * @direction: The direction of the transfer.
1256  * @count: The size of the I/O buffer in bytes.
1257  *
1258  * Set up an I/O iterator that just discards everything that's written to it.
1259  * It's only available as a READ iterator.
1260  */
1261 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1262 {
1263 	BUG_ON(direction != READ);
1264 	*i = (struct iov_iter){
1265 		.iter_type = ITER_DISCARD,
1266 		.data_source = false,
1267 		.count = count,
1268 		.iov_offset = 0
1269 	};
1270 }
1271 EXPORT_SYMBOL(iov_iter_discard);
1272 
1273 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1274 {
1275 	unsigned long res = 0;
1276 	size_t size = i->count;
1277 	size_t skip = i->iov_offset;
1278 	unsigned k;
1279 
1280 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1281 		size_t len = i->iov[k].iov_len - skip;
1282 		if (len) {
1283 			res |= (unsigned long)i->iov[k].iov_base + skip;
1284 			if (len > size)
1285 				len = size;
1286 			res |= len;
1287 			size -= len;
1288 			if (!size)
1289 				break;
1290 		}
1291 	}
1292 	return res;
1293 }
1294 
1295 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1296 {
1297 	unsigned res = 0;
1298 	size_t size = i->count;
1299 	unsigned skip = i->iov_offset;
1300 	unsigned k;
1301 
1302 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1303 		size_t len = i->bvec[k].bv_len - skip;
1304 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1305 		if (len > size)
1306 			len = size;
1307 		res |= len;
1308 		size -= len;
1309 		if (!size)
1310 			break;
1311 	}
1312 	return res;
1313 }
1314 
1315 unsigned long iov_iter_alignment(const struct iov_iter *i)
1316 {
1317 	/* iovec and kvec have identical layouts */
1318 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1319 		return iov_iter_alignment_iovec(i);
1320 
1321 	if (iov_iter_is_bvec(i))
1322 		return iov_iter_alignment_bvec(i);
1323 
1324 	if (iov_iter_is_pipe(i)) {
1325 		unsigned int p_mask = i->pipe->ring_size - 1;
1326 		size_t size = i->count;
1327 
1328 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1329 			return size | i->iov_offset;
1330 		return size;
1331 	}
1332 
1333 	if (iov_iter_is_xarray(i))
1334 		return (i->xarray_start + i->iov_offset) | i->count;
1335 
1336 	return 0;
1337 }
1338 EXPORT_SYMBOL(iov_iter_alignment);
1339 
1340 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1341 {
1342 	unsigned long res = 0;
1343 	unsigned long v = 0;
1344 	size_t size = i->count;
1345 	unsigned k;
1346 
1347 	if (WARN_ON(!iter_is_iovec(i)))
1348 		return ~0U;
1349 
1350 	for (k = 0; k < i->nr_segs; k++) {
1351 		if (i->iov[k].iov_len) {
1352 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1353 			if (v) // if not the first one
1354 				res |= base | v; // this start | previous end
1355 			v = base + i->iov[k].iov_len;
1356 			if (size <= i->iov[k].iov_len)
1357 				break;
1358 			size -= i->iov[k].iov_len;
1359 		}
1360 	}
1361 	return res;
1362 }
1363 EXPORT_SYMBOL(iov_iter_gap_alignment);
1364 
1365 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1366 				size_t maxsize,
1367 				struct page **pages,
1368 				int iter_head,
1369 				size_t *start)
1370 {
1371 	struct pipe_inode_info *pipe = i->pipe;
1372 	unsigned int p_mask = pipe->ring_size - 1;
1373 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1374 	if (!n)
1375 		return -EFAULT;
1376 
1377 	maxsize = n;
1378 	n += *start;
1379 	while (n > 0) {
1380 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1381 		iter_head++;
1382 		n -= PAGE_SIZE;
1383 	}
1384 
1385 	return maxsize;
1386 }
1387 
1388 static ssize_t pipe_get_pages(struct iov_iter *i,
1389 		   struct page **pages, size_t maxsize, unsigned maxpages,
1390 		   size_t *start)
1391 {
1392 	unsigned int iter_head, npages;
1393 	size_t capacity;
1394 
1395 	if (!sanity(i))
1396 		return -EFAULT;
1397 
1398 	data_start(i, &iter_head, start);
1399 	/* Amount of free space: some of this one + all after this one */
