xref: /openbmc/linux/lib/iov_iter.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 /* covers ubuf and kbuf alike */
18 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
19 	size_t __maybe_unused off = 0;				\
20 	len = n;						\
21 	base = __p + i->iov_offset;				\
22 	len -= (STEP);						\
23 	i->iov_offset += len;					\
24 	n = len;						\
25 }
26 
27 /* covers iovec and kvec alike */
28 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
29 	size_t off = 0;						\
30 	size_t skip = i->iov_offset;				\
31 	do {							\
32 		len = min(n, __p->iov_len - skip);		\
33 		if (likely(len)) {				\
34 			base = __p->iov_base + skip;		\
35 			len -= (STEP);				\
36 			off += len;				\
37 			skip += len;				\
38 			n -= len;				\
39 			if (skip < __p->iov_len)		\
40 				break;				\
41 		}						\
42 		__p++;						\
43 		skip = 0;					\
44 	} while (n);						\
45 	i->iov_offset = skip;					\
46 	n = off;						\
47 }
48 
49 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
50 	size_t off = 0;						\
51 	unsigned skip = i->iov_offset;				\
52 	while (n) {						\
53 		unsigned offset = p->bv_offset + skip;		\
54 		unsigned left;					\
55 		void *kaddr = kmap_local_page(p->bv_page +	\
56 					offset / PAGE_SIZE);	\
57 		base = kaddr + offset % PAGE_SIZE;		\
58 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
59 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
60 		left = (STEP);					\
61 		kunmap_local(kaddr);				\
62 		len -= left;					\
63 		off += len;					\
64 		skip += len;					\
65 		if (skip == p->bv_len) {			\
66 			skip = 0;				\
67 			p++;					\
68 		}						\
69 		n -= len;					\
70 		if (left)					\
71 			break;					\
72 	}							\
73 	i->iov_offset = skip;					\
74 	n = off;						\
75 }
76 
77 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
78 	__label__ __out;					\
79 	size_t __off = 0;					\
80 	struct folio *folio;					\
81 	loff_t start = i->xarray_start + i->iov_offset;		\
82 	pgoff_t index = start / PAGE_SIZE;			\
83 	XA_STATE(xas, i->xarray, index);			\
84 								\
85 	len = PAGE_SIZE - offset_in_page(start);		\
86 	rcu_read_lock();					\
87 	xas_for_each(&xas, folio, ULONG_MAX) {			\
88 		unsigned left;					\
89 		size_t offset;					\
90 		if (xas_retry(&xas, folio))			\
91 			continue;				\
92 		if (WARN_ON(xa_is_value(folio)))		\
93 			break;					\
94 		if (WARN_ON(folio_test_hugetlb(folio)))		\
95 			break;					\
96 		offset = offset_in_folio(folio, start + __off);	\
97 		while (offset < folio_size(folio)) {		\
98 			base = kmap_local_folio(folio, offset);	\
99 			len = min(n, len);			\
100 			left = (STEP);				\
101 			kunmap_local(base);			\
102 			len -= left;				\
103 			__off += len;				\
104 			n -= len;				\
105 			if (left || n == 0)			\
106 				goto __out;			\
107 			offset += len;				\
108 			len = PAGE_SIZE;			\
109 		}						\
110 	}							\
111 __out:								\
112 	rcu_read_unlock();					\
113 	i->iov_offset += __off;					\
114 	n = __off;						\
115 }
116 
117 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
118 	if (unlikely(i->count < n))				\
119 		n = i->count;					\
120 	if (likely(n)) {					\
121 		if (likely(iter_is_ubuf(i))) {			\
122 			void __user *base;			\
123 			size_t len;				\
124 			iterate_buf(i, n, base, len, off,	\
125 						i->ubuf, (I)) 	\
126 		} else if (likely(iter_is_iovec(i))) {		\
127 			const struct iovec *iov = iter_iov(i);	\
128 			void __user *base;			\
129 			size_t len;				\
130 			iterate_iovec(i, n, base, len, off,	\
131 						iov, (I))	\
132 			i->nr_segs -= iov - iter_iov(i);	\
133 			i->__iov = iov;				\
134 		} else if (iov_iter_is_bvec(i)) {		\
135 			const struct bio_vec *bvec = i->bvec;	\
136 			void *base;				\
137 			size_t len;				\
138 			iterate_bvec(i, n, base, len, off,	\
139 						bvec, (K))	\
140 			i->nr_segs -= bvec - i->bvec;		\
141 			i->bvec = bvec;				\
142 		} else if (iov_iter_is_kvec(i)) {		\
143 			const struct kvec *kvec = i->kvec;	\
144 			void *base;				\
145 			size_t len;				\
146 			iterate_iovec(i, n, base, len, off,	\
147 						kvec, (K))	\
148 			i->nr_segs -= kvec - i->kvec;		\
149 			i->kvec = kvec;				\
150 		} else if (iov_iter_is_xarray(i)) {		\
151 			void *base;				\
152 			size_t len;				\
153 			iterate_xarray(i, n, base, len, off,	\
154 							(K))	\
155 		}						\
156 		i->count -= n;					\
157 	}							\
158 }
159 #define iterate_and_advance(i, n, base, len, off, I, K) \
160 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
161 
162 static int copyout(void __user *to, const void *from, size_t n)
163 {
164 	if (should_fail_usercopy())
165 		return n;
166 	if (access_ok(to, n)) {
167 		instrument_copy_to_user(to, from, n);
168 		n = raw_copy_to_user(to, from, n);
169 	}
170 	return n;
171 }
172 
173 static int copyout_nofault(void __user *to, const void *from, size_t n)
174 {
175 	long res;
176 
177 	if (should_fail_usercopy())
178 		return n;
179 
180 	res = copy_to_user_nofault(to, from, n);
181 
182 	return res < 0 ? n : res;
183 }
184 
185 static int copyin(void *to, const void __user *from, size_t n)
186 {
187 	size_t res = n;
188 
189 	if (should_fail_usercopy())
190 		return n;
191 	if (access_ok(from, n)) {
192 		instrument_copy_from_user_before(to, from, n);
193 		res = raw_copy_from_user(to, from, n);
194 		instrument_copy_from_user_after(to, from, n, res);
195 	}
196 	return res;
197 }
198 
199 /*
200  * fault_in_iov_iter_readable - fault in iov iterator for reading
201  * @i: iterator
202  * @size: maximum length
203  *
204  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
205  * @size.  For each iovec, fault in each page that constitutes the iovec.
206  *
207  * Returns the number of bytes not faulted in (like copy_to_user() and
208  * copy_from_user()).
209  *
210  * Always returns 0 for non-userspace iterators.
