xref: /openbmc/linux/lib/iov_iter.c (revision 8fad7767)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
21 	size_t __maybe_unused off = 0;				\
22 	len = n;						\
23 	base = __p + i->iov_offset;				\
24 	len -= (STEP);						\
25 	i->iov_offset += len;					\
26 	n = len;						\
27 }
28 
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
31 	size_t off = 0;						\
32 	size_t skip = i->iov_offset;				\
33 	do {							\
34 		len = min(n, __p->iov_len - skip);		\
35 		if (likely(len)) {				\
36 			base = __p->iov_base + skip;		\
37 			len -= (STEP);				\
38 			off += len;				\
39 			skip += len;				\
40 			n -= len;				\
41 			if (skip < __p->iov_len)		\
42 				break;				\
43 		}						\
44 		__p++;						\
45 		skip = 0;					\
46 	} while (n);						\
47 	i->iov_offset = skip;					\
48 	n = off;						\
49 }
50 
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
52 	size_t off = 0;						\
53 	unsigned skip = i->iov_offset;				\
54 	while (n) {						\
55 		unsigned offset = p->bv_offset + skip;		\
56 		unsigned left;					\
57 		void *kaddr = kmap_local_page(p->bv_page +	\
58 					offset / PAGE_SIZE);	\
59 		base = kaddr + offset % PAGE_SIZE;		\
60 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
61 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
62 		left = (STEP);					\
63 		kunmap_local(kaddr);				\
64 		len -= left;					\
65 		off += len;					\
66 		skip += len;					\
67 		if (skip == p->bv_len) {			\
68 			skip = 0;				\
69 			p++;					\
70 		}						\
71 		n -= len;					\
72 		if (left)					\
73 			break;					\
74 	}							\
75 	i->iov_offset = skip;					\
76 	n = off;						\
77 }
78 
79 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
80 	__label__ __out;					\
81 	size_t __off = 0;					\
82 	struct folio *folio;					\
83 	loff_t start = i->xarray_start + i->iov_offset;		\
84 	pgoff_t index = start / PAGE_SIZE;			\
85 	XA_STATE(xas, i->xarray, index);			\
86 								\
87 	len = PAGE_SIZE - offset_in_page(start);		\
88 	rcu_read_lock();					\
89 	xas_for_each(&xas, folio, ULONG_MAX) {			\
90 		unsigned left;					\
91 		size_t offset;					\
92 		if (xas_retry(&xas, folio))			\
93 			continue;				\
94 		if (WARN_ON(xa_is_value(folio)))		\
95 			break;					\
96 		if (WARN_ON(folio_test_hugetlb(folio)))		\
97 			break;					\
98 		offset = offset_in_folio(folio, start + __off);	\
99 		while (offset < folio_size(folio)) {		\
100 			base = kmap_local_folio(folio, offset);	\
101 			len = min(n, len);			\
102 			left = (STEP);				\
103 			kunmap_local(base);			\
104 			len -= left;				\
105 			__off += len;				\
106 			n -= len;				\
107 			if (left || n == 0)			\
108 				goto __out;			\
109 			offset += len;				\
110 			len = PAGE_SIZE;			\
111 		}						\
112 	}							\
113 __out:								\
114 	rcu_read_unlock();					\
115 	i->iov_offset += __off;					\
116 	n = __off;						\
117 }
118 
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
120 	if (unlikely(i->count < n))				\
121 		n = i->count;					\
122 	if (likely(n)) {					\
123 		if (likely(iter_is_ubuf(i))) {			\
124 			void __user *base;			\
125 			size_t len;				\
126 			iterate_buf(i, n, base, len, off,	\
127 						i->ubuf, (I)) 	\
128 		} else if (likely(iter_is_iovec(i))) {		\
129 			const struct iovec *iov = i->iov;	\
130 			void __user *base;			\
131 			size_t len;				\
132 			iterate_iovec(i, n, base, len, off,	\
133 						iov, (I))	\
134 			i->nr_segs -= iov - i->iov;		\
135 			i->iov = iov;				\
136 		} else if (iov_iter_is_bvec(i)) {		\
137 			const struct bio_vec *bvec = i->bvec;	\
138 			void *base;				\
139 			size_t len;				\
140 			iterate_bvec(i, n, base, len, off,	\
141 						bvec, (K))	\
142 			i->nr_segs -= bvec - i->bvec;		\
143 			i->bvec = bvec;				\
144 		} else if (iov_iter_is_kvec(i)) {		\
145 			const struct kvec *kvec = i->kvec;	\
146 			void *base;				\
147 			size_t len;				\
148 			iterate_iovec(i, n, base, len, off,	\
149 						kvec, (K))	\
150 			i->nr_segs -= kvec - i->kvec;		\
151 			i->kvec = kvec;				\
152 		} else if (iov_iter_is_xarray(i)) {		\
153 			void *base;				\
154 			size_t len;				\
155 			iterate_xarray(i, n, base, len, off,	\
156 							(K))	\
157 		}						\
158 		i->count -= n;					\
159 	}							\
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163 
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166 	if (should_fail_usercopy())
167 		return n;
168 	if (access_ok(to, n)) {
169 		instrument_copy_to_user(to, from, n);
170 		n = raw_copy_to_user(to, from, n);
171 	}
172 	return n;
173 }
174 
175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177 	if (should_fail_usercopy())
178 		return n;
179 	if (access_ok(from, n)) {
180 		instrument_copy_from_user(to, from, n);
181 		n = raw_copy_from_user(to, from, n);
182 	}
183 	return n;
184 }
185 
186 static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
187 					   unsigned int slot)
188 {
189 	return &pipe->bufs[slot & (pipe->ring_size - 1)];
190 }
191 
192 #ifdef PIPE_PARANOIA
193 static bool sanity(const struct iov_iter *i)
194 {
195 	struct pipe_inode_info *pipe = i->pipe;
196 	unsigned int p_head = pipe->head;
197 	unsigned int p_tail = pipe->tail;
198 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
199 	unsigned int i_head = i->head;
200 	unsigned int idx;
201 
202 	if (i->iov_offset) {
203 		struct pipe_buffer *p;
204 		if (unlikely(p_occupancy == 0))
205 			goto Bad;	// pipe must be non-empty
206 		if (unlikely(i_head != p_head - 1))
207 			goto Bad;	// must be at the last buffer...
208 
209 		p = pipe_buf(pipe, i_head);
210 		if (unlikely(p->offset + p->len != i->iov_offset))
211 			goto Bad;	// ... at the end of segment
212 	} else {
213 		if (i_head != p_head)
214 			goto Bad;	// must be right after the last buffer
215 	}
216 	return true;
217 Bad:
218 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
219 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
220 			p_head, p_tail, pipe->ring_size);
221 	for (idx = 0; idx < pipe->ring_size; idx++)
222 		printk(KERN_ERR "[%p %p %d %d]\n",
223 			pipe->bufs[idx].ops,
224 			pipe->bufs[idx].page,
225 			pipe->bufs[idx].offset,
226 			pipe->bufs[idx].len);
227 	WARN_ON(1);
228 	return false;
229 }
230 #else
231 #define sanity(i) true
232 #endif
233 
234 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
235 {
236 	struct page *page = alloc_page(GFP_USER);
237 	if (page) {
238 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
239 		*buf = (struct pipe_buffer) {
240 			.ops = &default_pipe_buf_ops,
241 			.page = page,
242 			.offset = 0,
243 			.len = size
244 		};
245 	}
246 	return page;
247 }
248 
249 static void push_page(struct pipe_inode_info *pipe, struct page *page,
250 			unsigned int offset, unsigned int size)
251 {
252 	struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
253 	*buf = (struct pipe_buffer) {
254 		.ops = &page_cache_pipe_buf_ops,
255 		.page = page,
256 		.offset = offset,
257 		.len = size
258 	};
259 	get_page(page);
260 }
261 
262 static inline bool allocated(struct pipe_buffer *buf)
263 {
264 	return buf->ops == &default_pipe_buf_ops;
265 }
266 
267 static struct page *append_pipe(struct iov_iter *i, size_t size,
268 				unsigned int *off)
269 {
270 	struct pipe_inode_info *pipe = i->pipe;
271 	size_t offset = i->iov_offset;
272 	struct pipe_buffer *buf;
273 	struct page *page;
274 
275 	if (offset && offset < PAGE_SIZE) {
276 		// some space in the last buffer; can we add to it?