1400 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1401 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1402 
1403 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1404 }
1405 
1406 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1407 					  pgoff_t index, unsigned int nr_pages)
1408 {
1409 	XA_STATE(xas, xa, index);
1410 	struct page *page;
1411 	unsigned int ret = 0;
1412 
1413 	rcu_read_lock();
1414 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1415 		if (xas_retry(&xas, page))
1416 			continue;
1417 
1418 		/* Has the page moved or been split? */
1419 		if (unlikely(page != xas_reload(&xas))) {
1420 			xas_reset(&xas);
1421 			continue;
1422 		}
1423 
1424 		pages[ret] = find_subpage(page, xas.xa_index);
1425 		get_page(pages[ret]);
1426 		if (++ret == nr_pages)
1427 			break;
1428 	}
1429 	rcu_read_unlock();
1430 	return ret;
1431 }
1432 
1433 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1434 				     struct page **pages, size_t maxsize,
1435 				     unsigned maxpages, size_t *_start_offset)
1436 {
1437 	unsigned nr, offset;
1438 	pgoff_t index, count;
1439 	size_t size = maxsize, actual;
1440 	loff_t pos;
1441 
1442 	if (!size || !maxpages)
1443 		return 0;
1444 
1445 	pos = i->xarray_start + i->iov_offset;
1446 	index = pos >> PAGE_SHIFT;
1447 	offset = pos & ~PAGE_MASK;
1448 	*_start_offset = offset;
1449 
1450 	count = 1;
1451 	if (size > PAGE_SIZE - offset) {
1452 		size -= PAGE_SIZE - offset;
1453 		count += size >> PAGE_SHIFT;
1454 		size &= ~PAGE_MASK;
1455 		if (size)
1456 			count++;
1457 	}
1458 
1459 	if (count > maxpages)
1460 		count = maxpages;
1461 
1462 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1463 	if (nr == 0)
1464 		return 0;
1465 
1466 	actual = PAGE_SIZE * nr;
1467 	actual -= offset;
1468 	if (nr == count && size > 0) {
1469 		unsigned last_offset = (nr > 1) ? 0 : offset;
1470 		actual -= PAGE_SIZE - (last_offset + size);
1471 	}
1472 	return actual;
1473 }
1474 
1475 /* must be done on non-empty ITER_IOVEC one */
1476 static unsigned long first_iovec_segment(const struct iov_iter *i,
1477 					 size_t *size, size_t *start,
1478 					 size_t maxsize, unsigned maxpages)
1479 {
1480 	size_t skip;
1481 	long k;
1482 
1483 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1484 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1485 		size_t len = i->iov[k].iov_len - skip;
1486 
1487 		if (unlikely(!len))
1488 			continue;
1489 		if (len > maxsize)
1490 			len = maxsize;
1491 		len += (*start = addr % PAGE_SIZE);
1492 		if (len > maxpages * PAGE_SIZE)
1493 			len = maxpages * PAGE_SIZE;
1494 		*size = len;
1495 		return addr & PAGE_MASK;
1496 	}
1497 	BUG(); // if it had been empty, we wouldn't get called
1498 }
1499 
1500 /* must be done on non-empty ITER_BVEC one */
1501 static struct page *first_bvec_segment(const struct iov_iter *i,
1502 				       size_t *size, size_t *start,
1503 				       size_t maxsize, unsigned maxpages)
1504 {
1505 	struct page *page;
1506 	size_t skip = i->iov_offset, len;
1507 
1508 	len = i->bvec->bv_len - skip;
1509 	if (len > maxsize)
1510 		len = maxsize;
1511 	skip += i->bvec->bv_offset;
1512 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1513 	len += (*start = skip % PAGE_SIZE);
1514 	if (len > maxpages * PAGE_SIZE)
1515 		len = maxpages * PAGE_SIZE;
1516 	*size = len;
1517 	return page;
1518 }
1519 
1520 ssize_t iov_iter_get_pages(struct iov_iter *i,
1521 		   struct page **pages, size_t maxsize, unsigned maxpages,
1522 		   size_t *start)
1523 {
1524 	size_t len;
1525 	int n, res;
1526 
1527 	if (maxsize > i->count)
1528 		maxsize = i->count;
1529 	if (!maxsize)
1530 		return 0;
1531 
1532 	if (likely(iter_is_iovec(i))) {
1533 		unsigned int gup_flags = 0;
1534 		unsigned long addr;
1535 
1536 		if (iov_iter_rw(i) != WRITE)
1537 			gup_flags |= FOLL_WRITE;
1538 		if (i->nofault)
1539 			gup_flags |= FOLL_NOFAULT;
1540 
