xref: /openbmc/linux/lib/iov_iter.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 /* covers ubuf and kbuf alike */
18 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
19 	size_t __maybe_unused off = 0;				\
20 	len = n;						\
21 	base = __p + i->iov_offset;				\
22 	len -= (STEP);						\
23 	i->iov_offset += len;					\
24 	n = len;						\
25 }
26 
27 /* covers iovec and kvec alike */
28 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
29 	size_t off = 0;						\
30 	size_t skip = i->iov_offset;				\
31 	do {							\
32 		len = min(n, __p->iov_len - skip);		\
33 		if (likely(len)) {				\
34 			base = __p->iov_base + skip;		\
35 			len -= (STEP);				\
36 			off += len;				\
37 			skip += len;				\
38 			n -= len;				\
39 			if (skip < __p->iov_len)		\
40 				break;				\
41 		}						\
42 		__p++;						\
43 		skip = 0;					\
44 	} while (n);						\
45 	i->iov_offset = skip;					\
46 	n = off;						\
47 }
48 
49 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
50 	size_t off = 0;						\
51 	unsigned skip = i->iov_offset;				\
52 	while (n) {						\
53 		unsigned offset = p->bv_offset + skip;		\
54 		unsigned left;					\
55 		void *kaddr = kmap_local_page(p->bv_page +	\
56 					offset / PAGE_SIZE);	\
57 		base = kaddr + offset % PAGE_SIZE;		\
58 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
59 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
60 		left = (STEP);					\
61 		kunmap_local(kaddr);				\
62 		len -= left;					\
63 		off += len;					\
64 		skip += len;					\
65 		if (skip == p->bv_len) {			\
66 			skip = 0;				\
67 			p++;					\
68 		}						\
69 		n -= len;					\
70 		if (left)					\
71 			break;					\
72 	}							\
73 	i->iov_offset = skip;					\
74 	n = off;						\
75 }
76 
77 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
78 	__label__ __out;					\
79 	size_t __off = 0;					\
80 	struct folio *folio;					\
81 	loff_t start = i->xarray_start + i->iov_offset;		\
82 	pgoff_t index = start / PAGE_SIZE;			\
83 	XA_STATE(xas, i->xarray, index);			\
84 								\
85 	len = PAGE_SIZE - offset_in_page(start);		\
86 	rcu_read_lock();					\
87 	xas_for_each(&xas, folio, ULONG_MAX) {			\
88 		unsigned left;					\
89 		size_t offset;					\
90 		if (xas_retry(&xas, folio))			\
91 			continue;				\
92 		if (WARN_ON(xa_is_value(folio)))		\
93 			break;					\
94 		if (WARN_ON(folio_test_hugetlb(folio)))		\
95 			break;					\
96 		offset = offset_in_folio(folio, start + __off);	\
97 		while (offset < folio_size(folio)) {		\
98 			base = kmap_local_folio(folio, offset);	\
99 			len = min(n, len);			\
100 			left = (STEP);				\
101 			kunmap_local(base);			\
102 			len -= left;				\
103 			__off += len;				\
104 			n -= len;				\
105 			if (left || n == 0)			\
106 				goto __out;			\
107 			offset += len;				\
108 			len = PAGE_SIZE;			\
109 		}						\
110 	}							\
111 __out:								\
112 	rcu_read_unlock();					\
113 	i->iov_offset += __off;					\
114 	n = __off;						\
115 }
116 
117 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
118 	if (unlikely(i->count < n))				\
119 		n = i->count;					\
120 	if (likely(n)) {					\
121 		if (likely(iter_is_ubuf(i))) {			\
122 			void __user *base;			\
123 			size_t len;				\
124 			iterate_buf(i, n, base, len, off,	\
125 						i->ubuf, (I)) 	\
126 		} else if (likely(iter_is_iovec(i))) {		\
127 			const struct iovec *iov = iter_iov(i);	\
128 			void __user *base;			\
129 			size_t len;				\
130 			iterate_iovec(i, n, base, len, off,	\
131 						iov, (I))	\
132 			i->nr_segs -= iov - iter_iov(i);	\
133 			i->__iov = iov;				\
134 		} else if (iov_iter_is_bvec(i)) {		\
135 			const struct bio_vec *bvec = i->bvec;	\
136 			void *base;				\
137 			size_t len;				\
138 			iterate_bvec(i, n, base, len, off,	\
139 						bvec, (K))	\
140 			i->nr_segs -= bvec - i->bvec;		\
141 			i->bvec = bvec;				\
142 		} else if (iov_iter_is_kvec(i)) {		\
143 			const struct kvec *kvec = i->kvec;	\
144 			void *base;				\
145 			size_t len;				\
146 			iterate_iovec(i, n, base, len, off,	\
147 						kvec, (K))	\
148 			i->nr_segs -= kvec - i->kvec;		\
149 			i->kvec = kvec;				\
150 		} else if (iov_iter_is_xarray(i)) {		\
151 			void *base;				\
152 			size_t len;				\
153 			iterate_xarray(i, n, base, len, off,	\
154 							(K))	\
155 		}						\
156 		i->count -= n;					\
157 	}							\
158 }
159 #define iterate_and_advance(i, n, base, len, off, I, K) \
160 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
161 
162 static int copyout(void __user *to, const void *from, size_t n)
163 {
164 	if (should_fail_usercopy())
165 		return n;
166 	if (access_ok(to, n)) {
167 		instrument_copy_to_user(to, from, n);
168 		n = raw_copy_to_user(to, from, n);
169 	}
170 	return n;
171 }
172 
173 static int copyout_nofault(void __user *to, const void *from, size_t n)
174 {
175 	long res;
176 
177 	if (should_fail_usercopy())
178 		return n;
179 
180 	res = copy_to_user_nofault(to, from, n);
181 
182 	return res < 0 ? n : res;
183 }
184 
185 static int copyin(void *to, const void __user *from, size_t n)
186 {
187 	size_t res = n;
188 
189 	if (should_fail_usercopy())
190 		return n;
191 	if (access_ok(from, n)) {
192 		instrument_copy_from_user_before(to, from, n);
193 		res = raw_copy_from_user(to, from, n);
194 		instrument_copy_from_user_after(to, from, n, res);
195 	}
196 	return res;
197 }
198 
199 /*
200  * fault_in_iov_iter_readable - fault in iov iterator for reading
201  * @i: iterator
202  * @size: maximum length
203  *
204  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
205  * @size.  For each iovec, fault in each page that constitutes the iovec.
206  *
207  * Returns the number of bytes not faulted in (like copy_to_user() and
208  * copy_from_user()).
209  *
210  * Always returns 0 for non-userspace iterators.