211  */
212 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
213 {
214 	if (iter_is_ubuf(i)) {
215 		size_t n = min(size, iov_iter_count(i));
216 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
217 		return size - n;
218 	} else if (iter_is_iovec(i)) {
219 		size_t count = min(size, iov_iter_count(i));
220 		const struct iovec *p;
221 		size_t skip;
222 
223 		size -= count;
224 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
225 			size_t len = min(count, p->iov_len - skip);
226 			size_t ret;
227 
228 			if (unlikely(!len))
229 				continue;
230 			ret = fault_in_readable(p->iov_base + skip, len);
231 			count -= len - ret;
232 			if (ret)
233 				break;
234 		}
235 		return count + size;
236 	}
237 	return 0;
238 }
239 EXPORT_SYMBOL(fault_in_iov_iter_readable);
240 
241 /*
242  * fault_in_iov_iter_writeable - fault in iov iterator for writing
243  * @i: iterator
244  * @size: maximum length
245  *
246  * Faults in the iterator using get_user_pages(), i.e., without triggering
247  * hardware page faults.  This is primarily useful when we already know that
248  * some or all of the pages in @i aren't in memory.
249  *
250  * Returns the number of bytes not faulted in, like copy_to_user() and
251  * copy_from_user().
252  *
253  * Always returns 0 for non-user-space iterators.
254  */
255 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
256 {
257 	if (iter_is_ubuf(i)) {
258 		size_t n = min(size, iov_iter_count(i));
259 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
260 		return size - n;
261 	} else if (iter_is_iovec(i)) {
262 		size_t count = min(size, iov_iter_count(i));
263 		const struct iovec *p;
264 		size_t skip;
265 
266 		size -= count;
267 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
268 			size_t len = min(count, p->iov_len - skip);
269 			size_t ret;
270 
271 			if (unlikely(!len))
272 				continue;
273 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
274 			count -= len - ret;
275 			if (ret)
276 				break;
277 		}
278 		return count + size;
279 	}
280 	return 0;
281 }
282 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
283 
284 void iov_iter_init(struct iov_iter *i, unsigned int direction,
285 			const struct iovec *iov, unsigned long nr_segs,
286 			size_t count)
287 {
288 	WARN_ON(direction & ~(READ | WRITE));
289 	*i = (struct iov_iter) {
290 		.iter_type = ITER_IOVEC,
291 		.copy_mc = false,
292 		.nofault = false,
293 		.user_backed = true,
294 		.data_source = direction,
295 		.__iov = iov,
296 		.nr_segs = nr_segs,
297 		.iov_offset = 0,
298 		.count = count
299 	};
300 }
301 EXPORT_SYMBOL(iov_iter_init);
302 
303 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
304 			      __wsum sum, size_t off)
305 {
306 	__wsum next = csum_partial_copy_nocheck(from, to, len);
307 	return csum_block_add(sum, next, off);
308 }
309 
310 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
311 {
312 	if (WARN_ON_ONCE(i->data_source))
313 		return 0;
314 	if (user_backed_iter(i))
315 		might_fault();
316 	iterate_and_advance(i, bytes, base, len, off,
317 		copyout(base, addr + off, len),
318 		memcpy(base, addr + off, len)
319 	)
320 
321 	return bytes;
322 }
323 EXPORT_SYMBOL(_copy_to_iter);
324 
325 #ifdef CONFIG_ARCH_HAS_COPY_MC
326 static int copyout_mc(void __user *to, const void *from, size_t n)
327 {
328 	if (access_ok(to, n)) {
329 		instrument_copy_to_user(to, from, n);
330 		n = copy_mc_to_user((__force void *) to, from, n);
331 	}
332 	return n;
333 }
334 
335 /**
336  * _copy_mc_to_iter - copy to iter with source memory error exception handling
337  * @addr: source kernel address
338  * @bytes: total transfer length
339  * @i: destination iterator
340  *
341  * The pmem driver deploys this for the dax operation
342  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
343  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
344  * successfully copied.
345  *
346  * The main differences between this and typical _copy_to_iter().
347  *
348  * * Typical tail/residue handling after a fault retries the copy
349  *   byte-by-byte until the fault happens again. Re-triggering machine
350  *   checks is potentially fatal so the implementation uses source
351  *   alignment and poison alignment assumptions to avoid re-triggering
352  *   hardware exceptions.
353  *
354  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
355  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
356  *
357  * Return: number of bytes copied (may be %0)
358  */
359 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
360 {
361 	if (WARN_ON_ONCE(i->data_source))
362 		return 0;
363 	if (user_backed_iter(i))
364 		might_fault();
365 	__iterate_and_advance(i, bytes, base, len, off,
366 		copyout_mc(base, addr + off, len),
367 		copy_mc_to_kernel(base, addr + off, len)
368 	)
369 
370 	return bytes;
371 }
372 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
373 #endif /* CONFIG_ARCH_HAS_COPY_MC */
374 
375 static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from,
376 				 size_t size)
377 {
378 	if (iov_iter_is_copy_mc(i))
379 		return (void *)copy_mc_to_kernel(to, from, size);
380 	return memcpy(to, from, size);
381 }
382 
383 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
384 {
385 	if (WARN_ON_ONCE(!i->data_source))
386 		return 0;
387 
388 	if (user_backed_iter(i))
389 		might_fault();
390 	iterate_and_advance(i, bytes, base, len, off,
391 		copyin(addr + off, base, len),
392 		memcpy_from_iter(i, addr + off, base, len)
393 	)
394 
395 	return bytes;
396 }
397 EXPORT_SYMBOL(_copy_from_iter);
398 
399 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
400 {
401 	if (WARN_ON_ONCE(!i->data_source))
402 		return 0;
403 
404 	iterate_and_advance(i, bytes, base, len, off,
405 		__copy_from_user_inatomic_nocache(addr + off, base, len),
406 		memcpy(addr + off, base, len)
407 	)
408 
409 	return bytes;
410 }
411 EXPORT_SYMBOL(_copy_from_iter_nocache);
412 
413 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
414 /**
415  * _copy_from_iter_flushcache - write destination through cpu cache
416  * @addr: destination kernel address
417  * @bytes: total transfer length
418  * @i: source iterator
419  *
420  * The pmem driver arranges for filesystem-dax to use this facility via
421  * dax_copy_from_iter() for ensuring that writes to persistent memory
422  * are flushed through the CPU cache. It is differentiated from
423  * _copy_from_iter_nocache() in that guarantees all data is flushed for
424  * all iterator types. The _copy_from_iter_nocache() only attempts to
425  * bypass the cache for the ITER_IOVEC case, and on some archs may use
426  * instructions that strand dirty-data in the cache.
427  *
428  * Return: number of bytes copied (may be %0)
429  */
430 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
431 {
432 	if (WARN_ON_ONCE(!i->data_source))
433 		return 0;
434 
435 	iterate_and_advance(i, bytes, base, len, off,
436 		__copy_from_user_flushcache(addr + off, base, len),
437 		memcpy_flushcache(addr + off, base, len)
438 	)
439 
440 	return bytes;
441 }
442 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
443 #endif
444 
445 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
446 {
447 	struct page *head;
448 	size_t v = n + offset;
449 
450 	/*
451 	 * The general case needs to access the page order in order
452 	 * to compute the page size.
453 	 * However, we mostly deal with order-0 pages and thus can
454 	 * avoid a possible cache line miss for requests that fit all
455 	 * page orders.
