xref: /openbmc/linux/lib/iov_iter.c (revision d05f4435)
1 #include <linux/export.h>
2 #include <linux/bvec.h>
3 #include <linux/uio.h>
4 #include <linux/pagemap.h>
5 #include <linux/slab.h>
6 #include <linux/vmalloc.h>
7 #include <linux/splice.h>
8 #include <net/checksum.h>
9 #include <linux/scatterlist.h>
10 
11 #define PIPE_PARANOIA /* for now */
12 
13 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
14 	size_t left;					\
15 	size_t wanted = n;				\
16 	__p = i->iov;					\
17 	__v.iov_len = min(n, __p->iov_len - skip);	\
18 	if (likely(__v.iov_len)) {			\
19 		__v.iov_base = __p->iov_base + skip;	\
20 		left = (STEP);				\
21 		__v.iov_len -= left;			\
22 		skip += __v.iov_len;			\
23 		n -= __v.iov_len;			\
24 	} else {					\
25 		left = 0;				\
26 	}						\
27 	while (unlikely(!left && n)) {			\
28 		__p++;					\
29 		__v.iov_len = min(n, __p->iov_len);	\
30 		if (unlikely(!__v.iov_len))		\
31 			continue;			\
32 		__v.iov_base = __p->iov_base;		\
33 		left = (STEP);				\
34 		__v.iov_len -= left;			\
35 		skip = __v.iov_len;			\
36 		n -= __v.iov_len;			\
37 	}						\
38 	n = wanted - n;					\
39 }
40 
41 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
42 	size_t wanted = n;				\
43 	__p = i->kvec;					\
44 	__v.iov_len = min(n, __p->iov_len - skip);	\
45 	if (likely(__v.iov_len)) {			\
46 		__v.iov_base = __p->iov_base + skip;	\
47 		(void)(STEP);				\
48 		skip += __v.iov_len;			\
49 		n -= __v.iov_len;			\
50 	}						\
51 	while (unlikely(n)) {				\
52 		__p++;					\
53 		__v.iov_len = min(n, __p->iov_len);	\
54 		if (unlikely(!__v.iov_len))		\
55 			continue;			\
56 		__v.iov_base = __p->iov_base;		\
57 		(void)(STEP);				\
58 		skip = __v.iov_len;			\
59 		n -= __v.iov_len;			\
60 	}						\
61 	n = wanted;					\
62 }
63 
64 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
65 	struct bvec_iter __start;			\
66 	__start.bi_size = n;				\
67 	__start.bi_bvec_done = skip;			\
68 	__start.bi_idx = 0;				\
69 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
70 		if (!__v.bv_len)			\
71 			continue;			\
72 		(void)(STEP);				\
73 	}						\
74 }
75 
76 #define iterate_all_kinds(i, n, v, I, B, K) {			\
77 	if (likely(n)) {					\
78 		size_t skip = i->iov_offset;			\
79 		if (unlikely(i->type & ITER_BVEC)) {		\
80 			struct bio_vec v;			\
81 			struct bvec_iter __bi;			\
82 			iterate_bvec(i, n, v, __bi, skip, (B))	\
83 		} else if (unlikely(i->type & ITER_KVEC)) {	\
84 			const struct kvec *kvec;		\
85 			struct kvec v;				\
86 			iterate_kvec(i, n, v, kvec, skip, (K))	\
87 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
88 		} else {					\
89 			const struct iovec *iov;		\
90 			struct iovec v;				\
91 			iterate_iovec(i, n, v, iov, skip, (I))	\
92 		}						\
93 	}							\
94 }
95 
96 #define iterate_and_advance(i, n, v, I, B, K) {			\
97 	if (unlikely(i->count < n))				\
98 		n = i->count;					\
99 	if (i->count) {						\
100 		size_t skip = i->iov_offset;			\
101 		if (unlikely(i->type & ITER_BVEC)) {		\
102 			const struct bio_vec *bvec = i->bvec;	\
103 			struct bio_vec v;			\
104 			struct bvec_iter __bi;			\
105 			iterate_bvec(i, n, v, __bi, skip, (B))	\
106 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
107 			i->nr_segs -= i->bvec - bvec;		\
108 			skip = __bi.bi_bvec_done;		\
109 		} else if (unlikely(i->type & ITER_KVEC)) {	\
110 			const struct kvec *kvec;		\
111 			struct kvec v;				\
112 			iterate_kvec(i, n, v, kvec, skip, (K))	\
113 			if (skip == kvec->iov_len) {		\
114 				kvec++;				\
115 				skip = 0;			\
116 			}					\
117 			i->nr_segs -= kvec - i->kvec;		\
118 			i->kvec = kvec;				\
119 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
120 			skip += n;				\
121 		} else {					\
122 			const struct iovec *iov;		\
123 			struct iovec v;				\
124 			iterate_iovec(i, n, v, iov, skip, (I))	\
125 			if (skip == iov->iov_len) {		\
126 				iov++;				\
127 				skip = 0;			\
128 			}					\
129 			i->nr_segs -= iov - i->iov;		\
130 			i->iov = iov;				\
131 		}						\
132 		i->count -= n;					\
133 		i->iov_offset = skip;				\
134 	}							\
135 }
136 
137 static int copyout(void __user *to, const void *from, size_t n)
138 {
139 	if (access_ok(VERIFY_WRITE, to, n)) {
140 		kasan_check_read(from, n);
141 		n = raw_copy_to_user(to, from, n);
142 	}
143 	return n;
144 }
145 
146 static int copyin(void *to, const void __user *from, size_t n)
147 {
148 	if (access_ok(VERIFY_READ, from, n)) {
149 		kasan_check_write(to, n);
150 		n = raw_copy_from_user(to, from, n);
151 	}
152 	return n;
153 }
154 
155 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
156 			 struct iov_iter *i)
157 {
158 	size_t skip, copy, left, wanted;
159 	const struct iovec *iov;
160 	char __user *buf;
161 	void *kaddr, *from;
162 
163 	if (unlikely(bytes > i->count))
164 		bytes = i->count;
165 
166 	if (unlikely(!bytes))
167 		return 0;
168 
169 	might_fault();
170 	wanted = bytes;
171 	iov = i->iov;
172 	skip = i->iov_offset;
173 	buf = iov->iov_base + skip;
174 	copy = min(bytes, iov->iov_len - skip);
175 
176 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
177 		kaddr = kmap_atomic(page);
178 		from = kaddr + offset;
179 
180 		/* first chunk, usually the only one */
181 		left = copyout(buf, from, copy);
182 		copy -= left;
183 		skip += copy;
184 		from += copy;
185 		bytes -= copy;
186 
187 		while (unlikely(!left && bytes)) {
188 			iov++;
189 			buf = iov->iov_base;
190 			copy = min(bytes, iov->iov_len);
191 			left = copyout(buf, from, copy);
