xref: /openbmc/linux/lib/iov_iter.c (revision f16fe2d3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
21 	size_t off = 0;						\
22 	size_t skip = i->iov_offset;				\
23 	do {							\
24 		len = min(n, __p->iov_len - skip);		\
25 		if (likely(len)) {				\
26 			base = __p->iov_base + skip;		\
27 			len -= (STEP);				\
28 			off += len;				\
29 			skip += len;				\
30 			n -= len;				\
31 			if (skip < __p->iov_len)		\
32 				break;				\
33 		}						\
34 		__p++;						\
35 		skip = 0;					\
36 	} while (n);						\
37 	i->iov_offset = skip;					\
38 	n = off;						\
39 }
40 
41 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
42 	size_t off = 0;						\
43 	unsigned skip = i->iov_offset;				\
44 	while (n) {						\
45 		unsigned offset = p->bv_offset + skip;		\
46 		unsigned left;					\
47 		void *kaddr = kmap_local_page(p->bv_page +	\
48 					offset / PAGE_SIZE);	\
49 		base = kaddr + offset % PAGE_SIZE;		\
50 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
51 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
52 		left = (STEP);					\
53 		kunmap_local(kaddr);				\
54 		len -= left;					\
55 		off += len;					\
56 		skip += len;					\
57 		if (skip == p->bv_len) {			\
58 			skip = 0;				\
59 			p++;					\
60 		}						\
61 		n -= len;					\
62 		if (left)					\
63 			break;					\
64 	}							\
65 	i->iov_offset = skip;					\
66 	n = off;						\
67 }
68 
69 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
70 	__label__ __out;					\
71 	size_t __off = 0;					\
72 	struct folio *folio;					\
73 	loff_t start = i->xarray_start + i->iov_offset;		\
74 	pgoff_t index = start / PAGE_SIZE;			\
75 	XA_STATE(xas, i->xarray, index);			\
76 								\
77 	len = PAGE_SIZE - offset_in_page(start);		\
78 	rcu_read_lock();					\
79 	xas_for_each(&xas, folio, ULONG_MAX) {			\
80 		unsigned left;					\
81 		size_t offset;					\
82 		if (xas_retry(&xas, folio))			\
83 			continue;				\
84 		if (WARN_ON(xa_is_value(folio)))		\
85 			break;					\
86 		if (WARN_ON(folio_test_hugetlb(folio)))		\
87 			break;					\
88 		offset = offset_in_folio(folio, start + __off);	\
89 		while (offset < folio_size(folio)) {		\
90 			base = kmap_local_folio(folio, offset);	\
91 			len = min(n, len);			\
92 			left = (STEP);				\
93 			kunmap_local(base);			\
94 			len -= left;				\
95 			__off += len;				\
96 			n -= len;				\
97 			if (left || n == 0)			\
98 				goto __out;			\
99 			offset += len;				\
100 			len = PAGE_SIZE;			\
101 		}						\
102 	}							\
103 __out:								\
104 	rcu_read_unlock();					\
105 	i->iov_offset += __off;					\
106 	n = __off;						\
107 }
108 
109 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
110 	if (unlikely(i->count < n))				\
111 		n = i->count;					\
112 	if (likely(n)) {					\
113 		if (likely(iter_is_iovec(i))) {			\
114 			const struct iovec *iov = i->iov;	\
115 			void __user *base;			\
116 			size_t len;				\
117 			iterate_iovec(i, n, base, len, off,	\
118 						iov, (I))	\
119 			i->nr_segs -= iov - i->iov;		\
120 			i->iov = iov;				\
121 		} else if (iov_iter_is_bvec(i)) {		\
122 			const struct bio_vec *bvec = i->bvec;	\
123 			void *base;				\
124 			size_t len;				\
125 			iterate_bvec(i, n, base, len, off,	\
126 						bvec, (K))	\
127 			i->nr_segs -= bvec - i->bvec;		\
128 			i->bvec = bvec;				\
129 		} else if (iov_iter_is_kvec(i)) {		\
130 			const struct kvec *kvec = i->kvec;	\
131 			void *base;				\
132 			size_t len;				\
133 			iterate_iovec(i, n, base, len, off,	\
134 						kvec, (K))	\
135 			i->nr_segs -= kvec - i->kvec;		\
136 			i->kvec = kvec;				\
137 		} else if (iov_iter_is_xarray(i)) {		\
138 			void *base;				\
139 			size_t len;				\
140 			iterate_xarray(i, n, base, len, off,	\
141 							(K))	\
142 		}						\
143 		i->count -= n;					\
144 	}							\
145 }
146 #define iterate_and_advance(i, n, base, len, off, I, K) \
147 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
148 
149 static int copyout(void __user *to, const void *from, size_t n)
150 {
151 	if (should_fail_usercopy())
152 		return n;
153 	if (access_ok(to, n)) {
154 		instrument_copy_to_user(to, from, n);
155 		n = raw_copy_to_user(to, from, n);
156 	}
157 	return n;
158 }
159 
160 static int copyin(void *to, const void __user *from, size_t n)
161 {
162 	if (should_fail_usercopy())
163 		return n;
164 	if (access_ok(from, n)) {
165 		instrument_copy_from_user(to, from, n);
166 		n = raw_copy_from_user(to, from, n);
167 	}
168 	return n;
169 }
170 
171 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
172 			 struct iov_iter *i)
173 {
174 	size_t skip, copy, left, wanted;
175 	const struct iovec *iov;
176 	char __user *buf;
177 	void *kaddr, *from;
178 
179 	if (unlikely(bytes > i->count))
180 		bytes = i->count;
181 
182 	if (unlikely(!bytes))
183 		return 0;
184 
185 	might_fault();
186 	wanted = bytes;
187 	iov = i->iov;
188 	skip = i->iov_offset;
189 	buf = iov->iov_base + skip;
190 	copy = min(bytes, iov->iov_len - skip);
191 
192 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_writeable(buf, copy)) {
193 		kaddr = kmap_atomic(page);
194 		from = kaddr + offset;
195 
196 		/* first chunk, usually the only one */
197 		left = copyout(buf, from, copy);
198 		copy -= left;
199 		skip += copy;
200 		from += copy;
201 		bytes -= copy;
202 
203 		while (unlikely(!left && bytes)) {
204 			iov++;
205 			buf = iov->iov_base;
206 			copy = min(bytes, iov->iov_len);
207 			left = copyout(buf, from, copy);
208 			copy -= left;
209 			skip = copy;
210 			from += copy;
211 			bytes -= copy;
212 		}
213 		if (likely(!bytes)) {
214 			kunmap_atomic(kaddr);
215 			goto done;
216 		}
217 		offset = from - kaddr;
218 		buf += copy;
219 		kunmap_atomic(kaddr);
220 		copy = min(bytes, iov->iov_len - skip);
221 	}
222 	/* Too bad - revert to non-atomic kmap */
223 
224 	kaddr = kmap(page);
225 	from = kaddr + offset;
226 	left = copyout(buf, from, copy);
227 	copy -= left;
228 	skip += copy;
229 	from += copy;
230 	bytes -= copy;
231 	while (unlikely(!left && bytes)) {
232 		iov++;
233 		buf = iov->iov_base;
234 		copy = min(bytes, iov->iov_len);
235 		left = copyout(buf, from, copy);
236 		copy -= left;
237 		skip = copy;
238 		from += copy;
239 		bytes -= copy;
240 	}
241 	kunmap(page);
242 
243 done:
