xref: /openbmc/linux/lib/iov_iter.c (revision ec6347bb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/uio.h>
6 #include <linux/pagemap.h>
7 #include <linux/slab.h>
8 #include <linux/vmalloc.h>
9 #include <linux/splice.h>
10 #include <net/checksum.h>
11 #include <linux/scatterlist.h>
12 #include <linux/instrumented.h>
13 
14 #define PIPE_PARANOIA /* for now */
15 
16 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
17 	size_t left;					\
18 	size_t wanted = n;				\
19 	__p = i->iov;					\
20 	__v.iov_len = min(n, __p->iov_len - skip);	\
21 	if (likely(__v.iov_len)) {			\
22 		__v.iov_base = __p->iov_base + skip;	\
23 		left = (STEP);				\
24 		__v.iov_len -= left;			\
25 		skip += __v.iov_len;			\
26 		n -= __v.iov_len;			\
27 	} else {					\
28 		left = 0;				\
29 	}						\
30 	while (unlikely(!left && n)) {			\
31 		__p++;					\
32 		__v.iov_len = min(n, __p->iov_len);	\
33 		if (unlikely(!__v.iov_len))		\
34 			continue;			\
35 		__v.iov_base = __p->iov_base;		\
36 		left = (STEP);				\
37 		__v.iov_len -= left;			\
38 		skip = __v.iov_len;			\
39 		n -= __v.iov_len;			\
40 	}						\
41 	n = wanted - n;					\
42 }
43 
44 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
45 	size_t wanted = n;				\
46 	__p = i->kvec;					\
47 	__v.iov_len = min(n, __p->iov_len - skip);	\
48 	if (likely(__v.iov_len)) {			\
49 		__v.iov_base = __p->iov_base + skip;	\
50 		(void)(STEP);				\
51 		skip += __v.iov_len;			\
52 		n -= __v.iov_len;			\
53 	}						\
54 	while (unlikely(n)) {				\
55 		__p++;					\
56 		__v.iov_len = min(n, __p->iov_len);	\
57 		if (unlikely(!__v.iov_len))		\
58 			continue;			\
59 		__v.iov_base = __p->iov_base;		\
60 		(void)(STEP);				\
61 		skip = __v.iov_len;			\
62 		n -= __v.iov_len;			\
63 	}						\
64 	n = wanted;					\
65 }
66 
67 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
68 	struct bvec_iter __start;			\
69 	__start.bi_size = n;				\
70 	__start.bi_bvec_done = skip;			\
71 	__start.bi_idx = 0;				\
72 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
73 		if (!__v.bv_len)			\
74 			continue;			\
75 		(void)(STEP);				\
76 	}						\
77 }
78 
79 #define iterate_all_kinds(i, n, v, I, B, K) {			\
80 	if (likely(n)) {					\
81 		size_t skip = i->iov_offset;			\
82 		if (unlikely(i->type & ITER_BVEC)) {		\
83 			struct bio_vec v;			\
84 			struct bvec_iter __bi;			\
85 			iterate_bvec(i, n, v, __bi, skip, (B))	\
86 		} else if (unlikely(i->type & ITER_KVEC)) {	\
87 			const struct kvec *kvec;		\
88 			struct kvec v;				\
89 			iterate_kvec(i, n, v, kvec, skip, (K))	\
90 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
91 		} else {					\
92 			const struct iovec *iov;		\
93 			struct iovec v;				\
94 			iterate_iovec(i, n, v, iov, skip, (I))	\
95 		}						\
96 	}							\
97 }
98 
99 #define iterate_and_advance(i, n, v, I, B, K) {			\
100 	if (unlikely(i->count < n))				\
101 		n = i->count;					\
102 	if (i->count) {						\
103 		size_t skip = i->iov_offset;			\
104 		if (unlikely(i->type & ITER_BVEC)) {		\
105 			const struct bio_vec *bvec = i->bvec;	\
106 			struct bio_vec v;			\
107 			struct bvec_iter __bi;			\
108 			iterate_bvec(i, n, v, __bi, skip, (B))	\
109 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
110 			i->nr_segs -= i->bvec - bvec;		\
111 			skip = __bi.bi_bvec_done;		\
112 		} else if (unlikely(i->type & ITER_KVEC)) {	\
113 			const struct kvec *kvec;		\
114 			struct kvec v;				\
115 			iterate_kvec(i, n, v, kvec, skip, (K))	\
116 			if (skip == kvec->iov_len) {		\
117 				kvec++;				\
118 				skip = 0;			\
119 			}					\
120 			i->nr_segs -= kvec - i->kvec;		\
121 			i->kvec = kvec;				\
122 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
123 			skip += n;				\
124 		} else {					\
125 			const struct iovec *iov;		\
126 			struct iovec v;				\
127 			iterate_iovec(i, n, v, iov, skip, (I))	\
128 			if (skip == iov->iov_len) {		\
129 				iov++;				\
130 				skip = 0;			\
131 			}					\
132 			i->nr_segs -= iov - i->iov;		\
133 			i->iov = iov;				\
134 		}						\
135 		i->count -= n;					\
136 		i->iov_offset = skip;				\
137 	}							\
138 }
139 
140 static int copyout(void __user *to, const void *from, size_t n)
141 {
142 	if (access_ok(to, n)) {
143 		instrument_copy_to_user(to, from, n);
144 		n = raw_copy_to_user(to, from, n);
145 	}
146 	return n;
147 }
148 
149 static int copyin(void *to, const void __user *from, size_t n)
150 {
151 	if (access_ok(from, n)) {
152 		instrument_copy_from_user(to, from, n);
153 		n = raw_copy_from_user(to, from, n);
154 	}
155 	return n;
156 }
157 
158 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
159 			 struct iov_iter *i)
160 {
161 	size_t skip, copy, left, wanted;
162 	const struct iovec *iov;
163 	char __user *buf;
164 	void *kaddr, *from;
165 
166 	if (unlikely(bytes > i->count))
167 		bytes = i->count;
168 
169 	if (unlikely(!bytes))
170 		return 0;
171 
172 	might_fault();
173 	wanted = bytes;
174 	iov = i->iov;
175 	skip = i->iov_offset;
176 	buf = iov->iov_base + skip;
177 	copy = min(bytes, iov->iov_len - skip);
178 
179 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
180 		kaddr = kmap_atomic(page);
181 		from = kaddr + offset;
182 
183 		/* first chunk, usually the only one */
184 		left = copyout(buf, from, copy);
185 		copy -= left;
186 		skip += copy;
187 		from += copy;
188 		bytes -= copy;
189 
190 		while (unlikely(!left && bytes)) {
191 			iov++;
192 			buf = iov->iov_base;
193 			copy = min(bytes, iov->iov_len);
194 			left = copyout(buf, from, copy);
195 			copy -= left;
196 			skip = copy;
197 			from += copy;
