xref: /openbmc/linux/lib/iov_iter.c (revision c81ce28d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
21 	size_t __maybe_unused off = 0;				\
22 	len = n;						\
23 	base = __p + i->iov_offset;				\
24 	len -= (STEP);						\
25 	i->iov_offset += len;					\
26 	n = len;						\
27 }
28 
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
31 	size_t off = 0;						\
32 	size_t skip = i->iov_offset;				\
33 	do {							\
34 		len = min(n, __p->iov_len - skip);		\
35 		if (likely(len)) {				\
36 			base = __p->iov_base + skip;		\
37 			len -= (STEP);				\
38 			off += len;				\
39 			skip += len;				\
40 			n -= len;				\
41 			if (skip < __p->iov_len)		\
42 				break;				\
43 		}						\
44 		__p++;						\
45 		skip = 0;					\
46 	} while (n);						\
47 	i->iov_offset = skip;					\
48 	n = off;						\
49 }
50 
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
52 	size_t off = 0;						\
53 	unsigned skip = i->iov_offset;				\
54 	while (n) {						\
55 		unsigned offset = p->bv_offset + skip;		\
56 		unsigned left;					\
57 		void *kaddr = kmap_local_page(p->bv_page +	\
58 					offset / PAGE_SIZE);	\
59 		base = kaddr + offset % PAGE_SIZE;		\
60 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
61 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
62 		left = (STEP);					\
63 		kunmap_local(kaddr);				\
64 		len -= left;					\
65 		off += len;					\
66 		skip += len;					\
67 		if (skip == p->bv_len) {			\
68 			skip = 0;				\
69 			p++;					\
70 		}						\
71 		n -= len;					\
72 		if (left)					\
73 			break;					\
74 	}							\
75 	i->iov_offset = skip;					\
76 	n = off;						\
77 }
78 
79 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
80 	__label__ __out;					\
81 	size_t __off = 0;					\
82 	struct folio *folio;					\
83 	loff_t start = i->xarray_start + i->iov_offset;		\
84 	pgoff_t index = start / PAGE_SIZE;			\
85 	XA_STATE(xas, i->xarray, index);			\
86 								\
87 	len = PAGE_SIZE - offset_in_page(start);		\
88 	rcu_read_lock();					\
89 	xas_for_each(&xas, folio, ULONG_MAX) {			\
90 		unsigned left;					\
91 		size_t offset;					\
92 		if (xas_retry(&xas, folio))			\
93 			continue;				\
94 		if (WARN_ON(xa_is_value(folio)))		\
95 			break;					\
96 		if (WARN_ON(folio_test_hugetlb(folio)))		\
97 			break;					\
98 		offset = offset_in_folio(folio, start + __off);	\
99 		while (offset < folio_size(folio)) {		\
100 			base = kmap_local_folio(folio, offset);	\
101 			len = min(n, len);			\
102 			left = (STEP);				\
103 			kunmap_local(base);			\
104 			len -= left;				\
105 			__off += len;				\
106 			n -= len;				\
107 			if (left || n == 0)			\
108 				goto __out;			\
109 			offset += len;				\
110 			len = PAGE_SIZE;			\
111 		}						\
112 	}							\
113 __out:								\
114 	rcu_read_unlock();					\
115 	i->iov_offset += __off;					\
116 	n = __off;						\
117 }
118 
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
120 	if (unlikely(i->count < n))				\
121 		n = i->count;					\
122 	if (likely(n)) {					\
123 		if (likely(iter_is_ubuf(i))) {			\
124 			void __user *base;			\
125 			size_t len;				\
126 			iterate_buf(i, n, base, len, off,	\
127 						i->ubuf, (I)) 	\
128 		} else if (likely(iter_is_iovec(i))) {		\
129 			const struct iovec *iov = i->iov;	\
130 			void __user *base;			\
131 			size_t len;				\
132 			iterate_iovec(i, n, base, len, off,	\
133 						iov, (I))	\
134 			i->nr_segs -= iov - i->iov;		\
135 			i->iov = iov;				\
136 		} else if (iov_iter_is_bvec(i)) {		\
137 			const struct bio_vec *bvec = i->bvec;	\
138 			void *base;				\
139 			size_t len;				\
140 			iterate_bvec(i, n, base, len, off,	\
141 						bvec, (K))	\
142 			i->nr_segs -= bvec - i->bvec;		\
143 			i->bvec = bvec;				\
144 		} else if (iov_iter_is_kvec(i)) {		\
145 			const struct kvec *kvec = i->kvec;	\
146 			void *base;				\
147 			size_t len;				\
148 			iterate_iovec(i, n, base, len, off,	\
149 						kvec, (K))	\
150 			i->nr_segs -= kvec - i->kvec;		\
151 			i->kvec = kvec;				\
152 		} else if (iov_iter_is_xarray(i)) {		\
153 			void *base;				\
154 			size_t len;				\
155 			iterate_xarray(i, n, base, len, off,	\
156 							(K))	\
157 		}						\
158 		i->count -= n;					\
159 	}							\
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163 
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166 	if (should_fail_usercopy())
167 		return n;
168 	if (access_ok(to, n)) {
169 		instrument_copy_to_user(to, from, n);
170 		n = raw_copy_to_user(to, from, n);
171 	}
172 	return n;
173 }
174 
175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177 	if (should_fail_usercopy())
178 		return n;
179 	if (access_ok(from, n)) {
180 		instrument_copy_from_user(to, from, n);
181 		n = raw_copy_from_user(to, from, n);
182 	}
183 	return n;
184 }
185 
186 static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
187 					   unsigned int slot)
188 {
189 	return &pipe->bufs[slot & (pipe->ring_size - 1)];
190 }
191 
192 #ifdef PIPE_PARANOIA
193 static bool sanity(const struct iov_iter *i)
194 {
195 	struct pipe_inode_info *pipe = i->pipe;
196 	unsigned int p_head = pipe->head;
197 	unsigned int p_tail = pipe->tail;
198 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
199 	unsigned int i_head = i->head;
200 	unsigned int idx;
201 
202 	if (i->last_offset) {
203 		struct pipe_buffer *p;
204 		if (unlikely(p_occupancy == 0))
205 			goto Bad;	// pipe must be non-empty
206 		if (unlikely(i_head != p_head - 1))
207 			goto Bad;	// must be at the last buffer...