244 	if (skip == iov->iov_len) {
245 		iov++;
246 		skip = 0;
247 	}
248 	i->count -= wanted - bytes;
249 	i->nr_segs -= iov - i->iov;
250 	i->iov = iov;
251 	i->iov_offset = skip;
252 	return wanted - bytes;
253 }
254 
255 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
256 			 struct iov_iter *i)
257 {
258 	size_t skip, copy, left, wanted;
259 	const struct iovec *iov;
260 	char __user *buf;
261 	void *kaddr, *to;
262 
263 	if (unlikely(bytes > i->count))
264 		bytes = i->count;
265 
266 	if (unlikely(!bytes))
267 		return 0;
268 
269 	might_fault();
270 	wanted = bytes;
271 	iov = i->iov;
272 	skip = i->iov_offset;
273 	buf = iov->iov_base + skip;
274 	copy = min(bytes, iov->iov_len - skip);
275 
276 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_readable(buf, copy)) {
277 		kaddr = kmap_atomic(page);
278 		to = kaddr + offset;
279 
280 		/* first chunk, usually the only one */
281 		left = copyin(to, buf, copy);
282 		copy -= left;
283 		skip += copy;
284 		to += copy;
285 		bytes -= copy;
286 
287 		while (unlikely(!left && bytes)) {
288 			iov++;
289 			buf = iov->iov_base;
290 			copy = min(bytes, iov->iov_len);
291 			left = copyin(to, buf, copy);
292 			copy -= left;
293 			skip = copy;
294 			to += copy;
295 			bytes -= copy;
296 		}
297 		if (likely(!bytes)) {
298 			kunmap_atomic(kaddr);
299 			goto done;
300 		}
301 		offset = to - kaddr;
302 		buf += copy;
303 		kunmap_atomic(kaddr);
304 		copy = min(bytes, iov->iov_len - skip);
305 	}
306 	/* Too bad - revert to non-atomic kmap */
307 
308 	kaddr = kmap(page);
309 	to = kaddr + offset;
310 	left = copyin(to, buf, copy);
311 	copy -= left;
312 	skip += copy;
313 	to += copy;
314 	bytes -= copy;
315 	while (unlikely(!left && bytes)) {
316 		iov++;
317 		buf = iov->iov_base;
318 		copy = min(bytes, iov->iov_len);
319 		left = copyin(to, buf, copy);
320 		copy -= left;
321 		skip = copy;
322 		to += copy;
323 		bytes -= copy;
324 	}
325 	kunmap(page);
326 
327 done:
328 	if (skip == iov->iov_len) {
329 		iov++;
330 		skip = 0;
331 	}
332 	i->count -= wanted - bytes;
333 	i->nr_segs -= iov - i->iov;
334 	i->iov = iov;
335 	i->iov_offset = skip;
336 	return wanted - bytes;
337 }
338 
339 #ifdef PIPE_PARANOIA
340 static bool sanity(const struct iov_iter *i)
341 {
342 	struct pipe_inode_info *pipe = i->pipe;
343 	unsigned int p_head = pipe->head;
344 	unsigned int p_tail = pipe->tail;
345 	unsigned int p_mask = pipe->ring_size - 1;
346 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
347 	unsigned int i_head = i->head;
348 	unsigned int idx;
349 
350 	if (i->iov_offset) {
351 		struct pipe_buffer *p;
352 		if (unlikely(p_occupancy == 0))
353 			goto Bad;	// pipe must be non-empty
354 		if (unlikely(i_head != p_head - 1))
355 			goto Bad;	// must be at the last buffer...
356 
357 		p = &pipe->bufs[i_head & p_mask];
358 		if (unlikely(p->offset + p->len != i->iov_offset))
359 			goto Bad;	// ... at the end of segment
360 	} else {
361 		if (i_head != p_head)
362 			goto Bad;	// must be right after the last buffer
363 	}
364 	return true;
365 Bad:
366 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
367 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
368 			p_head, p_tail, pipe->ring_size);
369 	for (idx = 0; idx < pipe->ring_size; idx++)
370 		printk(KERN_ERR "[%p %p %d %d]\n",
371 			pipe->bufs[idx].ops,
372 			pipe->bufs[idx].page,
373 			pipe->bufs[idx].offset,
374 			pipe->bufs[idx].len);
375 	WARN_ON(1);
376 	return false;
377 }
378 #else
379 #define sanity(i) true
380 #endif
381 
382 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
383 			 struct iov_iter *i)
384 {
385 	struct pipe_inode_info *pipe = i->pipe;
386 	struct pipe_buffer *buf;
387 	unsigned int p_tail = pipe->tail;
388 	unsigned int p_mask = pipe->ring_size - 1;
389 	unsigned int i_head = i->head;
390 	size_t off;
391 
392 	if (unlikely(bytes > i->count))
393 		bytes = i->count;
394 
395 	if (unlikely(!bytes))
396 		return 0;
397 
398 	if (!sanity(i))
399 		return 0;
400 
401 	off = i->iov_offset;
402 	buf = &pipe->bufs[i_head & p_mask];
403 	if (off) {
404 		if (offset == off && buf->page == page) {
405 			/* merge with the last one */
406 			buf->len += bytes;
407 			i->iov_offset += bytes;
408 			goto out;
409 		}
410 		i_head++;
411 		buf = &pipe->bufs[i_head & p_mask];
412 	}
413 	if (pipe_full(i_head, p_tail, pipe->max_usage))
414 		return 0;
415 
416 	buf->ops = &page_cache_pipe_buf_ops;
417 	get_page(page);
418 	buf->page = page;
419 	buf->offset = offset;
420 	buf->len = bytes;
421 
422 	pipe->head = i_head + 1;
423 	i->iov_offset = offset + bytes;
424 	i->head = i_head;
425 out:
426 	i->count -= bytes;
427 	return bytes;
428 }
429 
430 /*
431  * fault_in_iov_iter_readable - fault in iov iterator for reading
432  * @i: iterator
433  * @size: maximum length
434  *
435  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
436  * @size.  For each iovec, fault in each page that constitutes the iovec.
437  *
438  * Returns the number of bytes not faulted in (like copy_to_user() and
439  * copy_from_user()).
440  *
441  * Always returns 0 for non-userspace iterators.
442  */
443 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
444 {
445 	if (iter_is_iovec(i)) {
446 		size_t count = min(size, iov_iter_count(i));
447 		const struct iovec *p;
448 		size_t skip;
449 
450 		size -= count;
451 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
452 			size_t len = min(count, p->iov_len - skip);
453 			size_t ret;
454 
455 			if (unlikely(!len))
456 				continue;
457 			ret = fault_in_readable(p->iov_base + skip, len);
458 			count -= len - ret;
459 			if (ret)
460 				break;
461 		}
462 		return count + size;
463 	}
464 	return 0;
465 }
466 EXPORT_SYMBOL(fault_in_iov_iter_readable);
467 
468 /*
469  * fault_in_iov_iter_writeable - fault in iov iterator for writing
470  * @i: iterator
471  * @size: maximum length
472  *
473  * Faults in the iterator using get_user_pages(), i.e., without triggering
474  * hardware page faults.  This is primarily useful when we already know that
475  * some or all of the pages in @i aren't in memory.
476  *
477  * Returns the number of bytes not faulted in, like copy_to_user() and
478  * copy_from_user().
479  *
480  * Always returns 0 for non-user-space iterators.
