xref: /openbmc/linux/lib/iov_iter.c (revision c9933d49)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
21 	size_t off = 0;						\
22 	size_t skip = i->iov_offset;				\
23 	do {							\
24 		len = min(n, __p->iov_len - skip);		\
25 		if (likely(len)) {				\
26 			base = __p->iov_base + skip;		\
27 			len -= (STEP);				\
28 			off += len;				\
29 			skip += len;				\
30 			n -= len;				\
31 			if (skip < __p->iov_len)		\
32 				break;				\
33 		}						\
34 		__p++;						\
35 		skip = 0;					\
36 	} while (n);						\
37 	i->iov_offset = skip;					\
38 	n = off;						\
39 }
40 
41 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
42 	size_t off = 0;						\
43 	unsigned skip = i->iov_offset;				\
44 	while (n) {						\
45 		unsigned offset = p->bv_offset + skip;		\
46 		unsigned left;					\
47 		void *kaddr = kmap_local_page(p->bv_page +	\
48 					offset / PAGE_SIZE);	\
49 		base = kaddr + offset % PAGE_SIZE;		\
50 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
51 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
52 		left = (STEP);					\
53 		kunmap_local(kaddr);				\
54 		len -= left;					\
55 		off += len;					\
56 		skip += len;					\
57 		if (skip == p->bv_len) {			\
58 			skip = 0;				\
59 			p++;					\
60 		}						\
61 		n -= len;					\
62 		if (left)					\
63 			break;					\
64 	}							\
65 	i->iov_offset = skip;					\
66 	n = off;						\
67 }
68 
69 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
70 	__label__ __out;					\
71 	size_t __off = 0;					\
72 	struct folio *folio;					\
73 	loff_t start = i->xarray_start + i->iov_offset;		\
74 	pgoff_t index = start / PAGE_SIZE;			\
75 	XA_STATE(xas, i->xarray, index);			\
76 								\
77 	len = PAGE_SIZE - offset_in_page(start);		\
78 	rcu_read_lock();					\
79 	xas_for_each(&xas, folio, ULONG_MAX) {			\
80 		unsigned left;					\
81 		size_t offset;					\
82 		if (xas_retry(&xas, folio))			\
83 			continue;				\
84 		if (WARN_ON(xa_is_value(folio)))		\
85 			break;					\
86 		if (WARN_ON(folio_test_hugetlb(folio)))		\
87 			break;					\
88 		offset = offset_in_folio(folio, start + __off);	\
89 		while (offset < folio_size(folio)) {		\
90 			base = kmap_local_folio(folio, offset);	\
91 			len = min(n, len);			\
92 			left = (STEP);				\
93 			kunmap_local(base);			\
94 			len -= left;				\
95 			__off += len;				\
96 			n -= len;				\
97 			if (left || n == 0)			\
98 				goto __out;			\
99 			offset += len;				\
100 			len = PAGE_SIZE;			\
101 		}						\
102 	}							\
103 __out:								\
104 	rcu_read_unlock();					\
105 	i->iov_offset += __off;					\
106 	n = __off;						\
107 }
108 
109 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
110 	if (unlikely(i->count < n))				\
111 		n = i->count;					\
112 	if (likely(n)) {					\
113 		if (likely(iter_is_iovec(i))) {			\
114 			const struct iovec *iov = i->iov;	\
115 			void __user *base;			\
116 			size_t len;				\
117 			iterate_iovec(i, n, base, len, off,	\
118 						iov, (I))	\
119 			i->nr_segs -= iov - i->iov;		\
120 			i->iov = iov;				\
121 		} else if (iov_iter_is_bvec(i)) {		\
122 			const struct bio_vec *bvec = i->bvec;	\
123 			void *base;				\
124 			size_t len;				\
125 			iterate_bvec(i, n, base, len, off,	\
126 						bvec, (K))	\
127 			i->nr_segs -= bvec - i->bvec;		\
128 			i->bvec = bvec;				\
129 		} else if (iov_iter_is_kvec(i)) {		\
130 			const struct kvec *kvec = i->kvec;	\
131 			void *base;				\
132 			size_t len;				\
133 			iterate_iovec(i, n, base, len, off,	\
134 						kvec, (K))	\
135 			i->nr_segs -= kvec - i->kvec;		\
136 			i->kvec = kvec;				\
137 		} else if (iov_iter_is_xarray(i)) {		\
138 			void *base;				\
139 			size_t len;				\
140 			iterate_xarray(i, n, base, len, off,	\
141 							(K))	\
142 		}						\
143 		i->count -= n;					\
144 	}							\
145 }
146 #define iterate_and_advance(i, n, base, len, off, I, K) \
147 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
148 
149 static int copyout(void __user *to, const void *from, size_t n)
150 {
151 	if (should_fail_usercopy())
152 		return n;
153 	if (access_ok(to, n)) {
154 		instrument_copy_to_user(to, from, n);
155 		n = raw_copy_to_user(to, from, n);
156 	}
157 	return n;
158 }
159 
160 static int copyin(void *to, const void __user *from, size_t n)
161 {
162 	if (should_fail_usercopy())
163 		return n;
164 	if (access_ok(from, n)) {
165 		instrument_copy_from_user(to, from, n);
166 		n = raw_copy_from_user(to, from, n);
167 	}
168 	return n;
169 }
170 
171 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
172 			 struct iov_iter *i)
173 {
174 	size_t skip, copy, left, wanted;
175 	const struct iovec *iov;
176 	char __user *buf;
177 	void *kaddr, *from;
178 
179 	if (unlikely(bytes > i->count))
180 		bytes = i->count;
181 
182 	if (unlikely(!bytes))
183 		return 0;
184 
185 	might_fault();
186 	wanted = bytes;
187 	iov = i->iov;
188 	skip = i->iov_offset;
189 	buf = iov->iov_base + skip;
190 	copy = min(bytes, iov->iov_len - skip);
191 
192 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_writeable(buf, copy)) {
193 		kaddr = kmap_atomic(page);
194 		from = kaddr + offset;
195 
196 		/* first chunk, usually the only one */
197 		left = copyout(buf, from, copy);
198 		copy -= left;
199 		skip += copy;
200 		from += copy;
201 		bytes -= copy;
202 
203 		while (unlikely(!left && bytes)) {
204 			iov++;
205 			buf = iov->iov_base;
206 			copy = min(bytes, iov->iov_len);
207 			left = copyout(buf, from, copy);
208 			copy -= left;
209 			skip = copy;
210 			from += copy;
211 			bytes -= copy;
212 		}
213 		if (likely(!bytes)) {
214 			kunmap_atomic(kaddr);
215 			goto done;
216 		}
217 		offset = from - kaddr;
218 		buf += copy;
219 		kunmap_atomic(kaddr);
220 		copy = min(bytes, iov->iov_len - skip);
221 	}
222 	/* Too bad - revert to non-atomic kmap */
223 
224 	kaddr = kmap(page);
225 	from = kaddr + offset;
226 	left = copyout(buf, from, copy);
227 	copy -= left;
228 	skip += copy;
229 	from += copy;
230 	bytes -= copy;
231 	while (unlikely(!left && bytes)) {
232 		iov++;
233 		buf = iov->iov_base;
234 		copy = min(bytes, iov->iov_len);
235 		left = copyout(buf, from, copy);
236 		copy -= left;
237 		skip = copy;
238 		from += copy;
239 		bytes -= copy;
240 	}
241 	kunmap(page);
242 
243 done:
244 	if (skip == iov->iov_len) {