211  */
212 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
213 {
214 	if (iter_is_ubuf(i)) {
215 		size_t n = min(size, iov_iter_count(i));
216 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
217 		return size - n;
218 	} else if (iter_is_iovec(i)) {
219 		size_t count = min(size, iov_iter_count(i));
220 		const struct iovec *p;
221 		size_t skip;
222 
223 		size -= count;
224 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
225 			size_t len = min(count, p->iov_len - skip);
226 			size_t ret;
227 
228 			if (unlikely(!len))
229 				continue;
230 			ret = fault_in_readable(p->iov_base + skip, len);
231 			count -= len - ret;
232 			if (ret)
233 				break;
234 		}
235 		return count + size;
236 	}
237 	return 0;
238 }
239 EXPORT_SYMBOL(fault_in_iov_iter_readable);
240 
241 /*
242  * fault_in_iov_iter_writeable - fault in iov iterator for writing
243  * @i: iterator
244  * @size: maximum length
245  *
246  * Faults in the iterator using get_user_pages(), i.e., without triggering
247  * hardware page faults.  This is primarily useful when we already know that
248  * some or all of the pages in @i aren't in memory.
249  *
250  * Returns the number of bytes not faulted in, like copy_to_user() and
251  * copy_from_user().
252  *
253  * Always returns 0 for non-user-space iterators.
254  */
255 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
256 {
257 	if (iter_is_ubuf(i)) {
258 		size_t n = min(size, iov_iter_count(i));
259 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
260 		return size - n;
261 	} else if (iter_is_iovec(i)) {
262 		size_t count = min(size, iov_iter_count(i));
263 		const struct iovec *p;
264 		size_t skip;
265 
266 		size -= count;
267 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
268 			size_t len = min(count, p->iov_len - skip);
269 			size_t ret;
270 
271 			if (unlikely(!len))
272 				continue;
273 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
274 			count -= len - ret;
275 			if (ret)
276 				break;
277 		}
278 		return count + size;
279 	}
280 	return 0;
281 }
282 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
283 
284 void iov_iter_init(struct iov_iter *i, unsigned int direction,
285 			const struct iovec *iov, unsigned long nr_segs,
286 			size_t count)
287 {
288 	WARN_ON(direction & ~(READ | WRITE));
289 	*i = (struct iov_iter) {
290 		.iter_type = ITER_IOVEC,
291 		.copy_mc = false,
292 		.nofault = false,
293 		.user_backed = true,
294 		.data_source = direction,
295 		.__iov = iov,
296 		.nr_segs = nr_segs,
297 		.iov_offset = 0,
298 		.count = count
299 	};
300 }
301 EXPORT_SYMBOL(iov_iter_init);
302 
303 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
304 			      __wsum sum, size_t off)
305 {
306 	__wsum next = csum_partial_copy_nocheck(from, to, len);
307 	return csum_block_add(sum, next, off);
308 }
309 
310 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
311 {
312 	if (WARN_ON_ONCE(i->data_source))
313 		return 0;
314 	if (user_backed_iter(i))
315 		might_fault();
316 	iterate_and_advance(i, bytes, base, len, off,
317 		copyout(base, addr + off, len),
318 		memcpy(base, addr + off, len)
319 	)
320 
321 	return bytes;
322 }
323 EXPORT_SYMBOL(_copy_to_iter);
324 
325 #ifdef CONFIG_ARCH_HAS_COPY_MC
326 static int copyout_mc(void __user *to, const void *from, size_t n)
327 {
328 	if (access_ok(to, n)) {
329 		instrument_copy_to_user(to, from, n);
330 		n = copy_mc_to_user((__force void *) to, from, n);
331 	}
332 	return n;
333 }
334 
335 /**
336  * _copy_mc_to_iter - copy to iter with source memory error exception handling
337  * @addr: source kernel address
338  * @bytes: total transfer length
339  * @i: destination iterator
340  *
341  * The pmem driver deploys this for the dax operation
342  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
343  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
344  * successfully copied.
345  *
346  * The main differences between this and typical _copy_to_iter().
347  *
348  * * Typical tail/residue handling after a fault retries the copy
349  *   byte-by-byte until the fault happens again. Re-triggering machine
350  *   checks is potentially fatal so the implementation uses source
351  *   alignment and poison alignment assumptions to avoid re-triggering
352  *   hardware exceptions.
353  *
354  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
355  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
356  *
357  * Return: number of bytes copied (may be %0)
358  */
359 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
360 {
361 	if (WARN_ON_ONCE(i->data_source))
362 		return 0;
363 	if (user_backed_iter(i))
364 		might_fault();
365 	__iterate_and_advance(i, bytes, base, len, off,
366 		copyout_mc(base, addr + off, len),
367 		copy_mc_to_kernel(base, addr + off, len)
368 	)
369 
370 	return bytes;
371 }
372 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
373 #endif /* CONFIG_ARCH_HAS_COPY_MC */
374 
375 static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from,
376 				 size_t size)
377 {
378 	if (iov_iter_is_copy_mc(i))
379 		return (void *)copy_mc_to_kernel(to, from, size);
380 	return memcpy(to, from, size);
381 }
382 
383 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
384 {
385 	if (WARN_ON_ONCE(!i->data_source))
386 		return 0;
387 
388 	if (user_backed_iter(i))
389 		might_fault();
390 	iterate_and_advance(i, bytes, base, len, off,
391 		copyin(addr + off, base, len),
392 		memcpy_from_iter(i, addr + off, base, len)
393 	)
394 
395 	return bytes;
396 }
397 EXPORT_SYMBOL(_copy_from_iter);
398 
399 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
400 {
401 	if (WARN_ON_ONCE(!i->data_source))
402 		return 0;
403 
404 	iterate_and_advance(i, bytes, base, len, off,
405 		__copy_from_user_inatomic_nocache(addr + off, base, len),
406 		memcpy(addr + off, base, len)
407 	)
408 
409 	return bytes;
410 }
411 EXPORT_SYMBOL(_copy_from_iter_nocache);
412 
413 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
414 /**
415  * _copy_from_iter_flushcache - write destination through cpu cache
416  * @addr: destination kernel address
417  * @bytes: total transfer length
418  * @i: source iterator
419  *
420  * The pmem driver arranges for filesystem-dax to use this facility via
421  * dax_copy_from_iter() for ensuring that writes to persistent memory
422  * are flushed through the CPU cache. It is differentiated from
423  * _copy_from_iter_nocache() in that guarantees all data is flushed for
424  * all iterator types. The _copy_from_iter_nocache() only attempts to
425  * bypass the cache for the ITER_IOVEC case, and on some archs may use
426  * instructions that strand dirty-data in the cache.
427  *
428  * Return: number of bytes copied (may be %0)
429  */
430 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
431 {
432 	if (WARN_ON_ONCE(!i->data_source))
433 		return 0;
434 
435 	iterate_and_advance(i, bytes, base, len, off,
436 		__copy_from_user_flushcache(addr + off, base, len),
437 		memcpy_flushcache(addr + off, base, len)
438 	)
439 
440 	return bytes;
441 }
442 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
443 #endif
444 
445 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
446 {
447 	struct page *head;
448 	size_t v = n + offset;
449 
450 	/*
451 	 * The general case needs to access the page order in order
452 	 * to compute the page size.
453 	 * However, we mostly deal with order-0 pages and thus can
454 	 * avoid a possible cache line miss for requests that fit all
455 	 * page orders.
