xref: /openbmc/linux/lib/iov_iter.c (revision 7baa5099)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, skip, STEP) {	\
21 	size_t off = 0;						\
22 	do {							\
23 		len = min(n, __p->iov_len - skip);		\
24 		if (likely(len)) {				\
25 			base = __p->iov_base + skip;		\
26 			len -= (STEP);				\
27 			off += len;				\
28 			skip += len;				\
29 			n -= len;				\
30 			if (skip < __p->iov_len)		\
31 				break;				\
32 		}						\
33 		__p++;						\
34 		skip = 0;					\
35 	} while (n);						\
36 	n = off;						\
37 }
38 
39 #define iterate_bvec(i, n, base, len, off, p, skip, STEP) {	\
40 	size_t off = 0;						\
41 	while (n) {						\
42 		unsigned offset = p->bv_offset + skip;		\
43 		unsigned left;					\
44 		void *kaddr = kmap_local_page(p->bv_page +	\
45 					offset / PAGE_SIZE);	\
46 		base = kaddr + offset % PAGE_SIZE;		\
47 		len = min(min(n, p->bv_len - skip),		\
48 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
49 		left = (STEP);					\
50 		kunmap_local(kaddr);				\
51 		len -= left;					\
52 		off += len;					\
53 		skip += len;					\
54 		if (skip == p->bv_len) {			\
55 			skip = 0;				\
56 			p++;					\
57 		}						\
58 		n -= len;					\
59 		if (left)					\
60 			break;					\
61 	}							\
62 	n = off;						\
63 }
64 
65 #define iterate_xarray(i, n, base, len, __off, skip, STEP) {	\
66 	__label__ __out;					\
67 	size_t __off = 0;					\
68 	struct page *head = NULL;				\
69 	size_t offset;						\
70 	loff_t start = i->xarray_start + skip;			\
71 	pgoff_t index = start >> PAGE_SHIFT;			\
72 	int j;							\
73 								\
74 	XA_STATE(xas, i->xarray, index);			\
75 								\
76 	rcu_read_lock();					\
77 	xas_for_each(&xas, head, ULONG_MAX) {			\
78 		unsigned left;					\
79 		if (xas_retry(&xas, head))			\
80 			continue;				\
81 		if (WARN_ON(xa_is_value(head)))			\
82 			break;					\
83 		if (WARN_ON(PageHuge(head)))			\
84 			break;					\
85 		for (j = (head->index < index) ? index - head->index : 0; \
86 		     j < thp_nr_pages(head); j++) {		\
87 			void *kaddr = kmap_local_page(head + j);	\
88 			offset = (start + __off) % PAGE_SIZE;	\
89 			base = kaddr + offset;			\
90 			len = PAGE_SIZE - offset;		\
91 			len = min(n, len);			\
92 			left = (STEP);				\
93 			kunmap_local(kaddr);			\
94 			len -= left;				\
95 			__off += len;				\
96 			n -= len;				\
97 			if (left || n == 0)			\
98 				goto __out;			\
99 		}						\
100 	}							\
101 __out:								\
102 	rcu_read_unlock();					\
103 	skip += __off;						\
104 	n = __off;						\
105 }
106 
107 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
108 	if (unlikely(i->count < n))				\
109 		n = i->count;					\
110 	if (likely(n)) {					\
111 		size_t skip = i->iov_offset;			\
112 		if (likely(iter_is_iovec(i))) {			\
113 			const struct iovec *iov = i->iov;	\
114 			void __user *base;			\
115 			size_t len;				\
116 			iterate_iovec(i, n, base, len, off,	\
117 						iov, skip, (I))	\
118 			i->nr_segs -= iov - i->iov;		\
119 			i->iov = iov;				\
120 		} else if (iov_iter_is_bvec(i)) {		\
121 			const struct bio_vec *bvec = i->bvec;	\
122 			void *base;				\
123 			size_t len;				\
124 			iterate_bvec(i, n, base, len, off,	\
125 					bvec, skip, (K))	\
126 			i->nr_segs -= bvec - i->bvec;		\
127 			i->bvec = bvec;				\
128 		} else if (iov_iter_is_kvec(i)) {		\
129 			const struct kvec *kvec = i->kvec;	\
130 			void *base;				\
131 			size_t len;				\
132 			iterate_iovec(i, n, base, len, off,	\
133 					kvec, skip, (K))	\
134 			i->nr_segs -= kvec - i->kvec;		\
135 			i->kvec = kvec;				\
136 		} else if (iov_iter_is_xarray(i)) {		\
137 			void *base;				\
138 			size_t len;				\
139 			iterate_xarray(i, n, base, len, off,	\
140 						skip, (K))	\
141 		}						\
142 		i->count -= n;					\
143 		i->iov_offset = skip;				\
144 	}							\
145 }
146 #define iterate_and_advance(i, n, base, len, off, I, K) \
147 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
148 
149 static int copyout(void __user *to, const void *from, size_t n)
150 {
151 	if (should_fail_usercopy())
152 		return n;
153 	if (access_ok(to, n)) {
154 		instrument_copy_to_user(to, from, n);
155 		n = raw_copy_to_user(to, from, n);
156 	}
157 	return n;
158 }
159 
160 static int copyin(void *to, const void __user *from, size_t n)
161 {
162 	if (should_fail_usercopy())
163 		return n;
164 	if (access_ok(from, n)) {
165 		instrument_copy_from_user(to, from, n);
166 		n = raw_copy_from_user(to, from, n);
167 	}
168 	return n;
169 }
170 
171 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
172 			 struct iov_iter *i)
173 {
174 	size_t skip, copy, left, wanted;
175 	const struct iovec *iov;
176 	char __user *buf;
177 	void *kaddr, *from;
178 
179 	if (unlikely(bytes > i->count))
180 		bytes = i->count;
181 
182 	if (unlikely(!bytes))
183 		return 0;
184 
185 	might_fault();
186 	wanted = bytes;
187 	iov = i->iov;
188 	skip = i->iov_offset;
189 	buf = iov->iov_base + skip;
190 	copy = min(bytes, iov->iov_len - skip);
191 
192 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
193 		kaddr = kmap_atomic(page);
194 		from = kaddr + offset;
195 
196 		/* first chunk, usually the only one */
197 		left = copyout(buf, from, copy);
198 		copy -= left;
199 		skip += copy;
200 		from += copy;
201 		bytes -= copy;
202 
203 		while (unlikely(!left && bytes)) {
204 			iov++;
205 			buf = iov->iov_base;
206 			copy = min(bytes, iov->iov_len);
207 			left = copyout(buf, from, copy);
208 			copy -= left;
209 			skip = copy;
210 			from += copy;
211 			bytes -= copy;
212 		}
213 		if (likely(!bytes)) {
214 			kunmap_atomic(kaddr);