208 
209 		p = pipe_buf(pipe, i_head);
210 		if (unlikely(p->offset + p->len != abs(i->last_offset)))
211 			goto Bad;	// ... at the end of segment
212 	} else {
213 		if (i_head != p_head)
214 			goto Bad;	// must be right after the last buffer
215 	}
216 	return true;
217 Bad:
218 	printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
219 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
220 			p_head, p_tail, pipe->ring_size);
221 	for (idx = 0; idx < pipe->ring_size; idx++)
222 		printk(KERN_ERR "[%p %p %d %d]\n",
223 			pipe->bufs[idx].ops,
224 			pipe->bufs[idx].page,
225 			pipe->bufs[idx].offset,
226 			pipe->bufs[idx].len);
227 	WARN_ON(1);
228 	return false;
229 }
230 #else
231 #define sanity(i) true
232 #endif
233 
234 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
235 {
236 	struct page *page = alloc_page(GFP_USER);
237 	if (page) {
238 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
239 		*buf = (struct pipe_buffer) {
240 			.ops = &default_pipe_buf_ops,
241 			.page = page,
242 			.offset = 0,
243 			.len = size
244 		};
245 	}
246 	return page;
247 }
248 
249 static void push_page(struct pipe_inode_info *pipe, struct page *page,
250 			unsigned int offset, unsigned int size)
251 {
252 	struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
253 	*buf = (struct pipe_buffer) {
254 		.ops = &page_cache_pipe_buf_ops,
255 		.page = page,
256 		.offset = offset,
257 		.len = size
258 	};
259 	get_page(page);
260 }
261 
262 static inline int last_offset(const struct pipe_buffer *buf)
263 {
264 	if (buf->ops == &default_pipe_buf_ops)
265 		return buf->len;	// buf->offset is 0 for those
266 	else
267 		return -(buf->offset + buf->len);
268 }
269 
270 static struct page *append_pipe(struct iov_iter *i, size_t size,
271 				unsigned int *off)
272 {
273 	struct pipe_inode_info *pipe = i->pipe;
274 	int offset = i->last_offset;
275 	struct pipe_buffer *buf;
276 	struct page *page;
277 
278 	if (offset > 0 && offset < PAGE_SIZE) {
279 		// some space in the last buffer; add to it
280 		buf = pipe_buf(pipe, pipe->head - 1);
281 		size = min_t(size_t, size, PAGE_SIZE - offset);
282 		buf->len += size;
283 		i->last_offset += size;
284 		i->count -= size;
285 		*off = offset;
286 		return buf->page;
287 	}
288 	// OK, we need a new buffer
289 	*off = 0;
290 	size = min_t(size_t, size, PAGE_SIZE);
291 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
292 		return NULL;
293 	page = push_anon(pipe, size);
294 	if (!page)
295 		return NULL;
296 	i->head = pipe->head - 1;
297 	i->last_offset = size;
298 	i->count -= size;
299 	return page;
300 }
301 
302 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
303 			 struct iov_iter *i)
304 {
305 	struct pipe_inode_info *pipe = i->pipe;
306 	unsigned int head = pipe->head;
307 
308 	if (unlikely(bytes > i->count))
309 		bytes = i->count;
310 
311 	if (unlikely(!bytes))
312 		return 0;
313 
314 	if (!sanity(i))
315 		return 0;
316 
317 	if (offset && i->last_offset == -offset) { // could we merge it?
318 		struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
319 		if (buf->page == page) {
320 			buf->len += bytes;
321 			i->last_offset -= bytes;
322 			i->count -= bytes;
323 			return bytes;
324 		}
325 	}
326 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
327 		return 0;
328 
329 	push_page(pipe, page, offset, bytes);
330 	i->last_offset = -(offset + bytes);
331 	i->head = head;
332 	i->count -= bytes;
333 	return bytes;
334 }
335 
336 /*
337  * fault_in_iov_iter_readable - fault in iov iterator for reading
338  * @i: iterator
339  * @size: maximum length
340  *
341  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
342  * @size.  For each iovec, fault in each page that constitutes the iovec.
343  *
344  * Returns the number of bytes not faulted in (like copy_to_user() and
345  * copy_from_user()).
346  *
347  * Always returns 0 for non-userspace iterators.
348  */
349 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
350 {
351 	if (iter_is_ubuf(i)) {
352 		size_t n = min(size, iov_iter_count(i));
353 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
354 		return size - n;
355 	} else if (iter_is_iovec(i)) {
356 		size_t count = min(size, iov_iter_count(i));
357 		const struct iovec *p;
358 		size_t skip;
359 
360 		size -= count;
361 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
362 			size_t len = min(count, p->iov_len - skip);
363 			size_t ret;
364 
365 			if (unlikely(!len))
366 				continue;
367 			ret = fault_in_readable(p->iov_base + skip, len);
368 			count -= len - ret;
369 			if (ret)
370 				break;
371 		}
372 		return count + size;
373 	}
374 	return 0;
375 }
376 EXPORT_SYMBOL(fault_in_iov_iter_readable);
377 
378 /*
379  * fault_in_iov_iter_writeable - fault in iov iterator for writing
380  * @i: iterator
381  * @size: maximum length
382  *
383  * Faults in the iterator using get_user_pages(), i.e., without triggering
384  * hardware page faults.  This is primarily useful when we already know that
385  * some or all of the pages in @i aren't in memory.
386  *
387  * Returns the number of bytes not faulted in, like copy_to_user() and
388  * copy_from_user().
389  *
390  * Always returns 0 for non-user-space iterators.
391  */
392 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
393 {
394 	if (iter_is_ubuf(i)) {
395 		size_t n = min(size, iov_iter_count(i));
396 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
397 		return size - n;
398 	} else if (iter_is_iovec(i)) {
399 		size_t count = min(size, iov_iter_count(i));
400 		const struct iovec *p;
401 		size_t skip;
402 
403 		size -= count;
404 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
405 			size_t len = min(count, p->iov_len - skip);
406 			size_t ret;
407 
408 			if (unlikely(!len))
409 				continue;
410 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
411 			count -= len - ret;
412 			if (ret)
413 				break;
414 		}
415 		return count + size;
416 	}
417 	return 0;
418 }
419 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
420 
421 void iov_iter_init(struct iov_iter *i, unsigned int direction,
422 			const struct iovec *iov, unsigned long nr_segs,
423 			size_t count)
424 {
425 	WARN_ON(direction & ~(READ | WRITE));
426 	*i = (struct iov_iter) {
427 		.iter_type = ITER_IOVEC,
428 		.nofault = false,
429 		.user_backed = true,
430 		.data_source = direction,
431 		.iov = iov,
432 		.nr_segs = nr_segs,
433 		.iov_offset = 0,
434 		.count = count
435 	};
436 }
437 EXPORT_SYMBOL(iov_iter_init);
438 
439 // returns the offset in partial buffer (if any)
440 static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
441 {
442 	struct pipe_inode_info *pipe = i->pipe;
443 	int used = pipe->head - pipe->tail;
444 	int off = i->last_offset;
445 
446 	*npages = max((int)pipe->max_usage - used, 0);
447 
448 	if (off > 0 && off < PAGE_SIZE) { // anon and not full
449 		(*npages)++;
450 		return off;