198 			bytes -= copy;
199 		}
200 		if (likely(!bytes)) {
201 			kunmap_atomic(kaddr);
202 			goto done;
203 		}
204 		offset = from - kaddr;
205 		buf += copy;
206 		kunmap_atomic(kaddr);
207 		copy = min(bytes, iov->iov_len - skip);
208 	}
209 	/* Too bad - revert to non-atomic kmap */
210 
211 	kaddr = kmap(page);
212 	from = kaddr + offset;
213 	left = copyout(buf, from, copy);
214 	copy -= left;
215 	skip += copy;
216 	from += copy;
217 	bytes -= copy;
218 	while (unlikely(!left && bytes)) {
219 		iov++;
220 		buf = iov->iov_base;
221 		copy = min(bytes, iov->iov_len);
222 		left = copyout(buf, from, copy);
223 		copy -= left;
224 		skip = copy;
225 		from += copy;
226 		bytes -= copy;
227 	}
228 	kunmap(page);
229 
230 done:
231 	if (skip == iov->iov_len) {
232 		iov++;
233 		skip = 0;
234 	}
235 	i->count -= wanted - bytes;
236 	i->nr_segs -= iov - i->iov;
237 	i->iov = iov;
238 	i->iov_offset = skip;
239 	return wanted - bytes;
240 }
241 
242 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
243 			 struct iov_iter *i)
244 {
245 	size_t skip, copy, left, wanted;
246 	const struct iovec *iov;
247 	char __user *buf;
248 	void *kaddr, *to;
249 
250 	if (unlikely(bytes > i->count))
251 		bytes = i->count;
252 
253 	if (unlikely(!bytes))
254 		return 0;
255 
256 	might_fault();
257 	wanted = bytes;
258 	iov = i->iov;
259 	skip = i->iov_offset;
260 	buf = iov->iov_base + skip;
261 	copy = min(bytes, iov->iov_len - skip);
262 
263 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
264 		kaddr = kmap_atomic(page);
265 		to = kaddr + offset;
266 
267 		/* first chunk, usually the only one */
268 		left = copyin(to, buf, copy);
269 		copy -= left;
270 		skip += copy;
271 		to += copy;
272 		bytes -= copy;
273 
274 		while (unlikely(!left && bytes)) {
275 			iov++;
276 			buf = iov->iov_base;
277 			copy = min(bytes, iov->iov_len);
278 			left = copyin(to, buf, copy);
279 			copy -= left;
280 			skip = copy;
281 			to += copy;
282 			bytes -= copy;
283 		}
284 		if (likely(!bytes)) {
285 			kunmap_atomic(kaddr);
286 			goto done;
287 		}
288 		offset = to - kaddr;
289 		buf += copy;
290 		kunmap_atomic(kaddr);
291 		copy = min(bytes, iov->iov_len - skip);
292 	}
293 	/* Too bad - revert to non-atomic kmap */
294 
295 	kaddr = kmap(page);
296 	to = kaddr + offset;
297 	left = copyin(to, buf, copy);
298 	copy -= left;
299 	skip += copy;
300 	to += copy;
301 	bytes -= copy;
302 	while (unlikely(!left && bytes)) {
303 		iov++;
304 		buf = iov->iov_base;
305 		copy = min(bytes, iov->iov_len);
306 		left = copyin(to, buf, copy);
307 		copy -= left;
308 		skip = copy;
309 		to += copy;
310 		bytes -= copy;
311 	}
312 	kunmap(page);
313 
314 done:
315 	if (skip == iov->iov_len) {
316 		iov++;
317 		skip = 0;
318 	}
319 	i->count -= wanted - bytes;
320 	i->nr_segs -= iov - i->iov;
321 	i->iov = iov;
322 	i->iov_offset = skip;
323 	return wanted - bytes;
324 }
325 
326 #ifdef PIPE_PARANOIA
327 static bool sanity(const struct iov_iter *i)
328 {
329 	struct pipe_inode_info *pipe = i->pipe;
330 	unsigned int p_head = pipe->head;
331 	unsigned int p_tail = pipe->tail;
332 	unsigned int p_mask = pipe->ring_size - 1;
333 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
334 	unsigned int i_head = i->head;
335 	unsigned int idx;
336 
337 	if (i->iov_offset) {
338 		struct pipe_buffer *p;
339 		if (unlikely(p_occupancy == 0))
340 			goto Bad;	// pipe must be non-empty
341 		if (unlikely(i_head != p_head - 1))
342 			goto Bad;	// must be at the last buffer...
343 
344 		p = &pipe->bufs[i_head & p_mask];
345 		if (unlikely(p->offset + p->len != i->iov_offset))
346 			goto Bad;	// ... at the end of segment
347 	} else {
348 		if (i_head != p_head)
349 			goto Bad;	// must be right after the last buffer
350 	}
351 	return true;
352 Bad:
353 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
354 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
355 			p_head, p_tail, pipe->ring_size);
356 	for (idx = 0; idx < pipe->ring_size; idx++)
357 		printk(KERN_ERR "[%p %p %d %d]\n",
358 			pipe->bufs[idx].ops,
359 			pipe->bufs[idx].page,
360 			pipe->bufs[idx].offset,
361 			pipe->bufs[idx].len);
362 	WARN_ON(1);
363 	return false;
364 }
365 #else
366 #define sanity(i) true
367 #endif
368 
369 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
370 			 struct iov_iter *i)
371 {
372 	struct pipe_inode_info *pipe = i->pipe;
373 	struct pipe_buffer *buf;
374 	unsigned int p_tail = pipe->tail;
375 	unsigned int p_mask = pipe->ring_size - 1;
376 	unsigned int i_head = i->head;
377 	size_t off;
378 
379 	if (unlikely(bytes > i->count))
380 		bytes = i->count;
381 
382 	if (unlikely(!bytes))
383 		return 0;
384 
385 	if (!sanity(i))
386 		return 0;
387 
388 	off = i->iov_offset;
389 	buf = &pipe->bufs[i_head & p_mask];
390 	if (off) {
391 		if (offset == off && buf->page == page) {
392 			/* merge with the last one */
393 			buf->len += bytes;
394 			i->iov_offset += bytes;
395 			goto out;
396 		}
397 		i_head++;
398 		buf = &pipe->bufs[i_head & p_mask];
399 	}
400 	if (pipe_full(i_head, p_tail, pipe->max_usage))
401 		return 0;
402 
403 	buf->ops = &page_cache_pipe_buf_ops;
404 	get_page(page);
405 	buf->page = page;
406 	buf->offset = offset;
407 	buf->len = bytes;
408 
409 	pipe->head = i_head + 1;
410 	i->iov_offset = offset + bytes;
411 	i->head = i_head;
412 out:
413 	i->count -= bytes;
414 	return bytes;
415 }
416 
417 /*
418  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
419  * bytes.  For each iovec, fault in each page that constitutes the iovec.
