xref: /openbmc/linux/lib/iov_iter.c (revision 92acdc4f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
21 	size_t __maybe_unused off = 0;				\
22 	len = n;						\
23 	base = __p + i->iov_offset;				\
24 	len -= (STEP);						\
25 	i->iov_offset += len;					\
26 	n = len;						\
27 }
28 
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
31 	size_t off = 0;						\
32 	size_t skip = i->iov_offset;				\
33 	do {							\
34 		len = min(n, __p->iov_len - skip);		\
35 		if (likely(len)) {				\
36 			base = __p->iov_base + skip;		\
37 			len -= (STEP);				\
38 			off += len;				\
39 			skip += len;				\
40 			n -= len;				\
41 			if (skip < __p->iov_len)		\
42 				break;				\
43 		}						\
44 		__p++;						\
45 		skip = 0;					\
46 	} while (n);						\
47 	i->iov_offset = skip;					\
48 	n = off;						\
49 }
50 
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
52 	size_t off = 0;						\
53 	unsigned skip = i->iov_offset;				\
54 	while (n) {						\
55 		unsigned offset = p->bv_offset + skip;		\
56 		unsigned left;					\
57 		void *kaddr = kmap_local_page(p->bv_page +	\
58 					offset / PAGE_SIZE);	\
59 		base = kaddr + offset % PAGE_SIZE;		\
60 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
61 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
62 		left = (STEP);					\
63 		kunmap_local(kaddr);				\
64 		len -= left;					\
65 		off += len;					\
66 		skip += len;					\
67 		if (skip == p->bv_len) {			\
68 			skip = 0;				\
69 			p++;					\
70 		}						\
71 		n -= len;					\
72 		if (left)					\
73 			break;					\
74 	}							\
75 	i->iov_offset = skip;					\
76 	n = off;						\
77 }
78 
79 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
80 	__label__ __out;					\
81 	size_t __off = 0;					\
82 	struct folio *folio;					\
83 	loff_t start = i->xarray_start + i->iov_offset;		\
84 	pgoff_t index = start / PAGE_SIZE;			\
85 	XA_STATE(xas, i->xarray, index);			\
86 								\
87 	len = PAGE_SIZE - offset_in_page(start);		\
88 	rcu_read_lock();					\
89 	xas_for_each(&xas, folio, ULONG_MAX) {			\
90 		unsigned left;					\
91 		size_t offset;					\
92 		if (xas_retry(&xas, folio))			\
93 			continue;				\
94 		if (WARN_ON(xa_is_value(folio)))		\
95 			break;					\
96 		if (WARN_ON(folio_test_hugetlb(folio)))		\
97 			break;					\
98 		offset = offset_in_folio(folio, start + __off);	\
99 		while (offset < folio_size(folio)) {		\
100 			base = kmap_local_folio(folio, offset);	\
101 			len = min(n, len);			\
102 			left = (STEP);				\
103 			kunmap_local(base);			\
104 			len -= left;				\
105 			__off += len;				\
106 			n -= len;				\
107 			if (left || n == 0)			\
108 				goto __out;			\
109 			offset += len;				\
110 			len = PAGE_SIZE;			\
111 		}						\
112 	}							\
113 __out:								\
114 	rcu_read_unlock();					\
115 	i->iov_offset += __off;					\
116 	n = __off;						\
117 }
118 
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
120 	if (unlikely(i->count < n))				\
121 		n = i->count;					\
122 	if (likely(n)) {					\
123 		if (likely(iter_is_ubuf(i))) {			\
124 			void __user *base;			\
125 			size_t len;				\
126 			iterate_buf(i, n, base, len, off,	\
127 						i->ubuf, (I)) 	\
128 		} else if (likely(iter_is_iovec(i))) {		\
129 			const struct iovec *iov = i->iov;	\
130 			void __user *base;			\
131 			size_t len;				\
132 			iterate_iovec(i, n, base, len, off,	\
133 						iov, (I))	\
134 			i->nr_segs -= iov - i->iov;		\
135 			i->iov = iov;				\
136 		} else if (iov_iter_is_bvec(i)) {		\
137 			const struct bio_vec *bvec = i->bvec;	\
138 			void *base;				\
139 			size_t len;				\
140 			iterate_bvec(i, n, base, len, off,	\
141 						bvec, (K))	\
142 			i->nr_segs -= bvec - i->bvec;		\
143 			i->bvec = bvec;				\
144 		} else if (iov_iter_is_kvec(i)) {		\
145 			const struct kvec *kvec = i->kvec;	\
146 			void *base;				\
147 			size_t len;				\
148 			iterate_iovec(i, n, base, len, off,	\
149 						kvec, (K))	\
150 			i->nr_segs -= kvec - i->kvec;		\
151 			i->kvec = kvec;				\
152 		} else if (iov_iter_is_xarray(i)) {		\
153 			void *base;				\
154 			size_t len;				\
155 			iterate_xarray(i, n, base, len, off,	\
156 							(K))	\
157 		}						\
158 		i->count -= n;					\
159 	}							\
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163 
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166 	if (should_fail_usercopy())
167 		return n;
168 	if (access_ok(to, n)) {
169 		instrument_copy_to_user(to, from, n);
170 		n = raw_copy_to_user(to, from, n);
171 	}
172 	return n;
173 }
174 
175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177 	if (should_fail_usercopy())
178 		return n;
179 	if (access_ok(from, n)) {
180 		instrument_copy_from_user(to, from, n);
181 		n = raw_copy_from_user(to, from, n);
182 	}
183 	return n;
184 }
185 
186 static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
187 					   unsigned int slot)
188 {
189 	return &pipe->bufs[slot & (pipe->ring_size - 1)];
190 }
191 
192 #ifdef PIPE_PARANOIA
193 static bool sanity(const struct iov_iter *i)
194 {
195 	struct pipe_inode_info *pipe = i->pipe;
196 	unsigned int p_head = pipe->head;
197 	unsigned int p_tail = pipe->tail;
198 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
199 	unsigned int i_head = i->head;
200 	unsigned int idx;
201 
202 	if (i->iov_offset) {
203 		struct pipe_buffer *p;
204 		if (unlikely(p_occupancy == 0))
205 			goto Bad;	// pipe must be non-empty
206 		if (unlikely(i_head != p_head - 1))
207 			goto Bad;	// must be at the last buffer...
208 
209 		p = pipe_buf(pipe, i_head);
210 		if (unlikely(p->offset + p->len != i->iov_offset))
211 			goto Bad;	// ... at the end of segment
212 	} else {
213 		if (i_head != p_head)
214 			goto Bad;	// must be right after the last buffer
215 	}
216 	return true;
217 Bad:
218 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
219 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
220 			p_head, p_tail, pipe->ring_size);
221 	for (idx = 0; idx < pipe->ring_size; idx++)
222 		printk(KERN_ERR "[%p %p %d %d]\n",
223 			pipe->bufs[idx].ops,
224 			pipe->bufs[idx].page,
225 			pipe->bufs[idx].offset,
226 			pipe->bufs[idx].len);
227 	WARN_ON(1);
228 	return false;
229 }
230 #else
231 #define sanity(i) true
232 #endif
233 
234 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
235 {
236 	struct page *page = alloc_page(GFP_USER);
237 	if (page) {
238 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
239 		*buf = (struct pipe_buffer) {
240 			.ops = &default_pipe_buf_ops,
241 			.page = page,
242 			.offset = 0,
243 			.len = size
244 		};
245 	}
246 	return page;
247 }
248 
249 static void push_page(struct pipe_inode_info *pipe, struct page *page,
250 			unsigned int offset, unsigned int size)
251 {
252 	struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
253 	*buf = (struct pipe_buffer) {
254 		.ops = &page_cache_pipe_buf_ops,
255 		.page = page,
256 		.offset = offset,
257 		.len = size
258 	};
259 	get_page(page);
260 }
261 
262 static inline bool allocated(struct pipe_buffer *buf)
263 {
264 	return buf->ops == &default_pipe_buf_ops;
265 }
266 
267 static struct page *append_pipe(struct iov_iter *i, size_t size,
268 				unsigned int *off)
269 {
270 	struct pipe_inode_info *pipe = i->pipe;
271 	size_t offset = i->iov_offset;
272 	struct pipe_buffer *buf;
273 	struct page *page;
274 
275 	if (offset && offset < PAGE_SIZE) {
276 		// some space in the last buffer; can we add to it?