451 	}
452 	return 0;
453 }
454 
455 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
456 				struct iov_iter *i)
457 {
458 	unsigned int off, chunk;
459 
460 	if (unlikely(bytes > i->count))
461 		bytes = i->count;
462 	if (unlikely(!bytes))
463 		return 0;
464 
465 	if (!sanity(i))
466 		return 0;
467 
468 	for (size_t n = bytes; n; n -= chunk) {
469 		struct page *page = append_pipe(i, n, &off);
470 		chunk = min_t(size_t, n, PAGE_SIZE - off);
471 		if (!page)
472 			return bytes - n;
473 		memcpy_to_page(page, off, addr, chunk);
474 		addr += chunk;
475 	}
476 	return bytes;
477 }
478 
479 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
480 			      __wsum sum, size_t off)
481 {
482 	__wsum next = csum_partial_copy_nocheck(from, to, len);
483 	return csum_block_add(sum, next, off);
484 }
485 
486 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
487 					 struct iov_iter *i, __wsum *sump)
488 {
489 	__wsum sum = *sump;
490 	size_t off = 0;
491 	unsigned int chunk, r;
492 
493 	if (unlikely(bytes > i->count))
494 		bytes = i->count;
495 	if (unlikely(!bytes))
496 		return 0;
497 
498 	if (!sanity(i))
499 		return 0;
500 
501 	while (bytes) {
502 		struct page *page = append_pipe(i, bytes, &r);
503 		char *p;
504 
505 		if (!page)
506 			break;
507 		chunk = min_t(size_t, bytes, PAGE_SIZE - r);
508 		p = kmap_local_page(page);
509 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
510 		kunmap_local(p);
511 		off += chunk;
512 		bytes -= chunk;
513 	}
514 	*sump = sum;
515 	return off;
516 }
517 
518 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
519 {
520 	if (unlikely(iov_iter_is_pipe(i)))
521 		return copy_pipe_to_iter(addr, bytes, i);
522 	if (user_backed_iter(i))
523 		might_fault();
524 	iterate_and_advance(i, bytes, base, len, off,
525 		copyout(base, addr + off, len),
526 		memcpy(base, addr + off, len)
527 	)
528 
529 	return bytes;
530 }
531 EXPORT_SYMBOL(_copy_to_iter);
532 
533 #ifdef CONFIG_ARCH_HAS_COPY_MC
534 static int copyout_mc(void __user *to, const void *from, size_t n)
535 {
536 	if (access_ok(to, n)) {
537 		instrument_copy_to_user(to, from, n);
538 		n = copy_mc_to_user((__force void *) to, from, n);
539 	}
540 	return n;
541 }
542 
543 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
544 				struct iov_iter *i)
545 {
546 	size_t xfer = 0;
547 	unsigned int off, chunk;
548 
549 	if (unlikely(bytes > i->count))
550 		bytes = i->count;
551 	if (unlikely(!bytes))
552 		return 0;
553 
554 	if (!sanity(i))
555 		return 0;
556 
557 	while (bytes) {
558 		struct page *page = append_pipe(i, bytes, &off);
559 		unsigned long rem;
560 		char *p;
561 
562 		if (!page)
563 			break;
564 		chunk = min_t(size_t, bytes, PAGE_SIZE - off);
565 		p = kmap_local_page(page);
566 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
567 		chunk -= rem;
568 		kunmap_local(p);
569 		xfer += chunk;
570 		bytes -= chunk;
571 		if (rem) {
572 			iov_iter_revert(i, rem);
573 			break;
574 		}
575 	}
576 	return xfer;
577 }
578 
579 /**
580  * _copy_mc_to_iter - copy to iter with source memory error exception handling
581  * @addr: source kernel address
582  * @bytes: total transfer length
583  * @i: destination iterator
584  *
585  * The pmem driver deploys this for the dax operation
586  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
587  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
588  * successfully copied.
589  *
590  * The main differences between this and typical _copy_to_iter().
591  *
592  * * Typical tail/residue handling after a fault retries the copy
593  *   byte-by-byte until the fault happens again. Re-triggering machine
594  *   checks is potentially fatal so the implementation uses source
595  *   alignment and poison alignment assumptions to avoid re-triggering
596  *   hardware exceptions.
597  *
598  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
599  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
600  *   a short copy.
601  *
602  * Return: number of bytes copied (may be %0)
603  */
604 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
605 {
606 	if (unlikely(iov_iter_is_pipe(i)))
607 		return copy_mc_pipe_to_iter(addr, bytes, i);
608 	if (user_backed_iter(i))
609 		might_fault();
610 	__iterate_and_advance(i, bytes, base, len, off,
611 		copyout_mc(base, addr + off, len),
612 		copy_mc_to_kernel(base, addr + off, len)
613 	)
614 
615 	return bytes;
616 }
617 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
618 #endif /* CONFIG_ARCH_HAS_COPY_MC */
619 
620 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
621 {
622 	if (unlikely(iov_iter_is_pipe(i))) {
623 		WARN_ON(1);
624 		return 0;
625 	}
626 	if (user_backed_iter(i))
627 		might_fault();
628 	iterate_and_advance(i, bytes, base, len, off,
629 		copyin(addr + off, base, len),
630 		memcpy(addr + off, base, len)
631 	)
632 
633 	return bytes;
634 }
635 EXPORT_SYMBOL(_copy_from_iter);
636 
637 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
638 {
639 	if (unlikely(iov_iter_is_pipe(i))) {
640 		WARN_ON(1);
641 		return 0;
642 	}
643 	iterate_and_advance(i, bytes, base, len, off,
644 		__copy_from_user_inatomic_nocache(addr + off, base, len),
645 		memcpy(addr + off, base, len)
646 	)
647 
648 	return bytes;
649 }
650 EXPORT_SYMBOL(_copy_from_iter_nocache);
651 
652 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
653 /**
654  * _copy_from_iter_flushcache - write destination through cpu cache
655  * @addr: destination kernel address
656  * @bytes: total transfer length
657  * @i: source iterator
658  *
659  * The pmem driver arranges for filesystem-dax to use this facility via
660  * dax_copy_from_iter() for ensuring that writes to persistent memory
661  * are flushed through the CPU cache. It is differentiated from
662  * _copy_from_iter_nocache() in that guarantees all data is flushed for
663  * all iterator types. The _copy_from_iter_nocache() only attempts to
664  * bypass the cache for the ITER_IOVEC case, and on some archs may use
665  * instructions that strand dirty-data in the cache.
666  *
667  * Return: number of bytes copied (may be %0)
668  */
669 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
670 {
671 	if (unlikely(iov_iter_is_pipe(i))) {
672 		WARN_ON(1);
673 		return 0;
674 	}
675 	iterate_and_advance(i, bytes, base, len, off,
676 		__copy_from_user_flushcache(addr + off, base, len),
677 		memcpy_flushcache(addr + off, base, len)
678 	)
679 
680 	return bytes;
681 }
682 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
683 #endif
684 
685 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
686 {
687 	struct page *head;
688 	size_t v = n + offset;
689 
690 	/*
691 	 * The general case needs to access the page order in order
692 	 * to compute the page size.
693 	 * However, we mostly deal with order-0 pages and thus can
694 	 * avoid a possible cache line miss for requests that fit all
695 	 * page orders.