481  */
482 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
483 {
484 	if (iter_is_iovec(i)) {
485 		size_t count = min(size, iov_iter_count(i));
486 		const struct iovec *p;
487 		size_t skip;
488 
489 		size -= count;
490 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
491 			size_t len = min(count, p->iov_len - skip);
492 			size_t ret;
493 
494 			if (unlikely(!len))
495 				continue;
496 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
497 			count -= len - ret;
498 			if (ret)
499 				break;
500 		}
501 		return count + size;
502 	}
503 	return 0;
504 }
505 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
506 
507 void iov_iter_init(struct iov_iter *i, unsigned int direction,
508 			const struct iovec *iov, unsigned long nr_segs,
509 			size_t count)
510 {
511 	WARN_ON(direction & ~(READ | WRITE));
512 	*i = (struct iov_iter) {
513 		.iter_type = ITER_IOVEC,
514 		.nofault = false,
515 		.data_source = direction,
516 		.iov = iov,
517 		.nr_segs = nr_segs,
518 		.iov_offset = 0,
519 		.count = count
520 	};
521 }
522 EXPORT_SYMBOL(iov_iter_init);
523 
524 static inline bool allocated(struct pipe_buffer *buf)
525 {
526 	return buf->ops == &default_pipe_buf_ops;
527 }
528 
529 static inline void data_start(const struct iov_iter *i,
530 			      unsigned int *iter_headp, size_t *offp)
531 {
532 	unsigned int p_mask = i->pipe->ring_size - 1;
533 	unsigned int iter_head = i->head;
534 	size_t off = i->iov_offset;
535 
536 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
537 		    off == PAGE_SIZE)) {
538 		iter_head++;
539 		off = 0;
540 	}
541 	*iter_headp = iter_head;
542 	*offp = off;
543 }
544 
545 static size_t push_pipe(struct iov_iter *i, size_t size,
546 			int *iter_headp, size_t *offp)
547 {
548 	struct pipe_inode_info *pipe = i->pipe;
549 	unsigned int p_tail = pipe->tail;
550 	unsigned int p_mask = pipe->ring_size - 1;
551 	unsigned int iter_head;
552 	size_t off;
553 	ssize_t left;
554 
555 	if (unlikely(size > i->count))
556 		size = i->count;
557 	if (unlikely(!size))
558 		return 0;
559 
560 	left = size;
561 	data_start(i, &iter_head, &off);
562 	*iter_headp = iter_head;
563 	*offp = off;
564 	if (off) {
565 		left -= PAGE_SIZE - off;
566 		if (left <= 0) {
567 			pipe->bufs[iter_head & p_mask].len += size;
568 			return size;
569 		}
570 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
571 		iter_head++;
572 	}
573 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
574 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
575 		struct page *page = alloc_page(GFP_USER);
576 		if (!page)
577 			break;
578 
579 		buf->ops = &default_pipe_buf_ops;
580 		buf->page = page;
581 		buf->offset = 0;
582 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
583 		left -= buf->len;
584 		iter_head++;
585 		pipe->head = iter_head;
586 
587 		if (left == 0)
588 			return size;
589 	}
590 	return size - left;
591 }
592 
593 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
594 				struct iov_iter *i)
595 {
596 	struct pipe_inode_info *pipe = i->pipe;
597 	unsigned int p_mask = pipe->ring_size - 1;
598 	unsigned int i_head;
599 	size_t n, off;
600 
601 	if (!sanity(i))
602 		return 0;
603 
604 	bytes = n = push_pipe(i, bytes, &i_head, &off);
605 	if (unlikely(!n))
606 		return 0;
607 	do {
608 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
609 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
610 		i->head = i_head;
611 		i->iov_offset = off + chunk;
612 		n -= chunk;
613 		addr += chunk;
614 		off = 0;
615 		i_head++;
616 	} while (n);
617 	i->count -= bytes;
618 	return bytes;
619 }
620 
621 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
622 			      __wsum sum, size_t off)
623 {
624 	__wsum next = csum_partial_copy_nocheck(from, to, len);
625 	return csum_block_add(sum, next, off);
626 }
627 
628 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
629 					 struct iov_iter *i, __wsum *sump)
630 {
631 	struct pipe_inode_info *pipe = i->pipe;
632 	unsigned int p_mask = pipe->ring_size - 1;
633 	__wsum sum = *sump;
634 	size_t off = 0;
635 	unsigned int i_head;
636 	size_t r;
637 
638 	if (!sanity(i))
639 		return 0;
640 
641 	bytes = push_pipe(i, bytes, &i_head, &r);
642 	while (bytes) {
643 		size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
644 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
645 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
646 		kunmap_local(p);
647 		i->head = i_head;
648 		i->iov_offset = r + chunk;
649 		bytes -= chunk;
650 		off += chunk;
651 		r = 0;
652 		i_head++;
653 	}
654 	*sump = sum;
655 	i->count -= off;
656 	return off;
657 }
658 
659 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
660 {
661 	if (unlikely(iov_iter_is_pipe(i)))
662 		return copy_pipe_to_iter(addr, bytes, i);
663 	if (iter_is_iovec(i))
664 		might_fault();
665 	iterate_and_advance(i, bytes, base, len, off,
666 		copyout(base, addr + off, len),
667 		memcpy(base, addr + off, len)
668 	)
669 
670 	return bytes;
671 }
672 EXPORT_SYMBOL(_copy_to_iter);
673 
674 #ifdef CONFIG_ARCH_HAS_COPY_MC
675 static int copyout_mc(void __user *to, const void *from, size_t n)
676 {
677 	if (access_ok(to, n)) {
678 		instrument_copy_to_user(to, from, n);
679 		n = copy_mc_to_user((__force void *) to, from, n);
680 	}
681 	return n;
682 }
683 
684 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
685 				struct iov_iter *i)
686 {
687 	struct pipe_inode_info *pipe = i->pipe;
688 	unsigned int p_mask = pipe->ring_size - 1;
689 	unsigned int i_head;
690 	size_t n, off, xfer = 0;
691 
692 	if (!sanity(i))
693 		return 0;
694 
695 	n = push_pipe(i, bytes, &i_head, &off);
696 	while (n) {
697 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
698 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
699 		unsigned long rem;
700 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
701 		chunk -= rem;
702 		kunmap_local(p);
703 		i->head = i_head;
704 		i->iov_offset = off + chunk;
705 		xfer += chunk;
706 		if (rem)
707 			break;
708 		n -= chunk;
709 		off = 0;
710 		i_head++;
711 	}
712 	i->count -= xfer;
713 	return xfer;
714 }
715 
716 /**
717  * _copy_mc_to_iter - copy to iter with source memory error exception handling
718  * @addr: source kernel address
719  * @bytes: total transfer length
720  * @i: destination iterator
721  *
722  * The pmem driver deploys this for the dax operation
723  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
724  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
725  * successfully copied.
726  *
727  * The main differences between this and typical _copy_to_iter().
728  *
729  * * Typical tail/residue handling after a fault retries the copy
730  *   byte-by-byte until the fault happens again. Re-triggering machine
731  *   checks is potentially fatal so the implementation uses source
732  *   alignment and poison alignment assumptions to avoid re-triggering
733  *   hardware exceptions.
734  *
735  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
736  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
737  *   a short copy.
738  *
739  * Return: number of bytes copied (may be %0)
740  */
741 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
742 {
743 	if (unlikely(iov_iter_is_pipe(i)))
744 		return copy_mc_pipe_to_iter(addr, bytes, i);
745 	if (iter_is_iovec(i))
746 		might_fault();
747 	__iterate_and_advance(i, bytes, base, len, off,
748 		copyout_mc(base, addr + off, len),
749 		copy_mc_to_kernel(base, addr + off, len)
750 	)
751 
752 	return bytes;
753 }
754 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
755 #endif /* CONFIG_ARCH_HAS_COPY_MC */
756 
757 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
758 {
759 	if (unlikely(iov_iter_is_pipe(i))) {
760 		WARN_ON(1);
761 		return 0;
762 	}
763 	if (iter_is_iovec(i))
764 		might_fault();
765 	iterate_and_advance(i, bytes, base, len, off,
766 		copyin(addr + off, base, len),
767 		memcpy(addr + off, base, len)
768 	)
769 
770 	return bytes;
771 }
772 EXPORT_SYMBOL(_copy_from_iter);
773 
774 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
775 {
776 	if (unlikely(iov_iter_is_pipe(i))) {
777 		WARN_ON(1);
778 		return 0;
779 	}
780 	iterate_and_advance(i, bytes, base, len, off,
781 		__copy_from_user_inatomic_nocache(addr + off, base, len),
782 		memcpy(addr + off, base, len)
783 	)
784 
785 	return bytes;
786 }
787 EXPORT_SYMBOL(_copy_from_iter_nocache);
788 
789 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
790 /**
791  * _copy_from_iter_flushcache - write destination through cpu cache
792  * @addr: destination kernel address
793  * @bytes: total transfer length
794  * @i: source iterator
795  *
796  * The pmem driver arranges for filesystem-dax to use this facility via
797  * dax_copy_from_iter() for ensuring that writes to persistent memory
798  * are flushed through the CPU cache. It is differentiated from
799  * _copy_from_iter_nocache() in that guarantees all data is flushed for
800  * all iterator types. The _copy_from_iter_nocache() only attempts to
801  * bypass the cache for the ITER_IOVEC case, and on some archs may use
802  * instructions that strand dirty-data in the cache.
