1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <crypto/hash.h> 3 #include <linux/export.h> 4 #include <linux/bvec.h> 5 #include <linux/fault-inject-usercopy.h> 6 #include <linux/uio.h> 7 #include <linux/pagemap.h> 8 #include <linux/highmem.h> 9 #include <linux/slab.h> 10 #include <linux/vmalloc.h> 11 #include <linux/splice.h> 12 #include <linux/compat.h> 13 #include <net/checksum.h> 14 #include <linux/scatterlist.h> 15 #include <linux/instrumented.h> 16 17 /* covers ubuf and kbuf alike */ 18 #define iterate_buf(i, n, base, len, off, __p, STEP) { \ 19 size_t __maybe_unused off = 0; \ 20 len = n; \ 21 base = __p + i->iov_offset; \ 22 len -= (STEP); \ 23 i->iov_offset += len; \ 24 n = len; \ 25 } 26 27 /* covers iovec and kvec alike */ 28 #define iterate_iovec(i, n, base, len, off, __p, STEP) { \ 29 size_t off = 0; \ 30 size_t skip = i->iov_offset; \ 31 do { \ 32 len = min(n, __p->iov_len - skip); \ 33 if (likely(len)) { \ 34 base = __p->iov_base + skip; \ 35 len -= (STEP); \ 36 off += len; \ 37 skip += len; \ 38 n -= len; \ 39 if (skip < __p->iov_len) \ 40 break; \ 41 } \ 42 __p++; \ 43 skip = 0; \ 44 } while (n); \ 45 i->iov_offset = skip; \ 46 n = off; \ 47 } 48 49 #define iterate_bvec(i, n, base, len, off, p, STEP) { \ 50 size_t off = 0; \ 51 unsigned skip = i->iov_offset; \ 52 while (n) { \ 53 unsigned offset = p->bv_offset + skip; \ 54 unsigned left; \ 55 void *kaddr = kmap_local_page(p->bv_page + \ 56 offset / PAGE_SIZE); \ 57 base = kaddr + offset % PAGE_SIZE; \ 58 len = min(min(n, (size_t)(p->bv_len - skip)), \ 59 (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \ 60 left = (STEP); \ 61 kunmap_local(kaddr); \ 62 len -= left; \ 63 off += len; \ 64 skip += len; \ 65 if (skip == p->bv_len) { \ 66 skip = 0; \ 67 p++; \ 68 } \ 69 n -= len; \ 70 if (left) \ 71 break; \ 72 } \ 73 i->iov_offset = skip; \ 74 n = off; \ 75 } 76 77 #define iterate_xarray(i, n, base, len, __off, STEP) { \ 78 __label__ __out; \ 79 size_t __off = 0; \ 80 struct folio *folio; \ 81 loff_t start = i->xarray_start + i->iov_offset; \ 82 pgoff_t index = start / PAGE_SIZE; \ 83 XA_STATE(xas, i->xarray, index); \ 84 \ 85 len = PAGE_SIZE - offset_in_page(start); \ 86 rcu_read_lock(); \ 87 xas_for_each(&xas, folio, ULONG_MAX) { \ 88 unsigned left; \ 89 size_t offset; \ 90 if (xas_retry(&xas, folio)) \ 91 continue; \ 92 if (WARN_ON(xa_is_value(folio))) \ 93 break; \ 94 if (WARN_ON(folio_test_hugetlb(folio))) \ 95 break; \ 96 offset = offset_in_folio(folio, start + __off); \ 97 while (offset < folio_size(folio)) { \ 98 base = kmap_local_folio(folio, offset); \ 99 len = min(n, len); \ 100 left = (STEP); \ 101 kunmap_local(base); \ 102 len -= left; \ 103 __off += len; \ 104 n -= len; \ 105 if (left || n == 0) \ 106 goto __out; \ 107 offset += len; \ 108 len = PAGE_SIZE; \ 109 } \ 110 } \ 111 __out: \ 112 rcu_read_unlock(); \ 113 i->iov_offset += __off; \ 114 n = __off; \ 115 } 116 117 #define __iterate_and_advance(i, n, base, len, off, I, K) { \ 118 if (unlikely(i->count < n)) \ 119 n = i->count; \ 120 if (likely(n)) { \ 121 if (likely(iter_is_ubuf(i))) { \ 122 void __user *base; \ 123 size_t len; \ 124 iterate_buf(i, n, base, len, off, \ 125 i->ubuf, (I)) \ 126 } else if (likely(iter_is_iovec(i))) { \ 127 const struct iovec *iov = iter_iov(i); \ 128 void __user *base; \ 129 size_t len; \ 130 iterate_iovec(i, n, base, len, off, \ 131 iov, (I)) \ 132 i->nr_segs -= iov - iter_iov(i); \ 133 i->__iov = iov; \ 134 } else if (iov_iter_is_bvec(i)) { \ 135 const struct bio_vec *bvec = i->bvec; \ 136 void *base; \ 137 size_t len; \ 138 iterate_bvec(i, n, base, len, off, \ 139 bvec, (K)) \ 140 i->nr_segs -= bvec - i->bvec; \ 141 i->bvec = bvec; \ 142 } else if (iov_iter_is_kvec(i)) { \ 143 const struct kvec *kvec = i->kvec; \ 144 void *base; \ 145 size_t len; \ 146 iterate_iovec(i, n, base, len, off, \ 147 kvec, (K)) \ 148 i->nr_segs -= kvec - i->kvec; \ 149 i->kvec = kvec; \ 150 } else if (iov_iter_is_xarray(i)) { \ 151 void *base; \ 152 size_t len; \ 153 iterate_xarray(i, n, base, len, off, \ 154 (K)) \ 155 } \ 156 i->count -= n; \ 157 } \ 158 } 159 #define iterate_and_advance(i, n, base, len, off, I, K) \ 160 __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0)) 161 162 static int copyout(void __user *to, const void *from, size_t n) 163 { 164 if (should_fail_usercopy()) 165 return n; 166 if (access_ok(to, n)) { 167 instrument_copy_to_user(to, from, n); 168 n = raw_copy_to_user(to, from, n); 169 } 170 return n; 171 } 172 173 static int copyout_nofault(void __user *to, const void *from, size_t n) 174 { 175 long res; 176 177 if (should_fail_usercopy()) 178 return n; 179 180 res = copy_to_user_nofault(to, from, n); 181 182 return res < 0 ? n : res; 183 } 184 185 static int copyin(void *to, const void __user *from, size_t n) 186 { 187 size_t res = n; 188 189 if (should_fail_usercopy()) 190 return n; 191 if (access_ok(from, n)) { 192 instrument_copy_from_user_before(to, from, n); 193 res = raw_copy_from_user(to, from, n); 194 instrument_copy_from_user_after(to, from, n, res); 195 } 196 return res; 197 } 198 199 /* 200 * fault_in_iov_iter_readable - fault in iov iterator for reading 201 * @i: iterator 202 * @size: maximum length 203 * 204 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 205 * @size. For each iovec, fault in each page that constitutes the iovec. 206 * 207 * Returns the number of bytes not faulted in (like copy_to_user() and 208 * copy_from_user()). 209 * 210 * Always returns 0 for non-userspace iterators. 211 */ 212 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) 213 { 214 if (iter_is_ubuf(i)) { 215 size_t n = min(size, iov_iter_count(i)); 216 n -= fault_in_readable(i->ubuf + i->iov_offset, n); 217 return size - n; 218 } else if (iter_is_iovec(i)) { 219 size_t count = min(size, iov_iter_count(i)); 220 const struct iovec *p; 221 size_t skip; 222 223 size -= count; 224 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 225 size_t len = min(count, p->iov_len - skip); 226 size_t ret; 227 228 if (unlikely(!len)) 229 continue; 230 ret = fault_in_readable(p->iov_base + skip, len); 231 count -= len - ret; 232 if (ret) 233 break; 234 } 235 return count + size; 236 } 237 return 0; 238 } 239 EXPORT_SYMBOL(fault_in_iov_iter_readable); 240 241 /* 242 * fault_in_iov_iter_writeable - fault in iov iterator for writing 243 * @i: iterator 244 * @size: maximum length 245 * 246 * Faults in the iterator using get_user_pages(), i.e., without triggering 247 * hardware page faults. This is primarily useful when we already know that 248 * some or all of the pages in @i aren't in memory. 