245 		iov++;
246 		skip = 0;
247 	}
248 	i->count -= wanted - bytes;
249 	i->nr_segs -= iov - i->iov;
250 	i->iov = iov;
251 	i->iov_offset = skip;
252 	return wanted - bytes;
253 }
254 
255 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
256 			 struct iov_iter *i)
257 {
258 	size_t skip, copy, left, wanted;
259 	const struct iovec *iov;
260 	char __user *buf;
261 	void *kaddr, *to;
262 
263 	if (unlikely(bytes > i->count))
264 		bytes = i->count;
265 
266 	if (unlikely(!bytes))
267 		return 0;
268 
269 	might_fault();
270 	wanted = bytes;
271 	iov = i->iov;
272 	skip = i->iov_offset;
273 	buf = iov->iov_base + skip;
274 	copy = min(bytes, iov->iov_len - skip);
275 
276 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_readable(buf, copy)) {
277 		kaddr = kmap_atomic(page);
278 		to = kaddr + offset;
279 
280 		/* first chunk, usually the only one */
281 		left = copyin(to, buf, copy);
282 		copy -= left;
283 		skip += copy;
284 		to += copy;
285 		bytes -= copy;
286 
287 		while (unlikely(!left && bytes)) {
288 			iov++;
289 			buf = iov->iov_base;
290 			copy = min(bytes, iov->iov_len);
291 			left = copyin(to, buf, copy);
292 			copy -= left;
293 			skip = copy;
294 			to += copy;
295 			bytes -= copy;
296 		}
297 		if (likely(!bytes)) {
298 			kunmap_atomic(kaddr);
299 			goto done;
300 		}
301 		offset = to - kaddr;
302 		buf += copy;
303 		kunmap_atomic(kaddr);
304 		copy = min(bytes, iov->iov_len - skip);
305 	}
306 	/* Too bad - revert to non-atomic kmap */
307 
308 	kaddr = kmap(page);
309 	to = kaddr + offset;
310 	left = copyin(to, buf, copy);
311 	copy -= left;
312 	skip += copy;
313 	to += copy;
314 	bytes -= copy;
315 	while (unlikely(!left && bytes)) {
316 		iov++;
317 		buf = iov->iov_base;
318 		copy = min(bytes, iov->iov_len);
319 		left = copyin(to, buf, copy);
320 		copy -= left;
321 		skip = copy;
322 		to += copy;
323 		bytes -= copy;
324 	}
325 	kunmap(page);
326 
327 done:
328 	if (skip == iov->iov_len) {
329 		iov++;
330 		skip = 0;
331 	}
332 	i->count -= wanted - bytes;
333 	i->nr_segs -= iov - i->iov;
334 	i->iov = iov;
335 	i->iov_offset = skip;
336 	return wanted - bytes;
337 }
338 
339 #ifdef PIPE_PARANOIA
340 static bool sanity(const struct iov_iter *i)
341 {
342 	struct pipe_inode_info *pipe = i->pipe;
343 	unsigned int p_head = pipe->head;
344 	unsigned int p_tail = pipe->tail;
345 	unsigned int p_mask = pipe->ring_size - 1;
346 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
347 	unsigned int i_head = i->head;
348 	unsigned int idx;
349 
350 	if (i->iov_offset) {
351 		struct pipe_buffer *p;
352 		if (unlikely(p_occupancy == 0))
353 			goto Bad;	// pipe must be non-empty
354 		if (unlikely(i_head != p_head - 1))
355 			goto Bad;	// must be at the last buffer...
356 
357 		p = &pipe->bufs[i_head & p_mask];
358 		if (unlikely(p->offset + p->len != i->iov_offset))
359 			goto Bad;	// ... at the end of segment
360 	} else {
361 		if (i_head != p_head)
362 			goto Bad;	// must be right after the last buffer
363 	}
364 	return true;
365 Bad:
366 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
367 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
368 			p_head, p_tail, pipe->ring_size);
369 	for (idx = 0; idx < pipe->ring_size; idx++)
370 		printk(KERN_ERR "[%p %p %d %d]\n",
371 			pipe->bufs[idx].ops,
372 			pipe->bufs[idx].page,
373 			pipe->bufs[idx].offset,
374 			pipe->bufs[idx].len);
375 	WARN_ON(1);
376 	return false;
377 }
378 #else
379 #define sanity(i) true
380 #endif
381 
382 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
383 			 struct iov_iter *i)
384 {
385 	struct pipe_inode_info *pipe = i->pipe;
386 	struct pipe_buffer *buf;
387 	unsigned int p_tail = pipe->tail;
388 	unsigned int p_mask = pipe->ring_size - 1;
389 	unsigned int i_head = i->head;
390 	size_t off;
391 
392 	if (unlikely(bytes > i->count))
393 		bytes = i->count;
394 
395 	if (unlikely(!bytes))
396 		return 0;
397 
398 	if (!sanity(i))
399 		return 0;
400 
401 	off = i->iov_offset;
402 	buf = &pipe->bufs[i_head & p_mask];
403 	if (off) {
404 		if (offset == off && buf->page == page) {
405 			/* merge with the last one */
406 			buf->len += bytes;
407 			i->iov_offset += bytes;
408 			goto out;
409 		}
410 		i_head++;
411 		buf = &pipe->bufs[i_head & p_mask];
412 	}
413 	if (pipe_full(i_head, p_tail, pipe->max_usage))
414 		return 0;
415 
416 	buf->ops = &page_cache_pipe_buf_ops;
417 	buf->flags = 0;
418 	get_page(page);
419 	buf->page = page;
420 	buf->offset = offset;
421 	buf->len = bytes;
422 
423 	pipe->head = i_head + 1;
424 	i->iov_offset = offset + bytes;
425 	i->head = i_head;
426 out:
427 	i->count -= bytes;
428 	return bytes;
429 }
430 
431 /*
432  * fault_in_iov_iter_readable - fault in iov iterator for reading
433  * @i: iterator
434  * @size: maximum length
435  *
436  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
437  * @size.  For each iovec, fault in each page that constitutes the iovec.
438  *
439  * Returns the number of bytes not faulted in (like copy_to_user() and
440  * copy_from_user()).
441  *
442  * Always returns 0 for non-userspace iterators.
443  */
444 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
445 {
446 	if (iter_is_iovec(i)) {
447 		size_t count = min(size, iov_iter_count(i));
448 		const struct iovec *p;
449 		size_t skip;
450 
451 		size -= count;
452 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
453 			size_t len = min(count, p->iov_len - skip);
454 			size_t ret;
455 
456 			if (unlikely(!len))
457 				continue;
458 			ret = fault_in_readable(p->iov_base + skip, len);
459 			count -= len - ret;
460 			if (ret)
461 				break;
462 		}
463 		return count + size;
464 	}
465 	return 0;
466 }
467 EXPORT_SYMBOL(fault_in_iov_iter_readable);
468 
469 /*
470  * fault_in_iov_iter_writeable - fault in iov iterator for writing
471  * @i: iterator
472  * @size: maximum length
473  *
474  * Faults in the iterator using get_user_pages(), i.e., without triggering
475  * hardware page faults.  This is primarily useful when we already know that
476  * some or all of the pages in @i aren't in memory.
477  *
478  * Returns the number of bytes not faulted in, like copy_to_user() and
479  * copy_from_user().
480  *
481  * Always returns 0 for non-user-space iterators.