192 			copy -= left;
193 			skip = copy;
194 			from += copy;
195 			bytes -= copy;
196 		}
197 		if (likely(!bytes)) {
198 			kunmap_atomic(kaddr);
199 			goto done;
200 		}
201 		offset = from - kaddr;
202 		buf += copy;
203 		kunmap_atomic(kaddr);
204 		copy = min(bytes, iov->iov_len - skip);
205 	}
206 	/* Too bad - revert to non-atomic kmap */
207 
208 	kaddr = kmap(page);
209 	from = kaddr + offset;
210 	left = copyout(buf, from, copy);
211 	copy -= left;
212 	skip += copy;
213 	from += copy;
214 	bytes -= copy;
215 	while (unlikely(!left && bytes)) {
216 		iov++;
217 		buf = iov->iov_base;
218 		copy = min(bytes, iov->iov_len);
219 		left = copyout(buf, from, copy);
220 		copy -= left;
221 		skip = copy;
222 		from += copy;
223 		bytes -= copy;
224 	}
225 	kunmap(page);
226 
227 done:
228 	if (skip == iov->iov_len) {
229 		iov++;
230 		skip = 0;
231 	}
232 	i->count -= wanted - bytes;
233 	i->nr_segs -= iov - i->iov;
234 	i->iov = iov;
235 	i->iov_offset = skip;
236 	return wanted - bytes;
237 }
238 
239 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
240 			 struct iov_iter *i)
241 {
242 	size_t skip, copy, left, wanted;
243 	const struct iovec *iov;
244 	char __user *buf;
245 	void *kaddr, *to;
246 
247 	if (unlikely(bytes > i->count))
248 		bytes = i->count;
249 
250 	if (unlikely(!bytes))
251 		return 0;
252 
253 	might_fault();
254 	wanted = bytes;
255 	iov = i->iov;
256 	skip = i->iov_offset;
257 	buf = iov->iov_base + skip;
258 	copy = min(bytes, iov->iov_len - skip);
259 
260 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
261 		kaddr = kmap_atomic(page);
262 		to = kaddr + offset;
263 
264 		/* first chunk, usually the only one */
265 		left = copyin(to, buf, copy);
266 		copy -= left;
267 		skip += copy;
268 		to += copy;
269 		bytes -= copy;
270 
271 		while (unlikely(!left && bytes)) {
272 			iov++;
273 			buf = iov->iov_base;
274 			copy = min(bytes, iov->iov_len);
275 			left = copyin(to, buf, copy);
276 			copy -= left;
277 			skip = copy;
278 			to += copy;
279 			bytes -= copy;
280 		}
281 		if (likely(!bytes)) {
282 			kunmap_atomic(kaddr);
283 			goto done;
284 		}
285 		offset = to - kaddr;
286 		buf += copy;
287 		kunmap_atomic(kaddr);
288 		copy = min(bytes, iov->iov_len - skip);
289 	}
290 	/* Too bad - revert to non-atomic kmap */
291 
292 	kaddr = kmap(page);
293 	to = kaddr + offset;
294 	left = copyin(to, buf, copy);
295 	copy -= left;
296 	skip += copy;
297 	to += copy;
298 	bytes -= copy;
299 	while (unlikely(!left && bytes)) {
300 		iov++;
301 		buf = iov->iov_base;
302 		copy = min(bytes, iov->iov_len);
303 		left = copyin(to, buf, copy);
304 		copy -= left;
305 		skip = copy;
306 		to += copy;
307 		bytes -= copy;
308 	}
309 	kunmap(page);
310 
311 done:
312 	if (skip == iov->iov_len) {
313 		iov++;
314 		skip = 0;
315 	}
316 	i->count -= wanted - bytes;
317 	i->nr_segs -= iov - i->iov;
318 	i->iov = iov;
319 	i->iov_offset = skip;
320 	return wanted - bytes;
321 }
322 
323 #ifdef PIPE_PARANOIA
324 static bool sanity(const struct iov_iter *i)
325 {
326 	struct pipe_inode_info *pipe = i->pipe;
327 	int idx = i->idx;
328 	int next = pipe->curbuf + pipe->nrbufs;
329 	if (i->iov_offset) {
330 		struct pipe_buffer *p;
331 		if (unlikely(!pipe->nrbufs))
332 			goto Bad;	// pipe must be non-empty
333 		if (unlikely(idx != ((next - 1) & (pipe->buffers - 1))))
334 			goto Bad;	// must be at the last buffer...
335 
336 		p = &pipe->bufs[idx];
337 		if (unlikely(p->offset + p->len != i->iov_offset))
338 			goto Bad;	// ... at the end of segment
339 	} else {
340 		if (idx != (next & (pipe->buffers - 1)))
341 			goto Bad;	// must be right after the last buffer
342 	}
343 	return true;
344 Bad:
345 	printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset);
346 	printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n",
347 			pipe->curbuf, pipe->nrbufs, pipe->buffers);
348 	for (idx = 0; idx < pipe->buffers; idx++)
349 		printk(KERN_ERR "[%p %p %d %d]\n",
350 			pipe->bufs[idx].ops,
351 			pipe->bufs[idx].page,
352 			pipe->bufs[idx].offset,
353 			pipe->bufs[idx].len);
354 	WARN_ON(1);
355 	return false;
356 }
357 #else
358 #define sanity(i) true
359 #endif
360 
361 static inline int next_idx(int idx, struct pipe_inode_info *pipe)
362 {
363 	return (idx + 1) & (pipe->buffers - 1);
364 }
365 
366 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
367 			 struct iov_iter *i)
368 {
369 	struct pipe_inode_info *pipe = i->pipe;
370 	struct pipe_buffer *buf;
371 	size_t off;
372 	int idx;
373 
374 	if (unlikely(bytes > i->count))
375 		bytes = i->count;
376 
377 	if (unlikely(!bytes))
378 		return 0;
379 
380 	if (!sanity(i))
381 		return 0;
382 
383 	off = i->iov_offset;
384 	idx = i->idx;
385 	buf = &pipe->bufs[idx];
386 	if (off) {
387 		if (offset == off && buf->page == page) {
388 			/* merge with the last one */
389 			buf->len += bytes;
390 			i->iov_offset += bytes;
391 			goto out;
392 		}
393 		idx = next_idx(idx, pipe);
394 		buf = &pipe->bufs[idx];
395 	}
396 	if (idx == pipe->curbuf && pipe->nrbufs)
397 		return 0;
398 	pipe->nrbufs++;
399 	buf->ops = &page_cache_pipe_buf_ops;
400 	get_page(buf->page = page);
401 	buf->offset = offset;
402 	buf->len = bytes;
403 	i->iov_offset = offset + bytes;
404 	i->idx = idx;
405 out:
406 	i->count -= bytes;
407 	return bytes;
408 }
409 
410 /*
411  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
412  * bytes.  For each iovec, fault in each page that constitutes the iovec.