803  *
804  * Return: number of bytes copied (may be %0)
805  */
806 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
807 {
808 	if (unlikely(iov_iter_is_pipe(i))) {
809 		WARN_ON(1);
810 		return 0;
811 	}
812 	iterate_and_advance(i, bytes, base, len, off,
813 		__copy_from_user_flushcache(addr + off, base, len),
814 		memcpy_flushcache(addr + off, base, len)
815 	)
816 
817 	return bytes;
818 }
819 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
820 #endif
821 
822 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
823 {
824 	struct page *head;
825 	size_t v = n + offset;
826 
827 	/*
828 	 * The general case needs to access the page order in order
829 	 * to compute the page size.
830 	 * However, we mostly deal with order-0 pages and thus can
831 	 * avoid a possible cache line miss for requests that fit all
832 	 * page orders.
833 	 */
834 	if (n <= v && v <= PAGE_SIZE)
835 		return true;
836 
837 	head = compound_head(page);
838 	v += (page - head) << PAGE_SHIFT;
839 
840 	if (likely(n <= v && v <= (page_size(head))))
841 		return true;
842 	WARN_ON(1);
843 	return false;
844 }
845 
846 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
847 			 struct iov_iter *i)
848 {
849 	if (likely(iter_is_iovec(i)))
850 		return copy_page_to_iter_iovec(page, offset, bytes, i);
851 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
852 		void *kaddr = kmap_local_page(page);
853 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
854 		kunmap_local(kaddr);
855 		return wanted;
856 	}
857 	if (iov_iter_is_pipe(i))
858 		return copy_page_to_iter_pipe(page, offset, bytes, i);
859 	if (unlikely(iov_iter_is_discard(i))) {
860 		if (unlikely(i->count < bytes))
861 			bytes = i->count;
862 		i->count -= bytes;
863 		return bytes;
864 	}
865 	WARN_ON(1);
866 	return 0;
867 }
868 
869 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
870 			 struct iov_iter *i)
871 {
872 	size_t res = 0;
873 	if (unlikely(!page_copy_sane(page, offset, bytes)))
874 		return 0;
875 	page += offset / PAGE_SIZE; // first subpage
876 	offset %= PAGE_SIZE;
877 	while (1) {
878 		size_t n = __copy_page_to_iter(page, offset,
879 				min(bytes, (size_t)PAGE_SIZE - offset), i);
880 		res += n;
881 		bytes -= n;
882 		if (!bytes || !n)
883 			break;
884 		offset += n;
885 		if (offset == PAGE_SIZE) {
886 			page++;
887 			offset = 0;
888 		}
889 	}
890 	return res;
891 }
892 EXPORT_SYMBOL(copy_page_to_iter);
893 
894 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
895 			 struct iov_iter *i)
896 {
897 	if (unlikely(!page_copy_sane(page, offset, bytes)))
898 		return 0;
899 	if (likely(iter_is_iovec(i)))
900 		return copy_page_from_iter_iovec(page, offset, bytes, i);
901 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
902 		void *kaddr = kmap_local_page(page);
903 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
904 		kunmap_local(kaddr);
905 		return wanted;
906 	}
907 	WARN_ON(1);
908 	return 0;
909 }
910 EXPORT_SYMBOL(copy_page_from_iter);
911 
912 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
913 {
914 	struct pipe_inode_info *pipe = i->pipe;
915 	unsigned int p_mask = pipe->ring_size - 1;
916 	unsigned int i_head;
917 	size_t n, off;
918 
919 	if (!sanity(i))
920 		return 0;
921 
922 	bytes = n = push_pipe(i, bytes, &i_head, &off);
923 	if (unlikely(!n))
924 		return 0;
925 
926 	do {
927 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
928 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
929 		memset(p + off, 0, chunk);
930 		kunmap_local(p);
931 		i->head = i_head;
932 		i->iov_offset = off + chunk;
933 		n -= chunk;
934 		off = 0;
935 		i_head++;
936 	} while (n);
937 	i->count -= bytes;
938 	return bytes;
939 }
940 
941 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
942 {
943 	if (unlikely(iov_iter_is_pipe(i)))
944 		return pipe_zero(bytes, i);
945 	iterate_and_advance(i, bytes, base, len, count,
946 		clear_user(base, len),
947 		memset(base, 0, len)
948 	)
949 
950 	return bytes;
951 }
952 EXPORT_SYMBOL(iov_iter_zero);
953 
954 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
955 				  struct iov_iter *i)
956 {
957 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
958 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
959 		kunmap_atomic(kaddr);
960 		return 0;
961 	}
962 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
963 		kunmap_atomic(kaddr);
964 		WARN_ON(1);
965 		return 0;
966 	}
967 	iterate_and_advance(i, bytes, base, len, off,
968 		copyin(p + off, base, len),
969 		memcpy(p + off, base, len)
970 	)
971 	kunmap_atomic(kaddr);
972 	return bytes;
973 }
974 EXPORT_SYMBOL(copy_page_from_iter_atomic);
975 
976 static inline void pipe_truncate(struct iov_iter *i)
977 {
978 	struct pipe_inode_info *pipe = i->pipe;
979 	unsigned int p_tail = pipe->tail;
980 	unsigned int p_head = pipe->head;
981 	unsigned int p_mask = pipe->ring_size - 1;
982 
983 	if (!pipe_empty(p_head, p_tail)) {
984 		struct pipe_buffer *buf;
985 		unsigned int i_head = i->head;
986 		size_t off = i->iov_offset;
987 
988 		if (off) {
989 			buf = &pipe->bufs[i_head & p_mask];
990 			buf->len = off - buf->offset;
991 			i_head++;
992 		}
993 		while (p_head != i_head) {
994 			p_head--;
995 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
996 		}
997 
998 		pipe->head = p_head;
999 	}
1000 }
1001 
1002 static void pipe_advance(struct iov_iter *i, size_t size)
1003 {
1004 	struct pipe_inode_info *pipe = i->pipe;
1005 	if (size) {
1006 		struct pipe_buffer *buf;
1007 		unsigned int p_mask = pipe->ring_size - 1;
1008 		unsigned int i_head = i->head;
1009 		size_t off = i->iov_offset, left = size;
1010 
1011 		if (off) /* make it relative to the beginning of buffer */
1012 			left += off - pipe->bufs[i_head & p_mask].offset;
1013 		while (1) {
1014 			buf = &pipe->bufs[i_head & p_mask];
1015 			if (left <= buf->len)
1016 				break;
1017 			left -= buf->len;
1018 			i_head++;
1019 		}
1020 		i->head = i_head;
1021 		i->iov_offset = buf->offset + left;
1022 	}
1023 	i->count -= size;
1024 	/* ... and discard everything past that point */
1025 	pipe_truncate(i);
1026 }
1027 
1028 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
1029 {
1030 	struct bvec_iter bi;
1031 
1032 	bi.bi_size = i->count;
1033 	bi.bi_bvec_done = i->iov_offset;
1034 	bi.bi_idx = 0;
1035 	bvec_iter_advance(i->bvec, &bi, size);
1036 
1037 	i->bvec += bi.bi_idx;
1038 	i->nr_segs -= bi.bi_idx;
1039 	i->count = bi.bi_size;
1040 	i->iov_offset = bi.bi_bvec_done;
1041 }
1042 
1043 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
1044 {
1045 	const struct iovec *iov, *end;
1046 
1047 	if (!i->count)
1048 		return;
1049 	i->count -= size;
1050 
1051 	size += i->iov_offset; // from beginning of current segment
1052 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1053 		if (likely(size < iov->iov_len))
1054 			break;
1055 		size -= iov->iov_len;
1056 	}
1057 	i->iov_offset = size;
1058 	i->nr_segs -= iov - i->iov;
1059 	i->iov = iov;
1060 }
1061 
1062 void iov_iter_advance(struct iov_iter *i, size_t size)
1063 {
1064 	if (unlikely(i->count < size))
1065 		size = i->count;
1066 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1067 		/* iovec and kvec have identical layouts */
1068 		iov_iter_iovec_advance(i, size);
1069 	} else if (iov_iter_is_bvec(i)) {
1070 		iov_iter_bvec_advance(i, size);
1071 	} else if (iov_iter_is_pipe(i)) {
1072 		pipe_advance(i, size);
1073 	} else if (unlikely(iov_iter_is_xarray(i))) {
1074 		i->iov_offset += size;
1075 		i->count -= size;
1076 	} else if (iov_iter_is_discard(i)) {
1077 		i->count -= size;
1078 	}
1079 }
1080 EXPORT_SYMBOL(iov_iter_advance);
1081 
1082 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1083 {
1084 	if (!unroll)
1085 		return;
1086 	if (WARN_ON(unroll > MAX_RW_COUNT))
1087 		return;
1088 	i->count += unroll;
1089 	if (unlikely(iov_iter_is_pipe(i))) {
1090 		struct pipe_inode_info *pipe = i->pipe;
1091 		unsigned int p_mask = pipe->ring_size - 1;
1092 		unsigned int i_head = i->head;
1093 		size_t off = i->iov_offset;
1094 		while (1) {
1095 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1096 			size_t n = off - b->offset;
1097 			if (unroll < n) {
1098 				off -= unroll;
1099 				break;
1100 			}
1101 			unroll -= n;
1102 			if (!unroll && i_head == i->start_head) {
1103 				off = 0;
1104 				break;
1105 			}
1106 			i_head--;
1107 			b = &pipe->bufs[i_head & p_mask];
1108 			off = b->offset + b->len;
1109 		}
1110 		i->iov_offset = off;
1111 		i->head = i_head;
1112 		pipe_truncate(i);
1113 		return;
1114 	}
1115 	if (unlikely(iov_iter_is_discard(i)))
1116 		return;
1117 	if (unroll <= i->iov_offset) {
1118 		i->iov_offset -= unroll;
1119 		return;
1120 	}
1121 	unroll -= i->iov_offset;
1122 	if (iov_iter_is_xarray(i)) {
1123 		BUG(); /* We should never go beyond the start of the specified
1124 			* range since we might then be straying into pages that
1125 			* aren't pinned.
