xref: /openbmc/linux/lib/iov_iter.c (revision bf3eeb9b)
1 #include <linux/export.h>
2 #include <linux/bvec.h>
3 #include <linux/uio.h>
4 #include <linux/pagemap.h>
5 #include <linux/slab.h>
6 #include <linux/vmalloc.h>
7 #include <linux/splice.h>
8 #include <net/checksum.h>
9 
10 #define PIPE_PARANOIA /* for now */
11 
12 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
13 	size_t left;					\
14 	size_t wanted = n;				\
15 	__p = i->iov;					\
16 	__v.iov_len = min(n, __p->iov_len - skip);	\
17 	if (likely(__v.iov_len)) {			\
18 		__v.iov_base = __p->iov_base + skip;	\
19 		left = (STEP);				\
20 		__v.iov_len -= left;			\
21 		skip += __v.iov_len;			\
22 		n -= __v.iov_len;			\
23 	} else {					\
24 		left = 0;				\
25 	}						\
26 	while (unlikely(!left && n)) {			\
27 		__p++;					\
28 		__v.iov_len = min(n, __p->iov_len);	\
29 		if (unlikely(!__v.iov_len))		\
30 			continue;			\
31 		__v.iov_base = __p->iov_base;		\
32 		left = (STEP);				\
33 		__v.iov_len -= left;			\
34 		skip = __v.iov_len;			\
35 		n -= __v.iov_len;			\
36 	}						\
37 	n = wanted - n;					\
38 }
39 
40 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
41 	size_t wanted = n;				\
42 	__p = i->kvec;					\
43 	__v.iov_len = min(n, __p->iov_len - skip);	\
44 	if (likely(__v.iov_len)) {			\
45 		__v.iov_base = __p->iov_base + skip;	\
46 		(void)(STEP);				\
47 		skip += __v.iov_len;			\
48 		n -= __v.iov_len;			\
49 	}						\
50 	while (unlikely(n)) {				\
51 		__p++;					\
52 		__v.iov_len = min(n, __p->iov_len);	\
53 		if (unlikely(!__v.iov_len))		\
54 			continue;			\
55 		__v.iov_base = __p->iov_base;		\
56 		(void)(STEP);				\
57 		skip = __v.iov_len;			\
58 		n -= __v.iov_len;			\
59 	}						\
60 	n = wanted;					\
61 }
62 
63 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
64 	struct bvec_iter __start;			\
65 	__start.bi_size = n;				\
66 	__start.bi_bvec_done = skip;			\
67 	__start.bi_idx = 0;				\
68 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
69 		if (!__v.bv_len)			\
70 			continue;			\
71 		(void)(STEP);				\
72 	}						\
73 }
74 
75 #define iterate_all_kinds(i, n, v, I, B, K) {			\
76 	if (likely(n)) {					\
77 		size_t skip = i->iov_offset;			\
78 		if (unlikely(i->type & ITER_BVEC)) {		\
79 			struct bio_vec v;			\
80 			struct bvec_iter __bi;			\
81 			iterate_bvec(i, n, v, __bi, skip, (B))	\
82 		} else if (unlikely(i->type & ITER_KVEC)) {	\
83 			const struct kvec *kvec;		\
84 			struct kvec v;				\
85 			iterate_kvec(i, n, v, kvec, skip, (K))	\
86 		} else {					\
87 			const struct iovec *iov;		\
88 			struct iovec v;				\
89 			iterate_iovec(i, n, v, iov, skip, (I))	\
90 		}						\
91 	}							\
92 }
93 
94 #define iterate_and_advance(i, n, v, I, B, K) {			\
95 	if (unlikely(i->count < n))				\
96 		n = i->count;					\
97 	if (i->count) {						\
98 		size_t skip = i->iov_offset;			\
99 		if (unlikely(i->type & ITER_BVEC)) {		\
100 			const struct bio_vec *bvec = i->bvec;	\
101 			struct bio_vec v;			\
102 			struct bvec_iter __bi;			\
103 			iterate_bvec(i, n, v, __bi, skip, (B))	\
104 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
105 			i->nr_segs -= i->bvec - bvec;		\
106 			skip = __bi.bi_bvec_done;		\
107 		} else if (unlikely(i->type & ITER_KVEC)) {	\
108 			const struct kvec *kvec;		\
109 			struct kvec v;				\
110 			iterate_kvec(i, n, v, kvec, skip, (K))	\
111 			if (skip == kvec->iov_len) {		\
112 				kvec++;				\
113 				skip = 0;			\
114 			}					\
115 			i->nr_segs -= kvec - i->kvec;		\
116 			i->kvec = kvec;				\
117 		} else {					\
118 			const struct iovec *iov;		\
119 			struct iovec v;				\
120 			iterate_iovec(i, n, v, iov, skip, (I))	\
121 			if (skip == iov->iov_len) {		\
122 				iov++;				\
123 				skip = 0;			\
124 			}					\
125 			i->nr_segs -= iov - i->iov;		\
126 			i->iov = iov;				\
127 		}						\
128 		i->count -= n;					\
129 		i->iov_offset = skip;				\
130 	}							\
131 }
132 
133 static int copyout(void __user *to, const void *from, size_t n)
134 {
135 	if (access_ok(VERIFY_WRITE, to, n)) {
136 		kasan_check_read(from, n);
137 		n = raw_copy_to_user(to, from, n);
138 	}
139 	return n;
140 }
141 
142 static int copyin(void *to, const void __user *from, size_t n)
143 {
144 	if (access_ok(VERIFY_READ, from, n)) {
145 		kasan_check_write(to, n);
146 		n = raw_copy_from_user(to, from, n);
147 	}
148 	return n;
149 }
150 
151 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
152 			 struct iov_iter *i)
153 {
154 	size_t skip, copy, left, wanted;
155 	const struct iovec *iov;
156 	char __user *buf;
157 	void *kaddr, *from;
158 
159 	if (unlikely(bytes > i->count))
160 		bytes = i->count;
161 
162 	if (unlikely(!bytes))
163 		return 0;
164 
165 	might_fault();
166 	wanted = bytes;
167 	iov = i->iov;
168 	skip = i->iov_offset;
169 	buf = iov->iov_base + skip;
170 	copy = min(bytes, iov->iov_len - skip);
171 
172 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
173 		kaddr = kmap_atomic(page);
174 		from = kaddr + offset;
175 
176 		/* first chunk, usually the only one */
177 		left = copyout(buf, from, copy);
178 		copy -= left;
179 		skip += copy;
180 		from += copy;
181 		bytes -= copy;
182 
183 		while (unlikely(!left && bytes)) {
184 			iov++;
185 			buf = iov->iov_base;
186 			copy = min(bytes, iov->iov_len);
187 			left = copyout(buf, from, copy);
188 			copy -= left;
189 			skip = copy;
190 			from += copy;
191 			bytes -= copy;