413  *
414  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
415  * because it is an invalid address).
416  */
417 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
418 {
419 	size_t skip = i->iov_offset;
420 	const struct iovec *iov;
421 	int err;
422 	struct iovec v;
423 
424 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
425 		iterate_iovec(i, bytes, v, iov, skip, ({
426 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
427 			if (unlikely(err))
428 			return err;
429 		0;}))
430 	}
431 	return 0;
432 }
433 EXPORT_SYMBOL(iov_iter_fault_in_readable);
434 
435 void iov_iter_init(struct iov_iter *i, unsigned int direction,
436 			const struct iovec *iov, unsigned long nr_segs,
437 			size_t count)
438 {
439 	WARN_ON(direction & ~(READ | WRITE));
440 	direction &= READ | WRITE;
441 
442 	/* It will get better.  Eventually... */
443 	if (uaccess_kernel()) {
444 		i->type = ITER_KVEC | direction;
445 		i->kvec = (struct kvec *)iov;
446 	} else {
447 		i->type = ITER_IOVEC | direction;
448 		i->iov = iov;
449 	}
450 	i->nr_segs = nr_segs;
451 	i->iov_offset = 0;
452 	i->count = count;
453 }
454 EXPORT_SYMBOL(iov_iter_init);
455 
456 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
457 {
458 	char *from = kmap_atomic(page);
459 	memcpy(to, from + offset, len);
460 	kunmap_atomic(from);
461 }
462 
463 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
464 {
465 	char *to = kmap_atomic(page);
466 	memcpy(to + offset, from, len);
467 	kunmap_atomic(to);
468 }
469 
470 static void memzero_page(struct page *page, size_t offset, size_t len)
471 {
472 	char *addr = kmap_atomic(page);
473 	memset(addr + offset, 0, len);
474 	kunmap_atomic(addr);
475 }
476 
477 static inline bool allocated(struct pipe_buffer *buf)
478 {
479 	return buf->ops == &default_pipe_buf_ops;
480 }
481 
482 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp)
483 {
484 	size_t off = i->iov_offset;
485 	int idx = i->idx;
486 	if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) {
487 		idx = next_idx(idx, i->pipe);
488 		off = 0;
489 	}
490 	*idxp = idx;
491 	*offp = off;
492 }
493 
494 static size_t push_pipe(struct iov_iter *i, size_t size,
495 			int *idxp, size_t *offp)
496 {
497 	struct pipe_inode_info *pipe = i->pipe;
498 	size_t off;
499 	int idx;
500 	ssize_t left;
501 
502 	if (unlikely(size > i->count))
503 		size = i->count;
504 	if (unlikely(!size))
505 		return 0;
506 
507 	left = size;
508 	data_start(i, &idx, &off);
509 	*idxp = idx;
510 	*offp = off;
511 	if (off) {
512 		left -= PAGE_SIZE - off;
513 		if (left <= 0) {
514 			pipe->bufs[idx].len += size;
515 			return size;
516 		}
517 		pipe->bufs[idx].len = PAGE_SIZE;
518 		idx = next_idx(idx, pipe);
519 	}
520 	while (idx != pipe->curbuf || !pipe->nrbufs) {
521 		struct page *page = alloc_page(GFP_USER);
522 		if (!page)
523 			break;
524 		pipe->nrbufs++;
525 		pipe->bufs[idx].ops = &default_pipe_buf_ops;
526 		pipe->bufs[idx].page = page;
527 		pipe->bufs[idx].offset = 0;
528 		if (left <= PAGE_SIZE) {
529 			pipe->bufs[idx].len = left;
530 			return size;
531 		}
532 		pipe->bufs[idx].len = PAGE_SIZE;
533 		left -= PAGE_SIZE;
534 		idx = next_idx(idx, pipe);
535 	}
536 	return size - left;
537 }
538 
539 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
540 				struct iov_iter *i)
541 {
542 	struct pipe_inode_info *pipe = i->pipe;
543 	size_t n, off;
544 	int idx;
545 
546 	if (!sanity(i))
547 		return 0;
548 
549 	bytes = n = push_pipe(i, bytes, &idx, &off);
550 	if (unlikely(!n))
551 		return 0;
552 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
553 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
554 		memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk);
555 		i->idx = idx;
556 		i->iov_offset = off + chunk;
557 		n -= chunk;
558 		addr += chunk;
559 	}
560 	i->count -= bytes;
561 	return bytes;
562 }
563 
564 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
565 				__wsum *csum, struct iov_iter *i)
566 {
567 	struct pipe_inode_info *pipe = i->pipe;
568 	size_t n, r;
569 	size_t off = 0;
570 	__wsum sum = *csum, next;
571 	int idx;
572 
573 	if (!sanity(i))
574 		return 0;
575 
576 	bytes = n = push_pipe(i, bytes, &idx, &r);
577 	if (unlikely(!n))
578 		return 0;
579 	for ( ; n; idx = next_idx(idx, pipe), r = 0) {
580 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
581 		char *p = kmap_atomic(pipe->bufs[idx].page);
582 		next = csum_partial_copy_nocheck(addr, p + r, chunk, 0);
583 		sum = csum_block_add(sum, next, off);
584 		kunmap_atomic(p);
585 		i->idx = idx;
586 		i->iov_offset = r + chunk;
587 		n -= chunk;
588 		off += chunk;
589 		addr += chunk;
590 	}
591 	i->count -= bytes;
592 	*csum = sum;
593 	return bytes;
594 }
595 
596 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
597 {
598 	const char *from = addr;
599 	if (unlikely(iov_iter_is_pipe(i)))
600 		return copy_pipe_to_iter(addr, bytes, i);
601 	if (iter_is_iovec(i))
602 		might_fault();
603 	iterate_and_advance(i, bytes, v,
604 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
605 		memcpy_to_page(v.bv_page, v.bv_offset,
606 			       (from += v.bv_len) - v.bv_len, v.bv_len),
607 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
608 	)
609 
610 	return bytes;
611 }
612 EXPORT_SYMBOL(_copy_to_iter);
613 
614 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
615 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
616 {
617 	if (access_ok(VERIFY_WRITE, to, n)) {
618 		kasan_check_read(from, n);
619 		n = copy_to_user_mcsafe((__force void *) to, from, n);
620 	}
621 	return n;
622 }
623 
624 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
625 		const char *from, size_t len)
626 {
627 	unsigned long ret;
628 	char *to;
629 
630 	to = kmap_atomic(page);
631 	ret = memcpy_mcsafe(to + offset, from, len);
632 	kunmap_atomic(to);
633 
634 	return ret;
635 }
636 
637 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
638 				struct iov_iter *i)
639 {
640 	struct pipe_inode_info *pipe = i->pipe;
641 	size_t n, off, xfer = 0;
642 	int idx;
643 
644 	if (!sanity(i))
645 		return 0;
646 
647 	bytes = n = push_pipe(i, bytes, &idx, &off);
648 	if (unlikely(!n))
649 		return 0;
650 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
651 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
652 		unsigned long rem;
653 
654 		rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr,
655 				chunk);
656 		i->idx = idx;
657 		i->iov_offset = off + chunk - rem;
658 		xfer += chunk - rem;
659 		if (rem)
660 			break;
661 		n -= chunk;
662 		addr += chunk;
663 	}
664 	i->count -= xfer;
665 	return xfer;
666 }
667 
668 /**
669  * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
670  * @addr: source kernel address
671  * @bytes: total transfer length
672  * @iter: destination iterator
673  *
674  * The pmem driver arranges for filesystem-dax to use this facility via
675  * dax_copy_to_iter() for protecting read/write to persistent memory.
