xref: /openbmc/linux/lib/iov_iter.c (revision 9b2e0016)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <net/checksum.h>
13 #include <linux/scatterlist.h>
14 #include <linux/instrumented.h>
15 
16 #define PIPE_PARANOIA /* for now */
17 
18 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
19 	size_t left;					\
20 	size_t wanted = n;				\
21 	__p = i->iov;					\
22 	__v.iov_len = min(n, __p->iov_len - skip);	\
23 	if (likely(__v.iov_len)) {			\
24 		__v.iov_base = __p->iov_base + skip;	\
25 		left = (STEP);				\
26 		__v.iov_len -= left;			\
27 		skip += __v.iov_len;			\
28 		n -= __v.iov_len;			\
29 	} else {					\
30 		left = 0;				\
31 	}						\
32 	while (unlikely(!left && n)) {			\
33 		__p++;					\
34 		__v.iov_len = min(n, __p->iov_len);	\
35 		if (unlikely(!__v.iov_len))		\
36 			continue;			\
37 		__v.iov_base = __p->iov_base;		\
38 		left = (STEP);				\
39 		__v.iov_len -= left;			\
40 		skip = __v.iov_len;			\
41 		n -= __v.iov_len;			\
42 	}						\
43 	n = wanted - n;					\
44 }
45 
46 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
47 	size_t wanted = n;				\
48 	__p = i->kvec;					\
49 	__v.iov_len = min(n, __p->iov_len - skip);	\
50 	if (likely(__v.iov_len)) {			\
51 		__v.iov_base = __p->iov_base + skip;	\
52 		(void)(STEP);				\
53 		skip += __v.iov_len;			\
54 		n -= __v.iov_len;			\
55 	}						\
56 	while (unlikely(n)) {				\
57 		__p++;					\
58 		__v.iov_len = min(n, __p->iov_len);	\
59 		if (unlikely(!__v.iov_len))		\
60 			continue;			\
61 		__v.iov_base = __p->iov_base;		\
62 		(void)(STEP);				\
63 		skip = __v.iov_len;			\
64 		n -= __v.iov_len;			\
65 	}						\
66 	n = wanted;					\
67 }
68 
69 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
70 	struct bvec_iter __start;			\
71 	__start.bi_size = n;				\
72 	__start.bi_bvec_done = skip;			\
73 	__start.bi_idx = 0;				\
74 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
75 		(void)(STEP);				\
76 	}						\
77 }
78 
79 #define iterate_all_kinds(i, n, v, I, B, K) {			\
80 	if (likely(n)) {					\
81 		size_t skip = i->iov_offset;			\
82 		if (unlikely(i->type & ITER_BVEC)) {		\
83 			struct bio_vec v;			\
84 			struct bvec_iter __bi;			\
85 			iterate_bvec(i, n, v, __bi, skip, (B))	\
86 		} else if (unlikely(i->type & ITER_KVEC)) {	\
87 			const struct kvec *kvec;		\
88 			struct kvec v;				\
89 			iterate_kvec(i, n, v, kvec, skip, (K))	\
90 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
91 		} else {					\
92 			const struct iovec *iov;		\
93 			struct iovec v;				\
94 			iterate_iovec(i, n, v, iov, skip, (I))	\
95 		}						\
96 	}							\
97 }
98 
99 #define iterate_and_advance(i, n, v, I, B, K) {			\
100 	if (unlikely(i->count < n))				\
101 		n = i->count;					\
102 	if (i->count) {						\
103 		size_t skip = i->iov_offset;			\
104 		if (unlikely(i->type & ITER_BVEC)) {		\
105 			const struct bio_vec *bvec = i->bvec;	\
106 			struct bio_vec v;			\
107 			struct bvec_iter __bi;			\
108 			iterate_bvec(i, n, v, __bi, skip, (B))	\
109 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
110 			i->nr_segs -= i->bvec - bvec;		\
111 			skip = __bi.bi_bvec_done;		\
112 		} else if (unlikely(i->type & ITER_KVEC)) {	\
113 			const struct kvec *kvec;		\
114 			struct kvec v;				\
115 			iterate_kvec(i, n, v, kvec, skip, (K))	\
116 			if (skip == kvec->iov_len) {		\
117 				kvec++;				\
118 				skip = 0;			\
119 			}					\
120 			i->nr_segs -= kvec - i->kvec;		\
121 			i->kvec = kvec;				\
122 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
123 			skip += n;				\
124 		} else {					\
125 			const struct iovec *iov;		\
126 			struct iovec v;				\
127 			iterate_iovec(i, n, v, iov, skip, (I))	\
128 			if (skip == iov->iov_len) {		\
129 				iov++;				\
130 				skip = 0;			\
131 			}					\
132 			i->nr_segs -= iov - i->iov;		\
133 			i->iov = iov;				\
134 		}						\
135 		i->count -= n;					\
136 		i->iov_offset = skip;				\
137 	}							\
138 }
139 
140 static int copyout(void __user *to, const void *from, size_t n)
141 {
142 	if (should_fail_usercopy())
143 		return n;
144 	if (access_ok(to, n)) {
145 		instrument_copy_to_user(to, from, n);
146 		n = raw_copy_to_user(to, from, n);
147 	}
148 	return n;
149 }
150 
151 static int copyin(void *to, const void __user *from, size_t n)
152 {
153 	if (should_fail_usercopy())
154 		return n;
155 	if (access_ok(from, n)) {
156 		instrument_copy_from_user(to, from, n);
157 		n = raw_copy_from_user(to, from, n);
158 	}
159 	return n;
160 }
161 
162 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
163 			 struct iov_iter *i)
164 {
165 	size_t skip, copy, left, wanted;
166 	const struct iovec *iov;
167 	char __user *buf;
168 	void *kaddr, *from;
169 
170 	if (unlikely(bytes > i->count))
171 		bytes = i->count;
172 
173 	if (unlikely(!bytes))
174 		return 0;
175 
176 	might_fault();
177 	wanted = bytes;
178 	iov = i->iov;
179 	skip = i->iov_offset;
180 	buf = iov->iov_base + skip;
181 	copy = min(bytes, iov->iov_len - skip);
182 
183 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
184 		kaddr = kmap_atomic(page);
185 		from = kaddr + offset;
186 
187 		/* first chunk, usually the only one */
188 		left = copyout(buf, from, copy);
189 		copy -= left;
190 		skip += copy;
191 		from += copy;
192 		bytes -= copy;
193 
194 		while (unlikely(!left && bytes)) {
195 			iov++;
196 			buf = iov->iov_base;
197 			copy = min(bytes, iov->iov_len);
198 			left = copyout(buf, from, copy);
199 			copy -= left;
200 			skip = copy;
201 			from += copy;
202 			bytes -= copy;
203 		}
204 		if (likely(!bytes)) {
205 			kunmap_atomic(kaddr);