482  */
483 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
484 {
485 	if (iter_is_iovec(i)) {
486 		size_t count = min(size, iov_iter_count(i));
487 		const struct iovec *p;
488 		size_t skip;
489 
490 		size -= count;
491 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
492 			size_t len = min(count, p->iov_len - skip);
493 			size_t ret;
494 
495 			if (unlikely(!len))
496 				continue;
497 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
498 			count -= len - ret;
499 			if (ret)
500 				break;
501 		}
502 		return count + size;
503 	}
504 	return 0;
505 }
506 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
507 
508 void iov_iter_init(struct iov_iter *i, unsigned int direction,
509 			const struct iovec *iov, unsigned long nr_segs,
510 			size_t count)
511 {
512 	WARN_ON(direction & ~(READ | WRITE));
513 	*i = (struct iov_iter) {
514 		.iter_type = ITER_IOVEC,
515 		.nofault = false,
516 		.data_source = direction,
517 		.iov = iov,
518 		.nr_segs = nr_segs,
519 		.iov_offset = 0,
520 		.count = count
521 	};
522 }
523 EXPORT_SYMBOL(iov_iter_init);
524 
525 static inline bool allocated(struct pipe_buffer *buf)
526 {
527 	return buf->ops == &default_pipe_buf_ops;
528 }
529 
530 static inline void data_start(const struct iov_iter *i,
531 			      unsigned int *iter_headp, size_t *offp)
532 {
533 	unsigned int p_mask = i->pipe->ring_size - 1;
534 	unsigned int iter_head = i->head;
535 	size_t off = i->iov_offset;
536 
537 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
538 		    off == PAGE_SIZE)) {
539 		iter_head++;
540 		off = 0;
541 	}
542 	*iter_headp = iter_head;
543 	*offp = off;
544 }
545 
546 static size_t push_pipe(struct iov_iter *i, size_t size,
547 			int *iter_headp, size_t *offp)
548 {
549 	struct pipe_inode_info *pipe = i->pipe;
550 	unsigned int p_tail = pipe->tail;
551 	unsigned int p_mask = pipe->ring_size - 1;
552 	unsigned int iter_head;
553 	size_t off;
554 	ssize_t left;
555 
556 	if (unlikely(size > i->count))
557 		size = i->count;
558 	if (unlikely(!size))
559 		return 0;
560 
561 	left = size;
562 	data_start(i, &iter_head, &off);
563 	*iter_headp = iter_head;
564 	*offp = off;
565 	if (off) {
566 		left -= PAGE_SIZE - off;
567 		if (left <= 0) {
568 			pipe->bufs[iter_head & p_mask].len += size;
569 			return size;
570 		}
571 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
572 		iter_head++;
573 	}
574 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
575 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
576 		struct page *page = alloc_page(GFP_USER);
577 		if (!page)
578 			break;
579 
580 		buf->ops = &default_pipe_buf_ops;
581 		buf->flags = 0;
582 		buf->page = page;
583 		buf->offset = 0;
584 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
585 		left -= buf->len;
586 		iter_head++;
587 		pipe->head = iter_head;
588 
589 		if (left == 0)
590 			return size;
591 	}
592 	return size - left;
593 }
594 
595 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
596 				struct iov_iter *i)
597 {
598 	struct pipe_inode_info *pipe = i->pipe;
599 	unsigned int p_mask = pipe->ring_size - 1;
600 	unsigned int i_head;
601 	size_t n, off;
602 
603 	if (!sanity(i))
604 		return 0;
605 
606 	bytes = n = push_pipe(i, bytes, &i_head, &off);
607 	if (unlikely(!n))
608 		return 0;
609 	do {
610 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
611 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
612 		i->head = i_head;
613 		i->iov_offset = off + chunk;
614 		n -= chunk;
615 		addr += chunk;
616 		off = 0;
617 		i_head++;
618 	} while (n);
619 	i->count -= bytes;
620 	return bytes;
621 }
622 
623 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
624 			      __wsum sum, size_t off)
625 {
626 	__wsum next = csum_partial_copy_nocheck(from, to, len);
627 	return csum_block_add(sum, next, off);
628 }
629 
630 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
631 					 struct iov_iter *i, __wsum *sump)
632 {
633 	struct pipe_inode_info *pipe = i->pipe;
634 	unsigned int p_mask = pipe->ring_size - 1;
635 	__wsum sum = *sump;
636 	size_t off = 0;
637 	unsigned int i_head;
638 	size_t r;
639 
640 	if (!sanity(i))
641 		return 0;
642 
643 	bytes = push_pipe(i, bytes, &i_head, &r);
644 	while (bytes) {
645 		size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
646 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
647 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
648 		kunmap_local(p);
649 		i->head = i_head;
650 		i->iov_offset = r + chunk;
651 		bytes -= chunk;
652 		off += chunk;
653 		r = 0;
654 		i_head++;
655 	}
656 	*sump = sum;
657 	i->count -= off;
658 	return off;
659 }
660 
661 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
662 {
663 	if (unlikely(iov_iter_is_pipe(i)))
664 		return copy_pipe_to_iter(addr, bytes, i);
665 	if (iter_is_iovec(i))
666 		might_fault();
667 	iterate_and_advance(i, bytes, base, len, off,
668 		copyout(base, addr + off, len),
669 		memcpy(base, addr + off, len)
670 	)
671 
672 	return bytes;
673 }
674 EXPORT_SYMBOL(_copy_to_iter);
675 
676 #ifdef CONFIG_ARCH_HAS_COPY_MC
677 static int copyout_mc(void __user *to, const void *from, size_t n)
678 {
679 	if (access_ok(to, n)) {
680 		instrument_copy_to_user(to, from, n);
681 		n = copy_mc_to_user((__force void *) to, from, n);
682 	}
683 	return n;
684 }
685 
686 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
687 				struct iov_iter *i)
688 {
689 	struct pipe_inode_info *pipe = i->pipe;
690 	unsigned int p_mask = pipe->ring_size - 1;
691 	unsigned int i_head;
692 	size_t n, off, xfer = 0;
693 
694 	if (!sanity(i))
695 		return 0;
696 
697 	n = push_pipe(i, bytes, &i_head, &off);
698 	while (n) {
699 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
700 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
701 		unsigned long rem;
702 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
703 		chunk -= rem;
704 		kunmap_local(p);
705 		i->head = i_head;
706 		i->iov_offset = off + chunk;
707 		xfer += chunk;
708 		if (rem)
709 			break;
710 		n -= chunk;
711 		off = 0;
712 		i_head++;
713 	}
714 	i->count -= xfer;
715 	return xfer;
716 }
717 
718 /**
719  * _copy_mc_to_iter - copy to iter with source memory error exception handling
720  * @addr: source kernel address
721  * @bytes: total transfer length
722  * @i: destination iterator
723  *
724  * The pmem driver deploys this for the dax operation
725  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
726  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
727  * successfully copied.
728  *
729  * The main differences between this and typical _copy_to_iter().
730  *
731  * * Typical tail/residue handling after a fault retries the copy
732  *   byte-by-byte until the fault happens again. Re-triggering machine
733  *   checks is potentially fatal so the implementation uses source
734  *   alignment and poison alignment assumptions to avoid re-triggering
735  *   hardware exceptions.
736  *
737  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
738  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
739  *   a short copy.
740  *
741  * Return: number of bytes copied (may be %0)
742  */
743 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
744 {
745 	if (unlikely(iov_iter_is_pipe(i)))
746 		return copy_mc_pipe_to_iter(addr, bytes, i);
747 	if (iter_is_iovec(i))
748 		might_fault();
749 	__iterate_and_advance(i, bytes, base, len, off,
750 		copyout_mc(base, addr + off, len),
751 		copy_mc_to_kernel(base, addr + off, len)
752 	)
753 
754 	return bytes;
755 }
756 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
757 #endif /* CONFIG_ARCH_HAS_COPY_MC */
758 
759 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
760 {
761 	if (unlikely(iov_iter_is_pipe(i))) {
762 		WARN_ON(1);
763 		return 0;
764 	}
765 	if (iter_is_iovec(i))
766 		might_fault();
767 	iterate_and_advance(i, bytes, base, len, off,
768 		copyin(addr + off, base, len),
769 		memcpy(addr + off, base, len)
770 	)
771 
772 	return bytes;
773 }
774 EXPORT_SYMBOL(_copy_from_iter);
775 
776 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
777 {
778 	if (unlikely(iov_iter_is_pipe(i))) {
779 		WARN_ON(1);
780 		return 0;
781 	}
782 	iterate_and_advance(i, bytes, base, len, off,
783 		__copy_from_user_inatomic_nocache(addr + off, base, len),
784 		memcpy(addr + off, base, len)
785 	)
786 
787 	return bytes;
788 }
789 EXPORT_SYMBOL(_copy_from_iter_nocache);
790 
791 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
792 /**
793  * _copy_from_iter_flushcache - write destination through cpu cache
794  * @addr: destination kernel address
795  * @bytes: total transfer length
796  * @i: source iterator
797  *
798  * The pmem driver arranges for filesystem-dax to use this facility via
799  * dax_copy_from_iter() for ensuring that writes to persistent memory
800  * are flushed through the CPU cache. It is differentiated from
801  * _copy_from_iter_nocache() in that guarantees all data is flushed for
802  * all iterator types. The _copy_from_iter_nocache() only attempts to
803  * bypass the cache for the ITER_IOVEC case, and on some archs may use
804  * instructions that strand dirty-data in the cache.