676  * Unless / until an architecture can guarantee identical performance
677  * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
678  * performance regression to switch more users to the mcsafe version.
679  *
680  * Otherwise, the main differences between this and typical _copy_to_iter().
681  *
682  * * Typical tail/residue handling after a fault retries the copy
683  *   byte-by-byte until the fault happens again. Re-triggering machine
684  *   checks is potentially fatal so the implementation uses source
685  *   alignment and poison alignment assumptions to avoid re-triggering
686  *   hardware exceptions.
687  *
688  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
689  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
690  *   a short copy.
691  *
692  * See MCSAFE_TEST for self-test.
693  */
694 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
695 {
696 	const char *from = addr;
697 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
698 
699 	if (unlikely(iov_iter_is_pipe(i)))
700 		return copy_pipe_to_iter_mcsafe(addr, bytes, i);
701 	if (iter_is_iovec(i))
702 		might_fault();
703 	iterate_and_advance(i, bytes, v,
704 		copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
705 		({
706 		rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
707                                (from += v.bv_len) - v.bv_len, v.bv_len);
708 		if (rem) {
709 			curr_addr = (unsigned long) from;
710 			bytes = curr_addr - s_addr - rem;
711 			return bytes;
712 		}
713 		}),
714 		({
715 		rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
716 				v.iov_len);
717 		if (rem) {
718 			curr_addr = (unsigned long) from;
719 			bytes = curr_addr - s_addr - rem;
720 			return bytes;
721 		}
722 		})
723 	)
724 
725 	return bytes;
726 }
727 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
728 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
729 
730 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
731 {
732 	char *to = addr;
733 	if (unlikely(iov_iter_is_pipe(i))) {
734 		WARN_ON(1);
735 		return 0;
736 	}
737 	if (iter_is_iovec(i))
738 		might_fault();
739 	iterate_and_advance(i, bytes, v,
740 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
741 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
742 				 v.bv_offset, v.bv_len),
743 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
744 	)
745 
746 	return bytes;
747 }
748 EXPORT_SYMBOL(_copy_from_iter);
749 
750 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
751 {
752 	char *to = addr;
753 	if (unlikely(iov_iter_is_pipe(i))) {
754 		WARN_ON(1);
755 		return false;
756 	}
757 	if (unlikely(i->count < bytes))
758 		return false;
759 
760 	if (iter_is_iovec(i))
761 		might_fault();
762 	iterate_all_kinds(i, bytes, v, ({
763 		if (copyin((to += v.iov_len) - v.iov_len,
764 				      v.iov_base, v.iov_len))
765 			return false;
766 		0;}),
767 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
768 				 v.bv_offset, v.bv_len),
769 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
770 	)
771 
772 	iov_iter_advance(i, bytes);
773 	return true;
774 }
775 EXPORT_SYMBOL(_copy_from_iter_full);
776 
777 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
778 {
779 	char *to = addr;
780 	if (unlikely(iov_iter_is_pipe(i))) {
781 		WARN_ON(1);
782 		return 0;
783 	}
784 	iterate_and_advance(i, bytes, v,
785 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
786 					 v.iov_base, v.iov_len),
787 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
788 				 v.bv_offset, v.bv_len),
789 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
790 	)
791 
792 	return bytes;
793 }
794 EXPORT_SYMBOL(_copy_from_iter_nocache);
795 
796 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
797 /**
798  * _copy_from_iter_flushcache - write destination through cpu cache
799  * @addr: destination kernel address
800  * @bytes: total transfer length
801  * @iter: source iterator
802  *
803  * The pmem driver arranges for filesystem-dax to use this facility via
804  * dax_copy_from_iter() for ensuring that writes to persistent memory
805  * are flushed through the CPU cache. It is differentiated from
806  * _copy_from_iter_nocache() in that guarantees all data is flushed for
807  * all iterator types. The _copy_from_iter_nocache() only attempts to
808  * bypass the cache for the ITER_IOVEC case, and on some archs may use
809  * instructions that strand dirty-data in the cache.
