xref: /openbmc/linux/lib/iov_iter.c (revision c67f1fd2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
21 	size_t __maybe_unused off = 0;				\
22 	len = n;						\
23 	base = __p + i->iov_offset;				\
24 	len -= (STEP);						\
25 	i->iov_offset += len;					\
26 	n = len;						\
27 }
28 
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
31 	size_t off = 0;						\
32 	size_t skip = i->iov_offset;				\
33 	do {							\
34 		len = min(n, __p->iov_len - skip);		\
35 		if (likely(len)) {				\
36 			base = __p->iov_base + skip;		\
37 			len -= (STEP);				\
38 			off += len;				\
39 			skip += len;				\
40 			n -= len;				\
41 			if (skip < __p->iov_len)		\
42 				break;				\
43 		}						\
44 		__p++;						\
45 		skip = 0;					\
46 	} while (n);						\
47 	i->iov_offset = skip;					\
48 	n = off;						\
49 }
50 
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
52 	size_t off = 0;						\
53 	unsigned skip = i->iov_offset;				\
54 	while (n) {						\
55 		unsigned offset = p->bv_offset + skip;		\
56 		unsigned left;					\
57 		void *kaddr = kmap_local_page(p->bv_page +	\
58 					offset / PAGE_SIZE);	\
59 		base = kaddr + offset % PAGE_SIZE;		\
60 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
61 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
62 		left = (STEP);					\
63 		kunmap_local(kaddr);				\
64 		len -= left;					\
65 		off += len;					\
66 		skip += len;					\
67 		if (skip == p->bv_len) {			\
68 			skip = 0;				\
69 			p++;					\
70 		}						\
71 		n -= len;					\
72 		if (left)					\
73 			break;					\
74 	}							\
75 	i->iov_offset = skip;					\
76 	n = off;						\
77 }
78 
79 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
80 	__label__ __out;					\
81 	size_t __off = 0;					\
82 	struct folio *folio;					\
83 	loff_t start = i->xarray_start + i->iov_offset;		\
84 	pgoff_t index = start / PAGE_SIZE;			\
85 	XA_STATE(xas, i->xarray, index);			\
86 								\
87 	len = PAGE_SIZE - offset_in_page(start);		\
88 	rcu_read_lock();					\
89 	xas_for_each(&xas, folio, ULONG_MAX) {			\
90 		unsigned left;					\
91 		size_t offset;					\
92 		if (xas_retry(&xas, folio))			\
93 			continue;				\
94 		if (WARN_ON(xa_is_value(folio)))		\
95 			break;					\
96 		if (WARN_ON(folio_test_hugetlb(folio)))		\
97 			break;					\
98 		offset = offset_in_folio(folio, start + __off);	\
99 		while (offset < folio_size(folio)) {		\
100 			base = kmap_local_folio(folio, offset);	\
101 			len = min(n, len);			\
102 			left = (STEP);				\
103 			kunmap_local(base);			\
104 			len -= left;				\
105 			__off += len;				\
106 			n -= len;				\
107 			if (left || n == 0)			\
108 				goto __out;			\
109 			offset += len;				\
110 			len = PAGE_SIZE;			\
111 		}						\
112 	}							\
113 __out:								\
114 	rcu_read_unlock();					\
115 	i->iov_offset += __off;					\
116 	n = __off;						\
117 }
118 
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
120 	if (unlikely(i->count < n))				\
121 		n = i->count;					\
122 	if (likely(n)) {					\
123 		if (likely(iter_is_ubuf(i))) {			\
124 			void __user *base;			\
125 			size_t len;				\
126 			iterate_buf(i, n, base, len, off,	\
127 						i->ubuf, (I)) 	\
128 		} else if (likely(iter_is_iovec(i))) {		\
129 			const struct iovec *iov = i->iov;	\
130 			void __user *base;			\
131 			size_t len;				\
132 			iterate_iovec(i, n, base, len, off,	\
133 						iov, (I))	\
134 			i->nr_segs -= iov - i->iov;		\
135 			i->iov = iov;				\
136 		} else if (iov_iter_is_bvec(i)) {		\
137 			const struct bio_vec *bvec = i->bvec;	\
138 			void *base;				\
139 			size_t len;				\
140 			iterate_bvec(i, n, base, len, off,	\
141 						bvec, (K))	\
142 			i->nr_segs -= bvec - i->bvec;		\
143 			i->bvec = bvec;				\
144 		} else if (iov_iter_is_kvec(i)) {		\
145 			const struct kvec *kvec = i->kvec;	\
146 			void *base;				\
147 			size_t len;				\
148 			iterate_iovec(i, n, base, len, off,	\
149 						kvec, (K))	\
150 			i->nr_segs -= kvec - i->kvec;		\
151 			i->kvec = kvec;				\
152 		} else if (iov_iter_is_xarray(i)) {		\
153 			void *base;				\
154 			size_t len;				\
155 			iterate_xarray(i, n, base, len, off,	\
156 							(K))	\
157 		}						\
158 		i->count -= n;					\
159 	}							\
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163 
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166 	if (should_fail_usercopy())
167 		return n;
168 	if (access_ok(to, n)) {
169 		instrument_copy_to_user(to, from, n);
170 		n = raw_copy_to_user(to, from, n);
171 	}
172 	return n;
173 }
174 
175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177 	size_t res = n;
178 
179 	if (should_fail_usercopy())
180 		return n;
181 	if (access_ok(from, n)) {
182 		instrument_copy_from_user_before(to, from, n);
183 		res = raw_copy_from_user(to, from, n);
184 		instrument_copy_from_user_after(to, from, n, res);
185 	}
186 	return res;
187 }
188 
189 static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
190 					   unsigned int slot)
191 {
192 	return &pipe->bufs[slot & (pipe->ring_size - 1)];
193 }
194 
195 #ifdef PIPE_PARANOIA
196 static bool sanity(const struct iov_iter *i)
197 {
198 	struct pipe_inode_info *pipe = i->pipe;
199 	unsigned int p_head = pipe->head;
200 	unsigned int p_tail = pipe->tail;
201 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
202 	unsigned int i_head = i->head;
203 	unsigned int idx;
204 
205 	if (i->last_offset) {
206 		struct pipe_buffer *p;
207 		if (unlikely(p_occupancy == 0))
208 			goto Bad;	// pipe must be non-empty
209 		if (unlikely(i_head != p_head - 1))
210 			goto Bad;	// must be at the last buffer...