277 		buf = pipe_buf(pipe, pipe->head - 1);
278 		if (allocated(buf)) {
279 			size = min_t(size_t, size, PAGE_SIZE - offset);
280 			buf->len += size;
281 			i->iov_offset += size;
282 			i->count -= size;
283 			*off = offset;
284 			return buf->page;
285 		}
286 	}
287 	// OK, we need a new buffer
288 	*off = 0;
289 	size = min_t(size_t, size, PAGE_SIZE);
290 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
291 		return NULL;
292 	page = push_anon(pipe, size);
293 	if (!page)
294 		return NULL;
295 	i->head = pipe->head - 1;
296 	i->iov_offset = size;
297 	i->count -= size;
298 	return page;
299 }
300 
301 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
302 			 struct iov_iter *i)
303 {
304 	struct pipe_inode_info *pipe = i->pipe;
305 	unsigned int head = pipe->head;
306 
307 	if (unlikely(bytes > i->count))
308 		bytes = i->count;
309 
310 	if (unlikely(!bytes))
311 		return 0;
312 
313 	if (!sanity(i))
314 		return 0;
315 
316 	if (offset && i->iov_offset == offset) { // could we merge it?
317 		struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
318 		if (buf->page == page) {
319 			buf->len += bytes;
320 			i->iov_offset += bytes;
321 			i->count -= bytes;
322 			return bytes;
323 		}
324 	}
325 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
326 		return 0;
327 
328 	push_page(pipe, page, offset, bytes);
329 	i->iov_offset = offset + bytes;
330 	i->head = head;
331 	i->count -= bytes;
332 	return bytes;
333 }
334 
335 /*
336  * fault_in_iov_iter_readable - fault in iov iterator for reading
337  * @i: iterator
338  * @size: maximum length
339  *
340  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
341  * @size.  For each iovec, fault in each page that constitutes the iovec.
342  *
343  * Returns the number of bytes not faulted in (like copy_to_user() and
344  * copy_from_user()).
345  *
346  * Always returns 0 for non-userspace iterators.
347  */
348 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
349 {
350 	if (iter_is_ubuf(i)) {
351 		size_t n = min(size, iov_iter_count(i));
352 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
353 		return size - n;
354 	} else if (iter_is_iovec(i)) {
355 		size_t count = min(size, iov_iter_count(i));
356 		const struct iovec *p;
357 		size_t skip;
358 
359 		size -= count;
360 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
361 			size_t len = min(count, p->iov_len - skip);
362 			size_t ret;
363 
364 			if (unlikely(!len))
365 				continue;
366 			ret = fault_in_readable(p->iov_base + skip, len);
367 			count -= len - ret;
368 			if (ret)
369 				break;
370 		}
371 		return count + size;
372 	}
373 	return 0;
374 }
375 EXPORT_SYMBOL(fault_in_iov_iter_readable);
376 
377 /*
378  * fault_in_iov_iter_writeable - fault in iov iterator for writing
379  * @i: iterator
380  * @size: maximum length
381  *
382  * Faults in the iterator using get_user_pages(), i.e., without triggering
383  * hardware page faults.  This is primarily useful when we already know that
384  * some or all of the pages in @i aren't in memory.
385  *
386  * Returns the number of bytes not faulted in, like copy_to_user() and
387  * copy_from_user().
388  *
389  * Always returns 0 for non-user-space iterators.
390  */
391 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
392 {
393 	if (iter_is_ubuf(i)) {
394 		size_t n = min(size, iov_iter_count(i));
395 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
396 		return size - n;
397 	} else if (iter_is_iovec(i)) {
398 		size_t count = min(size, iov_iter_count(i));
399 		const struct iovec *p;
400 		size_t skip;
401 
402 		size -= count;
403 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
404 			size_t len = min(count, p->iov_len - skip);
405 			size_t ret;
406 
407 			if (unlikely(!len))
408 				continue;
409 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
410 			count -= len - ret;
411 			if (ret)
412 				break;
413 		}
414 		return count + size;
415 	}
416 	return 0;
417 }
418 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
419 
420 void iov_iter_init(struct iov_iter *i, unsigned int direction,
421 			const struct iovec *iov, unsigned long nr_segs,
422 			size_t count)
423 {
424 	WARN_ON(direction & ~(READ | WRITE));
425 	*i = (struct iov_iter) {
426 		.iter_type = ITER_IOVEC,
427 		.nofault = false,
428 		.user_backed = true,
429 		.data_source = direction,
430 		.iov = iov,
431 		.nr_segs = nr_segs,
432 		.iov_offset = 0,
433 		.count = count
434 	};
435 }
436 EXPORT_SYMBOL(iov_iter_init);
437 
438 static inline void data_start(const struct iov_iter *i,
439 			      unsigned int *iter_headp, size_t *offp)
440 {
441 	unsigned int iter_head = i->head;
442 	size_t off = i->iov_offset;
443 
444 	if (off && (!allocated(pipe_buf(i->pipe, iter_head)) ||
445 		    off == PAGE_SIZE)) {
446 		iter_head++;
447 		off = 0;
448 	}
449 	*iter_headp = iter_head;
450 	*offp = off;
451 }
452 
453 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
454 				struct iov_iter *i)
455 {
456 	unsigned int off, chunk;
457 
458 	if (unlikely(bytes > i->count))
459 		bytes = i->count;
460 	if (unlikely(!bytes))
461 		return 0;
462 
463 	if (!sanity(i))
464 		return 0;
465 
466 	for (size_t n = bytes; n; n -= chunk) {
467 		struct page *page = append_pipe(i, n, &off);
468 		chunk = min_t(size_t, n, PAGE_SIZE - off);
469 		if (!page)
470 			return bytes - n;
471 		memcpy_to_page(page, off, addr, chunk);
472 		addr += chunk;
473 	}
474 	return bytes;
475 }
476 
477 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
478 			      __wsum sum, size_t off)
479 {
480 	__wsum next = csum_partial_copy_nocheck(from, to, len);
481 	return csum_block_add(sum, next, off);
482 }
483 
484 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
485 					 struct iov_iter *i, __wsum *sump)
486 {
487 	__wsum sum = *sump;
488 	size_t off = 0;
489 	unsigned int chunk, r;
490 
491 	if (unlikely(bytes > i->count))
492 		bytes = i->count;
493 	if (unlikely(!bytes))
494 		return 0;
495 
496 	if (!sanity(i))
497 		return 0;
498 
499 	while (bytes) {
500 		struct page *page = append_pipe(i, bytes, &r);
501 		char *p;
502 
503 		if (!page)
504 			break;
505 		chunk = min_t(size_t, bytes, PAGE_SIZE - r);
506 		p = kmap_local_page(page);
507 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
508 		kunmap_local(p);
509 		off += chunk;
510 		bytes -= chunk;
511 	}
512 	*sump = sum;
513 	return off;
514 }
515 
516 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
517 {
518 	if (unlikely(iov_iter_is_pipe(i)))
519 		return copy_pipe_to_iter(addr, bytes, i);
520 	if (user_backed_iter(i))
521 		might_fault();
522 	iterate_and_advance(i, bytes, base, len, off,
523 		copyout(base, addr + off, len),
524 		memcpy(base, addr + off, len)
525 	)
526 
527 	return bytes;
528 }
529 EXPORT_SYMBOL(_copy_to_iter);
530 
531 #ifdef CONFIG_ARCH_HAS_COPY_MC
532 static int copyout_mc(void __user *to, const void *from, size_t n)
533 {
534 	if (access_ok(to, n)) {
535 		instrument_copy_to_user(to, from, n);
536 		n = copy_mc_to_user((__force void *) to, from, n);
537 	}
538 	return n;
539 }
540 
541 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
542 				struct iov_iter *i)
543 {
544 	size_t xfer = 0;
545 	unsigned int off, chunk;
546 
547 	if (unlikely(bytes > i->count))
548 		bytes = i->count;
549 	if (unlikely(!bytes))
550 		return 0;
551 
552 	if (!sanity(i))
553 		return 0;
554 
555 	while (bytes) {
556 		struct page *page = append_pipe(i, bytes, &off);
557 		unsigned long rem;
558 		char *p;
559 
560 		if (!page)
561 			break;
562 		chunk = min_t(size_t, bytes, PAGE_SIZE - off);
563 		p = kmap_local_page(page);
564 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
565 		chunk -= rem;
566 		kunmap_local(p);
567 		xfer += chunk;
568 		bytes -= chunk;
569 		if (rem) {
570 			iov_iter_revert(i, rem);
571 			break;
572 		}
573 	}
574 	return xfer;
575 }
576 
577 /**
578  * _copy_mc_to_iter - copy to iter with source memory error exception handling
579  * @addr: source kernel address
580  * @bytes: total transfer length
581  * @i: destination iterator
582  *
583  * The pmem driver deploys this for the dax operation
584  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
585  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
586  * successfully copied.