420  *
421  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
422  * because it is an invalid address).
423  */
424 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
425 {
426 	size_t skip = i->iov_offset;
427 	const struct iovec *iov;
428 	int err;
429 	struct iovec v;
430 
431 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
432 		iterate_iovec(i, bytes, v, iov, skip, ({
433 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
434 			if (unlikely(err))
435 			return err;
436 		0;}))
437 	}
438 	return 0;
439 }
440 EXPORT_SYMBOL(iov_iter_fault_in_readable);
441 
442 void iov_iter_init(struct iov_iter *i, unsigned int direction,
443 			const struct iovec *iov, unsigned long nr_segs,
444 			size_t count)
445 {
446 	WARN_ON(direction & ~(READ | WRITE));
447 	direction &= READ | WRITE;
448 
449 	/* It will get better.  Eventually... */
450 	if (uaccess_kernel()) {
451 		i->type = ITER_KVEC | direction;
452 		i->kvec = (struct kvec *)iov;
453 	} else {
454 		i->type = ITER_IOVEC | direction;
455 		i->iov = iov;
456 	}
457 	i->nr_segs = nr_segs;
458 	i->iov_offset = 0;
459 	i->count = count;
460 }
461 EXPORT_SYMBOL(iov_iter_init);
462 
463 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
464 {
465 	char *from = kmap_atomic(page);
466 	memcpy(to, from + offset, len);
467 	kunmap_atomic(from);
468 }
469 
470 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
471 {
472 	char *to = kmap_atomic(page);
473 	memcpy(to + offset, from, len);
474 	kunmap_atomic(to);
475 }
476 
477 static void memzero_page(struct page *page, size_t offset, size_t len)
478 {
479 	char *addr = kmap_atomic(page);
480 	memset(addr + offset, 0, len);
481 	kunmap_atomic(addr);
482 }
483 
484 static inline bool allocated(struct pipe_buffer *buf)
485 {
486 	return buf->ops == &default_pipe_buf_ops;
487 }
488 
489 static inline void data_start(const struct iov_iter *i,
490 			      unsigned int *iter_headp, size_t *offp)
491 {
492 	unsigned int p_mask = i->pipe->ring_size - 1;
493 	unsigned int iter_head = i->head;
494 	size_t off = i->iov_offset;
495 
496 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
497 		    off == PAGE_SIZE)) {
498 		iter_head++;
499 		off = 0;
500 	}
501 	*iter_headp = iter_head;
502 	*offp = off;
503 }
504 
505 static size_t push_pipe(struct iov_iter *i, size_t size,
506 			int *iter_headp, size_t *offp)
507 {
508 	struct pipe_inode_info *pipe = i->pipe;
509 	unsigned int p_tail = pipe->tail;
510 	unsigned int p_mask = pipe->ring_size - 1;
511 	unsigned int iter_head;
512 	size_t off;
513 	ssize_t left;
514 
515 	if (unlikely(size > i->count))
516 		size = i->count;
517 	if (unlikely(!size))
518 		return 0;
519 
520 	left = size;
521 	data_start(i, &iter_head, &off);
522 	*iter_headp = iter_head;
523 	*offp = off;
524 	if (off) {
525 		left -= PAGE_SIZE - off;
526 		if (left <= 0) {
527 			pipe->bufs[iter_head & p_mask].len += size;
528 			return size;
529 		}
530 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
531 		iter_head++;
532 	}
533 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
534 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
535 		struct page *page = alloc_page(GFP_USER);
536 		if (!page)
537 			break;
538 
539 		buf->ops = &default_pipe_buf_ops;
540 		buf->page = page;
541 		buf->offset = 0;
542 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
543 		left -= buf->len;
544 		iter_head++;
545 		pipe->head = iter_head;
546 
547 		if (left == 0)
548 			return size;
549 	}
550 	return size - left;
551 }
552 
553 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
554 				struct iov_iter *i)
555 {
556 	struct pipe_inode_info *pipe = i->pipe;
557 	unsigned int p_mask = pipe->ring_size - 1;
558 	unsigned int i_head;
559 	size_t n, off;
560 
561 	if (!sanity(i))
562 		return 0;
563 
564 	bytes = n = push_pipe(i, bytes, &i_head, &off);
565 	if (unlikely(!n))
566 		return 0;
567 	do {
568 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
569 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
570 		i->head = i_head;
571 		i->iov_offset = off + chunk;
572 		n -= chunk;
573 		addr += chunk;
574 		off = 0;
575 		i_head++;
576 	} while (n);
577 	i->count -= bytes;
578 	return bytes;
579 }
580 
581 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
582 			      __wsum sum, size_t off)
583 {
584 	__wsum next = csum_partial_copy_nocheck(from, to, len, 0);
585 	return csum_block_add(sum, next, off);
586 }
587 
588 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
589 				__wsum *csum, struct iov_iter *i)
590 {
591 	struct pipe_inode_info *pipe = i->pipe;
592 	unsigned int p_mask = pipe->ring_size - 1;
593 	unsigned int i_head;
594 	size_t n, r;
595 	size_t off = 0;
596 	__wsum sum = *csum;
597 
598 	if (!sanity(i))
599 		return 0;
600 
601 	bytes = n = push_pipe(i, bytes, &i_head, &r);
602 	if (unlikely(!n))
603 		return 0;
604 	do {
605 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
606 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
607 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
608 		kunmap_atomic(p);
609 		i->head = i_head;
610 		i->iov_offset = r + chunk;
611 		n -= chunk;
612 		off += chunk;
613 		addr += chunk;
614 		r = 0;
615 		i_head++;
616 	} while (n);
617 	i->count -= bytes;
618 	*csum = sum;
619 	return bytes;
620 }
621 
622 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
623 {
624 	const char *from = addr;
625 	if (unlikely(iov_iter_is_pipe(i)))
626 		return copy_pipe_to_iter(addr, bytes, i);
627 	if (iter_is_iovec(i))
628 		might_fault();
629 	iterate_and_advance(i, bytes, v,
630 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
631 		memcpy_to_page(v.bv_page, v.bv_offset,
632 			       (from += v.bv_len) - v.bv_len, v.bv_len),
633 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
634 	)
635 
636 	return bytes;
637 }
638 EXPORT_SYMBOL(_copy_to_iter);
639 
640 #ifdef CONFIG_ARCH_HAS_COPY_MC
641 static int copyout_mc(void __user *to, const void *from, size_t n)
642 {
643 	if (access_ok(to, n)) {
644 		instrument_copy_to_user(to, from, n);
645 		n = copy_mc_to_user((__force void *) to, from, n);
646 	}
647 	return n;
648 }
649 
650 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
651 		const char *from, size_t len)
652 {
653 	unsigned long ret;
654 	char *to;
655 
656 	to = kmap_atomic(page);
657 	ret = copy_mc_to_kernel(to + offset, from, len);
658 	kunmap_atomic(to);
659 
660 	return ret;
661 }
662 
663 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
664 				struct iov_iter *i)
665 {
666 	struct pipe_inode_info *pipe = i->pipe;
667 	unsigned int p_mask = pipe->ring_size - 1;
668 	unsigned int i_head;
669 	size_t n, off, xfer = 0;
670 
671 	if (!sanity(i))
672 		return 0;
673 
674 	bytes = n = push_pipe(i, bytes, &i_head, &off);
675 	if (unlikely(!n))
676 		return 0;
677 	do {
678 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
679 		unsigned long rem;
680 
681 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
682 					    off, addr, chunk);
683 		i->head = i_head;
684 		i->iov_offset = off + chunk - rem;
685 		xfer += chunk - rem;
686 		if (rem)
687 			break;
688 		n -= chunk;
689 		addr += chunk;
690 		off = 0;
691 		i_head++;
692 	} while (n);
693 	i->count -= xfer;
694 	return xfer;
695 }
696 
697 /**
698  * _copy_mc_to_iter - copy to iter with source memory error exception handling
699  * @addr: source kernel address
700  * @bytes: total transfer length
701  * @iter: destination iterator
702  *
703  * The pmem driver deploys this for the dax operation
704  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
705  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
706  * successfully copied.