805  *
806  * Return: number of bytes copied (may be %0)
807  */
808 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
809 {
810 	if (unlikely(iov_iter_is_pipe(i))) {
811 		WARN_ON(1);
812 		return 0;
813 	}
814 	iterate_and_advance(i, bytes, base, len, off,
815 		__copy_from_user_flushcache(addr + off, base, len),
816 		memcpy_flushcache(addr + off, base, len)
817 	)
818 
819 	return bytes;
820 }
821 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
822 #endif
823 
824 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
825 {
826 	struct page *head;
827 	size_t v = n + offset;
828 
829 	/*
830 	 * The general case needs to access the page order in order
831 	 * to compute the page size.
832 	 * However, we mostly deal with order-0 pages and thus can
833 	 * avoid a possible cache line miss for requests that fit all
834 	 * page orders.
835 	 */
836 	if (n <= v && v <= PAGE_SIZE)
837 		return true;
838 
839 	head = compound_head(page);
840 	v += (page - head) << PAGE_SHIFT;
841 
842 	if (likely(n <= v && v <= (page_size(head))))
843 		return true;
844 	WARN_ON(1);
845 	return false;
846 }
847 
848 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
849 			 struct iov_iter *i)
850 {
851 	if (likely(iter_is_iovec(i)))
852 		return copy_page_to_iter_iovec(page, offset, bytes, i);
853 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
854 		void *kaddr = kmap_local_page(page);
855 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
856 		kunmap_local(kaddr);
857 		return wanted;
858 	}
859 	if (iov_iter_is_pipe(i))
860 		return copy_page_to_iter_pipe(page, offset, bytes, i);
861 	if (unlikely(iov_iter_is_discard(i))) {
862 		if (unlikely(i->count < bytes))
863 			bytes = i->count;
864 		i->count -= bytes;
865 		return bytes;
866 	}
867 	WARN_ON(1);
868 	return 0;
869 }
870 
871 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
872 			 struct iov_iter *i)
873 {
874 	size_t res = 0;
875 	if (unlikely(!page_copy_sane(page, offset, bytes)))
876 		return 0;
877 	page += offset / PAGE_SIZE; // first subpage
878 	offset %= PAGE_SIZE;
879 	while (1) {
880 		size_t n = __copy_page_to_iter(page, offset,
881 				min(bytes, (size_t)PAGE_SIZE - offset), i);
882 		res += n;
883 		bytes -= n;
884 		if (!bytes || !n)
885 			break;
886 		offset += n;
887 		if (offset == PAGE_SIZE) {
888 			page++;
889 			offset = 0;
890 		}
891 	}
892 	return res;
893 }
894 EXPORT_SYMBOL(copy_page_to_iter);
895 
896 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
897 			 struct iov_iter *i)
898 {
899 	if (unlikely(!page_copy_sane(page, offset, bytes)))
900 		return 0;
901 	if (likely(iter_is_iovec(i)))
902 		return copy_page_from_iter_iovec(page, offset, bytes, i);
903 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
904 		void *kaddr = kmap_local_page(page);
905 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
906 		kunmap_local(kaddr);
907 		return wanted;
908 	}
909 	WARN_ON(1);
910 	return 0;
911 }
912 EXPORT_SYMBOL(copy_page_from_iter);
913 
914 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
915 {
916 	struct pipe_inode_info *pipe = i->pipe;
917 	unsigned int p_mask = pipe->ring_size - 1;
918 	unsigned int i_head;
919 	size_t n, off;
920 
921 	if (!sanity(i))
922 		return 0;
923 
924 	bytes = n = push_pipe(i, bytes, &i_head, &off);
925 	if (unlikely(!n))
926 		return 0;
927 
928 	do {
929 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
930 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
931 		memset(p + off, 0, chunk);
932 		kunmap_local(p);
933 		i->head = i_head;
934 		i->iov_offset = off + chunk;
935 		n -= chunk;
936 		off = 0;
937 		i_head++;
938 	} while (n);
939 	i->count -= bytes;
940 	return bytes;
941 }
942 
943 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
944 {
945 	if (unlikely(iov_iter_is_pipe(i)))
946 		return pipe_zero(bytes, i);
947 	iterate_and_advance(i, bytes, base, len, count,
948 		clear_user(base, len),
949 		memset(base, 0, len)
950 	)
951 
952 	return bytes;
953 }
954 EXPORT_SYMBOL(iov_iter_zero);
955 
956 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
957 				  struct iov_iter *i)
958 {
959 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
960 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
961 		kunmap_atomic(kaddr);
962 		return 0;
963 	}
964 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
965 		kunmap_atomic(kaddr);
966 		WARN_ON(1);
967 		return 0;
968 	}
969 	iterate_and_advance(i, bytes, base, len, off,
970 		copyin(p + off, base, len),
971 		memcpy(p + off, base, len)
972 	)
973 	kunmap_atomic(kaddr);
974 	return bytes;
975 }
976 EXPORT_SYMBOL(copy_page_from_iter_atomic);
977 
978 static inline void pipe_truncate(struct iov_iter *i)
979 {
980 	struct pipe_inode_info *pipe = i->pipe;
981 	unsigned int p_tail = pipe->tail;
982 	unsigned int p_head = pipe->head;
983 	unsigned int p_mask = pipe->ring_size - 1;
984 
985 	if (!pipe_empty(p_head, p_tail)) {
986 		struct pipe_buffer *buf;
987 		unsigned int i_head = i->head;
988 		size_t off = i->iov_offset;
989 
990 		if (off) {
991 			buf = &pipe->bufs[i_head & p_mask];
992 			buf->len = off - buf->offset;
993 			i_head++;
994 		}
995 		while (p_head != i_head) {
996 			p_head--;
997 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
998 		}
999 
1000 		pipe->head = p_head;
1001 	}
1002 }
1003 
1004 static void pipe_advance(struct iov_iter *i, size_t size)
1005 {
1006 	struct pipe_inode_info *pipe = i->pipe;
1007 	if (size) {
1008 		struct pipe_buffer *buf;
1009 		unsigned int p_mask = pipe->ring_size - 1;
1010 		unsigned int i_head = i->head;
1011 		size_t off = i->iov_offset, left = size;
1012 
1013 		if (off) /* make it relative to the beginning of buffer */
1014 			left += off - pipe->bufs[i_head & p_mask].offset;
1015 		while (1) {
1016 			buf = &pipe->bufs[i_head & p_mask];
1017 			if (left <= buf->len)
1018 				break;
1019 			left -= buf->len;
1020 			i_head++;
1021 		}
1022 		i->head = i_head;
1023 		i->iov_offset = buf->offset + left;
1024 	}
1025 	i->count -= size;
1026 	/* ... and discard everything past that point */
1027 	pipe_truncate(i);
1028 }
1029 
1030 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
1031 {
1032 	struct bvec_iter bi;
1033 
1034 	bi.bi_size = i->count;
1035 	bi.bi_bvec_done = i->iov_offset;
1036 	bi.bi_idx = 0;
1037 	bvec_iter_advance(i->bvec, &bi, size);
1038 
1039 	i->bvec += bi.bi_idx;