587  *
588  * The main differences between this and typical _copy_to_iter().
589  *
590  * * Typical tail/residue handling after a fault retries the copy
591  *   byte-by-byte until the fault happens again. Re-triggering machine
592  *   checks is potentially fatal so the implementation uses source
593  *   alignment and poison alignment assumptions to avoid re-triggering
594  *   hardware exceptions.
595  *
596  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
597  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
598  *   a short copy.
599  *
600  * Return: number of bytes copied (may be %0)
601  */
602 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
603 {
604 	if (unlikely(iov_iter_is_pipe(i)))
605 		return copy_mc_pipe_to_iter(addr, bytes, i);
606 	if (user_backed_iter(i))
607 		might_fault();
608 	__iterate_and_advance(i, bytes, base, len, off,
609 		copyout_mc(base, addr + off, len),
610 		copy_mc_to_kernel(base, addr + off, len)
611 	)
612 
613 	return bytes;
614 }
615 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
616 #endif /* CONFIG_ARCH_HAS_COPY_MC */
617 
618 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
619 {
620 	if (unlikely(iov_iter_is_pipe(i))) {
621 		WARN_ON(1);
622 		return 0;
623 	}
624 	if (user_backed_iter(i))
625 		might_fault();
626 	iterate_and_advance(i, bytes, base, len, off,
627 		copyin(addr + off, base, len),
628 		memcpy(addr + off, base, len)
629 	)
630 
631 	return bytes;
632 }
633 EXPORT_SYMBOL(_copy_from_iter);
634 
635 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
636 {
637 	if (unlikely(iov_iter_is_pipe(i))) {
638 		WARN_ON(1);
639 		return 0;
640 	}
641 	iterate_and_advance(i, bytes, base, len, off,
642 		__copy_from_user_inatomic_nocache(addr + off, base, len),
643 		memcpy(addr + off, base, len)
644 	)
645 
646 	return bytes;
647 }
648 EXPORT_SYMBOL(_copy_from_iter_nocache);
649 
650 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
651 /**
652  * _copy_from_iter_flushcache - write destination through cpu cache
653  * @addr: destination kernel address
654  * @bytes: total transfer length
655  * @i: source iterator
656  *
657  * The pmem driver arranges for filesystem-dax to use this facility via
658  * dax_copy_from_iter() for ensuring that writes to persistent memory
659  * are flushed through the CPU cache. It is differentiated from
660  * _copy_from_iter_nocache() in that guarantees all data is flushed for
661  * all iterator types. The _copy_from_iter_nocache() only attempts to
662  * bypass the cache for the ITER_IOVEC case, and on some archs may use
663  * instructions that strand dirty-data in the cache.
664  *
665  * Return: number of bytes copied (may be %0)
666  */
667 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
668 {
669 	if (unlikely(iov_iter_is_pipe(i))) {
670 		WARN_ON(1);
671 		return 0;
672 	}
673 	iterate_and_advance(i, bytes, base, len, off,
674 		__copy_from_user_flushcache(addr + off, base, len),
675 		memcpy_flushcache(addr + off, base, len)
676 	)
677 
678 	return bytes;
679 }
680 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
681 #endif
682 
683 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
684 {
685 	struct page *head;
686 	size_t v = n + offset;
687 
688 	/*
689 	 * The general case needs to access the page order in order
690 	 * to compute the page size.
691 	 * However, we mostly deal with order-0 pages and thus can
692 	 * avoid a possible cache line miss for requests that fit all
693 	 * page orders.