456 	 */
457 	if (n <= v && v <= PAGE_SIZE)
458 		return true;
459 
460 	head = compound_head(page);
461 	v += (page - head) << PAGE_SHIFT;
462 
463 	if (WARN_ON(n > v || v > page_size(head)))
464 		return false;
465 	return true;
466 }
467 
468 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
469 			 struct iov_iter *i)
470 {
471 	size_t res = 0;
472 	if (!page_copy_sane(page, offset, bytes))
473 		return 0;
474 	if (WARN_ON_ONCE(i->data_source))
475 		return 0;
476 	page += offset / PAGE_SIZE; // first subpage
477 	offset %= PAGE_SIZE;
478 	while (1) {
479 		void *kaddr = kmap_local_page(page);
480 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
481 		n = _copy_to_iter(kaddr + offset, n, i);
482 		kunmap_local(kaddr);
483 		res += n;
484 		bytes -= n;
485 		if (!bytes || !n)
486 			break;
487 		offset += n;
488 		if (offset == PAGE_SIZE) {
489 			page++;
490 			offset = 0;
491 		}
492 	}
493 	return res;
494 }
495 EXPORT_SYMBOL(copy_page_to_iter);
496 
497 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
498 				 struct iov_iter *i)
499 {
500 	size_t res = 0;
501 
502 	if (!page_copy_sane(page, offset, bytes))
503 		return 0;
504 	if (WARN_ON_ONCE(i->data_source))
505 		return 0;
506 	page += offset / PAGE_SIZE; // first subpage
507 	offset %= PAGE_SIZE;
508 	while (1) {
509 		void *kaddr = kmap_local_page(page);
510 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
511 
512 		iterate_and_advance(i, n, base, len, off,
513 			copyout_nofault(base, kaddr + offset + off, len),
514 			memcpy(base, kaddr + offset + off, len)
515 		)
516 		kunmap_local(kaddr);
517 		res += n;
518 		bytes -= n;
519 		if (!bytes || !n)
520 			break;
521 		offset += n;
522 		if (offset == PAGE_SIZE) {
523 			page++;
524 			offset = 0;
525 		}
526 	}
527 	return res;
528 }
529 EXPORT_SYMBOL(copy_page_to_iter_nofault);
530 
531 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
532 			 struct iov_iter *i)
533 {
534 	size_t res = 0;
535 	if (!page_copy_sane(page, offset, bytes))
536 		return 0;
537 	page += offset / PAGE_SIZE; // first subpage
538 	offset %= PAGE_SIZE;
539 	while (1) {
540 		void *kaddr = kmap_local_page(page);
541 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
542 		n = _copy_from_iter(kaddr + offset, n, i);
543 		kunmap_local(kaddr);
544 		res += n;
545 		bytes -= n;
546 		if (!bytes || !n)
547 			break;
548 		offset += n;
549 		if (offset == PAGE_SIZE) {
550 			page++;
551 			offset = 0;
552 		}
553 	}
554 	return res;
555 }
556 EXPORT_SYMBOL(copy_page_from_iter);
557 
558 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
559 {
560 	iterate_and_advance(i, bytes, base, len, count,
561 		clear_user(base, len),
562 		memset(base, 0, len)
563 	)
564 
565 	return bytes;
566 }
567 EXPORT_SYMBOL(iov_iter_zero);
568 
569 size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
570 		size_t bytes, struct iov_iter *i)
571 {
572 	size_t n, copied = 0;
573 	bool uses_kmap = IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) ||
574 			 PageHighMem(page);
575 
576 	if (!page_copy_sane(page, offset, bytes))
577 		return 0;
578 	if (WARN_ON_ONCE(!i->data_source))
579 		return 0;
580 
581 	do {
582 		char *p;
583 
584 		n = bytes - copied;
585 		if (uses_kmap) {
586 			page += offset / PAGE_SIZE;
587 			offset %= PAGE_SIZE;
588 			n = min_t(size_t, n, PAGE_SIZE - offset);
589 		}
590 
591 		p = kmap_atomic(page) + offset;
592 		iterate_and_advance(i, n, base, len, off,
593 			copyin(p + off, base, len),
594 			memcpy_from_iter(i, p + off, base, len)
595 		)
596 		kunmap_atomic(p);
597 		copied += n;
598 		offset += n;
599 	} while (uses_kmap && copied != bytes && n > 0);
600 
601 	return copied;
602 }
603 EXPORT_SYMBOL(copy_page_from_iter_atomic);
604 
605 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
606 {
607 	const struct bio_vec *bvec, *end;
608 
609 	if (!i->count)
610 		return;
611 	i->count -= size;
612 
613 	size += i->iov_offset;
614 
615 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
616 		if (likely(size < bvec->bv_len))
617 			break;
618 		size -= bvec->bv_len;
619 	}
620 	i->iov_offset = size;
621 	i->nr_segs -= bvec - i->bvec;
622 	i->bvec = bvec;
623 }
624 
625 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
626 {
627 	const struct iovec *iov, *end;
628 
629 	if (!i->count)
630 		return;
631 	i->count -= size;
632 
633 	size += i->iov_offset; // from beginning of current segment
634 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
635 		if (likely(size < iov->iov_len))
636 			break;
637 		size -= iov->iov_len;
638 	}
639 	i->iov_offset = size;
640 	i->nr_segs -= iov - iter_iov(i);
641 	i->__iov = iov;
642 }
643 
644 void iov_iter_advance(struct iov_iter *i, size_t size)
645 {
646 	if (unlikely(i->count < size))
647 		size = i->count;
648 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
649 		i->iov_offset += size;
650 		i->count -= size;
651 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
652 		/* iovec and kvec have identical layouts */
653 		iov_iter_iovec_advance(i, size);
654 	} else if (iov_iter_is_bvec(i)) {
655 		iov_iter_bvec_advance(i, size);
656 	} else if (iov_iter_is_discard(i)) {
657 		i->count -= size;
658 	}
659 }
660 EXPORT_SYMBOL(iov_iter_advance);
661 
662 void iov_iter_revert(struct iov_iter *i, size_t unroll)
663 {
664 	if (!unroll)
665 		return;
666 	if (WARN_ON(unroll > MAX_RW_COUNT))
667 		return;
668 	i->count += unroll;
669 	if (unlikely(iov_iter_is_discard(i)))
670 		return;
671 	if (unroll <= i->iov_offset) {
672 		i->iov_offset -= unroll;
673 		return;
674 	}
675 	unroll -= i->iov_offset;
676 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
677 		BUG(); /* We should never go beyond the start of the specified
678 			* range since we might then be straying into pages that
679 			* aren't pinned.
680 			*/
681 	} else if (iov_iter_is_bvec(i)) {
682 		const struct bio_vec *bvec = i->bvec;
683 		while (1) {
684 			size_t n = (--bvec)->bv_len;
685 			i->nr_segs++;
686 			if (unroll <= n) {
687 				i->bvec = bvec;
688 				i->iov_offset = n - unroll;
689 				return;
690 			}
691 			unroll -= n;
692 		}
693 	} else { /* same logics for iovec and kvec */
694 		const struct iovec *iov = iter_iov(i);
695 		while (1) {
696 			size_t n = (--iov)->iov_len;
697 			i->nr_segs++;
698 			if (unroll <= n) {
699 				i->__iov = iov;
700 				i->iov_offset = n - unroll;
701 				return;
702 			}
703 			unroll -= n;
704 		}
705 	}
706 }
707 EXPORT_SYMBOL(iov_iter_revert);
708 
709 /*
710  * Return the count of just the current iov_iter segment.