1541 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1542 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1543 		res = get_user_pages_fast(addr, n, gup_flags, pages);
1544 		if (unlikely(res <= 0))
1545 			return res;
1546 		return (res == n ? len : res * PAGE_SIZE) - *start;
1547 	}
1548 	if (iov_iter_is_bvec(i)) {
1549 		struct page *page;
1550 
1551 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1552 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1553 		while (n--)
1554 			get_page(*pages++ = page++);
1555 		return len - *start;
1556 	}
1557 	if (iov_iter_is_pipe(i))
1558 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1559 	if (iov_iter_is_xarray(i))
1560 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1561 	return -EFAULT;
1562 }
1563 EXPORT_SYMBOL(iov_iter_get_pages);
1564 
1565 static struct page **get_pages_array(size_t n)
1566 {
1567 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1568 }
1569 
1570 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1571 		   struct page ***pages, size_t maxsize,
1572 		   size_t *start)
1573 {
1574 	struct page **p;
1575 	unsigned int iter_head, npages;
1576 	ssize_t n;
1577 
1578 	if (!sanity(i))
1579 		return -EFAULT;
1580 
1581 	data_start(i, &iter_head, start);
1582 	/* Amount of free space: some of this one + all after this one */
1583 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1584 	n = npages * PAGE_SIZE - *start;
1585 	if (maxsize > n)
1586 		maxsize = n;
1587 	else
1588 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1589 	p = get_pages_array(npages);
1590 	if (!p)
1591 		return -ENOMEM;
1592 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1593 	if (n > 0)
1594 		*pages = p;
1595 	else
1596 		kvfree(p);
1597 	return n;
1598 }
1599 
1600 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1601 					   struct page ***pages, size_t maxsize,
1602 					   size_t *_start_offset)
1603 {
1604 	struct page **p;
1605 	unsigned nr, offset;
1606 	pgoff_t index, count;
1607 	size_t size = maxsize, actual;
1608 	loff_t pos;
1609 
1610 	if (!size)
1611 		return 0;
1612 
1613 	pos = i->xarray_start + i->iov_offset;
1614 	index = pos >> PAGE_SHIFT;
1615 	offset = pos & ~PAGE_MASK;
1616 	*_start_offset = offset;
1617 
1618 	count = 1;
1619 	if (size > PAGE_SIZE - offset) {
1620 		size -= PAGE_SIZE - offset;
1621 		count += size >> PAGE_SHIFT;
1622 		size &= ~PAGE_MASK;
1623 		if (size)
1624 			count++;
1625 	}
1626 
1627 	p = get_pages_array(count);
1628 	if (!p)
1629 		return -ENOMEM;
1630 	*pages = p;
1631 
1632 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1633 	if (nr == 0)
1634 		return 0;
1635 
1636 	actual = PAGE_SIZE * nr;
1637 	actual -= offset;
1638 	if (nr == count && size > 0) {
1639 		unsigned last_offset = (nr > 1) ? 0 : offset;
1640 		actual -= PAGE_SIZE - (last_offset + size);
1641 	}
1642 	return actual;
1643 }
1644 
1645 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1646 		   struct page ***pages, size_t maxsize,
1647 		   size_t *start)
1648 {
1649 	struct page **p;
1650 	size_t len;
1651 	int n, res;
1652 
1653 	if (maxsize > i->count)
1654 		maxsize = i->count;
1655 	if (!maxsize)
1656 		return 0;
1657 
1658 	if (likely(iter_is_iovec(i))) {
1659 		unsigned int gup_flags = 0;
1660 		unsigned long addr;
1661 
1662 		if (iov_iter_rw(i) != WRITE)
1663 			gup_flags |= FOLL_WRITE;
1664 		if (i->nofault)
1665 			gup_flags |= FOLL_NOFAULT;
1666 
1667 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1668 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1669 		p = get_pages_array(n);
1670 		if (!p)
1671 			return -ENOMEM;
1672 		res = get_user_pages_fast(addr, n, gup_flags, p);
1673 		if (unlikely(res <= 0)) {
1674 			kvfree(p);
1675 			*pages = NULL;
1676 			return res;
1677 		}
1678 		*pages = p;
1679 		return (res == n ? len : res * PAGE_SIZE) - *start;
1680 	}
1681 	if (iov_iter_is_bvec(i)) {
1682 		struct page *page;
1683 
1684 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1685 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1686 		*pages = p = get_pages_array(n);