249 * 250 * Returns the number of bytes not faulted in, like copy_to_user() and 251 * copy_from_user(). 252 * 253 * Always returns 0 for non-user-space iterators. 254 */ 255 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) 256 { 257 if (iter_is_ubuf(i)) { 258 size_t n = min(size, iov_iter_count(i)); 259 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); 260 return size - n; 261 } else if (iter_is_iovec(i)) { 262 size_t count = min(size, iov_iter_count(i)); 263 const struct iovec *p; 264 size_t skip; 265 266 size -= count; 267 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 268 size_t len = min(count, p->iov_len - skip); 269 size_t ret; 270 271 if (unlikely(!len)) 272 continue; 273 ret = fault_in_safe_writeable(p->iov_base + skip, len); 274 count -= len - ret; 275 if (ret) 276 break; 277 } 278 return count + size; 279 } 280 return 0; 281 } 282 EXPORT_SYMBOL(fault_in_iov_iter_writeable); 283 284 void iov_iter_init(struct iov_iter *i, unsigned int direction, 285 const struct iovec *iov, unsigned long nr_segs, 286 size_t count) 287 { 288 WARN_ON(direction & ~(READ | WRITE)); 289 *i = (struct iov_iter) { 290 .iter_type = ITER_IOVEC, 291 .copy_mc = false, 292 .nofault = false, 293 .user_backed = true, 294 .data_source = direction, 295 .__iov = iov, 296 .nr_segs = nr_segs, 297 .iov_offset = 0, 298 .count = count 299 }; 300 } 301 EXPORT_SYMBOL(iov_iter_init); 302 303 static __wsum csum_and_memcpy(void *to, const void *from, size_t len, 304 __wsum sum, size_t off) 305 { 306 __wsum next = csum_partial_copy_nocheck(from, to, len); 307 return csum_block_add(sum, next, off); 308 } 309 310 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 311 { 312 if (WARN_ON_ONCE(i->data_source)) 313 return 0; 314 if (user_backed_iter(i)) 315 might_fault(); 316 iterate_and_advance(i, bytes, base, len, off, 317 copyout(base, addr + off, len), 318 memcpy(base, addr + off, len) 319 ) 320 321 return bytes; 322 } 323 EXPORT_SYMBOL(_copy_to_iter); 324 325 #ifdef CONFIG_ARCH_HAS_COPY_MC 326 static int copyout_mc(void __user *to, const void *from, size_t n) 327 { 328 if (access_ok(to, n)) { 329 instrument_copy_to_user(to, from, n); 330 n = copy_mc_to_user((__force void *) to, from, n); 331 } 332 return n; 333 } 334 335 /** 336 * _copy_mc_to_iter - copy to iter with source memory error exception handling 337 * @addr: source kernel address 338 * @bytes: total transfer length 339 * @i: destination iterator 340 * 341 * The pmem driver deploys this for the dax operation 342 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the 343 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes 344 * successfully copied. 345 * 346 * The main differences between this and typical _copy_to_iter(). 347 * 348 * * Typical tail/residue handling after a fault retries the copy 349 * byte-by-byte until the fault happens again. Re-triggering machine 350 * checks is potentially fatal so the implementation uses source 351 * alignment and poison alignment assumptions to avoid re-triggering 352 * hardware exceptions. 353 * 354 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to 355 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. 356 * 357 * Return: number of bytes copied (may be %0) 358 */ 359 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 360 { 361 if (WARN_ON_ONCE(i->data_source)) 362 return 0; 363 if (user_backed_iter(i)) 364 might_fault(); 365 __iterate_and_advance(i, bytes, base, len, off, 366 copyout_mc(base, addr + off, len), 367 copy_mc_to_kernel(base, addr + off, len) 368 ) 369 370 return bytes; 371 } 372 EXPORT_SYMBOL_GPL(_copy_mc_to_iter); 373 #endif /* CONFIG_ARCH_HAS_COPY_MC */ 374 375 static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from, 376 size_t size) 377 { 378 if (iov_iter_is_copy_mc(i)) 379 return (void *)copy_mc_to_kernel(to, from, size); 380 return memcpy(to, from, size); 381 } 382 383 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 384 { 385 if (WARN_ON_ONCE(!i->data_source)) 386 return 0; 387 388 if (user_backed_iter(i)) 389 might_fault(); 390 iterate_and_advance(i, bytes, base, len, off, 391 copyin(addr + off, base, len), 392 memcpy_from_iter(i, addr + off, base, len) 393 ) 394 395 return bytes; 396 } 397 EXPORT_SYMBOL(_copy_from_iter); 398 399 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 400 { 401 if (WARN_ON_ONCE(!i->data_source)) 402 return 0; 403 404 iterate_and_advance(i, bytes, base, len, off, 405 __copy_from_user_inatomic_nocache(addr + off, base, len), 406 memcpy(addr + off, base, len) 407 ) 408 409 return bytes; 410 } 411 EXPORT_SYMBOL(_copy_from_iter_nocache); 412 413 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 414 /** 415 * _copy_from_iter_flushcache - write destination through cpu cache 416 * @addr: destination kernel address 417 * @bytes: total transfer length 418 * @i: source iterator 419 * 420 * The pmem driver arranges for filesystem-dax to use this facility via 421 * dax_copy_from_iter() for ensuring that writes to persistent memory 422 * are flushed through the CPU cache. It is differentiated from 423 * _copy_from_iter_nocache() in that guarantees all data is flushed for 424 * all iterator types. The _copy_from_iter_nocache() only attempts to 425 * bypass the cache for the ITER_IOVEC case, and on some archs may use 426 * instructions that strand dirty-data in the cache. 427 * 428 * Return: number of bytes copied (may be %0) 429 */ 430 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 431 { 432 if (WARN_ON_ONCE(!i->data_source)) 433 return 0; 434 435 iterate_and_advance(i, bytes, base, len, off, 436 __copy_from_user_flushcache(addr + off, base, len), 437 memcpy_flushcache(addr + off, base, len) 438 ) 439 440 return bytes; 441 } 442 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 443 #endif 444 445 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 446 { 447 struct page *head; 448 size_t v = n + offset; 449 450 /* 451 * The general case needs to access the page order in order 452 * to compute the page size. 453 * However, we mostly deal with order-0 pages and thus can 454 * avoid a possible cache line miss for requests that fit all 455 * page orders. 