211 
212 		p = pipe_buf(pipe, i_head);
213 		if (unlikely(p->offset + p->len != abs(i->last_offset)))
214 			goto Bad;	// ... at the end of segment
215 	} else {
216 		if (i_head != p_head)
217 			goto Bad;	// must be right after the last buffer
218 	}
219 	return true;
220 Bad:
221 	printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
222 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
223 			p_head, p_tail, pipe->ring_size);
224 	for (idx = 0; idx < pipe->ring_size; idx++)
225 		printk(KERN_ERR "[%p %p %d %d]\n",
226 			pipe->bufs[idx].ops,
227 			pipe->bufs[idx].page,
228 			pipe->bufs[idx].offset,
229 			pipe->bufs[idx].len);
230 	WARN_ON(1);
231 	return false;
232 }
233 #else
234 #define sanity(i) true
235 #endif
236 
237 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
238 {
239 	struct page *page = alloc_page(GFP_USER);
240 	if (page) {
241 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
242 		*buf = (struct pipe_buffer) {
243 			.ops = &default_pipe_buf_ops,
244 			.page = page,
245 			.offset = 0,
246 			.len = size
247 		};
248 	}
249 	return page;
250 }
251 
252 static void push_page(struct pipe_inode_info *pipe, struct page *page,
253 			unsigned int offset, unsigned int size)
254 {
255 	struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
256 	*buf = (struct pipe_buffer) {
257 		.ops = &page_cache_pipe_buf_ops,
258 		.page = page,
259 		.offset = offset,
260 		.len = size
261 	};
262 	get_page(page);
263 }
264 
265 static inline int last_offset(const struct pipe_buffer *buf)
266 {
267 	if (buf->ops == &default_pipe_buf_ops)
268 		return buf->len;	// buf->offset is 0 for those
269 	else
270 		return -(buf->offset + buf->len);
271 }
272 
273 static struct page *append_pipe(struct iov_iter *i, size_t size,
274 				unsigned int *off)
275 {
276 	struct pipe_inode_info *pipe = i->pipe;
277 	int offset = i->last_offset;
278 	struct pipe_buffer *buf;
279 	struct page *page;
280 
281 	if (offset > 0 && offset < PAGE_SIZE) {
282 		// some space in the last buffer; add to it
283 		buf = pipe_buf(pipe, pipe->head - 1);
284 		size = min_t(size_t, size, PAGE_SIZE - offset);
285 		buf->len += size;
286 		i->last_offset += size;
287 		i->count -= size;
288 		*off = offset;
289 		return buf->page;
290 	}
291 	// OK, we need a new buffer
292 	*off = 0;
293 	size = min_t(size_t, size, PAGE_SIZE);
294 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
295 		return NULL;
296 	page = push_anon(pipe, size);
297 	if (!page)
298 		return NULL;
299 	i->head = pipe->head - 1;
300 	i->last_offset = size;
301 	i->count -= size;
302 	return page;
303 }
304 
305 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
306 			 struct iov_iter *i)
307 {
308 	struct pipe_inode_info *pipe = i->pipe;
309 	unsigned int head = pipe->head;
310 
311 	if (unlikely(bytes > i->count))
312 		bytes = i->count;
313 
314 	if (unlikely(!bytes))
315 		return 0;
316 
317 	if (!sanity(i))
318 		return 0;
319 
320 	if (offset && i->last_offset == -offset) { // could we merge it?
321 		struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
322 		if (buf->page == page) {
323 			buf->len += bytes;
324 			i->last_offset -= bytes;
325 			i->count -= bytes;
326 			return bytes;
327 		}
328 	}
329 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
330 		return 0;
331 
332 	push_page(pipe, page, offset, bytes);
333 	i->last_offset = -(offset + bytes);
334 	i->head = head;
335 	i->count -= bytes;
336 	return bytes;
337 }
338 
339 /*
340  * fault_in_iov_iter_readable - fault in iov iterator for reading
341  * @i: iterator
342  * @size: maximum length
343  *
344  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
345  * @size.  For each iovec, fault in each page that constitutes the iovec.
346  *
347  * Returns the number of bytes not faulted in (like copy_to_user() and
348  * copy_from_user()).
349  *
350  * Always returns 0 for non-userspace iterators.
351  */
352 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
353 {
354 	if (iter_is_ubuf(i)) {
355 		size_t n = min(size, iov_iter_count(i));
356 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
357 		return size - n;
358 	} else if (iter_is_iovec(i)) {
359 		size_t count = min(size, iov_iter_count(i));
360 		const struct iovec *p;
361 		size_t skip;
362 
363 		size -= count;
364 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
365 			size_t len = min(count, p->iov_len - skip);
366 			size_t ret;
367 
368 			if (unlikely(!len))
369 				continue;
370 			ret = fault_in_readable(p->iov_base + skip, len);
371 			count -= len - ret;
372 			if (ret)
373 				break;
374 		}
375 		return count + size;
376 	}
377 	return 0;
378 }
379 EXPORT_SYMBOL(fault_in_iov_iter_readable);
380 
381 /*
382  * fault_in_iov_iter_writeable - fault in iov iterator for writing
383  * @i: iterator
384  * @size: maximum length
385  *
386  * Faults in the iterator using get_user_pages(), i.e., without triggering
387  * hardware page faults.  This is primarily useful when we already know that
388  * some or all of the pages in @i aren't in memory.
389  *
390  * Returns the number of bytes not faulted in, like copy_to_user() and
391  * copy_from_user().
392  *
393  * Always returns 0 for non-user-space iterators.
394  */
395 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
396 {
397 	if (iter_is_ubuf(i)) {
398 		size_t n = min(size, iov_iter_count(i));
399 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
400 		return size - n;
401 	} else if (iter_is_iovec(i)) {
402 		size_t count = min(size, iov_iter_count(i));
403 		const struct iovec *p;
404 		size_t skip;
405 
406 		size -= count;
407 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
408 			size_t len = min(count, p->iov_len - skip);
409 			size_t ret;
410 
411 			if (unlikely(!len))
412 				continue;
413 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
414 			count -= len - ret;
415 			if (ret)
416 				break;
417 		}
418 		return count + size;
419 	}
420 	return 0;
421 }
422 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
423 
424 void iov_iter_init(struct iov_iter *i, unsigned int direction,
425 			const struct iovec *iov, unsigned long nr_segs,
426 			size_t count)
427 {
428 	WARN_ON(direction & ~(READ | WRITE));
429 	*i = (struct iov_iter) {
430 		.iter_type = ITER_IOVEC,
431 		.nofault = false,
432 		.user_backed = true,
433 		.data_source = direction,
434 		.iov = iov,
435 		.nr_segs = nr_segs,
436 		.iov_offset = 0,
437 		.count = count
438 	};
439 }
440 EXPORT_SYMBOL(iov_iter_init);
441 
442 // returns the offset in partial buffer (if any)
443 static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
444 {
445 	struct pipe_inode_info *pipe = i->pipe;
446 	int used = pipe->head - pipe->tail;
447 	int off = i->last_offset;
448 
449 	*npages = max((int)pipe->max_usage - used, 0);
450 
451 	if (off > 0 && off < PAGE_SIZE) { // anon and not full
452 		(*npages)++;
453 		return off;