206 			goto done;
207 		}
208 		offset = from - kaddr;
209 		buf += copy;
210 		kunmap_atomic(kaddr);
211 		copy = min(bytes, iov->iov_len - skip);
212 	}
213 	/* Too bad - revert to non-atomic kmap */
214 
215 	kaddr = kmap(page);
216 	from = kaddr + offset;
217 	left = copyout(buf, from, copy);
218 	copy -= left;
219 	skip += copy;
220 	from += copy;
221 	bytes -= copy;
222 	while (unlikely(!left && bytes)) {
223 		iov++;
224 		buf = iov->iov_base;
225 		copy = min(bytes, iov->iov_len);
226 		left = copyout(buf, from, copy);
227 		copy -= left;
228 		skip = copy;
229 		from += copy;
230 		bytes -= copy;
231 	}
232 	kunmap(page);
233 
234 done:
235 	if (skip == iov->iov_len) {
236 		iov++;
237 		skip = 0;
238 	}
239 	i->count -= wanted - bytes;
240 	i->nr_segs -= iov - i->iov;
241 	i->iov = iov;
242 	i->iov_offset = skip;
243 	return wanted - bytes;
244 }
245 
246 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
247 			 struct iov_iter *i)
248 {
249 	size_t skip, copy, left, wanted;
250 	const struct iovec *iov;
251 	char __user *buf;
252 	void *kaddr, *to;
253 
254 	if (unlikely(bytes > i->count))
255 		bytes = i->count;
256 
257 	if (unlikely(!bytes))
258 		return 0;
259 
260 	might_fault();
261 	wanted = bytes;
262 	iov = i->iov;
263 	skip = i->iov_offset;
264 	buf = iov->iov_base + skip;
265 	copy = min(bytes, iov->iov_len - skip);
266 
267 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
268 		kaddr = kmap_atomic(page);
269 		to = kaddr + offset;
270 
271 		/* first chunk, usually the only one */
272 		left = copyin(to, buf, copy);
273 		copy -= left;
274 		skip += copy;
275 		to += copy;
276 		bytes -= copy;
277 
278 		while (unlikely(!left && bytes)) {
279 			iov++;
280 			buf = iov->iov_base;
281 			copy = min(bytes, iov->iov_len);
282 			left = copyin(to, buf, copy);
283 			copy -= left;
284 			skip = copy;
285 			to += copy;
286 			bytes -= copy;
287 		}
288 		if (likely(!bytes)) {
289 			kunmap_atomic(kaddr);
290 			goto done;
291 		}
292 		offset = to - kaddr;
293 		buf += copy;
294 		kunmap_atomic(kaddr);
295 		copy = min(bytes, iov->iov_len - skip);
296 	}
297 	/* Too bad - revert to non-atomic kmap */
298 
299 	kaddr = kmap(page);
300 	to = kaddr + offset;
301 	left = copyin(to, buf, copy);
302 	copy -= left;
303 	skip += copy;
304 	to += copy;
305 	bytes -= copy;
306 	while (unlikely(!left && bytes)) {
307 		iov++;
308 		buf = iov->iov_base;
309 		copy = min(bytes, iov->iov_len);
310 		left = copyin(to, buf, copy);
311 		copy -= left;
312 		skip = copy;
313 		to += copy;
314 		bytes -= copy;
315 	}
316 	kunmap(page);
317 
318 done:
319 	if (skip == iov->iov_len) {
320 		iov++;
321 		skip = 0;
322 	}
323 	i->count -= wanted - bytes;
324 	i->nr_segs -= iov - i->iov;
325 	i->iov = iov;
326 	i->iov_offset = skip;
327 	return wanted - bytes;
328 }
329 
330 #ifdef PIPE_PARANOIA
331 static bool sanity(const struct iov_iter *i)
332 {
333 	struct pipe_inode_info *pipe = i->pipe;
334 	unsigned int p_head = pipe->head;
335 	unsigned int p_tail = pipe->tail;
336 	unsigned int p_mask = pipe->ring_size - 1;
337 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
338 	unsigned int i_head = i->head;
339 	unsigned int idx;
340 
341 	if (i->iov_offset) {
342 		struct pipe_buffer *p;
343 		if (unlikely(p_occupancy == 0))
344 			goto Bad;	// pipe must be non-empty
345 		if (unlikely(i_head != p_head - 1))
346 			goto Bad;	// must be at the last buffer...
347 
348 		p = &pipe->bufs[i_head & p_mask];
349 		if (unlikely(p->offset + p->len != i->iov_offset))
350 			goto Bad;	// ... at the end of segment
351 	} else {
352 		if (i_head != p_head)
353 			goto Bad;	// must be right after the last buffer
354 	}
355 	return true;
356 Bad:
357 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
358 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
359 			p_head, p_tail, pipe->ring_size);
360 	for (idx = 0; idx < pipe->ring_size; idx++)
361 		printk(KERN_ERR "[%p %p %d %d]\n",
362 			pipe->bufs[idx].ops,
363 			pipe->bufs[idx].page,
364 			pipe->bufs[idx].offset,
365 			pipe->bufs[idx].len);
366 	WARN_ON(1);
367 	return false;
368 }
369 #else
370 #define sanity(i) true
371 #endif
372 
373 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
374 			 struct iov_iter *i)
375 {
376 	struct pipe_inode_info *pipe = i->pipe;
377 	struct pipe_buffer *buf;
378 	unsigned int p_tail = pipe->tail;
379 	unsigned int p_mask = pipe->ring_size - 1;
380 	unsigned int i_head = i->head;
381 	size_t off;
382 
383 	if (unlikely(bytes > i->count))
384 		bytes = i->count;
385 
386 	if (unlikely(!bytes))
387 		return 0;
388 
389 	if (!sanity(i))
390 		return 0;
391 
392 	off = i->iov_offset;
393 	buf = &pipe->bufs[i_head & p_mask];
394 	if (off) {
395 		if (offset == off && buf->page == page) {
396 			/* merge with the last one */
397 			buf->len += bytes;
398 			i->iov_offset += bytes;
399 			goto out;
400 		}
401 		i_head++;
402 		buf = &pipe->bufs[i_head & p_mask];
403 	}
404 	if (pipe_full(i_head, p_tail, pipe->max_usage))
405 		return 0;
406 
407 	buf->ops = &page_cache_pipe_buf_ops;
408 	get_page(page);
409 	buf->page = page;
410 	buf->offset = offset;
411 	buf->len = bytes;
412 
413 	pipe->head = i_head + 1;
414 	i->iov_offset = offset + bytes;
415 	i->head = i_head;
416 out:
417 	i->count -= bytes;
418 	return bytes;
419 }
420 
421 /*
422  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
423  * bytes.  For each iovec, fault in each page that constitutes the iovec.
424  *
425  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
426  * because it is an invalid address).