456 */ 457 if (n <= v && v <= PAGE_SIZE) 458 return true; 459 460 head = compound_head(page); 461 v += (page - head) << PAGE_SHIFT; 462 463 if (WARN_ON(n > v || v > page_size(head))) 464 return false; 465 return true; 466 } 467 468 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 469 struct iov_iter *i) 470 { 471 size_t res = 0; 472 if (!page_copy_sane(page, offset, bytes)) 473 return 0; 474 if (WARN_ON_ONCE(i->data_source)) 475 return 0; 476 page += offset / PAGE_SIZE; // first subpage 477 offset %= PAGE_SIZE; 478 while (1) { 479 void *kaddr = kmap_local_page(page); 480 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 481 n = _copy_to_iter(kaddr + offset, n, i); 482 kunmap_local(kaddr); 483 res += n; 484 bytes -= n; 485 if (!bytes || !n) 486 break; 487 offset += n; 488 if (offset == PAGE_SIZE) { 489 page++; 490 offset = 0; 491 } 492 } 493 return res; 494 } 495 EXPORT_SYMBOL(copy_page_to_iter); 496 497 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, 498 struct iov_iter *i) 499 { 500 size_t res = 0; 501 502 if (!page_copy_sane(page, offset, bytes)) 503 return 0; 504 if (WARN_ON_ONCE(i->data_source)) 505 return 0; 506 page += offset / PAGE_SIZE; // first subpage 507 offset %= PAGE_SIZE; 508 while (1) { 509 void *kaddr = kmap_local_page(page); 510 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 511 512 iterate_and_advance(i, n, base, len, off, 513 copyout_nofault(base, kaddr + offset + off, len), 514 memcpy(base, kaddr + offset + off, len) 515 ) 516 kunmap_local(kaddr); 517 res += n; 518 bytes -= n; 519 if (!bytes || !n) 520 break; 521 offset += n; 522 if (offset == PAGE_SIZE) { 523 page++; 524 offset = 0; 525 } 526 } 527 return res; 528 } 529 EXPORT_SYMBOL(copy_page_to_iter_nofault); 530 531 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 532 struct iov_iter *i) 533 { 534 size_t res = 0; 535 if (!page_copy_sane(page, offset, bytes)) 536 return 0; 537 page += offset / PAGE_SIZE; // first subpage 538 offset %= PAGE_SIZE; 539 while (1) { 540 void *kaddr = kmap_local_page(page); 541 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 542 n = _copy_from_iter(kaddr + offset, n, i); 543 kunmap_local(kaddr); 544 res += n; 545 bytes -= n; 546 if (!bytes || !n) 547 break; 548 offset += n; 549 if (offset == PAGE_SIZE) { 550 page++; 551 offset = 0; 552 } 553 } 554 return res; 555 } 556 EXPORT_SYMBOL(copy_page_from_iter); 557 558 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 559 { 560 iterate_and_advance(i, bytes, base, len, count, 561 clear_user(base, len), 562 memset(base, 0, len) 563 ) 564 565 return bytes; 566 } 567 EXPORT_SYMBOL(iov_iter_zero); 568 569 size_t copy_page_from_iter_atomic(struct page *page, size_t offset, 570 size_t bytes, struct iov_iter *i) 571 { 572 size_t n, copied = 0; 573 bool uses_kmap = IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || 574 PageHighMem(page); 575 576 if (!page_copy_sane(page, offset, bytes)) 577 return 0; 578 if (WARN_ON_ONCE(!i->data_source)) 579 return 0; 580 581 do { 582 char *p; 583 584 n = bytes - copied; 585 if (uses_kmap) { 586 page += offset / PAGE_SIZE; 587 offset %= PAGE_SIZE; 588 n = min_t(size_t, n, PAGE_SIZE - offset); 589 } 590 591 p = kmap_atomic(page) + offset; 592 iterate_and_advance(i, n, base, len, off, 593 copyin(p + off, base, len), 594 memcpy_from_iter(i, p + off, base, len) 595 ) 596 kunmap_atomic(p); 597 copied += n; 598 offset += n; 599 } while (uses_kmap && copied != bytes && n > 0); 600 601 return copied; 602 } 603 EXPORT_SYMBOL(copy_page_from_iter_atomic); 604 605 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) 606 { 607 const struct bio_vec *bvec, *end; 608 609 if (!i->count) 610 return; 611 i->count -= size; 612 613 size += i->iov_offset; 614 615 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { 616 if (likely(size < bvec->bv_len)) 617 break; 618 size -= bvec->bv_len; 619 } 620 i->iov_offset = size; 621 i->nr_segs -= bvec - i->bvec; 622 i->bvec = bvec; 623 } 624 625 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) 626 { 627 const struct iovec *iov, *end; 628 629 if (!i->count) 630 return; 631 i->count -= size; 632 633 size += i->iov_offset; // from beginning of current segment 634 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { 635 if (likely(size < iov->iov_len)) 636 break; 637 size -= iov->iov_len; 638 } 639 i->iov_offset = size; 640 i->nr_segs -= iov - iter_iov(i); 641 i->__iov = iov; 642 } 643 644 void iov_iter_advance(struct iov_iter *i, size_t size) 645 { 646 if (unlikely(i->count < size)) 647 size = i->count; 648 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { 649 i->iov_offset += size; 650 i->count -= size; 651 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { 652 /* iovec and kvec have identical layouts */ 653 iov_iter_iovec_advance(i, size); 654 } else if (iov_iter_is_bvec(i)) { 655 iov_iter_bvec_advance(i, size); 656 } else if (iov_iter_is_discard(i)) { 657 i->count -= size; 658 } 659 } 660 EXPORT_SYMBOL(iov_iter_advance); 661 662 void iov_iter_revert(struct iov_iter *i, size_t unroll) 663 { 664 if (!unroll) 665 return; 666 if (WARN_ON(unroll > MAX_RW_COUNT)) 667 return; 668 i->count += unroll; 669 if (unlikely(iov_iter_is_discard(i))) 670 return; 671 if (unroll <= i->iov_offset) { 672 i->iov_offset -= unroll; 673 return; 674 } 675 unroll -= i->iov_offset; 676 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { 677 BUG(); /* We should never go beyond the start of the specified 678 * range since we might then be straying into pages that 679 * aren't pinned. 680 */ 681 } else if (iov_iter_is_bvec(i)) { 682 const struct bio_vec *bvec = i->bvec; 683 while (1) { 684 size_t n = (--bvec)->bv_len; 685 i->nr_segs++; 686 if (unroll <= n) { 687 i->bvec = bvec; 688 i->iov_offset = n - unroll; 689 return; 690 } 691 unroll -= n; 692 } 693 } else { /* same logics for iovec and kvec */ 694 const struct iovec *iov = iter_iov(i); 695 while (1) { 696 size_t n = (--iov)->iov_len; 697 i->nr_segs++; 698 if (unroll <= n) { 699 i->__iov = iov; 700 i->iov_offset = n - unroll; 701 return; 702 } 703 unroll -= n; 704 } 705 } 706 } 707 EXPORT_SYMBOL(iov_iter_revert); 708 709 /* 710 * Return the count of just the current iov_iter segment. 