454 	}
455 	return 0;
456 }
457 
458 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
459 				struct iov_iter *i)
460 {
461 	unsigned int off, chunk;
462 
463 	if (unlikely(bytes > i->count))
464 		bytes = i->count;
465 	if (unlikely(!bytes))
466 		return 0;
467 
468 	if (!sanity(i))
469 		return 0;
470 
471 	for (size_t n = bytes; n; n -= chunk) {
472 		struct page *page = append_pipe(i, n, &off);
473 		chunk = min_t(size_t, n, PAGE_SIZE - off);
474 		if (!page)
475 			return bytes - n;
476 		memcpy_to_page(page, off, addr, chunk);
477 		addr += chunk;
478 	}
479 	return bytes;
480 }
481 
482 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
483 			      __wsum sum, size_t off)
484 {
485 	__wsum next = csum_partial_copy_nocheck(from, to, len);
486 	return csum_block_add(sum, next, off);
487 }
488 
489 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
490 					 struct iov_iter *i, __wsum *sump)
491 {
492 	__wsum sum = *sump;
493 	size_t off = 0;
494 	unsigned int chunk, r;
495 
496 	if (unlikely(bytes > i->count))
497 		bytes = i->count;
498 	if (unlikely(!bytes))
499 		return 0;
500 
501 	if (!sanity(i))
502 		return 0;
503 
504 	while (bytes) {
505 		struct page *page = append_pipe(i, bytes, &r);
506 		char *p;
507 
508 		if (!page)
509 			break;
510 		chunk = min_t(size_t, bytes, PAGE_SIZE - r);
511 		p = kmap_local_page(page);
512 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
513 		kunmap_local(p);
514 		off += chunk;
515 		bytes -= chunk;
516 	}
517 	*sump = sum;
518 	return off;
519 }
520 
521 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
522 {
523 	if (unlikely(iov_iter_is_pipe(i)))
524 		return copy_pipe_to_iter(addr, bytes, i);
525 	if (user_backed_iter(i))
526 		might_fault();
527 	iterate_and_advance(i, bytes, base, len, off,
528 		copyout(base, addr + off, len),
529 		memcpy(base, addr + off, len)
530 	)
531 
532 	return bytes;
533 }
534 EXPORT_SYMBOL(_copy_to_iter);
535 
536 #ifdef CONFIG_ARCH_HAS_COPY_MC
537 static int copyout_mc(void __user *to, const void *from, size_t n)
538 {
539 	if (access_ok(to, n)) {
540 		instrument_copy_to_user(to, from, n);
541 		n = copy_mc_to_user((__force void *) to, from, n);
542 	}
543 	return n;
544 }
545 
546 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
547 				struct iov_iter *i)
548 {
549 	size_t xfer = 0;
550 	unsigned int off, chunk;
551 
552 	if (unlikely(bytes > i->count))
553 		bytes = i->count;
554 	if (unlikely(!bytes))
555 		return 0;
556 
557 	if (!sanity(i))
558 		return 0;
559 
560 	while (bytes) {
561 		struct page *page = append_pipe(i, bytes, &off);
562 		unsigned long rem;
563 		char *p;
564 
565 		if (!page)
566 			break;
567 		chunk = min_t(size_t, bytes, PAGE_SIZE - off);
568 		p = kmap_local_page(page);
569 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
570 		chunk -= rem;
571 		kunmap_local(p);
572 		xfer += chunk;
573 		bytes -= chunk;
574 		if (rem) {
575 			iov_iter_revert(i, rem);
576 			break;
577 		}
578 	}
579 	return xfer;
580 }
581 
582 /**
583  * _copy_mc_to_iter - copy to iter with source memory error exception handling
584  * @addr: source kernel address
585  * @bytes: total transfer length
586  * @i: destination iterator
587  *
588  * The pmem driver deploys this for the dax operation
589  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
590  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
591  * successfully copied.
592  *
593  * The main differences between this and typical _copy_to_iter().
594  *
595  * * Typical tail/residue handling after a fault retries the copy
596  *   byte-by-byte until the fault happens again. Re-triggering machine
597  *   checks is potentially fatal so the implementation uses source
598  *   alignment and poison alignment assumptions to avoid re-triggering
599  *   hardware exceptions.
600  *
601  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
602  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
603  *   a short copy.
604  *
605  * Return: number of bytes copied (may be %0)
606  */
607 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
608 {
609 	if (unlikely(iov_iter_is_pipe(i)))
610 		return copy_mc_pipe_to_iter(addr, bytes, i);
611 	if (user_backed_iter(i))
612 		might_fault();
613 	__iterate_and_advance(i, bytes, base, len, off,
614 		copyout_mc(base, addr + off, len),
615 		copy_mc_to_kernel(base, addr + off, len)
616 	)
617 
618 	return bytes;
619 }
620 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
621 #endif /* CONFIG_ARCH_HAS_COPY_MC */
622 
623 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
624 {
625 	if (unlikely(iov_iter_is_pipe(i))) {
626 		WARN_ON(1);
627 		return 0;
628 	}
629 	if (user_backed_iter(i))
630 		might_fault();
631 	iterate_and_advance(i, bytes, base, len, off,
632 		copyin(addr + off, base, len),
633 		memcpy(addr + off, base, len)
634 	)
635 
636 	return bytes;
637 }
638 EXPORT_SYMBOL(_copy_from_iter);
639 
640 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
641 {
642 	if (unlikely(iov_iter_is_pipe(i))) {
643 		WARN_ON(1);
644 		return 0;
645 	}
646 	iterate_and_advance(i, bytes, base, len, off,
647 		__copy_from_user_inatomic_nocache(addr + off, base, len),
648 		memcpy(addr + off, base, len)
649 	)
650 
651 	return bytes;
652 }
653 EXPORT_SYMBOL(_copy_from_iter_nocache);
654 
655 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
656 /**
657  * _copy_from_iter_flushcache - write destination through cpu cache
658  * @addr: destination kernel address
659  * @bytes: total transfer length
660  * @i: source iterator
661  *
662  * The pmem driver arranges for filesystem-dax to use this facility via
663  * dax_copy_from_iter() for ensuring that writes to persistent memory
664  * are flushed through the CPU cache. It is differentiated from
665  * _copy_from_iter_nocache() in that guarantees all data is flushed for
666  * all iterator types. The _copy_from_iter_nocache() only attempts to
667  * bypass the cache for the ITER_IOVEC case, and on some archs may use
668  * instructions that strand dirty-data in the cache.
669  *
670  * Return: number of bytes copied (may be %0)
671  */
672 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
673 {
674 	if (unlikely(iov_iter_is_pipe(i))) {
675 		WARN_ON(1);
676 		return 0;
677 	}
678 	iterate_and_advance(i, bytes, base, len, off,
679 		__copy_from_user_flushcache(addr + off, base, len),
680 		memcpy_flushcache(addr + off, base, len)
681 	)
682 
683 	return bytes;
684 }
685 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
686 #endif
687 
688 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
689 {
690 	struct page *head;
691 	size_t v = n + offset;
692 
693 	/*
694 	 * The general case needs to access the page order in order
695 	 * to compute the page size.
696 	 * However, we mostly deal with order-0 pages and thus can
697 	 * avoid a possible cache line miss for requests that fit all
698 	 * page orders.