810  */
811 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
812 {
813 	char *to = addr;
814 	if (unlikely(iov_iter_is_pipe(i))) {
815 		WARN_ON(1);
816 		return 0;
817 	}
818 	iterate_and_advance(i, bytes, v,
819 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
820 					 v.iov_base, v.iov_len),
821 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
822 				 v.bv_offset, v.bv_len),
823 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
824 			v.iov_len)
825 	)
826 
827 	return bytes;
828 }
829 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
830 #endif
831 
832 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
833 {
834 	char *to = addr;
835 	if (unlikely(iov_iter_is_pipe(i))) {
836 		WARN_ON(1);
837 		return false;
838 	}
839 	if (unlikely(i->count < bytes))
840 		return false;
841 	iterate_all_kinds(i, bytes, v, ({
842 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
843 					     v.iov_base, v.iov_len))
844 			return false;
845 		0;}),
846 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
847 				 v.bv_offset, v.bv_len),
848 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
849 	)
850 
851 	iov_iter_advance(i, bytes);
852 	return true;
853 }
854 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
855 
856 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
857 {
858 	struct page *head = compound_head(page);
859 	size_t v = n + offset + page_address(page) - page_address(head);
860 
861 	if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head))))
862 		return true;
863 	WARN_ON(1);
864 	return false;
865 }
866 
867 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
868 			 struct iov_iter *i)
869 {
870 	if (unlikely(!page_copy_sane(page, offset, bytes)))
871 		return 0;
872 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
873 		void *kaddr = kmap_atomic(page);
874 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
875 		kunmap_atomic(kaddr);
876 		return wanted;
877 	} else if (unlikely(iov_iter_is_discard(i)))
878 		return bytes;
879 	else if (likely(!iov_iter_is_pipe(i)))
880 		return copy_page_to_iter_iovec(page, offset, bytes, i);
881 	else
882 		return copy_page_to_iter_pipe(page, offset, bytes, i);
883 }
884 EXPORT_SYMBOL(copy_page_to_iter);
885 
886 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
887 			 struct iov_iter *i)
888 {
889 	if (unlikely(!page_copy_sane(page, offset, bytes)))
890 		return 0;
891 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
892 		WARN_ON(1);
893 		return 0;
894 	}
895 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
896 		void *kaddr = kmap_atomic(page);
897 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
898 		kunmap_atomic(kaddr);
899 		return wanted;
900 	} else
901 		return copy_page_from_iter_iovec(page, offset, bytes, i);
902 }
903 EXPORT_SYMBOL(copy_page_from_iter);
904 
905 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
906 {
907 	struct pipe_inode_info *pipe = i->pipe;
908 	size_t n, off;
909 	int idx;
910 
911 	if (!sanity(i))
912 		return 0;
913 
914 	bytes = n = push_pipe(i, bytes, &idx, &off);
915 	if (unlikely(!n))
916 		return 0;
917 
918 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
919 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
920 		memzero_page(pipe->bufs[idx].page, off, chunk);
921 		i->idx = idx;
922 		i->iov_offset = off + chunk;
923 		n -= chunk;
924 	}
925 	i->count -= bytes;
926 	return bytes;
927 }
928 
929 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
930 {
931 	if (unlikely(iov_iter_is_pipe(i)))
932 		return pipe_zero(bytes, i);
933 	iterate_and_advance(i, bytes, v,
934 		clear_user(v.iov_base, v.iov_len),
935 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
936 		memset(v.iov_base, 0, v.iov_len)
937 	)
938 
939 	return bytes;
940 }
941 EXPORT_SYMBOL(iov_iter_zero);
942 
943 size_t iov_iter_copy_from_user_atomic(struct page *page,
944 		struct iov_iter *i, unsigned long offset, size_t bytes)
945 {
946 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
947 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
948 		kunmap_atomic(kaddr);
949 		return 0;
950 	}
951 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
952 		kunmap_atomic(kaddr);
953 		WARN_ON(1);
954 		return 0;
955 	}
956 	iterate_all_kinds(i, bytes, v,
957 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
958 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
959 				 v.bv_offset, v.bv_len),
960 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
961 	)
962 	kunmap_atomic(kaddr);
963 	return bytes;
964 }
965 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
966 
967 static inline void pipe_truncate(struct iov_iter *i)
968 {
969 	struct pipe_inode_info *pipe = i->pipe;
970 	if (pipe->nrbufs) {
971 		size_t off = i->iov_offset;
972 		int idx = i->idx;
973 		int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1);
974 		if (off) {
975 			pipe->bufs[idx].len = off - pipe->bufs[idx].offset;
976 			idx = next_idx(idx, pipe);
977 			nrbufs++;
978 		}
979 		while (pipe->nrbufs > nrbufs) {
980 			pipe_buf_release(pipe, &pipe->bufs[idx]);
981 			idx = next_idx(idx, pipe);
982 			pipe->nrbufs--;
983 		}
984 	}
985 }
986 
987 static void pipe_advance(struct iov_iter *i, size_t size)
988 {
989 	struct pipe_inode_info *pipe = i->pipe;
990 	if (unlikely(i->count < size))
991 		size = i->count;
992 	if (size) {
993 		struct pipe_buffer *buf;
994 		size_t off = i->iov_offset, left = size;
995 		int idx = i->idx;
996 		if (off) /* make it relative to the beginning of buffer */
997 			left += off - pipe->bufs[idx].offset;
998 		while (1) {
999 			buf = &pipe->bufs[idx];
1000 			if (left <= buf->len)
1001 				break;
1002 			left -= buf->len;
1003 			idx = next_idx(idx, pipe);
1004 		}
1005 		i->idx = idx;
1006 		i->iov_offset = buf->offset + left;
1007 	}
1008 	i->count -= size;
1009 	/* ... and discard everything past that point */
1010 	pipe_truncate(i);
1011 }
1012 
1013 void iov_iter_advance(struct iov_iter *i, size_t size)
1014 {
1015 	if (unlikely(iov_iter_is_pipe(i))) {
1016 		pipe_advance(i, size);
1017 		return;
1018 	}
1019 	if (unlikely(iov_iter_is_discard(i))) {
1020 		i->count -= size;
1021 		return;
1022 	}
1023 	iterate_and_advance(i, size, v, 0, 0, 0)
1024 }
1025 EXPORT_SYMBOL(iov_iter_advance);
1026 
1027 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1028 {
1029 	if (!unroll)
1030 		return;
1031 	if (WARN_ON(unroll > MAX_RW_COUNT))
1032 		return;
1033 	i->count += unroll;
1034 	if (unlikely(iov_iter_is_pipe(i))) {
1035 		struct pipe_inode_info *pipe = i->pipe;
1036 		int idx = i->idx;
1037 		size_t off = i->iov_offset;
1038 		while (1) {
1039 			size_t n = off - pipe->bufs[idx].offset;
1040 			if (unroll < n) {
1041 				off -= unroll;
1042 				break;
1043 			}
1044 			unroll -= n;
1045 			if (!unroll && idx == i->start_idx) {
1046 				off = 0;
1047 				break;
1048 			}
1049 			if (!idx--)
1050 				idx = pipe->buffers - 1;
1051 			off = pipe->bufs[idx].offset + pipe->bufs[idx].len;
1052 		}
1053 		i->iov_offset = off;
1054 		i->idx = idx;
1055 		pipe_truncate(i);
1056 		return;
1057 	}
1058 	if (unlikely(iov_iter_is_discard(i)))
1059 		return;
1060 	if (unroll <= i->iov_offset) {
1061 		i->iov_offset -= unroll;
1062 		return;
1063 	}
1064 	unroll -= i->iov_offset;
1065 	if (iov_iter_is_bvec(i)) {
1066 		const struct bio_vec *bvec = i->bvec;
1067 		while (1) {
1068 			size_t n = (--bvec)->bv_len;
1069 			i->nr_segs++;
1070 			if (unroll <= n) {
1071 				i->bvec = bvec;
1072 				i->iov_offset = n - unroll;
1073 				return;
1074 			}
1075 			unroll -= n;
1076 		}
1077 	} else { /* same logics for iovec and kvec */
1078 		const struct iovec *iov = i->iov;
1079 		while (1) {
1080 			size_t n = (--iov)->iov_len;
1081 			i->nr_segs++;
1082 			if (unroll <= n) {
1083 				i->iov = iov;
1084 				i->iov_offset = n - unroll;
1085 				return;
1086 			}
1087 			unroll -= n;
1088 		}
1089 	}
1090 }
1091 EXPORT_SYMBOL(iov_iter_revert);
1092 
1093 /*
1094  * Return the count of just the current iov_iter segment.