696 	 */
697 	if (n <= v && v <= PAGE_SIZE)
698 		return true;
699 
700 	head = compound_head(page);
701 	v += (page - head) << PAGE_SHIFT;
702 
703 	if (likely(n <= v && v <= (page_size(head))))
704 		return true;
705 	WARN_ON(1);
706 	return false;
707 }
708 
709 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
710 			 struct iov_iter *i)
711 {
712 	if (unlikely(iov_iter_is_pipe(i))) {
713 		return copy_page_to_iter_pipe(page, offset, bytes, i);
714 	} else {
715 		void *kaddr = kmap_local_page(page);
716 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
717 		kunmap_local(kaddr);
718 		return wanted;
719 	}
720 }
721 
722 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
723 			 struct iov_iter *i)
724 {
725 	size_t res = 0;
726 	if (unlikely(!page_copy_sane(page, offset, bytes)))
727 		return 0;
728 	page += offset / PAGE_SIZE; // first subpage
729 	offset %= PAGE_SIZE;
730 	while (1) {
731 		size_t n = __copy_page_to_iter(page, offset,
732 				min(bytes, (size_t)PAGE_SIZE - offset), i);
733 		res += n;
734 		bytes -= n;
735 		if (!bytes || !n)
736 			break;
737 		offset += n;
738 		if (offset == PAGE_SIZE) {
739 			page++;
740 			offset = 0;
741 		}
742 	}
743 	return res;
744 }
745 EXPORT_SYMBOL(copy_page_to_iter);
746 
747 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
748 			 struct iov_iter *i)
749 {
750 	if (page_copy_sane(page, offset, bytes)) {
751 		void *kaddr = kmap_local_page(page);
752 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
753 		kunmap_local(kaddr);
754 		return wanted;
755 	}
756 	return 0;
757 }
758 EXPORT_SYMBOL(copy_page_from_iter);
759 
760 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
761 {
762 	unsigned int chunk, off;
763 
764 	if (unlikely(bytes > i->count))
765 		bytes = i->count;
766 	if (unlikely(!bytes))
767 		return 0;
768 
769 	if (!sanity(i))
770 		return 0;
771 
772 	for (size_t n = bytes; n; n -= chunk) {
773 		struct page *page = append_pipe(i, n, &off);
774 		char *p;
775 
776 		if (!page)
777 			return bytes - n;
778 		chunk = min_t(size_t, n, PAGE_SIZE - off);
779 		p = kmap_local_page(page);
780 		memset(p + off, 0, chunk);
781 		kunmap_local(p);
782 	}
783 	return bytes;
784 }
785 
786 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
787 {
788 	if (unlikely(iov_iter_is_pipe(i)))
789 		return pipe_zero(bytes, i);
790 	iterate_and_advance(i, bytes, base, len, count,
791 		clear_user(base, len),
792 		memset(base, 0, len)
793 	)
794 
795 	return bytes;
796 }
797 EXPORT_SYMBOL(iov_iter_zero);
798 
799 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
800 				  struct iov_iter *i)
801 {
802 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
803 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
804 		kunmap_atomic(kaddr);
805 		return 0;
806 	}
807 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
808 		kunmap_atomic(kaddr);
809 		WARN_ON(1);
810 		return 0;
811 	}
812 	iterate_and_advance(i, bytes, base, len, off,
813 		copyin(p + off, base, len),
814 		memcpy(p + off, base, len)
815 	)
816 	kunmap_atomic(kaddr);
817 	return bytes;
818 }
819 EXPORT_SYMBOL(copy_page_from_iter_atomic);
820 
821 static void pipe_advance(struct iov_iter *i, size_t size)
822 {
823 	struct pipe_inode_info *pipe = i->pipe;
824 	int off = i->last_offset;
825 
826 	if (!off && !size) {
827 		pipe_discard_from(pipe, i->start_head); // discard everything
828 		return;
829 	}
830 	i->count -= size;
831 	while (1) {
832 		struct pipe_buffer *buf = pipe_buf(pipe, i->head);
833 		if (off) /* make it relative to the beginning of buffer */
834 			size += abs(off) - buf->offset;
835 		if (size <= buf->len) {
836 			buf->len = size;
837 			i->last_offset = last_offset(buf);
838 			break;
839 		}
840 		size -= buf->len;
841 		i->head++;
842 		off = 0;
843 	}
844 	pipe_discard_from(pipe, i->head + 1); // discard everything past this one
845 }
846 
847 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
848 {
849 	const struct bio_vec *bvec, *end;
850 
851 	if (!i->count)
852 		return;
853 	i->count -= size;
854 
855 	size += i->iov_offset;
856 
857 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
858 		if (likely(size < bvec->bv_len))
859 			break;
860 		size -= bvec->bv_len;
861 	}
862 	i->iov_offset = size;
863 	i->nr_segs -= bvec - i->bvec;
864 	i->bvec = bvec;
865 }
866 
867 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
868 {
869 	const struct iovec *iov, *end;
870 
871 	if (!i->count)
872 		return;
873 	i->count -= size;
874 
875 	size += i->iov_offset; // from beginning of current segment
876 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
877 		if (likely(size < iov->iov_len))
878 			break;
879 		size -= iov->iov_len;
880 	}
881 	i->iov_offset = size;
882 	i->nr_segs -= iov - i->iov;
883 	i->iov = iov;
884 }
885 
886 void iov_iter_advance(struct iov_iter *i, size_t size)
887 {
888 	if (unlikely(i->count < size))
889 		size = i->count;
890 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
891 		i->iov_offset += size;
892 		i->count -= size;
893 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
894 		/* iovec and kvec have identical layouts */
895 		iov_iter_iovec_advance(i, size);
896 	} else if (iov_iter_is_bvec(i)) {
897 		iov_iter_bvec_advance(i, size);
898 	} else if (iov_iter_is_pipe(i)) {
899 		pipe_advance(i, size);
900 	} else if (iov_iter_is_discard(i)) {
901 		i->count -= size;
902 	}
903 }
904 EXPORT_SYMBOL(iov_iter_advance);
905 
906 void iov_iter_revert(struct iov_iter *i, size_t unroll)
907 {
908 	if (!unroll)
909 		return;
910 	if (WARN_ON(unroll > MAX_RW_COUNT))
911 		return;
912 	i->count += unroll;
913 	if (unlikely(iov_iter_is_pipe(i))) {
914 		struct pipe_inode_info *pipe = i->pipe;
915 		unsigned int head = pipe->head;
916 
917 		while (head > i->start_head) {
918 			struct pipe_buffer *b = pipe_buf(pipe, --head);
919 			if (unroll < b->len) {
920 				b->len -= unroll;
921 				i->last_offset = last_offset(b);
922 				i->head = head;
923 				return;
924 			}
925 			unroll -= b->len;
926 			pipe_buf_release(pipe, b);
927 			pipe->head--;
928 		}
929 		i->last_offset = 0;
930 		i->head = head;
931 		return;
932 	}
933 	if (unlikely(iov_iter_is_discard(i)))
934 		return;
935 	if (unroll <= i->iov_offset) {
936 		i->iov_offset -= unroll;
937 		return;
938 	}
939 	unroll -= i->iov_offset;
940 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
941 		BUG(); /* We should never go beyond the start of the specified
942 			* range since we might then be straying into pages that
943 			* aren't pinned.
944 			*/
945 	} else if (iov_iter_is_bvec(i)) {
946 		const struct bio_vec *bvec = i->bvec;
947 		while (1) {
948 			size_t n = (--bvec)->bv_len;
949 			i->nr_segs++;
950 			if (unroll <= n) {
951 				i->bvec = bvec;
952 				i->iov_offset = n - unroll;
953 				return;
954 			}
955 			unroll -= n;
956 		}
957 	} else { /* same logics for iovec and kvec */
958 		const struct iovec *iov = i->iov;
959 		while (1) {
960 			size_t n = (--iov)->iov_len;
961 			i->nr_segs++;
962 			if (unroll <= n) {
963 				i->iov = iov;
964 				i->iov_offset = n - unroll;
965 				return;
966 			}
967 			unroll -= n;
968 		}
969 	}
970 }
971 EXPORT_SYMBOL(iov_iter_revert);
972 
973 /*
974  * Return the count of just the current iov_iter segment.
975  */
976 size_t iov_iter_single_seg_count(const struct iov_iter *i)
977 {
978 	if (i->nr_segs > 1) {
979 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
980 			return min(i->count, i->iov->iov_len - i->iov_offset);
981 		if (iov_iter_is_bvec(i))
982 			return min(i->count, i->bvec->bv_len - i->iov_offset);
983 	}
984 	return i->count;
985 }
986 EXPORT_SYMBOL(iov_iter_single_seg_count);
987 
988 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
989 			const struct kvec *kvec, unsigned long nr_segs,
990 			size_t count)
991 {
992 	WARN_ON(direction & ~(READ | WRITE));
993 	*i = (struct iov_iter){
994 		.iter_type = ITER_KVEC,
995 		.data_source = direction,
996 		.kvec = kvec,
997 		.nr_segs = nr_segs,
998 		.iov_offset = 0,
999 		.count = count
1000 	};
1001 }
1002 EXPORT_SYMBOL(iov_iter_kvec);
1003 
1004 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1005 			const struct bio_vec *bvec, unsigned long nr_segs,
1006 			size_t count)
1007 {
1008 	WARN_ON(direction & ~(READ | WRITE));
1009 	*i = (struct iov_iter){
1010 		.iter_type = ITER_BVEC,
1011 		.data_source = direction,
1012 		.bvec = bvec,
1013 		.nr_segs = nr_segs,
1014 		.iov_offset = 0,
1015 		.count = count
1016 	};
1017 }
1018 EXPORT_SYMBOL(iov_iter_bvec);
1019 
1020 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1021 			struct pipe_inode_info *pipe,
1022 			size_t count)
1023 {
1024 	BUG_ON(direction != READ);
1025 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1026 	*i = (struct iov_iter){
1027 		.iter_type = ITER_PIPE,
1028 		.data_source = false,
1029 		.pipe = pipe,
1030 		.head = pipe->head,
1031 		.start_head = pipe->head,
1032 		.last_offset = 0,
1033 		.count = count
1034 	};
1035 }
1036 EXPORT_SYMBOL(iov_iter_pipe);
1037 
1038 /**
1039  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1040  * @i: The iterator to initialise.