707  *
708  * The main differences between this and typical _copy_to_iter().
709  *
710  * * Typical tail/residue handling after a fault retries the copy
711  *   byte-by-byte until the fault happens again. Re-triggering machine
712  *   checks is potentially fatal so the implementation uses source
713  *   alignment and poison alignment assumptions to avoid re-triggering
714  *   hardware exceptions.
715  *
716  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
717  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
718  *   a short copy.
719  */
720 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
721 {
722 	const char *from = addr;
723 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
724 
725 	if (unlikely(iov_iter_is_pipe(i)))
726 		return copy_mc_pipe_to_iter(addr, bytes, i);
727 	if (iter_is_iovec(i))
728 		might_fault();
729 	iterate_and_advance(i, bytes, v,
730 		copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
731 			   v.iov_len),
732 		({
733 		rem = copy_mc_to_page(v.bv_page, v.bv_offset,
734 				      (from += v.bv_len) - v.bv_len, v.bv_len);
735 		if (rem) {
736 			curr_addr = (unsigned long) from;
737 			bytes = curr_addr - s_addr - rem;
738 			return bytes;
739 		}
740 		}),
741 		({
742 		rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
743 					- v.iov_len, v.iov_len);
744 		if (rem) {
745 			curr_addr = (unsigned long) from;
746 			bytes = curr_addr - s_addr - rem;
747 			return bytes;
748 		}
749 		})
750 	)
751 
752 	return bytes;
753 }
754 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
755 #endif /* CONFIG_ARCH_HAS_COPY_MC */
756 
757 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
758 {
759 	char *to = addr;
760 	if (unlikely(iov_iter_is_pipe(i))) {
761 		WARN_ON(1);
762 		return 0;
763 	}
764 	if (iter_is_iovec(i))
765 		might_fault();
766 	iterate_and_advance(i, bytes, v,
767 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
768 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
769 				 v.bv_offset, v.bv_len),
770 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
771 	)
772 
773 	return bytes;
774 }
775 EXPORT_SYMBOL(_copy_from_iter);
776 
777 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
778 {
779 	char *to = addr;
780 	if (unlikely(iov_iter_is_pipe(i))) {
781 		WARN_ON(1);
782 		return false;
783 	}
784 	if (unlikely(i->count < bytes))
785 		return false;
786 
787 	if (iter_is_iovec(i))
788 		might_fault();
789 	iterate_all_kinds(i, bytes, v, ({
790 		if (copyin((to += v.iov_len) - v.iov_len,
791 				      v.iov_base, v.iov_len))
792 			return false;
793 		0;}),
794 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
795 				 v.bv_offset, v.bv_len),
796 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
797 	)
798 
799 	iov_iter_advance(i, bytes);
800 	return true;
801 }
802 EXPORT_SYMBOL(_copy_from_iter_full);
803 
804 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
805 {
806 	char *to = addr;
807 	if (unlikely(iov_iter_is_pipe(i))) {
808 		WARN_ON(1);
809 		return 0;
810 	}
811 	iterate_and_advance(i, bytes, v,
812 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
813 					 v.iov_base, v.iov_len),
814 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
815 				 v.bv_offset, v.bv_len),
816 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
817 	)
818 
819 	return bytes;
820 }
821 EXPORT_SYMBOL(_copy_from_iter_nocache);
822 
823 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
824 /**
825  * _copy_from_iter_flushcache - write destination through cpu cache
826  * @addr: destination kernel address
827  * @bytes: total transfer length
828  * @iter: source iterator
829  *
830  * The pmem driver arranges for filesystem-dax to use this facility via
831  * dax_copy_from_iter() for ensuring that writes to persistent memory
832  * are flushed through the CPU cache. It is differentiated from
833  * _copy_from_iter_nocache() in that guarantees all data is flushed for
834  * all iterator types. The _copy_from_iter_nocache() only attempts to
835  * bypass the cache for the ITER_IOVEC case, and on some archs may use
836  * instructions that strand dirty-data in the cache.
837  */
838 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
839 {
840 	char *to = addr;
841 	if (unlikely(iov_iter_is_pipe(i))) {
842 		WARN_ON(1);
843 		return 0;
844 	}
845 	iterate_and_advance(i, bytes, v,
846 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
847 					 v.iov_base, v.iov_len),
848 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
849 				 v.bv_offset, v.bv_len),
850 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
851 			v.iov_len)
852 	)
853 
854 	return bytes;
855 }
856 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
857 #endif
858 
859 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
860 {
861 	char *to = addr;
862 	if (unlikely(iov_iter_is_pipe(i))) {
863 		WARN_ON(1);
864 		return false;
865 	}
866 	if (unlikely(i->count < bytes))
867 		return false;
868 	iterate_all_kinds(i, bytes, v, ({
869 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
870 					     v.iov_base, v.iov_len))
871 			return false;
872 		0;}),
873 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
874 				 v.bv_offset, v.bv_len),
875 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
876 	)
877 
878 	iov_iter_advance(i, bytes);
879 	return true;
880 }
881 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
882 
883 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
884 {
885 	struct page *head;
886 	size_t v = n + offset;
887 
888 	/*
889 	 * The general case needs to access the page order in order
890 	 * to compute the page size.
891 	 * However, we mostly deal with order-0 pages and thus can
892 	 * avoid a possible cache line miss for requests that fit all
893 	 * page orders.