1040 	i->nr_segs -= bi.bi_idx;
1041 	i->count = bi.bi_size;
1042 	i->iov_offset = bi.bi_bvec_done;
1043 }
1044 
1045 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
1046 {
1047 	const struct iovec *iov, *end;
1048 
1049 	if (!i->count)
1050 		return;
1051 	i->count -= size;
1052 
1053 	size += i->iov_offset; // from beginning of current segment
1054 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1055 		if (likely(size < iov->iov_len))
1056 			break;
1057 		size -= iov->iov_len;
1058 	}
1059 	i->iov_offset = size;
1060 	i->nr_segs -= iov - i->iov;
1061 	i->iov = iov;
1062 }
1063 
1064 void iov_iter_advance(struct iov_iter *i, size_t size)
1065 {
1066 	if (unlikely(i->count < size))
1067 		size = i->count;
1068 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1069 		/* iovec and kvec have identical layouts */
1070 		iov_iter_iovec_advance(i, size);
1071 	} else if (iov_iter_is_bvec(i)) {
1072 		iov_iter_bvec_advance(i, size);
1073 	} else if (iov_iter_is_pipe(i)) {
1074 		pipe_advance(i, size);
1075 	} else if (unlikely(iov_iter_is_xarray(i))) {
1076 		i->iov_offset += size;
1077 		i->count -= size;
1078 	} else if (iov_iter_is_discard(i)) {
1079 		i->count -= size;
1080 	}
1081 }
1082 EXPORT_SYMBOL(iov_iter_advance);
1083 
1084 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1085 {
1086 	if (!unroll)
1087 		return;
1088 	if (WARN_ON(unroll > MAX_RW_COUNT))
1089 		return;
1090 	i->count += unroll;
1091 	if (unlikely(iov_iter_is_pipe(i))) {
1092 		struct pipe_inode_info *pipe = i->pipe;
1093 		unsigned int p_mask = pipe->ring_size - 1;
1094 		unsigned int i_head = i->head;
1095 		size_t off = i->iov_offset;
1096 		while (1) {
1097 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1098 			size_t n = off - b->offset;
1099 			if (unroll < n) {
1100 				off -= unroll;
1101 				break;
1102 			}
1103 			unroll -= n;
1104 			if (!unroll && i_head == i->start_head) {
1105 				off = 0;
1106 				break;
1107 			}
1108 			i_head--;
1109 			b = &pipe->bufs[i_head & p_mask];
1110 			off = b->offset + b->len;
1111 		}
1112 		i->iov_offset = off;
1113 		i->head = i_head;
1114 		pipe_truncate(i);
1115 		return;
1116 	}
1117 	if (unlikely(iov_iter_is_discard(i)))
1118 		return;
1119 	if (unroll <= i->iov_offset) {
1120 		i->iov_offset -= unroll;
1121 		return;
1122 	}
1123 	unroll -= i->iov_offset;
1124 	if (iov_iter_is_xarray(i)) {
1125 		BUG(); /* We should never go beyond the start of the specified
1126 			* range since we might then be straying into pages that
1127 			* aren't pinned.
1128 			*/
1129 	} else if (iov_iter_is_bvec(i)) {
1130 		const struct bio_vec *bvec = i->bvec;
1131 		while (1) {
1132 			size_t n = (--bvec)->bv_len;
1133 			i->nr_segs++;
1134 			if (unroll <= n) {
1135 				i->bvec = bvec;
1136 				i->iov_offset = n - unroll;
1137 				return;
1138 			}
1139 			unroll -= n;
1140 		}
1141 	} else { /* same logics for iovec and kvec */
1142 		const struct iovec *iov = i->iov;
1143 		while (1) {
1144 			size_t n = (--iov)->iov_len;
1145 			i->nr_segs++;
1146 			if (unroll <= n) {
1147 				i->iov = iov;
1148 				i->iov_offset = n - unroll;
1149 				return;
1150 			}
1151 			unroll -= n;
1152 		}
1153 	}
1154 }
1155 EXPORT_SYMBOL(iov_iter_revert);
1156 
1157 /*
1158  * Return the count of just the current iov_iter segment.
1159  */
1160 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1161 {
1162 	if (i->nr_segs > 1) {
1163 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1164 			return min(i->count, i->iov->iov_len - i->iov_offset);
1165 		if (iov_iter_is_bvec(i))
1166 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1167 	}
1168 	return i->count;
1169 }
1170 EXPORT_SYMBOL(iov_iter_single_seg_count);
1171 
1172 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1173 			const struct kvec *kvec, unsigned long nr_segs,
1174 			size_t count)
1175 {
1176 	WARN_ON(direction & ~(READ | WRITE));
1177 	*i = (struct iov_iter){
1178 		.iter_type = ITER_KVEC,
1179 		.data_source = direction,
1180 		.kvec = kvec,
1181 		.nr_segs = nr_segs,
1182 		.iov_offset = 0,
1183 		.count = count
1184 	};
1185 }
1186 EXPORT_SYMBOL(iov_iter_kvec);
1187 
1188 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1189 			const struct bio_vec *bvec, unsigned long nr_segs,
1190 			size_t count)
1191 {
1192 	WARN_ON(direction & ~(READ | WRITE));
1193 	*i = (struct iov_iter){
1194 		.iter_type = ITER_BVEC,
1195 		.data_source = direction,
1196 		.bvec = bvec,
1197 		.nr_segs = nr_segs,
1198 		.iov_offset = 0,
1199 		.count = count
1200 	};
1201 }
1202 EXPORT_SYMBOL(iov_iter_bvec);
1203 
1204 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1205 			struct pipe_inode_info *pipe,
1206 			size_t count)
1207 {
1208 	BUG_ON(direction != READ);
1209 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1210 	*i = (struct iov_iter){
1211 		.iter_type = ITER_PIPE,
1212 		.data_source = false,
1213 		.pipe = pipe,
1214 		.head = pipe->head,
1215 		.start_head = pipe->head,
1216 		.iov_offset = 0,
1217 		.count = count
1218 	};
1219 }
1220 EXPORT_SYMBOL(iov_iter_pipe);
1221 
1222 /**
1223  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1224  * @i: The iterator to initialise.
1225  * @direction: The direction of the transfer.
1226  * @xarray: The xarray to access.
1227  * @start: The start file position.
1228  * @count: The size of the I/O buffer in bytes.
1229  *
1230  * Set up an I/O iterator to either draw data out of the pages attached to an
1231  * inode or to inject data into those pages.  The pages *must* be prevented
1232  * from evaporation, either by taking a ref on them or locking them by the
1233  * caller.
1234  */
1235 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1236 		     struct xarray *xarray, loff_t start, size_t count)
1237 {
1238 	BUG_ON(direction & ~1);
1239 	*i = (struct iov_iter) {
1240 		.iter_type = ITER_XARRAY,
1241 		.data_source = direction,
1242 		.xarray = xarray,
1243 		.xarray_start = start,
1244 		.count = count,
1245 		.iov_offset = 0
1246 	};
1247 }
1248 EXPORT_SYMBOL(iov_iter_xarray);
1249 
1250 /**
1251  * iov_iter_discard - Initialise an I/O iterator that discards data
1252  * @i: The iterator to initialise.
1253  * @direction: The direction of the transfer.
1254  * @count: The size of the I/O buffer in bytes.
1255  *
1256  * Set up an I/O iterator that just discards everything that's written to it.
1257  * It's only available as a READ iterator.
