1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <crypto/hash.h> 3 #include <linux/export.h> 4 #include <linux/bvec.h> 5 #include <linux/fault-inject-usercopy.h> 6 #include <linux/uio.h> 7 #include <linux/pagemap.h> 8 #include <linux/highmem.h> 9 #include <linux/slab.h> 10 #include <linux/vmalloc.h> 11 #include <linux/splice.h> 12 #include <linux/compat.h> 13 #include <net/checksum.h> 14 #include <linux/scatterlist.h> 15 #include <linux/instrumented.h> 16 17 #define PIPE_PARANOIA /* for now */ 18 19 /* covers ubuf and kbuf alike */ 20 #define iterate_buf(i, n, base, len, off, __p, STEP) { \ 21 size_t __maybe_unused off = 0; \ 22 len = n; \ 23 base = __p + i->iov_offset; \ 24 len -= (STEP); \ 25 i->iov_offset += len; \ 26 n = len; \ 27 } 28 29 /* covers iovec and kvec alike */ 30 #define iterate_iovec(i, n, base, len, off, __p, STEP) { \ 31 size_t off = 0; \ 32 size_t skip = i->iov_offset; \ 33 do { \ 34 len = min(n, __p->iov_len - skip); \ 35 if (likely(len)) { \ 36 base = __p->iov_base + skip; \ 37 len -= (STEP); \ 38 off += len; \ 39 skip += len; \ 40 n -= len; \ 41 if (skip < __p->iov_len) \ 42 break; \ 43 } \ 44 __p++; \ 45 skip = 0; \ 46 } while (n); \ 47 i->iov_offset = skip; \ 48 n = off; \ 49 } 50 51 #define iterate_bvec(i, n, base, len, off, p, STEP) { \ 52 size_t off = 0; \ 53 unsigned skip = i->iov_offset; \ 54 while (n) { \ 55 unsigned offset = p->bv_offset + skip; \ 56 unsigned left; \ 57 void *kaddr = kmap_local_page(p->bv_page + \ 58 offset / PAGE_SIZE); \ 59 base = kaddr + offset % PAGE_SIZE; \ 60 len = min(min(n, (size_t)(p->bv_len - skip)), \ 61 (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \ 62 left = (STEP); \ 63 kunmap_local(kaddr); \ 64 len -= left; \ 65 off += len; \ 66 skip += len; \ 67 if (skip == p->bv_len) { \ 68 skip = 0; \ 69 p++; \ 70 } \ 71 n -= len; \ 72 if (left) \ 73 break; \ 74 } \ 75 i->iov_offset = skip; \ 76 n = off; \ 77 } 78 79 #define iterate_xarray(i, n, base, len, __off, STEP) { \ 80 __label__ __out; \ 81 size_t __off = 0; \ 82 struct folio *folio; \ 83 loff_t start = i->xarray_start + i->iov_offset; \ 84 pgoff_t index = start / PAGE_SIZE; \ 85 XA_STATE(xas, i->xarray, index); \ 86 \ 87 len = PAGE_SIZE - offset_in_page(start); \ 88 rcu_read_lock(); \ 89 xas_for_each(&xas, folio, ULONG_MAX) { \ 90 unsigned left; \ 91 size_t offset; \ 92 if (xas_retry(&xas, folio)) \ 93 continue; \ 94 if (WARN_ON(xa_is_value(folio))) \ 95 break; \ 96 if (WARN_ON(folio_test_hugetlb(folio))) \ 97 break; \ 98 offset = offset_in_folio(folio, start + __off); \ 99 while (offset < folio_size(folio)) { \ 100 base = kmap_local_folio(folio, offset); \ 101 len = min(n, len); \ 102 left = (STEP); \ 103 kunmap_local(base); \ 104 len -= left; \ 105 __off += len; \ 106 n -= len; \ 107 if (left || n == 0) \ 108 goto __out; \ 109 offset += len; \ 110 len = PAGE_SIZE; \ 111 } \ 112 } \ 113 __out: \ 114 rcu_read_unlock(); \ 115 i->iov_offset += __off; \ 116 n = __off; \ 117 } 118 119 #define __iterate_and_advance(i, n, base, len, off, I, K) { \ 120 if (unlikely(i->count < n)) \ 121 n = i->count; \ 122 if (likely(n)) { \ 123 if (likely(iter_is_ubuf(i))) { \ 124 void __user *base; \ 125 size_t len; \ 126 iterate_buf(i, n, base, len, off, \ 127 i->ubuf, (I)) \ 128 } else if (likely(iter_is_iovec(i))) { \ 129 const struct iovec *iov = i->iov; \ 130 void __user *base; \ 131 size_t len; \ 132 iterate_iovec(i, n, base, len, off, \ 133 iov, (I)) \ 134 i->nr_segs -= iov - i->iov; \ 135 i->iov = iov; \ 136 } else if (iov_iter_is_bvec(i)) { \ 137 const struct bio_vec *bvec = i->bvec; \ 138 void *base; \ 139 size_t len; \ 140 iterate_bvec(i, n, base, len, off, \ 141 bvec, (K)) \ 142 i->nr_segs -= bvec - i->bvec; \ 143 i->bvec = bvec; \ 144 } else if (iov_iter_is_kvec(i)) { \ 145 const struct kvec *kvec = i->kvec; \ 146 void *base; \ 147 size_t len; \ 148 iterate_iovec(i, n, base, len, off, \ 149 kvec, (K)) \ 150 i->nr_segs -= kvec - i->kvec; \ 151 i->kvec = kvec; \ 152 } else if (iov_iter_is_xarray(i)) { \ 153 void *base; \ 154 size_t len; \ 155 iterate_xarray(i, n, base, len, off, \ 156 (K)) \ 157 } \ 158 i->count -= n; \ 159 } \ 160 } 161 #define iterate_and_advance(i, n, base, len, off, I, K) \ 162 __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0)) 163 164 static int copyout(void __user *to, const void *from, size_t n) 165 { 166 if (should_fail_usercopy()) 167 return n; 168 if (access_ok(to, n)) { 169 instrument_copy_to_user(to, from, n); 170 n = raw_copy_to_user(to, from, n); 171 } 172 return n; 173 } 174 175 static int copyin(void *to, const void __user *from, size_t n) 176 { 177 size_t res = n; 178 179 if (should_fail_usercopy()) 180 return n; 181 if (access_ok(from, n)) { 182 instrument_copy_from_user_before(to, from, n); 183 res = raw_copy_from_user(to, from, n); 184 instrument_copy_from_user_after(to, from, n, res); 185 } 186 return res; 187 } 188 189 static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe, 190 unsigned int slot) 191 { 192 return &pipe->bufs[slot & (pipe->ring_size - 1)]; 193 } 194 195 #ifdef PIPE_PARANOIA 196 static bool sanity(const struct iov_iter *i) 197 { 198 struct pipe_inode_info *pipe = i->pipe; 199 unsigned int p_head = pipe->head; 200 unsigned int p_tail = pipe->tail; 201 unsigned int p_occupancy = pipe_occupancy(p_head, p_tail); 202 unsigned int i_head = i->head; 203 unsigned int idx; 204 205 if (i->last_offset) { 206 struct pipe_buffer *p; 207 if (unlikely(p_occupancy == 0)) 208 goto Bad; // pipe must be non-empty 209 if (unlikely(i_head != p_head - 1)) 210 goto Bad; // must be at the last buffer... 