277 		buf = pipe_buf(pipe, pipe->head - 1);
278 		if (allocated(buf)) {
279 			size = min_t(size_t, size, PAGE_SIZE - offset);
280 			buf->len += size;
281 			i->iov_offset += size;
282 			i->count -= size;
283 			*off = offset;
284 			return buf->page;
285 		}
286 	}
287 	// OK, we need a new buffer
288 	*off = 0;
289 	size = min_t(size_t, size, PAGE_SIZE);
290 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
291 		return NULL;
292 	page = push_anon(pipe, size);
293 	if (!page)
294 		return NULL;
295 	i->head = pipe->head - 1;
296 	i->iov_offset = size;
297 	i->count -= size;
298 	return page;
299 }
300 
301 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
302 			 struct iov_iter *i)
303 {
304 	struct pipe_inode_info *pipe = i->pipe;
305 	unsigned int head = pipe->head;
306 
307 	if (unlikely(bytes > i->count))
308 		bytes = i->count;
309 
310 	if (unlikely(!bytes))
311 		return 0;
312 
313 	if (!sanity(i))
314 		return 0;
315 
316 	if (offset && i->iov_offset == offset) { // could we merge it?
317 		struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
318 		if (buf->page == page) {
319 			buf->len += bytes;
320 			i->iov_offset += bytes;
321 			i->count -= bytes;
322 			return bytes;
323 		}
324 	}
325 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
326 		return 0;
327 
328 	push_page(pipe, page, offset, bytes);
329 	i->iov_offset = offset + bytes;
330 	i->head = head;
331 	i->count -= bytes;
332 	return bytes;
333 }
334 
335 /*
336  * fault_in_iov_iter_readable - fault in iov iterator for reading
337  * @i: iterator
338  * @size: maximum length
339  *
340  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
341  * @size.  For each iovec, fault in each page that constitutes the iovec.
342  *
343  * Returns the number of bytes not faulted in (like copy_to_user() and
344  * copy_from_user()).
345  *
346  * Always returns 0 for non-userspace iterators.
347  */
348 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
349 {
350 	if (iter_is_ubuf(i)) {
351 		size_t n = min(size, iov_iter_count(i));
352 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
353 		return size - n;
354 	} else if (iter_is_iovec(i)) {
355 		size_t count = min(size, iov_iter_count(i));
356 		const struct iovec *p;
357 		size_t skip;
358 
359 		size -= count;
360 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
361 			size_t len = min(count, p->iov_len - skip);
362 			size_t ret;
363 
364 			if (unlikely(!len))
365 				continue;
366 			ret = fault_in_readable(p->iov_base + skip, len);
367 			count -= len - ret;
368 			if (ret)
369 				break;
370 		}
371 		return count + size;
372 	}
373 	return 0;
374 }
375 EXPORT_SYMBOL(fault_in_iov_iter_readable);
376 
377 /*
378  * fault_in_iov_iter_writeable - fault in iov iterator for writing
379  * @i: iterator
380  * @size: maximum length
381  *
382  * Faults in the iterator using get_user_pages(), i.e., without triggering
383  * hardware page faults.  This is primarily useful when we already know that
384  * some or all of the pages in @i aren't in memory.
385  *
386  * Returns the number of bytes not faulted in, like copy_to_user() and
387  * copy_from_user().
388  *
389  * Always returns 0 for non-user-space iterators.
390  */
391 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
392 {
393 	if (iter_is_ubuf(i)) {
394 		size_t n = min(size, iov_iter_count(i));
395 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
396 		return size - n;
397 	} else if (iter_is_iovec(i)) {
398 		size_t count = min(size, iov_iter_count(i));
399 		const struct iovec *p;
400 		size_t skip;
401 
402 		size -= count;
403 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
404 			size_t len = min(count, p->iov_len - skip);
405 			size_t ret;
406 
407 			if (unlikely(!len))
408 				continue;
409 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
410 			count -= len - ret;
411 			if (ret)
412 				break;
413 		}
414 		return count + size;
415 	}
416 	return 0;
417 }
418 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
419 
420 void iov_iter_init(struct iov_iter *i, unsigned int direction,
421 			const struct iovec *iov, unsigned long nr_segs,
422 			size_t count)
423 {
424 	WARN_ON(direction & ~(READ | WRITE));
425 	*i = (struct iov_iter) {
426 		.iter_type = ITER_IOVEC,
427 		.nofault = false,
428 		.user_backed = true,
429 		.data_source = direction,
430 		.iov = iov,
431 		.nr_segs = nr_segs,
432 		.iov_offset = 0,
433 		.count = count
434 	};
435 }
436 EXPORT_SYMBOL(iov_iter_init);
437 
438 static inline void data_start(const struct iov_iter *i,
439 			      unsigned int *iter_headp, size_t *offp)
440 {
441 	unsigned int iter_head = i->head;
442 	size_t off = i->iov_offset;
443 
444 	if (off && (!allocated(pipe_buf(i->pipe, iter_head)) ||
445 		    off == PAGE_SIZE)) {
446 		iter_head++;
447 		off = 0;
448 	}
449 	*iter_headp = iter_head;
450 	*offp = off;
451 }
452 
453 static size_t push_pipe(struct iov_iter *i, size_t size,
454 			int *iter_headp, size_t *offp)
455 {
456 	struct pipe_inode_info *pipe = i->pipe;
457 	unsigned int iter_head;
458 	size_t off;
459 	ssize_t left;
460 
461 	if (unlikely(size > i->count))
462 		size = i->count;
463 	if (unlikely(!size))
464 		return 0;
465 
466 	left = size;
467 	data_start(i, &iter_head, &off);
468 	*iter_headp = iter_head;
469 	*offp = off;
470 	if (off) {
471 		struct pipe_buffer *buf = pipe_buf(pipe, iter_head);
472 
473 		left -= PAGE_SIZE - off;
474 		if (left <= 0) {
475 			buf->len += size;
476 			return size;
477 		}
478 		buf->len = PAGE_SIZE;
479 	}
480 	while (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
481 		struct page *page = push_anon(pipe,
482 					      min_t(ssize_t, left, PAGE_SIZE));
483 		if (!page)
484 			break;
485 
486 		left -= PAGE_SIZE;
487 		if (left <= 0)
488 			return size;
489 	}
490 	return size - left;
491 }
492 
493 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
494 				struct iov_iter *i)
495 {
496 	unsigned int off, chunk;
497 
498 	if (unlikely(bytes > i->count))
499 		bytes = i->count;
500 	if (unlikely(!bytes))
501 		return 0;
502 
503 	if (!sanity(i))
504 		return 0;
505 
506 	for (size_t n = bytes; n; n -= chunk) {
507 		struct page *page = append_pipe(i, n, &off);
508 		chunk = min_t(size_t, n, PAGE_SIZE - off);
509 		if (!page)
510 			return bytes - n;
511 		memcpy_to_page(page, off, addr, chunk);