1126 			*/
1127 	} else if (iov_iter_is_bvec(i)) {
1128 		const struct bio_vec *bvec = i->bvec;
1129 		while (1) {
1130 			size_t n = (--bvec)->bv_len;
1131 			i->nr_segs++;
1132 			if (unroll <= n) {
1133 				i->bvec = bvec;
1134 				i->iov_offset = n - unroll;
1135 				return;
1136 			}
1137 			unroll -= n;
1138 		}
1139 	} else { /* same logics for iovec and kvec */
1140 		const struct iovec *iov = i->iov;
1141 		while (1) {
1142 			size_t n = (--iov)->iov_len;
1143 			i->nr_segs++;
1144 			if (unroll <= n) {
1145 				i->iov = iov;
1146 				i->iov_offset = n - unroll;
1147 				return;
1148 			}
1149 			unroll -= n;
1150 		}
1151 	}
1152 }
1153 EXPORT_SYMBOL(iov_iter_revert);
1154 
1155 /*
1156  * Return the count of just the current iov_iter segment.
1157  */
1158 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1159 {
1160 	if (i->nr_segs > 1) {
1161 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1162 			return min(i->count, i->iov->iov_len - i->iov_offset);
1163 		if (iov_iter_is_bvec(i))
1164 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1165 	}
1166 	return i->count;
1167 }
1168 EXPORT_SYMBOL(iov_iter_single_seg_count);
1169 
1170 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1171 			const struct kvec *kvec, unsigned long nr_segs,
1172 			size_t count)
1173 {
1174 	WARN_ON(direction & ~(READ | WRITE));
1175 	*i = (struct iov_iter){
1176 		.iter_type = ITER_KVEC,
1177 		.data_source = direction,
1178 		.kvec = kvec,
1179 		.nr_segs = nr_segs,
1180 		.iov_offset = 0,
1181 		.count = count
1182 	};
1183 }
1184 EXPORT_SYMBOL(iov_iter_kvec);
1185 
1186 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1187 			const struct bio_vec *bvec, unsigned long nr_segs,
1188 			size_t count)
1189 {
1190 	WARN_ON(direction & ~(READ | WRITE));
1191 	*i = (struct iov_iter){
1192 		.iter_type = ITER_BVEC,
1193 		.data_source = direction,
1194 		.bvec = bvec,
1195 		.nr_segs = nr_segs,
1196 		.iov_offset = 0,
1197 		.count = count
1198 	};
1199 }
1200 EXPORT_SYMBOL(iov_iter_bvec);
1201 
1202 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1203 			struct pipe_inode_info *pipe,
1204 			size_t count)
1205 {
1206 	BUG_ON(direction != READ);
1207 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1208 	*i = (struct iov_iter){
1209 		.iter_type = ITER_PIPE,
1210 		.data_source = false,
1211 		.pipe = pipe,
1212 		.head = pipe->head,
1213 		.start_head = pipe->head,
1214 		.iov_offset = 0,
1215 		.count = count
1216 	};
1217 }
1218 EXPORT_SYMBOL(iov_iter_pipe);
1219 
1220 /**
1221  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1222  * @i: The iterator to initialise.
1223  * @direction: The direction of the transfer.
1224  * @xarray: The xarray to access.
1225  * @start: The start file position.
1226  * @count: The size of the I/O buffer in bytes.
1227  *
1228  * Set up an I/O iterator to either draw data out of the pages attached to an
1229  * inode or to inject data into those pages.  The pages *must* be prevented
1230  * from evaporation, either by taking a ref on them or locking them by the
1231  * caller.
1232  */
1233 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1234 		     struct xarray *xarray, loff_t start, size_t count)
1235 {
1236 	BUG_ON(direction & ~1);
1237 	*i = (struct iov_iter) {
1238 		.iter_type = ITER_XARRAY,
1239 		.data_source = direction,
1240 		.xarray = xarray,
1241 		.xarray_start = start,
1242 		.count = count,
1243 		.iov_offset = 0
1244 	};
1245 }
1246 EXPORT_SYMBOL(iov_iter_xarray);
1247 
1248 /**
1249  * iov_iter_discard - Initialise an I/O iterator that discards data
1250  * @i: The iterator to initialise.
1251  * @direction: The direction of the transfer.
1252  * @count: The size of the I/O buffer in bytes.
1253  *
1254  * Set up an I/O iterator that just discards everything that's written to it.
1255  * It's only available as a READ iterator.