1687 		if (!p)
1688 			return -ENOMEM;
1689 		while (n--)
1690 			get_page(*p++ = page++);
1691 		return len - *start;
1692 	}
1693 	if (iov_iter_is_pipe(i))
1694 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1695 	if (iov_iter_is_xarray(i))
1696 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1697 	return -EFAULT;
1698 }
1699 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1700 
1701 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1702 			       struct iov_iter *i)
1703 {
1704 	__wsum sum, next;
1705 	sum = *csum;
1706 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1707 		WARN_ON(1);
1708 		return 0;
1709 	}
1710 	iterate_and_advance(i, bytes, base, len, off, ({
1711 		next = csum_and_copy_from_user(base, addr + off, len);
1712 		sum = csum_block_add(sum, next, off);
1713 		next ? 0 : len;
1714 	}), ({
1715 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1716 	})
1717 	)
1718 	*csum = sum;
1719 	return bytes;
1720 }
1721 EXPORT_SYMBOL(csum_and_copy_from_iter);
1722 
1723 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1724 			     struct iov_iter *i)
1725 {
1726 	struct csum_state *csstate = _csstate;
1727 	__wsum sum, next;
1728 
1729 	if (unlikely(iov_iter_is_discard(i))) {
1730 		WARN_ON(1);	/* for now */
1731 		return 0;
1732 	}
1733 
1734 	sum = csum_shift(csstate->csum, csstate->off);
1735 	if (unlikely(iov_iter_is_pipe(i)))
1736 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1737 	else iterate_and_advance(i, bytes, base, len, off, ({
1738 		next = csum_and_copy_to_user(addr + off, base, len);
1739 		sum = csum_block_add(sum, next, off);
1740 		next ? 0 : len;
1741 	}), ({
1742 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1743 	})
1744 	)
1745 	csstate->csum = csum_shift(sum, csstate->off);
1746 	csstate->off += bytes;
1747 	return bytes;
1748 }
1749 EXPORT_SYMBOL(csum_and_copy_to_iter);
1750 
1751 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1752 		struct iov_iter *i)
1753 {
1754 #ifdef CONFIG_CRYPTO_HASH
1755 	struct ahash_request *hash = hashp;
1756 	struct scatterlist sg;
1757 	size_t copied;
1758 
1759 	copied = copy_to_iter(addr, bytes, i);
1760 	sg_init_one(&sg, addr, copied);
1761 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1762 	crypto_ahash_update(hash);
1763 	return copied;
1764 #else
1765 	return 0;
1766 #endif
1767 }
1768 EXPORT_SYMBOL(hash_and_copy_to_iter);
1769 
1770 static int iov_npages(const struct iov_iter *i, int maxpages)
1771 {
1772 	size_t skip = i->iov_offset, size = i->count;
1773 	const struct iovec *p;
1774 	int npages = 0;
1775 
1776 	for (p = i->iov; size; skip = 0, p++) {
1777 		unsigned offs = offset_in_page(p->iov_base + skip);
1778 		size_t len = min(p->iov_len - skip, size);
1779 
1780 		if (len) {
1781 			size -= len;
1782 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1783 			if (unlikely(npages > maxpages))
1784 				return maxpages;
1785 		}
1786 	}
1787 	return npages;
1788 }
1789 
1790 static int bvec_npages(const struct iov_iter *i, int maxpages)
1791 {
1792 	size_t skip = i->iov_offset, size = i->count;
1793 	const struct bio_vec *p;
1794 	int npages = 0;
1795 
1796 	for (p = i->bvec; size; skip = 0, p++) {
1797 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1798 		size_t len = min(p->bv_len - skip, size);
1799 
1800 		size -= len;
1801 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1802 		if (unlikely(npages > maxpages))
1803 			return maxpages;
1804 	}
1805 	return npages;
1806 }
1807 
1808 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1809 {
1810 	if (unlikely(!i->count))
1811 		return 0;
1812 	/* iovec and kvec have identical layouts */
1813 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1814 		return iov_npages(i, maxpages);
1815 	if (iov_iter_is_bvec(i))
1816 		return bvec_npages(i, maxpages);
1817 	if (iov_iter_is_pipe(i)) {
1818 		unsigned int iter_head;
1819 		int npages;