427  */
428 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
429 {
430 	size_t skip = i->iov_offset;
431 	const struct iovec *iov;
432 	int err;
433 	struct iovec v;
434 
435 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
436 		iterate_iovec(i, bytes, v, iov, skip, ({
437 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
438 			if (unlikely(err))
439 			return err;
440 		0;}))
441 	}
442 	return 0;
443 }
444 EXPORT_SYMBOL(iov_iter_fault_in_readable);
445 
446 void iov_iter_init(struct iov_iter *i, unsigned int direction,
447 			const struct iovec *iov, unsigned long nr_segs,
448 			size_t count)
449 {
450 	WARN_ON(direction & ~(READ | WRITE));
451 	direction &= READ | WRITE;
452 
453 	/* It will get better.  Eventually... */
454 	if (uaccess_kernel()) {
455 		i->type = ITER_KVEC | direction;
456 		i->kvec = (struct kvec *)iov;
457 	} else {
458 		i->type = ITER_IOVEC | direction;
459 		i->iov = iov;
460 	}
461 	i->nr_segs = nr_segs;
462 	i->iov_offset = 0;
463 	i->count = count;
464 }
465 EXPORT_SYMBOL(iov_iter_init);
466 
467 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
468 {
469 	char *from = kmap_atomic(page);
470 	memcpy(to, from + offset, len);
471 	kunmap_atomic(from);
472 }
473 
474 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
475 {
476 	char *to = kmap_atomic(page);
477 	memcpy(to + offset, from, len);
478 	kunmap_atomic(to);
479 }
480 
481 static void memzero_page(struct page *page, size_t offset, size_t len)
482 {
483 	char *addr = kmap_atomic(page);
484 	memset(addr + offset, 0, len);
485 	kunmap_atomic(addr);
486 }
487 
488 static inline bool allocated(struct pipe_buffer *buf)
489 {
490 	return buf->ops == &default_pipe_buf_ops;
491 }
492 
493 static inline void data_start(const struct iov_iter *i,
494 			      unsigned int *iter_headp, size_t *offp)
495 {
496 	unsigned int p_mask = i->pipe->ring_size - 1;
497 	unsigned int iter_head = i->head;
498 	size_t off = i->iov_offset;
499 
500 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
501 		    off == PAGE_SIZE)) {
502 		iter_head++;
503 		off = 0;
504 	}
505 	*iter_headp = iter_head;
506 	*offp = off;
507 }
508 
509 static size_t push_pipe(struct iov_iter *i, size_t size,
510 			int *iter_headp, size_t *offp)
511 {
512 	struct pipe_inode_info *pipe = i->pipe;
513 	unsigned int p_tail = pipe->tail;
514 	unsigned int p_mask = pipe->ring_size - 1;
515 	unsigned int iter_head;
516 	size_t off;
517 	ssize_t left;
518 
519 	if (unlikely(size > i->count))
520 		size = i->count;
521 	if (unlikely(!size))
522 		return 0;
523 
524 	left = size;
525 	data_start(i, &iter_head, &off);
526 	*iter_headp = iter_head;
527 	*offp = off;
528 	if (off) {
529 		left -= PAGE_SIZE - off;
530 		if (left <= 0) {
531 			pipe->bufs[iter_head & p_mask].len += size;
532 			return size;
533 		}
534 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
535 		iter_head++;
536 	}
537 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
538 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
539 		struct page *page = alloc_page(GFP_USER);
540 		if (!page)
541 			break;
542 
543 		buf->ops = &default_pipe_buf_ops;
544 		buf->page = page;
545 		buf->offset = 0;
546 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
547 		left -= buf->len;
548 		iter_head++;
549 		pipe->head = iter_head;
550 
551 		if (left == 0)
552 			return size;
553 	}
554 	return size - left;
555 }
556 
557 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
558 				struct iov_iter *i)
559 {
560 	struct pipe_inode_info *pipe = i->pipe;
561 	unsigned int p_mask = pipe->ring_size - 1;
562 	unsigned int i_head;
563 	size_t n, off;
564 
565 	if (!sanity(i))
566 		return 0;
567 
568 	bytes = n = push_pipe(i, bytes, &i_head, &off);
569 	if (unlikely(!n))
570 		return 0;
571 	do {
572 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
573 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
574 		i->head = i_head;
575 		i->iov_offset = off + chunk;
576 		n -= chunk;
577 		addr += chunk;
578 		off = 0;
579 		i_head++;
580 	} while (n);
581 	i->count -= bytes;
582 	return bytes;
583 }
584 
585 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
586 			      __wsum sum, size_t off)
587 {
588 	__wsum next = csum_partial_copy_nocheck(from, to, len);
589 	return csum_block_add(sum, next, off);
590 }
591 
592 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
593 				__wsum *csum, struct iov_iter *i)
594 {
595 	struct pipe_inode_info *pipe = i->pipe;
596 	unsigned int p_mask = pipe->ring_size - 1;
597 	unsigned int i_head;
598 	size_t n, r;
599 	size_t off = 0;
600 	__wsum sum = *csum;
601 
602 	if (!sanity(i))
603 		return 0;
604 
605 	bytes = n = push_pipe(i, bytes, &i_head, &r);
606 	if (unlikely(!n))
607 		return 0;
608 	do {
609 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
610 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
611 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
612 		kunmap_atomic(p);
613 		i->head = i_head;
614 		i->iov_offset = r + chunk;
615 		n -= chunk;
616 		off += chunk;
617 		addr += chunk;
618 		r = 0;
619 		i_head++;
620 	} while (n);
621 	i->count -= bytes;
622 	*csum = sum;
623 	return bytes;
624 }
625 
626 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
627 {
628 	const char *from = addr;
629 	if (unlikely(iov_iter_is_pipe(i)))
630 		return copy_pipe_to_iter(addr, bytes, i);
631 	if (iter_is_iovec(i))
632 		might_fault();
633 	iterate_and_advance(i, bytes, v,
634 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
635 		memcpy_to_page(v.bv_page, v.bv_offset,
636 			       (from += v.bv_len) - v.bv_len, v.bv_len),
637 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
638 	)
639 
640 	return bytes;
641 }
642 EXPORT_SYMBOL(_copy_to_iter);
643 
644 #ifdef CONFIG_ARCH_HAS_COPY_MC
645 static int copyout_mc(void __user *to, const void *from, size_t n)
646 {
647 	if (access_ok(to, n)) {
648 		instrument_copy_to_user(to, from, n);
649 		n = copy_mc_to_user((__force void *) to, from, n);
650 	}
651 	return n;
652 }
653 
654 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
655 		const char *from, size_t len)
656 {
657 	unsigned long ret;
658 	char *to;
659 
660 	to = kmap_atomic(page);
661 	ret = copy_mc_to_kernel(to + offset, from, len);
662 	kunmap_atomic(to);
663 
664 	return ret;
665 }
666 
667 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
668 				struct iov_iter *i)
669 {
670 	struct pipe_inode_info *pipe = i->pipe;
671 	unsigned int p_mask = pipe->ring_size - 1;
672 	unsigned int i_head;
673 	size_t n, off, xfer = 0;
674 
675 	if (!sanity(i))
676 		return 0;
677 
678 	bytes = n = push_pipe(i, bytes, &i_head, &off);
679 	if (unlikely(!n))
680 		return 0;
681 	do {
682 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
683 		unsigned long rem;
684 
685 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
686 					    off, addr, chunk);
687 		i->head = i_head;
688 		i->iov_offset = off + chunk - rem;
689 		xfer += chunk - rem;
690 		if (rem)
691 			break;
692 		n -= chunk;
693 		addr += chunk;
694 		off = 0;
695 		i_head++;
696 	} while (n);
697 	i->count -= xfer;
698 	return xfer;
699 }
700 
701 /**
702  * _copy_mc_to_iter - copy to iter with source memory error exception handling
703  * @addr: source kernel address
704  * @bytes: total transfer length
705  * @iter: destination iterator
706  *
707  * The pmem driver deploys this for the dax operation
708  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
709  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
710  * successfully copied.