694 	 */
695 	if (n <= v && v <= PAGE_SIZE)
696 		return true;
697 
698 	head = compound_head(page);
699 	v += (page - head) << PAGE_SHIFT;
700 
701 	if (likely(n <= v && v <= (page_size(head))))
702 		return true;
703 	WARN_ON(1);
704 	return false;
705 }
706 
707 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
708 			 struct iov_iter *i)
709 {
710 	if (unlikely(iov_iter_is_pipe(i))) {
711 		return copy_page_to_iter_pipe(page, offset, bytes, i);
712 	} else {
713 		void *kaddr = kmap_local_page(page);
714 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
715 		kunmap_local(kaddr);
716 		return wanted;
717 	}
718 }
719 
720 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
721 			 struct iov_iter *i)
722 {
723 	size_t res = 0;
724 	if (unlikely(!page_copy_sane(page, offset, bytes)))
725 		return 0;
726 	page += offset / PAGE_SIZE; // first subpage
727 	offset %= PAGE_SIZE;
728 	while (1) {
729 		size_t n = __copy_page_to_iter(page, offset,
730 				min(bytes, (size_t)PAGE_SIZE - offset), i);
731 		res += n;
732 		bytes -= n;
733 		if (!bytes || !n)
734 			break;
735 		offset += n;
736 		if (offset == PAGE_SIZE) {
737 			page++;
738 			offset = 0;
739 		}
740 	}
741 	return res;
742 }
743 EXPORT_SYMBOL(copy_page_to_iter);
744 
745 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
746 			 struct iov_iter *i)
747 {
748 	if (page_copy_sane(page, offset, bytes)) {
749 		void *kaddr = kmap_local_page(page);
750 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
751 		kunmap_local(kaddr);
752 		return wanted;
753 	}
754 	return 0;
755 }
756 EXPORT_SYMBOL(copy_page_from_iter);
757 
758 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
759 {
760 	unsigned int chunk, off;
761 
762 	if (unlikely(bytes > i->count))
763 		bytes = i->count;
764 	if (unlikely(!bytes))
765 		return 0;
766 
767 	if (!sanity(i))
768 		return 0;
769 
770 	for (size_t n = bytes; n; n -= chunk) {
771 		struct page *page = append_pipe(i, n, &off);
772 		char *p;
773 
774 		if (!page)
775 			return bytes - n;
776 		chunk = min_t(size_t, n, PAGE_SIZE - off);
777 		p = kmap_local_page(page);
778 		memset(p + off, 0, chunk);
779 		kunmap_local(p);
780 	}
781 	return bytes;
782 }
783 
784 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
785 {
786 	if (unlikely(iov_iter_is_pipe(i)))
787 		return pipe_zero(bytes, i);
788 	iterate_and_advance(i, bytes, base, len, count,
789 		clear_user(base, len),
790 		memset(base, 0, len)
791 	)
792 
793 	return bytes;
794 }
795 EXPORT_SYMBOL(iov_iter_zero);
796 
797 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
798 				  struct iov_iter *i)
799 {
800 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
801 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
802 		kunmap_atomic(kaddr);
803 		return 0;
804 	}
805 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
806 		kunmap_atomic(kaddr);
807 		WARN_ON(1);
808 		return 0;
809 	}
810 	iterate_and_advance(i, bytes, base, len, off,
811 		copyin(p + off, base, len),
812 		memcpy(p + off, base, len)
813 	)
814 	kunmap_atomic(kaddr);
815 	return bytes;
816 }
817 EXPORT_SYMBOL(copy_page_from_iter_atomic);
818 
819 static void pipe_advance(struct iov_iter *i, size_t size)
820 {
821 	struct pipe_inode_info *pipe = i->pipe;
822 	unsigned int off = i->iov_offset;
823 
824 	if (!off && !size) {
825 		pipe_discard_from(pipe, i->start_head); // discard everything
826 		return;
827 	}
828 	i->count -= size;
829 	while (1) {
830 		struct pipe_buffer *buf = pipe_buf(pipe, i->head);
831 		if (off) /* make it relative to the beginning of buffer */
832 			size += off - buf->offset;
833 		if (size <= buf->len) {
834 			buf->len = size;
835 			i->iov_offset = buf->offset + size;
836 			break;
837 		}
838 		size -= buf->len;
839 		i->head++;
840 		off = 0;
841 	}
842 	pipe_discard_from(pipe, i->head + 1); // discard everything past this one
843 }
844 
845 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
846 {
847 	const struct bio_vec *bvec, *end;
848 
849 	if (!i->count)
850 		return;
851 	i->count -= size;
852 
853 	size += i->iov_offset;
854 
855 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
856 		if (likely(size < bvec->bv_len))
857 			break;
858 		size -= bvec->bv_len;
859 	}
860 	i->iov_offset = size;
861 	i->nr_segs -= bvec - i->bvec;
862 	i->bvec = bvec;
863 }
864 
865 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
866 {
867 	const struct iovec *iov, *end;
868 
869 	if (!i->count)
870 		return;
871 	i->count -= size;
872 
873 	size += i->iov_offset; // from beginning of current segment
874 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
875 		if (likely(size < iov->iov_len))
876 			break;
877 		size -= iov->iov_len;
878 	}
879 	i->iov_offset = size;
880 	i->nr_segs -= iov - i->iov;
881 	i->iov = iov;
882 }
883 
884 void iov_iter_advance(struct iov_iter *i, size_t size)
885 {
886 	if (unlikely(i->count < size))
887 		size = i->count;
888 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
889 		i->iov_offset += size;
890 		i->count -= size;
891 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
892 		/* iovec and kvec have identical layouts */
893 		iov_iter_iovec_advance(i, size);
894 	} else if (iov_iter_is_bvec(i)) {
895 		iov_iter_bvec_advance(i, size);
896 	} else if (iov_iter_is_pipe(i)) {
897 		pipe_advance(i, size);
898 	} else if (iov_iter_is_discard(i)) {
899 		i->count -= size;
900 	}
901 }
902 EXPORT_SYMBOL(iov_iter_advance);
903 
904 void iov_iter_revert(struct iov_iter *i, size_t unroll)
905 {
906 	if (!unroll)
907 		return;
908 	if (WARN_ON(unroll > MAX_RW_COUNT))
909 		return;
910 	i->count += unroll;
911 	if (unlikely(iov_iter_is_pipe(i))) {
912 		struct pipe_inode_info *pipe = i->pipe;
913 		unsigned int head = pipe->head;
914 
915 		while (head > i->start_head) {
916 			struct pipe_buffer *b = pipe_buf(pipe, --head);
917 			if (unroll < b->len) {
918 				b->len -= unroll;
919 				i->iov_offset = b->offset + b->len;
920 				i->head = head;
921 				return;
922 			}
923 			unroll -= b->len;
924 			pipe_buf_release(pipe, b);
925 			pipe->head--;
926 		}
927 		i->iov_offset = 0;
928 		i->head = head;
929 		return;
930 	}
931 	if (unlikely(iov_iter_is_discard(i)))
932 		return;
933 	if (unroll <= i->iov_offset) {
934 		i->iov_offset -= unroll;
935 		return;
936 	}
937 	unroll -= i->iov_offset;
938 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
939 		BUG(); /* We should never go beyond the start of the specified
940 			* range since we might then be straying into pages that
941 			* aren't pinned.
942 			*/
943 	} else if (iov_iter_is_bvec(i)) {
944 		const struct bio_vec *bvec = i->bvec;
945 		while (1) {
946 			size_t n = (--bvec)->bv_len;
947 			i->nr_segs++;
948 			if (unroll <= n) {
949 				i->bvec = bvec;
950 				i->iov_offset = n - unroll;
951 				return;
952 			}
953 			unroll -= n;
954 		}
955 	} else { /* same logics for iovec and kvec */
956 		const struct iovec *iov = i->iov;
957 		while (1) {
958 			size_t n = (--iov)->iov_len;
959 			i->nr_segs++;
960 			if (unroll <= n) {
961 				i->iov = iov;
962 				i->iov_offset = n - unroll;
963 				return;
964 			}
965 			unroll -= n;
966 		}
967 	}
968 }
969 EXPORT_SYMBOL(iov_iter_revert);
970 
971 /*
972  * Return the count of just the current iov_iter segment.
973  */
974 size_t iov_iter_single_seg_count(const struct iov_iter *i)
975 {
976 	if (i->nr_segs > 1) {
977 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
978 			return min(i->count, i->iov->iov_len - i->iov_offset);
979 		if (iov_iter_is_bvec(i))
980 			return min(i->count, i->bvec->bv_len - i->iov_offset);
981 	}
982 	return i->count;
983 }
984 EXPORT_SYMBOL(iov_iter_single_seg_count);
985 
986 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
987 			const struct kvec *kvec, unsigned long nr_segs,
988 			size_t count)
989 {
990 	WARN_ON(direction & ~(READ | WRITE));
991 	*i = (struct iov_iter){
992 		.iter_type = ITER_KVEC,
993 		.data_source = direction,
994 		.kvec = kvec,
995 		.nr_segs = nr_segs,
996 		.iov_offset = 0,
997 		.count = count
998 	};
999 }
1000 EXPORT_SYMBOL(iov_iter_kvec);
1001 
1002 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1003 			const struct bio_vec *bvec, unsigned long nr_segs,
1004 			size_t count)
1005 {
1006 	WARN_ON(direction & ~(READ | WRITE));
1007 	*i = (struct iov_iter){
1008 		.iter_type = ITER_BVEC,
1009 		.data_source = direction,
1010 		.bvec = bvec,
1011 		.nr_segs = nr_segs,
1012 		.iov_offset = 0,
1013 		.count = count
1014 	};
1015 }
1016 EXPORT_SYMBOL(iov_iter_bvec);
1017 
1018 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1019 			struct pipe_inode_info *pipe,
1020 			size_t count)
1021 {
1022 	BUG_ON(direction != READ);
1023 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1024 	*i = (struct iov_iter){
1025 		.iter_type = ITER_PIPE,
1026 		.data_source = false,
1027 		.pipe = pipe,
1028 		.head = pipe->head,
1029 		.start_head = pipe->head,
1030 		.iov_offset = 0,
1031 		.count = count
1032 	};
1033 }
1034 EXPORT_SYMBOL(iov_iter_pipe);
1035 
1036 /**
1037  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1038  * @i: The iterator to initialise.