1256  */
1257 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1258 {
1259 	BUG_ON(direction != READ);
1260 	*i = (struct iov_iter){
1261 		.iter_type = ITER_DISCARD,
1262 		.data_source = false,
1263 		.count = count,
1264 		.iov_offset = 0
1265 	};
1266 }
1267 EXPORT_SYMBOL(iov_iter_discard);
1268 
1269 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1270 {
1271 	unsigned long res = 0;
1272 	size_t size = i->count;
1273 	size_t skip = i->iov_offset;
1274 	unsigned k;
1275 
1276 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1277 		size_t len = i->iov[k].iov_len - skip;
1278 		if (len) {
1279 			res |= (unsigned long)i->iov[k].iov_base + skip;
1280 			if (len > size)
1281 				len = size;
1282 			res |= len;
1283 			size -= len;
1284 			if (!size)
1285 				break;
1286 		}
1287 	}
1288 	return res;
1289 }
1290 
1291 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1292 {
1293 	unsigned res = 0;
1294 	size_t size = i->count;
1295 	unsigned skip = i->iov_offset;
1296 	unsigned k;
1297 
1298 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1299 		size_t len = i->bvec[k].bv_len - skip;
1300 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1301 		if (len > size)
1302 			len = size;
1303 		res |= len;
1304 		size -= len;
1305 		if (!size)
1306 			break;
1307 	}
1308 	return res;
1309 }
1310 
1311 unsigned long iov_iter_alignment(const struct iov_iter *i)
1312 {
1313 	/* iovec and kvec have identical layouts */
1314 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1315 		return iov_iter_alignment_iovec(i);
1316 
1317 	if (iov_iter_is_bvec(i))
1318 		return iov_iter_alignment_bvec(i);
1319 
1320 	if (iov_iter_is_pipe(i)) {
1321 		unsigned int p_mask = i->pipe->ring_size - 1;
1322 		size_t size = i->count;
1323 
1324 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1325 			return size | i->iov_offset;
1326 		return size;
1327 	}
1328 
1329 	if (iov_iter_is_xarray(i))
1330 		return (i->xarray_start + i->iov_offset) | i->count;
1331 
1332 	return 0;
1333 }
1334 EXPORT_SYMBOL(iov_iter_alignment);
1335 
1336 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1337 {
1338 	unsigned long res = 0;
1339 	unsigned long v = 0;
1340 	size_t size = i->count;
1341 	unsigned k;
1342 
1343 	if (WARN_ON(!iter_is_iovec(i)))
1344 		return ~0U;
1345 
1346 	for (k = 0; k < i->nr_segs; k++) {
1347 		if (i->iov[k].iov_len) {
1348 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1349 			if (v) // if not the first one
1350 				res |= base | v; // this start | previous end
1351 			v = base + i->iov[k].iov_len;
1352 			if (size <= i->iov[k].iov_len)
1353 				break;
1354 			size -= i->iov[k].iov_len;
1355 		}
1356 	}
1357 	return res;
1358 }
1359 EXPORT_SYMBOL(iov_iter_gap_alignment);
1360 
1361 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1362 				size_t maxsize,
1363 				struct page **pages,
1364 				int iter_head,
1365 				size_t *start)
1366 {
1367 	struct pipe_inode_info *pipe = i->pipe;
1368 	unsigned int p_mask = pipe->ring_size - 1;
1369 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1370 	if (!n)
1371 		return -EFAULT;
1372 
1373 	maxsize = n;
1374 	n += *start;
1375 	while (n > 0) {
1376 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1377 		iter_head++;
1378 		n -= PAGE_SIZE;
1379 	}
1380 
1381 	return maxsize;
1382 }
1383 
1384 static ssize_t pipe_get_pages(struct iov_iter *i,
1385 		   struct page **pages, size_t maxsize, unsigned maxpages,
1386 		   size_t *start)
1387 {
1388 	unsigned int iter_head, npages;
1389 	size_t capacity;
1390 
1391 	if (!sanity(i))
1392 		return -EFAULT;
1393 
1394 	data_start(i, &iter_head, start);
1395 	/* Amount of free space: some of this one + all after this one */
1396 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1397 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1398 
1399 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1400 }
1401 
1402 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1403 					  pgoff_t index, unsigned int nr_pages)
1404 {
1405 	XA_STATE(xas, xa, index);
1406 	struct page *page;
1407 	unsigned int ret = 0;
1408 
1409 	rcu_read_lock();
1410 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1411 		if (xas_retry(&xas, page))
1412 			continue;
1413 
1414 		/* Has the page moved or been split? */
1415 		if (unlikely(page != xas_reload(&xas))) {
1416 			xas_reset(&xas);
1417 			continue;
1418 		}
1419 
1420 		pages[ret] = find_subpage(page, xas.xa_index);
1421 		get_page(pages[ret]);
1422 		if (++ret == nr_pages)
1423 			break;
1424 	}
1425 	rcu_read_unlock();
1426 	return ret;
1427 }
1428 
1429 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1430 				     struct page **pages, size_t maxsize,
1431 				     unsigned maxpages, size_t *_start_offset)
1432 {
1433 	unsigned nr, offset;
1434 	pgoff_t index, count;
1435 	size_t size = maxsize, actual;
1436 	loff_t pos;
1437 
1438 	if (!size || !maxpages)
1439 		return 0;
1440 
1441 	pos = i->xarray_start + i->iov_offset;
1442 	index = pos >> PAGE_SHIFT;
1443 	offset = pos & ~PAGE_MASK;
1444 	*_start_offset = offset;
1445 
1446 	count = 1;
1447 	if (size > PAGE_SIZE - offset) {
1448 		size -= PAGE_SIZE - offset;
1449 		count += size >> PAGE_SHIFT;
1450 		size &= ~PAGE_MASK;
1451 		if (size)
1452 			count++;
1453 	}
1454 
1455 	if (count > maxpages)
1456 		count = maxpages;
1457 
1458 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1459 	if (nr == 0)
1460 		return 0;
1461 
1462 	actual = PAGE_SIZE * nr;
1463 	actual -= offset;
1464 	if (nr == count && size > 0) {
1465 		unsigned last_offset = (nr > 1) ? 0 : offset;
1466 		actual -= PAGE_SIZE - (last_offset + size);
1467 	}
1468 	return actual;
1469 }
1470 
1471 /* must be done on non-empty ITER_IOVEC one */
1472 static unsigned long first_iovec_segment(const struct iov_iter *i,
1473 					 size_t *size, size_t *start,
1474 					 size_t maxsize, unsigned maxpages)
1475 {
1476 	size_t skip;
1477 	long k;
1478 
1479 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1480 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1481 		size_t len = i->iov[k].iov_len - skip;
1482 
1483 		if (unlikely(!len))
1484 			continue;
1485 		if (len > maxsize)
1486 			len = maxsize;
1487 		len += (*start = addr % PAGE_SIZE);
1488 		if (len > maxpages * PAGE_SIZE)
1489 			len = maxpages * PAGE_SIZE;
1490 		*size = len;
1491 		return addr & PAGE_MASK;
1492 	}
1493 	BUG(); // if it had been empty, we wouldn't get called
1494 }
1495 
1496 /* must be done on non-empty ITER_BVEC one */
1497 static struct page *first_bvec_segment(const struct iov_iter *i,
1498 				       size_t *size, size_t *start,
1499 				       size_t maxsize, unsigned maxpages)
1500 {
1501 	struct page *page;
1502 	size_t skip = i->iov_offset, len;
1503 
1504 	len = i->bvec->bv_len - skip;
1505 	if (len > maxsize)
1506 		len = maxsize;
1507 	skip += i->bvec->bv_offset;
1508 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1509 	len += (*start = skip % PAGE_SIZE);
1510 	if (len > maxpages * PAGE_SIZE)
1511 		len = maxpages * PAGE_SIZE;
1512 	*size = len;
1513 	return page;
1514 }
1515 
1516 ssize_t iov_iter_get_pages(struct iov_iter *i,
1517 		   struct page **pages, size_t maxsize, unsigned maxpages,
1518 		   size_t *start)
1519 {
1520 	size_t len;
1521 	int n, res;
1522 
1523 	if (maxsize > i->count)
1524 		maxsize = i->count;
1525 	if (!maxsize)
1526 		return 0;
1527 
1528 	if (likely(iter_is_iovec(i))) {
1529 		unsigned int gup_flags = 0;
1530 		unsigned long addr;
1531 
1532 		if (iov_iter_rw(i) != WRITE)
1533 			gup_flags |= FOLL_WRITE;
1534 		if (i->nofault)
1535 			gup_flags |= FOLL_NOFAULT;
1536 
1537 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1538 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1539 		res = get_user_pages_fast(addr, n, gup_flags, pages);
1540 		if (unlikely(res <= 0))