215 			goto done;
216 		}
217 		offset = from - kaddr;
218 		buf += copy;
219 		kunmap_atomic(kaddr);
220 		copy = min(bytes, iov->iov_len - skip);
221 	}
222 	/* Too bad - revert to non-atomic kmap */
223 
224 	kaddr = kmap(page);
225 	from = kaddr + offset;
226 	left = copyout(buf, from, copy);
227 	copy -= left;
228 	skip += copy;
229 	from += copy;
230 	bytes -= copy;
231 	while (unlikely(!left && bytes)) {
232 		iov++;
233 		buf = iov->iov_base;
234 		copy = min(bytes, iov->iov_len);
235 		left = copyout(buf, from, copy);
236 		copy -= left;
237 		skip = copy;
238 		from += copy;
239 		bytes -= copy;
240 	}
241 	kunmap(page);
242 
243 done:
244 	if (skip == iov->iov_len) {
245 		iov++;
246 		skip = 0;
247 	}
248 	i->count -= wanted - bytes;
249 	i->nr_segs -= iov - i->iov;
250 	i->iov = iov;
251 	i->iov_offset = skip;
252 	return wanted - bytes;
253 }
254 
255 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
256 			 struct iov_iter *i)
257 {
258 	size_t skip, copy, left, wanted;
259 	const struct iovec *iov;
260 	char __user *buf;
261 	void *kaddr, *to;
262 
263 	if (unlikely(bytes > i->count))
264 		bytes = i->count;
265 
266 	if (unlikely(!bytes))
267 		return 0;
268 
269 	might_fault();
270 	wanted = bytes;
271 	iov = i->iov;
272 	skip = i->iov_offset;
273 	buf = iov->iov_base + skip;
274 	copy = min(bytes, iov->iov_len - skip);
275 
276 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
277 		kaddr = kmap_atomic(page);
278 		to = kaddr + offset;
279 
280 		/* first chunk, usually the only one */
281 		left = copyin(to, buf, copy);
282 		copy -= left;
283 		skip += copy;
284 		to += copy;
285 		bytes -= copy;
286 
287 		while (unlikely(!left && bytes)) {
288 			iov++;
289 			buf = iov->iov_base;
290 			copy = min(bytes, iov->iov_len);
291 			left = copyin(to, buf, copy);
292 			copy -= left;
293 			skip = copy;
294 			to += copy;
295 			bytes -= copy;
296 		}
297 		if (likely(!bytes)) {
298 			kunmap_atomic(kaddr);
299 			goto done;
300 		}
301 		offset = to - kaddr;
302 		buf += copy;
303 		kunmap_atomic(kaddr);
304 		copy = min(bytes, iov->iov_len - skip);
305 	}
306 	/* Too bad - revert to non-atomic kmap */
307 
308 	kaddr = kmap(page);
309 	to = kaddr + offset;
310 	left = copyin(to, buf, copy);
311 	copy -= left;
312 	skip += copy;
313 	to += copy;
314 	bytes -= copy;
315 	while (unlikely(!left && bytes)) {
316 		iov++;
317 		buf = iov->iov_base;
318 		copy = min(bytes, iov->iov_len);
319 		left = copyin(to, buf, copy);
320 		copy -= left;
321 		skip = copy;
322 		to += copy;
323 		bytes -= copy;
324 	}
325 	kunmap(page);
326 
327 done:
328 	if (skip == iov->iov_len) {
329 		iov++;
330 		skip = 0;
331 	}
332 	i->count -= wanted - bytes;
333 	i->nr_segs -= iov - i->iov;
334 	i->iov = iov;
335 	i->iov_offset = skip;
336 	return wanted - bytes;
337 }
338 
339 #ifdef PIPE_PARANOIA
340 static bool sanity(const struct iov_iter *i)
341 {
342 	struct pipe_inode_info *pipe = i->pipe;
343 	unsigned int p_head = pipe->head;
344 	unsigned int p_tail = pipe->tail;
345 	unsigned int p_mask = pipe->ring_size - 1;
346 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
347 	unsigned int i_head = i->head;
348 	unsigned int idx;
349 
350 	if (i->iov_offset) {
351 		struct pipe_buffer *p;
352 		if (unlikely(p_occupancy == 0))
353 			goto Bad;	// pipe must be non-empty
354 		if (unlikely(i_head != p_head - 1))
355 			goto Bad;	// must be at the last buffer...
356 
357 		p = &pipe->bufs[i_head & p_mask];
358 		if (unlikely(p->offset + p->len != i->iov_offset))
359 			goto Bad;	// ... at the end of segment
360 	} else {
361 		if (i_head != p_head)
362 			goto Bad;	// must be right after the last buffer
363 	}
364 	return true;
365 Bad:
366 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
367 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
368 			p_head, p_tail, pipe->ring_size);
369 	for (idx = 0; idx < pipe->ring_size; idx++)
370 		printk(KERN_ERR "[%p %p %d %d]\n",
371 			pipe->bufs[idx].ops,
372 			pipe->bufs[idx].page,
373 			pipe->bufs[idx].offset,
374 			pipe->bufs[idx].len);
375 	WARN_ON(1);
376 	return false;
377 }
378 #else
379 #define sanity(i) true
380 #endif
381 
382 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
383 			 struct iov_iter *i)
384 {
385 	struct pipe_inode_info *pipe = i->pipe;
386 	struct pipe_buffer *buf;
387 	unsigned int p_tail = pipe->tail;
388 	unsigned int p_mask = pipe->ring_size - 1;
389 	unsigned int i_head = i->head;
390 	size_t off;
391 
392 	if (unlikely(bytes > i->count))
393 		bytes = i->count;
394 
395 	if (unlikely(!bytes))
396 		return 0;
397 
398 	if (!sanity(i))
399 		return 0;
400 
401 	off = i->iov_offset;
402 	buf = &pipe->bufs[i_head & p_mask];
403 	if (off) {
404 		if (offset == off && buf->page == page) {
405 			/* merge with the last one */
406 			buf->len += bytes;
407 			i->iov_offset += bytes;
408 			goto out;
409 		}
410 		i_head++;
411 		buf = &pipe->bufs[i_head & p_mask];
412 	}
413 	if (pipe_full(i_head, p_tail, pipe->max_usage))
414 		return 0;
415 
416 	buf->ops = &page_cache_pipe_buf_ops;
417 	get_page(page);
418 	buf->page = page;
419 	buf->offset = offset;
420 	buf->len = bytes;
421 
422 	pipe->head = i_head + 1;
423 	i->iov_offset = offset + bytes;
424 	i->head = i_head;
425 out:
426 	i->count -= bytes;
427 	return bytes;
428 }
429 
430 /*
431  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
432  * bytes.  For each iovec, fault in each page that constitutes the iovec.
433  *
434  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
435  * because it is an invalid address).