192 		}
193 		if (likely(!bytes)) {
194 			kunmap_atomic(kaddr);
195 			goto done;
196 		}
197 		offset = from - kaddr;
198 		buf += copy;
199 		kunmap_atomic(kaddr);
200 		copy = min(bytes, iov->iov_len - skip);
201 	}
202 	/* Too bad - revert to non-atomic kmap */
203 
204 	kaddr = kmap(page);
205 	from = kaddr + offset;
206 	left = copyout(buf, from, copy);
207 	copy -= left;
208 	skip += copy;
209 	from += copy;
210 	bytes -= copy;
211 	while (unlikely(!left && bytes)) {
212 		iov++;
213 		buf = iov->iov_base;
214 		copy = min(bytes, iov->iov_len);
215 		left = copyout(buf, from, copy);
216 		copy -= left;
217 		skip = copy;
218 		from += copy;
219 		bytes -= copy;
220 	}
221 	kunmap(page);
222 
223 done:
224 	if (skip == iov->iov_len) {
225 		iov++;
226 		skip = 0;
227 	}
228 	i->count -= wanted - bytes;
229 	i->nr_segs -= iov - i->iov;
230 	i->iov = iov;
231 	i->iov_offset = skip;
232 	return wanted - bytes;
233 }
234 
235 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
236 			 struct iov_iter *i)
237 {
238 	size_t skip, copy, left, wanted;
239 	const struct iovec *iov;
240 	char __user *buf;
241 	void *kaddr, *to;
242 
243 	if (unlikely(bytes > i->count))
244 		bytes = i->count;
245 
246 	if (unlikely(!bytes))
247 		return 0;
248 
249 	might_fault();
250 	wanted = bytes;
251 	iov = i->iov;
252 	skip = i->iov_offset;
253 	buf = iov->iov_base + skip;
254 	copy = min(bytes, iov->iov_len - skip);
255 
256 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
257 		kaddr = kmap_atomic(page);
258 		to = kaddr + offset;
259 
260 		/* first chunk, usually the only one */
261 		left = copyin(to, buf, copy);
262 		copy -= left;
263 		skip += copy;
264 		to += copy;
265 		bytes -= copy;
266 
267 		while (unlikely(!left && bytes)) {
268 			iov++;
269 			buf = iov->iov_base;
270 			copy = min(bytes, iov->iov_len);
271 			left = copyin(to, buf, copy);
272 			copy -= left;
273 			skip = copy;
274 			to += copy;
275 			bytes -= copy;
276 		}
277 		if (likely(!bytes)) {
278 			kunmap_atomic(kaddr);
279 			goto done;
280 		}
281 		offset = to - kaddr;
282 		buf += copy;
283 		kunmap_atomic(kaddr);
284 		copy = min(bytes, iov->iov_len - skip);
285 	}
286 	/* Too bad - revert to non-atomic kmap */
287 
288 	kaddr = kmap(page);
289 	to = kaddr + offset;
290 	left = copyin(to, buf, copy);
291 	copy -= left;
292 	skip += copy;
293 	to += copy;
294 	bytes -= copy;
295 	while (unlikely(!left && bytes)) {
296 		iov++;
297 		buf = iov->iov_base;
298 		copy = min(bytes, iov->iov_len);
299 		left = copyin(to, buf, copy);
300 		copy -= left;
301 		skip = copy;
302 		to += copy;
303 		bytes -= copy;
304 	}
305 	kunmap(page);
306 
307 done:
308 	if (skip == iov->iov_len) {
309 		iov++;
310 		skip = 0;
311 	}
312 	i->count -= wanted - bytes;
313 	i->nr_segs -= iov - i->iov;
314 	i->iov = iov;
315 	i->iov_offset = skip;
316 	return wanted - bytes;
317 }
318 
319 #ifdef PIPE_PARANOIA
320 static bool sanity(const struct iov_iter *i)
321 {
322 	struct pipe_inode_info *pipe = i->pipe;
323 	int idx = i->idx;
324 	int next = pipe->curbuf + pipe->nrbufs;
325 	if (i->iov_offset) {
326 		struct pipe_buffer *p;
327 		if (unlikely(!pipe->nrbufs))
328 			goto Bad;	// pipe must be non-empty
329 		if (unlikely(idx != ((next - 1) & (pipe->buffers - 1))))
330 			goto Bad;	// must be at the last buffer...
331 
332 		p = &pipe->bufs[idx];
333 		if (unlikely(p->offset + p->len != i->iov_offset))
334 			goto Bad;	// ... at the end of segment
335 	} else {
336 		if (idx != (next & (pipe->buffers - 1)))
337 			goto Bad;	// must be right after the last buffer
338 	}
339 	return true;
340 Bad:
341 	printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset);
342 	printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n",
343 			pipe->curbuf, pipe->nrbufs, pipe->buffers);
344 	for (idx = 0; idx < pipe->buffers; idx++)
345 		printk(KERN_ERR "[%p %p %d %d]\n",
346 			pipe->bufs[idx].ops,
347 			pipe->bufs[idx].page,
348 			pipe->bufs[idx].offset,
349 			pipe->bufs[idx].len);
350 	WARN_ON(1);
351 	return false;
352 }
353 #else
354 #define sanity(i) true
355 #endif
356 
357 static inline int next_idx(int idx, struct pipe_inode_info *pipe)
358 {
359 	return (idx + 1) & (pipe->buffers - 1);
360 }
361 
362 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
363 			 struct iov_iter *i)
364 {
365 	struct pipe_inode_info *pipe = i->pipe;
366 	struct pipe_buffer *buf;
367 	size_t off;
368 	int idx;
369 
370 	if (unlikely(bytes > i->count))
371 		bytes = i->count;
372 
373 	if (unlikely(!bytes))
374 		return 0;
375 
376 	if (!sanity(i))
377 		return 0;
378 
379 	off = i->iov_offset;
380 	idx = i->idx;
381 	buf = &pipe->bufs[idx];
382 	if (off) {
383 		if (offset == off && buf->page == page) {
384 			/* merge with the last one */
385 			buf->len += bytes;
386 			i->iov_offset += bytes;
387 			goto out;
388 		}
389 		idx = next_idx(idx, pipe);
390 		buf = &pipe->bufs[idx];
391 	}
392 	if (idx == pipe->curbuf && pipe->nrbufs)
393 		return 0;
394 	pipe->nrbufs++;
395 	buf->ops = &page_cache_pipe_buf_ops;
396 	get_page(buf->page = page);
397 	buf->offset = offset;
398 	buf->len = bytes;
399 	i->iov_offset = offset + bytes;
400 	i->idx = idx;
401 out:
402 	i->count -= bytes;
403 	return bytes;
404 }
405 
406 /*
407  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
408  * bytes.  For each iovec, fault in each page that constitutes the iovec.