711 */ 712 size_t iov_iter_single_seg_count(const struct iov_iter *i) 713 { 714 if (i->nr_segs > 1) { 715 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 716 return min(i->count, iter_iov(i)->iov_len - i->iov_offset); 717 if (iov_iter_is_bvec(i)) 718 return min(i->count, i->bvec->bv_len - i->iov_offset); 719 } 720 return i->count; 721 } 722 EXPORT_SYMBOL(iov_iter_single_seg_count); 723 724 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 725 const struct kvec *kvec, unsigned long nr_segs, 726 size_t count) 727 { 728 WARN_ON(direction & ~(READ | WRITE)); 729 *i = (struct iov_iter){ 730 .iter_type = ITER_KVEC, 731 .copy_mc = false, 732 .data_source = direction, 733 .kvec = kvec, 734 .nr_segs = nr_segs, 735 .iov_offset = 0, 736 .count = count 737 }; 738 } 739 EXPORT_SYMBOL(iov_iter_kvec); 740 741 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 742 const struct bio_vec *bvec, unsigned long nr_segs, 743 size_t count) 744 { 745 WARN_ON(direction & ~(READ | WRITE)); 746 *i = (struct iov_iter){ 747 .iter_type = ITER_BVEC, 748 .copy_mc = false, 749 .data_source = direction, 750 .bvec = bvec, 751 .nr_segs = nr_segs, 752 .iov_offset = 0, 753 .count = count 754 }; 755 } 756 EXPORT_SYMBOL(iov_iter_bvec); 757 758 /** 759 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray 760 * @i: The iterator to initialise. 761 * @direction: The direction of the transfer. 762 * @xarray: The xarray to access. 763 * @start: The start file position. 764 * @count: The size of the I/O buffer in bytes. 765 * 766 * Set up an I/O iterator to either draw data out of the pages attached to an 767 * inode or to inject data into those pages. The pages *must* be prevented 768 * from evaporation, either by taking a ref on them or locking them by the 769 * caller. 770 */ 771 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, 772 struct xarray *xarray, loff_t start, size_t count) 773 { 774 BUG_ON(direction & ~1); 775 *i = (struct iov_iter) { 776 .iter_type = ITER_XARRAY, 777 .copy_mc = false, 778 .data_source = direction, 779 .xarray = xarray, 780 .xarray_start = start, 781 .count = count, 782 .iov_offset = 0 783 }; 784 } 785 EXPORT_SYMBOL(iov_iter_xarray); 786 787 /** 788 * iov_iter_discard - Initialise an I/O iterator that discards data 789 * @i: The iterator to initialise. 790 * @direction: The direction of the transfer. 791 * @count: The size of the I/O buffer in bytes. 792 * 793 * Set up an I/O iterator that just discards everything that's written to it. 794 * It's only available as a READ iterator. 795 */ 796 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 797 { 798 BUG_ON(direction != READ); 799 *i = (struct iov_iter){ 800 .iter_type = ITER_DISCARD, 801 .copy_mc = false, 802 .data_source = false, 803 .count = count, 804 .iov_offset = 0 805 }; 806 } 807 EXPORT_SYMBOL(iov_iter_discard); 808 809 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, 810 unsigned len_mask) 811 { 812 size_t size = i->count; 813 size_t skip = i->iov_offset; 814 unsigned k; 815 816 for (k = 0; k < i->nr_segs; k++, skip = 0) { 817 const struct iovec *iov = iter_iov(i) + k; 818 size_t len = iov->iov_len - skip; 819 820 if (len > size) 821 len = size; 822 if (len & len_mask) 823 return false; 824 if ((unsigned long)(iov->iov_base + skip) & addr_mask) 825 return false; 826 827 size -= len; 828 if (!size) 829 break; 830 } 831 return true; 832 } 833 834 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, 835 unsigned len_mask) 836 { 837 size_t size = i->count; 838 unsigned skip = i->iov_offset; 839 unsigned k; 840 841 for (k = 0; k < i->nr_segs; k++, skip = 0) { 842 size_t len = i->bvec[k].bv_len - skip; 843 844 if (len > size) 845 len = size; 846 if (len & len_mask) 847 return false; 848 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask) 849 return false; 850 851 size -= len; 852 if (!size) 853 break; 854 } 855 return true; 856 } 857 858 /** 859 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments 860 * are aligned to the parameters. 861 * 862 * @i: &struct iov_iter to restore 863 * @addr_mask: bit mask to check against the iov element's addresses 864 * @len_mask: bit mask to check against the iov element's lengths 865 * 866 * Return: false if any addresses or lengths intersect with the provided masks 867 */ 868 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, 869 unsigned len_mask) 870 { 871 if (likely(iter_is_ubuf(i))) { 872 if (i->count & len_mask) 873 return false; 874 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) 875 return false; 876 return true; 877 } 878 879 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 880 return iov_iter_aligned_iovec(i, addr_mask, len_mask); 881 882 if (iov_iter_is_bvec(i)) 883 return iov_iter_aligned_bvec(i, addr_mask, len_mask); 884 885 if (iov_iter_is_xarray(i)) { 886 if (i->count & len_mask) 887 return false; 888 if ((i->xarray_start + i->iov_offset) & addr_mask) 889 return false; 890 } 891 892 return true; 893 } 894 EXPORT_SYMBOL_GPL(iov_iter_is_aligned); 895 896 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) 897 { 898 unsigned long res = 0; 899 size_t size = i->count; 900 size_t skip = i->iov_offset; 901 unsigned k; 902 903 for (k = 0; k < i->nr_segs; k++, skip = 0) { 904 const struct iovec *iov = iter_iov(i) + k; 905 size_t len = iov->iov_len - skip; 906 if (len) { 907 res |= (unsigned long)iov->iov_base + skip; 908 if (len > size) 909 len = size; 910 res |= len; 911 size -= len; 912 if (!size) 913 break; 914 } 915 } 916 return res; 917 } 918 919 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) 920 { 921 unsigned res = 0; 922 size_t size = i->count; 923 unsigned skip = i->iov_offset; 924 unsigned k; 925 926 for (k = 0; k < i->nr_segs; k++, skip = 0) { 927 size_t len = i->bvec[k].bv_len - skip; 928 res |= (unsigned long)i->bvec[k].bv_offset + skip; 929 if (len > size) 930 len = size; 931 res |= len; 932 size -= len; 933 if (!size) 934 break; 935 } 936 return res; 937 } 938 939 unsigned long iov_iter_alignment(const struct iov_iter *i) 940 { 941 if (likely(iter_is_ubuf(i))) { 942 size_t size = i->count; 943 if (size) 944 return ((unsigned long)i->ubuf + i->iov_offset) | size; 945 return 0; 946 } 947 948 /* iovec and kvec have identical layouts */ 949 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 950 return iov_iter_alignment_iovec(i); 951 952 if (iov_iter_is_bvec(i)) 953 return iov_iter_alignment_bvec(i); 954 955 if (iov_iter_is_xarray(i)) 956 return (i->xarray_start + i->iov_offset) | i->count; 957 958 return 0; 959 } 960 EXPORT_SYMBOL(iov_iter_alignment); 961 962 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 963 { 964 unsigned long res = 0; 965 unsigned long v = 0; 966 size_t size = i->count; 967 unsigned k; 968 969 if (iter_is_ubuf(i)) 970 return 0; 971 972 if (WARN_ON(!iter_is_iovec(i))) 973 return ~0U; 974 975 for (k = 0; k < i->nr_segs; k++) { 976 const struct iovec *iov = iter_iov(i) + k; 977 if (iov->iov_len) { 978 unsigned long base = (unsigned long)iov->iov_base; 979 if (v) // if not the first one 980 res |= base | v; // this start | previous end 981 v = base + iov->iov_len; 982 if (size <= iov->iov_len) 983 break; 984 size -= iov->iov_len; 985 } 986 } 987 return res; 988 } 989 EXPORT_SYMBOL(iov_iter_gap_alignment); 990 991 static int want_pages_array(struct page ***res, size_t size, 992 size_t start, unsigned int maxpages) 993 { 994 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); 995 996 if (count > maxpages) 997 count = maxpages; 998 WARN_ON(!count); // caller should've prevented that 999 if (!