436  */
437 int iov_iter_fault_in_readable(const struct iov_iter *i, size_t bytes)
438 {
439 	if (iter_is_iovec(i)) {
440 		const struct iovec *p;
441 		size_t skip;
442 
443 		if (bytes > i->count)
444 			bytes = i->count;
445 		for (p = i->iov, skip = i->iov_offset; bytes; p++, skip = 0) {
446 			size_t len = min(bytes, p->iov_len - skip);
447 			int err;
448 
449 			if (unlikely(!len))
450 				continue;
451 			err = fault_in_pages_readable(p->iov_base + skip, len);
452 			if (unlikely(err))
453 				return err;
454 			bytes -= len;
455 		}
456 	}
457 	return 0;
458 }
459 EXPORT_SYMBOL(iov_iter_fault_in_readable);
460 
461 void iov_iter_init(struct iov_iter *i, unsigned int direction,
462 			const struct iovec *iov, unsigned long nr_segs,
463 			size_t count)
464 {
465 	WARN_ON(direction & ~(READ | WRITE));
466 	WARN_ON_ONCE(uaccess_kernel());
467 	*i = (struct iov_iter) {
468 		.iter_type = ITER_IOVEC,
469 		.data_source = direction,
470 		.iov = iov,
471 		.nr_segs = nr_segs,
472 		.iov_offset = 0,
473 		.count = count
474 	};
475 }
476 EXPORT_SYMBOL(iov_iter_init);
477 
478 static inline bool allocated(struct pipe_buffer *buf)
479 {
480 	return buf->ops == &default_pipe_buf_ops;
481 }
482 
483 static inline void data_start(const struct iov_iter *i,
484 			      unsigned int *iter_headp, size_t *offp)
485 {
486 	unsigned int p_mask = i->pipe->ring_size - 1;
487 	unsigned int iter_head = i->head;
488 	size_t off = i->iov_offset;
489 
490 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
491 		    off == PAGE_SIZE)) {
492 		iter_head++;
493 		off = 0;
494 	}
495 	*iter_headp = iter_head;
496 	*offp = off;
497 }
498 
499 static size_t push_pipe(struct iov_iter *i, size_t size,
500 			int *iter_headp, size_t *offp)
501 {
502 	struct pipe_inode_info *pipe = i->pipe;
503 	unsigned int p_tail = pipe->tail;
504 	unsigned int p_mask = pipe->ring_size - 1;
505 	unsigned int iter_head;
506 	size_t off;
507 	ssize_t left;
508 
509 	if (unlikely(size > i->count))
510 		size = i->count;
511 	if (unlikely(!size))
512 		return 0;
513 
514 	left = size;
515 	data_start(i, &iter_head, &off);
516 	*iter_headp = iter_head;
517 	*offp = off;
518 	if (off) {
519 		left -= PAGE_SIZE - off;
520 		if (left <= 0) {
521 			pipe->bufs[iter_head & p_mask].len += size;
522 			return size;
523 		}
524 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
525 		iter_head++;
526 	}
527 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
528 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
529 		struct page *page = alloc_page(GFP_USER);
530 		if (!page)
531 			break;
532 
533 		buf->ops = &default_pipe_buf_ops;
534 		buf->page = page;
535 		buf->offset = 0;
536 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
537 		left -= buf->len;
538 		iter_head++;
539 		pipe->head = iter_head;
540 
541 		if (left == 0)
542 			return size;
543 	}
544 	return size - left;
545 }
546 
547 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
548 				struct iov_iter *i)
549 {
550 	struct pipe_inode_info *pipe = i->pipe;
551 	unsigned int p_mask = pipe->ring_size - 1;
552 	unsigned int i_head;
553 	size_t n, off;
554 
555 	if (!sanity(i))
556 		return 0;
557 
558 	bytes = n = push_pipe(i, bytes, &i_head, &off);
559 	if (unlikely(!n))
560 		return 0;
561 	do {
562 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
563 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
564 		i->head = i_head;
565 		i->iov_offset = off + chunk;
566 		n -= chunk;
567 		addr += chunk;
568 		off = 0;
569 		i_head++;
570 	} while (n);
571 	i->count -= bytes;
572 	return bytes;
573 }
574 
575 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
576 			      __wsum sum, size_t off)
577 {
578 	__wsum next = csum_partial_copy_nocheck(from, to, len);
579 	return csum_block_add(sum, next, off);
580 }
581 
582 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
583 					 struct csum_state *csstate,
584 					 struct iov_iter *i)
585 {
586 	struct pipe_inode_info *pipe = i->pipe;
587 	unsigned int p_mask = pipe->ring_size - 1;
588 	__wsum sum = csstate->csum;
589 	size_t off = csstate->off;
590 	unsigned int i_head;
591 	size_t n, r;
592 
593 	if (!sanity(i))
594 		return 0;
595 
596 	bytes = n = push_pipe(i, bytes, &i_head, &r);
597 	if (unlikely(!n))
598 		return 0;
599 	do {
600 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
601 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
602 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
603 		kunmap_atomic(p);
604 		i->head = i_head;
605 		i->iov_offset = r + chunk;
606 		n -= chunk;
607 		off += chunk;
608 		addr += chunk;
609 		r = 0;
610 		i_head++;
611 	} while (n);
612 	i->count -= bytes;
613 	csstate->csum = sum;
614 	csstate->off = off;
615 	return bytes;
616 }
617 
618 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
619 {
620 	if (unlikely(iov_iter_is_pipe(i)))
621 		return copy_pipe_to_iter(addr, bytes, i);
622 	if (iter_is_iovec(i))
623 		might_fault();
624 	iterate_and_advance(i, bytes, base, len, off,
625 		copyout(base, addr + off, len),
626 		memcpy(base, addr + off, len)
627 	)
628 
629 	return bytes;
630 }
631 EXPORT_SYMBOL(_copy_to_iter);
632 
633 #ifdef CONFIG_ARCH_HAS_COPY_MC
634 static int copyout_mc(void __user *to, const void *from, size_t n)
635 {
636 	if (access_ok(to, n)) {
637 		instrument_copy_to_user(to, from, n);
638 		n = copy_mc_to_user((__force void *) to, from, n);
639 	}
640 	return n;
641 }
642 
643 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
644 		const char *from, size_t len)
645 {
646 	unsigned long ret;
647 	char *to;
648 
649 	to = kmap_atomic(page);
650 	ret = copy_mc_to_kernel(to + offset, from, len);
651 	kunmap_atomic(to);
652 
653 	return ret;
654 }
655 
656 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
657 				struct iov_iter *i)
658 {
659 	struct pipe_inode_info *pipe = i->pipe;
660 	unsigned int p_mask = pipe->ring_size - 1;
661 	unsigned int i_head;
662 	size_t n, off, xfer = 0;
663 
664 	if (!sanity(i))
665 		return 0;
666 
667 	bytes = n = push_pipe(i, bytes, &i_head, &off);
668 	if (unlikely(!n))
669 		return 0;
670 	do {
671 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
672 		unsigned long rem;
673 
674 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
675 					    off, addr, chunk);
676 		i->head = i_head;
677 		i->iov_offset = off + chunk - rem;
678 		xfer += chunk - rem;
679 		if (rem)
680 			break;
681 		n -= chunk;
682 		addr += chunk;
683 		off = 0;
684 		i_head++;
685 	} while (n);
686 	i->count -= xfer;
687 	return xfer;
688 }
689 
690 /**
691  * _copy_mc_to_iter - copy to iter with source memory error exception handling
692  * @addr: source kernel address
693  * @bytes: total transfer length
694  * @iter: destination iterator
695  *
696  * The pmem driver deploys this for the dax operation
697  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
698  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
699  * successfully copied.
700  *
701  * The main differences between this and typical _copy_to_iter().
702  *
703  * * Typical tail/residue handling after a fault retries the copy
704  *   byte-by-byte until the fault happens again. Re-triggering machine
705  *   checks is potentially fatal so the implementation uses source
706  *   alignment and poison alignment assumptions to avoid re-triggering
707  *   hardware exceptions.
708  *
709  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
710  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
711  *   a short copy.
712  */
713 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
714 {
715 	if (unlikely(iov_iter_is_pipe(i)))
716 		return copy_mc_pipe_to_iter(addr, bytes, i);
717 	if (iter_is_iovec(i))
718 		might_fault();
719 	__iterate_and_advance(i, bytes, base, len, off,
720 		copyout_mc(base, addr + off, len),
721 		copy_mc_to_kernel(base, addr + off, len)
722 	)
723 
724 	return bytes;
725 }
726 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
727 #endif /* CONFIG_ARCH_HAS_COPY_MC */
728 
729 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
730 {
731 	if (unlikely(iov_iter_is_pipe(i))) {
732 		WARN_ON(1);
733 		return 0;
734 	}
735 	if (iter_is_iovec(i))
736 		might_fault();
737 	iterate_and_advance(i, bytes, base, len, off,
738 		copyin(addr + off, base, len),
739 		memcpy(addr + off, base, len)
740 	)
741 
742 	return bytes;
743 }
744 EXPORT_SYMBOL(_copy_from_iter);
745 
746 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
747 {
748 	if (unlikely(iov_iter_is_pipe(i))) {
749 		WARN_ON(1);
750 		return 0;
751 	}
752 	iterate_and_advance(i, bytes, base, len, off,
753 		__copy_from_user_inatomic_nocache(addr + off, base, len),
754 		memcpy(addr + off, base, len)
755 	)
756 
757 	return bytes;
758 }
759 EXPORT_SYMBOL(_copy_from_iter_nocache);
760 
761 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
762 /**
763  * _copy_from_iter_flushcache - write destination through cpu cache
764  * @addr: destination kernel address
765  * @bytes: total transfer length
766  * @iter: source iterator
767  *
768  * The pmem driver arranges for filesystem-dax to use this facility via
769  * dax_copy_from_iter() for ensuring that writes to persistent memory
770  * are flushed through the CPU cache. It is differentiated from
771  * _copy_from_iter_nocache() in that guarantees all data is flushed for
772  * all iterator types. The _copy_from_iter_nocache() only attempts to
773  * bypass the cache for the ITER_IOVEC case, and on some archs may use
774  * instructions that strand dirty-data in the cache.
