xref: /openbmc/linux/lib/iov_iter.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
21 	size_t off = 0;						\
22 	size_t skip = i->iov_offset;				\
23 	do {							\
24 		len = min(n, __p->iov_len - skip);		\
25 		if (likely(len)) {				\
26 			base = __p->iov_base + skip;		\
27 			len -= (STEP);				\
28 			off += len;				\
29 			skip += len;				\
30 			n -= len;				\
31 			if (skip < __p->iov_len)		\
32 				break;				\
33 		}						\
34 		__p++;						\
35 		skip = 0;					\
36 	} while (n);						\
37 	i->iov_offset = skip;					\
38 	n = off;						\
39 }
40 
41 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
42 	size_t off = 0;						\
43 	unsigned skip = i->iov_offset;				\
44 	while (n) {						\
45 		unsigned offset = p->bv_offset + skip;		\
46 		unsigned left;					\
47 		void *kaddr = kmap_local_page(p->bv_page +	\
48 					offset / PAGE_SIZE);	\
49 		base = kaddr + offset % PAGE_SIZE;		\
50 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
51 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
52 		left = (STEP);					\
53 		kunmap_local(kaddr);				\
54 		len -= left;					\
55 		off += len;					\
56 		skip += len;					\
57 		if (skip == p->bv_len) {			\
58 			skip = 0;				\
59 			p++;					\
60 		}						\
61 		n -= len;					\
62 		if (left)					\
63 			break;					\
64 	}							\
65 	i->iov_offset = skip;					\
66 	n = off;						\
67 }
68 
69 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
70 	__label__ __out;					\
71 	size_t __off = 0;					\
72 	struct page *head = NULL;				\
73 	loff_t start = i->xarray_start + i->iov_offset;		\
74 	unsigned offset = start % PAGE_SIZE;			\
75 	pgoff_t index = start / PAGE_SIZE;			\
76 	int j;							\
77 								\
78 	XA_STATE(xas, i->xarray, index);			\
79 								\
80 	rcu_read_lock();					\
81 	xas_for_each(&xas, head, ULONG_MAX) {			\
82 		unsigned left;					\
83 		if (xas_retry(&xas, head))			\
84 			continue;				\
85 		if (WARN_ON(xa_is_value(head)))			\
86 			break;					\
87 		if (WARN_ON(PageHuge(head)))			\
88 			break;					\
89 		for (j = (head->index < index) ? index - head->index : 0; \
90 		     j < thp_nr_pages(head); j++) {		\
91 			void *kaddr = kmap_local_page(head + j);	\
92 			base = kaddr + offset;			\
93 			len = PAGE_SIZE - offset;		\
94 			len = min(n, len);			\
95 			left = (STEP);				\
96 			kunmap_local(kaddr);			\
97 			len -= left;				\
98 			__off += len;				\
99 			n -= len;				\
100 			if (left || n == 0)			\
101 				goto __out;			\
102 			offset = 0;				\
103 		}						\
104 	}							\
105 __out:								\
106 	rcu_read_unlock();					\
107 	i->iov_offset += __off;						\
108 	n = __off;						\
109 }
110 
111 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
112 	if (unlikely(i->count < n))				\
113 		n = i->count;					\
114 	if (likely(n)) {					\
115 		if (likely(iter_is_iovec(i))) {			\
116 			const struct iovec *iov = i->iov;	\
117 			void __user *base;			\
118 			size_t len;				\
119 			iterate_iovec(i, n, base, len, off,	\
120 						iov, (I))	\
121 			i->nr_segs -= iov - i->iov;		\
122 			i->iov = iov;				\
123 		} else if (iov_iter_is_bvec(i)) {		\
124 			const struct bio_vec *bvec = i->bvec;	\
125 			void *base;				\
126 			size_t len;				\
127 			iterate_bvec(i, n, base, len, off,	\
128 						bvec, (K))	\
129 			i->nr_segs -= bvec - i->bvec;		\
130 			i->bvec = bvec;				\
131 		} else if (iov_iter_is_kvec(i)) {		\
132 			const struct kvec *kvec = i->kvec;	\
133 			void *base;				\
134 			size_t len;				\
135 			iterate_iovec(i, n, base, len, off,	\
136 						kvec, (K))	\
137 			i->nr_segs -= kvec - i->kvec;		\
138 			i->kvec = kvec;				\
139 		} else if (iov_iter_is_xarray(i)) {		\
140 			void *base;				\
141 			size_t len;				\
142 			iterate_xarray(i, n, base, len, off,	\
143 							(K))	\
144 		}						\
145 		i->count -= n;					\
146 	}							\
147 }
148 #define iterate_and_advance(i, n, base, len, off, I, K) \
149 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
150 
151 static int copyout(void __user *to, const void *from, size_t n)
152 {
153 	if (should_fail_usercopy())
154 		return n;
155 	if (access_ok(to, n)) {
156 		instrument_copy_to_user(to, from, n);
157 		n = raw_copy_to_user(to, from, n);
158 	}
159 	return n;
160 }
161 
162 static int copyin(void *to, const void __user *from, size_t n)
163 {
164 	if (should_fail_usercopy())
165 		return n;
166 	if (access_ok(from, n)) {
167 		instrument_copy_from_user(to, from, n);
168 		n = raw_copy_from_user(to, from, n);
169 	}
170 	return n;
171 }
172 
173 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
174 			 struct iov_iter *i)
175 {
176 	size_t skip, copy, left, wanted;
177 	const struct iovec *iov;
178 	char __user *buf;
179 	void *kaddr, *from;
180 
181 	if (unlikely(bytes > i->count))
182 		bytes = i->count;
183 
184 	if (unlikely(!bytes))
185 		return 0;
186 
187 	might_fault();
188 	wanted = bytes;
189 	iov = i->iov;
190 	skip = i->iov_offset;
191 	buf = iov->iov_base + skip;
192 	copy = min(bytes, iov->iov_len - skip);
193 
194 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
195 		kaddr = kmap_atomic(page);
196 		from = kaddr + offset;
197 
198 		/* first chunk, usually the only one */
199 		left = copyout(buf, from, copy);
200 		copy -= left;
201 		skip += copy;
202 		from += copy;
203 		bytes -= copy;
204 
205 		while (unlikely(!left && bytes)) {
206 			iov++;
207 			buf = iov->iov_base;
208 			copy = min(bytes, iov->iov_len);
209 			left = copyout(buf, from, copy);
210 			copy -= left;
211 			skip = copy;
212 			from += copy;
213 			bytes -= copy;
214 		}
215 		if (likely(!bytes)) {
216 			kunmap_atomic(kaddr);