711  *
712  * The main differences between this and typical _copy_to_iter().
713  *
714  * * Typical tail/residue handling after a fault retries the copy
715  *   byte-by-byte until the fault happens again. Re-triggering machine
716  *   checks is potentially fatal so the implementation uses source
717  *   alignment and poison alignment assumptions to avoid re-triggering
718  *   hardware exceptions.
719  *
720  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
721  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
722  *   a short copy.
723  */
724 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
725 {
726 	const char *from = addr;
727 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
728 
729 	if (unlikely(iov_iter_is_pipe(i)))
730 		return copy_mc_pipe_to_iter(addr, bytes, i);
731 	if (iter_is_iovec(i))
732 		might_fault();
733 	iterate_and_advance(i, bytes, v,
734 		copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
735 			   v.iov_len),
736 		({
737 		rem = copy_mc_to_page(v.bv_page, v.bv_offset,
738 				      (from += v.bv_len) - v.bv_len, v.bv_len);
739 		if (rem) {
740 			curr_addr = (unsigned long) from;
741 			bytes = curr_addr - s_addr - rem;
742 			return bytes;
743 		}
744 		}),
745 		({
746 		rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
747 					- v.iov_len, v.iov_len);
748 		if (rem) {
749 			curr_addr = (unsigned long) from;
750 			bytes = curr_addr - s_addr - rem;
751 			return bytes;
752 		}
753 		})
754 	)
755 
756 	return bytes;
757 }
758 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
759 #endif /* CONFIG_ARCH_HAS_COPY_MC */
760 
761 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
762 {
763 	char *to = addr;
764 	if (unlikely(iov_iter_is_pipe(i))) {
765 		WARN_ON(1);
766 		return 0;
767 	}
768 	if (iter_is_iovec(i))
769 		might_fault();
770 	iterate_and_advance(i, bytes, v,
771 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
772 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
773 				 v.bv_offset, v.bv_len),
774 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
775 	)
776 
777 	return bytes;
778 }
779 EXPORT_SYMBOL(_copy_from_iter);
780 
781 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
782 {
783 	char *to = addr;
784 	if (unlikely(iov_iter_is_pipe(i))) {
785 		WARN_ON(1);
786 		return false;
787 	}
788 	if (unlikely(i->count < bytes))
789 		return false;
790 
791 	if (iter_is_iovec(i))
792 		might_fault();
793 	iterate_all_kinds(i, bytes, v, ({
794 		if (copyin((to += v.iov_len) - v.iov_len,
795 				      v.iov_base, v.iov_len))
796 			return false;
797 		0;}),
798 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
799 				 v.bv_offset, v.bv_len),
800 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
801 	)
802 
803 	iov_iter_advance(i, bytes);
804 	return true;
805 }
806 EXPORT_SYMBOL(_copy_from_iter_full);
807 
808 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
809 {
810 	char *to = addr;
811 	if (unlikely(iov_iter_is_pipe(i))) {
812 		WARN_ON(1);
813 		return 0;
814 	}
815 	iterate_and_advance(i, bytes, v,
816 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
817 					 v.iov_base, v.iov_len),
818 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
819 				 v.bv_offset, v.bv_len),
820 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
821 	)
822 
823 	return bytes;
824 }
825 EXPORT_SYMBOL(_copy_from_iter_nocache);
826 
827 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
828 /**
829  * _copy_from_iter_flushcache - write destination through cpu cache
830  * @addr: destination kernel address
831  * @bytes: total transfer length
832  * @iter: source iterator
833  *
834  * The pmem driver arranges for filesystem-dax to use this facility via
835  * dax_copy_from_iter() for ensuring that writes to persistent memory
836  * are flushed through the CPU cache. It is differentiated from
837  * _copy_from_iter_nocache() in that guarantees all data is flushed for
838  * all iterator types. The _copy_from_iter_nocache() only attempts to
839  * bypass the cache for the ITER_IOVEC case, and on some archs may use
840  * instructions that strand dirty-data in the cache.
841  */
842 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
843 {
844 	char *to = addr;
845 	if (unlikely(iov_iter_is_pipe(i))) {
846 		WARN_ON(1);
847 		return 0;
848 	}
849 	iterate_and_advance(i, bytes, v,
850 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
851 					 v.iov_base, v.iov_len),
852 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
853 				 v.bv_offset, v.bv_len),
854 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
855 			v.iov_len)
856 	)
857 
858 	return bytes;
859 }
860 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
861 #endif
862 
863 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
864 {
865 	char *to = addr;
866 	if (unlikely(iov_iter_is_pipe(i))) {
867 		WARN_ON(1);
868 		return false;
869 	}
870 	if (unlikely(i->count < bytes))
871 		return false;
872 	iterate_all_kinds(i, bytes, v, ({
873 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
874 					     v.iov_base, v.iov_len))
875 			return false;
876 		0;}),
877 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
878 				 v.bv_offset, v.bv_len),
879 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
880 	)
881 
882 	iov_iter_advance(i, bytes);
883 	return true;
884 }
885 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
886 
887 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
888 {
889 	struct page *head;
890 	size_t v = n + offset;
891 
892 	/*
893 	 * The general case needs to access the page order in order
894 	 * to compute the page size.
895 	 * However, we mostly deal with order-0 pages and thus can
896 	 * avoid a possible cache line miss for requests that fit all
897 	 * page orders.