775  */
776 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
777 {
778 	if (unlikely(iov_iter_is_pipe(i))) {
779 		WARN_ON(1);
780 		return 0;
781 	}
782 	iterate_and_advance(i, bytes, base, len, off,
783 		__copy_from_user_flushcache(addr + off, base, len),
784 		memcpy_flushcache(addr + off, base, len)
785 	)
786 
787 	return bytes;
788 }
789 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
790 #endif
791 
792 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
793 {
794 	struct page *head;
795 	size_t v = n + offset;
796 
797 	/*
798 	 * The general case needs to access the page order in order
799 	 * to compute the page size.
800 	 * However, we mostly deal with order-0 pages and thus can
801 	 * avoid a possible cache line miss for requests that fit all
802 	 * page orders.
803 	 */
804 	if (n <= v && v <= PAGE_SIZE)
805 		return true;
806 
807 	head = compound_head(page);
808 	v += (page - head) << PAGE_SHIFT;
809 
810 	if (likely(n <= v && v <= (page_size(head))))
811 		return true;
812 	WARN_ON(1);
813 	return false;
814 }
815 
816 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
817 			 struct iov_iter *i)
818 {
819 	if (likely(iter_is_iovec(i)))
820 		return copy_page_to_iter_iovec(page, offset, bytes, i);
821 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
822 		void *kaddr = kmap_atomic(page);
823 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
824 		kunmap_atomic(kaddr);
825 		return wanted;
826 	}
827 	if (iov_iter_is_pipe(i))
828 		return copy_page_to_iter_pipe(page, offset, bytes, i);
829 	if (unlikely(iov_iter_is_discard(i))) {
830 		if (unlikely(i->count < bytes))
831 			bytes = i->count;
832 		i->count -= bytes;
833 		return bytes;
834 	}
835 	WARN_ON(1);
836 	return 0;
837 }
838 
839 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
840 			 struct iov_iter *i)
841 {
842 	size_t res = 0;
843 	if (unlikely(!page_copy_sane(page, offset, bytes)))
844 		return 0;
845 	page += offset / PAGE_SIZE; // first subpage
846 	offset %= PAGE_SIZE;
847 	while (1) {
848 		size_t n = __copy_page_to_iter(page, offset,
849 				min(bytes, (size_t)PAGE_SIZE - offset), i);
850 		res += n;
851 		bytes -= n;
852 		if (!bytes || !n)
853 			break;
854 		offset += n;
855 		if (offset == PAGE_SIZE) {
856 			page++;
857 			offset = 0;
858 		}
859 	}
860 	return res;
861 }
862 EXPORT_SYMBOL(copy_page_to_iter);
863 
864 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
865 			 struct iov_iter *i)
866 {
867 	if (unlikely(!page_copy_sane(page, offset, bytes)))
868 		return 0;
869 	if (likely(iter_is_iovec(i)))
870 		return copy_page_from_iter_iovec(page, offset, bytes, i);
871 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
872 		void *kaddr = kmap_atomic(page);
873 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
874 		kunmap_atomic(kaddr);
875 		return wanted;
876 	}
877 	WARN_ON(1);
878 	return 0;
879 }
880 EXPORT_SYMBOL(copy_page_from_iter);
881 
882 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
883 {
884 	struct pipe_inode_info *pipe = i->pipe;
885 	unsigned int p_mask = pipe->ring_size - 1;
886 	unsigned int i_head;
887 	size_t n, off;
888 
889 	if (!sanity(i))
890 		return 0;
891 
892 	bytes = n = push_pipe(i, bytes, &i_head, &off);
893 	if (unlikely(!n))
894 		return 0;
895 
896 	do {
897 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
898 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
899 		i->head = i_head;
900 		i->iov_offset = off + chunk;
901 		n -= chunk;
902 		off = 0;
903 		i_head++;
904 	} while (n);
905 	i->count -= bytes;
906 	return bytes;
907 }
908 
909 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
910 {
911 	if (unlikely(iov_iter_is_pipe(i)))
912 		return pipe_zero(bytes, i);
913 	iterate_and_advance(i, bytes, base, len, count,
914 		clear_user(base, len),
915 		memset(base, 0, len)
916 	)
917 
918 	return bytes;
919 }
920 EXPORT_SYMBOL(iov_iter_zero);
921 
922 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
923 				  struct iov_iter *i)
924 {
925 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
926 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
927 		kunmap_atomic(kaddr);
928 		return 0;
929 	}
930 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
931 		kunmap_atomic(kaddr);
932 		WARN_ON(1);
933 		return 0;
934 	}
935 	iterate_and_advance(i, bytes, base, len, off,
936 		copyin(p + off, base, len),
937 		memcpy(p + off, base, len)
938 	)
939 	kunmap_atomic(kaddr);
940 	return bytes;
941 }
942 EXPORT_SYMBOL(copy_page_from_iter_atomic);
943 
944 static inline void pipe_truncate(struct iov_iter *i)
945 {
946 	struct pipe_inode_info *pipe = i->pipe;
947 	unsigned int p_tail = pipe->tail;
948 	unsigned int p_head = pipe->head;
949 	unsigned int p_mask = pipe->ring_size - 1;
950 
951 	if (!pipe_empty(p_head, p_tail)) {
952 		struct pipe_buffer *buf;
953 		unsigned int i_head = i->head;
954 		size_t off = i->iov_offset;
955 
956 		if (off) {
957 			buf = &pipe->bufs[i_head & p_mask];
958 			buf->len = off - buf->offset;
959 			i_head++;
960 		}
961 		while (p_head != i_head) {
962 			p_head--;
963 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
964 		}
965 
966 		pipe->head = p_head;
967 	}
968 }
969 
970 static void pipe_advance(struct iov_iter *i, size_t size)
971 {
972 	struct pipe_inode_info *pipe = i->pipe;
973 	if (size) {
974 		struct pipe_buffer *buf;
975 		unsigned int p_mask = pipe->ring_size - 1;
976 		unsigned int i_head = i->head;
977 		size_t off = i->iov_offset, left = size;
978 
979 		if (off) /* make it relative to the beginning of buffer */
980 			left += off - pipe->bufs[i_head & p_mask].offset;
981 		while (1) {
982 			buf = &pipe->bufs[i_head & p_mask];
983 			if (left <= buf->len)
984 				break;
985 			left -= buf->len;
986 			i_head++;
987 		}
988 		i->head = i_head;
989 		i->iov_offset = buf->offset + left;
990 	}
991 	i->count -= size;
992 	/* ... and discard everything past that point */
993 	pipe_truncate(i);
994 }
995 
996 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
997 {
998 	struct bvec_iter bi;
999 
1000 	bi.bi_size = i->count;
1001 	bi.bi_bvec_done = i->iov_offset;
1002 	bi.bi_idx = 0;
1003 	bvec_iter_advance(i->bvec, &bi, size);
1004 
1005 	i->bvec += bi.bi_idx;
1006 	i->nr_segs -= bi.bi_idx;
1007 	i->count = bi.bi_size;
1008 	i->iov_offset = bi.bi_bvec_done;