217 			goto done;
218 		}
219 		offset = from - kaddr;
220 		buf += copy;
221 		kunmap_atomic(kaddr);
222 		copy = min(bytes, iov->iov_len - skip);
223 	}
224 	/* Too bad - revert to non-atomic kmap */
225 
226 	kaddr = kmap(page);
227 	from = kaddr + offset;
228 	left = copyout(buf, from, copy);
229 	copy -= left;
230 	skip += copy;
231 	from += copy;
232 	bytes -= copy;
233 	while (unlikely(!left && bytes)) {
234 		iov++;
235 		buf = iov->iov_base;
236 		copy = min(bytes, iov->iov_len);
237 		left = copyout(buf, from, copy);
238 		copy -= left;
239 		skip = copy;
240 		from += copy;
241 		bytes -= copy;
242 	}
243 	kunmap(page);
244 
245 done:
246 	if (skip == iov->iov_len) {
247 		iov++;
248 		skip = 0;
249 	}
250 	i->count -= wanted - bytes;
251 	i->nr_segs -= iov - i->iov;
252 	i->iov = iov;
253 	i->iov_offset = skip;
254 	return wanted - bytes;
255 }
256 
257 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
258 			 struct iov_iter *i)
259 {
260 	size_t skip, copy, left, wanted;
261 	const struct iovec *iov;
262 	char __user *buf;
263 	void *kaddr, *to;
264 
265 	if (unlikely(bytes > i->count))
266 		bytes = i->count;
267 
268 	if (unlikely(!bytes))
269 		return 0;
270 
271 	might_fault();
272 	wanted = bytes;
273 	iov = i->iov;
274 	skip = i->iov_offset;
275 	buf = iov->iov_base + skip;
276 	copy = min(bytes, iov->iov_len - skip);
277 
278 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
279 		kaddr = kmap_atomic(page);
280 		to = kaddr + offset;
281 
282 		/* first chunk, usually the only one */
283 		left = copyin(to, buf, copy);
284 		copy -= left;
285 		skip += copy;
286 		to += copy;
287 		bytes -= copy;
288 
289 		while (unlikely(!left && bytes)) {
290 			iov++;
291 			buf = iov->iov_base;
292 			copy = min(bytes, iov->iov_len);
293 			left = copyin(to, buf, copy);
294 			copy -= left;
295 			skip = copy;
296 			to += copy;
297 			bytes -= copy;
298 		}
299 		if (likely(!bytes)) {
300 			kunmap_atomic(kaddr);
301 			goto done;
302 		}
303 		offset = to - kaddr;
304 		buf += copy;
305 		kunmap_atomic(kaddr);
306 		copy = min(bytes, iov->iov_len - skip);
307 	}
308 	/* Too bad - revert to non-atomic kmap */
309 
310 	kaddr = kmap(page);
311 	to = kaddr + offset;
312 	left = copyin(to, buf, copy);
313 	copy -= left;
314 	skip += copy;
315 	to += copy;
316 	bytes -= copy;
317 	while (unlikely(!left && bytes)) {
318 		iov++;
319 		buf = iov->iov_base;
320 		copy = min(bytes, iov->iov_len);
321 		left = copyin(to, buf, copy);
322 		copy -= left;
323 		skip = copy;
324 		to += copy;
325 		bytes -= copy;
326 	}
327 	kunmap(page);
328 
329 done:
330 	if (skip == iov->iov_len) {
331 		iov++;
332 		skip = 0;
333 	}
334 	i->count -= wanted - bytes;
335 	i->nr_segs -= iov - i->iov;
336 	i->iov = iov;
337 	i->iov_offset = skip;
338 	return wanted - bytes;
339 }
340 
341 #ifdef PIPE_PARANOIA
342 static bool sanity(const struct iov_iter *i)
343 {
344 	struct pipe_inode_info *pipe = i->pipe;
345 	unsigned int p_head = pipe->head;
346 	unsigned int p_tail = pipe->tail;
347 	unsigned int p_mask = pipe->ring_size - 1;
348 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
349 	unsigned int i_head = i->head;
350 	unsigned int idx;
351 
352 	if (i->iov_offset) {
353 		struct pipe_buffer *p;
354 		if (unlikely(p_occupancy == 0))
355 			goto Bad;	// pipe must be non-empty
356 		if (unlikely(i_head != p_head - 1))
357 			goto Bad;	// must be at the last buffer...
358 
359 		p = &pipe->bufs[i_head & p_mask];
360 		if (unlikely(p->offset + p->len != i->iov_offset))
361 			goto Bad;	// ... at the end of segment
362 	} else {
363 		if (i_head != p_head)
364 			goto Bad;	// must be right after the last buffer
365 	}
366 	return true;
367 Bad:
368 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
369 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
370 			p_head, p_tail, pipe->ring_size);
371 	for (idx = 0; idx < pipe->ring_size; idx++)
372 		printk(KERN_ERR "[%p %p %d %d]\n",
373 			pipe->bufs[idx].ops,
374 			pipe->bufs[idx].page,
375 			pipe->bufs[idx].offset,
376 			pipe->bufs[idx].len);
377 	WARN_ON(1);
378 	return false;
379 }
380 #else
381 #define sanity(i) true
382 #endif
383 
384 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
385 			 struct iov_iter *i)
386 {
387 	struct pipe_inode_info *pipe = i->pipe;
388 	struct pipe_buffer *buf;
389 	unsigned int p_tail = pipe->tail;
390 	unsigned int p_mask = pipe->ring_size - 1;
391 	unsigned int i_head = i->head;
392 	size_t off;
393 
394 	if (unlikely(bytes > i->count))
395 		bytes = i->count;
396 
397 	if (unlikely(!bytes))
398 		return 0;
399 
400 	if (!sanity(i))
401 		return 0;
402 
403 	off = i->iov_offset;
404 	buf = &pipe->bufs[i_head & p_mask];
405 	if (off) {
406 		if (offset == off && buf->page == page) {
407 			/* merge with the last one */
408 			buf->len += bytes;
409 			i->iov_offset += bytes;
410 			goto out;
411 		}
412 		i_head++;
413 		buf = &pipe->bufs[i_head & p_mask];
414 	}
415 	if (pipe_full(i_head, p_tail, pipe->max_usage))
416 		return 0;
417 
418 	buf->ops = &page_cache_pipe_buf_ops;
419 	get_page(page);
420 	buf->page = page;
421 	buf->offset = offset;
422 	buf->len = bytes;
423 
424 	pipe->head = i_head + 1;
425 	i->iov_offset = offset + bytes;
426 	i->head = i_head;
427 out:
428 	i->count -= bytes;
429 	return bytes;
430 }
431 
432 /*
433  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
434  * bytes.  For each iovec, fault in each page that constitutes the iovec.
435  *
436  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
437  * because it is an invalid address).