1039  * @direction: The direction of the transfer.
1040  * @xarray: The xarray to access.
1041  * @start: The start file position.
1042  * @count: The size of the I/O buffer in bytes.
1043  *
1044  * Set up an I/O iterator to either draw data out of the pages attached to an
1045  * inode or to inject data into those pages.  The pages *must* be prevented
1046  * from evaporation, either by taking a ref on them or locking them by the
1047  * caller.
1048  */
1049 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1050 		     struct xarray *xarray, loff_t start, size_t count)
1051 {
1052 	BUG_ON(direction & ~1);
1053 	*i = (struct iov_iter) {
1054 		.iter_type = ITER_XARRAY,
1055 		.data_source = direction,
1056 		.xarray = xarray,
1057 		.xarray_start = start,
1058 		.count = count,
1059 		.iov_offset = 0
1060 	};
1061 }
1062 EXPORT_SYMBOL(iov_iter_xarray);
1063 
1064 /**
1065  * iov_iter_discard - Initialise an I/O iterator that discards data
1066  * @i: The iterator to initialise.
1067  * @direction: The direction of the transfer.
1068  * @count: The size of the I/O buffer in bytes.
1069  *
1070  * Set up an I/O iterator that just discards everything that's written to it.
1071  * It's only available as a READ iterator.
1072  */
1073 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1074 {
1075 	BUG_ON(direction != READ);
1076 	*i = (struct iov_iter){
1077 		.iter_type = ITER_DISCARD,
1078 		.data_source = false,
1079 		.count = count,
1080 		.iov_offset = 0
1081 	};
1082 }
1083 EXPORT_SYMBOL(iov_iter_discard);
1084 
1085 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1086 				   unsigned len_mask)
1087 {
1088 	size_t size = i->count;
1089 	size_t skip = i->iov_offset;
1090 	unsigned k;
1091 
1092 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1093 		size_t len = i->iov[k].iov_len - skip;
1094 
1095 		if (len > size)
1096 			len = size;
1097 		if (len & len_mask)
1098 			return false;
1099 		if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1100 			return false;
1101 
1102 		size -= len;
1103 		if (!size)
1104 			break;
1105 	}
1106 	return true;
1107 }
1108 
1109 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1110 				  unsigned len_mask)
1111 {
1112 	size_t size = i->count;
1113 	unsigned skip = i->iov_offset;
1114 	unsigned k;
1115 
1116 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1117 		size_t len = i->bvec[k].bv_len - skip;
1118 
1119 		if (len > size)
1120 			len = size;
1121 		if (len & len_mask)
1122 			return false;
1123 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1124 			return false;
1125 
1126 		size -= len;
1127 		if (!size)
1128 			break;
1129 	}
1130 	return true;
1131 }
1132 
1133 /**
1134  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1135  * 	are aligned to the parameters.
1136  *
1137  * @i: &struct iov_iter to restore
1138  * @addr_mask: bit mask to check against the iov element's addresses
1139  * @len_mask: bit mask to check against the iov element's lengths
1140  *
1141  * Return: false if any addresses or lengths intersect with the provided masks
1142  */
1143 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1144 			 unsigned len_mask)
1145 {
1146 	if (likely(iter_is_ubuf(i))) {
1147 		if (i->count & len_mask)
1148 			return false;
1149 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1150 			return false;
1151 		return true;
1152 	}
1153 
1154 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1155 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1156 
1157 	if (iov_iter_is_bvec(i))
1158 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1159 
1160 	if (iov_iter_is_pipe(i)) {
1161 		unsigned int p_mask = i->pipe->ring_size - 1;
1162 		size_t size = i->count;
1163 
1164 		if (size & len_mask)
1165 			return false;
1166 		if (size && allocated(&i->pipe->bufs[i->head & p_mask])) {
1167 			if (i->iov_offset & addr_mask)
1168 				return false;
1169 		}
1170 
1171 		return true;
1172 	}
1173 
1174 	if (iov_iter_is_xarray(i)) {
1175 		if (i->count & len_mask)
1176 			return false;
1177 		if ((i->xarray_start + i->iov_offset) & addr_mask)
1178 			return false;
1179 	}
1180 
1181 	return true;
1182 }
1183 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1184 
1185 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1186 {
1187 	unsigned long res = 0;
1188 	size_t size = i->count;
1189 	size_t skip = i->iov_offset;
1190 	unsigned k;
1191 
1192 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1193 		size_t len = i->iov[k].iov_len - skip;
1194 		if (len) {
1195 			res |= (unsigned long)i->iov[k].iov_base + skip;
1196 			if (len > size)
1197 				len = size;
1198 			res |= len;
1199 			size -= len;
1200 			if (!size)
1201 				break;
1202 		}
1203 	}
1204 	return res;
1205 }
1206 
1207 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1208 {
1209 	unsigned res = 0;
1210 	size_t size = i->count;
1211 	unsigned skip = i->iov_offset;
1212 	unsigned k;
1213 
1214 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1215 		size_t len = i->bvec[k].bv_len - skip;
1216 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1217 		if (len > size)
1218 			len = size;
1219 		res |= len;
1220 		size -= len;
1221 		if (!size)
1222 			break;
1223 	}
1224 	return res;
1225 }
1226 
1227 unsigned long iov_iter_alignment(const struct iov_iter *i)
1228 {
1229 	if (likely(iter_is_ubuf(i))) {
1230 		size_t size = i->count;
1231 		if (size)
1232 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
1233 		return 0;
1234 	}
1235 
1236 	/* iovec and kvec have identical layouts */
1237 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1238 		return iov_iter_alignment_iovec(i);
1239 
1240 	if (iov_iter_is_bvec(i))
1241 		return iov_iter_alignment_bvec(i);
1242 
1243 	if (iov_iter_is_pipe(i)) {
1244 		size_t size = i->count;
1245 
1246 		if (size && i->iov_offset && allocated(pipe_buf(i->pipe, i->head)))
1247 			return size | i->iov_offset;
1248 		return size;
1249 	}
1250 
1251 	if (iov_iter_is_xarray(i))
1252 		return (i->xarray_start + i->iov_offset) | i->count;
1253 
1254 	return 0;
1255 }
1256 EXPORT_SYMBOL(iov_iter_alignment);
1257 
1258 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1259 {
1260 	unsigned long res = 0;
1261 	unsigned long v = 0;
1262 	size_t size = i->count;
1263 	unsigned k;
1264 
1265 	if (iter_is_ubuf(i))
1266 		return 0;
1267 
1268 	if (WARN_ON(!iter_is_iovec(i)))
1269 		return ~0U;
1270 
1271 	for (k = 0; k < i->nr_segs; k++) {
1272 		if (i->iov[k].iov_len) {
1273 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1274 			if (v) // if not the first one
1275 				res |= base | v; // this start | previous end
1276 			v = base + i->iov[k].iov_len;
1277 			if (size <= i->iov[k].iov_len)
1278 				break;
1279 			size -= i->iov[k].iov_len;
1280 		}
1281 	}
1282 	return res;
1283 }
1284 EXPORT_SYMBOL(iov_iter_gap_alignment);
1285 
1286 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1287 				size_t maxsize,