211 212 p = pipe_buf(pipe, i_head); 213 if (unlikely(p->offset + p->len != abs(i->last_offset))) 214 goto Bad; // ... at the end of segment 215 } else { 216 if (i_head != p_head) 217 goto Bad; // must be right after the last buffer 218 } 219 return true; 220 Bad: 221 printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset); 222 printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n", 223 p_head, p_tail, pipe->ring_size); 224 for (idx = 0; idx < pipe->ring_size; idx++) 225 printk(KERN_ERR "[%p %p %d %d]\n", 226 pipe->bufs[idx].ops, 227 pipe->bufs[idx].page, 228 pipe->bufs[idx].offset, 229 pipe->bufs[idx].len); 230 WARN_ON(1); 231 return false; 232 } 233 #else 234 #define sanity(i) true 235 #endif 236 237 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size) 238 { 239 struct page *page = alloc_page(GFP_USER); 240 if (page) { 241 struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++); 242 *buf = (struct pipe_buffer) { 243 .ops = &default_pipe_buf_ops, 244 .page = page, 245 .offset = 0, 246 .len = size 247 }; 248 } 249 return page; 250 } 251 252 static void push_page(struct pipe_inode_info *pipe, struct page *page, 253 unsigned int offset, unsigned int size) 254 { 255 struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++); 256 *buf = (struct pipe_buffer) { 257 .ops = &page_cache_pipe_buf_ops, 258 .page = page, 259 .offset = offset, 260 .len = size 261 }; 262 get_page(page); 263 } 264 265 static inline int last_offset(const struct pipe_buffer *buf) 266 { 267 if (buf->ops == &default_pipe_buf_ops) 268 return buf->len; // buf->offset is 0 for those 269 else 270 return -(buf->offset + buf->len); 271 } 272 273 static struct page *append_pipe(struct iov_iter *i, size_t size, 274 unsigned int *off) 275 { 276 struct pipe_inode_info *pipe = i->pipe; 277 int offset = i->last_offset; 278 struct pipe_buffer *buf; 279 struct page *page; 280 281 if (offset > 0 && offset < PAGE_SIZE) { 282 // some space in the last buffer; add to it 283 buf = pipe_buf(pipe, pipe->head - 1); 284 size = min_t(size_t, size, PAGE_SIZE - offset); 285 buf->len += size; 286 i->last_offset += size; 287 i->count -= size; 288 *off = offset; 289 return buf->page; 290 } 291 // OK, we need a new buffer 292 *off = 0; 293 size = min_t(size_t, size, PAGE_SIZE); 294 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 295 return NULL; 296 page = push_anon(pipe, size); 297 if (!page) 298 return NULL; 299 i->head = pipe->head - 1; 300 i->last_offset = size; 301 i->count -= size; 302 return page; 303 } 304 305 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, 306 struct iov_iter *i) 307 { 308 struct pipe_inode_info *pipe = i->pipe; 309 unsigned int head = pipe->head; 310 311 if (unlikely(bytes > i->count)) 312 bytes = i->count; 313 314 if (unlikely(!bytes)) 315 return 0; 316 317 if (!sanity(i)) 318 return 0; 319 320 if (offset && i->last_offset == -offset) { // could we merge it? 321 struct pipe_buffer *buf = pipe_buf(pipe, head - 1); 322 if (buf->page == page) { 323 buf->len += bytes; 324 i->last_offset -= bytes; 325 i->count -= bytes; 326 return bytes; 327 } 328 } 329 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 330 return 0; 331 332 push_page(pipe, page, offset, bytes); 333 i->last_offset = -(offset + bytes); 334 i->head = head; 335 i->count -= bytes; 336 return bytes; 337 } 338 339 /* 340 * fault_in_iov_iter_readable - fault in iov iterator for reading 341 * @i: iterator 342 * @size: maximum length 343 * 344 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 345 * @size. For each iovec, fault in each page that constitutes the iovec. 346 * 347 * Returns the number of bytes not faulted in (like copy_to_user() and 348 * copy_from_user()). 349 * 350 * Always returns 0 for non-userspace iterators. 351 */ 352 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) 353 { 354 if (iter_is_ubuf(i)) { 355 size_t n = min(size, iov_iter_count(i)); 356 n -= fault_in_readable(i->ubuf + i->iov_offset, n); 357 return size - n; 358 } else if (iter_is_iovec(i)) { 359 size_t count = min(size, iov_iter_count(i)); 360 const struct iovec *p; 361 size_t skip; 362 363 size -= count; 364 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) { 365 size_t len = min(count, p->iov_len - skip); 366 size_t ret; 367 368 if (unlikely(!len)) 369 continue; 370 ret = fault_in_readable(p->iov_base + skip, len); 371 count -= len - ret; 372 if (ret) 373 break; 374 } 375 return count + size; 376 } 377 return 0; 378 } 379 EXPORT_SYMBOL(fault_in_iov_iter_readable); 380 381 /* 382 * fault_in_iov_iter_writeable - fault in iov iterator for writing 383 * @i: iterator 384 * @size: maximum length 385 * 386 * Faults in the iterator using get_user_pages(), i.e., without triggering 387 * hardware page faults. This is primarily useful when we already know that 388 * some or all of the pages in @i aren't in memory. 389 * 390 * Returns the number of bytes not faulted in, like copy_to_user() and 391 * copy_from_user(). 392 * 393 * Always returns 0 for non-user-space iterators. 394 */ 395 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) 396 { 397 if (iter_is_ubuf(i)) { 398 size_t n = min(size, iov_iter_count(i)); 399 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); 400 return size - n; 401 } else if (iter_is_iovec(i)) { 402 size_t count = min(size, iov_iter_count(i)); 403 const struct iovec *p; 404 size_t skip; 405 406 size -= count; 407 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) { 408 size_t len = min(count, p->iov_len - skip); 409 size_t ret; 410 411 if (unlikely(!len)) 412 continue; 413 ret = fault_in_safe_writeable(p->iov_base + skip, len); 414 count -= len - ret; 415 if (ret) 416 break; 417 } 418 return count + size; 419 } 420 return 0; 421 } 422 EXPORT_SYMBOL(fault_in_iov_iter_writeable); 423 424 void iov_iter_init(struct iov_iter *i, unsigned int direction, 425 const struct iovec *iov, unsigned long nr_segs, 426 size_t count) 427 { 428 WARN_ON(direction & ~(READ | WRITE)); 429 *i = (struct iov_iter) { 430 .iter_type = ITER_IOVEC, 431 .nofault = false, 432 .user_backed = true, 433 .data_source = direction, 434 .iov = iov, 435 .nr_segs = nr_segs, 436 .iov_offset = 0, 437 .count = count 438 }; 439 } 440 EXPORT_SYMBOL(iov_iter_init); 441 442 // returns the offset in partial buffer (if any) 443 static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages) 444 { 445 struct pipe_inode_info *pipe = i->pipe; 446 int used = pipe->head - pipe->tail; 447 int off = i->last_offset; 448 449 *npages = max((int)pipe->max_usage - used, 0); 450 451 if (off > 0 && off < PAGE_SIZE) { // anon and not full 452 (*npages)++; 453 return off; 454 } 455 return 0; 456 } 457 458 static size_t copy_pipe_to_iter(const void *addr, size_t bytes, 459 struct iov_iter *i) 460 { 461 unsigned int off, chunk; 462 463 if (unlikely(bytes > i->count)) 464 bytes = i->count; 465 if (unlikely(!bytes)) 466 return 0; 467 468 if (!sanity(i)) 469 return 0; 470 471 for (size_t n = bytes; n; n -= chunk) { 472 struct page *page = append_pipe(i, n, &off); 473 chunk = min_t(size_t, n, PAGE_SIZE - off); 474 if (!page) 475 return bytes - n; 476 memcpy_to_page(page, off, addr, chunk); 477 addr += chunk; 478 } 479 return bytes; 480 } 481 482 static __wsum csum_and_memcpy(void *to, const void *from, size_t len, 483 __wsum sum, size_t off) 484 { 485 __wsum next = csum_partial_copy_nocheck(from, to, len); 486 return csum_block_add(sum, next, off); 487 } 488 489 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes, 