438  */
439 int iov_iter_fault_in_readable(const struct iov_iter *i, size_t bytes)
440 {
441 	if (iter_is_iovec(i)) {
442 		const struct iovec *p;
443 		size_t skip;
444 
445 		if (bytes > i->count)
446 			bytes = i->count;
447 		for (p = i->iov, skip = i->iov_offset; bytes; p++, skip = 0) {
448 			size_t len = min(bytes, p->iov_len - skip);
449 			int err;
450 
451 			if (unlikely(!len))
452 				continue;
453 			err = fault_in_pages_readable(p->iov_base + skip, len);
454 			if (unlikely(err))
455 				return err;
456 			bytes -= len;
457 		}
458 	}
459 	return 0;
460 }
461 EXPORT_SYMBOL(iov_iter_fault_in_readable);
462 
463 void iov_iter_init(struct iov_iter *i, unsigned int direction,
464 			const struct iovec *iov, unsigned long nr_segs,
465 			size_t count)
466 {
467 	WARN_ON(direction & ~(READ | WRITE));
468 	*i = (struct iov_iter) {
469 		.iter_type = ITER_IOVEC,
470 		.data_source = direction,
471 		.iov = iov,
472 		.nr_segs = nr_segs,
473 		.iov_offset = 0,
474 		.count = count
475 	};
476 }
477 EXPORT_SYMBOL(iov_iter_init);
478 
479 static inline bool allocated(struct pipe_buffer *buf)
480 {
481 	return buf->ops == &default_pipe_buf_ops;
482 }
483 
484 static inline void data_start(const struct iov_iter *i,
485 			      unsigned int *iter_headp, size_t *offp)
486 {
487 	unsigned int p_mask = i->pipe->ring_size - 1;
488 	unsigned int iter_head = i->head;
489 	size_t off = i->iov_offset;
490 
491 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
492 		    off == PAGE_SIZE)) {
493 		iter_head++;
494 		off = 0;
495 	}
496 	*iter_headp = iter_head;
497 	*offp = off;
498 }
499 
500 static size_t push_pipe(struct iov_iter *i, size_t size,
501 			int *iter_headp, size_t *offp)
502 {
503 	struct pipe_inode_info *pipe = i->pipe;
504 	unsigned int p_tail = pipe->tail;
505 	unsigned int p_mask = pipe->ring_size - 1;
506 	unsigned int iter_head;
507 	size_t off;
508 	ssize_t left;
509 
510 	if (unlikely(size > i->count))
511 		size = i->count;
512 	if (unlikely(!size))
513 		return 0;
514 
515 	left = size;
516 	data_start(i, &iter_head, &off);
517 	*iter_headp = iter_head;
518 	*offp = off;
519 	if (off) {
520 		left -= PAGE_SIZE - off;
521 		if (left <= 0) {
522 			pipe->bufs[iter_head & p_mask].len += size;
523 			return size;
524 		}
525 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
526 		iter_head++;
527 	}
528 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
529 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
530 		struct page *page = alloc_page(GFP_USER);
531 		if (!page)
532 			break;
533 
534 		buf->ops = &default_pipe_buf_ops;
535 		buf->page = page;
536 		buf->offset = 0;
537 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
538 		left -= buf->len;
539 		iter_head++;
540 		pipe->head = iter_head;
541 
542 		if (left == 0)
543 			return size;
544 	}
545 	return size - left;
546 }
547 
548 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
549 				struct iov_iter *i)
550 {
551 	struct pipe_inode_info *pipe = i->pipe;
552 	unsigned int p_mask = pipe->ring_size - 1;
553 	unsigned int i_head;
554 	size_t n, off;
555 
556 	if (!sanity(i))
557 		return 0;
558 
559 	bytes = n = push_pipe(i, bytes, &i_head, &off);
560 	if (unlikely(!n))
561 		return 0;
562 	do {
563 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
564 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
565 		i->head = i_head;
566 		i->iov_offset = off + chunk;
567 		n -= chunk;
568 		addr += chunk;
569 		off = 0;
570 		i_head++;
571 	} while (n);
572 	i->count -= bytes;
573 	return bytes;
574 }
575 
576 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
577 			      __wsum sum, size_t off)
578 {
579 	__wsum next = csum_partial_copy_nocheck(from, to, len);
580 	return csum_block_add(sum, next, off);
581 }
582 
583 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
584 					 struct iov_iter *i, __wsum *sump)
585 {
586 	struct pipe_inode_info *pipe = i->pipe;
587 	unsigned int p_mask = pipe->ring_size - 1;
588 	__wsum sum = *sump;
589 	size_t off = 0;
590 	unsigned int i_head;
591 	size_t r;
592 
593 	if (!sanity(i))
594 		return 0;
595 
596 	bytes = push_pipe(i, bytes, &i_head, &r);
597 	while (bytes) {
598 		size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
599 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
600 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
601 		kunmap_local(p);
602 		i->head = i_head;
603 		i->iov_offset = r + chunk;
604 		bytes -= chunk;
605 		off += chunk;
606 		r = 0;
607 		i_head++;
608 	}
609 	*sump = sum;
610 	i->count -= off;
611 	return off;
612 }
613 
614 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
615 {
616 	if (unlikely(iov_iter_is_pipe(i)))
617 		return copy_pipe_to_iter(addr, bytes, i);
618 	if (iter_is_iovec(i))
619 		might_fault();
620 	iterate_and_advance(i, bytes, base, len, off,
621 		copyout(base, addr + off, len),
622 		memcpy(base, addr + off, len)
623 	)
624 
625 	return bytes;
626 }
627 EXPORT_SYMBOL(_copy_to_iter);
628 
629 #ifdef CONFIG_ARCH_HAS_COPY_MC
630 static int copyout_mc(void __user *to, const void *from, size_t n)
631 {
632 	if (access_ok(to, n)) {
633 		instrument_copy_to_user(to, from, n);
634 		n = copy_mc_to_user((__force void *) to, from, n);
635 	}
636 	return n;
637 }
638 
639 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
640 				struct iov_iter *i)
641 {
642 	struct pipe_inode_info *pipe = i->pipe;
643 	unsigned int p_mask = pipe->ring_size - 1;
644 	unsigned int i_head;
645 	size_t n, off, xfer = 0;
646 
647 	if (!sanity(i))
648 		return 0;
649 
650 	n = push_pipe(i, bytes, &i_head, &off);
651 	while (n) {
652 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
653 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
654 		unsigned long rem;
655 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
656 		chunk -= rem;
657 		kunmap_local(p);
658 		i->head = i_head;
659 		i->iov_offset = off + chunk;
660 		xfer += chunk;
661 		if (rem)
662 			break;
663 		n -= chunk;
664 		off = 0;
665 		i_head++;
666 	}
667 	i->count -= xfer;
668 	return xfer;
669 }
670 
671 /**
672  * _copy_mc_to_iter - copy to iter with source memory error exception handling
673  * @addr: source kernel address
674  * @bytes: total transfer length
675  * @iter: destination iterator
676  *
677  * The pmem driver deploys this for the dax operation
678  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
679  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
680  * successfully copied.
681  *
682  * The main differences between this and typical _copy_to_iter().
683  *
684  * * Typical tail/residue handling after a fault retries the copy
685  *   byte-by-byte until the fault happens again. Re-triggering machine
686  *   checks is potentially fatal so the implementation uses source
687  *   alignment and poison alignment assumptions to avoid re-triggering
688  *   hardware exceptions.
689  *
690  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
691  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
692  *   a short copy.
693  */
694 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
695 {
696 	if (unlikely(iov_iter_is_pipe(i)))
697 		return copy_mc_pipe_to_iter(addr, bytes, i);
698 	if (iter_is_iovec(i))
699 		might_fault();
700 	__iterate_and_advance(i, bytes, base, len, off,
701 		copyout_mc(base, addr + off, len),
702 		copy_mc_to_kernel(base, addr + off, len)
703 	)
704 
705 	return bytes;
706 }
707 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
708 #endif /* CONFIG_ARCH_HAS_COPY_MC */
709 
710 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
711 {
712 	if (unlikely(iov_iter_is_pipe(i))) {
713 		WARN_ON(1);
714 		return 0;
715 	}
716 	if (iter_is_iovec(i))
717 		might_fault();
718 	iterate_and_advance(i, bytes, base, len, off,
719 		copyin(addr + off, base, len),
720 		memcpy(addr + off, base, len)
721 	)
722 
723 	return bytes;
724 }
725 EXPORT_SYMBOL(_copy_from_iter);
726 
727 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
728 {
729 	if (unlikely(iov_iter_is_pipe(i))) {
730 		WARN_ON(1);
731 		return 0;
732 	}
733 	iterate_and_advance(i, bytes, base, len, off,
734 		__copy_from_user_inatomic_nocache(addr + off, base, len),
735 		memcpy(addr + off, base, len)
736 	)
737 
738 	return bytes;
739 }
740 EXPORT_SYMBOL(_copy_from_iter_nocache);
741 
742 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
743 /**
744  * _copy_from_iter_flushcache - write destination through cpu cache
745  * @addr: destination kernel address
746  * @bytes: total transfer length
747  * @iter: source iterator
748  *
749  * The pmem driver arranges for filesystem-dax to use this facility via
750  * dax_copy_from_iter() for ensuring that writes to persistent memory
751  * are flushed through the CPU cache. It is differentiated from
752  * _copy_from_iter_nocache() in that guarantees all data is flushed for
753  * all iterator types. The _copy_from_iter_nocache() only attempts to
754  * bypass the cache for the ITER_IOVEC case, and on some archs may use
755  * instructions that strand dirty-data in the cache.