456 	 */
457 	if (n <= v && v <= PAGE_SIZE)
458 		return true;
459 
460 	head = compound_head(page);
461 	v += (page - head) << PAGE_SHIFT;
462 
463 	if (WARN_ON(n > v || v > page_size(head)))
464 		return false;
465 	return true;
466 }
467 
468 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
469 			 struct iov_iter *i)
470 {
471 	size_t res = 0;
472 	if (!page_copy_sane(page, offset, bytes))
473 		return 0;
474 	if (WARN_ON_ONCE(i->data_source))
475 		return 0;
476 	page += offset / PAGE_SIZE; // first subpage
477 	offset %= PAGE_SIZE;
478 	while (1) {
479 		void *kaddr = kmap_local_page(page);
480 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
481 		n = _copy_to_iter(kaddr + offset, n, i);
482 		kunmap_local(kaddr);
483 		res += n;
484 		bytes -= n;
485 		if (!bytes || !n)
486 			break;
487 		offset += n;
488 		if (offset == PAGE_SIZE) {
489 			page++;
490 			offset = 0;
491 		}
492 	}
493 	return res;
494 }
495 EXPORT_SYMBOL(copy_page_to_iter);
496 
497 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
498 				 struct iov_iter *i)
499 {
500 	size_t res = 0;
501 
502 	if (!page_copy_sane(page, offset, bytes))
503 		return 0;
504 	if (WARN_ON_ONCE(i->data_source))
505 		return 0;
506 	page += offset / PAGE_SIZE; // first subpage
507 	offset %= PAGE_SIZE;
508 	while (1) {
509 		void *kaddr = kmap_local_page(page);
510 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
511 
512 		iterate_and_advance(i, n, base, len, off,
513 			copyout_nofault(base, kaddr + offset + off, len),
514 			memcpy(base, kaddr + offset + off, len)
515 		)
516 		kunmap_local(kaddr);
517 		res += n;
518 		bytes -= n;
519 		if (!bytes || !n)
520 			break;
521 		offset += n;
522 		if (offset == PAGE_SIZE) {
523 			page++;
524 			offset = 0;
525 		}
526 	}
527 	return res;
528 }
529 EXPORT_SYMBOL(copy_page_to_iter_nofault);
530 
531 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
532 			 struct iov_iter *i)
533 {
534 	size_t res = 0;
535 	if (!page_copy_sane(page, offset, bytes))
536 		return 0;
537 	page += offset / PAGE_SIZE; // first subpage
538 	offset %= PAGE_SIZE;
539 	while (1) {
540 		void *kaddr = kmap_local_page(page);
541 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
542 		n = _copy_from_iter(kaddr + offset, n, i);
543 		kunmap_local(kaddr);
544 		res += n;
545 		bytes -= n;
546 		if (!bytes || !n)
547 			break;
548 		offset += n;
549 		if (offset == PAGE_SIZE) {
550 			page++;
551 			offset = 0;
552 		}
553 	}
554 	return res;
555 }
556 EXPORT_SYMBOL(copy_page_from_iter);
557 
558 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
559 {
560 	iterate_and_advance(i, bytes, base, len, count,
561 		clear_user(base, len),
562 		memset(base, 0, len)
563 	)
564 
565 	return bytes;
566 }
567 EXPORT_SYMBOL(iov_iter_zero);
568 
569 size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
570 		size_t bytes, struct iov_iter *i)
571 {
572 	size_t n, copied = 0;
573 
574 	if (!page_copy_sane(page, offset, bytes))
575 		return 0;
576 	if (WARN_ON_ONCE(!i->data_source))
577 		return 0;
578 
579 	do {
580 		char *p;
581 
582 		n = bytes - copied;
583 		if (PageHighMem(page)) {
584 			page += offset / PAGE_SIZE;
585 			offset %= PAGE_SIZE;
586 			n = min_t(size_t, n, PAGE_SIZE - offset);
587 		}
588 
589 		p = kmap_atomic(page) + offset;
590 		iterate_and_advance(i, n, base, len, off,
591 			copyin(p + off, base, len),
592 			memcpy_from_iter(i, p + off, base, len)
593 		)
594 		kunmap_atomic(p);
595 		copied += n;
596 		offset += n;
597 	} while (PageHighMem(page) && copied != bytes && n > 0);
598 
599 	return copied;
600 }
601 EXPORT_SYMBOL(copy_page_from_iter_atomic);
602 
603 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
604 {
605 	const struct bio_vec *bvec, *end;
606 
607 	if (!i->count)
608 		return;
609 	i->count -= size;
610 
611 	size += i->iov_offset;
612 
613 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
614 		if (likely(size < bvec->bv_len))
615 			break;
616 		size -= bvec->bv_len;
617 	}
618 	i->iov_offset = size;
619 	i->nr_segs -= bvec - i->bvec;
620 	i->bvec = bvec;
621 }
622 
623 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
624 {
625 	const struct iovec *iov, *end;
626 
627 	if (!i->count)
628 		return;
629 	i->count -= size;
630 
631 	size += i->iov_offset; // from beginning of current segment
632 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
633 		if (likely(size < iov->iov_len))
634 			break;
635 		size -= iov->iov_len;
636 	}
637 	i->iov_offset = size;
638 	i->nr_segs -= iov - iter_iov(i);
639 	i->__iov = iov;
640 }
641 
642 void iov_iter_advance(struct iov_iter *i, size_t size)
643 {
644 	if (unlikely(i->count < size))
645 		size = i->count;
646 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
647 		i->iov_offset += size;
648 		i->count -= size;
649 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
650 		/* iovec and kvec have identical layouts */
651 		iov_iter_iovec_advance(i, size);
652 	} else if (iov_iter_is_bvec(i)) {
653 		iov_iter_bvec_advance(i, size);
654 	} else if (iov_iter_is_discard(i)) {
655 		i->count -= size;
656 	}
657 }
658 EXPORT_SYMBOL(iov_iter_advance);
659 
660 void iov_iter_revert(struct iov_iter *i, size_t unroll)
661 {
662 	if (!unroll)
663 		return;
664 	if (WARN_ON(unroll > MAX_RW_COUNT))
665 		return;
666 	i->count += unroll;
667 	if (unlikely(iov_iter_is_discard(i)))
668 		return;
669 	if (unroll <= i->iov_offset) {
670 		i->iov_offset -= unroll;
671 		return;
672 	}
673 	unroll -= i->iov_offset;
674 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
675 		BUG(); /* We should never go beyond the start of the specified
676 			* range since we might then be straying into pages that
677 			* aren't pinned.
678 			*/
679 	} else if (iov_iter_is_bvec(i)) {
680 		const struct bio_vec *bvec = i->bvec;
681 		while (1) {
682 			size_t n = (--bvec)->bv_len;
683 			i->nr_segs++;
684 			if (unroll <= n) {
685 				i->bvec = bvec;
686 				i->iov_offset = n - unroll;
687 				return;
688 			}
689 			unroll -= n;
690 		}
691 	} else { /* same logics for iovec and kvec */
692 		const struct iovec *iov = iter_iov(i);
693 		while (1) {
694 			size_t n = (--iov)->iov_len;
695 			i->nr_segs++;
696 			if (unroll <= n) {
697 				i->__iov = iov;
698 				i->iov_offset = n - unroll;
699 				return;
700 			}
701 			unroll -= n;
702 		}
703 	}
704 }
705 EXPORT_SYMBOL(iov_iter_revert);
706 
707 /*
708  * Return the count of just the current iov_iter segment.