894 	 */
895 	if (n <= v && v <= PAGE_SIZE)
896 		return true;
897 
898 	head = compound_head(page);
899 	v += (page - head) << PAGE_SHIFT;
900 
901 	if (likely(n <= v && v <= (page_size(head))))
902 		return true;
903 	WARN_ON(1);
904 	return false;
905 }
906 
907 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
908 			 struct iov_iter *i)
909 {
910 	if (unlikely(!page_copy_sane(page, offset, bytes)))
911 		return 0;
912 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
913 		void *kaddr = kmap_atomic(page);
914 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
915 		kunmap_atomic(kaddr);
916 		return wanted;
917 	} else if (unlikely(iov_iter_is_discard(i)))
918 		return bytes;
919 	else if (likely(!iov_iter_is_pipe(i)))
920 		return copy_page_to_iter_iovec(page, offset, bytes, i);
921 	else
922 		return copy_page_to_iter_pipe(page, offset, bytes, i);
923 }
924 EXPORT_SYMBOL(copy_page_to_iter);
925 
926 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
927 			 struct iov_iter *i)
928 {
929 	if (unlikely(!page_copy_sane(page, offset, bytes)))
930 		return 0;
931 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
932 		WARN_ON(1);
933 		return 0;
934 	}
935 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
936 		void *kaddr = kmap_atomic(page);
937 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
938 		kunmap_atomic(kaddr);
939 		return wanted;
940 	} else
941 		return copy_page_from_iter_iovec(page, offset, bytes, i);
942 }
943 EXPORT_SYMBOL(copy_page_from_iter);
944 
945 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
946 {
947 	struct pipe_inode_info *pipe = i->pipe;
948 	unsigned int p_mask = pipe->ring_size - 1;
949 	unsigned int i_head;
950 	size_t n, off;
951 
952 	if (!sanity(i))
953 		return 0;
954 
955 	bytes = n = push_pipe(i, bytes, &i_head, &off);
956 	if (unlikely(!n))
957 		return 0;
958 
959 	do {
960 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
961 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
962 		i->head = i_head;
963 		i->iov_offset = off + chunk;
964 		n -= chunk;
965 		off = 0;
966 		i_head++;
967 	} while (n);
968 	i->count -= bytes;
969 	return bytes;
970 }
971 
972 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
973 {
974 	if (unlikely(iov_iter_is_pipe(i)))
975 		return pipe_zero(bytes, i);
976 	iterate_and_advance(i, bytes, v,
977 		clear_user(v.iov_base, v.iov_len),
978 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
979 		memset(v.iov_base, 0, v.iov_len)
980 	)
981 
982 	return bytes;
983 }
984 EXPORT_SYMBOL(iov_iter_zero);
985 
986 size_t iov_iter_copy_from_user_atomic(struct page *page,
987 		struct iov_iter *i, unsigned long offset, size_t bytes)
988 {
989 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
990 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
991 		kunmap_atomic(kaddr);
992 		return 0;
993 	}
994 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
995 		kunmap_atomic(kaddr);
996 		WARN_ON(1);
997 		return 0;
998 	}
999 	iterate_all_kinds(i, bytes, v,
1000 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1001 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1002 				 v.bv_offset, v.bv_len),
1003 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1004 	)
1005 	kunmap_atomic(kaddr);
1006 	return bytes;
1007 }
1008 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1009 
1010 static inline void pipe_truncate(struct iov_iter *i)
1011 {
1012 	struct pipe_inode_info *pipe = i->pipe;
1013 	unsigned int p_tail = pipe->tail;
1014 	unsigned int p_head = pipe->head;
1015 	unsigned int p_mask = pipe->ring_size - 1;
1016 
1017 	if (!pipe_empty(p_head, p_tail)) {
1018 		struct pipe_buffer *buf;
1019 		unsigned int i_head = i->head;
1020 		size_t off = i->iov_offset;
1021 
1022 		if (off) {
1023 			buf = &pipe->bufs[i_head & p_mask];
1024 			buf->len = off - buf->offset;
1025 			i_head++;
1026 		}
1027 		while (p_head != i_head) {
1028 			p_head--;
1029 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1030 		}
1031 
1032 		pipe->head = p_head;
1033 	}
1034 }
1035 
1036 static void pipe_advance(struct iov_iter *i, size_t size)
1037 {
1038 	struct pipe_inode_info *pipe = i->pipe;
1039 	if (unlikely(i->count < size))
1040 		size = i->count;
1041 	if (size) {
1042 		struct pipe_buffer *buf;
1043 		unsigned int p_mask = pipe->ring_size - 1;
1044 		unsigned int i_head = i->head;
1045 		size_t off = i->iov_offset, left = size;
1046 
1047 		if (off) /* make it relative to the beginning of buffer */
1048 			left += off - pipe->bufs[i_head & p_mask].offset;
1049 		while (1) {
1050 			buf = &pipe->bufs[i_head & p_mask];
1051 			if (left <= buf->len)
1052 				break;
1053 			left -= buf->len;
1054 			i_head++;
1055 		}
1056 		i->head = i_head;
1057 		i->iov_offset = buf->offset + left;
1058 	}
1059 	i->count -= size;
1060 	/* ... and discard everything past that point */
1061 	pipe_truncate(i);
1062 }
1063 
1064 void iov_iter_advance(struct iov_iter *i, size_t size)
1065 {
1066 	if (unlikely(iov_iter_is_pipe(i))) {
1067 		pipe_advance(i, size);
1068 		return;
1069 	}
1070 	if (unlikely(iov_iter_is_discard(i))) {
1071 		i->count -= size;
1072 		return;
1073 	}
1074 	iterate_and_advance(i, size, v, 0, 0, 0)
1075 }
1076 EXPORT_SYMBOL(iov_iter_advance);
1077 
1078 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1079 {
1080 	if (!unroll)
1081 		return;
1082 	if (WARN_ON(unroll > MAX_RW_COUNT))
1083 		return;
1084 	i->count += unroll;
1085 	if (unlikely(iov_iter_is_pipe(i))) {
1086 		struct pipe_inode_info *pipe = i->pipe;
1087 		unsigned int p_mask = pipe->ring_size - 1;
1088 		unsigned int i_head = i->head;
1089 		size_t off = i->iov_offset;
1090 		while (1) {
1091 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1092 			size_t n = off - b->offset;
1093 			if (unroll < n) {
1094 				off -= unroll;
1095 				break;
1096 			}
1097 			unroll -= n;
1098 			if (!unroll && i_head == i->start_head) {
1099 				off = 0;
1100 				break;
1101 			}
1102 			i_head--;
1103 			b = &pipe->bufs[i_head & p_mask];
1104 			off = b->offset + b->len;
1105 		}
1106 		i->iov_offset = off;
1107 		i->head = i_head;
1108 		pipe_truncate(i);
1109 		return;
1110 	}
1111 	if (unlikely(iov_iter_is_discard(i)))
1112 		return;
1113 	if (unroll <= i->iov_offset) {
1114 		i->iov_offset -= unroll;
1115 		return;
1116 	}
1117 	unroll -= i->iov_offset;
1118 	if (iov_iter_is_bvec(i)) {
1119 		const struct bio_vec *bvec = i->bvec;
1120 		while (1) {
1121 			size_t n = (--bvec)->bv_len;
1122 			i->nr_segs++;
1123 			if (unroll <= n) {
1124 				i->bvec = bvec;
1125 				i->iov_offset = n - unroll;
1126 				return;
1127 			}
1128 			unroll -= n;
1129 		}
1130 	} else { /* same logics for iovec and kvec */
1131 		const struct iovec *iov = i->iov;
1132 		while (1) {
1133 			size_t n = (--iov)->iov_len;
1134 			i->nr_segs++;
1135 			if (unroll <= n) {
1136 				i->iov = iov;
1137 				i->iov_offset = n - unroll;
1138 				return;
1139 			}
1140 			unroll -= n;
1141 		}
1142 	}
1143 }
1144 EXPORT_SYMBOL(iov_iter_revert);
1145 
1146 /*
1147  * Return the count of just the current iov_iter segment.