898 	 */
899 	if (n <= v && v <= PAGE_SIZE)
900 		return true;
901 
902 	head = compound_head(page);
903 	v += (page - head) << PAGE_SHIFT;
904 
905 	if (likely(n <= v && v <= (page_size(head))))
906 		return true;
907 	WARN_ON(1);
908 	return false;
909 }
910 
911 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
912 			 struct iov_iter *i)
913 {
914 	if (unlikely(!page_copy_sane(page, offset, bytes)))
915 		return 0;
916 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
917 		void *kaddr = kmap_atomic(page);
918 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
919 		kunmap_atomic(kaddr);
920 		return wanted;
921 	} else if (unlikely(iov_iter_is_discard(i)))
922 		return bytes;
923 	else if (likely(!iov_iter_is_pipe(i)))
924 		return copy_page_to_iter_iovec(page, offset, bytes, i);
925 	else
926 		return copy_page_to_iter_pipe(page, offset, bytes, i);
927 }
928 EXPORT_SYMBOL(copy_page_to_iter);
929 
930 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
931 			 struct iov_iter *i)
932 {
933 	if (unlikely(!page_copy_sane(page, offset, bytes)))
934 		return 0;
935 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
936 		WARN_ON(1);
937 		return 0;
938 	}
939 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
940 		void *kaddr = kmap_atomic(page);
941 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
942 		kunmap_atomic(kaddr);
943 		return wanted;
944 	} else
945 		return copy_page_from_iter_iovec(page, offset, bytes, i);
946 }
947 EXPORT_SYMBOL(copy_page_from_iter);
948 
949 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
950 {
951 	struct pipe_inode_info *pipe = i->pipe;
952 	unsigned int p_mask = pipe->ring_size - 1;
953 	unsigned int i_head;
954 	size_t n, off;
955 
956 	if (!sanity(i))
957 		return 0;
958 
959 	bytes = n = push_pipe(i, bytes, &i_head, &off);
960 	if (unlikely(!n))
961 		return 0;
962 
963 	do {
964 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
965 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
966 		i->head = i_head;
967 		i->iov_offset = off + chunk;
968 		n -= chunk;
969 		off = 0;
970 		i_head++;
971 	} while (n);
972 	i->count -= bytes;
973 	return bytes;
974 }
975 
976 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
977 {
978 	if (unlikely(iov_iter_is_pipe(i)))
979 		return pipe_zero(bytes, i);
980 	iterate_and_advance(i, bytes, v,
981 		clear_user(v.iov_base, v.iov_len),
982 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
983 		memset(v.iov_base, 0, v.iov_len)
984 	)
985 
986 	return bytes;
987 }
988 EXPORT_SYMBOL(iov_iter_zero);
989 
990 size_t iov_iter_copy_from_user_atomic(struct page *page,
991 		struct iov_iter *i, unsigned long offset, size_t bytes)
992 {
993 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
994 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
995 		kunmap_atomic(kaddr);
996 		return 0;
997 	}
998 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
999 		kunmap_atomic(kaddr);
1000 		WARN_ON(1);
1001 		return 0;
1002 	}
1003 	iterate_all_kinds(i, bytes, v,
1004 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1005 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1006 				 v.bv_offset, v.bv_len),
1007 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1008 	)
1009 	kunmap_atomic(kaddr);
1010 	return bytes;
1011 }
1012 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1013 
1014 static inline void pipe_truncate(struct iov_iter *i)
1015 {
1016 	struct pipe_inode_info *pipe = i->pipe;
1017 	unsigned int p_tail = pipe->tail;
1018 	unsigned int p_head = pipe->head;
1019 	unsigned int p_mask = pipe->ring_size - 1;
1020 
1021 	if (!pipe_empty(p_head, p_tail)) {
1022 		struct pipe_buffer *buf;
1023 		unsigned int i_head = i->head;
1024 		size_t off = i->iov_offset;
1025 
1026 		if (off) {
1027 			buf = &pipe->bufs[i_head & p_mask];
1028 			buf->len = off - buf->offset;
1029 			i_head++;
1030 		}
1031 		while (p_head != i_head) {
1032 			p_head--;
1033 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1034 		}
1035 
1036 		pipe->head = p_head;
1037 	}
1038 }
1039 
1040 static void pipe_advance(struct iov_iter *i, size_t size)
1041 {
1042 	struct pipe_inode_info *pipe = i->pipe;
1043 	if (unlikely(i->count < size))
1044 		size = i->count;
1045 	if (size) {
1046 		struct pipe_buffer *buf;
1047 		unsigned int p_mask = pipe->ring_size - 1;
1048 		unsigned int i_head = i->head;
1049 		size_t off = i->iov_offset, left = size;
1050 
1051 		if (off) /* make it relative to the beginning of buffer */
1052 			left += off - pipe->bufs[i_head & p_mask].offset;
1053 		while (1) {
1054 			buf = &pipe->bufs[i_head & p_mask];
1055 			if (left <= buf->len)
1056 				break;
1057 			left -= buf->len;
1058 			i_head++;
1059 		}
1060 		i->head = i_head;
1061 		i->iov_offset = buf->offset + left;
1062 	}
1063 	i->count -= size;
1064 	/* ... and discard everything past that point */
1065 	pipe_truncate(i);
1066 }
1067 
1068 void iov_iter_advance(struct iov_iter *i, size_t size)
1069 {
1070 	if (unlikely(iov_iter_is_pipe(i))) {
1071 		pipe_advance(i, size);
1072 		return;
1073 	}
1074 	if (unlikely(iov_iter_is_discard(i))) {
1075 		i->count -= size;
1076 		return;
1077 	}
1078 	iterate_and_advance(i, size, v, 0, 0, 0)
1079 }
1080 EXPORT_SYMBOL(iov_iter_advance);
1081 
1082 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1083 {
1084 	if (!unroll)
1085 		return;
1086 	if (WARN_ON(unroll > MAX_RW_COUNT))
1087 		return;
1088 	i->count += unroll;
1089 	if (unlikely(iov_iter_is_pipe(i))) {
1090 		struct pipe_inode_info *pipe = i->pipe;
1091 		unsigned int p_mask = pipe->ring_size - 1;
1092 		unsigned int i_head = i->head;
1093 		size_t off = i->iov_offset;
1094 		while (1) {
1095 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1096 			size_t n = off - b->offset;
1097 			if (unroll < n) {
1098 				off -= unroll;
1099 				break;
1100 			}
1101 			unroll -= n;
1102 			if (!unroll && i_head == i->start_head) {
1103 				off = 0;
1104 				break;
1105 			}
1106 			i_head--;
1107 			b = &pipe->bufs[i_head & p_mask];
1108 			off = b->offset + b->len;
1109 		}
1110 		i->iov_offset = off;
1111 		i->head = i_head;
1112 		pipe_truncate(i);
1113 		return;
1114 	}
1115 	if (unlikely(iov_iter_is_discard(i)))
1116 		return;
1117 	if (unroll <= i->iov_offset) {
1118 		i->iov_offset -= unroll;
1119 		return;
1120 	}
1121 	unroll -= i->iov_offset;
1122 	if (iov_iter_is_bvec(i)) {
1123 		const struct bio_vec *bvec = i->bvec;
1124 		while (1) {
1125 			size_t n = (--bvec)->bv_len;
1126 			i->nr_segs++;
1127 			if (unroll <= n) {
1128 				i->bvec = bvec;
1129 				i->iov_offset = n - unroll;
1130 				return;
1131 			}
1132 			unroll -= n;
1133 		}
1134 	} else { /* same logics for iovec and kvec */
1135 		const struct iovec *iov = i->iov;
1136 		while (1) {
1137 			size_t n = (--iov)->iov_len;
1138 			i->nr_segs++;
1139 			if (unroll <= n) {
1140 				i->iov = iov;
1141 				i->iov_offset = n - unroll;
1142 				return;
1143 			}
1144 			unroll -= n;
1145 		}
1146 	}
1147 }
1148 EXPORT_SYMBOL(iov_iter_revert);
1149 
1150 /*
1151  * Return the count of just the current iov_iter segment.