1541 			return res;
1542 		return (res == n ? len : res * PAGE_SIZE) - *start;
1543 	}
1544 	if (iov_iter_is_bvec(i)) {
1545 		struct page *page;
1546 
1547 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1548 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1549 		while (n--)
1550 			get_page(*pages++ = page++);
1551 		return len - *start;
1552 	}
1553 	if (iov_iter_is_pipe(i))
1554 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1555 	if (iov_iter_is_xarray(i))
1556 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1557 	return -EFAULT;
1558 }
1559 EXPORT_SYMBOL(iov_iter_get_pages);
1560 
1561 static struct page **get_pages_array(size_t n)
1562 {
1563 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1564 }
1565 
1566 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1567 		   struct page ***pages, size_t maxsize,
1568 		   size_t *start)
1569 {
1570 	struct page **p;
1571 	unsigned int iter_head, npages;
1572 	ssize_t n;
1573 
1574 	if (!sanity(i))
1575 		return -EFAULT;
1576 
1577 	data_start(i, &iter_head, start);
1578 	/* Amount of free space: some of this one + all after this one */
1579 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1580 	n = npages * PAGE_SIZE - *start;
1581 	if (maxsize > n)
1582 		maxsize = n;
1583 	else
1584 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1585 	p = get_pages_array(npages);
1586 	if (!p)
1587 		return -ENOMEM;
1588 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1589 	if (n > 0)
1590 		*pages = p;
1591 	else
1592 		kvfree(p);
1593 	return n;
1594 }
1595 
1596 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1597 					   struct page ***pages, size_t maxsize,
1598 					   size_t *_start_offset)
1599 {
1600 	struct page **p;
1601 	unsigned nr, offset;
1602 	pgoff_t index, count;
1603 	size_t size = maxsize, actual;
1604 	loff_t pos;
1605 
1606 	if (!size)
1607 		return 0;
1608 
1609 	pos = i->xarray_start + i->iov_offset;
1610 	index = pos >> PAGE_SHIFT;
1611 	offset = pos & ~PAGE_MASK;
1612 	*_start_offset = offset;
1613 
1614 	count = 1;
1615 	if (size > PAGE_SIZE - offset) {
1616 		size -= PAGE_SIZE - offset;
1617 		count += size >> PAGE_SHIFT;
1618 		size &= ~PAGE_MASK;
1619 		if (size)
1620 			count++;
1621 	}
1622 
1623 	p = get_pages_array(count);
1624 	if (!p)
1625 		return -ENOMEM;
1626 	*pages = p;
1627 
1628 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1629 	if (nr == 0)
1630 		return 0;
1631 
1632 	actual = PAGE_SIZE * nr;
1633 	actual -= offset;
1634 	if (nr == count && size > 0) {
1635 		unsigned last_offset = (nr > 1) ? 0 : offset;
1636 		actual -= PAGE_SIZE - (last_offset + size);
1637 	}
1638 	return actual;
1639 }
1640 
1641 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1642 		   struct page ***pages, size_t maxsize,
1643 		   size_t *start)
1644 {
1645 	struct page **p;
1646 	size_t len;
1647 	int n, res;
1648 
1649 	if (maxsize > i->count)
1650 		maxsize = i->count;
1651 	if (!maxsize)
1652 		return 0;
1653 
1654 	if (likely(iter_is_iovec(i))) {
1655 		unsigned int gup_flags = 0;
1656 		unsigned long addr;
1657 
1658 		if (iov_iter_rw(i) != WRITE)
1659 			gup_flags |= FOLL_WRITE;
1660 		if (i->nofault)
1661 			gup_flags |= FOLL_NOFAULT;
1662 
1663 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1664 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1665 		p = get_pages_array(n);
1666 		if (!p)
1667 			return -ENOMEM;
1668 		res = get_user_pages_fast(addr, n, gup_flags, p);
1669 		if (unlikely(res <= 0)) {
1670 			kvfree(p);
1671 			*pages = NULL;
1672 			return res;
1673 		}
1674 		*pages = p;
1675 		return (res == n ? len : res * PAGE_SIZE) - *start;
1676 	}
1677 	if (iov_iter_is_bvec(i)) {
1678 		struct page *page;
1679 
1680 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1681 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1682 		*pages = p = get_pages_array(n);
1683 		if (!p)
1684 			return -ENOMEM;
1685 		while (n--)
1686 			get_page(*p++ = page++);
1687 		return len - *start;
1688 	}
1689 	if (iov_iter_is_pipe(i))
1690 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1691 	if (iov_iter_is_xarray(i))
1692 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1693 	return -EFAULT;
1694 }
1695 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1696 
1697 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1698 			       struct iov_iter *i)
1699 {
1700 	__wsum sum, next;
1701 	sum = *csum;
1702 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1703 		WARN_ON(1);
1704 		return 0;
1705 	}
1706 	iterate_and_advance(i, bytes, base, len, off, ({
1707 		next = csum_and_copy_from_user(base, addr + off, len);
1708 		sum = csum_block_add(sum, next, off);
1709 		next ? 0 : len;
1710 	}), ({
1711 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1712 	})
1713 	)
1714 	*csum = sum;
1715 	return bytes;
1716 }
1717 EXPORT_SYMBOL(csum_and_copy_from_iter);
1718 
1719 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1720 			     struct iov_iter *i)
1721 {
1722 	struct csum_state *csstate = _csstate;
1723 	__wsum sum, next;
1724 
1725 	if (unlikely(iov_iter_is_discard(i))) {
1726 		WARN_ON(1);	/* for now */
1727 		return 0;
1728 	}
1729 
1730 	sum = csum_shift(csstate->csum, csstate->off);
1731 	if (unlikely(iov_iter_is_pipe(i)))
1732 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1733 	else iterate_and_advance(i, bytes, base, len, off, ({
1734 		next = csum_and_copy_to_user(addr + off, base, len);
1735 		sum = csum_block_add(sum, next, off);
1736 		next ? 0 : len;
1737 	}), ({
1738 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1739 	})
1740 	)
1741 	csstate->csum = csum_shift(sum, csstate->off);
1742 	csstate->off += bytes;
1743 	return bytes;
1744 }
1745 EXPORT_SYMBOL(csum_and_copy_to_iter);
1746 
1747 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1748 		struct iov_iter *i)
1749 {
1750 #ifdef CONFIG_CRYPTO_HASH
1751 	struct ahash_request *hash = hashp;
1752 	struct scatterlist sg;
1753 	size_t copied;
1754 
1755 	copied = copy_to_iter(addr, bytes, i);
1756 	sg_init_one(&sg, addr, copied);
1757 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1758 	crypto_ahash_update(hash);
1759 	return copied;
1760 #else
1761 	return 0;
1762 #endif
1763 }
1764 EXPORT_SYMBOL(hash_and_copy_to_iter);
1765 
1766 static int iov_npages(const struct iov_iter *i, int maxpages)
1767 {
1768 	size_t skip = i->iov_offset, size = i->count;
1769 	const struct iovec *p;
1770 	int npages = 0;
1771 
1772 	for (p = i->iov; size; skip = 0, p++) {
1773 		unsigned offs = offset_in_page(p->iov_base + skip);
1774 		size_t len = min(p->iov_len - skip, size);
1775 
1776 		if (len) {
1777 			size -= len;
1778 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1779 			if (unlikely(npages > maxpages))
1780 				return maxpages;
1781 		}
1782 	}
1783 	return npages;
1784 }
1785 
1786 static int bvec_npages(const struct iov_iter *i, int maxpages)
1787 {
1788 	size_t skip = i->iov_offset, size = i->count;
1789 	const struct bio_vec *p;
1790 	int npages = 0;
1791 
1792 	for (p = i->bvec; size; skip = 0, p++) {
1793 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1794 		size_t len = min(p->bv_len - skip, size);
1795 
1796 		size -= len;
1797 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1798 		if (unlikely(npages > maxpages))
1799 			return maxpages;
1800 	}
1801 	return npages;
1802 }
1803 
1804 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1805 {
1806 	if (unlikely(!i->count))
1807 		return 0;
1808 	/* iovec and kvec have identical layouts */
1809 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1810 		return iov_npages(i, maxpages);
1811 	if (iov_iter_is_bvec(i))
1812 		return bvec_npages(i, maxpages);
1813 	if (iov_iter_is_pipe(i)) {
1814 		unsigned int iter_head;
1815 		int npages;
1816 		size_t off;
1817 
1818 		if (!sanity(i))