*res) { 1000 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); 1001 if (!*res) 1002 return 0; 1003 } 1004 return count; 1005 } 1006 1007 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, 1008 pgoff_t index, unsigned int nr_pages) 1009 { 1010 XA_STATE(xas, xa, index); 1011 struct page *page; 1012 unsigned int ret = 0; 1013 1014 rcu_read_lock(); 1015 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1016 if (xas_retry(&xas, page)) 1017 continue; 1018 1019 /* Has the page moved or been split? */ 1020 if (unlikely(page != xas_reload(&xas))) { 1021 xas_reset(&xas); 1022 continue; 1023 } 1024 1025 pages[ret] = find_subpage(page, xas.xa_index); 1026 get_page(pages[ret]); 1027 if (++ret == nr_pages) 1028 break; 1029 } 1030 rcu_read_unlock(); 1031 return ret; 1032 } 1033 1034 static ssize_t iter_xarray_get_pages(struct iov_iter *i, 1035 struct page ***pages, size_t maxsize, 1036 unsigned maxpages, size_t *_start_offset) 1037 { 1038 unsigned nr, offset, count; 1039 pgoff_t index; 1040 loff_t pos; 1041 1042 pos = i->xarray_start + i->iov_offset; 1043 index = pos >> PAGE_SHIFT; 1044 offset = pos & ~PAGE_MASK; 1045 *_start_offset = offset; 1046 1047 count = want_pages_array(pages, maxsize, offset, maxpages); 1048 if (!count) 1049 return -ENOMEM; 1050 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); 1051 if (nr == 0) 1052 return 0; 1053 1054 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1055 i->iov_offset += maxsize; 1056 i->count -= maxsize; 1057 return maxsize; 1058 } 1059 1060 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ 1061 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) 1062 { 1063 size_t skip; 1064 long k; 1065 1066 if (iter_is_ubuf(i)) 1067 return (unsigned long)i->ubuf + i->iov_offset; 1068 1069 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { 1070 const struct iovec *iov = iter_iov(i) + k; 1071 size_t len = iov->iov_len - skip; 1072 1073 if (unlikely(!len)) 1074 continue; 1075 if (*size > len) 1076 *size = len; 1077 return (unsigned long)iov->iov_base + skip; 1078 } 1079 BUG(); // if it had been empty, we wouldn't get called 1080 } 1081 1082 /* must be done on non-empty ITER_BVEC one */ 1083 static struct page *first_bvec_segment(const struct iov_iter *i, 1084 size_t *size, size_t *start) 1085 { 1086 struct page *page; 1087 size_t skip = i->iov_offset, len; 1088 1089 len = i->bvec->bv_len - skip; 1090 if (*size > len) 1091 *size = len; 1092 skip += i->bvec->bv_offset; 1093 page = i->bvec->bv_page + skip / PAGE_SIZE; 1094 *start = skip % PAGE_SIZE; 1095 return page; 1096 } 1097 1098 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, 1099 struct page ***pages, size_t maxsize, 1100 unsigned int maxpages, size_t *start) 1101 { 1102 unsigned int n, gup_flags = 0; 1103 1104 if (maxsize > i->count) 1105 maxsize = i->count; 1106 if (!maxsize) 1107 return 0; 1108 if (maxsize > MAX_RW_COUNT) 1109 maxsize = MAX_RW_COUNT; 1110 1111 if (likely(user_backed_iter(i))) { 1112 unsigned long addr; 1113 int res; 1114 1115 if (iov_iter_rw(i) != WRITE) 1116 gup_flags |= FOLL_WRITE; 1117 if (i->nofault) 1118 gup_flags |= FOLL_NOFAULT; 1119 1120 addr = first_iovec_segment(i, &maxsize); 1121 *start = addr % PAGE_SIZE; 1122 addr &= PAGE_MASK; 1123 n = want_pages_array(pages, maxsize, *start, maxpages); 1124 if (!n) 1125 return -ENOMEM; 1126 res = get_user_pages_fast(addr, n, gup_flags, *pages); 1127 if (unlikely(res <= 0)) 1128 return res; 1129 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); 1130 iov_iter_advance(i, maxsize); 1131 return maxsize; 1132 } 1133 if (iov_iter_is_bvec(i)) { 1134 struct page **p; 1135 struct page *page; 1136 1137 page = first_bvec_segment(i, &maxsize, start); 1138 n = want_pages_array(pages, maxsize, *start, maxpages); 1139 if (!n) 1140 return -ENOMEM; 1141 p = *pages; 1142 for (int k = 0; k < n; k++) 1143 get_page(p[k] = page + k); 1144 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); 1145 i->count -= maxsize; 1146 i->iov_offset += maxsize; 1147 if (i->iov_offset == i->bvec->bv_len) { 1148 i->iov_offset = 0; 1149 i->bvec++; 1150 i->nr_segs--; 1151 } 1152 return maxsize; 1153 } 1154 if (iov_iter_is_xarray(i)) 1155 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); 1156 return -EFAULT; 1157 } 1158 1159 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, 1160 size_t maxsize, unsigned maxpages, size_t *start) 1161 { 1162 if (!maxpages) 1163 return 0; 1164 BUG_ON(!pages); 1165 1166 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); 1167 } 1168 EXPORT_SYMBOL(iov_iter_get_pages2); 1169 1170 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, 1171 struct page ***pages, size_t maxsize, size_t *start) 1172 { 1173 ssize_t len; 1174 1175 *pages = NULL; 1176 1177 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); 1178 if (len <= 0) { 1179 kvfree(*pages); 1180 *pages = NULL; 1181 } 1182 return len; 1183 } 1184 EXPORT_SYMBOL(iov_iter_get_pages_alloc2); 1185 1186 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, 1187 struct iov_iter *i) 1188 { 1189 __wsum sum, next; 1190 sum = *csum; 1191 if (WARN_ON_ONCE(!i->data_source)) 1192 return 0; 1193 1194 iterate_and_advance(i, bytes, base, len, off, ({ 1195 next = csum_and_copy_from_user(base, addr + off, len); 1196 sum = csum_block_add(sum, next, off); 1197 next ? 0 : len; 1198 }), ({ 1199 sum = csum_and_memcpy(addr + off, base, len, sum, off); 1200 }) 1201 ) 1202 *csum = sum; 1203 return bytes; 1204 } 1205 EXPORT_SYMBOL(csum_and_copy_from_iter); 1206 1207 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate, 1208 struct iov_iter *i) 1209 { 1210 struct csum_state *csstate = _csstate; 1211 __wsum sum, next; 1212 1213 if (WARN_ON_ONCE(i->data_source)) 1214 return 0; 1215 if (unlikely(iov_iter_is_discard(i))) { 1216 // can't use csum_memcpy() for that one - data is not copied 1217 csstate->csum = csum_block_add(csstate->csum, 1218 csum_partial(addr, bytes, 0), 1219 csstate->off); 1220 csstate->off += bytes; 1221 return bytes; 1222 } 1223 1224 sum = csum_shift(csstate->csum, csstate->off); 1225 iterate_and_advance(i, bytes, base, len, off, ({ 1226 next = csum_and_copy_to_user(addr + off, base, len); 1227 sum = csum_block_add(sum, next, off); 1228 next ? 