699 	 */
700 	if (n <= v && v <= PAGE_SIZE)
701 		return true;
702 
703 	head = compound_head(page);
704 	v += (page - head) << PAGE_SHIFT;
705 
706 	if (WARN_ON(n > v || v > page_size(head)))
707 		return false;
708 	return true;
709 }
710 
711 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
712 			 struct iov_iter *i)
713 {
714 	size_t res = 0;
715 	if (!page_copy_sane(page, offset, bytes))
716 		return 0;
717 	if (unlikely(iov_iter_is_pipe(i)))
718 		return copy_page_to_iter_pipe(page, offset, bytes, i);
719 	page += offset / PAGE_SIZE; // first subpage
720 	offset %= PAGE_SIZE;
721 	while (1) {
722 		void *kaddr = kmap_local_page(page);
723 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
724 		n = _copy_to_iter(kaddr + offset, n, i);
725 		kunmap_local(kaddr);
726 		res += n;
727 		bytes -= n;
728 		if (!bytes || !n)
729 			break;
730 		offset += n;
731 		if (offset == PAGE_SIZE) {
732 			page++;
733 			offset = 0;
734 		}
735 	}
736 	return res;
737 }
738 EXPORT_SYMBOL(copy_page_to_iter);
739 
740 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
741 			 struct iov_iter *i)
742 {
743 	size_t res = 0;
744 	if (!page_copy_sane(page, offset, bytes))
745 		return 0;
746 	page += offset / PAGE_SIZE; // first subpage
747 	offset %= PAGE_SIZE;
748 	while (1) {
749 		void *kaddr = kmap_local_page(page);
750 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
751 		n = _copy_from_iter(kaddr + offset, n, i);
752 		kunmap_local(kaddr);
753 		res += n;
754 		bytes -= n;
755 		if (!bytes || !n)
756 			break;
757 		offset += n;
758 		if (offset == PAGE_SIZE) {
759 			page++;
760 			offset = 0;
761 		}
762 	}
763 	return res;
764 }
765 EXPORT_SYMBOL(copy_page_from_iter);
766 
767 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
768 {
769 	unsigned int chunk, off;
770 
771 	if (unlikely(bytes > i->count))
772 		bytes = i->count;
773 	if (unlikely(!bytes))
774 		return 0;
775 
776 	if (!sanity(i))
777 		return 0;
778 
779 	for (size_t n = bytes; n; n -= chunk) {
780 		struct page *page = append_pipe(i, n, &off);
781 		char *p;
782 
783 		if (!page)
784 			return bytes - n;
785 		chunk = min_t(size_t, n, PAGE_SIZE - off);
786 		p = kmap_local_page(page);
787 		memset(p + off, 0, chunk);
788 		kunmap_local(p);
789 	}
790 	return bytes;
791 }
792 
793 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
794 {
795 	if (unlikely(iov_iter_is_pipe(i)))
796 		return pipe_zero(bytes, i);
797 	iterate_and_advance(i, bytes, base, len, count,
798 		clear_user(base, len),
799 		memset(base, 0, len)
800 	)
801 
802 	return bytes;
803 }
804 EXPORT_SYMBOL(iov_iter_zero);
805 
806 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
807 				  struct iov_iter *i)
808 {
809 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
810 	if (!page_copy_sane(page, offset, bytes)) {
811 		kunmap_atomic(kaddr);
812 		return 0;
813 	}
814 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
815 		kunmap_atomic(kaddr);
816 		WARN_ON(1);
817 		return 0;
818 	}
819 	iterate_and_advance(i, bytes, base, len, off,
820 		copyin(p + off, base, len),
821 		memcpy(p + off, base, len)
822 	)
823 	kunmap_atomic(kaddr);
824 	return bytes;
825 }
826 EXPORT_SYMBOL(copy_page_from_iter_atomic);
827 
828 static void pipe_advance(struct iov_iter *i, size_t size)
829 {
830 	struct pipe_inode_info *pipe = i->pipe;
831 	int off = i->last_offset;
832 
833 	if (!off && !size) {
834 		pipe_discard_from(pipe, i->start_head); // discard everything
835 		return;
836 	}
837 	i->count -= size;
838 	while (1) {
839 		struct pipe_buffer *buf = pipe_buf(pipe, i->head);
840 		if (off) /* make it relative to the beginning of buffer */
841 			size += abs(off) - buf->offset;
842 		if (size <= buf->len) {
843 			buf->len = size;
844 			i->last_offset = last_offset(buf);
845 			break;
846 		}
847 		size -= buf->len;
848 		i->head++;
849 		off = 0;
850 	}
851 	pipe_discard_from(pipe, i->head + 1); // discard everything past this one
852 }
853 
854 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
855 {
856 	const struct bio_vec *bvec, *end;
857 
858 	if (!i->count)
859 		return;
860 	i->count -= size;
861 
862 	size += i->iov_offset;
863 
864 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
865 		if (likely(size < bvec->bv_len))
866 			break;
867 		size -= bvec->bv_len;
868 	}
869 	i->iov_offset = size;
870 	i->nr_segs -= bvec - i->bvec;
871 	i->bvec = bvec;
872 }
873 
874 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
875 {
876 	const struct iovec *iov, *end;
877 
878 	if (!i->count)
879 		return;
880 	i->count -= size;
881 
882 	size += i->iov_offset; // from beginning of current segment
883 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
884 		if (likely(size < iov->iov_len))
885 			break;
886 		size -= iov->iov_len;
887 	}
888 	i->iov_offset = size;
889 	i->nr_segs -= iov - i->iov;
890 	i->iov = iov;
891 }
892 
893 void iov_iter_advance(struct iov_iter *i, size_t size)
894 {
895 	if (unlikely(i->count < size))
896 		size = i->count;
897 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
898 		i->iov_offset += size;
899 		i->count -= size;
900 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
901 		/* iovec and kvec have identical layouts */
902 		iov_iter_iovec_advance(i, size);
903 	} else if (iov_iter_is_bvec(i)) {
904 		iov_iter_bvec_advance(i, size);
905 	} else if (iov_iter_is_pipe(i)) {
906 		pipe_advance(i, size);
907 	} else if (iov_iter_is_discard(i)) {
908 		i->count -= size;
909 	}
910 }
911 EXPORT_SYMBOL(iov_iter_advance);
912 
913 void iov_iter_revert(struct iov_iter *i, size_t unroll)
914 {
915 	if (!unroll)
916 		return;
917 	if (WARN_ON(unroll > MAX_RW_COUNT))
918 		return;
919 	i->count += unroll;
920 	if (unlikely(iov_iter_is_pipe(i))) {
921 		struct pipe_inode_info *pipe = i->pipe;
922 		unsigned int head = pipe->head;
923 
924 		while (head > i->start_head) {
925 			struct pipe_buffer *b = pipe_buf(pipe, --head);
926 			if (unroll < b->len) {
927 				b->len -= unroll;
928 				i->last_offset = last_offset(b);
929 				i->head = head;
930 				return;
931 			}
932 			unroll -= b->len;
933 			pipe_buf_release(pipe, b);
934 			pipe->head--;
935 		}
936 		i->last_offset = 0;
937 		i->head = head;
938 		return;
939 	}
940 	if (unlikely(iov_iter_is_discard(i)))
941 		return;
942 	if (unroll <= i->iov_offset) {
943 		i->iov_offset -= unroll;
944 		return;
945 	}
946 	unroll -= i->iov_offset;
947 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
948 		BUG(); /* We should never go beyond the start of the specified
949 			* range since we might then be straying into pages that
950 			* aren't pinned.