1288 				struct page **pages,
1289 				size_t off)
1290 {
1291 	struct pipe_inode_info *pipe = i->pipe;
1292 	ssize_t left = maxsize;
1293 
1294 	if (off) {
1295 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head - 1);
1296 
1297 		get_page(*pages++ = buf->page);
1298 		left -= PAGE_SIZE - off;
1299 		if (left <= 0) {
1300 			buf->len += maxsize;
1301 			return maxsize;
1302 		}
1303 		buf->len = PAGE_SIZE;
1304 	}
1305 	while (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1306 		struct page *page = push_anon(pipe,
1307 					      min_t(ssize_t, left, PAGE_SIZE));
1308 		if (!page)
1309 			break;
1310 		get_page(*pages++ = page);
1311 		left -= PAGE_SIZE;
1312 		if (left <= 0)
1313 			return maxsize;
1314 	}
1315 	return maxsize - left ? : -EFAULT;
1316 }
1317 
1318 static ssize_t pipe_get_pages(struct iov_iter *i,
1319 		   struct page **pages, size_t maxsize, unsigned maxpages,
1320 		   size_t *start)
1321 {
1322 	unsigned int iter_head, npages;
1323 	size_t capacity;
1324 
1325 	if (!sanity(i))
1326 		return -EFAULT;
1327 
1328 	data_start(i, &iter_head, start);
1329 	/* Amount of free space: some of this one + all after this one */
1330 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1331 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1332 
1333 	return __pipe_get_pages(i, min(maxsize, capacity), pages, *start);
1334 }
1335 
1336 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1337 					  pgoff_t index, unsigned int nr_pages)
1338 {
1339 	XA_STATE(xas, xa, index);
1340 	struct page *page;
1341 	unsigned int ret = 0;
1342 
1343 	rcu_read_lock();
1344 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1345 		if (xas_retry(&xas, page))
1346 			continue;
1347 
1348 		/* Has the page moved or been split? */
1349 		if (unlikely(page != xas_reload(&xas))) {
1350 			xas_reset(&xas);
1351 			continue;
1352 		}
1353 
1354 		pages[ret] = find_subpage(page, xas.xa_index);
1355 		get_page(pages[ret]);
1356 		if (++ret == nr_pages)
1357 			break;
1358 	}
1359 	rcu_read_unlock();
1360 	return ret;
1361 }
1362 
1363 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1364 				     struct page **pages, size_t maxsize,
1365 				     unsigned maxpages, size_t *_start_offset)
1366 {
1367 	unsigned nr, offset;
1368 	pgoff_t index, count;
1369 	size_t size = maxsize;
1370 	loff_t pos;
1371 
1372 	if (!size || !maxpages)
1373 		return 0;
1374 
1375 	pos = i->xarray_start + i->iov_offset;
1376 	index = pos >> PAGE_SHIFT;
1377 	offset = pos & ~PAGE_MASK;
1378 	*_start_offset = offset;
1379 
1380 	count = 1;
1381 	if (size > PAGE_SIZE - offset) {
1382 		size -= PAGE_SIZE - offset;
1383 		count += size >> PAGE_SHIFT;
1384 		size &= ~PAGE_MASK;
1385 		if (size)
1386 			count++;
1387 	}
1388 
1389 	if (count > maxpages)
1390 		count = maxpages;
1391 
1392 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1393 	if (nr == 0)
1394 		return 0;
1395 
1396 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1397 }
1398 
1399 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1400 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1401 {
1402 	size_t skip;
1403 	long k;
1404 
1405 	if (iter_is_ubuf(i))
1406 		return (unsigned long)i->ubuf + i->iov_offset;
1407 
1408 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1409 		size_t len = i->iov[k].iov_len - skip;
1410 
1411 		if (unlikely(!len))
1412 			continue;
1413 		if (*size > len)
1414 			*size = len;
1415 		return (unsigned long)i->iov[k].iov_base + skip;
1416 	}
1417 	BUG(); // if it had been empty, we wouldn't get called
1418 }
1419 
1420 /* must be done on non-empty ITER_BVEC one */
1421 static struct page *first_bvec_segment(const struct iov_iter *i,
1422 				       size_t *size, size_t *start)
1423 {
1424 	struct page *page;
1425 	size_t skip = i->iov_offset, len;
1426 
1427 	len = i->bvec->bv_len - skip;
1428 	if (*size > len)
1429 		*size = len;
1430 	skip += i->bvec->bv_offset;
1431 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1432 	*start = skip % PAGE_SIZE;
1433 	return page;
1434 }
1435 
1436 ssize_t iov_iter_get_pages(struct iov_iter *i,
1437 		   struct page **pages, size_t maxsize, unsigned maxpages,
1438 		   size_t *start)
1439 {
1440 	int n, res;
1441 
1442 	if (maxsize > i->count)
1443 		maxsize = i->count;
1444 	if (!maxsize)
1445 		return 0;
1446 	if (maxsize > MAX_RW_COUNT)
1447 		maxsize = MAX_RW_COUNT;
1448 
1449 	if (likely(user_backed_iter(i))) {
1450 		unsigned int gup_flags = 0;
1451 		unsigned long addr;
1452 
1453 		if (iov_iter_rw(i) != WRITE)
1454 			gup_flags |= FOLL_WRITE;
1455 		if (i->nofault)
1456 			gup_flags |= FOLL_NOFAULT;
1457 
1458 		addr = first_iovec_segment(i, &maxsize);
1459 		*start = addr % PAGE_SIZE;
1460 		addr &= PAGE_MASK;
1461 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1462 		if (n > maxpages)
1463 			n = maxpages;
1464 		res = get_user_pages_fast(addr, n, gup_flags, pages);
1465 		if (unlikely(res <= 0))
1466 			return res;
1467 		return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1468 	}
1469 	if (iov_iter_is_bvec(i)) {
1470 		struct page *page;
1471 
1472 		page = first_bvec_segment(i, &maxsize, start);
1473 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1474 		if (n > maxpages)
1475 			n = maxpages;
1476 		for (int k = 0; k < n; k++)
1477 			get_page(*pages++ = page++);
1478 		return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1479 	}
1480 	if (iov_iter_is_pipe(i))
1481 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1482 	if (iov_iter_is_xarray(i))
1483 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1484 	return -EFAULT;
1485 }
1486 EXPORT_SYMBOL(iov_iter_get_pages);
1487 
1488 static struct page **get_pages_array(size_t n)
1489 {
1490 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1491 }
1492 
1493 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1494 		   struct page ***pages, size_t maxsize,
1495 		   size_t *start)
1496 {
1497 	struct page **p;
1498 	unsigned int iter_head, npages;
1499 	ssize_t n;
1500 
1501 	if (!sanity(i))
1502 		return -EFAULT;
1503 
1504 	data_start(i, &iter_head, start);
1505 	/* Amount of free space: some of this one + all after this one */
1506 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1507 	n = npages * PAGE_SIZE - *start;
1508 	if (maxsize > n)
1509 		maxsize = n;
1510 	else
1511 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1512 	p = get_pages_array(npages);
1513 	if (!p)
1514 		return -ENOMEM;
1515 	n = __pipe_get_pages(i, maxsize, p, *start);
1516 	if (n > 0)
1517 		*pages = p;
1518 	else
1519 		kvfree(p);
1520 	return n;
1521 }
1522 
1523 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1524 					   struct page ***pages, size_t maxsize,
1525 					   size_t *_start_offset)
1526 {
1527 	struct page **p;
1528 	unsigned nr, offset;
1529 	pgoff_t index, count;
1530 	size_t size = maxsize;
1531 	loff_t pos;
1532 
1533 	if (!size)
1534 		return 0;
1535 