756  */
757 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
758 {
759 	if (unlikely(iov_iter_is_pipe(i))) {
760 		WARN_ON(1);
761 		return 0;
762 	}
763 	iterate_and_advance(i, bytes, base, len, off,
764 		__copy_from_user_flushcache(addr + off, base, len),
765 		memcpy_flushcache(addr + off, base, len)
766 	)
767 
768 	return bytes;
769 }
770 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
771 #endif
772 
773 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
774 {
775 	struct page *head;
776 	size_t v = n + offset;
777 
778 	/*
779 	 * The general case needs to access the page order in order
780 	 * to compute the page size.
781 	 * However, we mostly deal with order-0 pages and thus can
782 	 * avoid a possible cache line miss for requests that fit all
783 	 * page orders.
784 	 */
785 	if (n <= v && v <= PAGE_SIZE)
786 		return true;
787 
788 	head = compound_head(page);
789 	v += (page - head) << PAGE_SHIFT;
790 
791 	if (likely(n <= v && v <= (page_size(head))))
792 		return true;
793 	WARN_ON(1);
794 	return false;
795 }
796 
797 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
798 			 struct iov_iter *i)
799 {
800 	if (likely(iter_is_iovec(i)))
801 		return copy_page_to_iter_iovec(page, offset, bytes, i);
802 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
803 		void *kaddr = kmap_local_page(page);
804 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
805 		kunmap_local(kaddr);
806 		return wanted;
807 	}
808 	if (iov_iter_is_pipe(i))
809 		return copy_page_to_iter_pipe(page, offset, bytes, i);
810 	if (unlikely(iov_iter_is_discard(i))) {
811 		if (unlikely(i->count < bytes))
812 			bytes = i->count;
813 		i->count -= bytes;
814 		return bytes;
815 	}
816 	WARN_ON(1);
817 	return 0;
818 }
819 
820 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
821 			 struct iov_iter *i)
822 {
823 	size_t res = 0;
824 	if (unlikely(!page_copy_sane(page, offset, bytes)))
825 		return 0;
826 	page += offset / PAGE_SIZE; // first subpage
827 	offset %= PAGE_SIZE;
828 	while (1) {
829 		size_t n = __copy_page_to_iter(page, offset,
830 				min(bytes, (size_t)PAGE_SIZE - offset), i);
831 		res += n;
832 		bytes -= n;
833 		if (!bytes || !n)
834 			break;
835 		offset += n;
836 		if (offset == PAGE_SIZE) {
837 			page++;
838 			offset = 0;
839 		}
840 	}
841 	return res;
842 }
843 EXPORT_SYMBOL(copy_page_to_iter);
844 
845 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
846 			 struct iov_iter *i)
847 {
848 	if (unlikely(!page_copy_sane(page, offset, bytes)))
849 		return 0;
850 	if (likely(iter_is_iovec(i)))
851 		return copy_page_from_iter_iovec(page, offset, bytes, i);
852 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
853 		void *kaddr = kmap_local_page(page);
854 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
855 		kunmap_local(kaddr);
856 		return wanted;
857 	}
858 	WARN_ON(1);
859 	return 0;
860 }
861 EXPORT_SYMBOL(copy_page_from_iter);
862 
863 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
864 {
865 	struct pipe_inode_info *pipe = i->pipe;
866 	unsigned int p_mask = pipe->ring_size - 1;
867 	unsigned int i_head;
868 	size_t n, off;
869 
870 	if (!sanity(i))
871 		return 0;
872 
873 	bytes = n = push_pipe(i, bytes, &i_head, &off);
874 	if (unlikely(!n))
875 		return 0;
876 
877 	do {
878 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
879 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
880 		memset(p + off, 0, chunk);
881 		kunmap_local(p);
882 		i->head = i_head;
883 		i->iov_offset = off + chunk;
884 		n -= chunk;
885 		off = 0;
886 		i_head++;
887 	} while (n);
888 	i->count -= bytes;
889 	return bytes;
890 }
891 
892 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
893 {
894 	if (unlikely(iov_iter_is_pipe(i)))
895 		return pipe_zero(bytes, i);
896 	iterate_and_advance(i, bytes, base, len, count,
897 		clear_user(base, len),
898 		memset(base, 0, len)
899 	)
900 
901 	return bytes;
902 }
903 EXPORT_SYMBOL(iov_iter_zero);
904 
905 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
906 				  struct iov_iter *i)
907 {
908 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
909 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
910 		kunmap_atomic(kaddr);
911 		return 0;
912 	}
913 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
914 		kunmap_atomic(kaddr);
915 		WARN_ON(1);
916 		return 0;
917 	}
918 	iterate_and_advance(i, bytes, base, len, off,
919 		copyin(p + off, base, len),
920 		memcpy(p + off, base, len)
921 	)
922 	kunmap_atomic(kaddr);
923 	return bytes;
924 }
925 EXPORT_SYMBOL(copy_page_from_iter_atomic);
926 
927 static inline void pipe_truncate(struct iov_iter *i)
928 {
929 	struct pipe_inode_info *pipe = i->pipe;
930 	unsigned int p_tail = pipe->tail;
931 	unsigned int p_head = pipe->head;
932 	unsigned int p_mask = pipe->ring_size - 1;
933 
934 	if (!pipe_empty(p_head, p_tail)) {
935 		struct pipe_buffer *buf;
936 		unsigned int i_head = i->head;
937 		size_t off = i->iov_offset;
938 
939 		if (off) {
940 			buf = &pipe->bufs[i_head & p_mask];
941 			buf->len = off - buf->offset;
942 			i_head++;
943 		}
944 		while (p_head != i_head) {
945 			p_head--;
946 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
947 		}
948 
949 		pipe->head = p_head;
950 	}
951 }
952 
953 static void pipe_advance(struct iov_iter *i, size_t size)
954 {
955 	struct pipe_inode_info *pipe = i->pipe;
956 	if (size) {
957 		struct pipe_buffer *buf;
958 		unsigned int p_mask = pipe->ring_size - 1;
959 		unsigned int i_head = i->head;
960 		size_t off = i->iov_offset, left = size;
961 
962 		if (off) /* make it relative to the beginning of buffer */
963 			left += off - pipe->bufs[i_head & p_mask].offset;
964 		while (1) {
965 			buf = &pipe->bufs[i_head & p_mask];
966 			if (left <= buf->len)
967 				break;
968 			left -= buf->len;
969 			i_head++;
970 		}
971 		i->head = i_head;
972 		i->iov_offset = buf->offset + left;
973 	}
974 	i->count -= size;
975 	/* ... and discard everything past that point */
976 	pipe_truncate(i);
977 }
978 
979 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
980 {
981 	struct bvec_iter bi;
982 
983 	bi.bi_size = i->count;
984 	bi.bi_bvec_done = i->iov_offset;
985 	bi.bi_idx = 0;
986 	bvec_iter_advance(i->bvec, &bi, size);
987 
988 	i->bvec += bi.bi_idx;
989 	i->nr_segs -= bi.bi_idx;
990 	i->count = bi.bi_size;