490 struct iov_iter *i, __wsum *sump) 491 { 492 __wsum sum = *sump; 493 size_t off = 0; 494 unsigned int chunk, r; 495 496 if (unlikely(bytes > i->count)) 497 bytes = i->count; 498 if (unlikely(!bytes)) 499 return 0; 500 501 if (!sanity(i)) 502 return 0; 503 504 while (bytes) { 505 struct page *page = append_pipe(i, bytes, &r); 506 char *p; 507 508 if (!page) 509 break; 510 chunk = min_t(size_t, bytes, PAGE_SIZE - r); 511 p = kmap_local_page(page); 512 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off); 513 kunmap_local(p); 514 off += chunk; 515 bytes -= chunk; 516 } 517 *sump = sum; 518 return off; 519 } 520 521 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 522 { 523 if (WARN_ON_ONCE(i->data_source)) 524 return 0; 525 if (unlikely(iov_iter_is_pipe(i))) 526 return copy_pipe_to_iter(addr, bytes, i); 527 if (user_backed_iter(i)) 528 might_fault(); 529 iterate_and_advance(i, bytes, base, len, off, 530 copyout(base, addr + off, len), 531 memcpy(base, addr + off, len) 532 ) 533 534 return bytes; 535 } 536 EXPORT_SYMBOL(_copy_to_iter); 537 538 #ifdef CONFIG_ARCH_HAS_COPY_MC 539 static int copyout_mc(void __user *to, const void *from, size_t n) 540 { 541 if (access_ok(to, n)) { 542 instrument_copy_to_user(to, from, n); 543 n = copy_mc_to_user((__force void *) to, from, n); 544 } 545 return n; 546 } 547 548 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes, 549 struct iov_iter *i) 550 { 551 size_t xfer = 0; 552 unsigned int off, chunk; 553 554 if (unlikely(bytes > i->count)) 555 bytes = i->count; 556 if (unlikely(!bytes)) 557 return 0; 558 559 if (!sanity(i)) 560 return 0; 561 562 while (bytes) { 563 struct page *page = append_pipe(i, bytes, &off); 564 unsigned long rem; 565 char *p; 566 567 if (!page) 568 break; 569 chunk = min_t(size_t, bytes, PAGE_SIZE - off); 570 p = kmap_local_page(page); 571 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk); 572 chunk -= rem; 573 kunmap_local(p); 574 xfer += chunk; 575 bytes -= chunk; 576 if (rem) { 577 iov_iter_revert(i, rem); 578 break; 579 } 580 } 581 return xfer; 582 } 583 584 /** 585 * _copy_mc_to_iter - copy to iter with source memory error exception handling 586 * @addr: source kernel address 587 * @bytes: total transfer length 588 * @i: destination iterator 589 * 590 * The pmem driver deploys this for the dax operation 591 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the 592 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes 593 * successfully copied. 594 * 595 * The main differences between this and typical _copy_to_iter(). 596 * 597 * * Typical tail/residue handling after a fault retries the copy 598 * byte-by-byte until the fault happens again. Re-triggering machine 599 * checks is potentially fatal so the implementation uses source 600 * alignment and poison alignment assumptions to avoid re-triggering 601 * hardware exceptions. 602 * 603 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. 604 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return 605 * a short copy. 606 * 607 * Return: number of bytes copied (may be %0) 608 */ 609 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 610 { 611 if (WARN_ON_ONCE(i->data_source)) 612 return 0; 613 if (unlikely(iov_iter_is_pipe(i))) 614 return copy_mc_pipe_to_iter(addr, bytes, i); 615 if (user_backed_iter(i)) 616 might_fault(); 617 __iterate_and_advance(i, bytes, base, len, off, 618 copyout_mc(base, addr + off, len), 619 copy_mc_to_kernel(base, addr + off, len) 620 ) 621 622 return bytes; 623 } 624 EXPORT_SYMBOL_GPL(_copy_mc_to_iter); 625 #endif /* CONFIG_ARCH_HAS_COPY_MC */ 626 627 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 628 { 629 if (WARN_ON_ONCE(!i->data_source)) 630 return 0; 631 632 if (user_backed_iter(i)) 633 might_fault(); 634 iterate_and_advance(i, bytes, base, len, off, 635 copyin(addr + off, base, len), 636 memcpy(addr + off, base, len) 637 ) 638 639 return bytes; 640 } 641 EXPORT_SYMBOL(_copy_from_iter); 642 643 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 644 { 645 if (WARN_ON_ONCE(!i->data_source)) 646 return 0; 647 648 iterate_and_advance(i, bytes, base, len, off, 649 __copy_from_user_inatomic_nocache(addr + off, base, len), 650 memcpy(addr + off, base, len) 651 ) 652 653 return bytes; 654 } 655 EXPORT_SYMBOL(_copy_from_iter_nocache); 656 657 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 658 /** 659 * _copy_from_iter_flushcache - write destination through cpu cache 660 * @addr: destination kernel address 661 * @bytes: total transfer length 662 * @i: source iterator 663 * 664 * The pmem driver arranges for filesystem-dax to use this facility via 665 * dax_copy_from_iter() for ensuring that writes to persistent memory 666 * are flushed through the CPU cache. It is differentiated from 667 * _copy_from_iter_nocache() in that guarantees all data is flushed for 668 * all iterator types. The _copy_from_iter_nocache() only attempts to 669 * bypass the cache for the ITER_IOVEC case, and on some archs may use 670 * instructions that strand dirty-data in the cache. 671 * 672 * Return: number of bytes copied (may be %0) 673 */ 674 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 675 { 676 if (WARN_ON_ONCE(!i->data_source)) 677 return 0; 678 679 iterate_and_advance(i, bytes, base, len, off, 680 __copy_from_user_flushcache(addr + off, base, len), 681 memcpy_flushcache(addr + off, base, len) 682 ) 683 684 return bytes; 685 } 686 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 687 #endif 688 689 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 690 { 691 struct page *head; 692 size_t v = n + offset; 693 694 /* 695 * The general case needs to access the page order in order 696 * to compute the page size. 697 * However, we mostly deal with order-0 pages and thus can 698 * avoid a possible cache line miss for requests that fit all 699 * page orders. 