512 		addr += chunk;
513 	}
514 	return bytes;
515 }
516 
517 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
518 			      __wsum sum, size_t off)
519 {
520 	__wsum next = csum_partial_copy_nocheck(from, to, len);
521 	return csum_block_add(sum, next, off);
522 }
523 
524 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
525 					 struct iov_iter *i, __wsum *sump)
526 {
527 	__wsum sum = *sump;
528 	size_t off = 0;
529 	unsigned int chunk, r;
530 
531 	if (unlikely(bytes > i->count))
532 		bytes = i->count;
533 	if (unlikely(!bytes))
534 		return 0;
535 
536 	if (!sanity(i))
537 		return 0;
538 
539 	while (bytes) {
540 		struct page *page = append_pipe(i, bytes, &r);
541 		char *p;
542 
543 		if (!page)
544 			break;
545 		chunk = min_t(size_t, bytes, PAGE_SIZE - r);
546 		p = kmap_local_page(page);
547 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
548 		kunmap_local(p);
549 		off += chunk;
550 		bytes -= chunk;
551 	}
552 	*sump = sum;
553 	return off;
554 }
555 
556 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
557 {
558 	if (unlikely(iov_iter_is_pipe(i)))
559 		return copy_pipe_to_iter(addr, bytes, i);
560 	if (user_backed_iter(i))
561 		might_fault();
562 	iterate_and_advance(i, bytes, base, len, off,
563 		copyout(base, addr + off, len),
564 		memcpy(base, addr + off, len)
565 	)
566 
567 	return bytes;
568 }
569 EXPORT_SYMBOL(_copy_to_iter);
570 
571 #ifdef CONFIG_ARCH_HAS_COPY_MC
572 static int copyout_mc(void __user *to, const void *from, size_t n)
573 {
574 	if (access_ok(to, n)) {
575 		instrument_copy_to_user(to, from, n);
576 		n = copy_mc_to_user((__force void *) to, from, n);
577 	}
578 	return n;
579 }
580 
581 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
582 				struct iov_iter *i)
583 {
584 	size_t xfer = 0;
585 	unsigned int off, chunk;
586 
587 	if (unlikely(bytes > i->count))
588 		bytes = i->count;
589 	if (unlikely(!bytes))
590 		return 0;
591 
592 	if (!sanity(i))
593 		return 0;
594 
595 	while (bytes) {
596 		struct page *page = append_pipe(i, bytes, &off);
597 		unsigned long rem;
598 		char *p;
599 
600 		if (!page)
601 			break;
602 		chunk = min_t(size_t, bytes, PAGE_SIZE - off);
603 		p = kmap_local_page(page);
604 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
605 		chunk -= rem;
606 		kunmap_local(p);
607 		xfer += chunk;
608 		bytes -= chunk;
609 		if (rem) {
610 			iov_iter_revert(i, rem);
611 			break;
612 		}
613 	}
614 	return xfer;
615 }
616 
617 /**
618  * _copy_mc_to_iter - copy to iter with source memory error exception handling
619  * @addr: source kernel address
620  * @bytes: total transfer length
621  * @i: destination iterator
622  *
623  * The pmem driver deploys this for the dax operation
624  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
625  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
626  * successfully copied.
627  *
628  * The main differences between this and typical _copy_to_iter().
629  *
630  * * Typical tail/residue handling after a fault retries the copy
631  *   byte-by-byte until the fault happens again. Re-triggering machine
632  *   checks is potentially fatal so the implementation uses source
633  *   alignment and poison alignment assumptions to avoid re-triggering
634  *   hardware exceptions.
635  *
636  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
637  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
638  *   a short copy.
639  *
640  * Return: number of bytes copied (may be %0)
641  */
642 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
643 {
644 	if (unlikely(iov_iter_is_pipe(i)))
645 		return copy_mc_pipe_to_iter(addr, bytes, i);
646 	if (user_backed_iter(i))
647 		might_fault();
648 	__iterate_and_advance(i, bytes, base, len, off,
649 		copyout_mc(base, addr + off, len),
650 		copy_mc_to_kernel(base, addr + off, len)
651 	)
652 
653 	return bytes;
654 }
655 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
656 #endif /* CONFIG_ARCH_HAS_COPY_MC */
657 
658 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
659 {
660 	if (unlikely(iov_iter_is_pipe(i))) {
661 		WARN_ON(1);
662 		return 0;
663 	}
664 	if (user_backed_iter(i))
665 		might_fault();
666 	iterate_and_advance(i, bytes, base, len, off,
667 		copyin(addr + off, base, len),
668 		memcpy(addr + off, base, len)
669 	)
670 
671 	return bytes;
672 }
673 EXPORT_SYMBOL(_copy_from_iter);
674 
675 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
676 {
677 	if (unlikely(iov_iter_is_pipe(i))) {
678 		WARN_ON(1);
679 		return 0;
680 	}
681 	iterate_and_advance(i, bytes, base, len, off,
682 		__copy_from_user_inatomic_nocache(addr + off, base, len),
683 		memcpy(addr + off, base, len)
684 	)
685 
686 	return bytes;
687 }
688 EXPORT_SYMBOL(_copy_from_iter_nocache);
689 
690 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
691 /**
692  * _copy_from_iter_flushcache - write destination through cpu cache
693  * @addr: destination kernel address
694  * @bytes: total transfer length
695  * @i: source iterator
696  *
697  * The pmem driver arranges for filesystem-dax to use this facility via
698  * dax_copy_from_iter() for ensuring that writes to persistent memory
699  * are flushed through the CPU cache. It is differentiated from
700  * _copy_from_iter_nocache() in that guarantees all data is flushed for
701  * all iterator types. The _copy_from_iter_nocache() only attempts to
702  * bypass the cache for the ITER_IOVEC case, and on some archs may use
703  * instructions that strand dirty-data in the cache.
704  *
705  * Return: number of bytes copied (may be %0)
706  */
707 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
708 {
709 	if (unlikely(iov_iter_is_pipe(i))) {
710 		WARN_ON(1);
711 		return 0;
712 	}
713 	iterate_and_advance(i, bytes, base, len, off,
714 		__copy_from_user_flushcache(addr + off, base, len),
715 		memcpy_flushcache(addr + off, base, len)
716 	)
717 
718 	return bytes;
719 }
720 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
721 #endif
722 
723 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
724 {
725 	struct page *head;
726 	size_t v = n + offset;
727 
728 	/*
729 	 * The general case needs to access the page order in order
730 	 * to compute the page size.
731 	 * However, we mostly deal with order-0 pages and thus can
732 	 * avoid a possible cache line miss for requests that fit all
733 	 * page orders.