1095  */
1096 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1097 {
1098 	if (unlikely(iov_iter_is_pipe(i)))
1099 		return i->count;	// it is a silly place, anyway
1100 	if (i->nr_segs == 1)
1101 		return i->count;
1102 	if (unlikely(iov_iter_is_discard(i)))
1103 		return i->count;
1104 	else if (iov_iter_is_bvec(i))
1105 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1106 	else
1107 		return min(i->count, i->iov->iov_len - i->iov_offset);
1108 }
1109 EXPORT_SYMBOL(iov_iter_single_seg_count);
1110 
1111 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1112 			const struct kvec *kvec, unsigned long nr_segs,
1113 			size_t count)
1114 {
1115 	WARN_ON(direction & ~(READ | WRITE));
1116 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1117 	i->kvec = kvec;
1118 	i->nr_segs = nr_segs;
1119 	i->iov_offset = 0;
1120 	i->count = count;
1121 }
1122 EXPORT_SYMBOL(iov_iter_kvec);
1123 
1124 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1125 			const struct bio_vec *bvec, unsigned long nr_segs,
1126 			size_t count)
1127 {
1128 	WARN_ON(direction & ~(READ | WRITE));
1129 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1130 	i->bvec = bvec;
1131 	i->nr_segs = nr_segs;
1132 	i->iov_offset = 0;
1133 	i->count = count;
1134 }
1135 EXPORT_SYMBOL(iov_iter_bvec);
1136 
1137 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1138 			struct pipe_inode_info *pipe,
1139 			size_t count)
1140 {
1141 	BUG_ON(direction != READ);
1142 	WARN_ON(pipe->nrbufs == pipe->buffers);
1143 	i->type = ITER_PIPE | READ;
1144 	i->pipe = pipe;
1145 	i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1146 	i->iov_offset = 0;
1147 	i->count = count;
1148 	i->start_idx = i->idx;
1149 }
1150 EXPORT_SYMBOL(iov_iter_pipe);
1151 
1152 /**
1153  * iov_iter_discard - Initialise an I/O iterator that discards data
1154  * @i: The iterator to initialise.
1155  * @direction: The direction of the transfer.
1156  * @count: The size of the I/O buffer in bytes.
1157  *
1158  * Set up an I/O iterator that just discards everything that's written to it.
1159  * It's only available as a READ iterator.
1160  */
1161 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1162 {
1163 	BUG_ON(direction != READ);
1164 	i->type = ITER_DISCARD | READ;
1165 	i->count = count;
1166 	i->iov_offset = 0;
1167 }
1168 EXPORT_SYMBOL(iov_iter_discard);
1169 
1170 unsigned long iov_iter_alignment(const struct iov_iter *i)
1171 {
1172 	unsigned long res = 0;
1173 	size_t size = i->count;
1174 
1175 	if (unlikely(iov_iter_is_pipe(i))) {
1176 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx]))
1177 			return size | i->iov_offset;
1178 		return size;
1179 	}
1180 	iterate_all_kinds(i, size, v,
1181 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1182 		res |= v.bv_offset | v.bv_len,
1183 		res |= (unsigned long)v.iov_base | v.iov_len
1184 	)
1185 	return res;
1186 }
1187 EXPORT_SYMBOL(iov_iter_alignment);
1188 
1189 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1190 {
1191 	unsigned long res = 0;
1192 	size_t size = i->count;
1193 
1194 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1195 		WARN_ON(1);
1196 		return ~0U;
1197 	}
1198 
1199 	iterate_all_kinds(i, size, v,
1200 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1201 			(size != v.iov_len ? size : 0), 0),
1202 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1203 			(size != v.bv_len ? size : 0)),
1204 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1205 			(size != v.iov_len ? size : 0))
1206 		);
1207 	return res;
1208 }
1209 EXPORT_SYMBOL(iov_iter_gap_alignment);
1210 
1211 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1212 				size_t maxsize,
1213 				struct page **pages,
1214 				int idx,
1215 				size_t *start)
1216 {
1217 	struct pipe_inode_info *pipe = i->pipe;
1218 	ssize_t n = push_pipe(i, maxsize, &idx, start);
1219 	if (!n)
1220 		return -EFAULT;
1221 
1222 	maxsize = n;
1223 	n += *start;
1224 	while (n > 0) {
1225 		get_page(*pages++ = pipe->bufs[idx].page);
1226 		idx = next_idx(idx, pipe);
1227 		n -= PAGE_SIZE;
1228 	}
1229 
1230 	return maxsize;
1231 }
1232 
1233 static ssize_t pipe_get_pages(struct iov_iter *i,
1234 		   struct page **pages, size_t maxsize, unsigned maxpages,
1235 		   size_t *start)
1236 {
1237 	unsigned npages;
1238 	size_t capacity;
1239 	int idx;
1240 
1241 	if (!maxsize)
1242 		return 0;
1243 
1244 	if (!sanity(i))
1245 		return -EFAULT;
1246 
1247 	data_start(i, &idx, start);
1248 	/* some of this one + all after this one */
1249 	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1250 	capacity = min(npages,maxpages) * PAGE_SIZE - *start;
1251 
1252 	return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start);
1253 }
1254 
1255 ssize_t iov_iter_get_pages(struct iov_iter *i,
1256 		   struct page **pages, size_t maxsize, unsigned maxpages,
1257 		   size_t *start)
1258 {
1259 	if (maxsize > i->count)
1260 		maxsize = i->count;
1261 
1262 	if (unlikely(iov_iter_is_pipe(i)))
1263 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1264 	if (unlikely(iov_iter_is_discard(i)))
1265 		return -EFAULT;
1266 
1267 	iterate_all_kinds(i, maxsize, v, ({
1268 		unsigned long addr = (unsigned long)v.iov_base;
1269 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1270 		int n;
1271 		int res;
1272 
1273 		if (len > maxpages * PAGE_SIZE)
1274 			len = maxpages * PAGE_SIZE;
1275 		addr &= ~(PAGE_SIZE - 1);
1276 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1277 		res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, pages);
1278 		if (unlikely(res < 0))
1279 			return res;
1280 		return (res == n ? len : res * PAGE_SIZE) - *start;
1281 	0;}),({
1282 		/* can't be more than PAGE_SIZE */
1283 		*start = v.bv_offset;
1284 		get_page(*pages = v.bv_page);
1285 		return v.bv_len;
1286 	}),({
1287 		return -EFAULT;
1288 	})
1289 	)
1290 	return 0;
1291 }