711  */
712 size_t iov_iter_single_seg_count(const struct iov_iter *i)
713 {
714 	if (i->nr_segs > 1) {
715 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
716 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
717 		if (iov_iter_is_bvec(i))
718 			return min(i->count, i->bvec->bv_len - i->iov_offset);
719 	}
720 	return i->count;
721 }
722 EXPORT_SYMBOL(iov_iter_single_seg_count);
723 
724 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
725 			const struct kvec *kvec, unsigned long nr_segs,
726 			size_t count)
727 {
728 	WARN_ON(direction & ~(READ | WRITE));
729 	*i = (struct iov_iter){
730 		.iter_type = ITER_KVEC,
731 		.copy_mc = false,
732 		.data_source = direction,
733 		.kvec = kvec,
734 		.nr_segs = nr_segs,
735 		.iov_offset = 0,
736 		.count = count
737 	};
738 }
739 EXPORT_SYMBOL(iov_iter_kvec);
740 
741 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
742 			const struct bio_vec *bvec, unsigned long nr_segs,
743 			size_t count)
744 {
745 	WARN_ON(direction & ~(READ | WRITE));
746 	*i = (struct iov_iter){
747 		.iter_type = ITER_BVEC,
748 		.copy_mc = false,
749 		.data_source = direction,
750 		.bvec = bvec,
751 		.nr_segs = nr_segs,
752 		.iov_offset = 0,
753 		.count = count
754 	};
755 }
756 EXPORT_SYMBOL(iov_iter_bvec);
757 
758 /**
759  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
760  * @i: The iterator to initialise.
761  * @direction: The direction of the transfer.
762  * @xarray: The xarray to access.
763  * @start: The start file position.
764  * @count: The size of the I/O buffer in bytes.
765  *
766  * Set up an I/O iterator to either draw data out of the pages attached to an
767  * inode or to inject data into those pages.  The pages *must* be prevented
768  * from evaporation, either by taking a ref on them or locking them by the
769  * caller.
770  */
771 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
772 		     struct xarray *xarray, loff_t start, size_t count)
773 {
774 	BUG_ON(direction & ~1);
775 	*i = (struct iov_iter) {
776 		.iter_type = ITER_XARRAY,
777 		.copy_mc = false,
778 		.data_source = direction,
779 		.xarray = xarray,
780 		.xarray_start = start,
781 		.count = count,
782 		.iov_offset = 0
783 	};
784 }
785 EXPORT_SYMBOL(iov_iter_xarray);
786 
787 /**
788  * iov_iter_discard - Initialise an I/O iterator that discards data
789  * @i: The iterator to initialise.
790  * @direction: The direction of the transfer.
791  * @count: The size of the I/O buffer in bytes.
792  *
793  * Set up an I/O iterator that just discards everything that's written to it.
794  * It's only available as a READ iterator.
795  */
796 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
797 {
798 	BUG_ON(direction != READ);
799 	*i = (struct iov_iter){
800 		.iter_type = ITER_DISCARD,
801 		.copy_mc = false,
802 		.data_source = false,
803 		.count = count,
804 		.iov_offset = 0
805 	};
806 }
807 EXPORT_SYMBOL(iov_iter_discard);
808 
809 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
810 				   unsigned len_mask)
811 {
812 	size_t size = i->count;
813 	size_t skip = i->iov_offset;
814 	unsigned k;
815 
816 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
817 		const struct iovec *iov = iter_iov(i) + k;
818 		size_t len = iov->iov_len - skip;
819 
820 		if (len > size)
821 			len = size;
822 		if (len & len_mask)
823 			return false;
824 		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
825 			return false;
826 
827 		size -= len;
828 		if (!size)
829 			break;
830 	}
831 	return true;
832 }
833 
834 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
835 				  unsigned len_mask)
836 {
837 	size_t size = i->count;
838 	unsigned skip = i->iov_offset;
839 	unsigned k;
840 
841 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
842 		size_t len = i->bvec[k].bv_len - skip;
843 
844 		if (len > size)
845 			len = size;
846 		if (len & len_mask)
847 			return false;
848 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
849 			return false;
850 
851 		size -= len;
852 		if (!size)
853 			break;
854 	}
855 	return true;
856 }
857 
858 /**
859  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
860  * 	are aligned to the parameters.
861  *
862  * @i: &struct iov_iter to restore
863  * @addr_mask: bit mask to check against the iov element's addresses
864  * @len_mask: bit mask to check against the iov element's lengths
865  *
866  * Return: false if any addresses or lengths intersect with the provided masks
867  */
868 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
869 			 unsigned len_mask)
870 {
871 	if (likely(iter_is_ubuf(i))) {
872 		if (i->count & len_mask)
873 			return false;
874 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
875 			return false;
876 		return true;
877 	}
878 
879 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
880 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
881 
882 	if (iov_iter_is_bvec(i))
883 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
884 
885 	if (iov_iter_is_xarray(i)) {
886 		if (i->count & len_mask)
887 			return false;
888 		if ((i->xarray_start + i->iov_offset) & addr_mask)
889 			return false;
890 	}
891 
892 	return true;
893 }
894 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
895 
896 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
897 {
898 	unsigned long res = 0;
899 	size_t size = i->count;
900 	size_t skip = i->iov_offset;
901 	unsigned k;
902 
903 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
904 		const struct iovec *iov = iter_iov(i) + k;
905 		size_t len = iov->iov_len - skip;
906 		if (len) {
907 			res |= (unsigned long)iov->iov_base + skip;
908 			if (len > size)
909 				len = size;
910 			res |= len;
911 			size -= len;
912 			if (!size)
913 				break;
914 		}
915 	}
916 	return res;
917 }
918 
919 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
920 {
921 	unsigned res = 0;
922 	size_t size = i->count;
923 	unsigned skip = i->iov_offset;
924 	unsigned k;
925 
926 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
927 		size_t len = i->bvec[k].bv_len - skip;
928 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
929 		if (len > size)
930 			len = size;
931 		res |= len;
932 		size -= len;
933 		if (!size)
934 			break;
935 	}
936 	return res;
937 }
938 
939 unsigned long iov_iter_alignment(const struct iov_iter *i)
940 {
941 	if (likely(iter_is_ubuf(i))) {
942 		size_t size = i->count;
943 		if (size)
944 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
945 		return 0;
946 	}
947 
948 	/* iovec and kvec have identical layouts */