709  */
710 size_t iov_iter_single_seg_count(const struct iov_iter *i)
711 {
712 	if (i->nr_segs > 1) {
713 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
714 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
715 		if (iov_iter_is_bvec(i))
716 			return min(i->count, i->bvec->bv_len - i->iov_offset);
717 	}
718 	return i->count;
719 }
720 EXPORT_SYMBOL(iov_iter_single_seg_count);
721 
722 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
723 			const struct kvec *kvec, unsigned long nr_segs,
724 			size_t count)
725 {
726 	WARN_ON(direction & ~(READ | WRITE));
727 	*i = (struct iov_iter){
728 		.iter_type = ITER_KVEC,
729 		.copy_mc = false,
730 		.data_source = direction,
731 		.kvec = kvec,
732 		.nr_segs = nr_segs,
733 		.iov_offset = 0,
734 		.count = count
735 	};
736 }
737 EXPORT_SYMBOL(iov_iter_kvec);
738 
739 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
740 			const struct bio_vec *bvec, unsigned long nr_segs,
741 			size_t count)
742 {
743 	WARN_ON(direction & ~(READ | WRITE));
744 	*i = (struct iov_iter){
745 		.iter_type = ITER_BVEC,
746 		.copy_mc = false,
747 		.data_source = direction,
748 		.bvec = bvec,
749 		.nr_segs = nr_segs,
750 		.iov_offset = 0,
751 		.count = count
752 	};
753 }
754 EXPORT_SYMBOL(iov_iter_bvec);
755 
756 /**
757  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
758  * @i: The iterator to initialise.
759  * @direction: The direction of the transfer.
760  * @xarray: The xarray to access.
761  * @start: The start file position.
762  * @count: The size of the I/O buffer in bytes.
763  *
764  * Set up an I/O iterator to either draw data out of the pages attached to an
765  * inode or to inject data into those pages.  The pages *must* be prevented
766  * from evaporation, either by taking a ref on them or locking them by the
767  * caller.
768  */
769 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
770 		     struct xarray *xarray, loff_t start, size_t count)
771 {
772 	BUG_ON(direction & ~1);
773 	*i = (struct iov_iter) {
774 		.iter_type = ITER_XARRAY,
775 		.copy_mc = false,
776 		.data_source = direction,
777 		.xarray = xarray,
778 		.xarray_start = start,
779 		.count = count,
780 		.iov_offset = 0
781 	};
782 }
783 EXPORT_SYMBOL(iov_iter_xarray);
784 
785 /**
786  * iov_iter_discard - Initialise an I/O iterator that discards data
787  * @i: The iterator to initialise.
788  * @direction: The direction of the transfer.
789  * @count: The size of the I/O buffer in bytes.
790  *
791  * Set up an I/O iterator that just discards everything that's written to it.
792  * It's only available as a READ iterator.
793  */
794 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
795 {
796 	BUG_ON(direction != READ);
797 	*i = (struct iov_iter){
798 		.iter_type = ITER_DISCARD,
799 		.copy_mc = false,
800 		.data_source = false,
801 		.count = count,
802 		.iov_offset = 0
803 	};
804 }
805 EXPORT_SYMBOL(iov_iter_discard);
806 
807 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
808 				   unsigned len_mask)
809 {
810 	size_t size = i->count;
811 	size_t skip = i->iov_offset;
812 	unsigned k;
813 
814 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
815 		const struct iovec *iov = iter_iov(i) + k;
816 		size_t len = iov->iov_len - skip;
817 
818 		if (len > size)
819 			len = size;
820 		if (len & len_mask)
821 			return false;
822 		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
823 			return false;
824 
825 		size -= len;
826 		if (!size)
827 			break;
828 	}
829 	return true;
830 }
831 
832 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
833 				  unsigned len_mask)
834 {
835 	size_t size = i->count;
836 	unsigned skip = i->iov_offset;
837 	unsigned k;
838 
839 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
840 		size_t len = i->bvec[k].bv_len - skip;
841 
842 		if (len > size)
843 			len = size;
844 		if (len & len_mask)
845 			return false;
846 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
847 			return false;
848 
849 		size -= len;
850 		if (!size)
851 			break;
852 	}
853 	return true;
854 }
855 
856 /**
857  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
858  * 	are aligned to the parameters.
859  *
860  * @i: &struct iov_iter to restore
861  * @addr_mask: bit mask to check against the iov element's addresses
862  * @len_mask: bit mask to check against the iov element's lengths
863  *
864  * Return: false if any addresses or lengths intersect with the provided masks
865  */
866 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
867 			 unsigned len_mask)
868 {
869 	if (likely(iter_is_ubuf(i))) {
870 		if (i->count & len_mask)
871 			return false;
872 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
873 			return false;
874 		return true;
875 	}
876 
877 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
878 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
879 
880 	if (iov_iter_is_bvec(i))
881 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
882 
883 	if (iov_iter_is_xarray(i)) {
884 		if (i->count & len_mask)
885 			return false;
886 		if ((i->xarray_start + i->iov_offset) & addr_mask)
887 			return false;
888 	}
889 
890 	return true;
891 }
892 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
893 
894 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
895 {
896 	unsigned long res = 0;
897 	size_t size = i->count;
898 	size_t skip = i->iov_offset;
899 	unsigned k;
900 
901 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
902 		const struct iovec *iov = iter_iov(i) + k;
903 		size_t len = iov->iov_len - skip;
904 		if (len) {
905 			res |= (unsigned long)iov->iov_base + skip;
906 			if (len > size)
907 				len = size;
908 			res |= len;
909 			size -= len;
910 			if (!size)
911 				break;
912 		}
913 	}
914 	return res;
915 }
916 
917 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
918 {
919 	unsigned res = 0;
920 	size_t size = i->count;
921 	unsigned skip = i->iov_offset;
922 	unsigned k;
923 
924 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
925 		size_t len = i->bvec[k].bv_len - skip;
926 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
927 		if (len > size)
928 			len = size;
929 		res |= len;
930 		size -= len;
931 		if (!size)
932 			break;
933 	}
934 	return res;
935 }
936 
937 unsigned long iov_iter_alignment(const struct iov_iter *i)
938 {
939 	if (likely(iter_is_ubuf(i))) {
940 		size_t size = i->count;
941 		if (size)
942 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
943 		return 0;
944 	}
945 
946 	/* iovec and kvec have identical layouts */