1041  * @direction: The direction of the transfer.
1042  * @xarray: The xarray to access.
1043  * @start: The start file position.
1044  * @count: The size of the I/O buffer in bytes.
1045  *
1046  * Set up an I/O iterator to either draw data out of the pages attached to an
1047  * inode or to inject data into those pages.  The pages *must* be prevented
1048  * from evaporation, either by taking a ref on them or locking them by the
1049  * caller.
1050  */
1051 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1052 		     struct xarray *xarray, loff_t start, size_t count)
1053 {
1054 	BUG_ON(direction & ~1);
1055 	*i = (struct iov_iter) {
1056 		.iter_type = ITER_XARRAY,
1057 		.data_source = direction,
1058 		.xarray = xarray,
1059 		.xarray_start = start,
1060 		.count = count,
1061 		.iov_offset = 0
1062 	};
1063 }
1064 EXPORT_SYMBOL(iov_iter_xarray);
1065 
1066 /**
1067  * iov_iter_discard - Initialise an I/O iterator that discards data
1068  * @i: The iterator to initialise.
1069  * @direction: The direction of the transfer.
1070  * @count: The size of the I/O buffer in bytes.
1071  *
1072  * Set up an I/O iterator that just discards everything that's written to it.
1073  * It's only available as a READ iterator.
1074  */
1075 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1076 {
1077 	BUG_ON(direction != READ);
1078 	*i = (struct iov_iter){
1079 		.iter_type = ITER_DISCARD,
1080 		.data_source = false,
1081 		.count = count,
1082 		.iov_offset = 0
1083 	};
1084 }
1085 EXPORT_SYMBOL(iov_iter_discard);
1086 
1087 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1088 				   unsigned len_mask)
1089 {
1090 	size_t size = i->count;
1091 	size_t skip = i->iov_offset;
1092 	unsigned k;
1093 
1094 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1095 		size_t len = i->iov[k].iov_len - skip;
1096 
1097 		if (len > size)
1098 			len = size;
1099 		if (len & len_mask)
1100 			return false;
1101 		if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1102 			return false;
1103 
1104 		size -= len;
1105 		if (!size)
1106 			break;
1107 	}
1108 	return true;
1109 }
1110 
1111 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1112 				  unsigned len_mask)
1113 {
1114 	size_t size = i->count;
1115 	unsigned skip = i->iov_offset;
1116 	unsigned k;
1117 
1118 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1119 		size_t len = i->bvec[k].bv_len - skip;
1120 
1121 		if (len > size)
1122 			len = size;
1123 		if (len & len_mask)
1124 			return false;
1125 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1126 			return false;
1127 
1128 		size -= len;
1129 		if (!size)
1130 			break;
1131 	}
1132 	return true;
1133 }
1134 
1135 /**
1136  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1137  * 	are aligned to the parameters.
1138  *
1139  * @i: &struct iov_iter to restore
1140  * @addr_mask: bit mask to check against the iov element's addresses
1141  * @len_mask: bit mask to check against the iov element's lengths
1142  *
1143  * Return: false if any addresses or lengths intersect with the provided masks
1144  */
1145 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1146 			 unsigned len_mask)
1147 {
1148 	if (likely(iter_is_ubuf(i))) {
1149 		if (i->count & len_mask)
1150 			return false;
1151 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1152 			return false;
1153 		return true;
1154 	}
1155 
1156 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1157 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1158 
1159 	if (iov_iter_is_bvec(i))
1160 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1161 
1162 	if (iov_iter_is_pipe(i)) {
1163 		size_t size = i->count;
1164 
1165 		if (size & len_mask)
1166 			return false;
1167 		if (size && i->last_offset > 0) {
1168 			if (i->last_offset & addr_mask)
1169 				return false;
1170 		}
1171 
1172 		return true;
1173 	}
1174 
1175 	if (iov_iter_is_xarray(i)) {
1176 		if (i->count & len_mask)
1177 			return false;
1178 		if ((i->xarray_start + i->iov_offset) & addr_mask)
1179 			return false;
1180 	}
1181 
1182 	return true;
1183 }
1184 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1185 
1186 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1187 {
1188 	unsigned long res = 0;
1189 	size_t size = i->count;
1190 	size_t skip = i->iov_offset;
1191 	unsigned k;
1192 
1193 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1194 		size_t len = i->iov[k].iov_len - skip;
1195 		if (len) {
1196 			res |= (unsigned long)i->iov[k].iov_base + skip;
1197 			if (len > size)
1198 				len = size;
1199 			res |= len;
1200 			size -= len;
1201 			if (!size)
1202 				break;
1203 		}
1204 	}
1205 	return res;
1206 }
1207 
1208 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1209 {
1210 	unsigned res = 0;
1211 	size_t size = i->count;
1212 	unsigned skip = i->iov_offset;
1213 	unsigned k;
1214 
1215 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1216 		size_t len = i->bvec[k].bv_len - skip;
1217 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1218 		if (len > size)
1219 			len = size;
1220 		res |= len;
1221 		size -= len;
1222 		if (!size)
1223 			break;
1224 	}
1225 	return res;
1226 }
1227 
1228 unsigned long iov_iter_alignment(const struct iov_iter *i)
1229 {
1230 	if (likely(iter_is_ubuf(i))) {
1231 		size_t size = i->count;
1232 		if (size)
1233 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
1234 		return 0;
1235 	}
1236 
1237 	/* iovec and kvec have identical layouts */
1238 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1239 		return iov_iter_alignment_iovec(i);
1240 
1241 	if (iov_iter_is_bvec(i))
1242 		return iov_iter_alignment_bvec(i);
1243 
1244 	if (iov_iter_is_pipe(i)) {
1245 		size_t size = i->count;
1246 
1247 		if (size && i->last_offset > 0)
1248 			return size | i->last_offset;
1249 		return size;
1250 	}
1251 
1252 	if (iov_iter_is_xarray(i))
1253 		return (i->xarray_start + i->iov_offset) | i->count;
1254 
1255 	return 0;
1256 }
1257 EXPORT_SYMBOL(iov_iter_alignment);
1258 
1259 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1260 {
1261 	unsigned long res = 0;
1262 	unsigned long v = 0;
1263 	size_t size = i->count;
1264 	unsigned k;
1265 
1266 	if (iter_is_ubuf(i))
1267 		return 0;
1268 
1269 	if (WARN_ON(!iter_is_iovec(i)))
1270 		return ~0U;
1271 
1272 	for (k = 0; k < i->nr_segs; k++) {
1273 		if (i->iov[k].iov_len) {
1274 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1275 			if (v) // if not the first one
1276 				res |= base | v; // this start | previous end
1277 			v = base + i->iov[k].iov_len;
1278 			if (size <= i->iov[k].iov_len)
1279 				break;
1280 			size -= i->iov[k].iov_len;
1281 		}
1282 	}
1283 	return res;
1284 }
1285 EXPORT_SYMBOL(iov_iter_gap_alignment);
1286 
1287 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1288 				size_t maxsize,
1289 				struct page **pages,