951 			*/
952 	} else if (iov_iter_is_bvec(i)) {
953 		const struct bio_vec *bvec = i->bvec;
954 		while (1) {
955 			size_t n = (--bvec)->bv_len;
956 			i->nr_segs++;
957 			if (unroll <= n) {
958 				i->bvec = bvec;
959 				i->iov_offset = n - unroll;
960 				return;
961 			}
962 			unroll -= n;
963 		}
964 	} else { /* same logics for iovec and kvec */
965 		const struct iovec *iov = i->iov;
966 		while (1) {
967 			size_t n = (--iov)->iov_len;
968 			i->nr_segs++;
969 			if (unroll <= n) {
970 				i->iov = iov;
971 				i->iov_offset = n - unroll;
972 				return;
973 			}
974 			unroll -= n;
975 		}
976 	}
977 }
978 EXPORT_SYMBOL(iov_iter_revert);
979 
980 /*
981  * Return the count of just the current iov_iter segment.
982  */
983 size_t iov_iter_single_seg_count(const struct iov_iter *i)
984 {
985 	if (i->nr_segs > 1) {
986 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
987 			return min(i->count, i->iov->iov_len - i->iov_offset);
988 		if (iov_iter_is_bvec(i))
989 			return min(i->count, i->bvec->bv_len - i->iov_offset);
990 	}
991 	return i->count;
992 }
993 EXPORT_SYMBOL(iov_iter_single_seg_count);
994 
995 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
996 			const struct kvec *kvec, unsigned long nr_segs,
997 			size_t count)
998 {
999 	WARN_ON(direction & ~(READ | WRITE));
1000 	*i = (struct iov_iter){
1001 		.iter_type = ITER_KVEC,
1002 		.data_source = direction,
1003 		.kvec = kvec,
1004 		.nr_segs = nr_segs,
1005 		.iov_offset = 0,
1006 		.count = count
1007 	};
1008 }
1009 EXPORT_SYMBOL(iov_iter_kvec);
1010 
1011 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1012 			const struct bio_vec *bvec, unsigned long nr_segs,
1013 			size_t count)
1014 {
1015 	WARN_ON(direction & ~(READ | WRITE));
1016 	*i = (struct iov_iter){
1017 		.iter_type = ITER_BVEC,
1018 		.data_source = direction,
1019 		.bvec = bvec,
1020 		.nr_segs = nr_segs,
1021 		.iov_offset = 0,
1022 		.count = count
1023 	};
1024 }
1025 EXPORT_SYMBOL(iov_iter_bvec);
1026 
1027 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1028 			struct pipe_inode_info *pipe,
1029 			size_t count)
1030 {
1031 	BUG_ON(direction != READ);
1032 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1033 	*i = (struct iov_iter){
1034 		.iter_type = ITER_PIPE,
1035 		.data_source = false,
1036 		.pipe = pipe,
1037 		.head = pipe->head,
1038 		.start_head = pipe->head,
1039 		.last_offset = 0,
1040 		.count = count
1041 	};
1042 }
1043 EXPORT_SYMBOL(iov_iter_pipe);
1044 
1045 /**
1046  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1047  * @i: The iterator to initialise.
1048  * @direction: The direction of the transfer.
1049  * @xarray: The xarray to access.
1050  * @start: The start file position.
1051  * @count: The size of the I/O buffer in bytes.
1052  *
1053  * Set up an I/O iterator to either draw data out of the pages attached to an
1054  * inode or to inject data into those pages.  The pages *must* be prevented
1055  * from evaporation, either by taking a ref on them or locking them by the
1056  * caller.
1057  */
1058 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1059 		     struct xarray *xarray, loff_t start, size_t count)
1060 {
1061 	BUG_ON(direction & ~1);
1062 	*i = (struct iov_iter) {
1063 		.iter_type = ITER_XARRAY,
1064 		.data_source = direction,
1065 		.xarray = xarray,
1066 		.xarray_start = start,
1067 		.count = count,
1068 		.iov_offset = 0
1069 	};
1070 }
1071 EXPORT_SYMBOL(iov_iter_xarray);
1072 
1073 /**
1074  * iov_iter_discard - Initialise an I/O iterator that discards data
1075  * @i: The iterator to initialise.
1076  * @direction: The direction of the transfer.
1077  * @count: The size of the I/O buffer in bytes.
1078  *
1079  * Set up an I/O iterator that just discards everything that's written to it.
1080  * It's only available as a READ iterator.
1081  */
1082 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1083 {
1084 	BUG_ON(direction != READ);
1085 	*i = (struct iov_iter){
1086 		.iter_type = ITER_DISCARD,
1087 		.data_source = false,
1088 		.count = count,
1089 		.iov_offset = 0
1090 	};
1091 }
1092 EXPORT_SYMBOL(iov_iter_discard);
1093 
1094 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1095 				   unsigned len_mask)
1096 {
1097 	size_t size = i->count;
1098 	size_t skip = i->iov_offset;
1099 	unsigned k;
1100 
1101 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1102 		size_t len = i->iov[k].iov_len - skip;
1103 
1104 		if (len > size)
1105 			len = size;
1106 		if (len & len_mask)
1107 			return false;
1108 		if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1109 			return false;
1110 
1111 		size -= len;
1112 		if (!size)
1113 			break;
1114 	}
1115 	return true;
1116 }
1117 
1118 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1119 				  unsigned len_mask)
1120 {
1121 	size_t size = i->count;
1122 	unsigned skip = i->iov_offset;
1123 	unsigned k;
1124 
1125 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1126 		size_t len = i->bvec[k].bv_len - skip;
1127 
1128 		if (len > size)
1129 			len = size;
1130 		if (len & len_mask)
1131 			return false;
1132 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1133 			return false;
1134 
1135 		size -= len;
1136 		if (!size)
1137 			break;
1138 	}
1139 	return true;
1140 }
1141 
1142 /**
1143  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1144  * 	are aligned to the parameters.