949 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
950 		return iov_iter_alignment_iovec(i);
951 
952 	if (iov_iter_is_bvec(i))
953 		return iov_iter_alignment_bvec(i);
954 
955 	if (iov_iter_is_xarray(i))
956 		return (i->xarray_start + i->iov_offset) | i->count;
957 
958 	return 0;
959 }
960 EXPORT_SYMBOL(iov_iter_alignment);
961 
962 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
963 {
964 	unsigned long res = 0;
965 	unsigned long v = 0;
966 	size_t size = i->count;
967 	unsigned k;
968 
969 	if (iter_is_ubuf(i))
970 		return 0;
971 
972 	if (WARN_ON(!iter_is_iovec(i)))
973 		return ~0U;
974 
975 	for (k = 0; k < i->nr_segs; k++) {
976 		const struct iovec *iov = iter_iov(i) + k;
977 		if (iov->iov_len) {
978 			unsigned long base = (unsigned long)iov->iov_base;
979 			if (v) // if not the first one
980 				res |= base | v; // this start | previous end
981 			v = base + iov->iov_len;
982 			if (size <= iov->iov_len)
983 				break;
984 			size -= iov->iov_len;
985 		}
986 	}
987 	return res;
988 }
989 EXPORT_SYMBOL(iov_iter_gap_alignment);
990 
991 static int want_pages_array(struct page ***res, size_t size,
992 			    size_t start, unsigned int maxpages)
993 {
994 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
995 
996 	if (count > maxpages)
997 		count = maxpages;
998 	WARN_ON(!count);	// caller should've prevented that
999 	if (!*res) {
1000 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1001 		if (!*res)
1002 			return 0;
1003 	}
1004 	return count;
1005 }
1006 
1007 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1008 					  pgoff_t index, unsigned int nr_pages)
1009 {
1010 	XA_STATE(xas, xa, index);
1011 	struct page *page;
1012 	unsigned int ret = 0;
1013 
1014 	rcu_read_lock();
1015 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1016 		if (xas_retry(&xas, page))
1017 			continue;
1018 
1019 		/* Has the page moved or been split? */
1020 		if (unlikely(page != xas_reload(&xas))) {
1021 			xas_reset(&xas);
1022 			continue;
1023 		}
1024 
1025 		pages[ret] = find_subpage(page, xas.xa_index);
1026 		get_page(pages[ret]);
1027 		if (++ret == nr_pages)
1028 			break;
1029 	}
1030 	rcu_read_unlock();
1031 	return ret;
1032 }
1033 
1034 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1035 				     struct page ***pages, size_t maxsize,
1036 				     unsigned maxpages, size_t *_start_offset)
1037 {
1038 	unsigned nr, offset, count;
1039 	pgoff_t index;
1040 	loff_t pos;
1041 
1042 	pos = i->xarray_start + i->iov_offset;
1043 	index = pos >> PAGE_SHIFT;
1044 	offset = pos & ~PAGE_MASK;
1045 	*_start_offset = offset;
1046 
1047 	count = want_pages_array(pages, maxsize, offset, maxpages);
1048 	if (!count)
1049 		return -ENOMEM;
1050 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1051 	if (nr == 0)
1052 		return 0;
1053 
1054 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1055 	i->iov_offset += maxsize;
1056 	i->count -= maxsize;
1057 	return maxsize;
1058 }
1059 
1060 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1061 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1062 {
1063 	size_t skip;
1064 	long k;
1065 
1066 	if (iter_is_ubuf(i))
1067 		return (unsigned long)i->ubuf + i->iov_offset;
1068 
1069 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1070 		const struct iovec *iov = iter_iov(i) + k;
1071 		size_t len = iov->iov_len - skip;
1072 
1073 		if (unlikely(!len))
1074 			continue;
1075 		if (*size > len)
1076 			*size = len;
1077 		return (unsigned long)iov->iov_base + skip;
1078 	}
1079 	BUG(); // if it had been empty, we wouldn't get called
1080 }
1081 
1082 /* must be done on non-empty ITER_BVEC one */
1083 static struct page *first_bvec_segment(const struct iov_iter *i,
1084 				       size_t *size, size_t *start)
1085 {
1086 	struct page *page;
1087 	size_t skip = i->iov_offset, len;
1088 
1089 	len = i->bvec->bv_len - skip;
1090 	if (*size > len)
1091 		*size = len;
1092 	skip += i->bvec->bv_offset;
1093 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1094 	*start = skip % PAGE_SIZE;
1095 	return page;
1096 }
1097 
1098 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1099 		   struct page ***pages, size_t maxsize,
1100 		   unsigned int maxpages, size_t *start)
1101 {
1102 	unsigned int n, gup_flags = 0;
1103 
1104 	if (maxsize > i->count)
1105 		maxsize = i->count;
1106 	if (!maxsize)
1107 		return 0;
1108 	if (maxsize > MAX_RW_COUNT)
1109 		maxsize = MAX_RW_COUNT;
1110 
1111 	if (likely(user_backed_iter(i))) {
1112 		unsigned long addr;
1113 		int res;
1114 
1115 		if (iov_iter_rw(i) != WRITE)
1116 			gup_flags |= FOLL_WRITE;
1117 		if (i->nofault)
1118 			gup_flags |= FOLL_NOFAULT;
1119 
1120 		addr = first_iovec_segment(i, &maxsize);
1121 		*start = addr % PAGE_SIZE;
1122 		addr &= PAGE_MASK;
1123 		n = want_pages_array(pages, maxsize, *start, maxpages);
1124 		if (!n)
1125 			return -ENOMEM;
1126 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1127 		if (unlikely(res <= 0))
1128 			return res;
1129 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1130 		iov_iter_advance(i, maxsize);
1131 		return maxsize;
1132 	}
1133 	if (iov_iter_is_bvec(i)) {
1134 		struct page **p;
1135 		struct page *page;
1136 
1137 		page = first_bvec_segment(i, &maxsize, start);
1138 		n = want_pages_array(pages, maxsize, *start, maxpages);
1139 		if (!n)
1140 			return -ENOMEM;
1141 		p = *pages;
1142 		for (int k = 0; k < n; k++)
1143 			get_page(p[k] = page + k);
1144 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1145 		i->count -= maxsize;
1146 		i->iov_offset += maxsize;
1147 		if (i->iov_offset == i->bvec->bv_len) {
1148 			i->iov_offset = 0;
1149 			i->bvec++;
1150 			i->nr_segs--;
1151 		}
1152 		return maxsize;
1153 	}
1154 	if (iov_iter_is_xarray(i))
1155 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1156 	return -EFAULT;
1157 }
1158 
1159 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1160 		size_t maxsize, unsigned maxpages, size_t *start)
1161 {
1162 	if (!maxpages)
1163 		return 0;
1164 	BUG_ON(!pages);
1165 
1166 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1167 }
1168 EXPORT_SYMBOL(iov_iter_get_pages2);
1169 
1170 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1171 		struct page ***pages, size_t maxsize, size_t *start)
1172 {
1173 	ssize_t len;
1174 
1175 	*pages = NULL;
1176 
1177 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1178 	if (len <= 0) {
1179 		kvfree(*pages);
1180 		*pages = NULL;
1181 	}
1182 	return len;
1183 }
1184 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1185 