700 */ 701 if (n <= v && v <= PAGE_SIZE) 702 return true; 703 704 head = compound_head(page); 705 v += (page - head) << PAGE_SHIFT; 706 707 if (WARN_ON(n > v || v > page_size(head))) 708 return false; 709 return true; 710 } 711 712 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 713 struct iov_iter *i) 714 { 715 size_t res = 0; 716 if (!page_copy_sane(page, offset, bytes)) 717 return 0; 718 if (WARN_ON_ONCE(i->data_source)) 719 return 0; 720 if (unlikely(iov_iter_is_pipe(i))) 721 return copy_page_to_iter_pipe(page, offset, bytes, i); 722 page += offset / PAGE_SIZE; // first subpage 723 offset %= PAGE_SIZE; 724 while (1) { 725 void *kaddr = kmap_local_page(page); 726 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 727 n = _copy_to_iter(kaddr + offset, n, i); 728 kunmap_local(kaddr); 729 res += n; 730 bytes -= n; 731 if (!bytes || !n) 732 break; 733 offset += n; 734 if (offset == PAGE_SIZE) { 735 page++; 736 offset = 0; 737 } 738 } 739 return res; 740 } 741 EXPORT_SYMBOL(copy_page_to_iter); 742 743 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 744 struct iov_iter *i) 745 { 746 size_t res = 0; 747 if (!page_copy_sane(page, offset, bytes)) 748 return 0; 749 page += offset / PAGE_SIZE; // first subpage 750 offset %= PAGE_SIZE; 751 while (1) { 752 void *kaddr = kmap_local_page(page); 753 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 754 n = _copy_from_iter(kaddr + offset, n, i); 755 kunmap_local(kaddr); 756 res += n; 757 bytes -= n; 758 if (!bytes || !n) 759 break; 760 offset += n; 761 if (offset == PAGE_SIZE) { 762 page++; 763 offset = 0; 764 } 765 } 766 return res; 767 } 768 EXPORT_SYMBOL(copy_page_from_iter); 769 770 static size_t pipe_zero(size_t bytes, struct iov_iter *i) 771 { 772 unsigned int chunk, off; 773 774 if (unlikely(bytes > i->count)) 775 bytes = i->count; 776 if (unlikely(!bytes)) 777 return 0; 778 779 if (!sanity(i)) 780 return 0; 781 782 for (size_t n = bytes; n; n -= chunk) { 783 struct page *page = append_pipe(i, n, &off); 784 char *p; 785 786 if (!page) 787 return bytes - n; 788 chunk = min_t(size_t, n, PAGE_SIZE - off); 789 p = kmap_local_page(page); 790 memset(p + off, 0, chunk); 791 kunmap_local(p); 792 } 793 return bytes; 794 } 795 796 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 797 { 798 if (unlikely(iov_iter_is_pipe(i))) 799 return pipe_zero(bytes, i); 800 iterate_and_advance(i, bytes, base, len, count, 801 clear_user(base, len), 802 memset(base, 0, len) 803 ) 804 805 return bytes; 806 } 807 EXPORT_SYMBOL(iov_iter_zero); 808 809 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes, 810 struct iov_iter *i) 811 { 812 char *kaddr = kmap_atomic(page), *p = kaddr + offset; 813 if (!page_copy_sane(page, offset, bytes)) { 814 kunmap_atomic(kaddr); 815 return 0; 816 } 817 if (WARN_ON_ONCE(!i->data_source)) { 818 kunmap_atomic(kaddr); 819 return 0; 820 } 821 iterate_and_advance(i, bytes, base, len, off, 822 copyin(p + off, base, len), 823 memcpy(p + off, base, len) 824 ) 825 kunmap_atomic(kaddr); 826 return bytes; 827 } 828 EXPORT_SYMBOL(copy_page_from_iter_atomic); 829 830 static void pipe_advance(struct iov_iter *i, size_t size) 831 { 832 struct pipe_inode_info *pipe = i->pipe; 833 int off = i->last_offset; 834 835 if (!off && !size) { 836 pipe_discard_from(pipe, i->start_head); // discard everything 837 return; 838 } 839 i->count -= size; 840 while (1) { 841 struct pipe_buffer *buf = pipe_buf(pipe, i->head); 842 if (off) /* make it relative to the beginning of buffer */ 843 size += abs(off) - buf->offset; 844 if (size <= buf->len) { 845 buf->len = size; 846 i->last_offset = last_offset(buf); 847 break; 848 } 849 size -= buf->len; 850 i->head++; 851 off = 0; 852 } 853 pipe_discard_from(pipe, i->head + 1); // discard everything past this one 854 } 855 856 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) 857 { 858 const struct bio_vec *bvec, *end; 859 860 if (!i->count) 861 return; 862 i->count -= size; 863 864 size += i->iov_offset; 865 866 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { 867 if (likely(size < bvec->bv_len)) 868 break; 869 size -= bvec->bv_len; 870 } 871 i->iov_offset = size; 872 i->nr_segs -= bvec - i->bvec; 873 i->bvec = bvec; 874 } 875 876 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) 877 { 878 const struct iovec *iov, *end; 879 880 if (!i->count) 881 return; 882 i->count -= size; 883 884 size += i->iov_offset; // from beginning of current segment 885 for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) { 886 if (likely(size < iov->iov_len)) 887 break; 888 size -= iov->iov_len; 889 } 890 i->iov_offset = size; 891 i->nr_segs -= iov - i->iov; 892 i->iov = iov; 893 } 894 895 void iov_iter_advance(struct iov_iter *i, size_t size) 896 { 897 if (unlikely(i->count < size)) 898 size = i->count; 899 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { 900 i->iov_offset += size; 901 i->count -= size; 902 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { 903 /* iovec and kvec have identical layouts */ 904 iov_iter_iovec_advance(i, size); 905 } else if (iov_iter_is_bvec(i)) { 906 iov_iter_bvec_advance(i, size); 907 } else if (iov_iter_is_pipe(i)) { 908 pipe_advance(i, size); 909 } else if (iov_iter_is_discard(i)) { 910 i->count -= size; 911 } 912 } 913 EXPORT_SYMBOL(iov_iter_advance); 914 915 void iov_iter_revert(struct iov_iter *i, size_t unroll) 916 { 917 if (!unroll) 918 return; 919 if (WARN_ON(unroll > MAX_RW_COUNT)) 920 return; 921 i->count += unroll; 922 if (unlikely(iov_iter_is_pipe(i))) { 923 struct pipe_inode_info *pipe = i->pipe; 924 unsigned int head = pipe->head; 925 926 while (head > i->start_head) { 927 struct pipe_buffer *b = pipe_buf(pipe, --head); 928 if (unroll < b->len) { 929 b->len -= unroll; 930 i->last_offset = last_offset(b); 931 i->head = head; 932 return; 933 } 934 unroll -= b->len; 935 pipe_buf_release(pipe, b); 936 pipe->head--; 937 } 938 i->last_offset = 0; 939 i->head = head; 940 return; 941 } 942 if (unlikely(iov_iter_is_discard(i))) 943 return; 944 if (unroll <= i->iov_offset) { 945 i->iov_offset -= unroll; 946 return; 947 } 948 unroll -= i->iov_offset; 949 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { 950 BUG(); /* We should never go beyond the start of the specified 951 * range since we might then be straying into pages that 952 * aren't pinned. 953 */ 954 } else if (iov_iter_is_bvec(i)) { 955 const struct bio_vec *bvec = i->bvec; 956 while (1) { 957 size_t n = (--bvec)->bv_len; 958 i->nr_segs++; 959 if (unroll <= n) { 960 i->bvec = bvec; 961 i->iov_offset = n - unroll; 962 return; 963 } 964 unroll -= n; 965 } 966 } else { /* same logics for iovec and kvec */ 967 const struct iovec *iov = i->iov; 968 while (1) { 969 size_t n = (--iov)->iov_len; 970 i->nr_segs++; 971 if (unroll <= n) { 972 i->iov = iov; 973 i->iov_offset = n - unroll; 974 return; 975 } 976 unroll -= n; 977 } 978 } 979 } 980 EXPORT_SYMBOL(iov_iter_revert); 981 982 /* 983 * Return the count of just the current iov_iter segment. 