1145  *
1146  * @i: &struct iov_iter to restore
1147  * @addr_mask: bit mask to check against the iov element's addresses
1148  * @len_mask: bit mask to check against the iov element's lengths
1149  *
1150  * Return: false if any addresses or lengths intersect with the provided masks
1151  */
1152 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1153 			 unsigned len_mask)
1154 {
1155 	if (likely(iter_is_ubuf(i))) {
1156 		if (i->count & len_mask)
1157 			return false;
1158 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1159 			return false;
1160 		return true;
1161 	}
1162 
1163 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1164 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1165 
1166 	if (iov_iter_is_bvec(i))
1167 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1168 
1169 	if (iov_iter_is_pipe(i)) {
1170 		size_t size = i->count;
1171 
1172 		if (size & len_mask)
1173 			return false;
1174 		if (size && i->last_offset > 0) {
1175 			if (i->last_offset & addr_mask)
1176 				return false;
1177 		}
1178 
1179 		return true;
1180 	}
1181 
1182 	if (iov_iter_is_xarray(i)) {
1183 		if (i->count & len_mask)
1184 			return false;
1185 		if ((i->xarray_start + i->iov_offset) & addr_mask)
1186 			return false;
1187 	}
1188 
1189 	return true;
1190 }
1191 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1192 
1193 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1194 {
1195 	unsigned long res = 0;
1196 	size_t size = i->count;
1197 	size_t skip = i->iov_offset;
1198 	unsigned k;
1199 
1200 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1201 		size_t len = i->iov[k].iov_len - skip;
1202 		if (len) {
1203 			res |= (unsigned long)i->iov[k].iov_base + skip;
1204 			if (len > size)
1205 				len = size;
1206 			res |= len;
1207 			size -= len;
1208 			if (!size)
1209 				break;
1210 		}
1211 	}
1212 	return res;
1213 }
1214 
1215 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1216 {
1217 	unsigned res = 0;
1218 	size_t size = i->count;
1219 	unsigned skip = i->iov_offset;
1220 	unsigned k;
1221 
1222 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1223 		size_t len = i->bvec[k].bv_len - skip;
1224 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1225 		if (len > size)
1226 			len = size;
1227 		res |= len;
1228 		size -= len;
1229 		if (!size)
1230 			break;
1231 	}
1232 	return res;
1233 }
1234 
1235 unsigned long iov_iter_alignment(const struct iov_iter *i)
1236 {
1237 	if (likely(iter_is_ubuf(i))) {
1238 		size_t size = i->count;
1239 		if (size)
1240 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
1241 		return 0;
1242 	}
1243 
1244 	/* iovec and kvec have identical layouts */
1245 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1246 		return iov_iter_alignment_iovec(i);
1247 
1248 	if (iov_iter_is_bvec(i))
1249 		return iov_iter_alignment_bvec(i);
1250 
1251 	if (iov_iter_is_pipe(i)) {
1252 		size_t size = i->count;
1253 
1254 		if (size && i->last_offset > 0)
1255 			return size | i->last_offset;
1256 		return size;
1257 	}
1258 
1259 	if (iov_iter_is_xarray(i))
1260 		return (i->xarray_start + i->iov_offset) | i->count;
1261 
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL(iov_iter_alignment);
1265 
1266 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1267 {
1268 	unsigned long res = 0;
1269 	unsigned long v = 0;
1270 	size_t size = i->count;
1271 	unsigned k;
1272 
1273 	if (iter_is_ubuf(i))
1274 		return 0;
1275 
1276 	if (WARN_ON(!iter_is_iovec(i)))
1277 		return ~0U;
1278 
1279 	for (k = 0; k < i->nr_segs; k++) {
1280 		if (i->iov[k].iov_len) {
1281 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1282 			if (v) // if not the first one
1283 				res |= base | v; // this start | previous end
1284 			v = base + i->iov[k].iov_len;
1285 			if (size <= i->iov[k].iov_len)
1286 				break;
1287 			size -= i->iov[k].iov_len;
1288 		}
1289 	}
1290 	return res;
1291 }
1292 EXPORT_SYMBOL(iov_iter_gap_alignment);
1293 
1294 static int want_pages_array(struct page ***res, size_t size,
1295 			    size_t start, unsigned int maxpages)
1296 {
1297 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
1298 
1299 	if (count > maxpages)
1300 		count = maxpages;
1301 	WARN_ON(!count);	// caller should've prevented that
1302 	if (!*res) {
1303 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1304 		if (!*res)
1305 			return 0;
1306 	}
1307 	return count;
1308 }
1309 
1310 static ssize_t pipe_get_pages(struct iov_iter *i,
1311 		   struct page ***pages, size_t maxsize, unsigned maxpages,
1312 		   size_t *start)
1313 {
1314 	unsigned int npages, count, off, chunk;
1315 	struct page **p;
1316 	size_t left;
1317 
1318 	if (!sanity(i))
1319 		return -EFAULT;
1320 
1321 	*start = off = pipe_npages(i, &npages);
1322 	if (!npages)
1323 		return -EFAULT;
1324 	count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
1325 	if (!count)
1326 		return -ENOMEM;
1327 	p = *pages;
1328 	for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
1329 		struct page *page = append_pipe(i, left, &off);
1330 		if (!page)
1331 			break;
1332 		chunk = min_t(size_t, left, PAGE_SIZE - off);
1333 		get_page(*p++ = page);
1334 	}
1335 	if (!npages)
1336 		return -EFAULT;
1337 	return maxsize - left;
1338 }
1339 
1340 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1341 					  pgoff_t index, unsigned int nr_pages)
1342 {
1343 	XA_STATE(xas, xa, index);
1344 	struct page *page;
1345 	unsigned int ret = 0;
1346 
1347 	rcu_read_lock();
1348 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1349 		if (xas_retry(&xas, page))
1350 			continue;
1351 
1352 		/* Has the page moved or been split? */
1353 		if (unlikely(page != xas_reload(&xas))) {
1354 			xas_reset(&xas);
1355 			continue;
1356 		}
1357 
1358 		pages[ret] = find_subpage(page, xas.xa_index);
1359 		get_page(pages[ret]);
1360 		if (++ret == nr_pages)
1361 			break;
1362 	}
1363 	rcu_read_unlock();
1364 	return ret;
1365 }
1366 
1367 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1368 				     struct page ***pages, size_t maxsize,
1369 				     unsigned maxpages, size_t *_start_offset)
1370 {
1371 	unsigned nr, offset, count;
1372 	pgoff_t index;
1373 	loff_t pos;
1374 
1375 	pos = i->xarray_start + i->iov_offset;
1376 	index = pos >> PAGE_SHIFT;
1377 	offset = pos & ~PAGE_MASK;
1378 	*_start_offset = offset;
1379 
1380 	count = want_pages_array(pages, maxsize, offset, maxpages);
1381 	if (!count)
1382 		return -ENOMEM;
1383 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1384 	if (nr == 0)
1385 		return 0;
1386 
1387 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1388 	i->iov_offset += maxsize;
1389 	i->count -= maxsize;
1390 	return maxsize;
1391 }
1392 
1393 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1394 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1395 {
1396 	size_t skip;
1397 	long k;
1398 
1399 	if (iter_is_ubuf(i))
1400 		return (unsigned long)i->ubuf + i->iov_offset;
1401 
1402 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1403 		size_t len = i->iov[k].iov_len - skip;
1404 
1405 		if (unlikely(!len))
1406 			continue;
1407 		if (*size > len)
1408 			*size = len;
1409 		return (unsigned long)i->iov[k].iov_base + skip;
1410 	}
1411 	BUG(); // if it had been empty, we wouldn't get called
1412 }
1413 
1414 /* must be done on non-empty ITER_BVEC one */