0 : len; 1229 }), ({ 1230 sum = csum_and_memcpy(base, addr + off, len, sum, off); 1231 }) 1232 ) 1233 csstate->csum = csum_shift(sum, csstate->off); 1234 csstate->off += bytes; 1235 return bytes; 1236 } 1237 EXPORT_SYMBOL(csum_and_copy_to_iter); 1238 1239 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, 1240 struct iov_iter *i) 1241 { 1242 #ifdef CONFIG_CRYPTO_HASH 1243 struct ahash_request *hash = hashp; 1244 struct scatterlist sg; 1245 size_t copied; 1246 1247 copied = copy_to_iter(addr, bytes, i); 1248 sg_init_one(&sg, addr, copied); 1249 ahash_request_set_crypt(hash, &sg, NULL, copied); 1250 crypto_ahash_update(hash); 1251 return copied; 1252 #else 1253 return 0; 1254 #endif 1255 } 1256 EXPORT_SYMBOL(hash_and_copy_to_iter); 1257 1258 static int iov_npages(const struct iov_iter *i, int maxpages) 1259 { 1260 size_t skip = i->iov_offset, size = i->count; 1261 const struct iovec *p; 1262 int npages = 0; 1263 1264 for (p = iter_iov(i); size; skip = 0, p++) { 1265 unsigned offs = offset_in_page(p->iov_base + skip); 1266 size_t len = min(p->iov_len - skip, size); 1267 1268 if (len) { 1269 size -= len; 1270 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1271 if (unlikely(npages > maxpages)) 1272 return maxpages; 1273 } 1274 } 1275 return npages; 1276 } 1277 1278 static int bvec_npages(const struct iov_iter *i, int maxpages) 1279 { 1280 size_t skip = i->iov_offset, size = i->count; 1281 const struct bio_vec *p; 1282 int npages = 0; 1283 1284 for (p = i->bvec; size; skip = 0, p++) { 1285 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; 1286 size_t len = min(p->bv_len - skip, size); 1287 1288 size -= len; 1289 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1290 if (unlikely(npages > maxpages)) 1291 return maxpages; 1292 } 1293 return npages; 1294 } 1295 1296 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1297 { 1298 if (unlikely(!i->count)) 1299 return 0; 1300 if (likely(iter_is_ubuf(i))) { 1301 unsigned offs = offset_in_page(i->ubuf + i->iov_offset); 1302 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); 1303 return min(npages, maxpages); 1304 } 1305 /* iovec and kvec have identical layouts */ 1306 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1307 return iov_npages(i, maxpages); 1308 if (iov_iter_is_bvec(i)) 1309 return bvec_npages(i, maxpages); 1310 if (iov_iter_is_xarray(i)) { 1311 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; 1312 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1313 return min(npages, maxpages); 1314 } 1315 return 0; 1316 } 1317 EXPORT_SYMBOL(iov_iter_npages); 1318 1319 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1320 { 1321 *new = *old; 1322 if (iov_iter_is_bvec(new)) 1323 return new->bvec = kmemdup(new->bvec, 1324 new->nr_segs * sizeof(struct bio_vec), 1325 flags); 1326 else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) 1327 /* iovec and kvec have identical layout */ 1328 return new->__iov = kmemdup(new->__iov, 1329 new->nr_segs * sizeof(struct iovec), 1330 flags); 1331 return NULL; 1332 } 1333 EXPORT_SYMBOL(dup_iter); 1334 1335 static __noclone int copy_compat_iovec_from_user(struct iovec *iov, 1336 const struct iovec __user *uvec, unsigned long nr_segs) 1337 { 1338 const struct compat_iovec __user *uiov = 1339 (const struct compat_iovec __user *)uvec; 1340 int ret = -EFAULT, i; 1341 1342 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1343 return -EFAULT; 1344 1345 for (i = 0; i < nr_segs; i++) { 1346 compat_uptr_t buf; 1347 compat_ssize_t len; 1348 1349 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); 1350 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); 1351 1352 /* check for compat_size_t not fitting in compat_ssize_t .. */ 1353 if (len < 0) { 1354 ret = -EINVAL; 1355 goto uaccess_end; 1356 } 1357 iov[i].iov_base = compat_ptr(buf); 1358 iov[i].iov_len = len; 1359 } 1360 1361 ret = 0; 1362 uaccess_end: 1363 user_access_end(); 1364 return ret; 1365 } 1366 1367 static __noclone int copy_iovec_from_user(struct iovec *iov, 1368 const struct iovec __user *uiov, unsigned long nr_segs) 1369 { 1370 int ret = -EFAULT; 1371 1372 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1373 return -EFAULT; 1374 1375 do { 1376 void __user *buf; 1377 ssize_t len; 1378 1379 unsafe_get_user(len, &uiov->iov_len, uaccess_end); 1380 unsafe_get_user(buf, &uiov->iov_base, uaccess_end); 1381 1382 /* check for size_t not fitting in ssize_t .. */ 1383 if (unlikely(len < 0)) { 1384 ret = -EINVAL; 1385 goto uaccess_end; 1386 } 1387 iov->iov_base = buf; 1388 iov->iov_len = len; 1389 1390 uiov++; iov++; 1391 } while (--nr_segs); 1392 1393 ret = 0; 1394 uaccess_end: 1395 user_access_end(); 1396 return ret; 1397 } 1398 1399 struct iovec *iovec_from_user(const struct iovec __user *uvec, 1400 unsigned long nr_segs, unsigned long fast_segs, 1401 struct iovec *fast_iov, bool compat) 1402 { 1403 struct iovec *iov = fast_iov; 1404 int ret; 1405 1406 /* 1407 * SuS says "The readv() function *may* fail if the iovcnt argument was 1408 * less than or equal to 0, or greater than {IOV_MAX}. Linux has 1409 * traditionally returned zero for zero segments, so... 1410 */ 1411 if (nr_segs == 0) 1412 return iov; 1413 if (nr_segs > UIO_MAXIOV) 1414 return ERR_PTR(-EINVAL); 1415 if (nr_segs > fast_segs) { 1416 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); 1417 if (!iov) 1418 return ERR_PTR(-ENOMEM); 1419 } 1420 1421 if (unlikely(compat)) 1422 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); 1423 else 1424 ret = copy_iovec_from_user(iov, uvec, nr_segs); 1425 if (ret) { 1426 if (iov != fast_iov) 1427 kfree(iov); 1428 return ERR_PTR(ret); 1429 } 1430 1431 return iov; 1432 } 1433 1434 /* 1435 * Single segment iovec supplied by the user, import it as ITER_UBUF. 1436 */ 1437 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, 1438 struct iovec **iovp, struct iov_iter *i, 1439 bool compat) 1440 { 1441 struct iovec *iov = *iovp; 1442 ssize_t ret; 1443 1444 if (compat) 1445 ret = copy_compat_iovec_from_user(iov, uvec, 1); 1446 else 1447 ret = copy_iovec_from_user(iov, uvec, 1); 1448 if (unlikely(ret)) 1449 return ret; 1450 1451 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); 1452 if (unlikely(ret)) 1453 return ret; 1454 *iovp = NULL; 1455 return i->count; 1456 } 1457 1458 ssize_t __import_iovec(int type, const struct iovec __user *uvec, 1459 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, 1460 struct iov_iter *i, bool compat) 1461 { 1462 ssize_t total_len = 0; 1463 unsigned long seg; 1464 struct iovec *iov; 1465 1466 if (nr_segs == 1) 1467 return __import_iovec_ubuf(type, uvec, iovp, i, compat); 1468 1469 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); 1470 if (IS_ERR(iov)) { 1471 *iovp = NULL; 1472 return PTR_ERR(iov); 1473 } 1474 1475 /* 1476 * According to the Single Unix Specification we should return EINVAL if 1477 * an element length is < 0 when cast to ssize_t or if the total length 1478 * would overflow the ssize_t return value of the system call. 1479 * 1480 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the 1481 * overflow case. 1482 */ 1483 for (seg = 0; seg < nr_segs; seg++) { 1484 ssize_t len = (ssize_t)iov[seg].iov_len; 1485 1486 if (!access_ok(iov[seg].iov_base, len)) { 1487 if (iov != *iovp) 1488 kfree(iov); 1489 *iovp = NULL; 1490 return -EFAULT; 1491 } 1492 1493 if (len > MAX_RW_COUNT - total_len) { 1494 len = MAX_RW_COUNT - total_len; 1495 iov[seg].iov_len = len; 1496 } 1497 total_len += len; 1498 } 1499 1500 iov_iter_init(i, type, iov, nr_segs, total_len); 1501 if (iov == *iovp) 1502 *iovp = NULL; 1503 else 1504 *iovp = iov; 1505 return total_len; 1506 } 1507 1508 /** 1509 * import_iovec() - Copy an array of &struct iovec from userspace 1510 * into the kernel, check that it is valid, and initialize a new 1511 * &struct iov_iter iterator to access it. 1512 * 1513 * @type: One of %READ or %WRITE. 1514 * @uvec: Pointer to the userspace array. 1515 * @nr_segs: Number of elements in userspace array. 1516 * @fast_segs: Number of elements in @iov. 1517 * @iovp: (input and output parameter) Pointer to pointer to (usually small 1518 * on-stack) kernel array. 1519 * @i: Pointer to iterator that will be initialized on success. 1520 * 1521 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1522 * then this function places %NULL in *@iov on return. Otherwise, a new 1523 * array will be allocated and the result placed in *@iov. This means that 1524 * the caller may call kfree() on *@iov regardless of whether the small 1525 * on-stack array was used or not (and regardless of whether this function 1526 * returns an error or not). 1527 * 1528 * Return: Negative error code on error, bytes imported on success 1529 */ 1530 ssize_t import_iovec(int type, const struct iovec __user *uvec, 1531 unsigned nr_segs, unsigned fast_segs, 1532 struct iovec **iovp, struct iov_iter *i) 1533 { 1534 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, 1535 in_compat_syscall()); 1536 } 1537 EXPORT_SYMBOL(import_iovec); 1538 1539 int import_single_range(int rw, void __user *buf, size_t len, 1540 struct iovec *iov, struct iov_iter *i) 1541 { 1542 if (len > MAX_RW_COUNT) 1543 len = MAX_RW_COUNT; 1544 if (unlikely(!access_ok(buf, len))) 1545 return -EFAULT; 1546 1547 iov_iter_ubuf(i, rw, buf, len); 1548 return 0; 1549 } 1550 EXPORT_SYMBOL(import_single_range); 1551 1552 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) 1553 { 1554 if (len > MAX_RW_COUNT) 1555 len = MAX_RW_COUNT; 1556 if (unlikely(!access_ok(buf, len))) 1557 return -EFAULT; 1558 1559 iov_iter_ubuf(i, rw, buf, len); 1560 return 0; 1561 } 1562 EXPORT_SYMBOL_GPL(import_ubuf); 1563 1564 /** 1565 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when 1566 * iov_iter_save_state() was called. 1567 * 1568 * @i: &struct iov_iter to restore 1569 * @state: state to restore from 1570 * 1571 * Used after iov_iter_save_state() to bring restore @i, if operations may 1572 * have advanced it. 1573 * 1574 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC 1575 */ 1576 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) 1577 { 1578 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && 1579 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) 1580 return; 1581 i->iov_offset = state->iov_offset; 1582 i->count = state->count; 1583 if (iter_is_ubuf(i)) 1584 return; 1585 /* 1586 * For the *vec iters, nr_segs + iov is constant - if we increment 1587 * the vec, then we also decrement the nr_segs count. Hence we don't 1588 * need to track both of these, just one is enough and we can deduct 1589 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct 1590 * size, so we can just increment the iov pointer as they are unionzed. 1591 * ITER_BVEC _may_ be the same size on some archs, but on others it is 1592 * not. Be safe and handle it separately. 1593 */ 1594 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); 1595 if (iov_iter_is_bvec(i)) 1596 i->bvec -= state->nr_segs - i->nr_segs; 1597 else 1598 i->__iov -= state->nr_segs - i->nr_segs; 1599 i->nr_segs = state->nr_segs; 1600 } 1601 1602 /* 1603 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not 1604 * get references on the pages, nor does it get a pin on them. 1605 */ 1606 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, 1607 struct page ***pages, size_t maxsize, 1608 unsigned int maxpages, 1609 iov_iter_extraction_t extraction_flags, 1610 size_t *offset0) 1611 { 1612 struct page *page, **p; 1613 unsigned int nr = 0, offset; 1614 loff_t pos = i->xarray_start + i->iov_offset; 1615 pgoff_t index = pos >> PAGE_SHIFT; 1616 XA_STATE(xas, i->xarray, index); 1617 1618 offset = pos & ~PAGE_MASK; 1619 *offset0 = offset; 1620 1621 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1622 if (!maxpages) 1623 return -ENOMEM; 1624 p = *pages; 1625 1626 rcu_read_lock(); 1627 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1628 if (xas_retry(&xas, page)) 1629 continue; 1630 1631 /* Has the page moved or been split? */ 1632 if (unlikely(page != xas_reload(&xas))) { 1633 xas_reset(&xas); 1634 continue; 1635 } 1636 1637 p[nr++] = find_subpage(page, xas.xa_index); 1638 if (nr == maxpages) 1639 break; 1640 } 1641 rcu_read_unlock(); 1642 1643 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1644 iov_iter_advance(i, maxsize); 1645 return maxsize; 1646 } 1647 1648 /* 1649 * Extract a list of contiguous pages from an ITER_BVEC iterator. This does 1650 * not get references on the pages, nor does it get a pin on them. 1651 */ 1652 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, 1653 struct page ***pages, size_t maxsize, 1654 unsigned int maxpages, 1655 iov_iter_extraction_t extraction_flags, 1656 size_t *offset0) 1657 { 1658 struct page **p, *page; 1659 size_t skip = i->iov_offset, offset, size; 1660 int k; 1661 1662 for (;;) { 1663 if (i->nr_segs == 0) 1664 return 0; 1665 size = min(maxsize, i->bvec->bv_len - skip); 1666 if (size) 1667 break; 1668 i->iov_offset = 0; 1669 i->nr_segs--; 1670 i->bvec++; 1671 skip = 0; 1672 } 1673 1674 skip += i->bvec->bv_offset; 1675 page = i->bvec->bv_page + skip / PAGE_SIZE; 1676 offset = skip % PAGE_SIZE; 1677 *offset0 = offset; 1678 1679 maxpages = want_pages_array(pages, size, offset, maxpages); 1680 if (!maxpages) 1681 return -ENOMEM; 1682 p = *pages; 1683 for (k = 0; k < maxpages; k++) 1684 p[k] = page + k; 1685 1686 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); 1687 iov_iter_advance(i, size); 1688 return size; 1689 } 1690 1691 /* 1692 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. 