1009 }
1010 
1011 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
1012 {
1013 	const struct iovec *iov, *end;
1014 
1015 	if (!i->count)
1016 		return;
1017 	i->count -= size;
1018 
1019 	size += i->iov_offset; // from beginning of current segment
1020 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1021 		if (likely(size < iov->iov_len))
1022 			break;
1023 		size -= iov->iov_len;
1024 	}
1025 	i->iov_offset = size;
1026 	i->nr_segs -= iov - i->iov;
1027 	i->iov = iov;
1028 }
1029 
1030 void iov_iter_advance(struct iov_iter *i, size_t size)
1031 {
1032 	if (unlikely(i->count < size))
1033 		size = i->count;
1034 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1035 		/* iovec and kvec have identical layouts */
1036 		iov_iter_iovec_advance(i, size);
1037 	} else if (iov_iter_is_bvec(i)) {
1038 		iov_iter_bvec_advance(i, size);
1039 	} else if (iov_iter_is_pipe(i)) {
1040 		pipe_advance(i, size);
1041 	} else if (unlikely(iov_iter_is_xarray(i))) {
1042 		i->iov_offset += size;
1043 		i->count -= size;
1044 	} else if (iov_iter_is_discard(i)) {
1045 		i->count -= size;
1046 	}
1047 }
1048 EXPORT_SYMBOL(iov_iter_advance);
1049 
1050 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1051 {
1052 	if (!unroll)
1053 		return;
1054 	if (WARN_ON(unroll > MAX_RW_COUNT))
1055 		return;
1056 	i->count += unroll;
1057 	if (unlikely(iov_iter_is_pipe(i))) {
1058 		struct pipe_inode_info *pipe = i->pipe;
1059 		unsigned int p_mask = pipe->ring_size - 1;
1060 		unsigned int i_head = i->head;
1061 		size_t off = i->iov_offset;
1062 		while (1) {
1063 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1064 			size_t n = off - b->offset;
1065 			if (unroll < n) {
1066 				off -= unroll;
1067 				break;
1068 			}
1069 			unroll -= n;
1070 			if (!unroll && i_head == i->start_head) {
1071 				off = 0;
1072 				break;
1073 			}
1074 			i_head--;
1075 			b = &pipe->bufs[i_head & p_mask];
1076 			off = b->offset + b->len;
1077 		}
1078 		i->iov_offset = off;
1079 		i->head = i_head;
1080 		pipe_truncate(i);
1081 		return;
1082 	}
1083 	if (unlikely(iov_iter_is_discard(i)))
1084 		return;
1085 	if (unroll <= i->iov_offset) {
1086 		i->iov_offset -= unroll;
1087 		return;
1088 	}
1089 	unroll -= i->iov_offset;
1090 	if (iov_iter_is_xarray(i)) {
1091 		BUG(); /* We should never go beyond the start of the specified
1092 			* range since we might then be straying into pages that
1093 			* aren't pinned.
1094 			*/
1095 	} else if (iov_iter_is_bvec(i)) {
1096 		const struct bio_vec *bvec = i->bvec;
1097 		while (1) {
1098 			size_t n = (--bvec)->bv_len;
1099 			i->nr_segs++;
1100 			if (unroll <= n) {
1101 				i->bvec = bvec;
1102 				i->iov_offset = n - unroll;
1103 				return;
1104 			}
1105 			unroll -= n;
1106 		}
1107 	} else { /* same logics for iovec and kvec */
1108 		const struct iovec *iov = i->iov;
1109 		while (1) {
1110 			size_t n = (--iov)->iov_len;
1111 			i->nr_segs++;
1112 			if (unroll <= n) {
1113 				i->iov = iov;
1114 				i->iov_offset = n - unroll;
1115 				return;
1116 			}
1117 			unroll -= n;
1118 		}
1119 	}
1120 }
1121 EXPORT_SYMBOL(iov_iter_revert);
1122 
1123 /*
1124  * Return the count of just the current iov_iter segment.
1125  */
1126 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1127 {
1128 	if (i->nr_segs > 1) {
1129 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1130 			return min(i->count, i->iov->iov_len - i->iov_offset);
1131 		if (iov_iter_is_bvec(i))
1132 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1133 	}
1134 	return i->count;
1135 }
1136 EXPORT_SYMBOL(iov_iter_single_seg_count);
1137 
1138 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1139 			const struct kvec *kvec, unsigned long nr_segs,
1140 			size_t count)
1141 {
1142 	WARN_ON(direction & ~(READ | WRITE));
1143 	*i = (struct iov_iter){
1144 		.iter_type = ITER_KVEC,
1145 		.data_source = direction,
1146 		.kvec = kvec,
1147 		.nr_segs = nr_segs,
1148 		.iov_offset = 0,
1149 		.count = count
1150 	};
1151 }
1152 EXPORT_SYMBOL(iov_iter_kvec);
1153 
1154 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1155 			const struct bio_vec *bvec, unsigned long nr_segs,
1156 			size_t count)
1157 {
1158 	WARN_ON(direction & ~(READ | WRITE));
1159 	*i = (struct iov_iter){
1160 		.iter_type = ITER_BVEC,
1161 		.data_source = direction,
1162 		.bvec = bvec,
1163 		.nr_segs = nr_segs,
1164 		.iov_offset = 0,
1165 		.count = count
1166 	};
1167 }
1168 EXPORT_SYMBOL(iov_iter_bvec);
1169 
1170 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1171 			struct pipe_inode_info *pipe,
1172 			size_t count)
1173 {
1174 	BUG_ON(direction != READ);
1175 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1176 	*i = (struct iov_iter){
1177 		.iter_type = ITER_PIPE,
1178 		.data_source = false,
1179 		.pipe = pipe,
1180 		.head = pipe->head,
1181 		.start_head = pipe->head,
1182 		.iov_offset = 0,
1183 		.count = count
1184 	};
1185 }
1186 EXPORT_SYMBOL(iov_iter_pipe);
1187 
1188 /**
1189  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1190  * @i: The iterator to initialise.
1191  * @direction: The direction of the transfer.
1192  * @xarray: The xarray to access.
1193  * @start: The start file position.
1194  * @count: The size of the I/O buffer in bytes.
1195  *
1196  * Set up an I/O iterator to either draw data out of the pages attached to an
1197  * inode or to inject data into those pages.  The pages *must* be prevented
1198  * from evaporation, either by taking a ref on them or locking them by the
1199  * caller.
1200  */
1201 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1202 		     struct xarray *xarray, loff_t start, size_t count)
1203 {
1204 	BUG_ON(direction & ~1);
1205 	*i = (struct iov_iter) {
1206 		.iter_type = ITER_XARRAY,
1207 		.data_source = direction,
1208 		.xarray = xarray,
1209 		.xarray_start = start,
1210 		.count = count,
1211 		.iov_offset = 0
1212 	};
1213 }
1214 EXPORT_SYMBOL(iov_iter_xarray);
1215 
1216 /**
1217  * iov_iter_discard - Initialise an I/O iterator that discards data
1218  * @i: The iterator to initialise.
1219  * @direction: The direction of the transfer.
1220  * @count: The size of the I/O buffer in bytes.
1221  *
1222  * Set up an I/O iterator that just discards everything that's written to it.
1223  * It's only available as a READ iterator.