1820 		size_t off;
1821 
1822 		if (!sanity(i))
1823 			return 0;
1824 
1825 		data_start(i, &iter_head, &off);
1826 		/* some of this one + all after this one */
1827 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1828 		return min(npages, maxpages);
1829 	}
1830 	if (iov_iter_is_xarray(i)) {
1831 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1832 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1833 		return min(npages, maxpages);
1834 	}
1835 	return 0;
1836 }
1837 EXPORT_SYMBOL(iov_iter_npages);
1838 
1839 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1840 {
1841 	*new = *old;
1842 	if (unlikely(iov_iter_is_pipe(new))) {
1843 		WARN_ON(1);
1844 		return NULL;
1845 	}
1846 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1847 		return NULL;
1848 	if (iov_iter_is_bvec(new))
1849 		return new->bvec = kmemdup(new->bvec,
1850 				    new->nr_segs * sizeof(struct bio_vec),
1851 				    flags);
1852 	else
1853 		/* iovec and kvec have identical layout */
1854 		return new->iov = kmemdup(new->iov,
1855 				   new->nr_segs * sizeof(struct iovec),
1856 				   flags);
1857 }
1858 EXPORT_SYMBOL(dup_iter);
1859 
1860 static int copy_compat_iovec_from_user(struct iovec *iov,
1861 		const struct iovec __user *uvec, unsigned long nr_segs)
1862 {
1863 	const struct compat_iovec __user *uiov =
1864 		(const struct compat_iovec __user *)uvec;
1865 	int ret = -EFAULT, i;
1866 
1867 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1868 		return -EFAULT;
1869 
1870 	for (i = 0; i < nr_segs; i++) {
1871 		compat_uptr_t buf;
1872 		compat_ssize_t len;
1873 
1874 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1875 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1876 
1877 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1878 		if (len < 0) {
1879 			ret = -EINVAL;
1880 			goto uaccess_end;
1881 		}
1882 		iov[i].iov_base = compat_ptr(buf);
1883 		iov[i].iov_len = len;
1884 	}
1885 
1886 	ret = 0;
1887 uaccess_end:
1888 	user_access_end();
1889 	return ret;
1890 }
1891 
1892 static int copy_iovec_from_user(struct iovec *iov,
1893 		const struct iovec __user *uvec, unsigned long nr_segs)
1894 {
1895 	unsigned long seg;
1896 
1897 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1898 		return -EFAULT;
1899 	for (seg = 0; seg < nr_segs; seg++) {
1900 		if ((ssize_t)iov[seg].iov_len < 0)
1901 			return -EINVAL;
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1908 		unsigned long nr_segs, unsigned long fast_segs,
1909 		struct iovec *fast_iov, bool compat)
1910 {
1911 	struct iovec *iov = fast_iov;
1912 	int ret;
1913 
1914 	/*
1915 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1916 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1917 	 * traditionally returned zero for zero segments, so...
1918 	 */
1919 	if (nr_segs == 0)
1920 		return iov;
1921 	if (nr_segs > UIO_MAXIOV)
1922 		return ERR_PTR(-EINVAL);
1923 	if (nr_segs > fast_segs) {
1924 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1925 		if (!iov)
1926 			return ERR_PTR(-ENOMEM);
1927 	}
1928 
1929 	if (compat)
1930 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1931 	else
1932 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1933 	if (ret) {
1934 		if (iov != fast_iov)
1935 			kfree(iov);
1936 		return ERR_PTR(ret);
1937 	}
1938 
1939 	return iov;
1940 }
1941 
1942 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1943 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1944 		 struct iov_iter *i, bool compat)
1945 {
1946 	ssize_t total_len = 0;
1947 	unsigned long seg;
1948 	struct iovec *iov;
1949 
1950 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1951 	if (IS_ERR(iov)) {
1952 		*iovp = NULL;
1953 		return PTR_ERR(iov);
1954 	}
1955 
1956 	/*
1957 	 * According to the Single Unix Specification we should return EINVAL if
1958 	 * an element length is < 0 when cast to ssize_t or if the total length
1959 	 * would overflow the ssize_t return value of the system call.