409  *
410  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
411  * because it is an invalid address).
412  */
413 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
414 {
415 	size_t skip = i->iov_offset;
416 	const struct iovec *iov;
417 	int err;
418 	struct iovec v;
419 
420 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
421 		iterate_iovec(i, bytes, v, iov, skip, ({
422 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
423 			if (unlikely(err))
424 			return err;
425 		0;}))
426 	}
427 	return 0;
428 }
429 EXPORT_SYMBOL(iov_iter_fault_in_readable);
430 
431 void iov_iter_init(struct iov_iter *i, int direction,
432 			const struct iovec *iov, unsigned long nr_segs,
433 			size_t count)
434 {
435 	/* It will get better.  Eventually... */
436 	if (uaccess_kernel()) {
437 		direction |= ITER_KVEC;
438 		i->type = direction;
439 		i->kvec = (struct kvec *)iov;
440 	} else {
441 		i->type = direction;
442 		i->iov = iov;
443 	}
444 	i->nr_segs = nr_segs;
445 	i->iov_offset = 0;
446 	i->count = count;
447 }
448 EXPORT_SYMBOL(iov_iter_init);
449 
450 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
451 {
452 	char *from = kmap_atomic(page);
453 	memcpy(to, from + offset, len);
454 	kunmap_atomic(from);
455 }
456 
457 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
458 {
459 	char *to = kmap_atomic(page);
460 	memcpy(to + offset, from, len);
461 	kunmap_atomic(to);
462 }
463 
464 static void memzero_page(struct page *page, size_t offset, size_t len)
465 {
466 	char *addr = kmap_atomic(page);
467 	memset(addr + offset, 0, len);
468 	kunmap_atomic(addr);
469 }
470 
471 static inline bool allocated(struct pipe_buffer *buf)
472 {
473 	return buf->ops == &default_pipe_buf_ops;
474 }
475 
476 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp)
477 {
478 	size_t off = i->iov_offset;
479 	int idx = i->idx;
480 	if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) {
481 		idx = next_idx(idx, i->pipe);
482 		off = 0;
483 	}
484 	*idxp = idx;
485 	*offp = off;
486 }
487 
488 static size_t push_pipe(struct iov_iter *i, size_t size,
489 			int *idxp, size_t *offp)
490 {
491 	struct pipe_inode_info *pipe = i->pipe;
492 	size_t off;
493 	int idx;
494 	ssize_t left;
495 
496 	if (unlikely(size > i->count))
497 		size = i->count;
498 	if (unlikely(!size))
499 		return 0;
500 
501 	left = size;
502 	data_start(i, &idx, &off);
503 	*idxp = idx;
504 	*offp = off;
505 	if (off) {
506 		left -= PAGE_SIZE - off;
507 		if (left <= 0) {
508 			pipe->bufs[idx].len += size;
509 			return size;
510 		}
511 		pipe->bufs[idx].len = PAGE_SIZE;
512 		idx = next_idx(idx, pipe);
513 	}
514 	while (idx != pipe->curbuf || !pipe->nrbufs) {
515 		struct page *page = alloc_page(GFP_USER);
516 		if (!page)
517 			break;
518 		pipe->nrbufs++;
519 		pipe->bufs[idx].ops = &default_pipe_buf_ops;
520 		pipe->bufs[idx].page = page;
521 		pipe->bufs[idx].offset = 0;
522 		if (left <= PAGE_SIZE) {
523 			pipe->bufs[idx].len = left;
524 			return size;
525 		}
526 		pipe->bufs[idx].len = PAGE_SIZE;
527 		left -= PAGE_SIZE;
528 		idx = next_idx(idx, pipe);
529 	}
530 	return size - left;
531 }
532 
533 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
534 				struct iov_iter *i)
535 {
536 	struct pipe_inode_info *pipe = i->pipe;
537 	size_t n, off;
538 	int idx;
539 
540 	if (!sanity(i))
541 		return 0;
542 
543 	bytes = n = push_pipe(i, bytes, &idx, &off);
544 	if (unlikely(!n))
545 		return 0;
546 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
547 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
548 		memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk);
549 		i->idx = idx;
550 		i->iov_offset = off + chunk;
551 		n -= chunk;
552 		addr += chunk;
553 	}
554 	i->count -= bytes;
555 	return bytes;
556 }
557 
558 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
559 {
560 	const char *from = addr;
561 	if (unlikely(i->type & ITER_PIPE))
562 		return copy_pipe_to_iter(addr, bytes, i);
563 	if (iter_is_iovec(i))
564 		might_fault();
565 	iterate_and_advance(i, bytes, v,
566 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
567 		memcpy_to_page(v.bv_page, v.bv_offset,
568 			       (from += v.bv_len) - v.bv_len, v.bv_len),
569 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
570 	)
571 
572 	return bytes;
573 }
574 EXPORT_SYMBOL(_copy_to_iter);
575 
576 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
577 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
578 {
579 	if (access_ok(VERIFY_WRITE, to, n)) {
580 		kasan_check_read(from, n);
581 		n = copy_to_user_mcsafe((__force void *) to, from, n);
582 	}
583 	return n;
584 }
585 
586 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
587 		const char *from, size_t len)
588 {
589 	unsigned long ret;
590 	char *to;
591 
592 	to = kmap_atomic(page);
593 	ret = memcpy_mcsafe(to + offset, from, len);
594 	kunmap_atomic(to);
595 
596 	return ret;
597 }
598 
599 /**
600  * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
601  * @addr: source kernel address
602  * @bytes: total transfer length
603  * @iter: destination iterator
604  *
605  * The pmem driver arranges for filesystem-dax to use this facility via
606  * dax_copy_to_iter() for protecting read/write to persistent memory.