1148  */
1149 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1150 {
1151 	if (unlikely(iov_iter_is_pipe(i)))
1152 		return i->count;	// it is a silly place, anyway
1153 	if (i->nr_segs == 1)
1154 		return i->count;
1155 	if (unlikely(iov_iter_is_discard(i)))
1156 		return i->count;
1157 	else if (iov_iter_is_bvec(i))
1158 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1159 	else
1160 		return min(i->count, i->iov->iov_len - i->iov_offset);
1161 }
1162 EXPORT_SYMBOL(iov_iter_single_seg_count);
1163 
1164 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1165 			const struct kvec *kvec, unsigned long nr_segs,
1166 			size_t count)
1167 {
1168 	WARN_ON(direction & ~(READ | WRITE));
1169 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1170 	i->kvec = kvec;
1171 	i->nr_segs = nr_segs;
1172 	i->iov_offset = 0;
1173 	i->count = count;
1174 }
1175 EXPORT_SYMBOL(iov_iter_kvec);
1176 
1177 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1178 			const struct bio_vec *bvec, unsigned long nr_segs,
1179 			size_t count)
1180 {
1181 	WARN_ON(direction & ~(READ | WRITE));
1182 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1183 	i->bvec = bvec;
1184 	i->nr_segs = nr_segs;
1185 	i->iov_offset = 0;
1186 	i->count = count;
1187 }
1188 EXPORT_SYMBOL(iov_iter_bvec);
1189 
1190 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1191 			struct pipe_inode_info *pipe,
1192 			size_t count)
1193 {
1194 	BUG_ON(direction != READ);
1195 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1196 	i->type = ITER_PIPE | READ;
1197 	i->pipe = pipe;
1198 	i->head = pipe->head;
1199 	i->iov_offset = 0;
1200 	i->count = count;
1201 	i->start_head = i->head;
1202 }
1203 EXPORT_SYMBOL(iov_iter_pipe);
1204 
1205 /**
1206  * iov_iter_discard - Initialise an I/O iterator that discards data
1207  * @i: The iterator to initialise.
1208  * @direction: The direction of the transfer.
1209  * @count: The size of the I/O buffer in bytes.
1210  *
1211  * Set up an I/O iterator that just discards everything that's written to it.
1212  * It's only available as a READ iterator.
1213  */
1214 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1215 {
1216 	BUG_ON(direction != READ);
1217 	i->type = ITER_DISCARD | READ;
1218 	i->count = count;
1219 	i->iov_offset = 0;
1220 }
1221 EXPORT_SYMBOL(iov_iter_discard);
1222 
1223 unsigned long iov_iter_alignment(const struct iov_iter *i)
1224 {
1225 	unsigned long res = 0;
1226 	size_t size = i->count;
1227 
1228 	if (unlikely(iov_iter_is_pipe(i))) {
1229 		unsigned int p_mask = i->pipe->ring_size - 1;
1230 
1231 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1232 			return size | i->iov_offset;
1233 		return size;
1234 	}
1235 	iterate_all_kinds(i, size, v,
1236 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1237 		res |= v.bv_offset | v.bv_len,
1238 		res |= (unsigned long)v.iov_base | v.iov_len
1239 	)
1240 	return res;
1241 }
1242 EXPORT_SYMBOL(iov_iter_alignment);
1243 
1244 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1245 {
1246 	unsigned long res = 0;
1247 	size_t size = i->count;
1248 
1249 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1250 		WARN_ON(1);
1251 		return ~0U;
1252 	}
1253 
1254 	iterate_all_kinds(i, size, v,
1255 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1256 			(size != v.iov_len ? size : 0), 0),
1257 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1258 			(size != v.bv_len ? size : 0)),
1259 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1260 			(size != v.iov_len ? size : 0))
1261 		);
1262 	return res;
1263 }
1264 EXPORT_SYMBOL(iov_iter_gap_alignment);
1265 
1266 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1267 				size_t maxsize,
1268 				struct page **pages,
1269 				int iter_head,
1270 				size_t *start)
1271 {
1272 	struct pipe_inode_info *pipe = i->pipe;
1273 	unsigned int p_mask = pipe->ring_size - 1;
1274 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1275 	if (!n)
1276 		return -EFAULT;
1277 
1278 	maxsize = n;
1279 	n += *start;
1280 	while (n > 0) {
1281 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1282 		iter_head++;
1283 		n -= PAGE_SIZE;
1284 	}
1285 
1286 	return maxsize;
1287 }
1288 
1289 static ssize_t pipe_get_pages(struct iov_iter *i,
1290 		   struct page **pages, size_t maxsize, unsigned maxpages,
1291 		   size_t *start)
1292 {
1293 	unsigned int iter_head, npages;
1294 	size_t capacity;
1295 
1296 	if (!maxsize)
1297 		return 0;
1298 
1299 	if (!sanity(i))
1300 		return -EFAULT;
1301 
1302 	data_start(i, &iter_head, start);
1303 	/* Amount of free space: some of this one + all after this one */
1304 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1305 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1306 
1307 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1308 }
1309 
1310 ssize_t iov_iter_get_pages(struct iov_iter *i,
1311 		   struct page **pages, size_t maxsize, unsigned maxpages,
1312 		   size_t *start)
1313 {
1314 	if (maxsize > i->count)
1315 		maxsize = i->count;
1316 
1317 	if (unlikely(iov_iter_is_pipe(i)))
1318 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1319 	if (unlikely(iov_iter_is_discard(i)))
1320 		return -EFAULT;
1321 
1322 	iterate_all_kinds(i, maxsize, v, ({
1323 		unsigned long addr = (unsigned long)v.iov_base;
1324 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1325 		int n;
1326 		int res;
1327 
1328 		if (len > maxpages * PAGE_SIZE)
1329 			len = maxpages * PAGE_SIZE;
1330 		addr &= ~(PAGE_SIZE - 1);
1331 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1332 		res = get_user_pages_fast(addr, n,
1333 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1334 				pages);
1335 		if (unlikely(res < 0))
1336 			return res;
1337 		return (res == n ? len : res * PAGE_SIZE) - *start;
1338 	0;}),({
1339 		/* can't be more than PAGE_SIZE */
1340 		*start = v.bv_offset;