984 */ 985 size_t iov_iter_single_seg_count(const struct iov_iter *i) 986 { 987 if (i->nr_segs > 1) { 988 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 989 return min(i->count, i->iov->iov_len - i->iov_offset); 990 if (iov_iter_is_bvec(i)) 991 return min(i->count, i->bvec->bv_len - i->iov_offset); 992 } 993 return i->count; 994 } 995 EXPORT_SYMBOL(iov_iter_single_seg_count); 996 997 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 998 const struct kvec *kvec, unsigned long nr_segs, 999 size_t count) 1000 { 1001 WARN_ON(direction & ~(READ | WRITE)); 1002 *i = (struct iov_iter){ 1003 .iter_type = ITER_KVEC, 1004 .data_source = direction, 1005 .kvec = kvec, 1006 .nr_segs = nr_segs, 1007 .iov_offset = 0, 1008 .count = count 1009 }; 1010 } 1011 EXPORT_SYMBOL(iov_iter_kvec); 1012 1013 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 1014 const struct bio_vec *bvec, unsigned long nr_segs, 1015 size_t count) 1016 { 1017 WARN_ON(direction & ~(READ | WRITE)); 1018 *i = (struct iov_iter){ 1019 .iter_type = ITER_BVEC, 1020 .data_source = direction, 1021 .bvec = bvec, 1022 .nr_segs = nr_segs, 1023 .iov_offset = 0, 1024 .count = count 1025 }; 1026 } 1027 EXPORT_SYMBOL(iov_iter_bvec); 1028 1029 void iov_iter_pipe(struct iov_iter *i, unsigned int direction, 1030 struct pipe_inode_info *pipe, 1031 size_t count) 1032 { 1033 BUG_ON(direction != READ); 1034 WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size)); 1035 *i = (struct iov_iter){ 1036 .iter_type = ITER_PIPE, 1037 .data_source = false, 1038 .pipe = pipe, 1039 .head = pipe->head, 1040 .start_head = pipe->head, 1041 .last_offset = 0, 1042 .count = count 1043 }; 1044 } 1045 EXPORT_SYMBOL(iov_iter_pipe); 1046 1047 /** 1048 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray 1049 * @i: The iterator to initialise. 1050 * @direction: The direction of the transfer. 1051 * @xarray: The xarray to access. 1052 * @start: The start file position. 1053 * @count: The size of the I/O buffer in bytes. 1054 * 1055 * Set up an I/O iterator to either draw data out of the pages attached to an 1056 * inode or to inject data into those pages. The pages *must* be prevented 1057 * from evaporation, either by taking a ref on them or locking them by the 1058 * caller. 1059 */ 1060 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, 1061 struct xarray *xarray, loff_t start, size_t count) 1062 { 1063 BUG_ON(direction & ~1); 1064 *i = (struct iov_iter) { 1065 .iter_type = ITER_XARRAY, 1066 .data_source = direction, 1067 .xarray = xarray, 1068 .xarray_start = start, 1069 .count = count, 1070 .iov_offset = 0 1071 }; 1072 } 1073 EXPORT_SYMBOL(iov_iter_xarray); 1074 1075 /** 1076 * iov_iter_discard - Initialise an I/O iterator that discards data 1077 * @i: The iterator to initialise. 1078 * @direction: The direction of the transfer. 1079 * @count: The size of the I/O buffer in bytes. 1080 * 1081 * Set up an I/O iterator that just discards everything that's written to it. 1082 * It's only available as a READ iterator. 1083 */ 1084 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 1085 { 1086 BUG_ON(direction != READ); 1087 *i = (struct iov_iter){ 1088 .iter_type = ITER_DISCARD, 1089 .data_source = false, 1090 .count = count, 1091 .iov_offset = 0 1092 }; 1093 } 1094 EXPORT_SYMBOL(iov_iter_discard); 1095 1096 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, 1097 unsigned len_mask) 1098 { 1099 size_t size = i->count; 1100 size_t skip = i->iov_offset; 1101 unsigned k; 1102 1103 for (k = 0; k < i->nr_segs; k++, skip = 0) { 1104 size_t len = i->iov[k].iov_len - skip; 1105 1106 if (len > size) 1107 len = size; 1108 if (len & len_mask) 1109 return false; 1110 if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask) 1111 return false; 1112 1113 size -= len; 1114 if (!size) 1115 break; 1116 } 1117 return true; 1118 } 1119 1120 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, 1121 unsigned len_mask) 1122 { 1123 size_t size = i->count; 1124 unsigned skip = i->iov_offset; 1125 unsigned k; 1126 1127 for (k = 0; k < i->nr_segs; k++, skip = 0) { 1128 size_t len = i->bvec[k].bv_len - skip; 1129 1130 if (len > size) 1131 len = size; 1132 if (len & len_mask) 1133 return false; 1134 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask) 1135 return false; 1136 1137 size -= len; 1138 if (!size) 1139 break; 1140 } 1141 return true; 1142 } 1143 1144 /** 1145 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments 1146 * are aligned to the parameters. 1147 * 1148 * @i: &struct iov_iter to restore 1149 * @addr_mask: bit mask to check against the iov element's addresses 1150 * @len_mask: bit mask to check against the iov element's lengths 1151 * 1152 * Return: false if any addresses or lengths intersect with the provided masks 1153 */ 1154 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, 1155 unsigned len_mask) 1156 { 1157 if (likely(iter_is_ubuf(i))) { 1158 if (i->count & len_mask) 1159 return false; 1160 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) 1161 return false; 1162 return true; 1163 } 1164 1165 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1166 return iov_iter_aligned_iovec(i, addr_mask, len_mask); 1167 1168 if (iov_iter_is_bvec(i)) 1169 return iov_iter_aligned_bvec(i, addr_mask, len_mask); 1170 1171 if (iov_iter_is_pipe(i)) { 1172 size_t size = i->count; 1173 1174 if (size & len_mask) 1175 return false; 1176 if (size && i->last_offset > 0) { 1177 if (i->last_offset & addr_mask) 1178 return false; 1179 } 1180 1181 return true; 1182 } 1183 1184 if (iov_iter_is_xarray(i)) { 1185 if (i->count & len_mask) 1186 return false; 1187 if ((i->xarray_start + i->iov_offset) & addr_mask) 1188 return false; 1189 } 1190 1191 return true; 1192 } 1193 EXPORT_SYMBOL_GPL(iov_iter_is_aligned); 1194 1195 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) 1196 { 1197 unsigned long res = 0; 1198 size_t size = i->count; 1199 size_t skip = i->iov_offset; 1200 unsigned k; 1201 1202 for (k = 0; k < i->nr_segs; k++, skip = 0) { 1203 size_t len = i->iov[k].iov_len - skip; 1204 if (len) { 1205 res |= (unsigned long)i->iov[k].iov_base + skip; 1206 if (len > size) 1207 len = size; 1208 res |= len; 1209 size -= len; 1210 if (!size) 1211 break; 1212 } 1213 } 1214 return res; 1215 } 1216 1217 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) 1218 { 1219 unsigned res = 0; 1220 size_t size = i->count; 1221 unsigned skip = i->iov_offset; 1222 unsigned k; 1223 1224 for (k = 0; k < i->nr_segs; k++, skip = 0) { 1225 size_t len = i->bvec[k].bv_len - skip; 1226 res |= (unsigned long)i->bvec[k].bv_offset + skip; 1227 if (len > size) 1228 len = size; 1229 res |= len; 1230 size -= len; 1231 if (!size) 1232 break; 1233 } 1234 return res; 1235 } 1236 1237 