734 	 */
735 	if (n <= v && v <= PAGE_SIZE)
736 		return true;
737 
738 	head = compound_head(page);
739 	v += (page - head) << PAGE_SHIFT;
740 
741 	if (likely(n <= v && v <= (page_size(head))))
742 		return true;
743 	WARN_ON(1);
744 	return false;
745 }
746 
747 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
748 			 struct iov_iter *i)
749 {
750 	if (unlikely(iov_iter_is_pipe(i))) {
751 		return copy_page_to_iter_pipe(page, offset, bytes, i);
752 	} else {
753 		void *kaddr = kmap_local_page(page);
754 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
755 		kunmap_local(kaddr);
756 		return wanted;
757 	}
758 }
759 
760 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
761 			 struct iov_iter *i)
762 {
763 	size_t res = 0;
764 	if (unlikely(!page_copy_sane(page, offset, bytes)))
765 		return 0;
766 	page += offset / PAGE_SIZE; // first subpage
767 	offset %= PAGE_SIZE;
768 	while (1) {
769 		size_t n = __copy_page_to_iter(page, offset,
770 				min(bytes, (size_t)PAGE_SIZE - offset), i);
771 		res += n;
772 		bytes -= n;
773 		if (!bytes || !n)
774 			break;
775 		offset += n;
776 		if (offset == PAGE_SIZE) {
777 			page++;
778 			offset = 0;
779 		}
780 	}
781 	return res;
782 }
783 EXPORT_SYMBOL(copy_page_to_iter);
784 
785 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
786 			 struct iov_iter *i)
787 {
788 	if (page_copy_sane(page, offset, bytes)) {
789 		void *kaddr = kmap_local_page(page);
790 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
791 		kunmap_local(kaddr);
792 		return wanted;
793 	}
794 	return 0;
795 }
796 EXPORT_SYMBOL(copy_page_from_iter);
797 
798 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
799 {
800 	unsigned int chunk, off;
801 
802 	if (unlikely(bytes > i->count))
803 		bytes = i->count;
804 	if (unlikely(!bytes))
805 		return 0;
806 
807 	if (!sanity(i))
808 		return 0;
809 
810 	for (size_t n = bytes; n; n -= chunk) {
811 		struct page *page = append_pipe(i, n, &off);
812 		char *p;
813 
814 		if (!page)
815 			return bytes - n;
816 		chunk = min_t(size_t, n, PAGE_SIZE - off);
817 		p = kmap_local_page(page);
818 		memset(p + off, 0, chunk);
819 		kunmap_local(p);
820 	}
821 	return bytes;
822 }
823 
824 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
825 {
826 	if (unlikely(iov_iter_is_pipe(i)))
827 		return pipe_zero(bytes, i);
828 	iterate_and_advance(i, bytes, base, len, count,
829 		clear_user(base, len),
830 		memset(base, 0, len)
831 	)
832 
833 	return bytes;
834 }
835 EXPORT_SYMBOL(iov_iter_zero);
836 
837 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
838 				  struct iov_iter *i)
839 {
840 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
841 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
842 		kunmap_atomic(kaddr);
843 		return 0;
844 	}
845 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
846 		kunmap_atomic(kaddr);
847 		WARN_ON(1);
848 		return 0;
849 	}
850 	iterate_and_advance(i, bytes, base, len, off,
851 		copyin(p + off, base, len),
852 		memcpy(p + off, base, len)
853 	)
854 	kunmap_atomic(kaddr);
855 	return bytes;
856 }
857 EXPORT_SYMBOL(copy_page_from_iter_atomic);
858 
859 static inline void pipe_truncate(struct iov_iter *i)
860 {
861 	struct pipe_inode_info *pipe = i->pipe;
862 	unsigned int p_tail = pipe->tail;
863 	unsigned int p_head = pipe->head;
864 	unsigned int p_mask = pipe->ring_size - 1;
865 
866 	if (!pipe_empty(p_head, p_tail)) {
867 		struct pipe_buffer *buf;
868 		unsigned int i_head = i->head;
869 		size_t off = i->iov_offset;
870 
871 		if (off) {
872 			buf = &pipe->bufs[i_head & p_mask];
873 			buf->len = off - buf->offset;
874 			i_head++;
875 		}
876 		while (p_head != i_head) {
877 			p_head--;
878 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
879 		}
880 
881 		pipe->head = p_head;
882 	}
883 }
884 
885 static void pipe_advance(struct iov_iter *i, size_t size)
886 {
887 	struct pipe_inode_info *pipe = i->pipe;
888 	if (size) {
889 		struct pipe_buffer *buf;
890 		unsigned int p_mask = pipe->ring_size - 1;
891 		unsigned int i_head = i->head;
892 		size_t off = i->iov_offset, left = size;
893 
894 		if (off) /* make it relative to the beginning of buffer */
895 			left += off - pipe->bufs[i_head & p_mask].offset;
896 		while (1) {
897 			buf = &pipe->bufs[i_head & p_mask];
898 			if (left <= buf->len)
899 				break;
900 			left -= buf->len;
901 			i_head++;
902 		}
903 		i->head = i_head;
904 		i->iov_offset = buf->offset + left;
905 	}
906 	i->count -= size;
907 	/* ... and discard everything past that point */
908 	pipe_truncate(i);
909 }
910 
911 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
912 {
913 	const struct bio_vec *bvec, *end;
914 
915 	if (!i->count)
916 		return;
917 	i->count -= size;
918 
919 	size += i->iov_offset;
920 
921 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
922 		if (likely(size < bvec->bv_len))
923 			break;
924 		size -= bvec->bv_len;
925 	}
926 	i->iov_offset = size;
927 	i->nr_segs -= bvec - i->bvec;
928 	i->bvec = bvec;
929 }
930 
931 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
932 {
933 	const struct iovec *iov, *end;
934 
935 	if (!i->count)
936 		return;
937 	i->count -= size;
938 
939 	size += i->iov_offset; // from beginning of current segment
940 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
941 		if (likely(size < iov->iov_len))
942 			break;
943 		size -= iov->iov_len;
944 	}
945 	i->iov_offset = size;
946 	i->nr_segs -= iov - i->iov;
947 	i->iov = iov;
948 }
949 
950 void iov_iter_advance(struct iov_iter *i, size_t size)
951 {
952 	if (unlikely(i->count < size))
953 		size = i->count;
954 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
955 		i->iov_offset += size;
956 		i->count -= size;
957 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
958 		/* iovec and kvec have identical layouts */
959 		iov_iter_iovec_advance(i, size);
960 	} else if (iov_iter_is_bvec(i)) {
961 		iov_iter_bvec_advance(i, size);
962 	} else if (iov_iter_is_pipe(i)) {
963 		pipe_advance(i, size);
964 	} else if (iov_iter_is_discard(i)) {
965 		i->count -= size;
966 	}
967 }
968 EXPORT_SYMBOL(iov_iter_advance);
969 
970 void iov_iter_revert(struct iov_iter *i, size_t unroll)
971 {
972 	if (!unroll)
973 		return;
974 	if (WARN_ON(unroll > MAX_RW_COUNT))
975 		return;
976 	i->count += unroll;
977 	if (unlikely(iov_iter_is_pipe(i))) {
978 		struct pipe_inode_info *pipe = i->pipe;
979 		unsigned int p_mask = pipe->ring_size - 1;
980 		unsigned int i_head = i->head;
981 		size_t off = i->iov_offset;
982 		while (1) {
983 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
984 			size_t n = off - b->offset;
985 			if (unroll < n) {
986 				off -= unroll;
987 				break;
988 			}
989 			unroll -= n;
990 			if (!unroll && i_head == i->start_head) {
991 				off = 0;
992 				break;
993 			}
994 			i_head--;
995 			b = &pipe->bufs[i_head & p_mask];
996 			off = b->offset + b->len;
997 		}
998 		i->iov_offset = off;
999 		i->head = i_head;
1000 		pipe_truncate(i);
1001 		return;
1002 	}
1003 	if (unlikely(iov_iter_is_discard(i)))
1004 		return;
1005 	if (unroll <= i->iov_offset) {
1006 		i->iov_offset -= unroll;
1007 		return;
1008 	}
1009 	unroll -= i->iov_offset;
1010 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
1011 		BUG(); /* We should never go beyond the start of the specified
1012 			* range since we might then be straying into pages that
1013 			* aren't pinned.
1014 			*/
1015 	} else if (iov_iter_is_bvec(i)) {
1016 		const struct bio_vec *bvec = i->bvec;
1017 		while (1) {
1018 			size_t n = (--bvec)->bv_len;
1019 			i->nr_segs++;
1020 			if (unroll <= n) {
1021 				i->bvec = bvec;
1022 				i->iov_offset = n - unroll;
1023 				return;
1024 			}
1025 			unroll -= n;
1026 		}
1027 	} else { /* same logics for iovec and kvec */
1028 		const struct iovec *iov = i->iov;
1029 		while (1) {
1030 			size_t n = (--iov)->iov_len;
1031 			i->nr_segs++;
1032 			if (unroll <= n) {
1033 				i->iov = iov;
1034 				i->iov_offset = n - unroll;
1035 				return;
1036 			}
1037 			unroll -= n;
1038 		}
1039 	}
1040 }
1041 EXPORT_SYMBOL(iov_iter_revert);
1042 
1043 /*
1044  * Return the count of just the current iov_iter segment.