1224  */
1225 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1226 {
1227 	BUG_ON(direction != READ);
1228 	*i = (struct iov_iter){
1229 		.iter_type = ITER_DISCARD,
1230 		.data_source = false,
1231 		.count = count,
1232 		.iov_offset = 0
1233 	};
1234 }
1235 EXPORT_SYMBOL(iov_iter_discard);
1236 
1237 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1238 {
1239 	unsigned long res = 0;
1240 	size_t size = i->count;
1241 	size_t skip = i->iov_offset;
1242 	unsigned k;
1243 
1244 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1245 		size_t len = i->iov[k].iov_len - skip;
1246 		if (len) {
1247 			res |= (unsigned long)i->iov[k].iov_base + skip;
1248 			if (len > size)
1249 				len = size;
1250 			res |= len;
1251 			size -= len;
1252 			if (!size)
1253 				break;
1254 		}
1255 	}
1256 	return res;
1257 }
1258 
1259 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1260 {
1261 	unsigned res = 0;
1262 	size_t size = i->count;
1263 	unsigned skip = i->iov_offset;
1264 	unsigned k;
1265 
1266 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1267 		size_t len = i->bvec[k].bv_len - skip;
1268 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1269 		if (len > size)
1270 			len = size;
1271 		res |= len;
1272 		size -= len;
1273 		if (!size)
1274 			break;
1275 	}
1276 	return res;
1277 }
1278 
1279 unsigned long iov_iter_alignment(const struct iov_iter *i)
1280 {
1281 	/* iovec and kvec have identical layouts */
1282 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1283 		return iov_iter_alignment_iovec(i);
1284 
1285 	if (iov_iter_is_bvec(i))
1286 		return iov_iter_alignment_bvec(i);
1287 
1288 	if (iov_iter_is_pipe(i)) {
1289 		unsigned int p_mask = i->pipe->ring_size - 1;
1290 		size_t size = i->count;
1291 
1292 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1293 			return size | i->iov_offset;
1294 		return size;
1295 	}
1296 
1297 	if (iov_iter_is_xarray(i))
1298 		return (i->xarray_start + i->iov_offset) | i->count;
1299 
1300 	return 0;
1301 }
1302 EXPORT_SYMBOL(iov_iter_alignment);
1303 
1304 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1305 {
1306 	unsigned long res = 0;
1307 	unsigned long v = 0;
1308 	size_t size = i->count;
1309 	unsigned k;
1310 
1311 	if (WARN_ON(!iter_is_iovec(i)))
1312 		return ~0U;
1313 
1314 	for (k = 0; k < i->nr_segs; k++) {
1315 		if (i->iov[k].iov_len) {
1316 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1317 			if (v) // if not the first one
1318 				res |= base | v; // this start | previous end
1319 			v = base + i->iov[k].iov_len;
1320 			if (size <= i->iov[k].iov_len)
1321 				break;
1322 			size -= i->iov[k].iov_len;
1323 		}
1324 	}
1325 	return res;
1326 }
1327 EXPORT_SYMBOL(iov_iter_gap_alignment);
1328 
1329 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1330 				size_t maxsize,
1331 				struct page **pages,
1332 				int iter_head,
1333 				size_t *start)
1334 {
1335 	struct pipe_inode_info *pipe = i->pipe;
1336 	unsigned int p_mask = pipe->ring_size - 1;
1337 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1338 	if (!n)
1339 		return -EFAULT;
1340 
1341 	maxsize = n;
1342 	n += *start;
1343 	while (n > 0) {
1344 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1345 		iter_head++;
1346 		n -= PAGE_SIZE;
1347 	}
1348 
1349 	return maxsize;
1350 }
1351 
1352 static ssize_t pipe_get_pages(struct iov_iter *i,
1353 		   struct page **pages, size_t maxsize, unsigned maxpages,
1354 		   size_t *start)
1355 {
1356 	unsigned int iter_head, npages;
1357 	size_t capacity;
1358 
1359 	if (!sanity(i))
1360 		return -EFAULT;
1361 
1362 	data_start(i, &iter_head, start);
1363 	/* Amount of free space: some of this one + all after this one */
1364 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1365 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1366 
1367 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1368 }
1369 
1370 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1371 					  pgoff_t index, unsigned int nr_pages)
1372 {
1373 	XA_STATE(xas, xa, index);
1374 	struct page *page;
1375 	unsigned int ret = 0;
1376 
1377 	rcu_read_lock();
1378 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1379 		if (xas_retry(&xas, page))
1380 			continue;
1381 
1382 		/* Has the page moved or been split? */
1383 		if (unlikely(page != xas_reload(&xas))) {
1384 			xas_reset(&xas);
1385 			continue;
1386 		}
1387 
1388 		pages[ret] = find_subpage(page, xas.xa_index);
1389 		get_page(pages[ret]);
1390 		if (++ret == nr_pages)
1391 			break;
1392 	}
1393 	rcu_read_unlock();
1394 	return ret;
1395 }
1396 
1397 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1398 				     struct page **pages, size_t maxsize,
1399 				     unsigned maxpages, size_t *_start_offset)
1400 {
1401 	unsigned nr, offset;
1402 	pgoff_t index, count;
1403 	size_t size = maxsize, actual;
1404 	loff_t pos;
1405 
1406 	if (!size || !maxpages)
1407 		return 0;
1408 
1409 	pos = i->xarray_start + i->iov_offset;
1410 	index = pos >> PAGE_SHIFT;
1411 	offset = pos & ~PAGE_MASK;
1412 	*_start_offset = offset;
1413 
1414 	count = 1;
1415 	if (size > PAGE_SIZE - offset) {
1416 		size -= PAGE_SIZE - offset;
1417 		count += size >> PAGE_SHIFT;
1418 		size &= ~PAGE_MASK;
1419 		if (size)
1420 			count++;
1421 	}
1422 
1423 	if (count > maxpages)
1424 		count = maxpages;
1425 
1426 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1427 	if (nr == 0)
1428 		return 0;
1429 
1430 	actual = PAGE_SIZE * nr;
1431 	actual -= offset;
1432 	if (nr == count && size > 0) {
1433 		unsigned last_offset = (nr > 1) ? 0 : offset;
1434 		actual -= PAGE_SIZE - (last_offset + size);
1435 	}
1436 	return actual;
1437 }
1438 
1439 /* must be done on non-empty ITER_IOVEC one */
1440 static unsigned long first_iovec_segment(const struct iov_iter *i,
1441 					 size_t *size, size_t *start,
1442 					 size_t maxsize, unsigned maxpages)
1443 {
1444 	size_t skip;
1445 	long k;
1446 
1447 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1448 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1449 		size_t len = i->iov[k].iov_len - skip;
1450 
1451 		if (unlikely(!len))
1452 			continue;
1453 		if (len > maxsize)
1454 			len = maxsize;
1455 		len += (*start = addr % PAGE_SIZE);
1456 		if (len > maxpages * PAGE_SIZE)
1457 			len = maxpages * PAGE_SIZE;
1458 		*size = len;
1459 		return addr & PAGE_MASK;
1460 	}
1461 	BUG(); // if it had been empty, we wouldn't get called
1462 }
1463 
1464 /* must be done on non-empty ITER_BVEC one */
1465 static struct page *first_bvec_segment(const struct iov_iter *i,
1466 				       size_t *size, size_t *start,
1467 				       size_t maxsize, unsigned maxpages)
1468 {
1469 	struct page *page;
1470 	size_t skip = i->iov_offset, len;
1471 
1472 	len = i->bvec->bv_len - skip;
1473 	if (len > maxsize)
1474 		len = maxsize;
1475 	skip += i->bvec->bv_offset;
1476 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1477 	len += (*start = skip % PAGE_SIZE);
1478 	if (len > maxpages * PAGE_SIZE)
1479 		len = maxpages * PAGE_SIZE;
1480 	*size = len;
1481 	return page;
1482 }
1483 
1484 ssize_t iov_iter_get_pages(struct iov_iter *i,
1485 		   struct page **pages, size_t maxsize, unsigned maxpages,
1486 		   size_t *start)
1487 {
1488 	size_t len;
1489 	int n, res;
1490 