1258  */
1259 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1260 {
1261 	BUG_ON(direction != READ);
1262 	*i = (struct iov_iter){
1263 		.iter_type = ITER_DISCARD,
1264 		.data_source = false,
1265 		.count = count,
1266 		.iov_offset = 0
1267 	};
1268 }
1269 EXPORT_SYMBOL(iov_iter_discard);
1270 
1271 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1272 {
1273 	unsigned long res = 0;
1274 	size_t size = i->count;
1275 	size_t skip = i->iov_offset;
1276 	unsigned k;
1277 
1278 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1279 		size_t len = i->iov[k].iov_len - skip;
1280 		if (len) {
1281 			res |= (unsigned long)i->iov[k].iov_base + skip;
1282 			if (len > size)
1283 				len = size;
1284 			res |= len;
1285 			size -= len;
1286 			if (!size)
1287 				break;
1288 		}
1289 	}
1290 	return res;
1291 }
1292 
1293 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1294 {
1295 	unsigned res = 0;
1296 	size_t size = i->count;
1297 	unsigned skip = i->iov_offset;
1298 	unsigned k;
1299 
1300 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1301 		size_t len = i->bvec[k].bv_len - skip;
1302 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1303 		if (len > size)
1304 			len = size;
1305 		res |= len;
1306 		size -= len;
1307 		if (!size)
1308 			break;
1309 	}
1310 	return res;
1311 }
1312 
1313 unsigned long iov_iter_alignment(const struct iov_iter *i)
1314 {
1315 	/* iovec and kvec have identical layouts */
1316 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1317 		return iov_iter_alignment_iovec(i);
1318 
1319 	if (iov_iter_is_bvec(i))
1320 		return iov_iter_alignment_bvec(i);
1321 
1322 	if (iov_iter_is_pipe(i)) {
1323 		unsigned int p_mask = i->pipe->ring_size - 1;
1324 		size_t size = i->count;
1325 
1326 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1327 			return size | i->iov_offset;
1328 		return size;
1329 	}
1330 
1331 	if (iov_iter_is_xarray(i))
1332 		return (i->xarray_start + i->iov_offset) | i->count;
1333 
1334 	return 0;
1335 }
1336 EXPORT_SYMBOL(iov_iter_alignment);
1337 
1338 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1339 {
1340 	unsigned long res = 0;
1341 	unsigned long v = 0;
1342 	size_t size = i->count;
1343 	unsigned k;
1344 
1345 	if (WARN_ON(!iter_is_iovec(i)))
1346 		return ~0U;
1347 
1348 	for (k = 0; k < i->nr_segs; k++) {
1349 		if (i->iov[k].iov_len) {
1350 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1351 			if (v) // if not the first one
1352 				res |= base | v; // this start | previous end
1353 			v = base + i->iov[k].iov_len;
1354 			if (size <= i->iov[k].iov_len)
1355 				break;
1356 			size -= i->iov[k].iov_len;
1357 		}
1358 	}
1359 	return res;
1360 }
1361 EXPORT_SYMBOL(iov_iter_gap_alignment);
1362 
1363 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1364 				size_t maxsize,
1365 				struct page **pages,
1366 				int iter_head,
1367 				size_t *start)
1368 {
1369 	struct pipe_inode_info *pipe = i->pipe;
1370 	unsigned int p_mask = pipe->ring_size - 1;
1371 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1372 	if (!n)
1373 		return -EFAULT;
1374 
1375 	maxsize = n;
1376 	n += *start;
1377 	while (n > 0) {
1378 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1379 		iter_head++;
1380 		n -= PAGE_SIZE;
1381 	}
1382 
1383 	return maxsize;
1384 }
1385 
1386 static ssize_t pipe_get_pages(struct iov_iter *i,
1387 		   struct page **pages, size_t maxsize, unsigned maxpages,
1388 		   size_t *start)
1389 {
1390 	unsigned int iter_head, npages;
1391 	size_t capacity;
1392 
1393 	if (!sanity(i))
1394 		return -EFAULT;
1395 
1396 	data_start(i, &iter_head, start);
1397 	/* Amount of free space: some of this one + all after this one */
1398 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1399 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1400 
1401 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1402 }
1403 
1404 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1405 					  pgoff_t index, unsigned int nr_pages)
1406 {
1407 	XA_STATE(xas, xa, index);
1408 	struct page *page;
1409 	unsigned int ret = 0;
1410 
1411 	rcu_read_lock();
1412 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1413 		if (xas_retry(&xas, page))
1414 			continue;
1415 
1416 		/* Has the page moved or been split? */
1417 		if (unlikely(page != xas_reload(&xas))) {
1418 			xas_reset(&xas);
1419 			continue;
1420 		}
1421 
1422 		pages[ret] = find_subpage(page, xas.xa_index);
1423 		get_page(pages[ret]);
1424 		if (++ret == nr_pages)
1425 			break;
1426 	}
1427 	rcu_read_unlock();
1428 	return ret;
1429 }
1430 
1431 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1432 				     struct page **pages, size_t maxsize,
1433 				     unsigned maxpages, size_t *_start_offset)
1434 {
1435 	unsigned nr, offset;
1436 	pgoff_t index, count;
1437 	size_t size = maxsize, actual;
1438 	loff_t pos;
1439 
1440 	if (!size || !maxpages)
1441 		return 0;
1442 
1443 	pos = i->xarray_start + i->iov_offset;
1444 	index = pos >> PAGE_SHIFT;
1445 	offset = pos & ~PAGE_MASK;
1446 	*_start_offset = offset;
1447 
1448 	count = 1;
1449 	if (size > PAGE_SIZE - offset) {
1450 		size -= PAGE_SIZE - offset;
1451 		count += size >> PAGE_SHIFT;
1452 		size &= ~PAGE_MASK;
1453 		if (size)
1454 			count++;
1455 	}
1456 
1457 	if (count > maxpages)
1458 		count = maxpages;
1459 
1460 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1461 	if (nr == 0)
1462 		return 0;
1463 
1464 	actual = PAGE_SIZE * nr;
1465 	actual -= offset;
1466 	if (nr == count && size > 0) {
1467 		unsigned last_offset = (nr > 1) ? 0 : offset;
1468 		actual -= PAGE_SIZE - (last_offset + size);
1469 	}
1470 	return actual;
1471 }
1472 
1473 /* must be done on non-empty ITER_IOVEC one */
1474 static unsigned long first_iovec_segment(const struct iov_iter *i,
1475 					 size_t *size, size_t *start,
1476 					 size_t maxsize, unsigned maxpages)
1477 {
1478 	size_t skip;
1479 	long k;
1480 
1481 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1482 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1483 		size_t len = i->iov[k].iov_len - skip;
1484 
1485 		if (unlikely(!len))
1486 			continue;
1487 		if (len > maxsize)
1488 			len = maxsize;
1489 		len += (*start = addr % PAGE_SIZE);
1490 		if (len > maxpages * PAGE_SIZE)
1491 			len = maxpages * PAGE_SIZE;
1492 		*size = len;
1493 		return addr & PAGE_MASK;
1494 	}
1495 	BUG(); // if it had been empty, we wouldn't get called
1496 }
1497 
1498 /* must be done on non-empty ITER_BVEC one */
1499 static struct page *first_bvec_segment(const struct iov_iter *i,
1500 				       size_t *size, size_t *start,
1501 				       size_t maxsize, unsigned maxpages)
1502 {
1503 	struct page *page;
1504 	size_t skip = i->iov_offset, len;
1505 
1506 	len = i->bvec->bv_len - skip;
1507 	if (len > maxsize)
1508 		len = maxsize;
1509 	skip += i->bvec->bv_offset;
1510 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1511 	len += (*start = skip % PAGE_SIZE);
1512 	if (len > maxpages * PAGE_SIZE)
1513 		len = maxpages * PAGE_SIZE;
1514 	*size = len;
1515 	return page;
1516 }
1517 
1518 ssize_t iov_iter_get_pages(struct iov_iter *i,
1519 		   struct page **pages, size_t maxsize, unsigned maxpages,
1520 		   size_t *start)
1521 {
1522 	size_t len;
1523 	int n, res;
1524 
1525 	if (maxsize > i->count)
1526 		maxsize = i->count;
1527 	if (!maxsize)
1528 		return 0;
1529 
1530 	if (likely(iter_is_iovec(i))) {
1531 		unsigned int gup_flags = 0;
1532 		unsigned long addr;
1533 
1534 		if (iov_iter_rw(i) != WRITE)
1535 			gup_flags |= FOLL_WRITE;
1536 		if (i->nofault)
1537 			gup_flags |= FOLL_NOFAULT;
1538 
1539 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1540 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1541 		res = get_user_pages_fast(addr, n, gup_flags, pages);
1542 		if (unlikely(res <= 0))