607  * Unless / until an architecture can guarantee identical performance
608  * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
609  * performance regression to switch more users to the mcsafe version.
610  *
611  * Otherwise, the main differences between this and typical _copy_to_iter().
612  *
613  * * Typical tail/residue handling after a fault retries the copy
614  *   byte-by-byte until the fault happens again. Re-triggering machine
615  *   checks is potentially fatal so the implementation uses source
616  *   alignment and poison alignment assumptions to avoid re-triggering
617  *   hardware exceptions.
618  *
619  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
620  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
621  *   a short copy.
622  *
623  * See MCSAFE_TEST for self-test.
624  */
625 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
626 {
627 	const char *from = addr;
628 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
629 
630 	if (unlikely(i->type & ITER_PIPE)) {
631 		WARN_ON(1);
632 		return 0;
633 	}
634 	if (iter_is_iovec(i))
635 		might_fault();
636 	iterate_and_advance(i, bytes, v,
637 		copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
638 		({
639 		rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
640                                (from += v.bv_len) - v.bv_len, v.bv_len);
641 		if (rem) {
642 			curr_addr = (unsigned long) from;
643 			bytes = curr_addr - s_addr - rem;
644 			return bytes;
645 		}
646 		}),
647 		({
648 		rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
649 				v.iov_len);
650 		if (rem) {
651 			curr_addr = (unsigned long) from;
652 			bytes = curr_addr - s_addr - rem;
653 			return bytes;
654 		}
655 		})
656 	)
657 
658 	return bytes;
659 }
660 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
661 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
662 
663 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
664 {
665 	char *to = addr;
666 	if (unlikely(i->type & ITER_PIPE)) {
667 		WARN_ON(1);
668 		return 0;
669 	}
670 	if (iter_is_iovec(i))
671 		might_fault();
672 	iterate_and_advance(i, bytes, v,
673 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
674 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
675 				 v.bv_offset, v.bv_len),
676 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
677 	)
678 
679 	return bytes;
680 }
681 EXPORT_SYMBOL(_copy_from_iter);
682 
683 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
684 {
685 	char *to = addr;
686 	if (unlikely(i->type & ITER_PIPE)) {
687 		WARN_ON(1);
688 		return false;
689 	}
690 	if (unlikely(i->count < bytes))
691 		return false;
692 
693 	if (iter_is_iovec(i))
694 		might_fault();
695 	iterate_all_kinds(i, bytes, v, ({
696 		if (copyin((to += v.iov_len) - v.iov_len,
697 				      v.iov_base, v.iov_len))
698 			return false;
699 		0;}),
700 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
701 				 v.bv_offset, v.bv_len),
702 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
703 	)
704 
705 	iov_iter_advance(i, bytes);
706 	return true;
707 }
708 EXPORT_SYMBOL(_copy_from_iter_full);
709 
710 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
711 {
712 	char *to = addr;
713 	if (unlikely(i->type & ITER_PIPE)) {
714 		WARN_ON(1);
715 		return 0;
716 	}
717 	iterate_and_advance(i, bytes, v,
718 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
719 					 v.iov_base, v.iov_len),
720 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
721 				 v.bv_offset, v.bv_len),
722 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
723 	)
724 
725 	return bytes;
726 }
727 EXPORT_SYMBOL(_copy_from_iter_nocache);
728 
729 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
730 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
731 {
732 	char *to = addr;
733 	if (unlikely(i->type & ITER_PIPE)) {
734 		WARN_ON(1);
735 		return 0;
736 	}
737 	iterate_and_advance(i, bytes, v,
738 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
739 					 v.iov_base, v.iov_len),
740 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
741 				 v.bv_offset, v.bv_len),
742 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
743 			v.iov_len)
744 	)
745 
746 	return bytes;
747 }
748 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
749 #endif
750 
751 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
752 {
753 	char *to = addr;
754 	if (unlikely(i->type & ITER_PIPE)) {
755 		WARN_ON(1);
756 		return false;
757 	}
758 	if (unlikely(i->count < bytes))
759 		return false;
760 	iterate_all_kinds(i, bytes, v, ({
761 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
762 					     v.iov_base, v.iov_len))
763 			return false;
764 		0;}),
765 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
766 				 v.bv_offset, v.bv_len),
767 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
768 	)
769 
770 	iov_iter_advance(i, bytes);
771 	return true;
772 }
773 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
774 
775 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
776 {
777 	struct page *head = compound_head(page);
778 	size_t v = n + offset + page_address(page) - page_address(head);
779 
780 	if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head))))
781 		return true;
782 	WARN_ON(1);
783 	return false;
784 }
785 
786 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
787 			 struct iov_iter *i)
788 {
789 	if (unlikely(!page_copy_sane(page, offset, bytes)))
790 		return 0;
791 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
792 		void *kaddr = kmap_atomic(page);
793 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
794 		kunmap_atomic(kaddr);
795 		return wanted;
796 	} else if (likely(!(i->type & ITER_PIPE)))