991 	i->iov_offset = bi.bi_bvec_done;
992 }
993 
994 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
995 {
996 	const struct iovec *iov, *end;
997 
998 	if (!i->count)
999 		return;
1000 	i->count -= size;
1001 
1002 	size += i->iov_offset; // from beginning of current segment
1003 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1004 		if (likely(size < iov->iov_len))
1005 			break;
1006 		size -= iov->iov_len;
1007 	}
1008 	i->iov_offset = size;
1009 	i->nr_segs -= iov - i->iov;
1010 	i->iov = iov;
1011 }
1012 
1013 void iov_iter_advance(struct iov_iter *i, size_t size)
1014 {
1015 	if (unlikely(i->count < size))
1016 		size = i->count;
1017 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1018 		/* iovec and kvec have identical layouts */
1019 		iov_iter_iovec_advance(i, size);
1020 	} else if (iov_iter_is_bvec(i)) {
1021 		iov_iter_bvec_advance(i, size);
1022 	} else if (iov_iter_is_pipe(i)) {
1023 		pipe_advance(i, size);
1024 	} else if (unlikely(iov_iter_is_xarray(i))) {
1025 		i->iov_offset += size;
1026 		i->count -= size;
1027 	} else if (iov_iter_is_discard(i)) {
1028 		i->count -= size;
1029 	}
1030 }
1031 EXPORT_SYMBOL(iov_iter_advance);
1032 
1033 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1034 {
1035 	if (!unroll)
1036 		return;
1037 	if (WARN_ON(unroll > MAX_RW_COUNT))
1038 		return;
1039 	i->count += unroll;
1040 	if (unlikely(iov_iter_is_pipe(i))) {
1041 		struct pipe_inode_info *pipe = i->pipe;
1042 		unsigned int p_mask = pipe->ring_size - 1;
1043 		unsigned int i_head = i->head;
1044 		size_t off = i->iov_offset;
1045 		while (1) {
1046 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1047 			size_t n = off - b->offset;
1048 			if (unroll < n) {
1049 				off -= unroll;
1050 				break;
1051 			}
1052 			unroll -= n;
1053 			if (!unroll && i_head == i->start_head) {
1054 				off = 0;
1055 				break;
1056 			}
1057 			i_head--;
1058 			b = &pipe->bufs[i_head & p_mask];
1059 			off = b->offset + b->len;
1060 		}
1061 		i->iov_offset = off;
1062 		i->head = i_head;
1063 		pipe_truncate(i);
1064 		return;
1065 	}
1066 	if (unlikely(iov_iter_is_discard(i)))
1067 		return;
1068 	if (unroll <= i->iov_offset) {
1069 		i->iov_offset -= unroll;
1070 		return;
1071 	}
1072 	unroll -= i->iov_offset;
1073 	if (iov_iter_is_xarray(i)) {
1074 		BUG(); /* We should never go beyond the start of the specified
1075 			* range since we might then be straying into pages that
1076 			* aren't pinned.
1077 			*/
1078 	} else if (iov_iter_is_bvec(i)) {
1079 		const struct bio_vec *bvec = i->bvec;
1080 		while (1) {
1081 			size_t n = (--bvec)->bv_len;
1082 			i->nr_segs++;
1083 			if (unroll <= n) {
1084 				i->bvec = bvec;
1085 				i->iov_offset = n - unroll;
1086 				return;
1087 			}
1088 			unroll -= n;
1089 		}
1090 	} else { /* same logics for iovec and kvec */
1091 		const struct iovec *iov = i->iov;
1092 		while (1) {
1093 			size_t n = (--iov)->iov_len;
1094 			i->nr_segs++;
1095 			if (unroll <= n) {
1096 				i->iov = iov;
1097 				i->iov_offset = n - unroll;
1098 				return;
1099 			}
1100 			unroll -= n;
1101 		}
1102 	}
1103 }
1104 EXPORT_SYMBOL(iov_iter_revert);
1105 
1106 /*
1107  * Return the count of just the current iov_iter segment.
1108  */
1109 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1110 {
1111 	if (i->nr_segs > 1) {
1112 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1113 			return min(i->count, i->iov->iov_len - i->iov_offset);
1114 		if (iov_iter_is_bvec(i))
1115 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1116 	}
1117 	return i->count;
1118 }
1119 EXPORT_SYMBOL(iov_iter_single_seg_count);
1120 
1121 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1122 			const struct kvec *kvec, unsigned long nr_segs,
1123 			size_t count)
1124 {
1125 	WARN_ON(direction & ~(READ | WRITE));
1126 	*i = (struct iov_iter){
1127 		.iter_type = ITER_KVEC,
1128 		.data_source = direction,
1129 		.kvec = kvec,
1130 		.nr_segs = nr_segs,
1131 		.iov_offset = 0,
1132 		.count = count
1133 	};
1134 }
1135 EXPORT_SYMBOL(iov_iter_kvec);
1136 
1137 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1138 			const struct bio_vec *bvec, unsigned long nr_segs,
1139 			size_t count)
1140 {
1141 	WARN_ON(direction & ~(READ | WRITE));
1142 	*i = (struct iov_iter){
1143 		.iter_type = ITER_BVEC,
1144 		.data_source = direction,
1145 		.bvec = bvec,
1146 		.nr_segs = nr_segs,
1147 		.iov_offset = 0,
1148 		.count = count
1149 	};
1150 }
1151 EXPORT_SYMBOL(iov_iter_bvec);
1152 
1153 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1154 			struct pipe_inode_info *pipe,
1155 			size_t count)
1156 {
1157 	BUG_ON(direction != READ);
1158 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1159 	*i = (struct iov_iter){
1160 		.iter_type = ITER_PIPE,
1161 		.data_source = false,
1162 		.pipe = pipe,
1163 		.head = pipe->head,
1164 		.start_head = pipe->head,
1165 		.iov_offset = 0,
1166 		.count = count
1167 	};
1168 }
1169 EXPORT_SYMBOL(iov_iter_pipe);
1170 
1171 /**
1172  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1173  * @i: The iterator to initialise.
1174  * @direction: The direction of the transfer.
1175  * @xarray: The xarray to access.
1176  * @start: The start file position.
1177  * @count: The size of the I/O buffer in bytes.
1178  *
1179  * Set up an I/O iterator to either draw data out of the pages attached to an
1180  * inode or to inject data into those pages.  The pages *must* be prevented
1181  * from evaporation, either by taking a ref on them or locking them by the
1182  * caller.
1183  */
1184 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1185 		     struct xarray *xarray, loff_t start, size_t count)
1186 {
1187 	BUG_ON(direction & ~1);
1188 	*i = (struct iov_iter) {
1189 		.iter_type = ITER_XARRAY,
1190 		.data_source = direction,
1191 		.xarray = xarray,
1192 		.xarray_start = start,
1193 		.count = count,
1194 		.iov_offset = 0
1195 	};
1196 }
1197 EXPORT_SYMBOL(iov_iter_xarray);
1198 
1199 /**
1200  * iov_iter_discard - Initialise an I/O iterator that discards data
1201  * @i: The iterator to initialise.
1202  * @direction: The direction of the transfer.
1203  * @count: The size of the I/O buffer in bytes.
1204  *
1205  * Set up an I/O iterator that just discards everything that's written to it.
1206  * It's only available as a READ iterator.