1543 			return res;
1544 		return (res == n ? len : res * PAGE_SIZE) - *start;
1545 	}
1546 	if (iov_iter_is_bvec(i)) {
1547 		struct page *page;
1548 
1549 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1550 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1551 		while (n--)
1552 			get_page(*pages++ = page++);
1553 		return len - *start;
1554 	}
1555 	if (iov_iter_is_pipe(i))
1556 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1557 	if (iov_iter_is_xarray(i))
1558 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1559 	return -EFAULT;
1560 }
1561 EXPORT_SYMBOL(iov_iter_get_pages);
1562 
1563 static struct page **get_pages_array(size_t n)
1564 {
1565 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1566 }
1567 
1568 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1569 		   struct page ***pages, size_t maxsize,
1570 		   size_t *start)
1571 {
1572 	struct page **p;
1573 	unsigned int iter_head, npages;
1574 	ssize_t n;
1575 
1576 	if (!sanity(i))
1577 		return -EFAULT;
1578 
1579 	data_start(i, &iter_head, start);
1580 	/* Amount of free space: some of this one + all after this one */
1581 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1582 	n = npages * PAGE_SIZE - *start;
1583 	if (maxsize > n)
1584 		maxsize = n;
1585 	else
1586 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1587 	p = get_pages_array(npages);
1588 	if (!p)
1589 		return -ENOMEM;
1590 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1591 	if (n > 0)
1592 		*pages = p;
1593 	else
1594 		kvfree(p);
1595 	return n;
1596 }
1597 
1598 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1599 					   struct page ***pages, size_t maxsize,
1600 					   size_t *_start_offset)
1601 {
1602 	struct page **p;
1603 	unsigned nr, offset;
1604 	pgoff_t index, count;
1605 	size_t size = maxsize, actual;
1606 	loff_t pos;
1607 
1608 	if (!size)
1609 		return 0;
1610 
1611 	pos = i->xarray_start + i->iov_offset;
1612 	index = pos >> PAGE_SHIFT;
1613 	offset = pos & ~PAGE_MASK;
1614 	*_start_offset = offset;
1615 
1616 	count = 1;
1617 	if (size > PAGE_SIZE - offset) {
1618 		size -= PAGE_SIZE - offset;
1619 		count += size >> PAGE_SHIFT;
1620 		size &= ~PAGE_MASK;
1621 		if (size)
1622 			count++;
1623 	}
1624 
1625 	p = get_pages_array(count);
1626 	if (!p)
1627 		return -ENOMEM;
1628 	*pages = p;
1629 
1630 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1631 	if (nr == 0)
1632 		return 0;
1633 
1634 	actual = PAGE_SIZE * nr;
1635 	actual -= offset;
1636 	if (nr == count && size > 0) {
1637 		unsigned last_offset = (nr > 1) ? 0 : offset;
1638 		actual -= PAGE_SIZE - (last_offset + size);
1639 	}
1640 	return actual;
1641 }
1642 
1643 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1644 		   struct page ***pages, size_t maxsize,
1645 		   size_t *start)
1646 {
1647 	struct page **p;
1648 	size_t len;
1649 	int n, res;
1650 
1651 	if (maxsize > i->count)
1652 		maxsize = i->count;
1653 	if (!maxsize)
1654 		return 0;
1655 
1656 	if (likely(iter_is_iovec(i))) {
1657 		unsigned int gup_flags = 0;
1658 		unsigned long addr;
1659 
1660 		if (iov_iter_rw(i) != WRITE)
1661 			gup_flags |= FOLL_WRITE;
1662 		if (i->nofault)
1663 			gup_flags |= FOLL_NOFAULT;
1664 
1665 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1666 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1667 		p = get_pages_array(n);
1668 		if (!p)
1669 			return -ENOMEM;
1670 		res = get_user_pages_fast(addr, n, gup_flags, p);
1671 		if (unlikely(res <= 0)) {
1672 			kvfree(p);
1673 			*pages = NULL;
1674 			return res;
1675 		}
1676 		*pages = p;
1677 		return (res == n ? len : res * PAGE_SIZE) - *start;
1678 	}
1679 	if (iov_iter_is_bvec(i)) {
1680 		struct page *page;
1681 
1682 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1683 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1684 		*pages = p = get_pages_array(n);
1685 		if (!p)
1686 			return -ENOMEM;
1687 		while (n--)
1688 			get_page(*p++ = page++);
1689 		return len - *start;
1690 	}
1691 	if (iov_iter_is_pipe(i))
1692 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1693 	if (iov_iter_is_xarray(i))
1694 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1695 	return -EFAULT;
1696 }
1697 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1698 
1699 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1700 			       struct iov_iter *i)
1701 {
1702 	__wsum sum, next;
1703 	sum = *csum;
1704 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1705 		WARN_ON(1);
1706 		return 0;
1707 	}
1708 	iterate_and_advance(i, bytes, base, len, off, ({
1709 		next = csum_and_copy_from_user(base, addr + off, len);
1710 		sum = csum_block_add(sum, next, off);
1711 		next ? 0 : len;
1712 	}), ({
1713 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1714 	})
1715 	)
1716 	*csum = sum;
1717 	return bytes;
1718 }
1719 EXPORT_SYMBOL(csum_and_copy_from_iter);
1720 
1721 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1722 			     struct iov_iter *i)
1723 {
1724 	struct csum_state *csstate = _csstate;
1725 	__wsum sum, next;
1726 
1727 	if (unlikely(iov_iter_is_discard(i))) {
1728 		WARN_ON(1);	/* for now */
1729 		return 0;
1730 	}
1731 
1732 	sum = csum_shift(csstate->csum, csstate->off);
1733 	if (unlikely(iov_iter_is_pipe(i)))
1734 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1735 	else iterate_and_advance(i, bytes, base, len, off, ({
1736 		next = csum_and_copy_to_user(addr + off, base, len);
1737 		sum = csum_block_add(sum, next, off);
1738 		next ? 0 : len;
1739 	}), ({
1740 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1741 	})
1742 	)
1743 	csstate->csum = csum_shift(sum, csstate->off);
1744 	csstate->off += bytes;
1745 	return bytes;
1746 }
1747 EXPORT_SYMBOL(csum_and_copy_to_iter);
1748 
1749 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1750 		struct iov_iter *i)
1751 {
1752 #ifdef CONFIG_CRYPTO_HASH
1753 	struct ahash_request *hash = hashp;
1754 	struct scatterlist sg;
1755 	size_t copied;
1756 
1757 	copied = copy_to_iter(addr, bytes, i);
1758 	sg_init_one(&sg, addr, copied);
1759 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1760 	crypto_ahash_update(hash);
1761 	return copied;
1762 #else
1763 	return 0;
1764 #endif
1765 }
1766 EXPORT_SYMBOL(hash_and_copy_to_iter);
1767 
1768 static int iov_npages(const struct iov_iter *i, int maxpages)
1769 {
1770 	size_t skip = i->iov_offset, size = i->count;
1771 	const struct iovec *p;
1772 	int npages = 0;
1773 
1774 	for (p = i->iov; size; skip = 0, p++) {
1775 		unsigned offs = offset_in_page(p->iov_base + skip);
1776 		size_t len = min(p->iov_len - skip, size);
1777 
1778 		if (len) {
1779 			size -= len;
1780 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1781 			if (unlikely(npages > maxpages))
1782 				return maxpages;
1783 		}
1784 	}
1785 	return npages;
1786 }
1787 
1788 static int bvec_npages(const struct iov_iter *i, int maxpages)
1789 {
1790 	size_t skip = i->iov_offset, size = i->count;
1791 	const struct bio_vec *p;
1792 	int npages = 0;
1793 
1794 	for (p = i->bvec; size; skip = 0, p++) {
1795 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1796 		size_t len = min(p->bv_len - skip, size);
1797 
1798 		size -= len;
1799 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1800 		if (unlikely(npages > maxpages))
1801 			return maxpages;
1802 	}
1803 	return npages;
1804 }
1805 
1806 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1807 {
1808 	if (unlikely(!i->count))
1809 		return 0;
1810 	/* iovec and kvec have identical layouts */
1811 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1812 		return iov_npages(i, maxpages);
1813 	if (iov_iter_is_bvec(i))
1814 		return bvec_npages(i, maxpages);
1815 	if (iov_iter_is_pipe(i)) {
1816 		unsigned int iter_head;
1817 		int npages;
1818 		size_t off;