1045  */
1046 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1047 {
1048 	if (i->nr_segs > 1) {
1049 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1050 			return min(i->count, i->iov->iov_len - i->iov_offset);
1051 		if (iov_iter_is_bvec(i))
1052 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1053 	}
1054 	return i->count;
1055 }
1056 EXPORT_SYMBOL(iov_iter_single_seg_count);
1057 
1058 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1059 			const struct kvec *kvec, unsigned long nr_segs,
1060 			size_t count)
1061 {
1062 	WARN_ON(direction & ~(READ | WRITE));
1063 	*i = (struct iov_iter){
1064 		.iter_type = ITER_KVEC,
1065 		.data_source = direction,
1066 		.kvec = kvec,
1067 		.nr_segs = nr_segs,
1068 		.iov_offset = 0,
1069 		.count = count
1070 	};
1071 }
1072 EXPORT_SYMBOL(iov_iter_kvec);
1073 
1074 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1075 			const struct bio_vec *bvec, unsigned long nr_segs,
1076 			size_t count)
1077 {
1078 	WARN_ON(direction & ~(READ | WRITE));
1079 	*i = (struct iov_iter){
1080 		.iter_type = ITER_BVEC,
1081 		.data_source = direction,
1082 		.bvec = bvec,
1083 		.nr_segs = nr_segs,
1084 		.iov_offset = 0,
1085 		.count = count
1086 	};
1087 }
1088 EXPORT_SYMBOL(iov_iter_bvec);
1089 
1090 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1091 			struct pipe_inode_info *pipe,
1092 			size_t count)
1093 {
1094 	BUG_ON(direction != READ);
1095 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1096 	*i = (struct iov_iter){
1097 		.iter_type = ITER_PIPE,
1098 		.data_source = false,
1099 		.pipe = pipe,
1100 		.head = pipe->head,
1101 		.start_head = pipe->head,
1102 		.iov_offset = 0,
1103 		.count = count
1104 	};
1105 }
1106 EXPORT_SYMBOL(iov_iter_pipe);
1107 
1108 /**
1109  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1110  * @i: The iterator to initialise.
1111  * @direction: The direction of the transfer.
1112  * @xarray: The xarray to access.
1113  * @start: The start file position.
1114  * @count: The size of the I/O buffer in bytes.
1115  *
1116  * Set up an I/O iterator to either draw data out of the pages attached to an
1117  * inode or to inject data into those pages.  The pages *must* be prevented
1118  * from evaporation, either by taking a ref on them or locking them by the
1119  * caller.
1120  */
1121 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1122 		     struct xarray *xarray, loff_t start, size_t count)
1123 {
1124 	BUG_ON(direction & ~1);
1125 	*i = (struct iov_iter) {
1126 		.iter_type = ITER_XARRAY,
1127 		.data_source = direction,
1128 		.xarray = xarray,
1129 		.xarray_start = start,
1130 		.count = count,
1131 		.iov_offset = 0
1132 	};
1133 }
1134 EXPORT_SYMBOL(iov_iter_xarray);
1135 
1136 /**
1137  * iov_iter_discard - Initialise an I/O iterator that discards data
1138  * @i: The iterator to initialise.
1139  * @direction: The direction of the transfer.
1140  * @count: The size of the I/O buffer in bytes.
1141  *
1142  * Set up an I/O iterator that just discards everything that's written to it.
1143  * It's only available as a READ iterator.
1144  */
1145 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1146 {
1147 	BUG_ON(direction != READ);
1148 	*i = (struct iov_iter){
1149 		.iter_type = ITER_DISCARD,
1150 		.data_source = false,
1151 		.count = count,
1152 		.iov_offset = 0
1153 	};
1154 }
1155 EXPORT_SYMBOL(iov_iter_discard);
1156 
1157 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1158 				   unsigned len_mask)
1159 {
1160 	size_t size = i->count;
1161 	size_t skip = i->iov_offset;
1162 	unsigned k;
1163 
1164 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1165 		size_t len = i->iov[k].iov_len - skip;
1166 
1167 		if (len > size)
1168 			len = size;
1169 		if (len & len_mask)
1170 			return false;
1171 		if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1172 			return false;
1173 
1174 		size -= len;
1175 		if (!size)
1176 			break;
1177 	}
1178 	return true;
1179 }
1180 
1181 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1182 				  unsigned len_mask)
1183 {
1184 	size_t size = i->count;
1185 	unsigned skip = i->iov_offset;
1186 	unsigned k;
1187 
1188 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1189 		size_t len = i->bvec[k].bv_len - skip;
1190 
1191 		if (len > size)
1192 			len = size;
1193 		if (len & len_mask)
1194 			return false;
1195 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1196 			return false;
1197 
1198 		size -= len;
1199 		if (!size)
1200 			break;
1201 	}
1202 	return true;
1203 }
1204 
1205 /**
1206  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1207  * 	are aligned to the parameters.
1208  *
1209  * @i: &struct iov_iter to restore
1210  * @addr_mask: bit mask to check against the iov element's addresses
1211  * @len_mask: bit mask to check against the iov element's lengths
1212  *
1213  * Return: false if any addresses or lengths intersect with the provided masks
1214  */
1215 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1216 			 unsigned len_mask)
1217 {
1218 	if (likely(iter_is_ubuf(i))) {
1219 		if (i->count & len_mask)
1220 			return false;
1221 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1222 			return false;
1223 		return true;
1224 	}
1225 
1226 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1227 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1228 
1229 	if (iov_iter_is_bvec(i))
1230 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1231 
1232 	if (iov_iter_is_pipe(i)) {
1233 		unsigned int p_mask = i->pipe->ring_size - 1;
1234 		size_t size = i->count;
1235 
1236 		if (size & len_mask)
1237 			return false;
1238 		if (size && allocated(&i->pipe->bufs[i->head & p_mask])) {
1239 			if (i->iov_offset & addr_mask)
1240 				return false;
1241 		}
1242 
1243 		return true;
1244 	}
1245 
1246 	if (iov_iter_is_xarray(i)) {
1247 		if (i->count & len_mask)
1248 			return false;
1249 		if ((i->xarray_start + i->iov_offset) & addr_mask)
1250 			return false;
1251 	}
1252 
1253 	return true;
1254 }
1255 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1256 
1257 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1258 {
1259 	unsigned long res = 0;
1260 	size_t size = i->count;
1261 	size_t skip = i->iov_offset;
1262 	unsigned k;
1263 
1264 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1265 		size_t len = i->iov[k].iov_len - skip;
1266 		if (len) {
1267 			res |= (unsigned long)i->iov[k].iov_base + skip;
1268 			if (len > size)
1269 				len = size;
1270 			res |= len;
1271 			size -= len;
1272 			if (!size)
1273 				break;
1274 		}
1275 	}
1276 	return res;
1277 }
1278 
1279 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1280 {
1281 	unsigned res = 0;
1282 	size_t size = i->count;
1283 	unsigned skip = i->iov_offset;
1284 	unsigned k;
1285 
1286 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1287 		size_t len = i->bvec[k].bv_len - skip;
1288 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1289 		if (len > size)
1290 			len = size;
1291 		res |= len;
1292 		size -= len;
1293 		if (!size)
1294 			break;
1295 	}
1296 	return res;
1297 }
1298 
1299 unsigned long iov_iter_alignment(const struct iov_iter *i)
1300 {
1301 	if (likely(iter_is_ubuf(i))) {
1302 		size_t size = i->count;
1303 		if (size)
1304 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
1305 		return 0;