947 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
948 		return iov_iter_alignment_iovec(i);
949 
950 	if (iov_iter_is_bvec(i))
951 		return iov_iter_alignment_bvec(i);
952 
953 	if (iov_iter_is_xarray(i))
954 		return (i->xarray_start + i->iov_offset) | i->count;
955 
956 	return 0;
957 }
958 EXPORT_SYMBOL(iov_iter_alignment);
959 
960 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
961 {
962 	unsigned long res = 0;
963 	unsigned long v = 0;
964 	size_t size = i->count;
965 	unsigned k;
966 
967 	if (iter_is_ubuf(i))
968 		return 0;
969 
970 	if (WARN_ON(!iter_is_iovec(i)))
971 		return ~0U;
972 
973 	for (k = 0; k < i->nr_segs; k++) {
974 		const struct iovec *iov = iter_iov(i) + k;
975 		if (iov->iov_len) {
976 			unsigned long base = (unsigned long)iov->iov_base;
977 			if (v) // if not the first one
978 				res |= base | v; // this start | previous end
979 			v = base + iov->iov_len;
980 			if (size <= iov->iov_len)
981 				break;
982 			size -= iov->iov_len;
983 		}
984 	}
985 	return res;
986 }
987 EXPORT_SYMBOL(iov_iter_gap_alignment);
988 
989 static int want_pages_array(struct page ***res, size_t size,
990 			    size_t start, unsigned int maxpages)
991 {
992 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
993 
994 	if (count > maxpages)
995 		count = maxpages;
996 	WARN_ON(!count);	// caller should've prevented that
997 	if (!*res) {
998 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
999 		if (!*res)
1000 			return 0;
1001 	}
1002 	return count;
1003 }
1004 
1005 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1006 					  pgoff_t index, unsigned int nr_pages)
1007 {
1008 	XA_STATE(xas, xa, index);
1009 	struct page *page;
1010 	unsigned int ret = 0;
1011 
1012 	rcu_read_lock();
1013 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1014 		if (xas_retry(&xas, page))
1015 			continue;
1016 
1017 		/* Has the page moved or been split? */
1018 		if (unlikely(page != xas_reload(&xas))) {
1019 			xas_reset(&xas);
1020 			continue;
1021 		}
1022 
1023 		pages[ret] = find_subpage(page, xas.xa_index);
1024 		get_page(pages[ret]);
1025 		if (++ret == nr_pages)
1026 			break;
1027 	}
1028 	rcu_read_unlock();
1029 	return ret;
1030 }
1031 
1032 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1033 				     struct page ***pages, size_t maxsize,
1034 				     unsigned maxpages, size_t *_start_offset)
1035 {
1036 	unsigned nr, offset, count;
1037 	pgoff_t index;
1038 	loff_t pos;
1039 
1040 	pos = i->xarray_start + i->iov_offset;
1041 	index = pos >> PAGE_SHIFT;
1042 	offset = pos & ~PAGE_MASK;
1043 	*_start_offset = offset;
1044 
1045 	count = want_pages_array(pages, maxsize, offset, maxpages);
1046 	if (!count)
1047 		return -ENOMEM;
1048 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1049 	if (nr == 0)
1050 		return 0;
1051 
1052 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1053 	i->iov_offset += maxsize;
1054 	i->count -= maxsize;
1055 	return maxsize;
1056 }
1057 
1058 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1059 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1060 {
1061 	size_t skip;
1062 	long k;
1063 
1064 	if (iter_is_ubuf(i))
1065 		return (unsigned long)i->ubuf + i->iov_offset;
1066 
1067 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1068 		const struct iovec *iov = iter_iov(i) + k;
1069 		size_t len = iov->iov_len - skip;
1070 
1071 		if (unlikely(!len))
1072 			continue;
1073 		if (*size > len)
1074 			*size = len;
1075 		return (unsigned long)iov->iov_base + skip;
1076 	}
1077 	BUG(); // if it had been empty, we wouldn't get called
1078 }
1079 
1080 /* must be done on non-empty ITER_BVEC one */
1081 static struct page *first_bvec_segment(const struct iov_iter *i,
1082 				       size_t *size, size_t *start)
1083 {
1084 	struct page *page;
1085 	size_t skip = i->iov_offset, len;
1086 
1087 	len = i->bvec->bv_len - skip;
1088 	if (*size > len)
1089 		*size = len;
1090 	skip += i->bvec->bv_offset;
1091 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1092 	*start = skip % PAGE_SIZE;
1093 	return page;
1094 }
1095 
1096 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1097 		   struct page ***pages, size_t maxsize,
1098 		   unsigned int maxpages, size_t *start)
1099 {
1100 	unsigned int n, gup_flags = 0;
1101 
1102 	if (maxsize > i->count)
1103 		maxsize = i->count;
1104 	if (!maxsize)
1105 		return 0;
1106 	if (maxsize > MAX_RW_COUNT)
1107 		maxsize = MAX_RW_COUNT;
1108 
1109 	if (likely(user_backed_iter(i))) {
1110 		unsigned long addr;
1111 		int res;
1112 
1113 		if (iov_iter_rw(i) != WRITE)
1114 			gup_flags |= FOLL_WRITE;
1115 		if (i->nofault)
1116 			gup_flags |= FOLL_NOFAULT;
1117 
1118 		addr = first_iovec_segment(i, &maxsize);
1119 		*start = addr % PAGE_SIZE;
1120 		addr &= PAGE_MASK;
1121 		n = want_pages_array(pages, maxsize, *start, maxpages);
1122 		if (!n)
1123 			return -ENOMEM;
1124 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1125 		if (unlikely(res <= 0))
1126 			return res;
1127 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1128 		iov_iter_advance(i, maxsize);
1129 		return maxsize;
1130 	}
1131 	if (iov_iter_is_bvec(i)) {
1132 		struct page **p;
1133 		struct page *page;
1134 
1135 		page = first_bvec_segment(i, &maxsize, start);
1136 		n = want_pages_array(pages, maxsize, *start, maxpages);
1137 		if (!n)
1138 			return -ENOMEM;
1139 		p = *pages;
1140 		for (int k = 0; k < n; k++)
1141 			get_page(p[k] = page + k);
1142 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1143 		i->count -= maxsize;
1144 		i->iov_offset += maxsize;
1145 		if (i->iov_offset == i->bvec->bv_len) {
1146 			i->iov_offset = 0;
1147 			i->bvec++;
1148 			i->nr_segs--;
1149 		}
1150 		return maxsize;
1151 	}
1152 	if (iov_iter_is_xarray(i))
1153 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1154 	return -EFAULT;
1155 }
1156 
1157 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1158 		size_t maxsize, unsigned maxpages, size_t *start)
1159 {
1160 	if (!maxpages)
1161 		return 0;
1162 	BUG_ON(!pages);
1163 
1164 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1165 }
1166 EXPORT_SYMBOL(iov_iter_get_pages2);
1167 
1168 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1169 		struct page ***pages, size_t maxsize, size_t *start)
1170 {
1171 	ssize_t len;
1172 
1173 	*pages = NULL;
1174 
1175 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1176 	if (len <= 0) {
1177 		kvfree(*pages);
1178 		*pages = NULL;
1179 	}
1180 	return len;
1181 }
1182 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1183 