1415 static struct page *first_bvec_segment(const struct iov_iter *i,
1416 				       size_t *size, size_t *start)
1417 {
1418 	struct page *page;
1419 	size_t skip = i->iov_offset, len;
1420 
1421 	len = i->bvec->bv_len - skip;
1422 	if (*size > len)
1423 		*size = len;
1424 	skip += i->bvec->bv_offset;
1425 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1426 	*start = skip % PAGE_SIZE;
1427 	return page;
1428 }
1429 
1430 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1431 		   struct page ***pages, size_t maxsize,
1432 		   unsigned int maxpages, size_t *start)
1433 {
1434 	unsigned int n;
1435 
1436 	if (maxsize > i->count)
1437 		maxsize = i->count;
1438 	if (!maxsize)
1439 		return 0;
1440 	if (maxsize > MAX_RW_COUNT)
1441 		maxsize = MAX_RW_COUNT;
1442 
1443 	if (likely(user_backed_iter(i))) {
1444 		unsigned int gup_flags = 0;
1445 		unsigned long addr;
1446 		int res;
1447 
1448 		if (iov_iter_rw(i) != WRITE)
1449 			gup_flags |= FOLL_WRITE;
1450 		if (i->nofault)
1451 			gup_flags |= FOLL_NOFAULT;
1452 
1453 		addr = first_iovec_segment(i, &maxsize);
1454 		*start = addr % PAGE_SIZE;
1455 		addr &= PAGE_MASK;
1456 		n = want_pages_array(pages, maxsize, *start, maxpages);
1457 		if (!n)
1458 			return -ENOMEM;
1459 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1460 		if (unlikely(res <= 0))
1461 			return res;
1462 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1463 		iov_iter_advance(i, maxsize);
1464 		return maxsize;
1465 	}
1466 	if (iov_iter_is_bvec(i)) {
1467 		struct page **p;
1468 		struct page *page;
1469 
1470 		page = first_bvec_segment(i, &maxsize, start);
1471 		n = want_pages_array(pages, maxsize, *start, maxpages);
1472 		if (!n)
1473 			return -ENOMEM;
1474 		p = *pages;
1475 		for (int k = 0; k < n; k++)
1476 			get_page(p[k] = page + k);
1477 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1478 		i->count -= maxsize;
1479 		i->iov_offset += maxsize;
1480 		if (i->iov_offset == i->bvec->bv_len) {
1481 			i->iov_offset = 0;
1482 			i->bvec++;
1483 			i->nr_segs--;
1484 		}
1485 		return maxsize;
1486 	}
1487 	if (iov_iter_is_pipe(i))
1488 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1489 	if (iov_iter_is_xarray(i))
1490 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1491 	return -EFAULT;
1492 }
1493 
1494 ssize_t iov_iter_get_pages2(struct iov_iter *i,
1495 		   struct page **pages, size_t maxsize, unsigned maxpages,
1496 		   size_t *start)
1497 {
1498 	if (!maxpages)
1499 		return 0;
1500 	BUG_ON(!pages);
1501 
1502 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1503 }
1504 EXPORT_SYMBOL(iov_iter_get_pages2);
1505 
1506 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1507 		   struct page ***pages, size_t maxsize,
1508 		   size_t *start)
1509 {
1510 	ssize_t len;
1511 
1512 	*pages = NULL;
1513 
1514 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1515 	if (len <= 0) {
1516 		kvfree(*pages);
1517 		*pages = NULL;
1518 	}
1519 	return len;
1520 }
1521 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1522 
1523 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1524 			       struct iov_iter *i)
1525 {
1526 	__wsum sum, next;
1527 	sum = *csum;
1528 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1529 		WARN_ON(1);
1530 		return 0;
1531 	}
1532 	iterate_and_advance(i, bytes, base, len, off, ({
1533 		next = csum_and_copy_from_user(base, addr + off, len);
1534 		sum = csum_block_add(sum, next, off);
1535 		next ? 0 : len;
1536 	}), ({
1537 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1538 	})
1539 	)
1540 	*csum = sum;
1541 	return bytes;
1542 }
1543 EXPORT_SYMBOL(csum_and_copy_from_iter);
1544 
1545 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1546 			     struct iov_iter *i)
1547 {
1548 	struct csum_state *csstate = _csstate;
1549 	__wsum sum, next;
1550 
1551 	if (unlikely(iov_iter_is_discard(i))) {
1552 		// can't use csum_memcpy() for that one - data is not copied
1553 		csstate->csum = csum_block_add(csstate->csum,
1554 					       csum_partial(addr, bytes, 0),
1555 					       csstate->off);
1556 		csstate->off += bytes;
1557 		return bytes;
1558 	}
1559 
1560 	sum = csum_shift(csstate->csum, csstate->off);
1561 	if (unlikely(iov_iter_is_pipe(i)))
1562 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1563 	else iterate_and_advance(i, bytes, base, len, off, ({
1564 		next = csum_and_copy_to_user(addr + off, base, len);
1565 		sum = csum_block_add(sum, next, off);
1566 		next ? 0 : len;
1567 	}), ({
1568 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1569 	})
1570 	)
1571 	csstate->csum = csum_shift(sum, csstate->off);
1572 	csstate->off += bytes;
1573 	return bytes;
1574 }
1575 EXPORT_SYMBOL(csum_and_copy_to_iter);
1576 
1577 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1578 		struct iov_iter *i)
1579 {
1580 #ifdef CONFIG_CRYPTO_HASH
1581 	struct ahash_request *hash = hashp;
1582 	struct scatterlist sg;
1583 	size_t copied;
1584 
1585 	copied = copy_to_iter(addr, bytes, i);
1586 	sg_init_one(&sg, addr, copied);
1587 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1588 	crypto_ahash_update(hash);
1589 	return copied;
1590 #else
1591 	return 0;
1592 #endif
1593 }
1594 EXPORT_SYMBOL(hash_and_copy_to_iter);
1595 
1596 static int iov_npages(const struct iov_iter *i, int maxpages)
1597 {
1598 	size_t skip = i->iov_offset, size = i->count;
1599 	const struct iovec *p;
1600 	int npages = 0;
1601 
1602 	for (p = i->iov; size; skip = 0, p++) {
1603 		unsigned offs = offset_in_page(p->iov_base + skip);
1604 		size_t len = min(p->iov_len - skip, size);
1605 
1606 		if (len) {
1607 			size -= len;
1608 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1609 			if (unlikely(npages > maxpages))
1610 				return maxpages;
1611 		}
1612 	}
1613 	return npages;
1614 }
1615 
1616 static int bvec_npages(const struct iov_iter *i, int maxpages)
1617 {
1618 	size_t skip = i->iov_offset, size = i->count;
1619 	const struct bio_vec *p;
1620 	int npages = 0;
1621 
1622 	for (p = i->bvec; size; skip = 0, p++) {
1623 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1624 		size_t len = min(p->bv_len - skip, size);
1625 
1626 		size -= len;
1627 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1628 		if (unlikely(npages > maxpages))
1629 			return maxpages;
1630 	}
1631 	return npages;
1632 }
1633 
1634 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1635 {
1636 	if (unlikely(!i->count))
1637 		return 0;
1638 	if (likely(iter_is_ubuf(i))) {
1639 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1640 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1641 		return min(npages, maxpages);
1642 	}
1643 	/* iovec and kvec have identical layouts */
1644 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1645 		return iov_npages(i, maxpages);
1646 	if (iov_iter_is_bvec(i))
1647 		return bvec_npages(i, maxpages);
1648 	if (iov_iter_is_pipe(i)) {
1649 		int npages;
1650 
1651 		if (!sanity(i))
1652 			return 0;
1653 
1654 		pipe_npages(i, &npages);
1655 		return min(npages, maxpages);
1656 	}
1657 	if (iov_iter_is_xarray(i)) {
1658 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1659 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1660 		return min(npages, maxpages);
1661 	}
1662 	return 0;
1663 }
1664 EXPORT_SYMBOL(iov_iter_npages);
1665 