1306 	}
1307 
1308 	/* iovec and kvec have identical layouts */
1309 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1310 		return iov_iter_alignment_iovec(i);
1311 
1312 	if (iov_iter_is_bvec(i))
1313 		return iov_iter_alignment_bvec(i);
1314 
1315 	if (iov_iter_is_pipe(i)) {
1316 		size_t size = i->count;
1317 
1318 		if (size && i->iov_offset && allocated(pipe_buf(i->pipe, i->head)))
1319 			return size | i->iov_offset;
1320 		return size;
1321 	}
1322 
1323 	if (iov_iter_is_xarray(i))
1324 		return (i->xarray_start + i->iov_offset) | i->count;
1325 
1326 	return 0;
1327 }
1328 EXPORT_SYMBOL(iov_iter_alignment);
1329 
1330 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1331 {
1332 	unsigned long res = 0;
1333 	unsigned long v = 0;
1334 	size_t size = i->count;
1335 	unsigned k;
1336 
1337 	if (iter_is_ubuf(i))
1338 		return 0;
1339 
1340 	if (WARN_ON(!iter_is_iovec(i)))
1341 		return ~0U;
1342 
1343 	for (k = 0; k < i->nr_segs; k++) {
1344 		if (i->iov[k].iov_len) {
1345 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1346 			if (v) // if not the first one
1347 				res |= base | v; // this start | previous end
1348 			v = base + i->iov[k].iov_len;
1349 			if (size <= i->iov[k].iov_len)
1350 				break;
1351 			size -= i->iov[k].iov_len;
1352 		}
1353 	}
1354 	return res;
1355 }
1356 EXPORT_SYMBOL(iov_iter_gap_alignment);
1357 
1358 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1359 				size_t maxsize,
1360 				struct page **pages,
1361 				int iter_head,
1362 				size_t *start)
1363 {
1364 	struct pipe_inode_info *pipe = i->pipe;
1365 	unsigned int p_mask = pipe->ring_size - 1;
1366 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1367 	if (!n)
1368 		return -EFAULT;
1369 
1370 	maxsize = n;
1371 	n += *start;
1372 	while (n > 0) {
1373 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1374 		iter_head++;
1375 		n -= PAGE_SIZE;
1376 	}
1377 
1378 	return maxsize;
1379 }
1380 
1381 static ssize_t pipe_get_pages(struct iov_iter *i,
1382 		   struct page **pages, size_t maxsize, unsigned maxpages,
1383 		   size_t *start)
1384 {
1385 	unsigned int iter_head, npages;
1386 	size_t capacity;
1387 
1388 	if (!sanity(i))
1389 		return -EFAULT;
1390 
1391 	data_start(i, &iter_head, start);
1392 	/* Amount of free space: some of this one + all after this one */
1393 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1394 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1395 
1396 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1397 }
1398 
1399 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1400 					  pgoff_t index, unsigned int nr_pages)
1401 {
1402 	XA_STATE(xas, xa, index);
1403 	struct page *page;
1404 	unsigned int ret = 0;
1405 
1406 	rcu_read_lock();
1407 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1408 		if (xas_retry(&xas, page))
1409 			continue;
1410 
1411 		/* Has the page moved or been split? */
1412 		if (unlikely(page != xas_reload(&xas))) {
1413 			xas_reset(&xas);
1414 			continue;
1415 		}
1416 
1417 		pages[ret] = find_subpage(page, xas.xa_index);
1418 		get_page(pages[ret]);
1419 		if (++ret == nr_pages)
1420 			break;
1421 	}
1422 	rcu_read_unlock();
1423 	return ret;
1424 }
1425 
1426 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1427 				     struct page **pages, size_t maxsize,
1428 				     unsigned maxpages, size_t *_start_offset)
1429 {
1430 	unsigned nr, offset;
1431 	pgoff_t index, count;
1432 	size_t size = maxsize;
1433 	loff_t pos;
1434 
1435 	if (!size || !maxpages)
1436 		return 0;
1437 
1438 	pos = i->xarray_start + i->iov_offset;
1439 	index = pos >> PAGE_SHIFT;
1440 	offset = pos & ~PAGE_MASK;
1441 	*_start_offset = offset;
1442 
1443 	count = 1;
1444 	if (size > PAGE_SIZE - offset) {
1445 		size -= PAGE_SIZE - offset;
1446 		count += size >> PAGE_SHIFT;
1447 		size &= ~PAGE_MASK;
1448 		if (size)
1449 			count++;
1450 	}
1451 
1452 	if (count > maxpages)
1453 		count = maxpages;
1454 
1455 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1456 	if (nr == 0)
1457 		return 0;
1458 
1459 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1460 }
1461 
1462 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1463 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1464 {
1465 	size_t skip;
1466 	long k;
1467 
1468 	if (iter_is_ubuf(i))
1469 		return (unsigned long)i->ubuf + i->iov_offset;
1470 
1471 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1472 		size_t len = i->iov[k].iov_len - skip;
1473 
1474 		if (unlikely(!len))
1475 			continue;
1476 		if (*size > len)
1477 			*size = len;
1478 		return (unsigned long)i->iov[k].iov_base + skip;
1479 	}
1480 	BUG(); // if it had been empty, we wouldn't get called
1481 }
1482 
1483 /* must be done on non-empty ITER_BVEC one */
1484 static struct page *first_bvec_segment(const struct iov_iter *i,
1485 				       size_t *size, size_t *start)
1486 {
1487 	struct page *page;
1488 	size_t skip = i->iov_offset, len;
1489 
1490 	len = i->bvec->bv_len - skip;
1491 	if (*size > len)
1492 		*size = len;
1493 	skip += i->bvec->bv_offset;
1494 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1495 	*start = skip % PAGE_SIZE;
1496 	return page;
1497 }
1498 
1499 ssize_t iov_iter_get_pages(struct iov_iter *i,
1500 		   struct page **pages, size_t maxsize, unsigned maxpages,
1501 		   size_t *start)
1502 {
1503 	int n, res;
1504 
1505 	if (maxsize > i->count)
1506 		maxsize = i->count;
1507 	if (!maxsize)
1508 		return 0;
1509 	if (maxsize > MAX_RW_COUNT)
1510 		maxsize = MAX_RW_COUNT;
1511 
1512 	if (likely(user_backed_iter(i))) {
1513 		unsigned int gup_flags = 0;
1514 		unsigned long addr;
1515 
1516 		if (iov_iter_rw(i) != WRITE)
1517 			gup_flags |= FOLL_WRITE;
1518 		if (i->nofault)
1519 			gup_flags |= FOLL_NOFAULT;
1520 
1521 		addr = first_iovec_segment(i, &maxsize);
1522 		*start = addr % PAGE_SIZE;
1523 		addr &= PAGE_MASK;
1524 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1525 		if (n > maxpages)
1526 			n = maxpages;
1527 		res = get_user_pages_fast(addr, n, gup_flags, pages);
1528 		if (unlikely(res <= 0))
1529 			return res;
1530 		return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1531 	}
1532 	if (iov_iter_is_bvec(i)) {
1533 		struct page *page;
1534 
1535 		page = first_bvec_segment(i, &maxsize, start);
1536 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1537 		if (n > maxpages)
1538 			n = maxpages;
1539 		for (int k = 0; k < n; k++)
1540 			get_page(*pages++ = page++);
1541 		return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1542 	}
1543 	if (iov_iter_is_pipe(i))
1544 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1545 	if (iov_iter_is_xarray(i))
1546 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1547 	return -EFAULT;
1548 }
1549 EXPORT_SYMBOL(iov_iter_get_pages);
1550 
1551 static struct page **get_pages_array(size_t n)
1552 {
1553 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1554 }
1555 
1556 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1557 		   struct page ***pages, size_t maxsize,
1558 		   size_t *start)
1559 {
1560 	struct page **p;
1561 	unsigned int iter_head, npages;
1562 	ssize_t n;
1563 
1564 	if (!sanity(i))
1565 		return -EFAULT;
1566 
1567 	data_start(i, &iter_head, start);
1568 	/* Amount of free space: some of this one + all after this one */