unsigned long iov_iter_alignment(const struct iov_iter *i) 1238 { 1239 if (likely(iter_is_ubuf(i))) { 1240 size_t size = i->count; 1241 if (size) 1242 return ((unsigned long)i->ubuf + i->iov_offset) | size; 1243 return 0; 1244 } 1245 1246 /* iovec and kvec have identical layouts */ 1247 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1248 return iov_iter_alignment_iovec(i); 1249 1250 if (iov_iter_is_bvec(i)) 1251 return iov_iter_alignment_bvec(i); 1252 1253 if (iov_iter_is_pipe(i)) { 1254 size_t size = i->count; 1255 1256 if (size && i->last_offset > 0) 1257 return size | i->last_offset; 1258 return size; 1259 } 1260 1261 if (iov_iter_is_xarray(i)) 1262 return (i->xarray_start + i->iov_offset) | i->count; 1263 1264 return 0; 1265 } 1266 EXPORT_SYMBOL(iov_iter_alignment); 1267 1268 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 1269 { 1270 unsigned long res = 0; 1271 unsigned long v = 0; 1272 size_t size = i->count; 1273 unsigned k; 1274 1275 if (iter_is_ubuf(i)) 1276 return 0; 1277 1278 if (WARN_ON(!iter_is_iovec(i))) 1279 return ~0U; 1280 1281 for (k = 0; k < i->nr_segs; k++) { 1282 if (i->iov[k].iov_len) { 1283 unsigned long base = (unsigned long)i->iov[k].iov_base; 1284 if (v) // if not the first one 1285 res |= base | v; // this start | previous end 1286 v = base + i->iov[k].iov_len; 1287 if (size <= i->iov[k].iov_len) 1288 break; 1289 size -= i->iov[k].iov_len; 1290 } 1291 } 1292 return res; 1293 } 1294 EXPORT_SYMBOL(iov_iter_gap_alignment); 1295 1296 static int want_pages_array(struct page ***res, size_t size, 1297 size_t start, unsigned int maxpages) 1298 { 1299 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); 1300 1301 if (count > maxpages) 1302 count = maxpages; 1303 WARN_ON(!count); // caller should've prevented that 1304 if (!*res) { 1305 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); 1306 if (!*res) 1307 return 0; 1308 } 1309 return count; 1310 } 1311 1312 static ssize_t pipe_get_pages(struct iov_iter *i, 1313 struct page ***pages, size_t maxsize, unsigned maxpages, 1314 size_t *start) 1315 { 1316 unsigned int npages, count, off, chunk; 1317 struct page **p; 1318 size_t left; 1319 1320 if (!sanity(i)) 1321 return -EFAULT; 1322 1323 *start = off = pipe_npages(i, &npages); 1324 if (!npages) 1325 return -EFAULT; 1326 count = want_pages_array(pages, maxsize, off, min(npages, maxpages)); 1327 if (!count) 1328 return -ENOMEM; 1329 p = *pages; 1330 for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) { 1331 struct page *page = append_pipe(i, left, &off); 1332 if (!page) 1333 break; 1334 chunk = min_t(size_t, left, PAGE_SIZE - off); 1335 get_page(*p++ = page); 1336 } 1337 if (!npages) 1338 return -EFAULT; 1339 return maxsize - left; 1340 } 1341 1342 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, 1343 pgoff_t index, unsigned int nr_pages) 1344 { 1345 XA_STATE(xas, xa, index); 1346 struct page *page; 1347 unsigned int ret = 0; 1348 1349 rcu_read_lock(); 1350 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1351 if (xas_retry(&xas, page)) 1352 continue; 1353 1354 /* Has the page moved or been split? */ 1355 if (unlikely(page != xas_reload(&xas))) { 1356 xas_reset(&xas); 1357 continue; 1358 } 1359 1360 pages[ret] = find_subpage(page, xas.xa_index); 1361 get_page(pages[ret]); 1362 if (++ret == nr_pages) 1363 break; 1364 } 1365 rcu_read_unlock(); 1366 return ret; 1367 } 1368 1369 static ssize_t iter_xarray_get_pages(struct iov_iter *i, 1370 struct page ***pages, size_t maxsize, 1371 unsigned maxpages, size_t *_start_offset) 1372 { 1373 unsigned nr, offset, count; 1374 pgoff_t index; 1375 loff_t pos; 1376 1377 pos = i->xarray_start + i->iov_offset; 1378 index = pos >> PAGE_SHIFT; 1379 offset = pos & ~PAGE_MASK; 1380 *_start_offset = offset; 1381 1382 count = want_pages_array(pages, maxsize, offset, maxpages); 1383 if (!count) 1384 return -ENOMEM; 1385 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); 1386 if (nr == 0) 1387 return 0; 1388 1389 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1390 i->iov_offset += maxsize; 1391 i->count -= maxsize; 1392 return maxsize; 1393 } 1394 1395 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ 1396 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) 1397 { 1398 size_t skip; 1399 long k; 1400 1401 if (iter_is_ubuf(i)) 1402 return (unsigned long)i->ubuf + i->iov_offset; 1403 1404 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { 1405 size_t len = i->iov[k].iov_len - skip; 1406 1407 if (unlikely(!len)) 1408 continue; 1409 if (*size > len) 1410 *size = len; 1411 return (unsigned long)i->iov[k].iov_base + skip; 1412 } 1413 BUG(); // if it had been empty, we wouldn't get called 1414 } 1415 1416 /* must be done on non-empty ITER_BVEC one */ 1417 static struct page *first_bvec_segment(const struct iov_iter *i, 1418 size_t *size, size_t *start) 1419 { 1420 struct page *page; 1421 size_t skip = i->iov_offset, len; 1422 1423 len = i->bvec->bv_len - skip; 1424 if (*size > len) 1425 *size = len; 1426 skip += i->bvec->bv_offset; 1427 page = i->bvec->bv_page + skip / PAGE_SIZE; 1428 *start = skip % PAGE_SIZE; 1429 return page; 1430 } 1431 1432 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, 1433 struct page ***pages, size_t maxsize, 1434 unsigned int maxpages, size_t *start, 1435 unsigned int gup_flags) 1436 { 1437 unsigned int n; 1438 1439 if (maxsize > i->count) 1440 maxsize = i->count; 1441 if (!maxsize) 1442 return 0; 1443 if (maxsize > MAX_RW_COUNT) 1444 maxsize = MAX_RW_COUNT; 1445 1446 if (likely(user_backed_iter(i))) { 1447 unsigned long addr; 1448 int res; 1449 1450 if (iov_iter_rw(i) != WRITE) 1451 gup_flags |= FOLL_WRITE; 1452 if (i->nofault) 1453 gup_flags |= FOLL_NOFAULT; 1454 1455 addr = first_iovec_segment(i, &maxsize); 1456 *start = addr % PAGE_SIZE; 1457 addr &= PAGE_MASK; 1458 n = want_pages_array(pages, maxsize, *start, maxpages); 1459 if (!n) 1460 return -ENOMEM; 1461 res = get_user_pages_fast(addr, n, gup_flags, *pages); 1462 if (unlikely(res <= 0)) 1463 return res; 1464 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); 1465 iov_iter_advance(i, maxsize); 1466 return maxsize; 1467 } 1468 if (iov_iter_is_bvec(i)) { 1469 struct page **p; 1470 struct page *page; 1471 1472 page = first_bvec_segment(i, &maxsize, start); 1473 n = want_pages_array(pages, maxsize, *start, maxpages); 1474 if (!n) 1475 return -ENOMEM; 1476 p = *pages; 1477 for (int k = 0; k < n; k++) 1478 get_page(p[k] = page + k); 1479 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); 1480 i->count -= maxsize; 1481 i->iov_offset += maxsize; 1482 if (i->iov_offset == i->bvec->bv_len) { 1483 i->iov_offset = 0; 1484 i->bvec++; 1485 i->nr_segs--; 1486 } 1487 return maxsize; 1488 } 1489 if (iov_iter_is_pipe(i)) 1490 return pipe_get_pages(i, pages, maxsize, maxpages, start); 1491 if (iov_iter_is_xarray(i)) 1492 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); 1493 return -EFAULT; 1494 } 1495 1496 ssize_t iov_iter_get_pages(struct iov_iter *i, 1497 struct page **pages, size_t maxsize, unsigned maxpages, 1498 size_t *start, unsigned gup_flags) 1499 { 1500 if (!maxpages) 1501 return 0; 1502 BUG_ON(!pages); 1503 1504 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, 1505 start, gup_flags); 1506 } 1507 EXPORT_SYMBOL_GPL(iov_iter_get_pages); 1508 1509 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, 1510 size_t maxsize, unsigned maxpages, size_t *start) 1511 { 1512 return iov_iter_get_pages(i, pages, maxsize, maxpages, start, 0); 1513 } 1514 EXPORT_SYMBOL(iov_iter_get_pages2); 1515 1516 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, 1517 struct page ***pages, size_t maxsize, 1518 size_t *start, unsigned gup_flags) 1519 { 1520 ssize_t len; 1521 1522 *pages = NULL; 1523 1524 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start, 1525 gup_flags); 1526 if (len <= 0) { 1527 kvfree(*pages); 1528 *pages = NULL; 1529 } 1530 return len; 1531 } 1532 EXPORT_SYMBOL_GPL(iov_iter_get_pages_alloc); 1533 1534 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, 1535 struct page ***pages, size_t maxsize, size_t *start) 1536 { 1537 return iov_iter_get_pages_alloc(i, pages, maxsize, start, 0); 1538 } 1539 EXPORT_SYMBOL(iov_iter_get_pages_alloc2); 1540 1541 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, 1542 struct iov_iter *i) 1543 { 1544 __wsum sum, next; 1545 sum = *csum; 1546 if (WARN_ON_ONCE(!i->data_source)) 1547 return 0; 1548 1549 iterate_and_advance(i, bytes, base, len, off, ({ 1550 next = csum_and_copy_from_user(base, addr + off, len); 1551 sum = csum_block_add(sum, next, off); 1552 next ? 0 : len; 1553 }), ({ 1554 sum = csum_and_memcpy(addr + off, base, len, sum, off); 1555 }) 1556 ) 1557 *csum = sum; 1558 return bytes; 1559 } 1560 EXPORT_SYMBOL(csum_and_copy_from_iter); 1561 1562 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate, 1563 struct iov_iter *i) 1564 { 1565 struct csum_state *csstate = _csstate; 1566 __wsum sum, next; 1567 1568 if (WARN_ON_ONCE(i->data_source)) 1569 return 0; 1570 if (unlikely(iov_iter_is_discard(i))) { 1571 // can't use csum_memcpy() for that one - data is not copied 1572 csstate->csum = csum_block_add(csstate->csum, 1573 csum_partial(addr, bytes, 0), 1574 csstate->off); 1575 csstate->off += bytes; 1576 return bytes; 1577 } 1578 1579 sum = csum_shift(csstate->csum, csstate->off); 1580 if (unlikely(iov_iter_is_pipe(i))) 1581 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum); 1582 else iterate_and_advance(i, bytes, base, len, off, ({ 1583 next = csum_and_copy_to_user(addr + off, base, len); 1584 sum = csum_block_add(sum, next, off); 1585 next ? 0 : len; 1586 }), ({ 1587 sum = csum_and_memcpy(base, addr + off, len, sum, off); 1588 }) 1589 ) 1590 csstate->csum = csum_shift(sum, csstate->off); 1591 csstate->off += bytes; 1592 return bytes; 1593 } 1594 EXPORT_SYMBOL(csum_and_copy_to_iter); 1595 1596 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, 1597 struct iov_iter *i) 1598 { 1599 #ifdef CONFIG_CRYPTO_HASH 1600 struct ahash_request *hash = hashp; 1601 struct scatterlist sg; 1602 size_t copied; 1603 1604 copied = copy_to_iter(addr, bytes, i); 1605 sg_init_one(&sg, addr, copied); 1606 ahash_request_set_crypt(hash, &sg, NULL, copied); 1607 crypto_ahash_update(hash); 1608 return copied; 1609 #else 1610 return 0; 1611 #endif 1612 } 1613 EXPORT_SYMBOL(hash_and_copy_to_iter); 1614 1615 static int iov_npages(const struct iov_iter *i, int maxpages) 1616 { 1617 size_t skip = i->iov_offset, size = i->count; 1618 const struct iovec *p; 1619 int npages = 0; 1620 1621 for (p = i->iov; size; skip = 0, p++) { 1622 unsigned offs = offset_in_page(p->iov_base + skip); 1623 size_t len = min(p->iov_len - skip, size); 1624 1625 if (len) { 1626 size -= len; 1627 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1628 if (unlikely(npages > maxpages)) 1629 return maxpages; 1630 } 1631 } 1632 return npages; 1633 } 1634 1635 static int bvec_npages(const struct iov_iter *i, int maxpages) 1636 { 1637 size_t skip = i->iov_offset, size = i->count; 1638 const struct bio_vec *p; 1639 int npages = 0; 1640 1641 for (p = i->bvec; size; skip = 0, p++) { 1642 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; 1643 size_t len = min(p->bv_len - skip, size); 1644 1645 size -= len; 1646 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1647 if (unlikely(npages > maxpages)) 1648 return maxpages; 1649 } 1650 return npages; 1651 } 1652 1653 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1654 { 1655 if (unlikely(!i->count)) 1656 return 0; 1657 if (likely(iter_is_ubuf(i))) { 1658 unsigned offs = offset_in_page(i->ubuf + i->iov_offset); 1659 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); 1660 return min(npages, maxpages); 1661 } 1662 /* iovec and kvec have identical layouts */ 1663 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1664 return iov_npages(i, maxpages); 1665 if (iov_iter_is_bvec(i)) 1666 return bvec_npages(i, maxpages); 1667 if (iov_iter_is_pipe(i)) { 1668 int npages; 1669 1670 if (!sanity(i)) 1671 return 0; 1672 1673 pipe_npages(i, &npages); 1674 return min(npages, maxpages); 1675 } 1676 if (iov_iter_is_xarray(i)) { 1677 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; 1678 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1679 return min(npages, maxpages); 1680 } 1681 return 0; 1682 } 1683 EXPORT_SYMBOL(iov_iter_npages); 1684 1685 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1686 { 1687 *new = *old; 1688 if (unlikely(iov_iter_is_pipe(new))) { 1689 WARN_ON(1); 1690 return NULL; 1691 } 1692 if (iov_iter_is_bvec(new)) 1693 return new->bvec = kmemdup(new->bvec, 1694 new->nr_segs * sizeof(struct bio_vec), 1695 flags); 1696 else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) 1697 /* iovec and kvec have identical layout */ 1698 return new->iov = kmemdup(new->iov, 1699 new->nr_segs * sizeof(struct iovec), 1700 flags); 1701 return NULL; 1702 } 1703 EXPORT_SYMBOL(dup_iter); 1704 1705 static int copy_compat_iovec_from_user(struct iovec *iov, 1706 const struct iovec __user *uvec, unsigned long nr_segs) 1707 { 