1207  */
1208 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1209 {
1210 	BUG_ON(direction != READ);
1211 	*i = (struct iov_iter){
1212 		.iter_type = ITER_DISCARD,
1213 		.data_source = false,
1214 		.count = count,
1215 		.iov_offset = 0
1216 	};
1217 }
1218 EXPORT_SYMBOL(iov_iter_discard);
1219 
1220 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1221 {
1222 	unsigned long res = 0;
1223 	size_t size = i->count;
1224 	size_t skip = i->iov_offset;
1225 	unsigned k;
1226 
1227 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1228 		size_t len = i->iov[k].iov_len - skip;
1229 		if (len) {
1230 			res |= (unsigned long)i->iov[k].iov_base + skip;
1231 			if (len > size)
1232 				len = size;
1233 			res |= len;
1234 			size -= len;
1235 			if (!size)
1236 				break;
1237 		}
1238 	}
1239 	return res;
1240 }
1241 
1242 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1243 {
1244 	unsigned res = 0;
1245 	size_t size = i->count;
1246 	unsigned skip = i->iov_offset;
1247 	unsigned k;
1248 
1249 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1250 		size_t len = i->bvec[k].bv_len - skip;
1251 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1252 		if (len > size)
1253 			len = size;
1254 		res |= len;
1255 		size -= len;
1256 		if (!size)
1257 			break;
1258 	}
1259 	return res;
1260 }
1261 
1262 unsigned long iov_iter_alignment(const struct iov_iter *i)
1263 {
1264 	/* iovec and kvec have identical layouts */
1265 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1266 		return iov_iter_alignment_iovec(i);
1267 
1268 	if (iov_iter_is_bvec(i))
1269 		return iov_iter_alignment_bvec(i);
1270 
1271 	if (iov_iter_is_pipe(i)) {
1272 		unsigned int p_mask = i->pipe->ring_size - 1;
1273 		size_t size = i->count;
1274 
1275 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1276 			return size | i->iov_offset;
1277 		return size;
1278 	}
1279 
1280 	if (iov_iter_is_xarray(i))
1281 		return (i->xarray_start + i->iov_offset) | i->count;
1282 
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL(iov_iter_alignment);
1286 
1287 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1288 {
1289 	unsigned long res = 0;
1290 	unsigned long v = 0;
1291 	size_t size = i->count;
1292 	unsigned k;
1293 
1294 	if (WARN_ON(!iter_is_iovec(i)))
1295 		return ~0U;
1296 
1297 	for (k = 0; k < i->nr_segs; k++) {
1298 		if (i->iov[k].iov_len) {
1299 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1300 			if (v) // if not the first one
1301 				res |= base | v; // this start | previous end
1302 			v = base + i->iov[k].iov_len;
1303 			if (size <= i->iov[k].iov_len)
1304 				break;
1305 			size -= i->iov[k].iov_len;
1306 		}
1307 	}
1308 	return res;
1309 }
1310 EXPORT_SYMBOL(iov_iter_gap_alignment);
1311 
1312 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1313 				size_t maxsize,
1314 				struct page **pages,
1315 				int iter_head,
1316 				size_t *start)
1317 {
1318 	struct pipe_inode_info *pipe = i->pipe;
1319 	unsigned int p_mask = pipe->ring_size - 1;
1320 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1321 	if (!n)
1322 		return -EFAULT;
1323 
1324 	maxsize = n;
1325 	n += *start;
1326 	while (n > 0) {
1327 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1328 		iter_head++;
1329 		n -= PAGE_SIZE;
1330 	}
1331 
1332 	return maxsize;
1333 }
1334 
1335 static ssize_t pipe_get_pages(struct iov_iter *i,
1336 		   struct page **pages, size_t maxsize, unsigned maxpages,
1337 		   size_t *start)
1338 {
1339 	unsigned int iter_head, npages;
1340 	size_t capacity;
1341 
1342 	if (!sanity(i))
1343 		return -EFAULT;
1344 
1345 	data_start(i, &iter_head, start);
1346 	/* Amount of free space: some of this one + all after this one */
1347 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1348 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1349 
1350 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1351 }
1352 
1353 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1354 					  pgoff_t index, unsigned int nr_pages)
1355 {
1356 	XA_STATE(xas, xa, index);
1357 	struct page *page;
1358 	unsigned int ret = 0;
1359 
1360 	rcu_read_lock();
1361 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1362 		if (xas_retry(&xas, page))
1363 			continue;
1364 
1365 		/* Has the page moved or been split? */
1366 		if (unlikely(page != xas_reload(&xas))) {
1367 			xas_reset(&xas);
1368 			continue;
1369 		}
1370 
1371 		pages[ret] = find_subpage(page, xas.xa_index);
1372 		get_page(pages[ret]);
1373 		if (++ret == nr_pages)
1374 			break;
1375 	}
1376 	rcu_read_unlock();
1377 	return ret;
1378 }
1379 
1380 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1381 				     struct page **pages, size_t maxsize,
1382 				     unsigned maxpages, size_t *_start_offset)
1383 {
1384 	unsigned nr, offset;
1385 	pgoff_t index, count;
1386 	size_t size = maxsize, actual;
1387 	loff_t pos;
1388 
1389 	if (!size || !maxpages)
1390 		return 0;
1391 
1392 	pos = i->xarray_start + i->iov_offset;
1393 	index = pos >> PAGE_SHIFT;
1394 	offset = pos & ~PAGE_MASK;
1395 	*_start_offset = offset;
1396 
1397 	count = 1;
1398 	if (size > PAGE_SIZE - offset) {
1399 		size -= PAGE_SIZE - offset;
1400 		count += size >> PAGE_SHIFT;
1401 		size &= ~PAGE_MASK;
1402 		if (size)
1403 			count++;
1404 	}
1405 
1406 	if (count > maxpages)
1407 		count = maxpages;
1408 
1409 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1410 	if (nr == 0)
1411 		return 0;
1412 
1413 	actual = PAGE_SIZE * nr;
1414 	actual -= offset;
1415 	if (nr == count && size > 0) {
1416 		unsigned last_offset = (nr > 1) ? 0 : offset;
1417 		actual -= PAGE_SIZE - (last_offset + size);
1418 	}
1419 	return actual;
1420 }
1421 
1422 /* must be done on non-empty ITER_IOVEC one */
1423 static unsigned long first_iovec_segment(const struct iov_iter *i,
1424 					 size_t *size, size_t *start,
1425 					 size_t maxsize, unsigned maxpages)
1426 {
1427 	size_t skip;
1428 	long k;
1429 
1430 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1431 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1432 		size_t len = i->iov[k].iov_len - skip;
1433 
1434 		if (unlikely(!len))
1435 			continue;
1436 		if (len > maxsize)
1437 			len = maxsize;
1438 		len += (*start = addr % PAGE_SIZE);
1439 		if (len > maxpages * PAGE_SIZE)
1440 			len = maxpages * PAGE_SIZE;
1441 		*size = len;
1442 		return addr & PAGE_MASK;
1443 	}
1444 	BUG(); // if it had been empty, we wouldn't get called
1445 }
1446 
1447 /* must be done on non-empty ITER_BVEC one */
1448 static struct page *first_bvec_segment(const struct iov_iter *i,
1449 				       size_t *size, size_t *start,
1450 				       size_t maxsize, unsigned maxpages)
1451 {
1452 	struct page *page;
1453 	size_t skip = i->iov_offset, len;
1454 
1455 	len = i->bvec->bv_len - skip;
1456 	if (len > maxsize)
1457 		len = maxsize;
1458 	skip += i->bvec->bv_offset;
1459 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1460 	len += (*start = skip % PAGE_SIZE);
1461 	if (len > maxpages * PAGE_SIZE)
1462 		len = maxpages * PAGE_SIZE;
1463 	*size = len;
1464 	return page;
1465 }
1466 
1467 ssize_t iov_iter_get_pages(struct iov_iter *i,
1468 		   struct page **pages, size_t maxsize, unsigned maxpages,
1469 		   size_t *start)
1470 {
1471 	size_t len;
1472 	int n, res;
1473 