1290 				size_t off)
1291 {
1292 	struct pipe_inode_info *pipe = i->pipe;
1293 	ssize_t left = maxsize;
1294 
1295 	if (off) {
1296 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head - 1);
1297 
1298 		get_page(*pages++ = buf->page);
1299 		left -= PAGE_SIZE - off;
1300 		if (left <= 0) {
1301 			buf->len += maxsize;
1302 			return maxsize;
1303 		}
1304 		buf->len = PAGE_SIZE;
1305 	}
1306 	while (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1307 		struct page *page = push_anon(pipe,
1308 					      min_t(ssize_t, left, PAGE_SIZE));
1309 		if (!page)
1310 			break;
1311 		get_page(*pages++ = page);
1312 		left -= PAGE_SIZE;
1313 		if (left <= 0)
1314 			return maxsize;
1315 	}
1316 	return maxsize - left ? : -EFAULT;
1317 }
1318 
1319 static ssize_t pipe_get_pages(struct iov_iter *i,
1320 		   struct page **pages, size_t maxsize, unsigned maxpages,
1321 		   size_t *start)
1322 {
1323 	unsigned int npages, off;
1324 	size_t capacity;
1325 
1326 	if (!sanity(i))
1327 		return -EFAULT;
1328 
1329 	*start = off = pipe_npages(i, &npages);
1330 	capacity = min(npages, maxpages) * PAGE_SIZE - off;
1331 
1332 	return __pipe_get_pages(i, min(maxsize, capacity), pages, off);
1333 }
1334 
1335 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1336 					  pgoff_t index, unsigned int nr_pages)
1337 {
1338 	XA_STATE(xas, xa, index);
1339 	struct page *page;
1340 	unsigned int ret = 0;
1341 
1342 	rcu_read_lock();
1343 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1344 		if (xas_retry(&xas, page))
1345 			continue;
1346 
1347 		/* Has the page moved or been split? */
1348 		if (unlikely(page != xas_reload(&xas))) {
1349 			xas_reset(&xas);
1350 			continue;
1351 		}
1352 
1353 		pages[ret] = find_subpage(page, xas.xa_index);
1354 		get_page(pages[ret]);
1355 		if (++ret == nr_pages)
1356 			break;
1357 	}
1358 	rcu_read_unlock();
1359 	return ret;
1360 }
1361 
1362 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1363 				     struct page **pages, size_t maxsize,
1364 				     unsigned maxpages, size_t *_start_offset)
1365 {
1366 	unsigned nr, offset;
1367 	pgoff_t index, count;
1368 	size_t size = maxsize;
1369 	loff_t pos;
1370 
1371 	pos = i->xarray_start + i->iov_offset;
1372 	index = pos >> PAGE_SHIFT;
1373 	offset = pos & ~PAGE_MASK;
1374 	*_start_offset = offset;
1375 
1376 	count = 1;
1377 	if (size > PAGE_SIZE - offset) {
1378 		size -= PAGE_SIZE - offset;
1379 		count += size >> PAGE_SHIFT;
1380 		size &= ~PAGE_MASK;
1381 		if (size)
1382 			count++;
1383 	}
1384 
1385 	if (count > maxpages)
1386 		count = maxpages;
1387 
1388 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1389 	if (nr == 0)
1390 		return 0;
1391 
1392 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1393 }
1394 
1395 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1396 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1397 {
1398 	size_t skip;
1399 	long k;
1400 
1401 	if (iter_is_ubuf(i))
1402 		return (unsigned long)i->ubuf + i->iov_offset;
1403 
1404 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1405 		size_t len = i->iov[k].iov_len - skip;
1406 
1407 		if (unlikely(!len))
1408 			continue;
1409 		if (*size > len)
1410 			*size = len;
1411 		return (unsigned long)i->iov[k].iov_base + skip;
1412 	}
1413 	BUG(); // if it had been empty, we wouldn't get called
1414 }
1415 
1416 /* must be done on non-empty ITER_BVEC one */
1417 static struct page *first_bvec_segment(const struct iov_iter *i,
1418 				       size_t *size, size_t *start)
1419 {
1420 	struct page *page;
1421 	size_t skip = i->iov_offset, len;
1422 
1423 	len = i->bvec->bv_len - skip;
1424 	if (*size > len)
1425 		*size = len;
1426 	skip += i->bvec->bv_offset;
1427 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1428 	*start = skip % PAGE_SIZE;
1429 	return page;
1430 }
1431 
1432 ssize_t iov_iter_get_pages(struct iov_iter *i,
1433 		   struct page **pages, size_t maxsize, unsigned maxpages,
1434 		   size_t *start)
1435 {
1436 	int n, res;
1437 
1438 	if (maxsize > i->count)
1439 		maxsize = i->count;
1440 	if (!maxsize || !maxpages)
1441 		return 0;
1442 	if (maxsize > MAX_RW_COUNT)
1443 		maxsize = MAX_RW_COUNT;
1444 	BUG_ON(!pages);
1445 
1446 	if (likely(user_backed_iter(i))) {
1447 		unsigned int gup_flags = 0;
1448 		unsigned long addr;
1449 
1450 		if (iov_iter_rw(i) != WRITE)
1451 			gup_flags |= FOLL_WRITE;
1452 		if (i->nofault)
1453 			gup_flags |= FOLL_NOFAULT;
1454 
1455 		addr = first_iovec_segment(i, &maxsize);
1456 		*start = addr % PAGE_SIZE;
1457 		addr &= PAGE_MASK;
1458 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1459 		if (n > maxpages)
1460 			n = maxpages;
1461 		res = get_user_pages_fast(addr, n, gup_flags, pages);
1462 		if (unlikely(res <= 0))
1463 			return res;
1464 		return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1465 	}
1466 	if (iov_iter_is_bvec(i)) {
1467 		struct page *page;
1468 
1469 		page = first_bvec_segment(i, &maxsize, start);
1470 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1471 		if (n > maxpages)
1472 			n = maxpages;
1473 		for (int k = 0; k < n; k++)
1474 			get_page(*pages++ = page++);
1475 		return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1476 	}
1477 	if (iov_iter_is_pipe(i))
1478 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1479 	if (iov_iter_is_xarray(i))
1480 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1481 	return -EFAULT;
1482 }
1483 EXPORT_SYMBOL(iov_iter_get_pages);
1484 
1485 static struct page **get_pages_array(size_t n)
1486 {
1487 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1488 }
1489 
1490 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1491 		   struct page ***pages, size_t maxsize,
1492 		   size_t *start)
1493 {
1494 	struct page **p;
1495 	unsigned int npages, off;
1496 	ssize_t n;
1497 
1498 	if (!sanity(i))
1499 		return -EFAULT;
1500 
1501 	*start = off = pipe_npages(i, &npages);
1502 	n = npages * PAGE_SIZE - off;
1503 	if (maxsize > n)
1504 		maxsize = n;
1505 	else
1506 		npages = DIV_ROUND_UP(maxsize + off, PAGE_SIZE);
1507 	*pages = p = get_pages_array(npages);
1508 	if (!p)
1509 		return -ENOMEM;
1510 	return __pipe_get_pages(i, maxsize, p, off);
1511 }
1512 
1513 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1514 					   struct page ***pages, size_t maxsize,
1515 					   size_t *_start_offset)
1516 {
1517 	struct page **p;
1518 	unsigned nr, offset;
1519 	pgoff_t index, count;
1520 	size_t size = maxsize;
1521 	loff_t pos;
1522 
1523 	pos = i->xarray_start + i->iov_offset;
1524 	index = pos >> PAGE_SHIFT;
1525 	offset = pos & ~PAGE_MASK;
1526 	*_start_offset = offset;
1527 
1528 	count = 1;
1529 	if (size > PAGE_SIZE - offset) {
1530 		size -= PAGE_SIZE - offset;
1531 		count += size >> PAGE_SHIFT;
1532 		size &= ~PAGE_MASK;
1533 		if (size)
1534 			count++;