1491 	if (maxsize > i->count)
1492 		maxsize = i->count;
1493 	if (!maxsize)
1494 		return 0;
1495 
1496 	if (likely(iter_is_iovec(i))) {
1497 		unsigned long addr;
1498 
1499 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1500 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1501 		res = get_user_pages_fast(addr, n,
1502 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1503 				pages);
1504 		if (unlikely(res < 0))
1505 			return res;
1506 		return (res == n ? len : res * PAGE_SIZE) - *start;
1507 	}
1508 	if (iov_iter_is_bvec(i)) {
1509 		struct page *page;
1510 
1511 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1512 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1513 		while (n--)
1514 			get_page(*pages++ = page++);
1515 		return len - *start;
1516 	}
1517 	if (iov_iter_is_pipe(i))
1518 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1519 	if (iov_iter_is_xarray(i))
1520 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1521 	return -EFAULT;
1522 }
1523 EXPORT_SYMBOL(iov_iter_get_pages);
1524 
1525 static struct page **get_pages_array(size_t n)
1526 {
1527 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1528 }
1529 
1530 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1531 		   struct page ***pages, size_t maxsize,
1532 		   size_t *start)
1533 {
1534 	struct page **p;
1535 	unsigned int iter_head, npages;
1536 	ssize_t n;
1537 
1538 	if (!sanity(i))
1539 		return -EFAULT;
1540 
1541 	data_start(i, &iter_head, start);
1542 	/* Amount of free space: some of this one + all after this one */
1543 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1544 	n = npages * PAGE_SIZE - *start;
1545 	if (maxsize > n)
1546 		maxsize = n;
1547 	else
1548 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1549 	p = get_pages_array(npages);
1550 	if (!p)
1551 		return -ENOMEM;
1552 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1553 	if (n > 0)
1554 		*pages = p;
1555 	else
1556 		kvfree(p);
1557 	return n;
1558 }
1559 
1560 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1561 					   struct page ***pages, size_t maxsize,
1562 					   size_t *_start_offset)
1563 {
1564 	struct page **p;
1565 	unsigned nr, offset;
1566 	pgoff_t index, count;
1567 	size_t size = maxsize, actual;
1568 	loff_t pos;
1569 
1570 	if (!size)
1571 		return 0;
1572 
1573 	pos = i->xarray_start + i->iov_offset;
1574 	index = pos >> PAGE_SHIFT;
1575 	offset = pos & ~PAGE_MASK;
1576 	*_start_offset = offset;
1577 
1578 	count = 1;
1579 	if (size > PAGE_SIZE - offset) {
1580 		size -= PAGE_SIZE - offset;
1581 		count += size >> PAGE_SHIFT;
1582 		size &= ~PAGE_MASK;
1583 		if (size)
1584 			count++;
1585 	}
1586 
1587 	p = get_pages_array(count);
1588 	if (!p)
1589 		return -ENOMEM;
1590 	*pages = p;
1591 
1592 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1593 	if (nr == 0)
1594 		return 0;
1595 
1596 	actual = PAGE_SIZE * nr;
1597 	actual -= offset;
1598 	if (nr == count && size > 0) {
1599 		unsigned last_offset = (nr > 1) ? 0 : offset;
1600 		actual -= PAGE_SIZE - (last_offset + size);
1601 	}
1602 	return actual;
1603 }
1604 
1605 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1606 		   struct page ***pages, size_t maxsize,
1607 		   size_t *start)
1608 {
1609 	struct page **p;
1610 	size_t len;
1611 	int n, res;
1612 
1613 	if (maxsize > i->count)
1614 		maxsize = i->count;
1615 	if (!maxsize)
1616 		return 0;
1617 
1618 	if (likely(iter_is_iovec(i))) {
1619 		unsigned long addr;
1620 
1621 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1622 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1623 		p = get_pages_array(n);
1624 		if (!p)
1625 			return -ENOMEM;
1626 		res = get_user_pages_fast(addr, n,
1627 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1628 		if (unlikely(res < 0)) {
1629 			kvfree(p);
1630 			return res;
1631 		}
1632 		*pages = p;
1633 		return (res == n ? len : res * PAGE_SIZE) - *start;
1634 	}
1635 	if (iov_iter_is_bvec(i)) {
1636 		struct page *page;
1637 
1638 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1639 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1640 		*pages = p = get_pages_array(n);
1641 		if (!p)
1642 			return -ENOMEM;
1643 		while (n--)
1644 			get_page(*p++ = page++);
1645 		return len - *start;
1646 	}
1647 	if (iov_iter_is_pipe(i))
1648 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1649 	if (iov_iter_is_xarray(i))
1650 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1651 	return -EFAULT;
1652 }
1653 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1654 
1655 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1656 			       struct iov_iter *i)
1657 {
1658 	__wsum sum, next;
1659 	sum = *csum;
1660 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1661 		WARN_ON(1);
1662 		return 0;
1663 	}
1664 	iterate_and_advance(i, bytes, base, len, off, ({
1665 		next = csum_and_copy_from_user(base, addr + off, len);
1666 		if (next)
1667 			sum = csum_block_add(sum, next, off);
1668 		next ? 0 : len;
1669 	}), ({
1670 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1671 	})
1672 	)
1673 	*csum = sum;
1674 	return bytes;
1675 }
1676 EXPORT_SYMBOL(csum_and_copy_from_iter);
1677 
1678 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1679 			     struct iov_iter *i)
1680 {
1681 	struct csum_state *csstate = _csstate;
1682 	__wsum sum, next;
1683 
1684 	if (unlikely(iov_iter_is_pipe(i)))
1685 		return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1686 
1687 	sum = csum_shift(csstate->csum, csstate->off);
1688 	if (unlikely(iov_iter_is_discard(i))) {
1689 		WARN_ON(1);	/* for now */
1690 		return 0;
1691 	}
1692 	iterate_and_advance(i, bytes, base, len, off, ({
1693 		next = csum_and_copy_to_user(addr + off, base, len);
1694 		if (next)
1695 			sum = csum_block_add(sum, next, off);
1696 		next ? 0 : len;
1697 	}), ({
1698 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1699 	})
1700 	)
1701 	csstate->csum = csum_shift(sum, csstate->off);
1702 	csstate->off += bytes;
1703 	return bytes;
1704 }
1705 EXPORT_SYMBOL(csum_and_copy_to_iter);
1706 
1707 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1708 		struct iov_iter *i)
1709 {
1710 #ifdef CONFIG_CRYPTO_HASH
1711 	struct ahash_request *hash = hashp;
1712 	struct scatterlist sg;
1713 	size_t copied;
1714 
1715 	copied = copy_to_iter(addr, bytes, i);
1716 	sg_init_one(&sg, addr, copied);
1717 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1718 	crypto_ahash_update(hash);
1719 	return copied;
1720 #else
1721 	return 0;
1722 #endif
1723 }
1724 EXPORT_SYMBOL(hash_and_copy_to_iter);
1725 
1726 static int iov_npages(const struct iov_iter *i, int maxpages)
1727 {
1728 	size_t skip = i->iov_offset, size = i->count;
1729 	const struct iovec *p;
1730 	int npages = 0;
1731 
1732 	for (p = i->iov; size; skip = 0, p++) {
1733 		unsigned offs = offset_in_page(p->iov_base + skip);
1734 		size_t len = min(p->iov_len - skip, size);
1735 
1736 		if (len) {
1737 			size -= len;
1738 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1739 			if (unlikely(npages > maxpages))
1740 				return maxpages;
1741 		}
1742 	}
1743 	return npages;
1744 }
1745 
1746 static int bvec_npages(const struct iov_iter *i, int maxpages)
1747 {
1748 	size_t skip = i->iov_offset, size = i->count;