1292 EXPORT_SYMBOL(iov_iter_get_pages);
1293 
1294 static struct page **get_pages_array(size_t n)
1295 {
1296 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1297 }
1298 
1299 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1300 		   struct page ***pages, size_t maxsize,
1301 		   size_t *start)
1302 {
1303 	struct page **p;
1304 	ssize_t n;
1305 	int idx;
1306 	int npages;
1307 
1308 	if (!maxsize)
1309 		return 0;
1310 
1311 	if (!sanity(i))
1312 		return -EFAULT;
1313 
1314 	data_start(i, &idx, start);
1315 	/* some of this one + all after this one */
1316 	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1317 	n = npages * PAGE_SIZE - *start;
1318 	if (maxsize > n)
1319 		maxsize = n;
1320 	else
1321 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1322 	p = get_pages_array(npages);
1323 	if (!p)
1324 		return -ENOMEM;
1325 	n = __pipe_get_pages(i, maxsize, p, idx, start);
1326 	if (n > 0)
1327 		*pages = p;
1328 	else
1329 		kvfree(p);
1330 	return n;
1331 }
1332 
1333 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1334 		   struct page ***pages, size_t maxsize,
1335 		   size_t *start)
1336 {
1337 	struct page **p;
1338 
1339 	if (maxsize > i->count)
1340 		maxsize = i->count;
1341 
1342 	if (unlikely(iov_iter_is_pipe(i)))
1343 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1344 	if (unlikely(iov_iter_is_discard(i)))
1345 		return -EFAULT;
1346 
1347 	iterate_all_kinds(i, maxsize, v, ({
1348 		unsigned long addr = (unsigned long)v.iov_base;
1349 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1350 		int n;
1351 		int res;
1352 
1353 		addr &= ~(PAGE_SIZE - 1);
1354 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1355 		p = get_pages_array(n);
1356 		if (!p)
1357 			return -ENOMEM;
1358 		res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, p);
1359 		if (unlikely(res < 0)) {
1360 			kvfree(p);
1361 			return res;
1362 		}
1363 		*pages = p;
1364 		return (res == n ? len : res * PAGE_SIZE) - *start;
1365 	0;}),({
1366 		/* can't be more than PAGE_SIZE */
1367 		*start = v.bv_offset;
1368 		*pages = p = get_pages_array(1);
1369 		if (!p)
1370 			return -ENOMEM;
1371 		get_page(*p = v.bv_page);
1372 		return v.bv_len;
1373 	}),({
1374 		return -EFAULT;
1375 	})
1376 	)
1377 	return 0;
1378 }
1379 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1380 
1381 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1382 			       struct iov_iter *i)
1383 {
1384 	char *to = addr;
1385 	__wsum sum, next;
1386 	size_t off = 0;
1387 	sum = *csum;
1388 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1389 		WARN_ON(1);
1390 		return 0;
1391 	}
1392 	iterate_and_advance(i, bytes, v, ({
1393 		int err = 0;
1394 		next = csum_and_copy_from_user(v.iov_base,
1395 					       (to += v.iov_len) - v.iov_len,
1396 					       v.iov_len, 0, &err);
1397 		if (!err) {
1398 			sum = csum_block_add(sum, next, off);
1399 			off += v.iov_len;
1400 		}
1401 		err ? v.iov_len : 0;
1402 	}), ({
1403 		char *p = kmap_atomic(v.bv_page);
1404 		next = csum_partial_copy_nocheck(p + v.bv_offset,
1405 						 (to += v.bv_len) - v.bv_len,
1406 						 v.bv_len, 0);
1407 		kunmap_atomic(p);
1408 		sum = csum_block_add(sum, next, off);
1409 		off += v.bv_len;
1410 	}),({
1411 		next = csum_partial_copy_nocheck(v.iov_base,
1412 						 (to += v.iov_len) - v.iov_len,
1413 						 v.iov_len, 0);
1414 		sum = csum_block_add(sum, next, off);
1415 		off += v.iov_len;
1416 	})
1417 	)
1418 	*csum = sum;
1419 	return bytes;
1420 }
1421 EXPORT_SYMBOL(csum_and_copy_from_iter);
1422 
1423 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1424 			       struct iov_iter *i)
1425 {
1426 	char *to = addr;
1427 	__wsum sum, next;
1428 	size_t off = 0;
1429 	sum = *csum;
1430 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1431 		WARN_ON(1);
1432 		return false;
1433 	}
1434 	if (unlikely(i->count < bytes))
1435 		return false;
1436 	iterate_all_kinds(i, bytes, v, ({
1437 		int err = 0;
1438 		next = csum_and_copy_from_user(v.iov_base,
1439 					       (to += v.iov_len) - v.iov_len,
1440 					       v.iov_len, 0, &err);
1441 		if (err)
1442 			return false;
1443 		sum = csum_block_add(sum, next, off);
1444 		off += v.iov_len;
1445 		0;
1446 	}), ({
1447 		char *p = kmap_atomic(v.bv_page);
1448 		next = csum_partial_copy_nocheck(p + v.bv_offset,
1449 						 (to += v.bv_len) - v.bv_len,
1450 						 v.bv_len, 0);
1451 		kunmap_atomic(p);
1452 		sum = csum_block_add(sum, next, off);
1453 		off += v.bv_len;
1454 	}),({
1455 		next = csum_partial_copy_nocheck(v.iov_base,
1456 						 (to += v.iov_len) - v.iov_len,
1457 						 v.iov_len, 0);
1458 		sum = csum_block_add(sum, next, off);
1459 		off += v.iov_len;
1460 	})
1461 	)
1462 	*csum = sum;
1463 	iov_iter_advance(i, bytes);
1464 	return true;
1465 }
1466 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1467 
1468 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1469 			     struct iov_iter *i)
1470 {
1471 	const char *from = addr;
1472 	__wsum *csum = csump;
1473 	__wsum sum, next;
1474 	size_t off = 0;
1475 
1476 	if (unlikely(iov_iter_is_pipe(i)))
1477 		return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1478 
1479 	sum = *csum;
1480 	if (unlikely(iov_iter_is_discard(i))) {
1481 		WARN_ON(1);	/* for now */
1482 		return 0;
1483 	}
1484 	iterate_and_advance(i, bytes, v, ({
1485 		int err = 0;
1486 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1487 					     v.iov_base,
1488 					     v.iov_len, 0, &err);
1489 		if (!err) {
1490 			sum = csum_block_add(sum, next, off);
1491 			off += v.iov_len;
1492 		}
1493 		err ? v.iov_len : 0;
1494 	}), ({
1495 		char *p = kmap_atomic(v.bv_page);
1496 		next = csum_partial_copy_nocheck((from += v.bv_len) - v.bv_len,
1497 						 p + v.bv_offset,
1498 						 v.bv_len, 0);
1499 		kunmap_atomic(p);
1500 		sum = csum_block_add(sum, next, off);