1474 	if (maxsize > i->count)
1475 		maxsize = i->count;
1476 	if (!maxsize)
1477 		return 0;
1478 
1479 	if (likely(iter_is_iovec(i))) {
1480 		unsigned long addr;
1481 
1482 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1483 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1484 		res = get_user_pages_fast(addr, n,
1485 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1486 				pages);
1487 		if (unlikely(res < 0))
1488 			return res;
1489 		return (res == n ? len : res * PAGE_SIZE) - *start;
1490 	}
1491 	if (iov_iter_is_bvec(i)) {
1492 		struct page *page;
1493 
1494 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1495 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1496 		while (n--)
1497 			get_page(*pages++ = page++);
1498 		return len - *start;
1499 	}
1500 	if (iov_iter_is_pipe(i))
1501 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1502 	if (iov_iter_is_xarray(i))
1503 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1504 	return -EFAULT;
1505 }
1506 EXPORT_SYMBOL(iov_iter_get_pages);
1507 
1508 static struct page **get_pages_array(size_t n)
1509 {
1510 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1511 }
1512 
1513 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1514 		   struct page ***pages, size_t maxsize,
1515 		   size_t *start)
1516 {
1517 	struct page **p;
1518 	unsigned int iter_head, npages;
1519 	ssize_t n;
1520 
1521 	if (!sanity(i))
1522 		return -EFAULT;
1523 
1524 	data_start(i, &iter_head, start);
1525 	/* Amount of free space: some of this one + all after this one */
1526 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1527 	n = npages * PAGE_SIZE - *start;
1528 	if (maxsize > n)
1529 		maxsize = n;
1530 	else
1531 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1532 	p = get_pages_array(npages);
1533 	if (!p)
1534 		return -ENOMEM;
1535 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1536 	if (n > 0)
1537 		*pages = p;
1538 	else
1539 		kvfree(p);
1540 	return n;
1541 }
1542 
1543 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1544 					   struct page ***pages, size_t maxsize,
1545 					   size_t *_start_offset)
1546 {
1547 	struct page **p;
1548 	unsigned nr, offset;
1549 	pgoff_t index, count;
1550 	size_t size = maxsize, actual;
1551 	loff_t pos;
1552 
1553 	if (!size)
1554 		return 0;
1555 
1556 	pos = i->xarray_start + i->iov_offset;
1557 	index = pos >> PAGE_SHIFT;
1558 	offset = pos & ~PAGE_MASK;
1559 	*_start_offset = offset;
1560 
1561 	count = 1;
1562 	if (size > PAGE_SIZE - offset) {
1563 		size -= PAGE_SIZE - offset;
1564 		count += size >> PAGE_SHIFT;
1565 		size &= ~PAGE_MASK;
1566 		if (size)
1567 			count++;
1568 	}
1569 
1570 	p = get_pages_array(count);
1571 	if (!p)
1572 		return -ENOMEM;
1573 	*pages = p;
1574 
1575 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1576 	if (nr == 0)
1577 		return 0;
1578 
1579 	actual = PAGE_SIZE * nr;
1580 	actual -= offset;
1581 	if (nr == count && size > 0) {
1582 		unsigned last_offset = (nr > 1) ? 0 : offset;
1583 		actual -= PAGE_SIZE - (last_offset + size);
1584 	}
1585 	return actual;
1586 }
1587 
1588 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1589 		   struct page ***pages, size_t maxsize,
1590 		   size_t *start)
1591 {
1592 	struct page **p;
1593 	size_t len;
1594 	int n, res;
1595 
1596 	if (maxsize > i->count)
1597 		maxsize = i->count;
1598 	if (!maxsize)
1599 		return 0;
1600 
1601 	if (likely(iter_is_iovec(i))) {
1602 		unsigned long addr;
1603 
1604 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1605 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1606 		p = get_pages_array(n);
1607 		if (!p)
1608 			return -ENOMEM;
1609 		res = get_user_pages_fast(addr, n,
1610 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1611 		if (unlikely(res < 0)) {
1612 			kvfree(p);
1613 			return res;
1614 		}
1615 		*pages = p;
1616 		return (res == n ? len : res * PAGE_SIZE) - *start;
1617 	}
1618 	if (iov_iter_is_bvec(i)) {
1619 		struct page *page;
1620 
1621 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1622 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1623 		*pages = p = get_pages_array(n);
1624 		if (!p)
1625 			return -ENOMEM;
1626 		while (n--)
1627 			get_page(*p++ = page++);
1628 		return len - *start;
1629 	}
1630 	if (iov_iter_is_pipe(i))
1631 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1632 	if (iov_iter_is_xarray(i))
1633 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1634 	return -EFAULT;
1635 }
1636 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1637 
1638 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1639 			       struct iov_iter *i)
1640 {
1641 	__wsum sum, next;
1642 	sum = *csum;
1643 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1644 		WARN_ON(1);
1645 		return 0;
1646 	}
1647 	iterate_and_advance(i, bytes, base, len, off, ({
1648 		next = csum_and_copy_from_user(base, addr + off, len);
1649 		sum = csum_block_add(sum, next, off);
1650 		next ? 0 : len;
1651 	}), ({
1652 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1653 	})
1654 	)
1655 	*csum = sum;
1656 	return bytes;
1657 }
1658 EXPORT_SYMBOL(csum_and_copy_from_iter);
1659 
1660 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1661 			     struct iov_iter *i)
1662 {
1663 	struct csum_state *csstate = _csstate;
1664 	__wsum sum, next;
1665 
1666 	if (unlikely(iov_iter_is_discard(i))) {
1667 		WARN_ON(1);	/* for now */
1668 		return 0;
1669 	}
1670 
1671 	sum = csum_shift(csstate->csum, csstate->off);
1672 	if (unlikely(iov_iter_is_pipe(i)))
1673 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1674 	else iterate_and_advance(i, bytes, base, len, off, ({
1675 		next = csum_and_copy_to_user(addr + off, base, len);
1676 		sum = csum_block_add(sum, next, off);
1677 		next ? 0 : len;
1678 	}), ({
1679 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1680 	})
1681 	)
1682 	csstate->csum = csum_shift(sum, csstate->off);
1683 	csstate->off += bytes;
1684 	return bytes;
1685 }
1686 EXPORT_SYMBOL(csum_and_copy_to_iter);
1687 
1688 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1689 		struct iov_iter *i)
1690 {
1691 #ifdef CONFIG_CRYPTO_HASH
1692 	struct ahash_request *hash = hashp;
1693 	struct scatterlist sg;
1694 	size_t copied;
1695 
1696 	copied = copy_to_iter(addr, bytes, i);
1697 	sg_init_one(&sg, addr, copied);
1698 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1699 	crypto_ahash_update(hash);
1700 	return copied;
1701 #else
1702 	return 0;
1703 #endif
1704 }
1705 EXPORT_SYMBOL(hash_and_copy_to_iter);
1706 
1707 static int iov_npages(const struct iov_iter *i, int maxpages)
1708 {
1709 	size_t skip = i->iov_offset, size = i->count;
1710 	const struct iovec *p;
1711 	int npages = 0;
1712 
1713 	for (p = i->iov; size; skip = 0, p++) {
1714 		unsigned offs = offset_in_page(p->iov_base + skip);
1715 		size_t len = min(p->iov_len - skip, size);
1716 
1717 		if (len) {
1718 			size -= len;
1719 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1720 			if (unlikely(npages > maxpages))
1721 				return maxpages;
1722 		}
1723 	}
1724 	return npages;
1725 }
1726 
1727 static int bvec_npages(const struct iov_iter *i, int maxpages)
1728 {
1729 	size_t skip = i->iov_offset, size = i->count;
1730 	const struct bio_vec *p;