797 		return copy_page_to_iter_iovec(page, offset, bytes, i);
798 	else
799 		return copy_page_to_iter_pipe(page, offset, bytes, i);
800 }
801 EXPORT_SYMBOL(copy_page_to_iter);
802 
803 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
804 			 struct iov_iter *i)
805 {
806 	if (unlikely(!page_copy_sane(page, offset, bytes)))
807 		return 0;
808 	if (unlikely(i->type & ITER_PIPE)) {
809 		WARN_ON(1);
810 		return 0;
811 	}
812 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
813 		void *kaddr = kmap_atomic(page);
814 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
815 		kunmap_atomic(kaddr);
816 		return wanted;
817 	} else
818 		return copy_page_from_iter_iovec(page, offset, bytes, i);
819 }
820 EXPORT_SYMBOL(copy_page_from_iter);
821 
822 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
823 {
824 	struct pipe_inode_info *pipe = i->pipe;
825 	size_t n, off;
826 	int idx;
827 
828 	if (!sanity(i))
829 		return 0;
830 
831 	bytes = n = push_pipe(i, bytes, &idx, &off);
832 	if (unlikely(!n))
833 		return 0;
834 
835 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
836 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
837 		memzero_page(pipe->bufs[idx].page, off, chunk);
838 		i->idx = idx;
839 		i->iov_offset = off + chunk;
840 		n -= chunk;
841 	}
842 	i->count -= bytes;
843 	return bytes;
844 }
845 
846 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
847 {
848 	if (unlikely(i->type & ITER_PIPE))
849 		return pipe_zero(bytes, i);
850 	iterate_and_advance(i, bytes, v,
851 		clear_user(v.iov_base, v.iov_len),
852 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
853 		memset(v.iov_base, 0, v.iov_len)
854 	)
855 
856 	return bytes;
857 }
858 EXPORT_SYMBOL(iov_iter_zero);
859 
860 size_t iov_iter_copy_from_user_atomic(struct page *page,
861 		struct iov_iter *i, unsigned long offset, size_t bytes)
862 {
863 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
864 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
865 		kunmap_atomic(kaddr);
866 		return 0;
867 	}
868 	if (unlikely(i->type & ITER_PIPE)) {
869 		kunmap_atomic(kaddr);
870 		WARN_ON(1);
871 		return 0;
872 	}
873 	iterate_all_kinds(i, bytes, v,
874 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
875 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
876 				 v.bv_offset, v.bv_len),
877 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
878 	)
879 	kunmap_atomic(kaddr);
880 	return bytes;
881 }
882 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
883 
884 static inline void pipe_truncate(struct iov_iter *i)
885 {
886 	struct pipe_inode_info *pipe = i->pipe;
887 	if (pipe->nrbufs) {
888 		size_t off = i->iov_offset;
889 		int idx = i->idx;
890 		int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1);
891 		if (off) {
892 			pipe->bufs[idx].len = off - pipe->bufs[idx].offset;
893 			idx = next_idx(idx, pipe);
894 			nrbufs++;
895 		}
896 		while (pipe->nrbufs > nrbufs) {
897 			pipe_buf_release(pipe, &pipe->bufs[idx]);
898 			idx = next_idx(idx, pipe);
899 			pipe->nrbufs--;
900 		}
901 	}
902 }
903 
904 static void pipe_advance(struct iov_iter *i, size_t size)
905 {
906 	struct pipe_inode_info *pipe = i->pipe;
907 	if (unlikely(i->count < size))
908 		size = i->count;
909 	if (size) {
910 		struct pipe_buffer *buf;
911 		size_t off = i->iov_offset, left = size;
912 		int idx = i->idx;
913 		if (off) /* make it relative to the beginning of buffer */
914 			left += off - pipe->bufs[idx].offset;
915 		while (1) {
916 			buf = &pipe->bufs[idx];
917 			if (left <= buf->len)
918 				break;
919 			left -= buf->len;
920 			idx = next_idx(idx, pipe);
921 		}
922 		i->idx = idx;
923 		i->iov_offset = buf->offset + left;
924 	}
925 	i->count -= size;
926 	/* ... and discard everything past that point */
927 	pipe_truncate(i);
928 }
929 
930 void iov_iter_advance(struct iov_iter *i, size_t size)
931 {
932 	if (unlikely(i->type & ITER_PIPE)) {
933 		pipe_advance(i, size);
934 		return;
935 	}
936 	iterate_and_advance(i, size, v, 0, 0, 0)
937 }
938 EXPORT_SYMBOL(iov_iter_advance);
939 
940 void iov_iter_revert(struct iov_iter *i, size_t unroll)
941 {
942 	if (!unroll)
943 		return;
944 	if (WARN_ON(unroll > MAX_RW_COUNT))
945 		return;
946 	i->count += unroll;
947 	if (unlikely(i->type & ITER_PIPE)) {
948 		struct pipe_inode_info *pipe = i->pipe;
949 		int idx = i->idx;
950 		size_t off = i->iov_offset;
951 		while (1) {
952 			size_t n = off - pipe->bufs[idx].offset;
953 			if (unroll < n) {
954 				off -= unroll;
955 				break;
956 			}
957 			unroll -= n;
958 			if (!unroll && idx == i->start_idx) {
959 				off = 0;
960 				break;
961 			}
962 			if (!idx--)
963 				idx = pipe->buffers - 1;
964 			off = pipe->bufs[idx].offset + pipe->bufs[idx].len;
965 		}
966 		i->iov_offset = off;
967 		i->idx = idx;
968 		pipe_truncate(i);
969 		return;
970 	}
971 	if (unroll <= i->iov_offset) {
972 		i->iov_offset -= unroll;
973 		return;
974 	}
975 	unroll -= i->iov_offset;
976 	if (i->type & ITER_BVEC) {
977 		const struct bio_vec *bvec = i->bvec;
978 		while (1) {
979 			size_t n = (--bvec)->bv_len;
980 			i->nr_segs++;
981 			if (unroll <= n) {
982 				i->bvec = bvec;
983 				i->iov_offset = n - unroll;
984 				return;
985 			}
986 			unroll -= n;
987 		}
988 	} else { /* same logics for iovec and kvec */
989 		const struct iovec *iov = i->iov;
990 		while (1) {
991 			size_t n = (--iov)->iov_len;
992 			i->nr_segs++;
993 			if (unroll <= n) {
994 				i->iov = iov;
995 				i->iov_offset = n - unroll;
996 				return;
997 			}
998 			unroll -= n;
999 		}
1000 	}
1001 }
1002 EXPORT_SYMBOL(iov_iter_revert);
1003 
1004 /*
1005  * Return the count of just the current iov_iter segment.