1693 * This does not get references on the pages, nor does it get a pin on them. 1694 */ 1695 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, 1696 struct page ***pages, size_t maxsize, 1697 unsigned int maxpages, 1698 iov_iter_extraction_t extraction_flags, 1699 size_t *offset0) 1700 { 1701 struct page **p, *page; 1702 const void *kaddr; 1703 size_t skip = i->iov_offset, offset, len, size; 1704 int k; 1705 1706 for (;;) { 1707 if (i->nr_segs == 0) 1708 return 0; 1709 size = min(maxsize, i->kvec->iov_len - skip); 1710 if (size) 1711 break; 1712 i->iov_offset = 0; 1713 i->nr_segs--; 1714 i->kvec++; 1715 skip = 0; 1716 } 1717 1718 kaddr = i->kvec->iov_base + skip; 1719 offset = (unsigned long)kaddr & ~PAGE_MASK; 1720 *offset0 = offset; 1721 1722 maxpages = want_pages_array(pages, size, offset, maxpages); 1723 if (!maxpages) 1724 return -ENOMEM; 1725 p = *pages; 1726 1727 kaddr -= offset; 1728 len = offset + size; 1729 for (k = 0; k < maxpages; k++) { 1730 size_t seg = min_t(size_t, len, PAGE_SIZE); 1731 1732 if (is_vmalloc_or_module_addr(kaddr)) 1733 page = vmalloc_to_page(kaddr); 1734 else 1735 page = virt_to_page(kaddr); 1736 1737 p[k] = page; 1738 len -= seg; 1739 kaddr += PAGE_SIZE; 1740 } 1741 1742 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); 1743 iov_iter_advance(i, size); 1744 return size; 1745 } 1746 1747 /* 1748 * Extract a list of contiguous pages from a user iterator and get a pin on 1749 * each of them. This should only be used if the iterator is user-backed 1750 * (IOBUF/UBUF). 1751 * 1752 * It does not get refs on the pages, but the pages must be unpinned by the 1753 * caller once the transfer is complete. 1754 * 1755 * This is safe to be used where background IO/DMA *is* going to be modifying 1756 * the buffer; using a pin rather than a ref makes forces fork() to give the 1757 * child a copy of the page. 1758 */ 1759 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, 1760 struct page ***pages, 1761 size_t maxsize, 1762 unsigned int maxpages, 1763 iov_iter_extraction_t extraction_flags, 1764 size_t *offset0) 1765 { 1766 unsigned long addr; 1767 unsigned int gup_flags = 0; 1768 size_t offset; 1769 int res; 1770 1771 if (i->data_source == ITER_DEST) 1772 gup_flags |= FOLL_WRITE; 1773 if (extraction_flags & ITER_ALLOW_P2PDMA) 1774 gup_flags |= FOLL_PCI_P2PDMA; 1775 if (i->nofault) 1776 gup_flags |= FOLL_NOFAULT; 1777 1778 addr = first_iovec_segment(i, &maxsize); 1779 *offset0 = offset = addr % PAGE_SIZE; 1780 addr &= PAGE_MASK; 1781 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1782 if (!maxpages) 1783 return -ENOMEM; 1784 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); 1785 if (unlikely(res <= 0)) 1786 return res; 1787 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); 1788 iov_iter_advance(i, maxsize); 1789 return maxsize; 1790 } 1791 1792 /** 1793 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator 1794 * @i: The iterator to extract from 1795 * @pages: Where to return the list of pages 1796 * @maxsize: The maximum amount of iterator to extract 1797 * @maxpages: The maximum size of the list of pages 1798 * @extraction_flags: Flags to qualify request 1799 * @offset0: Where to return the starting offset into (*@pages)[0] 1800 * 1801 * Extract a list of contiguous pages from the current point of the iterator, 1802 * advancing the iterator. The maximum number of pages and the maximum amount 1803 * of page contents can be set. 1804 * 1805 * If *@pages is NULL, a page list will be allocated to the required size and 1806 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed 1807 * that the caller allocated a page list at least @maxpages in size and this 1808 * will be filled in. 1809 * 1810 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA 1811 * be allowed on the pages extracted. 1812 * 1813 * The iov_iter_extract_will_pin() function can be used to query how cleanup 1814 * should be performed. 1815 * 1816 * Extra refs or pins on the pages may be obtained as follows: 1817 * 1818 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be 1819 * added to the pages, but refs will not be taken. 1820 * iov_iter_extract_will_pin() will return true. 1821 * 1822 * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are 1823 * merely listed; no extra refs or pins are obtained. 1824 * iov_iter_extract_will_pin() will return 0. 1825 * 1826 * Note also: 1827 * 1828 * (*) Use with ITER_DISCARD is not supported as that has no content. 1829 * 1830 * On success, the function sets *@pages to the new pagelist, if allocated, and 1831 * sets *offset0 to the offset into the first page. 1832 * 1833 * It may also return -ENOMEM and -EFAULT. 1834 */ 1835 ssize_t iov_iter_extract_pages(struct iov_iter *i, 1836 struct page ***pages, 1837 size_t maxsize, 1838 unsigned int maxpages, 1839 iov_iter_extraction_t extraction_flags, 1840 size_t *offset0) 1841 { 1842 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); 1843 if (!maxsize) 1844 return 0; 1845 1846 if (likely(user_backed_iter(i))) 1847 return iov_iter_extract_user_pages(i, pages, maxsize, 1848 maxpages, extraction_flags, 1849 offset0); 1850 if (iov_iter_is_kvec(i)) 1851 return iov_iter_extract_kvec_pages(i, pages, maxsize, 1852 maxpages, extraction_flags, 1853 offset0); 1854 if (iov_iter_is_bvec(i)) 1855 return iov_iter_extract_bvec_pages(i, pages, maxsize, 1856 maxpages, extraction_flags, 1857 offset0); 1858 if (iov_iter_is_xarray(i)) 1859 return iov_iter_extract_xarray_pages(i, pages, maxsize, 1860 maxpages, extraction_flags, 1861 offset0); 1862 return -EFAULT; 1863 } 1864 EXPORT_SYMBOL_GPL(iov_iter_extract_pages); 1865