1186 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1187 			       struct iov_iter *i)
1188 {
1189 	__wsum sum, next;
1190 	sum = *csum;
1191 	if (WARN_ON_ONCE(!i->data_source))
1192 		return 0;
1193 
1194 	iterate_and_advance(i, bytes, base, len, off, ({
1195 		next = csum_and_copy_from_user(base, addr + off, len);
1196 		sum = csum_block_add(sum, next, off);
1197 		next ? 0 : len;
1198 	}), ({
1199 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1200 	})
1201 	)
1202 	*csum = sum;
1203 	return bytes;
1204 }
1205 EXPORT_SYMBOL(csum_and_copy_from_iter);
1206 
1207 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1208 			     struct iov_iter *i)
1209 {
1210 	struct csum_state *csstate = _csstate;
1211 	__wsum sum, next;
1212 
1213 	if (WARN_ON_ONCE(i->data_source))
1214 		return 0;
1215 	if (unlikely(iov_iter_is_discard(i))) {
1216 		// can't use csum_memcpy() for that one - data is not copied
1217 		csstate->csum = csum_block_add(csstate->csum,
1218 					       csum_partial(addr, bytes, 0),
1219 					       csstate->off);
1220 		csstate->off += bytes;
1221 		return bytes;
1222 	}
1223 
1224 	sum = csum_shift(csstate->csum, csstate->off);
1225 	iterate_and_advance(i, bytes, base, len, off, ({
1226 		next = csum_and_copy_to_user(addr + off, base, len);
1227 		sum = csum_block_add(sum, next, off);
1228 		next ? 0 : len;
1229 	}), ({
1230 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1231 	})
1232 	)
1233 	csstate->csum = csum_shift(sum, csstate->off);
1234 	csstate->off += bytes;
1235 	return bytes;
1236 }
1237 EXPORT_SYMBOL(csum_and_copy_to_iter);
1238 
1239 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1240 		struct iov_iter *i)
1241 {
1242 #ifdef CONFIG_CRYPTO_HASH
1243 	struct ahash_request *hash = hashp;
1244 	struct scatterlist sg;
1245 	size_t copied;
1246 
1247 	copied = copy_to_iter(addr, bytes, i);
1248 	sg_init_one(&sg, addr, copied);
1249 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1250 	crypto_ahash_update(hash);
1251 	return copied;
1252 #else
1253 	return 0;
1254 #endif
1255 }
1256 EXPORT_SYMBOL(hash_and_copy_to_iter);
1257 
1258 static int iov_npages(const struct iov_iter *i, int maxpages)
1259 {
1260 	size_t skip = i->iov_offset, size = i->count;
1261 	const struct iovec *p;
1262 	int npages = 0;
1263 
1264 	for (p = iter_iov(i); size; skip = 0, p++) {
1265 		unsigned offs = offset_in_page(p->iov_base + skip);
1266 		size_t len = min(p->iov_len - skip, size);
1267 
1268 		if (len) {
1269 			size -= len;
1270 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1271 			if (unlikely(npages > maxpages))
1272 				return maxpages;
1273 		}
1274 	}
1275 	return npages;
1276 }
1277 
1278 static int bvec_npages(const struct iov_iter *i, int maxpages)
1279 {
1280 	size_t skip = i->iov_offset, size = i->count;
1281 	const struct bio_vec *p;
1282 	int npages = 0;
1283 
1284 	for (p = i->bvec; size; skip = 0, p++) {
1285 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1286 		size_t len = min(p->bv_len - skip, size);
1287 
1288 		size -= len;
1289 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1290 		if (unlikely(npages > maxpages))
1291 			return maxpages;
1292 	}
1293 	return npages;
1294 }
1295 
1296 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1297 {
1298 	if (unlikely(!i->count))
1299 		return 0;
1300 	if (likely(iter_is_ubuf(i))) {
1301 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1302 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1303 		return min(npages, maxpages);
1304 	}
1305 	/* iovec and kvec have identical layouts */
1306 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1307 		return iov_npages(i, maxpages);
1308 	if (iov_iter_is_bvec(i))
1309 		return bvec_npages(i, maxpages);
1310 	if (iov_iter_is_xarray(i)) {
1311 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1312 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1313 		return min(npages, maxpages);
1314 	}
1315 	return 0;
1316 }
1317 EXPORT_SYMBOL(iov_iter_npages);
1318 
1319 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1320 {
1321 	*new = *old;
1322 	if (iov_iter_is_bvec(new))
1323 		return new->bvec = kmemdup(new->bvec,
1324 				    new->nr_segs * sizeof(struct bio_vec),
1325 				    flags);
1326 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1327 		/* iovec and kvec have identical layout */
1328 		return new->__iov = kmemdup(new->__iov,
1329 				   new->nr_segs * sizeof(struct iovec),
1330 				   flags);
1331 	return NULL;
1332 }
1333 EXPORT_SYMBOL(dup_iter);
1334 
1335 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1336 		const struct iovec __user *uvec, unsigned long nr_segs)
1337 {
1338 	const struct compat_iovec __user *uiov =
1339 		(const struct compat_iovec __user *)uvec;
1340 	int ret = -EFAULT, i;
1341 
1342 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1343 		return -EFAULT;
1344 
1345 	for (i = 0; i < nr_segs; i++) {
1346 		compat_uptr_t buf;
1347 		compat_ssize_t len;
1348 
1349 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1350 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1351 
1352 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1353 		if (len < 0) {
1354 			ret = -EINVAL;
1355 			goto uaccess_end;
1356 		}
1357 		iov[i].iov_base = compat_ptr(buf);
1358 		iov[i].iov_len = len;
1359 	}
1360 
1361 	ret = 0;
1362 uaccess_end:
1363 	user_access_end();
1364 	return ret;
1365 }
1366 
1367 static __noclone int copy_iovec_from_user(struct iovec *iov,
1368 		const struct iovec __user *uiov, unsigned long nr_segs)
1369 {
1370 	int ret = -EFAULT;
1371 
1372 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1373 		return -EFAULT;
1374 
1375 	do {
1376 		void __user *buf;
1377 		ssize_t len;
1378 
1379 		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1380 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1381 
1382 		/* check for size_t not fitting in ssize_t .. */
1383 		if (unlikely(len < 0)) {
1384 			ret = -EINVAL;
1385 			goto uaccess_end;
1386 		}
1387 		iov->iov_base = buf;
1388 		iov->iov_len = len;
1389 
1390 		uiov++; iov++;
1391 	} while (--nr_segs);
1392 
1393 	ret = 0;
1394 uaccess_end:
1395 	user_access_end();
1396 	return ret;
1397 }
1398 
1399 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1400 		unsigned long nr_segs, unsigned long fast_segs,
1401 		struct iovec *fast_iov, bool compat)
1402 {
1403 	struct iovec *iov = fast_iov;
1404 	int ret;
1405 
1406 	/*
1407 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1408 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1409 	 * traditionally returned zero for zero segments, so...