1006  */
1007 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1008 {
1009 	if (unlikely(i->type & ITER_PIPE))
1010 		return i->count;	// it is a silly place, anyway
1011 	if (i->nr_segs == 1)
1012 		return i->count;
1013 	else if (i->type & ITER_BVEC)
1014 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1015 	else
1016 		return min(i->count, i->iov->iov_len - i->iov_offset);
1017 }
1018 EXPORT_SYMBOL(iov_iter_single_seg_count);
1019 
1020 void iov_iter_kvec(struct iov_iter *i, int direction,
1021 			const struct kvec *kvec, unsigned long nr_segs,
1022 			size_t count)
1023 {
1024 	BUG_ON(!(direction & ITER_KVEC));
1025 	i->type = direction;
1026 	i->kvec = kvec;
1027 	i->nr_segs = nr_segs;
1028 	i->iov_offset = 0;
1029 	i->count = count;
1030 }
1031 EXPORT_SYMBOL(iov_iter_kvec);
1032 
1033 void iov_iter_bvec(struct iov_iter *i, int direction,
1034 			const struct bio_vec *bvec, unsigned long nr_segs,
1035 			size_t count)
1036 {
1037 	BUG_ON(!(direction & ITER_BVEC));
1038 	i->type = direction;
1039 	i->bvec = bvec;
1040 	i->nr_segs = nr_segs;
1041 	i->iov_offset = 0;
1042 	i->count = count;
1043 }
1044 EXPORT_SYMBOL(iov_iter_bvec);
1045 
1046 void iov_iter_pipe(struct iov_iter *i, int direction,
1047 			struct pipe_inode_info *pipe,
1048 			size_t count)
1049 {
1050 	BUG_ON(direction != ITER_PIPE);
1051 	WARN_ON(pipe->nrbufs == pipe->buffers);
1052 	i->type = direction;
1053 	i->pipe = pipe;
1054 	i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1055 	i->iov_offset = 0;
1056 	i->count = count;
1057 	i->start_idx = i->idx;
1058 }
1059 EXPORT_SYMBOL(iov_iter_pipe);
1060 
1061 unsigned long iov_iter_alignment(const struct iov_iter *i)
1062 {
1063 	unsigned long res = 0;
1064 	size_t size = i->count;
1065 
1066 	if (unlikely(i->type & ITER_PIPE)) {
1067 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx]))
1068 			return size | i->iov_offset;
1069 		return size;
1070 	}
1071 	iterate_all_kinds(i, size, v,
1072 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1073 		res |= v.bv_offset | v.bv_len,
1074 		res |= (unsigned long)v.iov_base | v.iov_len
1075 	)
1076 	return res;
1077 }
1078 EXPORT_SYMBOL(iov_iter_alignment);
1079 
1080 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1081 {
1082 	unsigned long res = 0;
1083 	size_t size = i->count;
1084 
1085 	if (unlikely(i->type & ITER_PIPE)) {
1086 		WARN_ON(1);
1087 		return ~0U;
1088 	}
1089 
1090 	iterate_all_kinds(i, size, v,
1091 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1092 			(size != v.iov_len ? size : 0), 0),
1093 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1094 			(size != v.bv_len ? size : 0)),
1095 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1096 			(size != v.iov_len ? size : 0))
1097 		);
1098 	return res;
1099 }
1100 EXPORT_SYMBOL(iov_iter_gap_alignment);
1101 
1102 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1103 				size_t maxsize,
1104 				struct page **pages,
1105 				int idx,
1106 				size_t *start)
1107 {
1108 	struct pipe_inode_info *pipe = i->pipe;
1109 	ssize_t n = push_pipe(i, maxsize, &idx, start);
1110 	if (!n)
1111 		return -EFAULT;
1112 
1113 	maxsize = n;
1114 	n += *start;
1115 	while (n > 0) {
1116 		get_page(*pages++ = pipe->bufs[idx].page);
1117 		idx = next_idx(idx, pipe);
1118 		n -= PAGE_SIZE;
1119 	}
1120 
1121 	return maxsize;
1122 }
1123 
1124 static ssize_t pipe_get_pages(struct iov_iter *i,
1125 		   struct page **pages, size_t maxsize, unsigned maxpages,
1126 		   size_t *start)
1127 {
1128 	unsigned npages;
1129 	size_t capacity;
1130 	int idx;
1131 
1132 	if (!maxsize)
1133 		return 0;
1134 
1135 	if (!sanity(i))
1136 		return -EFAULT;
1137 
1138 	data_start(i, &idx, start);
1139 	/* some of this one + all after this one */
1140 	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1141 	capacity = min(npages,maxpages) * PAGE_SIZE - *start;
1142 
1143 	return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start);
1144 }
1145 
1146 ssize_t iov_iter_get_pages(struct iov_iter *i,
1147 		   struct page **pages, size_t maxsize, unsigned maxpages,
1148 		   size_t *start)
1149 {
1150 	if (maxsize > i->count)
1151 		maxsize = i->count;
1152 
1153 	if (unlikely(i->type & ITER_PIPE))
1154 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1155 	iterate_all_kinds(i, maxsize, v, ({
1156 		unsigned long addr = (unsigned long)v.iov_base;
1157 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1158 		int n;
1159 		int res;
1160 
1161 		if (len > maxpages * PAGE_SIZE)
1162 			len = maxpages * PAGE_SIZE;
1163 		addr &= ~(PAGE_SIZE - 1);
1164 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1165 		res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, pages);
1166 		if (unlikely(res < 0))
1167 			return res;
1168 		return (res == n ? len : res * PAGE_SIZE) - *start;
1169 	0;}),({
1170 		/* can't be more than PAGE_SIZE */
1171 		*start = v.bv_offset;
1172 		get_page(*pages = v.bv_page);
1173 		return v.bv_len;
1174 	}),({
1175 		return -EFAULT;
1176 	})
1177 	)
1178 	return 0;
1179 }
1180 EXPORT_SYMBOL(iov_iter_get_pages);
1181 
1182 static struct page **get_pages_array(size_t n)
1183 {
1184 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1185 }
1186 
1187 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1188 		   struct page ***pages, size_t maxsize,