1749 	const struct bio_vec *p;
1750 	int npages = 0;
1751 
1752 	for (p = i->bvec; size; skip = 0, p++) {
1753 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1754 		size_t len = min(p->bv_len - skip, size);
1755 
1756 		size -= len;
1757 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1758 		if (unlikely(npages > maxpages))
1759 			return maxpages;
1760 	}
1761 	return npages;
1762 }
1763 
1764 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1765 {
1766 	if (unlikely(!i->count))
1767 		return 0;
1768 	/* iovec and kvec have identical layouts */
1769 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1770 		return iov_npages(i, maxpages);
1771 	if (iov_iter_is_bvec(i))
1772 		return bvec_npages(i, maxpages);
1773 	if (iov_iter_is_pipe(i)) {
1774 		unsigned int iter_head;
1775 		int npages;
1776 		size_t off;
1777 
1778 		if (!sanity(i))
1779 			return 0;
1780 
1781 		data_start(i, &iter_head, &off);
1782 		/* some of this one + all after this one */
1783 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1784 		return min(npages, maxpages);
1785 	}
1786 	if (iov_iter_is_xarray(i)) {
1787 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1788 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1789 		return min(npages, maxpages);
1790 	}
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL(iov_iter_npages);
1794 
1795 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1796 {
1797 	*new = *old;
1798 	if (unlikely(iov_iter_is_pipe(new))) {
1799 		WARN_ON(1);
1800 		return NULL;
1801 	}
1802 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1803 		return NULL;
1804 	if (iov_iter_is_bvec(new))
1805 		return new->bvec = kmemdup(new->bvec,
1806 				    new->nr_segs * sizeof(struct bio_vec),
1807 				    flags);
1808 	else
1809 		/* iovec and kvec have identical layout */
1810 		return new->iov = kmemdup(new->iov,
1811 				   new->nr_segs * sizeof(struct iovec),
1812 				   flags);
1813 }
1814 EXPORT_SYMBOL(dup_iter);
1815 
1816 static int copy_compat_iovec_from_user(struct iovec *iov,
1817 		const struct iovec __user *uvec, unsigned long nr_segs)
1818 {
1819 	const struct compat_iovec __user *uiov =
1820 		(const struct compat_iovec __user *)uvec;
1821 	int ret = -EFAULT, i;
1822 
1823 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1824 		return -EFAULT;
1825 
1826 	for (i = 0; i < nr_segs; i++) {
1827 		compat_uptr_t buf;
1828 		compat_ssize_t len;
1829 
1830 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1831 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1832 
1833 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1834 		if (len < 0) {
1835 			ret = -EINVAL;
1836 			goto uaccess_end;
1837 		}
1838 		iov[i].iov_base = compat_ptr(buf);
1839 		iov[i].iov_len = len;
1840 	}
1841 
1842 	ret = 0;
1843 uaccess_end:
1844 	user_access_end();
1845 	return ret;
1846 }
1847 
1848 static int copy_iovec_from_user(struct iovec *iov,
1849 		const struct iovec __user *uvec, unsigned long nr_segs)
1850 {
1851 	unsigned long seg;
1852 
1853 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1854 		return -EFAULT;
1855 	for (seg = 0; seg < nr_segs; seg++) {
1856 		if ((ssize_t)iov[seg].iov_len < 0)
1857 			return -EINVAL;
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1864 		unsigned long nr_segs, unsigned long fast_segs,
1865 		struct iovec *fast_iov, bool compat)
1866 {
1867 	struct iovec *iov = fast_iov;
1868 	int ret;
1869 
1870 	/*
1871 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1872 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1873 	 * traditionally returned zero for zero segments, so...
1874 	 */
1875 	if (nr_segs == 0)
1876 		return iov;
1877 	if (nr_segs > UIO_MAXIOV)
1878 		return ERR_PTR(-EINVAL);
1879 	if (nr_segs > fast_segs) {
1880 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1881 		if (!iov)
1882 			return ERR_PTR(-ENOMEM);
1883 	}
1884 
1885 	if (compat)
1886 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1887 	else
1888 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1889 	if (ret) {
1890 		if (iov != fast_iov)
1891 			kfree(iov);
1892 		return ERR_PTR(ret);
1893 	}
1894 
1895 	return iov;
1896 }
1897 
1898 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1899 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1900 		 struct iov_iter *i, bool compat)
1901 {
1902 	ssize_t total_len = 0;
1903 	unsigned long seg;
1904 	struct iovec *iov;
1905 
1906 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1907 	if (IS_ERR(iov)) {
1908 		*iovp = NULL;
1909 		return PTR_ERR(iov);
1910 	}
1911 
1912 	/*
1913 	 * According to the Single Unix Specification we should return EINVAL if
1914 	 * an element length is < 0 when cast to ssize_t or if the total length
1915 	 * would overflow the ssize_t return value of the system call.
1916 	 *
1917 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1918 	 * overflow case.
1919 	 */
1920 	for (seg = 0; seg < nr_segs; seg++) {
1921 		ssize_t len = (ssize_t)iov[seg].iov_len;
1922 
1923 		if (!access_ok(iov[seg].iov_base, len)) {
1924 			if (iov != *iovp)
1925 				kfree(iov);
1926 			*iovp = NULL;
1927 			return -EFAULT;
1928 		}
1929 
1930 		if (len > MAX_RW_COUNT - total_len) {
1931 			len = MAX_RW_COUNT - total_len;
1932 			iov[seg].iov_len = len;
1933 		}
1934 		total_len += len;
1935 	}
1936 
1937 	iov_iter_init(i, type, iov, nr_segs, total_len);
1938 	if (iov == *iovp)
1939 		*iovp = NULL;
1940 	else
1941 		*iovp = iov;
1942 	return total_len;
1943 }
1944 
1945 /**
1946  * import_iovec() - Copy an array of &struct iovec from userspace
1947  *     into the kernel, check that it is valid, and initialize a new
1948  *     &struct iov_iter iterator to access it.
1949  *
1950  * @type: One of %READ or %WRITE.
1951  * @uvec: Pointer to the userspace array.
1952  * @nr_segs: Number of elements in userspace array.
1953  * @fast_segs: Number of elements in @iov.
1954  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1955  *     on-stack) kernel array.
1956  * @i: Pointer to iterator that will be initialized on success.
1957  *
1958  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1959  * then this function places %NULL in *@iov on return. Otherwise, a new
1960  * array will be allocated and the result placed in *@iov. This means that
1961  * the caller may call kfree() on *@iov regardless of whether the small
1962  * on-stack array was used or not (and regardless of whether this function
1963  * returns an error or not).
1964  *
1965  * Return: Negative error code on error, bytes imported on success
1966  */
1967 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1968 		 unsigned nr_segs, unsigned fast_segs,
1969 		 struct iovec **iovp, struct iov_iter *i)
1970 {
1971 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1972 			      in_compat_syscall());
1973 }
1974 EXPORT_SYMBOL(import_iovec);
1975 
1976 int import_single_range(int rw, void __user *buf, size_t len,
1977 		 struct iovec *iov, struct iov_iter *i)
1978 {
1979 	if (len > MAX_RW_COUNT)
1980 		len = MAX_RW_COUNT;
1981 	if (unlikely(!access_ok(buf, len)))
1982 		return -EFAULT;
1983 
1984 	iov->iov_base = buf;
1985 	iov->iov_len = len;
1986 	iov_iter_init(i, rw, iov, 1, len);
1987 	return 0;
1988 }
1989 EXPORT_SYMBOL(import_single_range);
1990