1569 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1570 	n = npages * PAGE_SIZE - *start;
1571 	if (maxsize > n)
1572 		maxsize = n;
1573 	else
1574 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1575 	p = get_pages_array(npages);
1576 	if (!p)
1577 		return -ENOMEM;
1578 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1579 	if (n > 0)
1580 		*pages = p;
1581 	else
1582 		kvfree(p);
1583 	return n;
1584 }
1585 
1586 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1587 					   struct page ***pages, size_t maxsize,
1588 					   size_t *_start_offset)
1589 {
1590 	struct page **p;
1591 	unsigned nr, offset;
1592 	pgoff_t index, count;
1593 	size_t size = maxsize;
1594 	loff_t pos;
1595 
1596 	if (!size)
1597 		return 0;
1598 
1599 	pos = i->xarray_start + i->iov_offset;
1600 	index = pos >> PAGE_SHIFT;
1601 	offset = pos & ~PAGE_MASK;
1602 	*_start_offset = offset;
1603 
1604 	count = 1;
1605 	if (size > PAGE_SIZE - offset) {
1606 		size -= PAGE_SIZE - offset;
1607 		count += size >> PAGE_SHIFT;
1608 		size &= ~PAGE_MASK;
1609 		if (size)
1610 			count++;
1611 	}
1612 
1613 	p = get_pages_array(count);
1614 	if (!p)
1615 		return -ENOMEM;
1616 	*pages = p;
1617 
1618 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1619 	if (nr == 0)
1620 		return 0;
1621 
1622 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1623 }
1624 
1625 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1626 		   struct page ***pages, size_t maxsize,
1627 		   size_t *start)
1628 {
1629 	struct page **p;
1630 	int n, res;
1631 
1632 	if (maxsize > i->count)
1633 		maxsize = i->count;
1634 	if (!maxsize)
1635 		return 0;
1636 	if (maxsize > MAX_RW_COUNT)
1637 		maxsize = MAX_RW_COUNT;
1638 
1639 	if (likely(user_backed_iter(i))) {
1640 		unsigned int gup_flags = 0;
1641 		unsigned long addr;
1642 
1643 		if (iov_iter_rw(i) != WRITE)
1644 			gup_flags |= FOLL_WRITE;
1645 		if (i->nofault)
1646 			gup_flags |= FOLL_NOFAULT;
1647 
1648 		addr = first_iovec_segment(i, &maxsize);
1649 		*start = addr % PAGE_SIZE;
1650 		addr &= PAGE_MASK;
1651 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1652 		p = get_pages_array(n);
1653 		if (!p)
1654 			return -ENOMEM;
1655 		res = get_user_pages_fast(addr, n, gup_flags, p);
1656 		if (unlikely(res <= 0)) {
1657 			kvfree(p);
1658 			*pages = NULL;
1659 			return res;
1660 		}
1661 		*pages = p;
1662 		return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1663 	}
1664 	if (iov_iter_is_bvec(i)) {
1665 		struct page *page;
1666 
1667 		page = first_bvec_segment(i, &maxsize, start);
1668 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1669 		*pages = p = get_pages_array(n);
1670 		if (!p)
1671 			return -ENOMEM;
1672 		for (int k = 0; k < n; k++)
1673 			get_page(*p++ = page++);
1674 		return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1675 	}
1676 	if (iov_iter_is_pipe(i))
1677 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1678 	if (iov_iter_is_xarray(i))
1679 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1680 	return -EFAULT;
1681 }
1682 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1683 
1684 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1685 			       struct iov_iter *i)
1686 {
1687 	__wsum sum, next;
1688 	sum = *csum;
1689 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1690 		WARN_ON(1);
1691 		return 0;
1692 	}
1693 	iterate_and_advance(i, bytes, base, len, off, ({
1694 		next = csum_and_copy_from_user(base, addr + off, len);
1695 		sum = csum_block_add(sum, next, off);
1696 		next ? 0 : len;
1697 	}), ({
1698 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1699 	})
1700 	)
1701 	*csum = sum;
1702 	return bytes;
1703 }
1704 EXPORT_SYMBOL(csum_and_copy_from_iter);
1705 
1706 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1707 			     struct iov_iter *i)
1708 {
1709 	struct csum_state *csstate = _csstate;
1710 	__wsum sum, next;
1711 
1712 	if (unlikely(iov_iter_is_discard(i))) {
1713 		WARN_ON(1);	/* for now */
1714 		return 0;
1715 	}
1716 
1717 	sum = csum_shift(csstate->csum, csstate->off);
1718 	if (unlikely(iov_iter_is_pipe(i)))
1719 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1720 	else iterate_and_advance(i, bytes, base, len, off, ({
1721 		next = csum_and_copy_to_user(addr + off, base, len);
1722 		sum = csum_block_add(sum, next, off);
1723 		next ? 0 : len;
1724 	}), ({
1725 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1726 	})
1727 	)
1728 	csstate->csum = csum_shift(sum, csstate->off);
1729 	csstate->off += bytes;
1730 	return bytes;
1731 }
1732 EXPORT_SYMBOL(csum_and_copy_to_iter);
1733 
1734 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1735 		struct iov_iter *i)
1736 {
1737 #ifdef CONFIG_CRYPTO_HASH
1738 	struct ahash_request *hash = hashp;
1739 	struct scatterlist sg;
1740 	size_t copied;
1741 
1742 	copied = copy_to_iter(addr, bytes, i);
1743 	sg_init_one(&sg, addr, copied);
1744 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1745 	crypto_ahash_update(hash);
1746 	return copied;
1747 #else
1748 	return 0;
1749 #endif
1750 }
1751 EXPORT_SYMBOL(hash_and_copy_to_iter);
1752 
1753 static int iov_npages(const struct iov_iter *i, int maxpages)
1754 {
1755 	size_t skip = i->iov_offset, size = i->count;
1756 	const struct iovec *p;
1757 	int npages = 0;
1758 
1759 	for (p = i->iov; size; skip = 0, p++) {
1760 		unsigned offs = offset_in_page(p->iov_base + skip);
1761 		size_t len = min(p->iov_len - skip, size);
1762 
1763 		if (len) {
1764 			size -= len;
1765 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1766 			if (unlikely(npages > maxpages))
1767 				return maxpages;
1768 		}
1769 	}
1770 	return npages;
1771 }
1772 
1773 static int bvec_npages(const struct iov_iter *i, int maxpages)
1774 {
1775 	size_t skip = i->iov_offset, size = i->count;
1776 	const struct bio_vec *p;
1777 	int npages = 0;
1778 
1779 	for (p = i->bvec; size; skip = 0, p++) {
1780 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1781 		size_t len = min(p->bv_len - skip, size);
1782 
1783 		size -= len;
1784 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1785 		if (unlikely(npages > maxpages))
1786 			return maxpages;
1787 	}
1788 	return npages;
1789 }
1790 
1791 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1792 {
1793 	if (unlikely(!i->count))
1794 		return 0;
1795 	if (likely(iter_is_ubuf(i))) {
1796 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1797 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1798 		return min(npages, maxpages);
1799 	}
1800 	/* iovec and kvec have identical layouts */
1801 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1802 		return iov_npages(i, maxpages);
1803 	if (iov_iter_is_bvec(i))
1804 		return bvec_npages(i, maxpages);
1805 	if (iov_iter_is_pipe(i)) {
1806 		unsigned int iter_head;
1807 		int npages;
1808 		size_t off;
1809 
1810 		if (!sanity(i))
1811 			return 0;
1812 
1813 		data_start(i, &iter_head, &off);
1814 		/* some of this one + all after this one */
1815 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1816 		return min(npages, maxpages);
1817 	}
1818 	if (iov_iter_is_xarray(i)) {
1819 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1820 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1821 		return min(npages, maxpages);
1822 	}
1823 	return 0;
1824 }
1825 EXPORT_SYMBOL(iov_iter_npages);
1826 
1827 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1828 {