1708 const struct compat_iovec __user *uiov = 1709 (const struct compat_iovec __user *)uvec; 1710 int ret = -EFAULT, i; 1711 1712 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1713 return -EFAULT; 1714 1715 for (i = 0; i < nr_segs; i++) { 1716 compat_uptr_t buf; 1717 compat_ssize_t len; 1718 1719 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); 1720 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); 1721 1722 /* check for compat_size_t not fitting in compat_ssize_t .. */ 1723 if (len < 0) { 1724 ret = -EINVAL; 1725 goto uaccess_end; 1726 } 1727 iov[i].iov_base = compat_ptr(buf); 1728 iov[i].iov_len = len; 1729 } 1730 1731 ret = 0; 1732 uaccess_end: 1733 user_access_end(); 1734 return ret; 1735 } 1736 1737 static int copy_iovec_from_user(struct iovec *iov, 1738 const struct iovec __user *uvec, unsigned long nr_segs) 1739 { 1740 unsigned long seg; 1741 1742 if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec))) 1743 return -EFAULT; 1744 for (seg = 0; seg < nr_segs; seg++) { 1745 if ((ssize_t)iov[seg].iov_len < 0) 1746 return -EINVAL; 1747 } 1748 1749 return 0; 1750 } 1751 1752 struct iovec *iovec_from_user(const struct iovec __user *uvec, 1753 unsigned long nr_segs, unsigned long fast_segs, 1754 struct iovec *fast_iov, bool compat) 1755 { 1756 struct iovec *iov = fast_iov; 1757 int ret; 1758 1759 /* 1760 * SuS says "The readv() function *may* fail if the iovcnt argument was 1761 * less than or equal to 0, or greater than {IOV_MAX}. Linux has 1762 * traditionally returned zero for zero segments, so... 1763 */ 1764 if (nr_segs == 0) 1765 return iov; 1766 if (nr_segs > UIO_MAXIOV) 1767 return ERR_PTR(-EINVAL); 1768 if (nr_segs > fast_segs) { 1769 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); 1770 if (!iov) 1771 return ERR_PTR(-ENOMEM); 1772 } 1773 1774 if (compat) 1775 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); 1776 else 1777 ret = copy_iovec_from_user(iov, uvec, nr_segs); 1778 if (ret) { 1779 if (iov != fast_iov) 1780 kfree(iov); 1781 return ERR_PTR(ret); 1782 } 1783 1784 return iov; 1785 } 1786 1787 ssize_t __import_iovec(int type, const struct iovec __user *uvec, 1788 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, 1789 struct iov_iter *i, bool compat) 1790 { 1791 ssize_t total_len = 0; 1792 unsigned long seg; 1793 struct iovec *iov; 1794 1795 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); 1796 if (IS_ERR(iov)) { 1797 *iovp = NULL; 1798 return PTR_ERR(iov); 1799 } 1800 1801 /* 1802 * According to the Single Unix Specification we should return EINVAL if 1803 * an element length is < 0 when cast to ssize_t or if the total length 1804 * would overflow the ssize_t return value of the system call. 1805 * 1806 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the 1807 * overflow case. 1808 */ 1809 for (seg = 0; seg < nr_segs; seg++) { 1810 ssize_t len = (ssize_t)iov[seg].iov_len; 1811 1812 if (!access_ok(iov[seg].iov_base, len)) { 1813 if (iov != *iovp) 1814 kfree(iov); 1815 *iovp = NULL; 1816 return -EFAULT; 1817 } 1818 1819 if (len > MAX_RW_COUNT - total_len) { 1820 len = MAX_RW_COUNT - total_len; 1821 iov[seg].iov_len = len; 1822 } 1823 total_len += len; 1824 } 1825 1826 iov_iter_init(i, type, iov, nr_segs, total_len); 1827 if (iov == *iovp) 1828 *iovp = NULL; 1829 else 1830 *iovp = iov; 1831 return total_len; 1832 } 1833 1834 /** 1835 * import_iovec() - Copy an array of &struct iovec from userspace 1836 * into the kernel, check that it is valid, and initialize a new 1837 * &struct iov_iter iterator to access it. 1838 * 1839 * @type: One of %READ or %WRITE. 1840 * @uvec: Pointer to the userspace array. 1841 * @nr_segs: Number of elements in userspace array. 1842 * @fast_segs: Number of elements in @iov. 1843 * @iovp: (input and output parameter) Pointer to pointer to (usually small 1844 * on-stack) kernel array. 1845 * @i: Pointer to iterator that will be initialized on success. 1846 * 1847 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1848 * then this function places %NULL in *@iov on return. Otherwise, a new 1849 * array will be allocated and the result placed in *@iov. This means that 1850 * the caller may call kfree() on *@iov regardless of whether the small 1851 * on-stack array was used or not (and regardless of whether this function 1852 * returns an error or not). 1853 * 1854 * Return: Negative error code on error, bytes imported on success 1855 */ 1856 ssize_t import_iovec(int type, const struct iovec __user *uvec, 1857 unsigned nr_segs, unsigned fast_segs, 1858 struct iovec **iovp, struct iov_iter *i) 1859 { 1860 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, 1861 in_compat_syscall()); 1862 } 1863 EXPORT_SYMBOL(import_iovec); 1864 1865 int import_single_range(int rw, void __user *buf, size_t len, 1866 struct iovec *iov, struct iov_iter *i) 1867 { 1868 if (len > MAX_RW_COUNT) 1869 len = MAX_RW_COUNT; 1870 if (unlikely(!access_ok(buf, len))) 1871 return -EFAULT; 1872 1873 iov->iov_base = buf; 1874 iov->iov_len = len; 1875 iov_iter_init(i, rw, iov, 1, len); 1876 return 0; 1877 } 1878 EXPORT_SYMBOL(import_single_range); 1879 1880 /** 1881 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when 1882 * iov_iter_save_state() was called. 1883 * 1884 * @i: &struct iov_iter to restore 1885 * @state: state to restore from 1886 * 1887 * Used after iov_iter_save_state() to bring restore @i, if operations may 1888 * have advanced it. 1889 * 1890 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC 1891 */ 1892 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) 1893 { 1894 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) && 1895 !iov_iter_is_kvec(i) && !iter_is_ubuf(i)) 1896 return; 1897 i->iov_offset = state->iov_offset; 1898 i->count = state->count; 1899 if (iter_is_ubuf(i)) 1900 return; 1901 /* 1902 * For the *vec iters, nr_segs + iov is constant - if we increment 1903 * the vec, then we also decrement the nr_segs count. Hence we don't 1904 * need to track both of these, just one is enough and we can deduct 1905 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct 1906 * size, so we can just increment the iov pointer as they are unionzed. 1907 * ITER_BVEC _may_ be the same size on some archs, but on others it is 1908 * not. Be safe and handle it separately. 1909 */ 1910 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); 1911 if (iov_iter_is_bvec(i)) 1912 i->bvec -= state->nr_segs - i->nr_segs; 1913 else 1914 i->iov -= state->nr_segs - i->nr_segs; 1915 i->nr_segs = state->nr_segs; 1916 } 1917