1152  */
1153 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1154 {
1155 	if (unlikely(iov_iter_is_pipe(i)))
1156 		return i->count;	// it is a silly place, anyway
1157 	if (i->nr_segs == 1)
1158 		return i->count;
1159 	if (unlikely(iov_iter_is_discard(i)))
1160 		return i->count;
1161 	else if (iov_iter_is_bvec(i))
1162 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1163 	else
1164 		return min(i->count, i->iov->iov_len - i->iov_offset);
1165 }
1166 EXPORT_SYMBOL(iov_iter_single_seg_count);
1167 
1168 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1169 			const struct kvec *kvec, unsigned long nr_segs,
1170 			size_t count)
1171 {
1172 	WARN_ON(direction & ~(READ | WRITE));
1173 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1174 	i->kvec = kvec;
1175 	i->nr_segs = nr_segs;
1176 	i->iov_offset = 0;
1177 	i->count = count;
1178 }
1179 EXPORT_SYMBOL(iov_iter_kvec);
1180 
1181 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1182 			const struct bio_vec *bvec, unsigned long nr_segs,
1183 			size_t count)
1184 {
1185 	WARN_ON(direction & ~(READ | WRITE));
1186 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1187 	i->bvec = bvec;
1188 	i->nr_segs = nr_segs;
1189 	i->iov_offset = 0;
1190 	i->count = count;
1191 }
1192 EXPORT_SYMBOL(iov_iter_bvec);
1193 
1194 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1195 			struct pipe_inode_info *pipe,
1196 			size_t count)
1197 {
1198 	BUG_ON(direction != READ);
1199 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1200 	i->type = ITER_PIPE | READ;
1201 	i->pipe = pipe;
1202 	i->head = pipe->head;
1203 	i->iov_offset = 0;
1204 	i->count = count;
1205 	i->start_head = i->head;
1206 }
1207 EXPORT_SYMBOL(iov_iter_pipe);
1208 
1209 /**
1210  * iov_iter_discard - Initialise an I/O iterator that discards data
1211  * @i: The iterator to initialise.
1212  * @direction: The direction of the transfer.
1213  * @count: The size of the I/O buffer in bytes.
1214  *
1215  * Set up an I/O iterator that just discards everything that's written to it.
1216  * It's only available as a READ iterator.
1217  */
1218 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1219 {
1220 	BUG_ON(direction != READ);
1221 	i->type = ITER_DISCARD | READ;
1222 	i->count = count;
1223 	i->iov_offset = 0;
1224 }
1225 EXPORT_SYMBOL(iov_iter_discard);
1226 
1227 unsigned long iov_iter_alignment(const struct iov_iter *i)
1228 {
1229 	unsigned long res = 0;
1230 	size_t size = i->count;
1231 
1232 	if (unlikely(iov_iter_is_pipe(i))) {
1233 		unsigned int p_mask = i->pipe->ring_size - 1;
1234 
1235 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1236 			return size | i->iov_offset;
1237 		return size;
1238 	}
1239 	iterate_all_kinds(i, size, v,
1240 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1241 		res |= v.bv_offset | v.bv_len,
1242 		res |= (unsigned long)v.iov_base | v.iov_len
1243 	)
1244 	return res;
1245 }
1246 EXPORT_SYMBOL(iov_iter_alignment);
1247 
1248 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1249 {
1250 	unsigned long res = 0;
1251 	size_t size = i->count;
1252 
1253 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1254 		WARN_ON(1);
1255 		return ~0U;
1256 	}
1257 
1258 	iterate_all_kinds(i, size, v,
1259 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1260 			(size != v.iov_len ? size : 0), 0),
1261 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1262 			(size != v.bv_len ? size : 0)),
1263 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1264 			(size != v.iov_len ? size : 0))
1265 		);
1266 	return res;
1267 }
1268 EXPORT_SYMBOL(iov_iter_gap_alignment);
1269 
1270 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1271 				size_t maxsize,
1272 				struct page **pages,
1273 				int iter_head,
1274 				size_t *start)
1275 {
1276 	struct pipe_inode_info *pipe = i->pipe;
1277 	unsigned int p_mask = pipe->ring_size - 1;
1278 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1279 	if (!n)
1280 		return -EFAULT;
1281 
1282 	maxsize = n;
1283 	n += *start;
1284 	while (n > 0) {
1285 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1286 		iter_head++;
1287 		n -= PAGE_SIZE;
1288 	}
1289 
1290 	return maxsize;
1291 }
1292 
1293 static ssize_t pipe_get_pages(struct iov_iter *i,
1294 		   struct page **pages, size_t maxsize, unsigned maxpages,
1295 		   size_t *start)
1296 {
1297 	unsigned int iter_head, npages;
1298 	size_t capacity;
1299 
1300 	if (!maxsize)
1301 		return 0;
1302 
1303 	if (!sanity(i))
1304 		return -EFAULT;
1305 
1306 	data_start(i, &iter_head, start);
1307 	/* Amount of free space: some of this one + all after this one */
1308 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1309 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1310 
1311 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1312 }
1313 
1314 ssize_t iov_iter_get_pages(struct iov_iter *i,
1315 		   struct page **pages, size_t maxsize, unsigned maxpages,
1316 		   size_t *start)
1317 {
1318 	if (maxsize > i->count)
1319 		maxsize = i->count;
1320 
1321 	if (unlikely(iov_iter_is_pipe(i)))
1322 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1323 	if (unlikely(iov_iter_is_discard(i)))
1324 		return -EFAULT;
1325 
1326 	iterate_all_kinds(i, maxsize, v, ({
1327 		unsigned long addr = (unsigned long)v.iov_base;
1328 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1329 		int n;
1330 		int res;
1331 
1332 		if (len > maxpages * PAGE_SIZE)
1333 			len = maxpages * PAGE_SIZE;
1334 		addr &= ~(PAGE_SIZE - 1);
1335 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1336 		res = get_user_pages_fast(addr, n,
1337 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1338 				pages);
1339 		if (unlikely(res < 0))
1340 			return res;
1341 		return (res == n ? len : res * PAGE_SIZE) - *start;
1342 	0;}),({
1343 		/* can't be more than PAGE_SIZE */
1344 		*start = v.bv_offset;
1345 		get_page(*pages = v.bv_page);
1346 		return v.bv_len;
1347 	}),({
1348 		return -EFAULT;
1349 	})
1350 	)
1351 	return 0;
1352 }
1353 EXPORT_SYMBOL(iov_iter_get_pages);
1354 
1355 static struct page **get_pages_array(size_t n)
1356 {
1357 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1358 }
1359 
1360 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1361 		   struct page ***pages, size_t maxsize,
1362 		   size_t *start)
1363 {
1364 	struct page **p;
1365 	unsigned int iter_head, npages;
1366 	ssize_t n;
1367 
1368 	if (!maxsize)
1369 		return 0;
1370 
1371 	if (!sanity(i))
1372 		return -EFAULT;
1373 
1374 	data_start(i, &iter_head, start);
1375 	/* Amount of free space: some of this one + all after this one */
1376 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1377 	n = npages * PAGE_SIZE - *start;
1378 	if (maxsize > n)