1184 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1185 			       struct iov_iter *i)
1186 {
1187 	__wsum sum, next;
1188 	sum = *csum;
1189 	if (WARN_ON_ONCE(!i->data_source))
1190 		return 0;
1191 
1192 	iterate_and_advance(i, bytes, base, len, off, ({
1193 		next = csum_and_copy_from_user(base, addr + off, len);
1194 		sum = csum_block_add(sum, next, off);
1195 		next ? 0 : len;
1196 	}), ({
1197 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1198 	})
1199 	)
1200 	*csum = sum;
1201 	return bytes;
1202 }
1203 EXPORT_SYMBOL(csum_and_copy_from_iter);
1204 
1205 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1206 			     struct iov_iter *i)
1207 {
1208 	struct csum_state *csstate = _csstate;
1209 	__wsum sum, next;
1210 
1211 	if (WARN_ON_ONCE(i->data_source))
1212 		return 0;
1213 	if (unlikely(iov_iter_is_discard(i))) {
1214 		// can't use csum_memcpy() for that one - data is not copied
1215 		csstate->csum = csum_block_add(csstate->csum,
1216 					       csum_partial(addr, bytes, 0),
1217 					       csstate->off);
1218 		csstate->off += bytes;
1219 		return bytes;
1220 	}
1221 
1222 	sum = csum_shift(csstate->csum, csstate->off);
1223 	iterate_and_advance(i, bytes, base, len, off, ({
1224 		next = csum_and_copy_to_user(addr + off, base, len);
1225 		sum = csum_block_add(sum, next, off);
1226 		next ? 0 : len;
1227 	}), ({
1228 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1229 	})
1230 	)
1231 	csstate->csum = csum_shift(sum, csstate->off);
1232 	csstate->off += bytes;
1233 	return bytes;
1234 }
1235 EXPORT_SYMBOL(csum_and_copy_to_iter);
1236 
1237 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1238 		struct iov_iter *i)
1239 {
1240 #ifdef CONFIG_CRYPTO_HASH
1241 	struct ahash_request *hash = hashp;
1242 	struct scatterlist sg;
1243 	size_t copied;
1244 
1245 	copied = copy_to_iter(addr, bytes, i);
1246 	sg_init_one(&sg, addr, copied);
1247 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1248 	crypto_ahash_update(hash);
1249 	return copied;
1250 #else
1251 	return 0;
1252 #endif
1253 }
1254 EXPORT_SYMBOL(hash_and_copy_to_iter);
1255 
1256 static int iov_npages(const struct iov_iter *i, int maxpages)
1257 {
1258 	size_t skip = i->iov_offset, size = i->count;
1259 	const struct iovec *p;
1260 	int npages = 0;
1261 
1262 	for (p = iter_iov(i); size; skip = 0, p++) {
1263 		unsigned offs = offset_in_page(p->iov_base + skip);
1264 		size_t len = min(p->iov_len - skip, size);
1265 
1266 		if (len) {
1267 			size -= len;
1268 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1269 			if (unlikely(npages > maxpages))
1270 				return maxpages;
1271 		}
1272 	}
1273 	return npages;
1274 }
1275 
1276 static int bvec_npages(const struct iov_iter *i, int maxpages)
1277 {
1278 	size_t skip = i->iov_offset, size = i->count;
1279 	const struct bio_vec *p;
1280 	int npages = 0;
1281 
1282 	for (p = i->bvec; size; skip = 0, p++) {
1283 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1284 		size_t len = min(p->bv_len - skip, size);
1285 
1286 		size -= len;
1287 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1288 		if (unlikely(npages > maxpages))
1289 			return maxpages;
1290 	}
1291 	return npages;
1292 }
1293 
1294 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1295 {
1296 	if (unlikely(!i->count))
1297 		return 0;
1298 	if (likely(iter_is_ubuf(i))) {
1299 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1300 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1301 		return min(npages, maxpages);
1302 	}
1303 	/* iovec and kvec have identical layouts */
1304 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1305 		return iov_npages(i, maxpages);
1306 	if (iov_iter_is_bvec(i))
1307 		return bvec_npages(i, maxpages);
1308 	if (iov_iter_is_xarray(i)) {
1309 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1310 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1311 		return min(npages, maxpages);
1312 	}
1313 	return 0;
1314 }
1315 EXPORT_SYMBOL(iov_iter_npages);
1316 
1317 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1318 {
1319 	*new = *old;
1320 	if (iov_iter_is_bvec(new))
1321 		return new->bvec = kmemdup(new->bvec,
1322 				    new->nr_segs * sizeof(struct bio_vec),
1323 				    flags);
1324 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1325 		/* iovec and kvec have identical layout */
1326 		return new->__iov = kmemdup(new->__iov,
1327 				   new->nr_segs * sizeof(struct iovec),
1328 				   flags);
1329 	return NULL;
1330 }
1331 EXPORT_SYMBOL(dup_iter);
1332 
1333 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1334 		const struct iovec __user *uvec, unsigned long nr_segs)
1335 {
1336 	const struct compat_iovec __user *uiov =
1337 		(const struct compat_iovec __user *)uvec;
1338 	int ret = -EFAULT, i;
1339 
1340 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1341 		return -EFAULT;
1342 
1343 	for (i = 0; i < nr_segs; i++) {
1344 		compat_uptr_t buf;
1345 		compat_ssize_t len;
1346 
1347 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1348 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1349 
1350 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1351 		if (len < 0) {
1352 			ret = -EINVAL;
1353 			goto uaccess_end;
1354 		}
1355 		iov[i].iov_base = compat_ptr(buf);
1356 		iov[i].iov_len = len;
1357 	}
1358 
1359 	ret = 0;
1360 uaccess_end:
1361 	user_access_end();
1362 	return ret;
1363 }
1364 
1365 static __noclone int copy_iovec_from_user(struct iovec *iov,
1366 		const struct iovec __user *uiov, unsigned long nr_segs)
1367 {
1368 	int ret = -EFAULT;
1369 
1370 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1371 		return -EFAULT;
1372 
1373 	do {
1374 		void __user *buf;
1375 		ssize_t len;
1376 
1377 		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1378 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1379 
1380 		/* check for size_t not fitting in ssize_t .. */
1381 		if (unlikely(len < 0)) {
1382 			ret = -EINVAL;
1383 			goto uaccess_end;
1384 		}
1385 		iov->iov_base = buf;
1386 		iov->iov_len = len;
1387 
1388 		uiov++; iov++;
1389 	} while (--nr_segs);
1390 
1391 	ret = 0;
1392 uaccess_end:
1393 	user_access_end();
1394 	return ret;
1395 }
1396 
1397 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1398 		unsigned long nr_segs, unsigned long fast_segs,
1399 		struct iovec *fast_iov, bool compat)
1400 {
1401 	struct iovec *iov = fast_iov;
1402 	int ret;
1403 
1404 	/*
1405 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1406 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1407 	 * traditionally returned zero for zero segments, so...