1341 		get_page(*pages = v.bv_page);
1342 		return v.bv_len;
1343 	}),({
1344 		return -EFAULT;
1345 	})
1346 	)
1347 	return 0;
1348 }
1349 EXPORT_SYMBOL(iov_iter_get_pages);
1350 
1351 static struct page **get_pages_array(size_t n)
1352 {
1353 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1354 }
1355 
1356 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1357 		   struct page ***pages, size_t maxsize,
1358 		   size_t *start)
1359 {
1360 	struct page **p;
1361 	unsigned int iter_head, npages;
1362 	ssize_t n;
1363 
1364 	if (!maxsize)
1365 		return 0;
1366 
1367 	if (!sanity(i))
1368 		return -EFAULT;
1369 
1370 	data_start(i, &iter_head, start);
1371 	/* Amount of free space: some of this one + all after this one */
1372 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1373 	n = npages * PAGE_SIZE - *start;
1374 	if (maxsize > n)
1375 		maxsize = n;
1376 	else
1377 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1378 	p = get_pages_array(npages);
1379 	if (!p)
1380 		return -ENOMEM;
1381 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1382 	if (n > 0)
1383 		*pages = p;
1384 	else
1385 		kvfree(p);
1386 	return n;
1387 }
1388 
1389 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1390 		   struct page ***pages, size_t maxsize,
1391 		   size_t *start)
1392 {
1393 	struct page **p;
1394 
1395 	if (maxsize > i->count)
1396 		maxsize = i->count;
1397 
1398 	if (unlikely(iov_iter_is_pipe(i)))
1399 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1400 	if (unlikely(iov_iter_is_discard(i)))
1401 		return -EFAULT;
1402 
1403 	iterate_all_kinds(i, maxsize, v, ({
1404 		unsigned long addr = (unsigned long)v.iov_base;
1405 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1406 		int n;
1407 		int res;
1408 
1409 		addr &= ~(PAGE_SIZE - 1);
1410 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1411 		p = get_pages_array(n);
1412 		if (!p)
1413 			return -ENOMEM;
1414 		res = get_user_pages_fast(addr, n,
1415 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1416 		if (unlikely(res < 0)) {
1417 			kvfree(p);
1418 			return res;
1419 		}
1420 		*pages = p;
1421 		return (res == n ? len : res * PAGE_SIZE) - *start;
1422 	0;}),({
1423 		/* can't be more than PAGE_SIZE */
1424 		*start = v.bv_offset;
1425 		*pages = p = get_pages_array(1);
1426 		if (!p)
1427 			return -ENOMEM;
1428 		get_page(*p = v.bv_page);
1429 		return v.bv_len;
1430 	}),({
1431 		return -EFAULT;
1432 	})
1433 	)
1434 	return 0;
1435 }
1436 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1437 
1438 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1439 			       struct iov_iter *i)
1440 {
1441 	char *to = addr;
1442 	__wsum sum, next;
1443 	size_t off = 0;
1444 	sum = *csum;
1445 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1446 		WARN_ON(1);
1447 		return 0;
1448 	}
1449 	iterate_and_advance(i, bytes, v, ({
1450 		int err = 0;
1451 		next = csum_and_copy_from_user(v.iov_base,
1452 					       (to += v.iov_len) - v.iov_len,
1453 					       v.iov_len, 0, &err);
1454 		if (!err) {
1455 			sum = csum_block_add(sum, next, off);
1456 			off += v.iov_len;
1457 		}
1458 		err ? v.iov_len : 0;
1459 	}), ({
1460 		char *p = kmap_atomic(v.bv_page);
1461 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1462 				      p + v.bv_offset, v.bv_len,
1463 				      sum, off);
1464 		kunmap_atomic(p);
1465 		off += v.bv_len;
1466 	}),({
1467 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1468 				      v.iov_base, v.iov_len,
1469 				      sum, off);
1470 		off += v.iov_len;
1471 	})
1472 	)
1473 	*csum = sum;
1474 	return bytes;
1475 }
1476 EXPORT_SYMBOL(csum_and_copy_from_iter);
1477 
1478 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1479 			       struct iov_iter *i)
1480 {
1481 	char *to = addr;
1482 	__wsum sum, next;
1483 	size_t off = 0;
1484 	sum = *csum;
1485 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1486 		WARN_ON(1);
1487 		return false;
1488 	}
1489 	if (unlikely(i->count < bytes))
1490 		return false;
1491 	iterate_all_kinds(i, bytes, v, ({
1492 		int err = 0;
1493 		next = csum_and_copy_from_user(v.iov_base,
1494 					       (to += v.iov_len) - v.iov_len,
1495 					       v.iov_len, 0, &err);
1496 		if (err)
1497 			return false;
1498 		sum = csum_block_add(sum, next, off);
1499 		off += v.iov_len;
1500 		0;
1501 	}), ({
1502 		char *p = kmap_atomic(v.bv_page);
1503 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1504 				      p + v.bv_offset, v.bv_len,
1505 				      sum, off);
1506 		kunmap_atomic(p);
1507 		off += v.bv_len;
1508 	}),({
1509 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1510 				      v.iov_base, v.iov_len,
1511 				      sum, off);
1512 		off += v.iov_len;
1513 	})
1514 	)
1515 	*csum = sum;
1516 	iov_iter_advance(i, bytes);
1517 	return true;
1518 }
1519 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1520 
1521 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1522 			     struct iov_iter *i)
1523 {
1524 	const char *from = addr;
1525 	__wsum *csum = csump;
1526 	__wsum sum, next;
1527 	size_t off = 0;
1528 
1529 	if (unlikely(iov_iter_is_pipe(i)))
1530 		return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1531 
1532 	sum = *csum;
1533 	if (unlikely(iov_iter_is_discard(i))) {
1534 		WARN_ON(1);	/* for now */
1535 		return 0;
1536 	}
1537 	iterate_and_advance(i, bytes, v, ({
1538 		int err = 0;
1539 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1540 					     v.iov_base,
1541 					     v.iov_len, 0, &err);
1542 		if (!err) {
1543 			sum = csum_block_add(sum, next, off);
1544 			off += v.iov_len;
1545 		}
1546 		err ? v.iov_len : 0;
1547 	}), ({
1548 		char *p = kmap_atomic(v.bv_page);
1549 		sum = csum_and_memcpy(p + v.bv_offset,
1550 				      (from += v.bv_len) - v.bv_len,
1551 				      v.bv_len, sum, off);
1552 		kunmap_atomic(p);
1553 		off += v.bv_len;
1554 	}),({