1189 		   size_t *start)
1190 {
1191 	struct page **p;
1192 	ssize_t n;
1193 	int idx;
1194 	int npages;
1195 
1196 	if (!maxsize)
1197 		return 0;
1198 
1199 	if (!sanity(i))
1200 		return -EFAULT;
1201 
1202 	data_start(i, &idx, start);
1203 	/* some of this one + all after this one */
1204 	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1205 	n = npages * PAGE_SIZE - *start;
1206 	if (maxsize > n)
1207 		maxsize = n;
1208 	else
1209 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1210 	p = get_pages_array(npages);
1211 	if (!p)
1212 		return -ENOMEM;
1213 	n = __pipe_get_pages(i, maxsize, p, idx, start);
1214 	if (n > 0)
1215 		*pages = p;
1216 	else
1217 		kvfree(p);
1218 	return n;
1219 }
1220 
1221 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1222 		   struct page ***pages, size_t maxsize,
1223 		   size_t *start)
1224 {
1225 	struct page **p;
1226 
1227 	if (maxsize > i->count)
1228 		maxsize = i->count;
1229 
1230 	if (unlikely(i->type & ITER_PIPE))
1231 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1232 	iterate_all_kinds(i, maxsize, v, ({
1233 		unsigned long addr = (unsigned long)v.iov_base;
1234 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1235 		int n;
1236 		int res;
1237 
1238 		addr &= ~(PAGE_SIZE - 1);
1239 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1240 		p = get_pages_array(n);
1241 		if (!p)
1242 			return -ENOMEM;
1243 		res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, p);
1244 		if (unlikely(res < 0)) {
1245 			kvfree(p);
1246 			return res;
1247 		}
1248 		*pages = p;
1249 		return (res == n ? len : res * PAGE_SIZE) - *start;
1250 	0;}),({
1251 		/* can't be more than PAGE_SIZE */
1252 		*start = v.bv_offset;
1253 		*pages = p = get_pages_array(1);
1254 		if (!p)
1255 			return -ENOMEM;
1256 		get_page(*p = v.bv_page);
1257 		return v.bv_len;
1258 	}),({
1259 		return -EFAULT;
1260 	})
1261 	)
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1265 
1266 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1267 			       struct iov_iter *i)
1268 {
1269 	char *to = addr;
1270 	__wsum sum, next;
1271 	size_t off = 0;
1272 	sum = *csum;
1273 	if (unlikely(i->type & ITER_PIPE)) {
1274 		WARN_ON(1);
1275 		return 0;
1276 	}
1277 	iterate_and_advance(i, bytes, v, ({
1278 		int err = 0;
1279 		next = csum_and_copy_from_user(v.iov_base,
1280 					       (to += v.iov_len) - v.iov_len,
1281 					       v.iov_len, 0, &err);
1282 		if (!err) {
1283 			sum = csum_block_add(sum, next, off);
1284 			off += v.iov_len;
1285 		}
1286 		err ? v.iov_len : 0;
1287 	}), ({
1288 		char *p = kmap_atomic(v.bv_page);
1289 		next = csum_partial_copy_nocheck(p + v.bv_offset,
1290 						 (to += v.bv_len) - v.bv_len,
1291 						 v.bv_len, 0);
1292 		kunmap_atomic(p);
1293 		sum = csum_block_add(sum, next, off);
1294 		off += v.bv_len;
1295 	}),({
1296 		next = csum_partial_copy_nocheck(v.iov_base,
1297 						 (to += v.iov_len) - v.iov_len,
1298 						 v.iov_len, 0);
1299 		sum = csum_block_add(sum, next, off);
1300 		off += v.iov_len;
1301 	})
1302 	)
1303 	*csum = sum;
1304 	return bytes;
1305 }
1306 EXPORT_SYMBOL(csum_and_copy_from_iter);
1307 
1308 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1309 			       struct iov_iter *i)
1310 {
1311 	char *to = addr;
1312 	__wsum sum, next;
1313 	size_t off = 0;
1314 	sum = *csum;
1315 	if (unlikely(i->type & ITER_PIPE)) {
1316 		WARN_ON(1);
1317 		return false;
1318 	}
1319 	if (unlikely(i->count < bytes))
1320 		return false;
1321 	iterate_all_kinds(i, bytes, v, ({
1322 		int err = 0;
1323 		next = csum_and_copy_from_user(v.iov_base,
1324 					       (to += v.iov_len) - v.iov_len,
1325 					       v.iov_len, 0, &err);
1326 		if (err)
1327 			return false;
1328 		sum = csum_block_add(sum, next, off);
1329 		off += v.iov_len;
1330 		0;
1331 	}), ({
1332 		char *p = kmap_atomic(v.bv_page);
1333 		next = csum_partial_copy_nocheck(p + v.bv_offset,
1334 						 (to += v.bv_len) - v.bv_len,
1335 						 v.bv_len, 0);
1336 		kunmap_atomic(p);
1337 		sum = csum_block_add(sum, next, off);
1338 		off += v.bv_len;
1339 	}),({
1340 		next = csum_partial_copy_nocheck(v.iov_base,
1341 						 (to += v.iov_len) - v.iov_len,
1342 						 v.iov_len, 0);
1343 		sum = csum_block_add(sum, next, off);
1344 		off += v.iov_len;
1345 	})
1346 	)
1347 	*csum = sum;
1348 	iov_iter_advance(i, bytes);
1349 	return true;
1350 }
1351 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1352 
1353 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, __wsum *csum,
1354 			     struct iov_iter *i)
1355 {
1356 	const char *from = addr;
1357 	__wsum sum, next;
1358 	size_t off = 0;
1359 	sum = *csum;
1360 	if (unlikely(i->type & ITER_PIPE)) {
1361 		WARN_ON(1);	/* for now */
1362 		return 0;
1363 	}
1364 	iterate_and_advance(i, bytes, v, ({
1365 		int err = 0;
1366 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1367 					     v.iov_base,
1368 					     v.iov_len, 0, &err);
1369 		if (!err) {
1370 			sum = csum_block_add(sum, next, off);
1371 			off += v.iov_len;
1372 		}
1373 		err ? v.iov_len : 0;
1374 	}), ({
1375 		char *p = kmap_atomic(v.bv_page);
1376 		next = csum_partial_copy_nocheck((from += v.bv_len) - v.bv_len,
1377 						 p + v.bv_offset,
1378 						 v.bv_len, 0);
1379 		kunmap_atomic(p);