1819 
1820 		if (!sanity(i))
1821 			return 0;
1822 
1823 		data_start(i, &iter_head, &off);
1824 		/* some of this one + all after this one */
1825 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1826 		return min(npages, maxpages);
1827 	}
1828 	if (iov_iter_is_xarray(i)) {
1829 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1830 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1831 		return min(npages, maxpages);
1832 	}
1833 	return 0;
1834 }
1835 EXPORT_SYMBOL(iov_iter_npages);
1836 
1837 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1838 {
1839 	*new = *old;
1840 	if (unlikely(iov_iter_is_pipe(new))) {
1841 		WARN_ON(1);
1842 		return NULL;
1843 	}
1844 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1845 		return NULL;
1846 	if (iov_iter_is_bvec(new))
1847 		return new->bvec = kmemdup(new->bvec,
1848 				    new->nr_segs * sizeof(struct bio_vec),
1849 				    flags);
1850 	else
1851 		/* iovec and kvec have identical layout */
1852 		return new->iov = kmemdup(new->iov,
1853 				   new->nr_segs * sizeof(struct iovec),
1854 				   flags);
1855 }
1856 EXPORT_SYMBOL(dup_iter);
1857 
1858 static int copy_compat_iovec_from_user(struct iovec *iov,
1859 		const struct iovec __user *uvec, unsigned long nr_segs)
1860 {
1861 	const struct compat_iovec __user *uiov =
1862 		(const struct compat_iovec __user *)uvec;
1863 	int ret = -EFAULT, i;
1864 
1865 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1866 		return -EFAULT;
1867 
1868 	for (i = 0; i < nr_segs; i++) {
1869 		compat_uptr_t buf;
1870 		compat_ssize_t len;
1871 
1872 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1873 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1874 
1875 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1876 		if (len < 0) {
1877 			ret = -EINVAL;
1878 			goto uaccess_end;
1879 		}
1880 		iov[i].iov_base = compat_ptr(buf);
1881 		iov[i].iov_len = len;
1882 	}
1883 
1884 	ret = 0;
1885 uaccess_end:
1886 	user_access_end();
1887 	return ret;
1888 }
1889 
1890 static int copy_iovec_from_user(struct iovec *iov,
1891 		const struct iovec __user *uvec, unsigned long nr_segs)
1892 {
1893 	unsigned long seg;
1894 
1895 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1896 		return -EFAULT;
1897 	for (seg = 0; seg < nr_segs; seg++) {
1898 		if ((ssize_t)iov[seg].iov_len < 0)
1899 			return -EINVAL;
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1906 		unsigned long nr_segs, unsigned long fast_segs,
1907 		struct iovec *fast_iov, bool compat)
1908 {
1909 	struct iovec *iov = fast_iov;
1910 	int ret;
1911 
1912 	/*
1913 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1914 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1915 	 * traditionally returned zero for zero segments, so...
1916 	 */
1917 	if (nr_segs == 0)
1918 		return iov;
1919 	if (nr_segs > UIO_MAXIOV)
1920 		return ERR_PTR(-EINVAL);
1921 	if (nr_segs > fast_segs) {
1922 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1923 		if (!iov)
1924 			return ERR_PTR(-ENOMEM);
1925 	}
1926 
1927 	if (compat)
1928 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1929 	else
1930 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1931 	if (ret) {
1932 		if (iov != fast_iov)
1933 			kfree(iov);
1934 		return ERR_PTR(ret);
1935 	}
1936 
1937 	return iov;
1938 }
1939 
1940 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1941 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1942 		 struct iov_iter *i, bool compat)
1943 {
1944 	ssize_t total_len = 0;
1945 	unsigned long seg;
1946 	struct iovec *iov;
1947 
1948 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1949 	if (IS_ERR(iov)) {
1950 		*iovp = NULL;
1951 		return PTR_ERR(iov);
1952 	}
1953 
1954 	/*
1955 	 * According to the Single Unix Specification we should return EINVAL if
1956 	 * an element length is < 0 when cast to ssize_t or if the total length
1957 	 * would overflow the ssize_t return value of the system call.
1958 	 *
1959 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1960 	 * overflow case.
1961 	 */
1962 	for (seg = 0; seg < nr_segs; seg++) {
1963 		ssize_t len = (ssize_t)iov[seg].iov_len;
1964 
1965 		if (!access_ok(iov[seg].iov_base, len)) {
1966 			if (iov != *iovp)
1967 				kfree(iov);
1968 			*iovp = NULL;
1969 			return -EFAULT;
1970 		}
1971 
1972 		if (len > MAX_RW_COUNT - total_len) {
1973 			len = MAX_RW_COUNT - total_len;
1974 			iov[seg].iov_len = len;
1975 		}
1976 		total_len += len;
1977 	}
1978 
1979 	iov_iter_init(i, type, iov, nr_segs, total_len);
1980 	if (iov == *iovp)
1981 		*iovp = NULL;
1982 	else
1983 		*iovp = iov;
1984 	return total_len;
1985 }
1986 
1987 /**
1988  * import_iovec() - Copy an array of &struct iovec from userspace
1989  *     into the kernel, check that it is valid, and initialize a new
1990  *     &struct iov_iter iterator to access it.
1991  *
1992  * @type: One of %READ or %WRITE.
1993  * @uvec: Pointer to the userspace array.
1994  * @nr_segs: Number of elements in userspace array.
1995  * @fast_segs: Number of elements in @iov.
1996  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1997  *     on-stack) kernel array.
1998  * @i: Pointer to iterator that will be initialized on success.
1999  *
2000  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
2001  * then this function places %NULL in *@iov on return. Otherwise, a new
2002  * array will be allocated and the result placed in *@iov. This means that
2003  * the caller may call kfree() on *@iov regardless of whether the small
2004  * on-stack array was used or not (and regardless of whether this function
2005  * returns an error or not).
2006  *
2007  * Return: Negative error code on error, bytes imported on success
2008  */
2009 ssize_t import_iovec(int type, const struct iovec __user *uvec,
2010 		 unsigned nr_segs, unsigned fast_segs,
2011 		 struct iovec **iovp, struct iov_iter *i)
2012 {
2013 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
2014 			      in_compat_syscall());
2015 }
2016 EXPORT_SYMBOL(import_iovec);
2017 
2018 int import_single_range(int rw, void __user *buf, size_t len,
2019 		 struct iovec *iov, struct iov_iter *i)
2020 {
2021 	if (len > MAX_RW_COUNT)
2022 		len = MAX_RW_COUNT;
2023 	if (unlikely(!access_ok(buf, len)))
2024 		return -EFAULT;
2025 
2026 	iov->iov_base = buf;
2027 	iov->iov_len = len;
2028 	iov_iter_init(i, rw, iov, 1, len);
2029 	return 0;
2030 }
2031 EXPORT_SYMBOL(import_single_range);
2032 
2033 /**
2034  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
2035  *     iov_iter_save_state() was called.
2036  *
2037  * @i: &struct iov_iter to restore
2038  * @state: state to restore from
2039  *
2040  * Used after iov_iter_save_state() to bring restore @i, if operations may
2041  * have advanced it.
2042  *
2043  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
2044  */
2045 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
2046 {
2047 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
2048 			 !iov_iter_is_kvec(i))
2049 		return;
2050 	i->iov_offset = state->iov_offset;
2051 	i->count = state->count;
2052 	/*
2053 	 * For the *vec iters, nr_segs + iov is constant - if we increment
2054 	 * the vec, then we also decrement the nr_segs count. Hence we don't
2055 	 * need to track both of these, just one is enough and we can deduct
2056 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
2057 	 * size, so we can just increment the iov pointer as they are unionzed.
2058 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
2059 	 * not. Be safe and handle it separately.
2060 	 */
2061 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
2062 	if (iov_iter_is_bvec(i))
2063 		i->bvec -= state->nr_segs - i->nr_segs;
2064 	else
2065 		i->iov -= state->nr_segs - i->nr_segs;
2066 	i->nr_segs = state->nr_segs;
2067 }
2068