1408 	 */
1409 	if (nr_segs == 0)
1410 		return iov;
1411 	if (nr_segs > UIO_MAXIOV)
1412 		return ERR_PTR(-EINVAL);
1413 	if (nr_segs > fast_segs) {
1414 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1415 		if (!iov)
1416 			return ERR_PTR(-ENOMEM);
1417 	}
1418 
1419 	if (unlikely(compat))
1420 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1421 	else
1422 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1423 	if (ret) {
1424 		if (iov != fast_iov)
1425 			kfree(iov);
1426 		return ERR_PTR(ret);
1427 	}
1428 
1429 	return iov;
1430 }
1431 
1432 /*
1433  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1434  */
1435 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1436 				   struct iovec **iovp, struct iov_iter *i,
1437 				   bool compat)
1438 {
1439 	struct iovec *iov = *iovp;
1440 	ssize_t ret;
1441 
1442 	if (compat)
1443 		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1444 	else
1445 		ret = copy_iovec_from_user(iov, uvec, 1);
1446 	if (unlikely(ret))
1447 		return ret;
1448 
1449 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1450 	if (unlikely(ret))
1451 		return ret;
1452 	*iovp = NULL;
1453 	return i->count;
1454 }
1455 
1456 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1457 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1458 		 struct iov_iter *i, bool compat)
1459 {
1460 	ssize_t total_len = 0;
1461 	unsigned long seg;
1462 	struct iovec *iov;
1463 
1464 	if (nr_segs == 1)
1465 		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1466 
1467 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1468 	if (IS_ERR(iov)) {
1469 		*iovp = NULL;
1470 		return PTR_ERR(iov);
1471 	}
1472 
1473 	/*
1474 	 * According to the Single Unix Specification we should return EINVAL if
1475 	 * an element length is < 0 when cast to ssize_t or if the total length
1476 	 * would overflow the ssize_t return value of the system call.
1477 	 *
1478 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1479 	 * overflow case.
1480 	 */
1481 	for (seg = 0; seg < nr_segs; seg++) {
1482 		ssize_t len = (ssize_t)iov[seg].iov_len;
1483 
1484 		if (!access_ok(iov[seg].iov_base, len)) {
1485 			if (iov != *iovp)
1486 				kfree(iov);
1487 			*iovp = NULL;
1488 			return -EFAULT;
1489 		}
1490 
1491 		if (len > MAX_RW_COUNT - total_len) {
1492 			len = MAX_RW_COUNT - total_len;
1493 			iov[seg].iov_len = len;
1494 		}
1495 		total_len += len;
1496 	}
1497 
1498 	iov_iter_init(i, type, iov, nr_segs, total_len);
1499 	if (iov == *iovp)
1500 		*iovp = NULL;
1501 	else
1502 		*iovp = iov;
1503 	return total_len;
1504 }
1505 
1506 /**
1507  * import_iovec() - Copy an array of &struct iovec from userspace
1508  *     into the kernel, check that it is valid, and initialize a new
1509  *     &struct iov_iter iterator to access it.
1510  *
1511  * @type: One of %READ or %WRITE.
1512  * @uvec: Pointer to the userspace array.
1513  * @nr_segs: Number of elements in userspace array.
1514  * @fast_segs: Number of elements in @iov.
1515  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1516  *     on-stack) kernel array.
1517  * @i: Pointer to iterator that will be initialized on success.
1518  *
1519  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1520  * then this function places %NULL in *@iov on return. Otherwise, a new
1521  * array will be allocated and the result placed in *@iov. This means that
1522  * the caller may call kfree() on *@iov regardless of whether the small
1523  * on-stack array was used or not (and regardless of whether this function
1524  * returns an error or not).
1525  *
1526  * Return: Negative error code on error, bytes imported on success
1527  */
1528 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1529 		 unsigned nr_segs, unsigned fast_segs,
1530 		 struct iovec **iovp, struct iov_iter *i)
1531 {
1532 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1533 			      in_compat_syscall());
1534 }
1535 EXPORT_SYMBOL(import_iovec);
1536 
1537 int import_single_range(int rw, void __user *buf, size_t len,
1538 		 struct iovec *iov, struct iov_iter *i)
1539 {
1540 	if (len > MAX_RW_COUNT)
1541 		len = MAX_RW_COUNT;
1542 	if (unlikely(!access_ok(buf, len)))
1543 		return -EFAULT;
1544 
1545 	iov_iter_ubuf(i, rw, buf, len);
1546 	return 0;
1547 }
1548 EXPORT_SYMBOL(import_single_range);
1549 
1550 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1551 {
1552 	if (len > MAX_RW_COUNT)
1553 		len = MAX_RW_COUNT;
1554 	if (unlikely(!access_ok(buf, len)))
1555 		return -EFAULT;
1556 
1557 	iov_iter_ubuf(i, rw, buf, len);
1558 	return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(import_ubuf);
1561 
1562 /**
1563  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1564  *     iov_iter_save_state() was called.
1565  *
1566  * @i: &struct iov_iter to restore
1567  * @state: state to restore from
1568  *
1569  * Used after iov_iter_save_state() to bring restore @i, if operations may
1570  * have advanced it.
1571  *
1572  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1573  */
1574 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1575 {
1576 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1577 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1578 		return;
1579 	i->iov_offset = state->iov_offset;
1580 	i->count = state->count;
1581 	if (iter_is_ubuf(i))
1582 		return;
1583 	/*
1584 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1585 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1586 	 * need to track both of these, just one is enough and we can deduct
1587 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1588 	 * size, so we can just increment the iov pointer as they are unionzed.
1589 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1590 	 * not. Be safe and handle it separately.
1591 	 */
1592 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1593 	if (iov_iter_is_bvec(i))
1594 		i->bvec -= state->nr_segs - i->nr_segs;
1595 	else
1596 		i->__iov -= state->nr_segs - i->nr_segs;
1597 	i->nr_segs = state->nr_segs;
1598 }
1599 
1600 /*
1601  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1602  * get references on the pages, nor does it get a pin on them.
1603  */
1604 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1605 					     struct page ***pages, size_t maxsize,
1606 					     unsigned int maxpages,
1607 					     iov_iter_extraction_t extraction_flags,
1608 					     size_t *offset0)
1609 {
1610 	struct page *page, **p;
1611 	unsigned int nr = 0, offset;
1612 	loff_t pos = i->xarray_start + i->iov_offset;
1613 	pgoff_t index = pos >> PAGE_SHIFT;
1614 	XA_STATE(xas, i->xarray, index);
1615 
1616 	offset = pos & ~PAGE_MASK;
1617 	*offset0 = offset;
1618 
1619 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1620 	if (!maxpages)
1621 		return -ENOMEM;
1622 	p = *pages;
1623 
1624 	rcu_read_lock();
1625 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1626 		if (xas_retry(&xas, page))
1627 			continue;
1628 
1629 		/* Has the page moved or been split? */
1630 		if (unlikely(page != xas_reload(&xas))) {
1631 			xas_reset(&xas);
1632 			continue;
1633 		}
1634 
1635 		p[nr++] = find_subpage(page, xas.xa_index);
1636 		if (nr == maxpages)
1637 			break;
1638 	}
1639 	rcu_read_unlock();
1640 
1641 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1642 	iov_iter_advance(i, maxsize);
1643 	return maxsize;
1644 }
1645 
1646 /*
1647  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1648  * not get references on the pages, nor does it get a pin on them.