1380 		sum = csum_block_add(sum, next, off);
1381 		off += v.bv_len;
1382 	}),({
1383 		next = csum_partial_copy_nocheck((from += v.iov_len) - v.iov_len,
1384 						 v.iov_base,
1385 						 v.iov_len, 0);
1386 		sum = csum_block_add(sum, next, off);
1387 		off += v.iov_len;
1388 	})
1389 	)
1390 	*csum = sum;
1391 	return bytes;
1392 }
1393 EXPORT_SYMBOL(csum_and_copy_to_iter);
1394 
1395 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1396 {
1397 	size_t size = i->count;
1398 	int npages = 0;
1399 
1400 	if (!size)
1401 		return 0;
1402 
1403 	if (unlikely(i->type & ITER_PIPE)) {
1404 		struct pipe_inode_info *pipe = i->pipe;
1405 		size_t off;
1406 		int idx;
1407 
1408 		if (!sanity(i))
1409 			return 0;
1410 
1411 		data_start(i, &idx, &off);
1412 		/* some of this one + all after this one */
1413 		npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1;
1414 		if (npages >= maxpages)
1415 			return maxpages;
1416 	} else iterate_all_kinds(i, size, v, ({
1417 		unsigned long p = (unsigned long)v.iov_base;
1418 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1419 			- p / PAGE_SIZE;
1420 		if (npages >= maxpages)
1421 			return maxpages;
1422 	0;}),({
1423 		npages++;
1424 		if (npages >= maxpages)
1425 			return maxpages;
1426 	}),({
1427 		unsigned long p = (unsigned long)v.iov_base;
1428 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1429 			- p / PAGE_SIZE;
1430 		if (npages >= maxpages)
1431 			return maxpages;
1432 	})
1433 	)
1434 	return npages;
1435 }
1436 EXPORT_SYMBOL(iov_iter_npages);
1437 
1438 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1439 {
1440 	*new = *old;
1441 	if (unlikely(new->type & ITER_PIPE)) {
1442 		WARN_ON(1);
1443 		return NULL;
1444 	}
1445 	if (new->type & ITER_BVEC)
1446 		return new->bvec = kmemdup(new->bvec,
1447 				    new->nr_segs * sizeof(struct bio_vec),
1448 				    flags);
1449 	else
1450 		/* iovec and kvec have identical layout */
1451 		return new->iov = kmemdup(new->iov,
1452 				   new->nr_segs * sizeof(struct iovec),
1453 				   flags);
1454 }
1455 EXPORT_SYMBOL(dup_iter);
1456 
1457 /**
1458  * import_iovec() - Copy an array of &struct iovec from userspace
1459  *     into the kernel, check that it is valid, and initialize a new
1460  *     &struct iov_iter iterator to access it.
1461  *
1462  * @type: One of %READ or %WRITE.
1463  * @uvector: Pointer to the userspace array.
1464  * @nr_segs: Number of elements in userspace array.
1465  * @fast_segs: Number of elements in @iov.
1466  * @iov: (input and output parameter) Pointer to pointer to (usually small
1467  *     on-stack) kernel array.
1468  * @i: Pointer to iterator that will be initialized on success.
1469  *
1470  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1471  * then this function places %NULL in *@iov on return. Otherwise, a new
1472  * array will be allocated and the result placed in *@iov. This means that
1473  * the caller may call kfree() on *@iov regardless of whether the small
1474  * on-stack array was used or not (and regardless of whether this function
1475  * returns an error or not).
1476  *
1477  * Return: 0 on success or negative error code on error.
1478  */
1479 int import_iovec(int type, const struct iovec __user * uvector,
1480 		 unsigned nr_segs, unsigned fast_segs,
1481 		 struct iovec **iov, struct iov_iter *i)
1482 {
1483 	ssize_t n;
1484 	struct iovec *p;
1485 	n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1486 				  *iov, &p);
1487 	if (n < 0) {
1488 		if (p != *iov)
1489 			kfree(p);
1490 		*iov = NULL;
1491 		return n;
1492 	}
1493 	iov_iter_init(i, type, p, nr_segs, n);
1494 	*iov = p == *iov ? NULL : p;
1495 	return 0;
1496 }
1497 EXPORT_SYMBOL(import_iovec);
1498 
1499 #ifdef CONFIG_COMPAT
1500 #include <linux/compat.h>
1501 
1502 int compat_import_iovec(int type, const struct compat_iovec __user * uvector,
1503 		 unsigned nr_segs, unsigned fast_segs,
1504 		 struct iovec **iov, struct iov_iter *i)
1505 {
1506 	ssize_t n;
1507 	struct iovec *p;
1508 	n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1509 				  *iov, &p);
1510 	if (n < 0) {
1511 		if (p != *iov)
1512 			kfree(p);
1513 		*iov = NULL;
1514 		return n;
1515 	}
1516 	iov_iter_init(i, type, p, nr_segs, n);
1517 	*iov = p == *iov ? NULL : p;
1518 	return 0;
1519 }
1520 #endif
1521 
1522 int import_single_range(int rw, void __user *buf, size_t len,
1523 		 struct iovec *iov, struct iov_iter *i)
1524 {
1525 	if (len > MAX_RW_COUNT)
1526 		len = MAX_RW_COUNT;
1527 	if (unlikely(!access_ok(!rw, buf, len)))
1528 		return -EFAULT;
1529 
1530 	iov->iov_base = buf;
1531 	iov->iov_len = len;
1532 	iov_iter_init(i, rw, iov, 1, len);
1533 	return 0;
1534 }
1535 EXPORT_SYMBOL(import_single_range);
1536 
1537 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1538 			    int (*f)(struct kvec *vec, void *context),
1539 			    void *context)
1540 {
1541 	struct kvec w;
1542 	int err = -EINVAL;
1543 	if (!bytes)
1544 		return 0;
1545 
1546 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1547 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1548 		w.iov_len = v.bv_len;
1549 		err = f(&w, context);
1550 		kunmap(v.bv_page);
1551 		err;}), ({
1552 		w = v;
1553 		err = f(&w, context);})
1554 	)
1555 	return err;
1556 }
1557 EXPORT_SYMBOL(iov_iter_for_each_range);
1558