1535 	}
1536 
1537 	*pages = p = get_pages_array(count);
1538 	if (!p)
1539 		return -ENOMEM;
1540 
1541 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1542 	if (nr == 0)
1543 		return 0;
1544 
1545 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1546 }
1547 
1548 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1549 		   struct page ***pages, size_t maxsize,
1550 		   size_t *start)
1551 {
1552 	struct page **p;
1553 	int n, res;
1554 
1555 	if (maxsize > i->count)
1556 		maxsize = i->count;
1557 	if (!maxsize)
1558 		return 0;
1559 	if (maxsize > MAX_RW_COUNT)
1560 		maxsize = MAX_RW_COUNT;
1561 
1562 	if (likely(user_backed_iter(i))) {
1563 		unsigned int gup_flags = 0;
1564 		unsigned long addr;
1565 
1566 		if (iov_iter_rw(i) != WRITE)
1567 			gup_flags |= FOLL_WRITE;
1568 		if (i->nofault)
1569 			gup_flags |= FOLL_NOFAULT;
1570 
1571 		addr = first_iovec_segment(i, &maxsize);
1572 		*start = addr % PAGE_SIZE;
1573 		addr &= PAGE_MASK;
1574 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1575 		*pages = p = get_pages_array(n);
1576 		if (!p)
1577 			return -ENOMEM;
1578 		res = get_user_pages_fast(addr, n, gup_flags, p);
1579 		if (unlikely(res <= 0))
1580 			return res;
1581 		return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1582 	}
1583 	if (iov_iter_is_bvec(i)) {
1584 		struct page *page;
1585 
1586 		page = first_bvec_segment(i, &maxsize, start);
1587 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1588 		*pages = p = get_pages_array(n);
1589 		if (!p)
1590 			return -ENOMEM;
1591 		for (int k = 0; k < n; k++)
1592 			get_page(*p++ = page++);
1593 		return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1594 	}
1595 	if (iov_iter_is_pipe(i))
1596 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1597 	if (iov_iter_is_xarray(i))
1598 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1599 	return -EFAULT;
1600 }
1601 
1602 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1603 		   struct page ***pages, size_t maxsize,
1604 		   size_t *start)
1605 {
1606 	ssize_t len;
1607 
1608 	*pages = NULL;
1609 
1610 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, start);
1611 	if (len <= 0) {
1612 		kvfree(*pages);
1613 		*pages = NULL;
1614 	}
1615 	return len;
1616 }
1617 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1618 
1619 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1620 			       struct iov_iter *i)
1621 {
1622 	__wsum sum, next;
1623 	sum = *csum;
1624 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1625 		WARN_ON(1);
1626 		return 0;
1627 	}
1628 	iterate_and_advance(i, bytes, base, len, off, ({
1629 		next = csum_and_copy_from_user(base, addr + off, len);
1630 		sum = csum_block_add(sum, next, off);
1631 		next ? 0 : len;
1632 	}), ({
1633 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1634 	})
1635 	)
1636 	*csum = sum;
1637 	return bytes;
1638 }
1639 EXPORT_SYMBOL(csum_and_copy_from_iter);
1640 
1641 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1642 			     struct iov_iter *i)
1643 {
1644 	struct csum_state *csstate = _csstate;
1645 	__wsum sum, next;
1646 
1647 	if (unlikely(iov_iter_is_discard(i))) {
1648 		WARN_ON(1);	/* for now */
1649 		return 0;
1650 	}
1651 
1652 	sum = csum_shift(csstate->csum, csstate->off);
1653 	if (unlikely(iov_iter_is_pipe(i)))
1654 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1655 	else iterate_and_advance(i, bytes, base, len, off, ({
1656 		next = csum_and_copy_to_user(addr + off, base, len);
1657 		sum = csum_block_add(sum, next, off);
1658 		next ? 0 : len;
1659 	}), ({
1660 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1661 	})
1662 	)
1663 	csstate->csum = csum_shift(sum, csstate->off);
1664 	csstate->off += bytes;
1665 	return bytes;
1666 }
1667 EXPORT_SYMBOL(csum_and_copy_to_iter);
1668 
1669 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1670 		struct iov_iter *i)
1671 {
1672 #ifdef CONFIG_CRYPTO_HASH
1673 	struct ahash_request *hash = hashp;
1674 	struct scatterlist sg;
1675 	size_t copied;
1676 
1677 	copied = copy_to_iter(addr, bytes, i);
1678 	sg_init_one(&sg, addr, copied);
1679 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1680 	crypto_ahash_update(hash);
1681 	return copied;
1682 #else
1683 	return 0;
1684 #endif
1685 }
1686 EXPORT_SYMBOL(hash_and_copy_to_iter);
1687 
1688 static int iov_npages(const struct iov_iter *i, int maxpages)
1689 {
1690 	size_t skip = i->iov_offset, size = i->count;
1691 	const struct iovec *p;
1692 	int npages = 0;
1693 
1694 	for (p = i->iov; size; skip = 0, p++) {
1695 		unsigned offs = offset_in_page(p->iov_base + skip);
1696 		size_t len = min(p->iov_len - skip, size);
1697 
1698 		if (len) {
1699 			size -= len;
1700 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1701 			if (unlikely(npages > maxpages))
1702 				return maxpages;
1703 		}
1704 	}
1705 	return npages;
1706 }
1707 
1708 static int bvec_npages(const struct iov_iter *i, int maxpages)
1709 {
1710 	size_t skip = i->iov_offset, size = i->count;
1711 	const struct bio_vec *p;
1712 	int npages = 0;
1713 
1714 	for (p = i->bvec; size; skip = 0, p++) {
1715 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1716 		size_t len = min(p->bv_len - skip, size);
1717 
1718 		size -= len;
1719 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1720 		if (unlikely(npages > maxpages))
1721 			return maxpages;
1722 	}
1723 	return npages;
1724 }
1725 
1726 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1727 {
1728 	if (unlikely(!i->count))
1729 		return 0;
1730 	if (likely(iter_is_ubuf(i))) {
1731 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1732 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1733 		return min(npages, maxpages);
1734 	}
1735 	/* iovec and kvec have identical layouts */
1736 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1737 		return iov_npages(i, maxpages);
1738 	if (iov_iter_is_bvec(i))
1739 		return bvec_npages(i, maxpages);
1740 	if (iov_iter_is_pipe(i)) {
1741 		int npages;
1742 
1743 		if (!sanity(i))
1744 			return 0;
1745 
1746 		pipe_npages(i, &npages);
1747 		return min(npages, maxpages);
1748 	}
1749 	if (iov_iter_is_xarray(i)) {
1750 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1751 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1752 		return min(npages, maxpages);
1753 	}
1754 	return 0;
1755 }
1756 EXPORT_SYMBOL(iov_iter_npages);
1757 
1758 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1759 {
1760 	*new = *old;
1761 	if (unlikely(iov_iter_is_pipe(new))) {
1762 		WARN_ON(1);
1763 		return NULL;
1764 	}
1765 	if (iov_iter_is_bvec(new))
1766 		return new->bvec = kmemdup(new->bvec,
1767 				    new->nr_segs * sizeof(struct bio_vec),
1768 				    flags);
1769 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1770 		/* iovec and kvec have identical layout */
1771 		return new->iov = kmemdup(new->iov,