1649  */
1650 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1651 					   struct page ***pages, size_t maxsize,
1652 					   unsigned int maxpages,
1653 					   iov_iter_extraction_t extraction_flags,
1654 					   size_t *offset0)
1655 {
1656 	struct page **p, *page;
1657 	size_t skip = i->iov_offset, offset, size;
1658 	int k;
1659 
1660 	for (;;) {
1661 		if (i->nr_segs == 0)
1662 			return 0;
1663 		size = min(maxsize, i->bvec->bv_len - skip);
1664 		if (size)
1665 			break;
1666 		i->iov_offset = 0;
1667 		i->nr_segs--;
1668 		i->bvec++;
1669 		skip = 0;
1670 	}
1671 
1672 	skip += i->bvec->bv_offset;
1673 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1674 	offset = skip % PAGE_SIZE;
1675 	*offset0 = offset;
1676 
1677 	maxpages = want_pages_array(pages, size, offset, maxpages);
1678 	if (!maxpages)
1679 		return -ENOMEM;
1680 	p = *pages;
1681 	for (k = 0; k < maxpages; k++)
1682 		p[k] = page + k;
1683 
1684 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1685 	iov_iter_advance(i, size);
1686 	return size;
1687 }
1688 
1689 /*
1690  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1691  * This does not get references on the pages, nor does it get a pin on them.
1692  */
1693 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1694 					   struct page ***pages, size_t maxsize,
1695 					   unsigned int maxpages,
1696 					   iov_iter_extraction_t extraction_flags,
1697 					   size_t *offset0)
1698 {
1699 	struct page **p, *page;
1700 	const void *kaddr;
1701 	size_t skip = i->iov_offset, offset, len, size;
1702 	int k;
1703 
1704 	for (;;) {
1705 		if (i->nr_segs == 0)
1706 			return 0;
1707 		size = min(maxsize, i->kvec->iov_len - skip);
1708 		if (size)
1709 			break;
1710 		i->iov_offset = 0;
1711 		i->nr_segs--;
1712 		i->kvec++;
1713 		skip = 0;
1714 	}
1715 
1716 	kaddr = i->kvec->iov_base + skip;
1717 	offset = (unsigned long)kaddr & ~PAGE_MASK;
1718 	*offset0 = offset;
1719 
1720 	maxpages = want_pages_array(pages, size, offset, maxpages);
1721 	if (!maxpages)
1722 		return -ENOMEM;
1723 	p = *pages;
1724 
1725 	kaddr -= offset;
1726 	len = offset + size;
1727 	for (k = 0; k < maxpages; k++) {
1728 		size_t seg = min_t(size_t, len, PAGE_SIZE);
1729 
1730 		if (is_vmalloc_or_module_addr(kaddr))
1731 			page = vmalloc_to_page(kaddr);
1732 		else
1733 			page = virt_to_page(kaddr);
1734 
1735 		p[k] = page;
1736 		len -= seg;
1737 		kaddr += PAGE_SIZE;
1738 	}
1739 
1740 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1741 	iov_iter_advance(i, size);
1742 	return size;
1743 }
1744 
1745 /*
1746  * Extract a list of contiguous pages from a user iterator and get a pin on
1747  * each of them.  This should only be used if the iterator is user-backed
1748  * (IOBUF/UBUF).
1749  *
1750  * It does not get refs on the pages, but the pages must be unpinned by the
1751  * caller once the transfer is complete.
1752  *
1753  * This is safe to be used where background IO/DMA *is* going to be modifying
1754  * the buffer; using a pin rather than a ref makes forces fork() to give the
1755  * child a copy of the page.
1756  */
1757 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1758 					   struct page ***pages,
1759 					   size_t maxsize,
1760 					   unsigned int maxpages,
1761 					   iov_iter_extraction_t extraction_flags,
1762 					   size_t *offset0)
1763 {
1764 	unsigned long addr;
1765 	unsigned int gup_flags = 0;
1766 	size_t offset;
1767 	int res;
1768 
1769 	if (i->data_source == ITER_DEST)
1770 		gup_flags |= FOLL_WRITE;
1771 	if (extraction_flags & ITER_ALLOW_P2PDMA)
1772 		gup_flags |= FOLL_PCI_P2PDMA;
1773 	if (i->nofault)
1774 		gup_flags |= FOLL_NOFAULT;
1775 
1776 	addr = first_iovec_segment(i, &maxsize);
1777 	*offset0 = offset = addr % PAGE_SIZE;
1778 	addr &= PAGE_MASK;
1779 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1780 	if (!maxpages)
1781 		return -ENOMEM;
1782 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1783 	if (unlikely(res <= 0))
1784 		return res;
1785 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1786 	iov_iter_advance(i, maxsize);
1787 	return maxsize;
1788 }
1789 
1790 /**
1791  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1792  * @i: The iterator to extract from
1793  * @pages: Where to return the list of pages
1794  * @maxsize: The maximum amount of iterator to extract
1795  * @maxpages: The maximum size of the list of pages
1796  * @extraction_flags: Flags to qualify request
1797  * @offset0: Where to return the starting offset into (*@pages)[0]
1798  *
1799  * Extract a list of contiguous pages from the current point of the iterator,
1800  * advancing the iterator.  The maximum number of pages and the maximum amount
1801  * of page contents can be set.
1802  *
1803  * If *@pages is NULL, a page list will be allocated to the required size and
1804  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1805  * that the caller allocated a page list at least @maxpages in size and this
1806  * will be filled in.
1807  *
1808  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1809  * be allowed on the pages extracted.
1810  *
1811  * The iov_iter_extract_will_pin() function can be used to query how cleanup
1812  * should be performed.
1813  *
1814  * Extra refs or pins on the pages may be obtained as follows:
1815  *
1816  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1817  *      added to the pages, but refs will not be taken.
1818  *      iov_iter_extract_will_pin() will return true.
1819  *
1820  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1821  *      merely listed; no extra refs or pins are obtained.
1822  *      iov_iter_extract_will_pin() will return 0.
1823  *
1824  * Note also:
1825  *
1826  *  (*) Use with ITER_DISCARD is not supported as that has no content.
1827  *
1828  * On success, the function sets *@pages to the new pagelist, if allocated, and
1829  * sets *offset0 to the offset into the first page.
1830  *
1831  * It may also return -ENOMEM and -EFAULT.
1832  */
1833 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1834 			       struct page ***pages,
1835 			       size_t maxsize,
1836 			       unsigned int maxpages,
1837 			       iov_iter_extraction_t extraction_flags,
1838 			       size_t *offset0)
1839 {
1840 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1841 	if (!maxsize)
1842 		return 0;
1843 
1844 	if (likely(user_backed_iter(i)))
1845 		return iov_iter_extract_user_pages(i, pages, maxsize,
1846 						   maxpages, extraction_flags,
1847 						   offset0);
1848 	if (iov_iter_is_kvec(i))
1849 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1850 						   maxpages, extraction_flags,
1851 						   offset0);
1852 	if (iov_iter_is_bvec(i))
1853 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1854 						   maxpages, extraction_flags,
1855 						   offset0);
1856 	if (iov_iter_is_xarray(i))
1857 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1858 						     maxpages, extraction_flags,
1859 						     offset0);
1860 	return -EFAULT;
1861 }
1862 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
1863