1410 	 */
1411 	if (nr_segs == 0)
1412 		return iov;
1413 	if (nr_segs > UIO_MAXIOV)
1414 		return ERR_PTR(-EINVAL);
1415 	if (nr_segs > fast_segs) {
1416 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1417 		if (!iov)
1418 			return ERR_PTR(-ENOMEM);
1419 	}
1420 
1421 	if (unlikely(compat))
1422 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1423 	else
1424 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1425 	if (ret) {
1426 		if (iov != fast_iov)
1427 			kfree(iov);
1428 		return ERR_PTR(ret);
1429 	}
1430 
1431 	return iov;
1432 }
1433 
1434 /*
1435  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1436  */
1437 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1438 				   struct iovec **iovp, struct iov_iter *i,
1439 				   bool compat)
1440 {
1441 	struct iovec *iov = *iovp;
1442 	ssize_t ret;
1443 
1444 	if (compat)
1445 		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1446 	else
1447 		ret = copy_iovec_from_user(iov, uvec, 1);
1448 	if (unlikely(ret))
1449 		return ret;
1450 
1451 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1452 	if (unlikely(ret))
1453 		return ret;
1454 	*iovp = NULL;
1455 	return i->count;
1456 }
1457 
1458 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1459 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1460 		 struct iov_iter *i, bool compat)
1461 {
1462 	ssize_t total_len = 0;
1463 	unsigned long seg;
1464 	struct iovec *iov;
1465 
1466 	if (nr_segs == 1)
1467 		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1468 
1469 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1470 	if (IS_ERR(iov)) {
1471 		*iovp = NULL;
1472 		return PTR_ERR(iov);
1473 	}
1474 
1475 	/*
1476 	 * According to the Single Unix Specification we should return EINVAL if
1477 	 * an element length is < 0 when cast to ssize_t or if the total length
1478 	 * would overflow the ssize_t return value of the system call.
1479 	 *
1480 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1481 	 * overflow case.
1482 	 */
1483 	for (seg = 0; seg < nr_segs; seg++) {
1484 		ssize_t len = (ssize_t)iov[seg].iov_len;
1485 
1486 		if (!access_ok(iov[seg].iov_base, len)) {
1487 			if (iov != *iovp)
1488 				kfree(iov);
1489 			*iovp = NULL;
1490 			return -EFAULT;
1491 		}
1492 
1493 		if (len > MAX_RW_COUNT - total_len) {
1494 			len = MAX_RW_COUNT - total_len;
1495 			iov[seg].iov_len = len;
1496 		}
1497 		total_len += len;
1498 	}
1499 
1500 	iov_iter_init(i, type, iov, nr_segs, total_len);
1501 	if (iov == *iovp)
1502 		*iovp = NULL;
1503 	else
1504 		*iovp = iov;
1505 	return total_len;
1506 }
1507 
1508 /**
1509  * import_iovec() - Copy an array of &struct iovec from userspace
1510  *     into the kernel, check that it is valid, and initialize a new
1511  *     &struct iov_iter iterator to access it.
1512  *
1513  * @type: One of %READ or %WRITE.
1514  * @uvec: Pointer to the userspace array.
1515  * @nr_segs: Number of elements in userspace array.
1516  * @fast_segs: Number of elements in @iov.
1517  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1518  *     on-stack) kernel array.
1519  * @i: Pointer to iterator that will be initialized on success.
1520  *
1521  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1522  * then this function places %NULL in *@iov on return. Otherwise, a new
1523  * array will be allocated and the result placed in *@iov. This means that
1524  * the caller may call kfree() on *@iov regardless of whether the small
1525  * on-stack array was used or not (and regardless of whether this function
1526  * returns an error or not).
1527  *
1528  * Return: Negative error code on error, bytes imported on success
1529  */
1530 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1531 		 unsigned nr_segs, unsigned fast_segs,
1532 		 struct iovec **iovp, struct iov_iter *i)
1533 {
1534 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1535 			      in_compat_syscall());
1536 }
1537 EXPORT_SYMBOL(import_iovec);
1538 
1539 int import_single_range(int rw, void __user *buf, size_t len,
1540 		 struct iovec *iov, struct iov_iter *i)
1541 {
1542 	if (len > MAX_RW_COUNT)
1543 		len = MAX_RW_COUNT;
1544 	if (unlikely(!access_ok(buf, len)))
1545 		return -EFAULT;
1546 
1547 	iov_iter_ubuf(i, rw, buf, len);
1548 	return 0;
1549 }
1550 EXPORT_SYMBOL(import_single_range);
1551 
1552 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1553 {
1554 	if (len > MAX_RW_COUNT)
1555 		len = MAX_RW_COUNT;
1556 	if (unlikely(!access_ok(buf, len)))
1557 		return -EFAULT;
1558 
1559 	iov_iter_ubuf(i, rw, buf, len);
1560 	return 0;
1561 }
1562 EXPORT_SYMBOL_GPL(import_ubuf);
1563 
1564 /**
1565  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1566  *     iov_iter_save_state() was called.
1567  *
1568  * @i: &struct iov_iter to restore
1569  * @state: state to restore from
1570  *
1571  * Used after iov_iter_save_state() to bring restore @i, if operations may
1572  * have advanced it.
1573  *
1574  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1575  */
1576 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1577 {
1578 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1579 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1580 		return;
1581 	i->iov_offset = state->iov_offset;
1582 	i->count = state->count;
1583 	if (iter_is_ubuf(i))
1584 		return;
1585 	/*
1586 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1587 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1588 	 * need to track both of these, just one is enough and we can deduct
1589 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1590 	 * size, so we can just increment the iov pointer as they are unionzed.
1591 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1592 	 * not. Be safe and handle it separately.
1593 	 */
1594 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1595 	if (iov_iter_is_bvec(i))
1596 		i->bvec -= state->nr_segs - i->nr_segs;
1597 	else
1598 		i->__iov -= state->nr_segs - i->nr_segs;
1599 	i->nr_segs = state->nr_segs;
1600 }
1601 
1602 /*
1603  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1604  * get references on the pages, nor does it get a pin on them.
1605  */
1606 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1607 					     struct page ***pages, size_t maxsize,
1608 					     unsigned int maxpages,
1609 					     iov_iter_extraction_t extraction_flags,
1610 					     size_t *offset0)
1611 {
1612 	struct page *page, **p;
1613 	unsigned int nr = 0, offset;
1614 	loff_t pos = i->xarray_start + i->iov_offset;
1615 	pgoff_t index = pos >> PAGE_SHIFT;
1616 	XA_STATE(xas, i->xarray, index);
1617 
1618 	offset = pos & ~PAGE_MASK;
1619 	*offset0 = offset;
1620 
1621 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1622 	if (!maxpages)
1623 		return -ENOMEM;
1624 	p = *pages;
1625 
1626 	rcu_read_lock();
1627 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1628 		if (xas_retry(&xas, page))
1629 			continue;
1630 
1631 		/* Has the page moved or been split? */
1632 		if (unlikely(page != xas_reload(&xas))) {
1633 			xas_reset(&xas);
1634 			continue;
1635 		}
1636 
1637 		p[nr++] = find_subpage(page, xas.xa_index);
1638 		if (nr == maxpages)
1639 			break;
1640 	}
1641 	rcu_read_unlock();
1642 
1643 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1644 	iov_iter_advance(i, maxsize);
1645 	return maxsize;
1646 }
1647 
1648 /*
1649  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1650  * not get references on the pages, nor does it get a pin on them.