1731 	int npages = 0;
1732 
1733 	for (p = i->bvec; size; skip = 0, p++) {
1734 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1735 		size_t len = min(p->bv_len - skip, size);
1736 
1737 		size -= len;
1738 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1739 		if (unlikely(npages > maxpages))
1740 			return maxpages;
1741 	}
1742 	return npages;
1743 }
1744 
1745 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1746 {
1747 	if (unlikely(!i->count))
1748 		return 0;
1749 	/* iovec and kvec have identical layouts */
1750 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1751 		return iov_npages(i, maxpages);
1752 	if (iov_iter_is_bvec(i))
1753 		return bvec_npages(i, maxpages);
1754 	if (iov_iter_is_pipe(i)) {
1755 		unsigned int iter_head;
1756 		int npages;
1757 		size_t off;
1758 
1759 		if (!sanity(i))
1760 			return 0;
1761 
1762 		data_start(i, &iter_head, &off);
1763 		/* some of this one + all after this one */
1764 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1765 		return min(npages, maxpages);
1766 	}
1767 	if (iov_iter_is_xarray(i)) {
1768 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1769 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1770 		return min(npages, maxpages);
1771 	}
1772 	return 0;
1773 }
1774 EXPORT_SYMBOL(iov_iter_npages);
1775 
1776 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1777 {
1778 	*new = *old;
1779 	if (unlikely(iov_iter_is_pipe(new))) {
1780 		WARN_ON(1);
1781 		return NULL;
1782 	}
1783 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1784 		return NULL;
1785 	if (iov_iter_is_bvec(new))
1786 		return new->bvec = kmemdup(new->bvec,
1787 				    new->nr_segs * sizeof(struct bio_vec),
1788 				    flags);
1789 	else
1790 		/* iovec and kvec have identical layout */
1791 		return new->iov = kmemdup(new->iov,
1792 				   new->nr_segs * sizeof(struct iovec),
1793 				   flags);
1794 }
1795 EXPORT_SYMBOL(dup_iter);
1796 
1797 static int copy_compat_iovec_from_user(struct iovec *iov,
1798 		const struct iovec __user *uvec, unsigned long nr_segs)
1799 {
1800 	const struct compat_iovec __user *uiov =
1801 		(const struct compat_iovec __user *)uvec;
1802 	int ret = -EFAULT, i;
1803 
1804 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1805 		return -EFAULT;
1806 
1807 	for (i = 0; i < nr_segs; i++) {
1808 		compat_uptr_t buf;
1809 		compat_ssize_t len;
1810 
1811 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1812 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1813 
1814 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1815 		if (len < 0) {
1816 			ret = -EINVAL;
1817 			goto uaccess_end;
1818 		}
1819 		iov[i].iov_base = compat_ptr(buf);
1820 		iov[i].iov_len = len;
1821 	}
1822 
1823 	ret = 0;
1824 uaccess_end:
1825 	user_access_end();
1826 	return ret;
1827 }
1828 
1829 static int copy_iovec_from_user(struct iovec *iov,
1830 		const struct iovec __user *uvec, unsigned long nr_segs)
1831 {
1832 	unsigned long seg;
1833 
1834 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1835 		return -EFAULT;
1836 	for (seg = 0; seg < nr_segs; seg++) {
1837 		if ((ssize_t)iov[seg].iov_len < 0)
1838 			return -EINVAL;
1839 	}
1840 
1841 	return 0;
1842 }
1843 
1844 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1845 		unsigned long nr_segs, unsigned long fast_segs,
1846 		struct iovec *fast_iov, bool compat)
1847 {
1848 	struct iovec *iov = fast_iov;
1849 	int ret;
1850 
1851 	/*
1852 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1853 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1854 	 * traditionally returned zero for zero segments, so...
1855 	 */
1856 	if (nr_segs == 0)
1857 		return iov;
1858 	if (nr_segs > UIO_MAXIOV)
1859 		return ERR_PTR(-EINVAL);
1860 	if (nr_segs > fast_segs) {
1861 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1862 		if (!iov)
1863 			return ERR_PTR(-ENOMEM);
1864 	}
1865 
1866 	if (compat)
1867 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1868 	else
1869 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1870 	if (ret) {
1871 		if (iov != fast_iov)
1872 			kfree(iov);
1873 		return ERR_PTR(ret);
1874 	}
1875 
1876 	return iov;
1877 }
1878 
1879 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1880 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1881 		 struct iov_iter *i, bool compat)
1882 {
1883 	ssize_t total_len = 0;
1884 	unsigned long seg;
1885 	struct iovec *iov;
1886 
1887 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1888 	if (IS_ERR(iov)) {
1889 		*iovp = NULL;
1890 		return PTR_ERR(iov);
1891 	}
1892 
1893 	/*
1894 	 * According to the Single Unix Specification we should return EINVAL if
1895 	 * an element length is < 0 when cast to ssize_t or if the total length
1896 	 * would overflow the ssize_t return value of the system call.
1897 	 *
1898 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1899 	 * overflow case.
1900 	 */
1901 	for (seg = 0; seg < nr_segs; seg++) {
1902 		ssize_t len = (ssize_t)iov[seg].iov_len;
1903 
1904 		if (!access_ok(iov[seg].iov_base, len)) {
1905 			if (iov != *iovp)
1906 				kfree(iov);
1907 			*iovp = NULL;
1908 			return -EFAULT;
1909 		}
1910 
1911 		if (len > MAX_RW_COUNT - total_len) {
1912 			len = MAX_RW_COUNT - total_len;
1913 			iov[seg].iov_len = len;
1914 		}
1915 		total_len += len;
1916 	}
1917 
1918 	iov_iter_init(i, type, iov, nr_segs, total_len);
1919 	if (iov == *iovp)
1920 		*iovp = NULL;
1921 	else
1922 		*iovp = iov;
1923 	return total_len;
1924 }
1925 
1926 /**
1927  * import_iovec() - Copy an array of &struct iovec from userspace
1928  *     into the kernel, check that it is valid, and initialize a new
1929  *     &struct iov_iter iterator to access it.
1930  *
1931  * @type: One of %READ or %WRITE.
1932  * @uvec: Pointer to the userspace array.
1933  * @nr_segs: Number of elements in userspace array.
1934  * @fast_segs: Number of elements in @iov.
1935  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1936  *     on-stack) kernel array.
1937  * @i: Pointer to iterator that will be initialized on success.
1938  *
1939  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1940  * then this function places %NULL in *@iov on return. Otherwise, a new
1941  * array will be allocated and the result placed in *@iov. This means that
1942  * the caller may call kfree() on *@iov regardless of whether the small
1943  * on-stack array was used or not (and regardless of whether this function
1944  * returns an error or not).
1945  *
1946  * Return: Negative error code on error, bytes imported on success
1947  */
1948 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1949 		 unsigned nr_segs, unsigned fast_segs,
1950 		 struct iovec **iovp, struct iov_iter *i)
1951 {
1952 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1953 			      in_compat_syscall());
1954 }
1955 EXPORT_SYMBOL(import_iovec);
1956 
1957 int import_single_range(int rw, void __user *buf, size_t len,
1958 		 struct iovec *iov, struct iov_iter *i)
1959 {
1960 	if (len > MAX_RW_COUNT)
1961 		len = MAX_RW_COUNT;
1962 	if (unlikely(!access_ok(buf, len)))
1963 		return -EFAULT;
1964 
1965 	iov->iov_base = buf;
1966 	iov->iov_len = len;
1967 	iov_iter_init(i, rw, iov, 1, len);
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL(import_single_range);
1971