1819 			return 0;
1820 
1821 		data_start(i, &iter_head, &off);
1822 		/* some of this one + all after this one */
1823 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1824 		return min(npages, maxpages);
1825 	}
1826 	if (iov_iter_is_xarray(i)) {
1827 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1828 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1829 		return min(npages, maxpages);
1830 	}
1831 	return 0;
1832 }
1833 EXPORT_SYMBOL(iov_iter_npages);
1834 
1835 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1836 {
1837 	*new = *old;
1838 	if (unlikely(iov_iter_is_pipe(new))) {
1839 		WARN_ON(1);
1840 		return NULL;
1841 	}
1842 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1843 		return NULL;
1844 	if (iov_iter_is_bvec(new))
1845 		return new->bvec = kmemdup(new->bvec,
1846 				    new->nr_segs * sizeof(struct bio_vec),
1847 				    flags);
1848 	else
1849 		/* iovec and kvec have identical layout */
1850 		return new->iov = kmemdup(new->iov,
1851 				   new->nr_segs * sizeof(struct iovec),
1852 				   flags);
1853 }
1854 EXPORT_SYMBOL(dup_iter);
1855 
1856 static int copy_compat_iovec_from_user(struct iovec *iov,
1857 		const struct iovec __user *uvec, unsigned long nr_segs)
1858 {
1859 	const struct compat_iovec __user *uiov =
1860 		(const struct compat_iovec __user *)uvec;
1861 	int ret = -EFAULT, i;
1862 
1863 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1864 		return -EFAULT;
1865 
1866 	for (i = 0; i < nr_segs; i++) {
1867 		compat_uptr_t buf;
1868 		compat_ssize_t len;
1869 
1870 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1871 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1872 
1873 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1874 		if (len < 0) {
1875 			ret = -EINVAL;
1876 			goto uaccess_end;
1877 		}
1878 		iov[i].iov_base = compat_ptr(buf);
1879 		iov[i].iov_len = len;
1880 	}
1881 
1882 	ret = 0;
1883 uaccess_end:
1884 	user_access_end();
1885 	return ret;
1886 }
1887 
1888 static int copy_iovec_from_user(struct iovec *iov,
1889 		const struct iovec __user *uvec, unsigned long nr_segs)
1890 {
1891 	unsigned long seg;
1892 
1893 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1894 		return -EFAULT;
1895 	for (seg = 0; seg < nr_segs; seg++) {
1896 		if ((ssize_t)iov[seg].iov_len < 0)
1897 			return -EINVAL;
1898 	}
1899 
1900 	return 0;
1901 }
1902 
1903 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1904 		unsigned long nr_segs, unsigned long fast_segs,
1905 		struct iovec *fast_iov, bool compat)
1906 {
1907 	struct iovec *iov = fast_iov;
1908 	int ret;
1909 
1910 	/*
1911 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1912 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1913 	 * traditionally returned zero for zero segments, so...
1914 	 */
1915 	if (nr_segs == 0)
1916 		return iov;
1917 	if (nr_segs > UIO_MAXIOV)
1918 		return ERR_PTR(-EINVAL);
1919 	if (nr_segs > fast_segs) {
1920 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1921 		if (!iov)
1922 			return ERR_PTR(-ENOMEM);
1923 	}
1924 
1925 	if (compat)
1926 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1927 	else
1928 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1929 	if (ret) {
1930 		if (iov != fast_iov)
1931 			kfree(iov);
1932 		return ERR_PTR(ret);
1933 	}
1934 
1935 	return iov;
1936 }
1937 
1938 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1939 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1940 		 struct iov_iter *i, bool compat)
1941 {
1942 	ssize_t total_len = 0;
1943 	unsigned long seg;
1944 	struct iovec *iov;
1945 
1946 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1947 	if (IS_ERR(iov)) {
1948 		*iovp = NULL;
1949 		return PTR_ERR(iov);
1950 	}
1951 
1952 	/*
1953 	 * According to the Single Unix Specification we should return EINVAL if
1954 	 * an element length is < 0 when cast to ssize_t or if the total length
1955 	 * would overflow the ssize_t return value of the system call.
1956 	 *
1957 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1958 	 * overflow case.
1959 	 */
1960 	for (seg = 0; seg < nr_segs; seg++) {
1961 		ssize_t len = (ssize_t)iov[seg].iov_len;
1962 
1963 		if (!access_ok(iov[seg].iov_base, len)) {
1964 			if (iov != *iovp)
1965 				kfree(iov);
1966 			*iovp = NULL;
1967 			return -EFAULT;
1968 		}
1969 
1970 		if (len > MAX_RW_COUNT - total_len) {
1971 			len = MAX_RW_COUNT - total_len;
1972 			iov[seg].iov_len = len;
1973 		}
1974 		total_len += len;
1975 	}
1976 
1977 	iov_iter_init(i, type, iov, nr_segs, total_len);
1978 	if (iov == *iovp)
1979 		*iovp = NULL;
1980 	else
1981 		*iovp = iov;
1982 	return total_len;
1983 }
1984 
1985 /**
1986  * import_iovec() - Copy an array of &struct iovec from userspace
1987  *     into the kernel, check that it is valid, and initialize a new
1988  *     &struct iov_iter iterator to access it.
1989  *
1990  * @type: One of %READ or %WRITE.
1991  * @uvec: Pointer to the userspace array.
1992  * @nr_segs: Number of elements in userspace array.
1993  * @fast_segs: Number of elements in @iov.
1994  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1995  *     on-stack) kernel array.
1996  * @i: Pointer to iterator that will be initialized on success.
1997  *
1998  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1999  * then this function places %NULL in *@iov on return. Otherwise, a new
2000  * array will be allocated and the result placed in *@iov. This means that
2001  * the caller may call kfree() on *@iov regardless of whether the small
2002  * on-stack array was used or not (and regardless of whether this function
2003  * returns an error or not).
2004  *
2005  * Return: Negative error code on error, bytes imported on success
2006  */
2007 ssize_t import_iovec(int type, const struct iovec __user *uvec,
2008 		 unsigned nr_segs, unsigned fast_segs,
2009 		 struct iovec **iovp, struct iov_iter *i)
2010 {
2011 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
2012 			      in_compat_syscall());
2013 }
2014 EXPORT_SYMBOL(import_iovec);
2015 
2016 int import_single_range(int rw, void __user *buf, size_t len,
2017 		 struct iovec *iov, struct iov_iter *i)
2018 {
2019 	if (len > MAX_RW_COUNT)
2020 		len = MAX_RW_COUNT;
2021 	if (unlikely(!access_ok(buf, len)))
2022 		return -EFAULT;
2023 
2024 	iov->iov_base = buf;
2025 	iov->iov_len = len;
2026 	iov_iter_init(i, rw, iov, 1, len);
2027 	return 0;
2028 }
2029 EXPORT_SYMBOL(import_single_range);
2030 
2031 /**
2032  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
2033  *     iov_iter_save_state() was called.
2034  *
2035  * @i: &struct iov_iter to restore
2036  * @state: state to restore from
2037  *
2038  * Used after iov_iter_save_state() to bring restore @i, if operations may
2039  * have advanced it.
2040  *
2041  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
2042  */
2043 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
2044 {
2045 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
2046 			 !iov_iter_is_kvec(i))
2047 		return;
2048 	i->iov_offset = state->iov_offset;
2049 	i->count = state->count;
2050 	/*
2051 	 * For the *vec iters, nr_segs + iov is constant - if we increment
2052 	 * the vec, then we also decrement the nr_segs count. Hence we don't
2053 	 * need to track both of these, just one is enough and we can deduct
2054 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
2055 	 * size, so we can just increment the iov pointer as they are unionzed.
2056 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
2057 	 * not. Be safe and handle it separately.
2058 	 */
2059 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
2060 	if (iov_iter_is_bvec(i))
2061 		i->bvec -= state->nr_segs - i->nr_segs;
2062 	else
2063 		i->iov -= state->nr_segs - i->nr_segs;
2064 	i->nr_segs = state->nr_segs;
2065 }
2066