1829 	*new = *old;
1830 	if (unlikely(iov_iter_is_pipe(new))) {
1831 		WARN_ON(1);
1832 		return NULL;
1833 	}
1834 	if (iov_iter_is_bvec(new))
1835 		return new->bvec = kmemdup(new->bvec,
1836 				    new->nr_segs * sizeof(struct bio_vec),
1837 				    flags);
1838 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1839 		/* iovec and kvec have identical layout */
1840 		return new->iov = kmemdup(new->iov,
1841 				   new->nr_segs * sizeof(struct iovec),
1842 				   flags);
1843 	return NULL;
1844 }
1845 EXPORT_SYMBOL(dup_iter);
1846 
1847 static int copy_compat_iovec_from_user(struct iovec *iov,
1848 		const struct iovec __user *uvec, unsigned long nr_segs)
1849 {
1850 	const struct compat_iovec __user *uiov =
1851 		(const struct compat_iovec __user *)uvec;
1852 	int ret = -EFAULT, i;
1853 
1854 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1855 		return -EFAULT;
1856 
1857 	for (i = 0; i < nr_segs; i++) {
1858 		compat_uptr_t buf;
1859 		compat_ssize_t len;
1860 
1861 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1862 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1863 
1864 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1865 		if (len < 0) {
1866 			ret = -EINVAL;
1867 			goto uaccess_end;
1868 		}
1869 		iov[i].iov_base = compat_ptr(buf);
1870 		iov[i].iov_len = len;
1871 	}
1872 
1873 	ret = 0;
1874 uaccess_end:
1875 	user_access_end();
1876 	return ret;
1877 }
1878 
1879 static int copy_iovec_from_user(struct iovec *iov,
1880 		const struct iovec __user *uvec, unsigned long nr_segs)
1881 {
1882 	unsigned long seg;
1883 
1884 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1885 		return -EFAULT;
1886 	for (seg = 0; seg < nr_segs; seg++) {
1887 		if ((ssize_t)iov[seg].iov_len < 0)
1888 			return -EINVAL;
1889 	}
1890 
1891 	return 0;
1892 }
1893 
1894 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1895 		unsigned long nr_segs, unsigned long fast_segs,
1896 		struct iovec *fast_iov, bool compat)
1897 {
1898 	struct iovec *iov = fast_iov;
1899 	int ret;
1900 
1901 	/*
1902 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1903 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1904 	 * traditionally returned zero for zero segments, so...
1905 	 */
1906 	if (nr_segs == 0)
1907 		return iov;
1908 	if (nr_segs > UIO_MAXIOV)
1909 		return ERR_PTR(-EINVAL);
1910 	if (nr_segs > fast_segs) {
1911 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1912 		if (!iov)
1913 			return ERR_PTR(-ENOMEM);
1914 	}
1915 
1916 	if (compat)
1917 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1918 	else
1919 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1920 	if (ret) {
1921 		if (iov != fast_iov)
1922 			kfree(iov);
1923 		return ERR_PTR(ret);
1924 	}
1925 
1926 	return iov;
1927 }
1928 
1929 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1930 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1931 		 struct iov_iter *i, bool compat)
1932 {
1933 	ssize_t total_len = 0;
1934 	unsigned long seg;
1935 	struct iovec *iov;
1936 
1937 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1938 	if (IS_ERR(iov)) {
1939 		*iovp = NULL;
1940 		return PTR_ERR(iov);
1941 	}
1942 
1943 	/*
1944 	 * According to the Single Unix Specification we should return EINVAL if
1945 	 * an element length is < 0 when cast to ssize_t or if the total length
1946 	 * would overflow the ssize_t return value of the system call.
1947 	 *
1948 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1949 	 * overflow case.
1950 	 */
1951 	for (seg = 0; seg < nr_segs; seg++) {
1952 		ssize_t len = (ssize_t)iov[seg].iov_len;
1953 
1954 		if (!access_ok(iov[seg].iov_base, len)) {
1955 			if (iov != *iovp)
1956 				kfree(iov);
1957 			*iovp = NULL;
1958 			return -EFAULT;
1959 		}
1960 
1961 		if (len > MAX_RW_COUNT - total_len) {
1962 			len = MAX_RW_COUNT - total_len;
1963 			iov[seg].iov_len = len;
1964 		}
1965 		total_len += len;
1966 	}
1967 
1968 	iov_iter_init(i, type, iov, nr_segs, total_len);
1969 	if (iov == *iovp)
1970 		*iovp = NULL;
1971 	else
1972 		*iovp = iov;
1973 	return total_len;
1974 }
1975 
1976 /**
1977  * import_iovec() - Copy an array of &struct iovec from userspace
1978  *     into the kernel, check that it is valid, and initialize a new
1979  *     &struct iov_iter iterator to access it.
1980  *
1981  * @type: One of %READ or %WRITE.
1982  * @uvec: Pointer to the userspace array.
1983  * @nr_segs: Number of elements in userspace array.
1984  * @fast_segs: Number of elements in @iov.
1985  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1986  *     on-stack) kernel array.
1987  * @i: Pointer to iterator that will be initialized on success.
1988  *
1989  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1990  * then this function places %NULL in *@iov on return. Otherwise, a new
1991  * array will be allocated and the result placed in *@iov. This means that
1992  * the caller may call kfree() on *@iov regardless of whether the small
1993  * on-stack array was used or not (and regardless of whether this function
1994  * returns an error or not).
1995  *
1996  * Return: Negative error code on error, bytes imported on success
1997  */
1998 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1999 		 unsigned nr_segs, unsigned fast_segs,
2000 		 struct iovec **iovp, struct iov_iter *i)
2001 {
2002 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
2003 			      in_compat_syscall());
2004 }
2005 EXPORT_SYMBOL(import_iovec);
2006 
2007 int import_single_range(int rw, void __user *buf, size_t len,
2008 		 struct iovec *iov, struct iov_iter *i)
2009 {
2010 	if (len > MAX_RW_COUNT)
2011 		len = MAX_RW_COUNT;
2012 	if (unlikely(!access_ok(buf, len)))
2013 		return -EFAULT;
2014 
2015 	iov->iov_base = buf;
2016 	iov->iov_len = len;
2017 	iov_iter_init(i, rw, iov, 1, len);
2018 	return 0;
2019 }
2020 EXPORT_SYMBOL(import_single_range);
2021 
2022 /**
2023  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
2024  *     iov_iter_save_state() was called.
2025  *
2026  * @i: &struct iov_iter to restore
2027  * @state: state to restore from
2028  *
2029  * Used after iov_iter_save_state() to bring restore @i, if operations may
2030  * have advanced it.
2031  *
2032  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
2033  */
2034 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
2035 {
2036 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
2037 			 !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
2038 		return;
2039 	i->iov_offset = state->iov_offset;
2040 	i->count = state->count;
2041 	if (iter_is_ubuf(i))
2042 		return;
2043 	/*
2044 	 * For the *vec iters, nr_segs + iov is constant - if we increment
2045 	 * the vec, then we also decrement the nr_segs count. Hence we don't
2046 	 * need to track both of these, just one is enough and we can deduct
2047 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
2048 	 * size, so we can just increment the iov pointer as they are unionzed.
2049 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
2050 	 * not. Be safe and handle it separately.
2051 	 */
2052 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
2053 	if (iov_iter_is_bvec(i))
2054 		i->bvec -= state->nr_segs - i->nr_segs;
2055 	else
2056 		i->iov -= state->nr_segs - i->nr_segs;
2057 	i->nr_segs = state->nr_segs;
2058 }
2059