1536 	pos = i->xarray_start + i->iov_offset;
1537 	index = pos >> PAGE_SHIFT;
1538 	offset = pos & ~PAGE_MASK;
1539 	*_start_offset = offset;
1540 
1541 	count = 1;
1542 	if (size > PAGE_SIZE - offset) {
1543 		size -= PAGE_SIZE - offset;
1544 		count += size >> PAGE_SHIFT;
1545 		size &= ~PAGE_MASK;
1546 		if (size)
1547 			count++;
1548 	}
1549 
1550 	p = get_pages_array(count);
1551 	if (!p)
1552 		return -ENOMEM;
1553 	*pages = p;
1554 
1555 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1556 	if (nr == 0)
1557 		return 0;
1558 
1559 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1560 }
1561 
1562 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1563 		   struct page ***pages, size_t maxsize,
1564 		   size_t *start)
1565 {
1566 	struct page **p;
1567 	int n, res;
1568 
1569 	if (maxsize > i->count)
1570 		maxsize = i->count;
1571 	if (!maxsize)
1572 		return 0;
1573 	if (maxsize > MAX_RW_COUNT)
1574 		maxsize = MAX_RW_COUNT;
1575 
1576 	if (likely(user_backed_iter(i))) {
1577 		unsigned int gup_flags = 0;
1578 		unsigned long addr;
1579 
1580 		if (iov_iter_rw(i) != WRITE)
1581 			gup_flags |= FOLL_WRITE;
1582 		if (i->nofault)
1583 			gup_flags |= FOLL_NOFAULT;
1584 
1585 		addr = first_iovec_segment(i, &maxsize);
1586 		*start = addr % PAGE_SIZE;
1587 		addr &= PAGE_MASK;
1588 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1589 		p = get_pages_array(n);
1590 		if (!p)
1591 			return -ENOMEM;
1592 		res = get_user_pages_fast(addr, n, gup_flags, p);
1593 		if (unlikely(res <= 0)) {
1594 			kvfree(p);
1595 			*pages = NULL;
1596 			return res;
1597 		}
1598 		*pages = p;
1599 		return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1600 	}
1601 	if (iov_iter_is_bvec(i)) {
1602 		struct page *page;
1603 
1604 		page = first_bvec_segment(i, &maxsize, start);
1605 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1606 		*pages = p = get_pages_array(n);
1607 		if (!p)
1608 			return -ENOMEM;
1609 		for (int k = 0; k < n; k++)
1610 			get_page(*p++ = page++);
1611 		return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1612 	}
1613 	if (iov_iter_is_pipe(i))
1614 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1615 	if (iov_iter_is_xarray(i))
1616 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1617 	return -EFAULT;
1618 }
1619 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1620 
1621 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1622 			       struct iov_iter *i)
1623 {
1624 	__wsum sum, next;
1625 	sum = *csum;
1626 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1627 		WARN_ON(1);
1628 		return 0;
1629 	}
1630 	iterate_and_advance(i, bytes, base, len, off, ({
1631 		next = csum_and_copy_from_user(base, addr + off, len);
1632 		sum = csum_block_add(sum, next, off);
1633 		next ? 0 : len;
1634 	}), ({
1635 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1636 	})
1637 	)
1638 	*csum = sum;
1639 	return bytes;
1640 }
1641 EXPORT_SYMBOL(csum_and_copy_from_iter);
1642 
1643 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1644 			     struct iov_iter *i)
1645 {
1646 	struct csum_state *csstate = _csstate;
1647 	__wsum sum, next;
1648 
1649 	if (unlikely(iov_iter_is_discard(i))) {
1650 		WARN_ON(1);	/* for now */
1651 		return 0;
1652 	}
1653 
1654 	sum = csum_shift(csstate->csum, csstate->off);
1655 	if (unlikely(iov_iter_is_pipe(i)))
1656 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1657 	else iterate_and_advance(i, bytes, base, len, off, ({
1658 		next = csum_and_copy_to_user(addr + off, base, len);
1659 		sum = csum_block_add(sum, next, off);
1660 		next ? 0 : len;
1661 	}), ({
1662 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1663 	})
1664 	)
1665 	csstate->csum = csum_shift(sum, csstate->off);
1666 	csstate->off += bytes;
1667 	return bytes;
1668 }
1669 EXPORT_SYMBOL(csum_and_copy_to_iter);
1670 
1671 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1672 		struct iov_iter *i)
1673 {
1674 #ifdef CONFIG_CRYPTO_HASH
1675 	struct ahash_request *hash = hashp;
1676 	struct scatterlist sg;
1677 	size_t copied;
1678 
1679 	copied = copy_to_iter(addr, bytes, i);
1680 	sg_init_one(&sg, addr, copied);
1681 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1682 	crypto_ahash_update(hash);
1683 	return copied;
1684 #else
1685 	return 0;
1686 #endif
1687 }
1688 EXPORT_SYMBOL(hash_and_copy_to_iter);
1689 
1690 static int iov_npages(const struct iov_iter *i, int maxpages)
1691 {
1692 	size_t skip = i->iov_offset, size = i->count;
1693 	const struct iovec *p;
1694 	int npages = 0;
1695 
1696 	for (p = i->iov; size; skip = 0, p++) {
1697 		unsigned offs = offset_in_page(p->iov_base + skip);
1698 		size_t len = min(p->iov_len - skip, size);
1699 
1700 		if (len) {
1701 			size -= len;
1702 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1703 			if (unlikely(npages > maxpages))
1704 				return maxpages;
1705 		}
1706 	}
1707 	return npages;
1708 }
1709 
1710 static int bvec_npages(const struct iov_iter *i, int maxpages)
1711 {
1712 	size_t skip = i->iov_offset, size = i->count;
1713 	const struct bio_vec *p;
1714 	int npages = 0;
1715 
1716 	for (p = i->bvec; size; skip = 0, p++) {
1717 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1718 		size_t len = min(p->bv_len - skip, size);
1719 
1720 		size -= len;
1721 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1722 		if (unlikely(npages > maxpages))
1723 			return maxpages;
1724 	}
1725 	return npages;
1726 }
1727 
1728 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1729 {
1730 	if (unlikely(!i->count))
1731 		return 0;
1732 	if (likely(iter_is_ubuf(i))) {
1733 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1734 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1735 		return min(npages, maxpages);
1736 	}
1737 	/* iovec and kvec have identical layouts */
1738 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1739 		return iov_npages(i, maxpages);
1740 	if (iov_iter_is_bvec(i))
1741 		return bvec_npages(i, maxpages);
1742 	if (iov_iter_is_pipe(i)) {
1743 		unsigned int iter_head;
1744 		int npages;
1745 		size_t off;
1746 
1747 		if (!sanity(i))
1748 			return 0;
1749 
1750 		data_start(i, &iter_head, &off);
1751 		/* some of this one + all after this one */
1752 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1753 		return min(npages, maxpages);
1754 	}
1755 	if (iov_iter_is_xarray(i)) {
1756 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1757 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1758 		return min(npages, maxpages);
1759 	}
1760 	return 0;
1761 }
1762 EXPORT_SYMBOL(iov_iter_npages);
1763 
1764 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1765 {
1766 	*new = *old;
1767 	if (unlikely(iov_iter_is_pipe(new))) {
1768 		WARN_ON(1);
1769 		return NULL;
1770 	}
1771 	if (iov_iter_is_bvec(new))
1772 		return new->bvec = kmemdup(new->bvec,
1773 				    new->nr_segs * sizeof(struct bio_vec),
1774 				    flags);