1960 	 *
1961 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1962 	 * overflow case.
1963 	 */
1964 	for (seg = 0; seg < nr_segs; seg++) {
1965 		ssize_t len = (ssize_t)iov[seg].iov_len;
1966 
1967 		if (!access_ok(iov[seg].iov_base, len)) {
1968 			if (iov != *iovp)
1969 				kfree(iov);
1970 			*iovp = NULL;
1971 			return -EFAULT;
1972 		}
1973 
1974 		if (len > MAX_RW_COUNT - total_len) {
1975 			len = MAX_RW_COUNT - total_len;
1976 			iov[seg].iov_len = len;
1977 		}
1978 		total_len += len;
1979 	}
1980 
1981 	iov_iter_init(i, type, iov, nr_segs, total_len);
1982 	if (iov == *iovp)
1983 		*iovp = NULL;
1984 	else
1985 		*iovp = iov;
1986 	return total_len;
1987 }
1988 
1989 /**
1990  * import_iovec() - Copy an array of &struct iovec from userspace
1991  *     into the kernel, check that it is valid, and initialize a new
1992  *     &struct iov_iter iterator to access it.
1993  *
1994  * @type: One of %READ or %WRITE.
1995  * @uvec: Pointer to the userspace array.
1996  * @nr_segs: Number of elements in userspace array.
1997  * @fast_segs: Number of elements in @iov.
1998  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1999  *     on-stack) kernel array.
2000  * @i: Pointer to iterator that will be initialized on success.
2001  *
2002  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
2003  * then this function places %NULL in *@iov on return. Otherwise, a new
2004  * array will be allocated and the result placed in *@iov. This means that
2005  * the caller may call kfree() on *@iov regardless of whether the small
2006  * on-stack array was used or not (and regardless of whether this function
2007  * returns an error or not).
2008  *
2009  * Return: Negative error code on error, bytes imported on success
2010  */
2011 ssize_t import_iovec(int type, const struct iovec __user *uvec,
2012 		 unsigned nr_segs, unsigned fast_segs,
2013 		 struct iovec **iovp, struct iov_iter *i)
2014 {
2015 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
2016 			      in_compat_syscall());
2017 }
2018 EXPORT_SYMBOL(import_iovec);
2019 
2020 int import_single_range(int rw, void __user *buf, size_t len,
2021 		 struct iovec *iov, struct iov_iter *i)
2022 {
2023 	if (len > MAX_RW_COUNT)
2024 		len = MAX_RW_COUNT;
2025 	if (unlikely(!access_ok(buf, len)))
2026 		return -EFAULT;
2027 
2028 	iov->iov_base = buf;
2029 	iov->iov_len = len;
2030 	iov_iter_init(i, rw, iov, 1, len);
2031 	return 0;
2032 }
2033 EXPORT_SYMBOL(import_single_range);
2034 
2035 /**
2036  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
2037  *     iov_iter_save_state() was called.
2038  *
2039  * @i: &struct iov_iter to restore
2040  * @state: state to restore from
2041  *
2042  * Used after iov_iter_save_state() to bring restore @i, if operations may
2043  * have advanced it.
2044  *
2045  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
2046  */
2047 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
2048 {
2049 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
2050 			 !iov_iter_is_kvec(i))
2051 		return;
2052 	i->iov_offset = state->iov_offset;
2053 	i->count = state->count;
2054 	/*
2055 	 * For the *vec iters, nr_segs + iov is constant - if we increment
2056 	 * the vec, then we also decrement the nr_segs count. Hence we don't
2057 	 * need to track both of these, just one is enough and we can deduct
2058 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
2059 	 * size, so we can just increment the iov pointer as they are unionzed.
2060 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
2061 	 * not. Be safe and handle it separately.
2062 	 */
2063 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
2064 	if (iov_iter_is_bvec(i))
2065 		i->bvec -= state->nr_segs - i->nr_segs;
2066 	else
2067 		i->iov -= state->nr_segs - i->nr_segs;
2068 	i->nr_segs = state->nr_segs;
2069 }
2070