1666 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1667 {
1668 	*new = *old;
1669 	if (unlikely(iov_iter_is_pipe(new))) {
1670 		WARN_ON(1);
1671 		return NULL;
1672 	}
1673 	if (iov_iter_is_bvec(new))
1674 		return new->bvec = kmemdup(new->bvec,
1675 				    new->nr_segs * sizeof(struct bio_vec),
1676 				    flags);
1677 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1678 		/* iovec and kvec have identical layout */
1679 		return new->iov = kmemdup(new->iov,
1680 				   new->nr_segs * sizeof(struct iovec),
1681 				   flags);
1682 	return NULL;
1683 }
1684 EXPORT_SYMBOL(dup_iter);
1685 
1686 static int copy_compat_iovec_from_user(struct iovec *iov,
1687 		const struct iovec __user *uvec, unsigned long nr_segs)
1688 {
1689 	const struct compat_iovec __user *uiov =
1690 		(const struct compat_iovec __user *)uvec;
1691 	int ret = -EFAULT, i;
1692 
1693 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1694 		return -EFAULT;
1695 
1696 	for (i = 0; i < nr_segs; i++) {
1697 		compat_uptr_t buf;
1698 		compat_ssize_t len;
1699 
1700 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1701 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1702 
1703 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1704 		if (len < 0) {
1705 			ret = -EINVAL;
1706 			goto uaccess_end;
1707 		}
1708 		iov[i].iov_base = compat_ptr(buf);
1709 		iov[i].iov_len = len;
1710 	}
1711 
1712 	ret = 0;
1713 uaccess_end:
1714 	user_access_end();
1715 	return ret;
1716 }
1717 
1718 static int copy_iovec_from_user(struct iovec *iov,
1719 		const struct iovec __user *uvec, unsigned long nr_segs)
1720 {
1721 	unsigned long seg;
1722 
1723 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1724 		return -EFAULT;
1725 	for (seg = 0; seg < nr_segs; seg++) {
1726 		if ((ssize_t)iov[seg].iov_len < 0)
1727 			return -EINVAL;
1728 	}
1729 
1730 	return 0;
1731 }
1732 
1733 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1734 		unsigned long nr_segs, unsigned long fast_segs,
1735 		struct iovec *fast_iov, bool compat)
1736 {
1737 	struct iovec *iov = fast_iov;
1738 	int ret;
1739 
1740 	/*
1741 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1742 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1743 	 * traditionally returned zero for zero segments, so...
1744 	 */
1745 	if (nr_segs == 0)
1746 		return iov;
1747 	if (nr_segs > UIO_MAXIOV)
1748 		return ERR_PTR(-EINVAL);
1749 	if (nr_segs > fast_segs) {
1750 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1751 		if (!iov)
1752 			return ERR_PTR(-ENOMEM);
1753 	}
1754 
1755 	if (compat)
1756 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1757 	else
1758 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1759 	if (ret) {
1760 		if (iov != fast_iov)
1761 			kfree(iov);
1762 		return ERR_PTR(ret);
1763 	}
1764 
1765 	return iov;
1766 }
1767 
1768 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1769 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1770 		 struct iov_iter *i, bool compat)
1771 {
1772 	ssize_t total_len = 0;
1773 	unsigned long seg;
1774 	struct iovec *iov;
1775 
1776 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1777 	if (IS_ERR(iov)) {
1778 		*iovp = NULL;
1779 		return PTR_ERR(iov);
1780 	}
1781 
1782 	/*
1783 	 * According to the Single Unix Specification we should return EINVAL if
1784 	 * an element length is < 0 when cast to ssize_t or if the total length
1785 	 * would overflow the ssize_t return value of the system call.
1786 	 *
1787 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1788 	 * overflow case.
1789 	 */
1790 	for (seg = 0; seg < nr_segs; seg++) {
1791 		ssize_t len = (ssize_t)iov[seg].iov_len;
1792 
1793 		if (!access_ok(iov[seg].iov_base, len)) {
1794 			if (iov != *iovp)
1795 				kfree(iov);
1796 			*iovp = NULL;
1797 			return -EFAULT;
1798 		}
1799 
1800 		if (len > MAX_RW_COUNT - total_len) {
1801 			len = MAX_RW_COUNT - total_len;
1802 			iov[seg].iov_len = len;
1803 		}
1804 		total_len += len;
1805 	}
1806 
1807 	iov_iter_init(i, type, iov, nr_segs, total_len);
1808 	if (iov == *iovp)
1809 		*iovp = NULL;
1810 	else
1811 		*iovp = iov;
1812 	return total_len;
1813 }
1814 
1815 /**
1816  * import_iovec() - Copy an array of &struct iovec from userspace
1817  *     into the kernel, check that it is valid, and initialize a new
1818  *     &struct iov_iter iterator to access it.
1819  *
1820  * @type: One of %READ or %WRITE.
1821  * @uvec: Pointer to the userspace array.
1822  * @nr_segs: Number of elements in userspace array.
1823  * @fast_segs: Number of elements in @iov.
1824  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1825  *     on-stack) kernel array.
1826  * @i: Pointer to iterator that will be initialized on success.
1827  *
1828  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1829  * then this function places %NULL in *@iov on return. Otherwise, a new
1830  * array will be allocated and the result placed in *@iov. This means that
1831  * the caller may call kfree() on *@iov regardless of whether the small
1832  * on-stack array was used or not (and regardless of whether this function
1833  * returns an error or not).
1834  *
1835  * Return: Negative error code on error, bytes imported on success
1836  */
1837 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1838 		 unsigned nr_segs, unsigned fast_segs,
1839 		 struct iovec **iovp, struct iov_iter *i)
1840 {
1841 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1842 			      in_compat_syscall());
1843 }
1844 EXPORT_SYMBOL(import_iovec);
1845 
1846 int import_single_range(int rw, void __user *buf, size_t len,
1847 		 struct iovec *iov, struct iov_iter *i)
1848 {
1849 	if (len > MAX_RW_COUNT)
1850 		len = MAX_RW_COUNT;
1851 	if (unlikely(!access_ok(buf, len)))
1852 		return -EFAULT;
1853 
1854 	iov->iov_base = buf;
1855 	iov->iov_len = len;
1856 	iov_iter_init(i, rw, iov, 1, len);
1857 	return 0;
1858 }
1859 EXPORT_SYMBOL(import_single_range);
1860 
1861 /**
1862  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1863  *     iov_iter_save_state() was called.
1864  *
1865  * @i: &struct iov_iter to restore
1866  * @state: state to restore from
1867  *
1868  * Used after iov_iter_save_state() to bring restore @i, if operations may
1869  * have advanced it.
1870  *
1871  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1872  */
1873 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1874 {
1875 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1876 			 !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
1877 		return;
1878 	i->iov_offset = state->iov_offset;
1879 	i->count = state->count;
1880 	if (iter_is_ubuf(i))
1881 		return;
1882 	/*
1883 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1884 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1885 	 * need to track both of these, just one is enough and we can deduct
1886 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1887 	 * size, so we can just increment the iov pointer as they are unionzed.
1888 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1889 	 * not. Be safe and handle it separately.
1890 	 */
1891 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1892 	if (iov_iter_is_bvec(i))
1893 		i->bvec -= state->nr_segs - i->nr_segs;
1894 	else
1895 		i->iov -= state->nr_segs - i->nr_segs;
1896 	i->nr_segs = state->nr_segs;
1897 }
1898