1651  */
1652 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1653 					   struct page ***pages, size_t maxsize,
1654 					   unsigned int maxpages,
1655 					   iov_iter_extraction_t extraction_flags,
1656 					   size_t *offset0)
1657 {
1658 	struct page **p, *page;
1659 	size_t skip = i->iov_offset, offset, size;
1660 	int k;
1661 
1662 	for (;;) {
1663 		if (i->nr_segs == 0)
1664 			return 0;
1665 		size = min(maxsize, i->bvec->bv_len - skip);
1666 		if (size)
1667 			break;
1668 		i->iov_offset = 0;
1669 		i->nr_segs--;
1670 		i->bvec++;
1671 		skip = 0;
1672 	}
1673 
1674 	skip += i->bvec->bv_offset;
1675 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1676 	offset = skip % PAGE_SIZE;
1677 	*offset0 = offset;
1678 
1679 	maxpages = want_pages_array(pages, size, offset, maxpages);
1680 	if (!maxpages)
1681 		return -ENOMEM;
1682 	p = *pages;
1683 	for (k = 0; k < maxpages; k++)
1684 		p[k] = page + k;
1685 
1686 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1687 	iov_iter_advance(i, size);
1688 	return size;
1689 }
1690 
1691 /*
1692  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1693  * This does not get references on the pages, nor does it get a pin on them.
1694  */
1695 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1696 					   struct page ***pages, size_t maxsize,
1697 					   unsigned int maxpages,
1698 					   iov_iter_extraction_t extraction_flags,
1699 					   size_t *offset0)
1700 {
1701 	struct page **p, *page;
1702 	const void *kaddr;
1703 	size_t skip = i->iov_offset, offset, len, size;
1704 	int k;
1705 
1706 	for (;;) {
1707 		if (i->nr_segs == 0)
1708 			return 0;
1709 		size = min(maxsize, i->kvec->iov_len - skip);
1710 		if (size)
1711 			break;
1712 		i->iov_offset = 0;
1713 		i->nr_segs--;
1714 		i->kvec++;
1715 		skip = 0;
1716 	}
1717 
1718 	kaddr = i->kvec->iov_base + skip;
1719 	offset = (unsigned long)kaddr & ~PAGE_MASK;
1720 	*offset0 = offset;
1721 
1722 	maxpages = want_pages_array(pages, size, offset, maxpages);
1723 	if (!maxpages)
1724 		return -ENOMEM;
1725 	p = *pages;
1726 
1727 	kaddr -= offset;
1728 	len = offset + size;
1729 	for (k = 0; k < maxpages; k++) {
1730 		size_t seg = min_t(size_t, len, PAGE_SIZE);
1731 
1732 		if (is_vmalloc_or_module_addr(kaddr))
1733 			page = vmalloc_to_page(kaddr);
1734 		else
1735 			page = virt_to_page(kaddr);
1736 
1737 		p[k] = page;
1738 		len -= seg;
1739 		kaddr += PAGE_SIZE;
1740 	}
1741 
1742 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1743 	iov_iter_advance(i, size);
1744 	return size;
1745 }
1746 
1747 /*
1748  * Extract a list of contiguous pages from a user iterator and get a pin on
1749  * each of them.  This should only be used if the iterator is user-backed
1750  * (IOBUF/UBUF).
1751  *
1752  * It does not get refs on the pages, but the pages must be unpinned by the
1753  * caller once the transfer is complete.
1754  *
1755  * This is safe to be used where background IO/DMA *is* going to be modifying
1756  * the buffer; using a pin rather than a ref makes forces fork() to give the
1757  * child a copy of the page.
1758  */
1759 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1760 					   struct page ***pages,
1761 					   size_t maxsize,
1762 					   unsigned int maxpages,
1763 					   iov_iter_extraction_t extraction_flags,
1764 					   size_t *offset0)
1765 {
1766 	unsigned long addr;
1767 	unsigned int gup_flags = 0;
1768 	size_t offset;
1769 	int res;
1770 
1771 	if (i->data_source == ITER_DEST)
1772 		gup_flags |= FOLL_WRITE;
1773 	if (extraction_flags & ITER_ALLOW_P2PDMA)
1774 		gup_flags |= FOLL_PCI_P2PDMA;
1775 	if (i->nofault)
1776 		gup_flags |= FOLL_NOFAULT;
1777 
1778 	addr = first_iovec_segment(i, &maxsize);
1779 	*offset0 = offset = addr % PAGE_SIZE;
1780 	addr &= PAGE_MASK;
1781 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1782 	if (!maxpages)
1783 		return -ENOMEM;
1784 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1785 	if (unlikely(res <= 0))
1786 		return res;
1787 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1788 	iov_iter_advance(i, maxsize);
1789 	return maxsize;
1790 }
1791 
1792 /**
1793  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1794  * @i: The iterator to extract from
1795  * @pages: Where to return the list of pages
1796  * @maxsize: The maximum amount of iterator to extract
1797  * @maxpages: The maximum size of the list of pages
1798  * @extraction_flags: Flags to qualify request
1799  * @offset0: Where to return the starting offset into (*@pages)[0]
1800  *
1801  * Extract a list of contiguous pages from the current point of the iterator,
1802  * advancing the iterator.  The maximum number of pages and the maximum amount
1803  * of page contents can be set.
1804  *
1805  * If *@pages is NULL, a page list will be allocated to the required size and
1806  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1807  * that the caller allocated a page list at least @maxpages in size and this
1808  * will be filled in.
1809  *
1810  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1811  * be allowed on the pages extracted.
1812  *
1813  * The iov_iter_extract_will_pin() function can be used to query how cleanup
1814  * should be performed.
1815  *
1816  * Extra refs or pins on the pages may be obtained as follows:
1817  *
1818  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1819  *      added to the pages, but refs will not be taken.
1820  *      iov_iter_extract_will_pin() will return true.
1821  *
1822  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1823  *      merely listed; no extra refs or pins are obtained.
1824  *      iov_iter_extract_will_pin() will return 0.
1825  *
1826  * Note also:
1827  *
1828  *  (*) Use with ITER_DISCARD is not supported as that has no content.
1829  *
1830  * On success, the function sets *@pages to the new pagelist, if allocated, and
1831  * sets *offset0 to the offset into the first page.
1832  *
1833  * It may also return -ENOMEM and -EFAULT.
1834  */
1835 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1836 			       struct page ***pages,
1837 			       size_t maxsize,
1838 			       unsigned int maxpages,
1839 			       iov_iter_extraction_t extraction_flags,
1840 			       size_t *offset0)
1841 {
1842 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1843 	if (!maxsize)
1844 		return 0;
1845 
1846 	if (likely(user_backed_iter(i)))
1847 		return iov_iter_extract_user_pages(i, pages, maxsize,
1848 						   maxpages, extraction_flags,
1849 						   offset0);
1850 	if (iov_iter_is_kvec(i))
1851 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1852 						   maxpages, extraction_flags,
1853 						   offset0);
1854 	if (iov_iter_is_bvec(i))
1855 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1856 						   maxpages, extraction_flags,
1857 						   offset0);
1858 	if (iov_iter_is_xarray(i))
1859 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1860 						     maxpages, extraction_flags,
1861 						     offset0);
1862 	return -EFAULT;
1863 }
1864 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
1865