1775 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1776 		/* iovec and kvec have identical layout */
1777 		return new->iov = kmemdup(new->iov,
1778 				   new->nr_segs * sizeof(struct iovec),
1779 				   flags);
1780 	return NULL;
1781 }
1782 EXPORT_SYMBOL(dup_iter);
1783 
1784 static int copy_compat_iovec_from_user(struct iovec *iov,
1785 		const struct iovec __user *uvec, unsigned long nr_segs)
1786 {
1787 	const struct compat_iovec __user *uiov =
1788 		(const struct compat_iovec __user *)uvec;
1789 	int ret = -EFAULT, i;
1790 
1791 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1792 		return -EFAULT;
1793 
1794 	for (i = 0; i < nr_segs; i++) {
1795 		compat_uptr_t buf;
1796 		compat_ssize_t len;
1797 
1798 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1799 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1800 
1801 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1802 		if (len < 0) {
1803 			ret = -EINVAL;
1804 			goto uaccess_end;
1805 		}
1806 		iov[i].iov_base = compat_ptr(buf);
1807 		iov[i].iov_len = len;
1808 	}
1809 
1810 	ret = 0;
1811 uaccess_end:
1812 	user_access_end();
1813 	return ret;
1814 }
1815 
1816 static int copy_iovec_from_user(struct iovec *iov,
1817 		const struct iovec __user *uvec, unsigned long nr_segs)
1818 {
1819 	unsigned long seg;
1820 
1821 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1822 		return -EFAULT;
1823 	for (seg = 0; seg < nr_segs; seg++) {
1824 		if ((ssize_t)iov[seg].iov_len < 0)
1825 			return -EINVAL;
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1832 		unsigned long nr_segs, unsigned long fast_segs,
1833 		struct iovec *fast_iov, bool compat)
1834 {
1835 	struct iovec *iov = fast_iov;
1836 	int ret;
1837 
1838 	/*
1839 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1840 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1841 	 * traditionally returned zero for zero segments, so...
1842 	 */
1843 	if (nr_segs == 0)
1844 		return iov;
1845 	if (nr_segs > UIO_MAXIOV)
1846 		return ERR_PTR(-EINVAL);
1847 	if (nr_segs > fast_segs) {
1848 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1849 		if (!iov)
1850 			return ERR_PTR(-ENOMEM);
1851 	}
1852 
1853 	if (compat)
1854 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1855 	else
1856 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1857 	if (ret) {
1858 		if (iov != fast_iov)
1859 			kfree(iov);
1860 		return ERR_PTR(ret);
1861 	}
1862 
1863 	return iov;
1864 }
1865 
1866 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1867 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1868 		 struct iov_iter *i, bool compat)
1869 {
1870 	ssize_t total_len = 0;
1871 	unsigned long seg;
1872 	struct iovec *iov;
1873 
1874 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1875 	if (IS_ERR(iov)) {
1876 		*iovp = NULL;
1877 		return PTR_ERR(iov);
1878 	}
1879 
1880 	/*
1881 	 * According to the Single Unix Specification we should return EINVAL if
1882 	 * an element length is < 0 when cast to ssize_t or if the total length
1883 	 * would overflow the ssize_t return value of the system call.
1884 	 *
1885 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1886 	 * overflow case.
1887 	 */
1888 	for (seg = 0; seg < nr_segs; seg++) {
1889 		ssize_t len = (ssize_t)iov[seg].iov_len;
1890 
1891 		if (!access_ok(iov[seg].iov_base, len)) {
1892 			if (iov != *iovp)
1893 				kfree(iov);
1894 			*iovp = NULL;
1895 			return -EFAULT;
1896 		}
1897 
1898 		if (len > MAX_RW_COUNT - total_len) {
1899 			len = MAX_RW_COUNT - total_len;
1900 			iov[seg].iov_len = len;
1901 		}
1902 		total_len += len;
1903 	}
1904 
1905 	iov_iter_init(i, type, iov, nr_segs, total_len);
1906 	if (iov == *iovp)
1907 		*iovp = NULL;
1908 	else
1909 		*iovp = iov;
1910 	return total_len;
1911 }
1912 
1913 /**
1914  * import_iovec() - Copy an array of &struct iovec from userspace
1915  *     into the kernel, check that it is valid, and initialize a new
1916  *     &struct iov_iter iterator to access it.
1917  *
1918  * @type: One of %READ or %WRITE.
1919  * @uvec: Pointer to the userspace array.
1920  * @nr_segs: Number of elements in userspace array.
1921  * @fast_segs: Number of elements in @iov.
1922  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1923  *     on-stack) kernel array.
1924  * @i: Pointer to iterator that will be initialized on success.
1925  *
1926  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1927  * then this function places %NULL in *@iov on return. Otherwise, a new
1928  * array will be allocated and the result placed in *@iov. This means that
1929  * the caller may call kfree() on *@iov regardless of whether the small
1930  * on-stack array was used or not (and regardless of whether this function
1931  * returns an error or not).
1932  *
1933  * Return: Negative error code on error, bytes imported on success
1934  */
1935 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1936 		 unsigned nr_segs, unsigned fast_segs,
1937 		 struct iovec **iovp, struct iov_iter *i)
1938 {
1939 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1940 			      in_compat_syscall());
1941 }
1942 EXPORT_SYMBOL(import_iovec);
1943 
1944 int import_single_range(int rw, void __user *buf, size_t len,
1945 		 struct iovec *iov, struct iov_iter *i)
1946 {
1947 	if (len > MAX_RW_COUNT)
1948 		len = MAX_RW_COUNT;
1949 	if (unlikely(!access_ok(buf, len)))
1950 		return -EFAULT;
1951 
1952 	iov->iov_base = buf;
1953 	iov->iov_len = len;
1954 	iov_iter_init(i, rw, iov, 1, len);
1955 	return 0;
1956 }
1957 EXPORT_SYMBOL(import_single_range);
1958 
1959 /**
1960  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1961  *     iov_iter_save_state() was called.
1962  *
1963  * @i: &struct iov_iter to restore
1964  * @state: state to restore from
1965  *
1966  * Used after iov_iter_save_state() to bring restore @i, if operations may
1967  * have advanced it.
1968  *
1969  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1970  */
1971 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1972 {
1973 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1974 			 !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
1975 		return;
1976 	i->iov_offset = state->iov_offset;
1977 	i->count = state->count;
1978 	if (iter_is_ubuf(i))
1979 		return;
1980 	/*
1981 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1982 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1983 	 * need to track both of these, just one is enough and we can deduct
1984 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1985 	 * size, so we can just increment the iov pointer as they are unionzed.
1986 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1987 	 * not. Be safe and handle it separately.
1988 	 */
1989 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1990 	if (iov_iter_is_bvec(i))
1991 		i->bvec -= state->nr_segs - i->nr_segs;
1992 	else
1993 		i->iov -= state->nr_segs - i->nr_segs;
1994 	i->nr_segs = state->nr_segs;
1995 }
1996