1501 		off += v.bv_len;
1502 	}),({
1503 		next = csum_partial_copy_nocheck((from += v.iov_len) - v.iov_len,
1504 						 v.iov_base,
1505 						 v.iov_len, 0);
1506 		sum = csum_block_add(sum, next, off);
1507 		off += v.iov_len;
1508 	})
1509 	)
1510 	*csum = sum;
1511 	return bytes;
1512 }
1513 EXPORT_SYMBOL(csum_and_copy_to_iter);
1514 
1515 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1516 		struct iov_iter *i)
1517 {
1518 	struct ahash_request *hash = hashp;
1519 	struct scatterlist sg;
1520 	size_t copied;
1521 
1522 	copied = copy_to_iter(addr, bytes, i);
1523 	sg_init_one(&sg, addr, copied);
1524 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1525 	crypto_ahash_update(hash);
1526 	return copied;
1527 }
1528 EXPORT_SYMBOL(hash_and_copy_to_iter);
1529 
1530 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1531 {
1532 	size_t size = i->count;
1533 	int npages = 0;
1534 
1535 	if (!size)
1536 		return 0;
1537 	if (unlikely(iov_iter_is_discard(i)))
1538 		return 0;
1539 
1540 	if (unlikely(iov_iter_is_pipe(i))) {
1541 		struct pipe_inode_info *pipe = i->pipe;
1542 		size_t off;
1543 		int idx;
1544 
1545 		if (!sanity(i))
1546 			return 0;
1547 
1548 		data_start(i, &idx, &off);
1549 		/* some of this one + all after this one */
1550 		npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1;
1551 		if (npages >= maxpages)
1552 			return maxpages;
1553 	} else iterate_all_kinds(i, size, v, ({
1554 		unsigned long p = (unsigned long)v.iov_base;
1555 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1556 			- p / PAGE_SIZE;
1557 		if (npages >= maxpages)
1558 			return maxpages;
1559 	0;}),({
1560 		npages++;
1561 		if (npages >= maxpages)
1562 			return maxpages;
1563 	}),({
1564 		unsigned long p = (unsigned long)v.iov_base;
1565 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1566 			- p / PAGE_SIZE;
1567 		if (npages >= maxpages)
1568 			return maxpages;
1569 	})
1570 	)
1571 	return npages;
1572 }
1573 EXPORT_SYMBOL(iov_iter_npages);
1574 
1575 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1576 {
1577 	*new = *old;
1578 	if (unlikely(iov_iter_is_pipe(new))) {
1579 		WARN_ON(1);
1580 		return NULL;
1581 	}
1582 	if (unlikely(iov_iter_is_discard(new)))
1583 		return NULL;
1584 	if (iov_iter_is_bvec(new))
1585 		return new->bvec = kmemdup(new->bvec,
1586 				    new->nr_segs * sizeof(struct bio_vec),
1587 				    flags);
1588 	else
1589 		/* iovec and kvec have identical layout */
1590 		return new->iov = kmemdup(new->iov,
1591 				   new->nr_segs * sizeof(struct iovec),
1592 				   flags);
1593 }
1594 EXPORT_SYMBOL(dup_iter);
1595 
1596 /**
1597  * import_iovec() - Copy an array of &struct iovec from userspace
1598  *     into the kernel, check that it is valid, and initialize a new
1599  *     &struct iov_iter iterator to access it.
1600  *
1601  * @type: One of %READ or %WRITE.
1602  * @uvector: Pointer to the userspace array.
1603  * @nr_segs: Number of elements in userspace array.
1604  * @fast_segs: Number of elements in @iov.
1605  * @iov: (input and output parameter) Pointer to pointer to (usually small
1606  *     on-stack) kernel array.
1607  * @i: Pointer to iterator that will be initialized on success.
1608  *
1609  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1610  * then this function places %NULL in *@iov on return. Otherwise, a new
1611  * array will be allocated and the result placed in *@iov. This means that
1612  * the caller may call kfree() on *@iov regardless of whether the small
1613  * on-stack array was used or not (and regardless of whether this function
1614  * returns an error or not).
1615  *
1616  * Return: 0 on success or negative error code on error.
1617  */
1618 int import_iovec(int type, const struct iovec __user * uvector,
1619 		 unsigned nr_segs, unsigned fast_segs,
1620 		 struct iovec **iov, struct iov_iter *i)
1621 {
1622 	ssize_t n;
1623 	struct iovec *p;
1624 	n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1625 				  *iov, &p);
1626 	if (n < 0) {
1627 		if (p != *iov)
1628 			kfree(p);
1629 		*iov = NULL;
1630 		return n;
1631 	}
1632 	iov_iter_init(i, type, p, nr_segs, n);
1633 	*iov = p == *iov ? NULL : p;
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL(import_iovec);
1637 
1638 #ifdef CONFIG_COMPAT
1639 #include <linux/compat.h>
1640 
1641 int compat_import_iovec(int type, const struct compat_iovec __user * uvector,
1642 		 unsigned nr_segs, unsigned fast_segs,
1643 		 struct iovec **iov, struct iov_iter *i)
1644 {
1645 	ssize_t n;
1646 	struct iovec *p;
1647 	n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1648 				  *iov, &p);
1649 	if (n < 0) {
1650 		if (p != *iov)
1651 			kfree(p);
1652 		*iov = NULL;
1653 		return n;
1654 	}
1655 	iov_iter_init(i, type, p, nr_segs, n);
1656 	*iov = p == *iov ? NULL : p;
1657 	return 0;
1658 }
1659 #endif
1660 
1661 int import_single_range(int rw, void __user *buf, size_t len,
1662 		 struct iovec *iov, struct iov_iter *i)
1663 {
1664 	if (len > MAX_RW_COUNT)
1665 		len = MAX_RW_COUNT;
1666 	if (unlikely(!access_ok(!rw, buf, len)))
1667 		return -EFAULT;
1668 
1669 	iov->iov_base = buf;
1670 	iov->iov_len = len;
1671 	iov_iter_init(i, rw, iov, 1, len);
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL(import_single_range);
1675 
1676 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1677 			    int (*f)(struct kvec *vec, void *context),
1678 			    void *context)
1679 {
1680 	struct kvec w;
1681 	int err = -EINVAL;
1682 	if (!bytes)
1683 		return 0;
1684 
1685 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1686 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1687 		w.iov_len = v.bv_len;
1688 		err = f(&w, context);
1689 		kunmap(v.bv_page);
1690 		err;}), ({
1691 		w = v;
1692 		err = f(&w, context);})
1693 	)
1694 	return err;
1695 }
1696 EXPORT_SYMBOL(iov_iter_for_each_range);
1697