1379 		maxsize = n;
1380 	else
1381 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1382 	p = get_pages_array(npages);
1383 	if (!p)
1384 		return -ENOMEM;
1385 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1386 	if (n > 0)
1387 		*pages = p;
1388 	else
1389 		kvfree(p);
1390 	return n;
1391 }
1392 
1393 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1394 		   struct page ***pages, size_t maxsize,
1395 		   size_t *start)
1396 {
1397 	struct page **p;
1398 
1399 	if (maxsize > i->count)
1400 		maxsize = i->count;
1401 
1402 	if (unlikely(iov_iter_is_pipe(i)))
1403 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1404 	if (unlikely(iov_iter_is_discard(i)))
1405 		return -EFAULT;
1406 
1407 	iterate_all_kinds(i, maxsize, v, ({
1408 		unsigned long addr = (unsigned long)v.iov_base;
1409 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1410 		int n;
1411 		int res;
1412 
1413 		addr &= ~(PAGE_SIZE - 1);
1414 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1415 		p = get_pages_array(n);
1416 		if (!p)
1417 			return -ENOMEM;
1418 		res = get_user_pages_fast(addr, n,
1419 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1420 		if (unlikely(res < 0)) {
1421 			kvfree(p);
1422 			return res;
1423 		}
1424 		*pages = p;
1425 		return (res == n ? len : res * PAGE_SIZE) - *start;
1426 	0;}),({
1427 		/* can't be more than PAGE_SIZE */
1428 		*start = v.bv_offset;
1429 		*pages = p = get_pages_array(1);
1430 		if (!p)
1431 			return -ENOMEM;
1432 		get_page(*p = v.bv_page);
1433 		return v.bv_len;
1434 	}),({
1435 		return -EFAULT;
1436 	})
1437 	)
1438 	return 0;
1439 }
1440 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1441 
1442 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1443 			       struct iov_iter *i)
1444 {
1445 	char *to = addr;
1446 	__wsum sum, next;
1447 	size_t off = 0;
1448 	sum = *csum;
1449 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1450 		WARN_ON(1);
1451 		return 0;
1452 	}
1453 	iterate_and_advance(i, bytes, v, ({
1454 		next = csum_and_copy_from_user(v.iov_base,
1455 					       (to += v.iov_len) - v.iov_len,
1456 					       v.iov_len);
1457 		if (next) {
1458 			sum = csum_block_add(sum, next, off);
1459 			off += v.iov_len;
1460 		}
1461 		next ? 0 : v.iov_len;
1462 	}), ({
1463 		char *p = kmap_atomic(v.bv_page);
1464 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1465 				      p + v.bv_offset, v.bv_len,
1466 				      sum, off);
1467 		kunmap_atomic(p);
1468 		off += v.bv_len;
1469 	}),({
1470 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1471 				      v.iov_base, v.iov_len,
1472 				      sum, off);
1473 		off += v.iov_len;
1474 	})
1475 	)
1476 	*csum = sum;
1477 	return bytes;
1478 }
1479 EXPORT_SYMBOL(csum_and_copy_from_iter);
1480 
1481 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1482 			       struct iov_iter *i)
1483 {
1484 	char *to = addr;
1485 	__wsum sum, next;
1486 	size_t off = 0;
1487 	sum = *csum;
1488 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1489 		WARN_ON(1);
1490 		return false;
1491 	}
1492 	if (unlikely(i->count < bytes))
1493 		return false;
1494 	iterate_all_kinds(i, bytes, v, ({
1495 		next = csum_and_copy_from_user(v.iov_base,
1496 					       (to += v.iov_len) - v.iov_len,
1497 					       v.iov_len);
1498 		if (!next)
1499 			return false;
1500 		sum = csum_block_add(sum, next, off);
1501 		off += v.iov_len;
1502 		0;
1503 	}), ({
1504 		char *p = kmap_atomic(v.bv_page);
1505 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1506 				      p + v.bv_offset, v.bv_len,
1507 				      sum, off);
1508 		kunmap_atomic(p);
1509 		off += v.bv_len;
1510 	}),({
1511 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1512 				      v.iov_base, v.iov_len,
1513 				      sum, off);
1514 		off += v.iov_len;
1515 	})
1516 	)
1517 	*csum = sum;
1518 	iov_iter_advance(i, bytes);
1519 	return true;
1520 }
1521 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1522 
1523 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1524 			     struct iov_iter *i)
1525 {
1526 	const char *from = addr;
1527 	__wsum *csum = csump;
1528 	__wsum sum, next;
1529 	size_t off = 0;
1530 
1531 	if (unlikely(iov_iter_is_pipe(i)))
1532 		return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1533 
1534 	sum = *csum;
1535 	if (unlikely(iov_iter_is_discard(i))) {
1536 		WARN_ON(1);	/* for now */
1537 		return 0;
1538 	}
1539 	iterate_and_advance(i, bytes, v, ({
1540 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1541 					     v.iov_base,
1542 					     v.iov_len);
1543 		if (next) {
1544 			sum = csum_block_add(sum, next, off);
1545 			off += v.iov_len;
1546 		}
1547 		next ? 0 : v.iov_len;
1548 	}), ({
1549 		char *p = kmap_atomic(v.bv_page);
1550 		sum = csum_and_memcpy(p + v.bv_offset,
1551 				      (from += v.bv_len) - v.bv_len,
1552 				      v.bv_len, sum, off);
1553 		kunmap_atomic(p);
1554 		off += v.bv_len;
1555 	}),({
1556 		sum = csum_and_memcpy(v.iov_base,
1557 				     (from += v.iov_len) - v.iov_len,
1558 				     v.iov_len, sum, off);
1559 		off += v.iov_len;
1560 	})
1561 	)
1562 	*csum = sum;
1563 	return bytes;
1564 }
1565 EXPORT_SYMBOL(csum_and_copy_to_iter);
1566 
1567 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1568 		struct iov_iter *i)
1569 {
1570 #ifdef CONFIG_CRYPTO_HASH
1571 	struct ahash_request *hash = hashp;
1572 	struct scatterlist sg;
1573 	size_t copied;
1574 
1575 	copied = copy_to_iter(addr, bytes, i);
1576 	sg_init_one(&sg, addr, copied);
1577 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1578 	crypto_ahash_update(hash);
1579 	return copied;
1580 #else
1581 	return 0;
1582 #endif
1583 }
1584 EXPORT_SYMBOL(hash_and_copy_to_iter);
1585 
1586 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1587 {
1588 	size_t size = i->count;
1589 	int npages = 0;
1590 
1591 	if (!size)
1592 		return 0;
1593 	if (unlikely(iov_iter_is_discard(i)))
1594 		return 0;
1595 
1596 	if (unlikely(iov_iter_is_pipe(i))) {
1597 		struct pipe_inode_info *pipe = i->pipe;
1598 		unsigned int iter_head;
1599 		size_t off;
1600 
1601 		if (!sanity(i))
1602 			return 0;
1603 
1604 		data_start(i, &iter_head, &off);
1605 		/* some of this one + all after this one */
1606 		npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1607 		if (npages >= maxpages)
1608 			return maxpages;
1609 	} else iterate_all_kinds(i, size, v, ({
1610 		unsigned long p = (unsigned long)v.iov_base;
1611 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1612 			- p / PAGE_SIZE;
1613 		if (npages >= maxpages)
1614 			return maxpages;
1615 	0;}),({
1616 		npages++;
1617 		if (npages >= maxpages)
1618 			return maxpages;
1619 	}),({
1620 		unsigned long p = (unsigned long)v.iov_base;