1772 				   new->nr_segs * sizeof(struct iovec),
1773 				   flags);
1774 	return NULL;
1775 }
1776 EXPORT_SYMBOL(dup_iter);
1777 
1778 static int copy_compat_iovec_from_user(struct iovec *iov,
1779 		const struct iovec __user *uvec, unsigned long nr_segs)
1780 {
1781 	const struct compat_iovec __user *uiov =
1782 		(const struct compat_iovec __user *)uvec;
1783 	int ret = -EFAULT, i;
1784 
1785 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1786 		return -EFAULT;
1787 
1788 	for (i = 0; i < nr_segs; i++) {
1789 		compat_uptr_t buf;
1790 		compat_ssize_t len;
1791 
1792 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1793 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1794 
1795 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1796 		if (len < 0) {
1797 			ret = -EINVAL;
1798 			goto uaccess_end;
1799 		}
1800 		iov[i].iov_base = compat_ptr(buf);
1801 		iov[i].iov_len = len;
1802 	}
1803 
1804 	ret = 0;
1805 uaccess_end:
1806 	user_access_end();
1807 	return ret;
1808 }
1809 
1810 static int copy_iovec_from_user(struct iovec *iov,
1811 		const struct iovec __user *uvec, unsigned long nr_segs)
1812 {
1813 	unsigned long seg;
1814 
1815 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1816 		return -EFAULT;
1817 	for (seg = 0; seg < nr_segs; seg++) {
1818 		if ((ssize_t)iov[seg].iov_len < 0)
1819 			return -EINVAL;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1826 		unsigned long nr_segs, unsigned long fast_segs,
1827 		struct iovec *fast_iov, bool compat)
1828 {
1829 	struct iovec *iov = fast_iov;
1830 	int ret;
1831 
1832 	/*
1833 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1834 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1835 	 * traditionally returned zero for zero segments, so...
1836 	 */
1837 	if (nr_segs == 0)
1838 		return iov;
1839 	if (nr_segs > UIO_MAXIOV)
1840 		return ERR_PTR(-EINVAL);
1841 	if (nr_segs > fast_segs) {
1842 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1843 		if (!iov)
1844 			return ERR_PTR(-ENOMEM);
1845 	}
1846 
1847 	if (compat)
1848 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1849 	else
1850 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1851 	if (ret) {
1852 		if (iov != fast_iov)
1853 			kfree(iov);
1854 		return ERR_PTR(ret);
1855 	}
1856 
1857 	return iov;
1858 }
1859 
1860 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1861 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1862 		 struct iov_iter *i, bool compat)
1863 {
1864 	ssize_t total_len = 0;
1865 	unsigned long seg;
1866 	struct iovec *iov;
1867 
1868 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1869 	if (IS_ERR(iov)) {
1870 		*iovp = NULL;
1871 		return PTR_ERR(iov);
1872 	}
1873 
1874 	/*
1875 	 * According to the Single Unix Specification we should return EINVAL if
1876 	 * an element length is < 0 when cast to ssize_t or if the total length
1877 	 * would overflow the ssize_t return value of the system call.
1878 	 *
1879 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1880 	 * overflow case.
1881 	 */
1882 	for (seg = 0; seg < nr_segs; seg++) {
1883 		ssize_t len = (ssize_t)iov[seg].iov_len;
1884 
1885 		if (!access_ok(iov[seg].iov_base, len)) {
1886 			if (iov != *iovp)
1887 				kfree(iov);
1888 			*iovp = NULL;
1889 			return -EFAULT;
1890 		}
1891 
1892 		if (len > MAX_RW_COUNT - total_len) {
1893 			len = MAX_RW_COUNT - total_len;
1894 			iov[seg].iov_len = len;
1895 		}
1896 		total_len += len;
1897 	}
1898 
1899 	iov_iter_init(i, type, iov, nr_segs, total_len);
1900 	if (iov == *iovp)
1901 		*iovp = NULL;
1902 	else
1903 		*iovp = iov;
1904 	return total_len;
1905 }
1906 
1907 /**
1908  * import_iovec() - Copy an array of &struct iovec from userspace
1909  *     into the kernel, check that it is valid, and initialize a new
1910  *     &struct iov_iter iterator to access it.
1911  *
1912  * @type: One of %READ or %WRITE.
1913  * @uvec: Pointer to the userspace array.
1914  * @nr_segs: Number of elements in userspace array.
1915  * @fast_segs: Number of elements in @iov.
1916  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1917  *     on-stack) kernel array.
1918  * @i: Pointer to iterator that will be initialized on success.
1919  *
1920  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1921  * then this function places %NULL in *@iov on return. Otherwise, a new
1922  * array will be allocated and the result placed in *@iov. This means that
1923  * the caller may call kfree() on *@iov regardless of whether the small
1924  * on-stack array was used or not (and regardless of whether this function
1925  * returns an error or not).
1926  *
1927  * Return: Negative error code on error, bytes imported on success
1928  */
1929 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1930 		 unsigned nr_segs, unsigned fast_segs,
1931 		 struct iovec **iovp, struct iov_iter *i)
1932 {
1933 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1934 			      in_compat_syscall());
1935 }
1936 EXPORT_SYMBOL(import_iovec);
1937 
1938 int import_single_range(int rw, void __user *buf, size_t len,
1939 		 struct iovec *iov, struct iov_iter *i)
1940 {
1941 	if (len > MAX_RW_COUNT)
1942 		len = MAX_RW_COUNT;
1943 	if (unlikely(!access_ok(buf, len)))
1944 		return -EFAULT;
1945 
1946 	iov->iov_base = buf;
1947 	iov->iov_len = len;
1948 	iov_iter_init(i, rw, iov, 1, len);
1949 	return 0;
1950 }
1951 EXPORT_SYMBOL(import_single_range);
1952 
1953 /**
1954  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1955  *     iov_iter_save_state() was called.
1956  *
1957  * @i: &struct iov_iter to restore
1958  * @state: state to restore from
1959  *
1960  * Used after iov_iter_save_state() to bring restore @i, if operations may
1961  * have advanced it.
1962  *
1963  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1964  */
1965 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1966 {
1967 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1968 			 !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
1969 		return;
1970 	i->iov_offset = state->iov_offset;
1971 	i->count = state->count;
1972 	if (iter_is_ubuf(i))
1973 		return;
1974 	/*
1975 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1976 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1977 	 * need to track both of these, just one is enough and we can deduct
1978 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1979 	 * size, so we can just increment the iov pointer as they are unionzed.
1980 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1981 	 * not. Be safe and handle it separately.
1982 	 */
1983 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1984 	if (iov_iter_is_bvec(i))
1985 		i->bvec -= state->nr_segs - i->nr_segs;
1986 	else
1987 		i->iov -= state->nr_segs - i->nr_segs;
1988 	i->nr_segs = state->nr_segs;
1989 }
1990