1555 		sum = csum_and_memcpy(v.iov_base,
1556 				     (from += v.iov_len) - v.iov_len,
1557 				     v.iov_len, sum, off);
1558 		off += v.iov_len;
1559 	})
1560 	)
1561 	*csum = sum;
1562 	return bytes;
1563 }
1564 EXPORT_SYMBOL(csum_and_copy_to_iter);
1565 
1566 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1567 		struct iov_iter *i)
1568 {
1569 #ifdef CONFIG_CRYPTO_HASH
1570 	struct ahash_request *hash = hashp;
1571 	struct scatterlist sg;
1572 	size_t copied;
1573 
1574 	copied = copy_to_iter(addr, bytes, i);
1575 	sg_init_one(&sg, addr, copied);
1576 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1577 	crypto_ahash_update(hash);
1578 	return copied;
1579 #else
1580 	return 0;
1581 #endif
1582 }
1583 EXPORT_SYMBOL(hash_and_copy_to_iter);
1584 
1585 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1586 {
1587 	size_t size = i->count;
1588 	int npages = 0;
1589 
1590 	if (!size)
1591 		return 0;
1592 	if (unlikely(iov_iter_is_discard(i)))
1593 		return 0;
1594 
1595 	if (unlikely(iov_iter_is_pipe(i))) {
1596 		struct pipe_inode_info *pipe = i->pipe;
1597 		unsigned int iter_head;
1598 		size_t off;
1599 
1600 		if (!sanity(i))
1601 			return 0;
1602 
1603 		data_start(i, &iter_head, &off);
1604 		/* some of this one + all after this one */
1605 		npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1606 		if (npages >= maxpages)
1607 			return maxpages;
1608 	} else iterate_all_kinds(i, size, v, ({
1609 		unsigned long p = (unsigned long)v.iov_base;
1610 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1611 			- p / PAGE_SIZE;
1612 		if (npages >= maxpages)
1613 			return maxpages;
1614 	0;}),({
1615 		npages++;
1616 		if (npages >= maxpages)
1617 			return maxpages;
1618 	}),({
1619 		unsigned long p = (unsigned long)v.iov_base;
1620 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1621 			- p / PAGE_SIZE;
1622 		if (npages >= maxpages)
1623 			return maxpages;
1624 	})
1625 	)
1626 	return npages;
1627 }
1628 EXPORT_SYMBOL(iov_iter_npages);
1629 
1630 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1631 {
1632 	*new = *old;
1633 	if (unlikely(iov_iter_is_pipe(new))) {
1634 		WARN_ON(1);
1635 		return NULL;
1636 	}
1637 	if (unlikely(iov_iter_is_discard(new)))
1638 		return NULL;
1639 	if (iov_iter_is_bvec(new))
1640 		return new->bvec = kmemdup(new->bvec,
1641 				    new->nr_segs * sizeof(struct bio_vec),
1642 				    flags);
1643 	else
1644 		/* iovec and kvec have identical layout */
1645 		return new->iov = kmemdup(new->iov,
1646 				   new->nr_segs * sizeof(struct iovec),
1647 				   flags);
1648 }
1649 EXPORT_SYMBOL(dup_iter);
1650 
1651 /**
1652  * import_iovec() - Copy an array of &struct iovec from userspace
1653  *     into the kernel, check that it is valid, and initialize a new
1654  *     &struct iov_iter iterator to access it.
1655  *
1656  * @type: One of %READ or %WRITE.
1657  * @uvector: Pointer to the userspace array.
1658  * @nr_segs: Number of elements in userspace array.
1659  * @fast_segs: Number of elements in @iov.
1660  * @iov: (input and output parameter) Pointer to pointer to (usually small
1661  *     on-stack) kernel array.
1662  * @i: Pointer to iterator that will be initialized on success.
1663  *
1664  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1665  * then this function places %NULL in *@iov on return. Otherwise, a new
1666  * array will be allocated and the result placed in *@iov. This means that
1667  * the caller may call kfree() on *@iov regardless of whether the small
1668  * on-stack array was used or not (and regardless of whether this function
1669  * returns an error or not).
1670  *
1671  * Return: Negative error code on error, bytes imported on success
1672  */
1673 ssize_t import_iovec(int type, const struct iovec __user * uvector,
1674 		 unsigned nr_segs, unsigned fast_segs,
1675 		 struct iovec **iov, struct iov_iter *i)
1676 {
1677 	ssize_t n;
1678 	struct iovec *p;
1679 	n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1680 				  *iov, &p);
1681 	if (n < 0) {
1682 		if (p != *iov)
1683 			kfree(p);
1684 		*iov = NULL;
1685 		return n;
1686 	}
1687 	iov_iter_init(i, type, p, nr_segs, n);
1688 	*iov = p == *iov ? NULL : p;
1689 	return n;
1690 }
1691 EXPORT_SYMBOL(import_iovec);
1692 
1693 #ifdef CONFIG_COMPAT
1694 #include <linux/compat.h>
1695 
1696 ssize_t compat_import_iovec(int type,
1697 		const struct compat_iovec __user * uvector,
1698 		unsigned nr_segs, unsigned fast_segs,
1699 		struct iovec **iov, struct iov_iter *i)
1700 {
1701 	ssize_t n;
1702 	struct iovec *p;
1703 	n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1704 				  *iov, &p);
1705 	if (n < 0) {
1706 		if (p != *iov)
1707 			kfree(p);
1708 		*iov = NULL;
1709 		return n;
1710 	}
1711 	iov_iter_init(i, type, p, nr_segs, n);
1712 	*iov = p == *iov ? NULL : p;
1713 	return n;
1714 }
1715 EXPORT_SYMBOL(compat_import_iovec);
1716 #endif
1717 
1718 int import_single_range(int rw, void __user *buf, size_t len,
1719 		 struct iovec *iov, struct iov_iter *i)
1720 {
1721 	if (len > MAX_RW_COUNT)
1722 		len = MAX_RW_COUNT;
1723 	if (unlikely(!access_ok(buf, len)))
1724 		return -EFAULT;
1725 
1726 	iov->iov_base = buf;
1727 	iov->iov_len = len;
1728 	iov_iter_init(i, rw, iov, 1, len);
1729 	return 0;
1730 }
1731 EXPORT_SYMBOL(import_single_range);
1732 
1733 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1734 			    int (*f)(struct kvec *vec, void *context),
1735 			    void *context)
1736 {
1737 	struct kvec w;
1738 	int err = -EINVAL;
1739 	if (!bytes)
1740 		return 0;
1741 
1742 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1743 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1744 		w.iov_len = v.bv_len;
1745 		err = f(&w, context);
1746 		kunmap(v.bv_page);
1747 		err;}), ({
1748 		w = v;
1749 		err = f(&w, context);})
1750 	)
1751 	return err;
1752 }
1753 EXPORT_SYMBOL(iov_iter_for_each_range);
1754