1621 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1622 			- p / PAGE_SIZE;
1623 		if (npages >= maxpages)
1624 			return maxpages;
1625 	})
1626 	)
1627 	return npages;
1628 }
1629 EXPORT_SYMBOL(iov_iter_npages);
1630 
1631 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1632 {
1633 	*new = *old;
1634 	if (unlikely(iov_iter_is_pipe(new))) {
1635 		WARN_ON(1);
1636 		return NULL;
1637 	}
1638 	if (unlikely(iov_iter_is_discard(new)))
1639 		return NULL;
1640 	if (iov_iter_is_bvec(new))
1641 		return new->bvec = kmemdup(new->bvec,
1642 				    new->nr_segs * sizeof(struct bio_vec),
1643 				    flags);
1644 	else
1645 		/* iovec and kvec have identical layout */
1646 		return new->iov = kmemdup(new->iov,
1647 				   new->nr_segs * sizeof(struct iovec),
1648 				   flags);
1649 }
1650 EXPORT_SYMBOL(dup_iter);
1651 
1652 static int copy_compat_iovec_from_user(struct iovec *iov,
1653 		const struct iovec __user *uvec, unsigned long nr_segs)
1654 {
1655 	const struct compat_iovec __user *uiov =
1656 		(const struct compat_iovec __user *)uvec;
1657 	int ret = -EFAULT, i;
1658 
1659 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1660 		return -EFAULT;
1661 
1662 	for (i = 0; i < nr_segs; i++) {
1663 		compat_uptr_t buf;
1664 		compat_ssize_t len;
1665 
1666 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1667 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1668 
1669 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1670 		if (len < 0) {
1671 			ret = -EINVAL;
1672 			goto uaccess_end;
1673 		}
1674 		iov[i].iov_base = compat_ptr(buf);
1675 		iov[i].iov_len = len;
1676 	}
1677 
1678 	ret = 0;
1679 uaccess_end:
1680 	user_access_end();
1681 	return ret;
1682 }
1683 
1684 static int copy_iovec_from_user(struct iovec *iov,
1685 		const struct iovec __user *uvec, unsigned long nr_segs)
1686 {
1687 	unsigned long seg;
1688 
1689 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1690 		return -EFAULT;
1691 	for (seg = 0; seg < nr_segs; seg++) {
1692 		if ((ssize_t)iov[seg].iov_len < 0)
1693 			return -EINVAL;
1694 	}
1695 
1696 	return 0;
1697 }
1698 
1699 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1700 		unsigned long nr_segs, unsigned long fast_segs,
1701 		struct iovec *fast_iov, bool compat)
1702 {
1703 	struct iovec *iov = fast_iov;
1704 	int ret;
1705 
1706 	/*
1707 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1708 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1709 	 * traditionally returned zero for zero segments, so...
1710 	 */
1711 	if (nr_segs == 0)
1712 		return iov;
1713 	if (nr_segs > UIO_MAXIOV)
1714 		return ERR_PTR(-EINVAL);
1715 	if (nr_segs > fast_segs) {
1716 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1717 		if (!iov)
1718 			return ERR_PTR(-ENOMEM);
1719 	}
1720 
1721 	if (compat)
1722 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1723 	else
1724 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1725 	if (ret) {
1726 		if (iov != fast_iov)
1727 			kfree(iov);
1728 		return ERR_PTR(ret);
1729 	}
1730 
1731 	return iov;
1732 }
1733 
1734 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1735 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1736 		 struct iov_iter *i, bool compat)
1737 {
1738 	ssize_t total_len = 0;
1739 	unsigned long seg;
1740 	struct iovec *iov;
1741 
1742 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1743 	if (IS_ERR(iov)) {
1744 		*iovp = NULL;
1745 		return PTR_ERR(iov);
1746 	}
1747 
1748 	/*
1749 	 * According to the Single Unix Specification we should return EINVAL if
1750 	 * an element length is < 0 when cast to ssize_t or if the total length
1751 	 * would overflow the ssize_t return value of the system call.
1752 	 *
1753 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1754 	 * overflow case.
1755 	 */
1756 	for (seg = 0; seg < nr_segs; seg++) {
1757 		ssize_t len = (ssize_t)iov[seg].iov_len;
1758 
1759 		if (!access_ok(iov[seg].iov_base, len)) {
1760 			if (iov != *iovp)
1761 				kfree(iov);
1762 			*iovp = NULL;
1763 			return -EFAULT;
1764 		}
1765 
1766 		if (len > MAX_RW_COUNT - total_len) {
1767 			len = MAX_RW_COUNT - total_len;
1768 			iov[seg].iov_len = len;
1769 		}
1770 		total_len += len;
1771 	}
1772 
1773 	iov_iter_init(i, type, iov, nr_segs, total_len);
1774 	if (iov == *iovp)
1775 		*iovp = NULL;
1776 	else
1777 		*iovp = iov;
1778 	return total_len;
1779 }
1780 
1781 /**
1782  * import_iovec() - Copy an array of &struct iovec from userspace
1783  *     into the kernel, check that it is valid, and initialize a new
1784  *     &struct iov_iter iterator to access it.
1785  *
1786  * @type: One of %READ or %WRITE.
1787  * @uvec: Pointer to the userspace array.
1788  * @nr_segs: Number of elements in userspace array.
1789  * @fast_segs: Number of elements in @iov.
1790  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1791  *     on-stack) kernel array.
1792  * @i: Pointer to iterator that will be initialized on success.
1793  *
1794  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1795  * then this function places %NULL in *@iov on return. Otherwise, a new
1796  * array will be allocated and the result placed in *@iov. This means that
1797  * the caller may call kfree() on *@iov regardless of whether the small
1798  * on-stack array was used or not (and regardless of whether this function
1799  * returns an error or not).
1800  *
1801  * Return: Negative error code on error, bytes imported on success
1802  */
1803 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1804 		 unsigned nr_segs, unsigned fast_segs,
1805 		 struct iovec **iovp, struct iov_iter *i)
1806 {
1807 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1808 			      in_compat_syscall());
1809 }
1810 EXPORT_SYMBOL(import_iovec);
1811 
1812 int import_single_range(int rw, void __user *buf, size_t len,
1813 		 struct iovec *iov, struct iov_iter *i)
1814 {
1815 	if (len > MAX_RW_COUNT)
1816 		len = MAX_RW_COUNT;
1817 	if (unlikely(!access_ok(buf, len)))
1818 		return -EFAULT;
1819 
1820 	iov->iov_base = buf;
1821 	iov->iov_len = len;
1822 	iov_iter_init(i, rw, iov, 1, len);
1823 	return 0;
1824 }
1825 EXPORT_SYMBOL(import_single_range);
1826 
1827 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1828 			    int (*f)(struct kvec *vec, void *context),
1829 			    void *context)
1830 {
1831 	struct kvec w;
1832 	int err = -EINVAL;
1833 	if (!bytes)
1834 		return 0;
1835 
1836 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1837 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1838 		w.iov_len = v.bv_len;
1839 		err = f(&w, context);
1840 		kunmap(v.bv_page);
1841 		err;}), ({
1842 		w = v;
1843 		err = f(&w, context);})
1844 	)
1845 	return err;
1846 }
1847 EXPORT_SYMBOL(iov_iter_for_each_range);
1848