1 #include <linux/export.h> 2 #include <linux/bvec.h> 3 #include <linux/uio.h> 4 #include <linux/pagemap.h> 5 #include <linux/slab.h> 6 #include <linux/vmalloc.h> 7 #include <linux/splice.h> 8 #include <net/checksum.h> 9 10 #define PIPE_PARANOIA /* for now */ 11 12 #define iterate_iovec(i, n, __v, __p, skip, STEP) { \ 13 size_t left; \ 14 size_t wanted = n; \ 15 __p = i->iov; \ 16 __v.iov_len = min(n, __p->iov_len - skip); \ 17 if (likely(__v.iov_len)) { \ 18 __v.iov_base = __p->iov_base + skip; \ 19 left = (STEP); \ 20 __v.iov_len -= left; \ 21 skip += __v.iov_len; \ 22 n -= __v.iov_len; \ 23 } else { \ 24 left = 0; \ 25 } \ 26 while (unlikely(!left && n)) { \ 27 __p++; \ 28 __v.iov_len = min(n, __p->iov_len); \ 29 if (unlikely(!__v.iov_len)) \ 30 continue; \ 31 __v.iov_base = __p->iov_base; \ 32 left = (STEP); \ 33 __v.iov_len -= left; \ 34 skip = __v.iov_len; \ 35 n -= __v.iov_len; \ 36 } \ 37 n = wanted - n; \ 38 } 39 40 #define iterate_kvec(i, n, __v, __p, skip, STEP) { \ 41 size_t wanted = n; \ 42 __p = i->kvec; \ 43 __v.iov_len = min(n, __p->iov_len - skip); \ 44 if (likely(__v.iov_len)) { \ 45 __v.iov_base = __p->iov_base + skip; \ 46 (void)(STEP); \ 47 skip += __v.iov_len; \ 48 n -= __v.iov_len; \ 49 } \ 50 while (unlikely(n)) { \ 51 __p++; \ 52 __v.iov_len = min(n, __p->iov_len); \ 53 if (unlikely(!__v.iov_len)) \ 54 continue; \ 55 __v.iov_base = __p->iov_base; \ 56 (void)(STEP); \ 57 skip = __v.iov_len; \ 58 n -= __v.iov_len; \ 59 } \ 60 n = wanted; \ 61 } 62 63 #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \ 64 struct bvec_iter __start; \ 65 __start.bi_size = n; \ 66 __start.bi_bvec_done = skip; \ 67 __start.bi_idx = 0; \ 68 for_each_bvec(__v, i->bvec, __bi, __start) { \ 69 if (!__v.bv_len) \ 70 continue; \ 71 (void)(STEP); \ 72 } \ 73 } 74 75 #define iterate_all_kinds(i, n, v, I, B, K) { \ 76 if (likely(n)) { \ 77 size_t skip = i->iov_offset; \ 78 if (unlikely(i->type & ITER_BVEC)) { \ 79 struct bio_vec v; \ 80 struct bvec_iter __bi; \ 81 iterate_bvec(i, n, v, __bi, skip, (B)) \ 82 } else if (unlikely(i->type & ITER_KVEC)) { \ 83 const struct kvec *kvec; \ 84 struct kvec v; \ 85 iterate_kvec(i, n, v, kvec, skip, (K)) \ 86 } else if (unlikely(i->type & ITER_DISCARD)) { \ 87 } else { \ 88 const struct iovec *iov; \ 89 struct iovec v; \ 90 iterate_iovec(i, n, v, iov, skip, (I)) \ 91 } \ 92 } \ 93 } 94 95 #define iterate_and_advance(i, n, v, I, B, K) { \ 96 if (unlikely(i->count < n)) \ 97 n = i->count; \ 98 if (i->count) { \ 99 size_t skip = i->iov_offset; \ 100 if (unlikely(i->type & ITER_BVEC)) { \ 101 const struct bio_vec *bvec = i->bvec; \ 102 struct bio_vec v; \ 103 struct bvec_iter __bi; \ 104 iterate_bvec(i, n, v, __bi, skip, (B)) \ 105 i->bvec = __bvec_iter_bvec(i->bvec, __bi); \ 106 i->nr_segs -= i->bvec - bvec; \ 107 skip = __bi.bi_bvec_done; \ 108 } else if (unlikely(i->type & ITER_KVEC)) { \ 109 const struct kvec *kvec; \ 110 struct kvec v; \ 111 iterate_kvec(i, n, v, kvec, skip, (K)) \ 112 if (skip == kvec->iov_len) { \ 113 kvec++; \ 114 skip = 0; \ 115 } \ 116 i->nr_segs -= kvec - i->kvec; \ 117 i->kvec = kvec; \ 118 } else if (unlikely(i->type & ITER_DISCARD)) { \ 119 skip += n; \ 120 } else { \ 121 const struct iovec *iov; \ 122 struct iovec v; \ 123 iterate_iovec(i, n, v, iov, skip, (I)) \ 124 if (skip == iov->iov_len) { \ 125 iov++; \ 126 skip = 0; \ 127 } \ 128 i->nr_segs -= iov - i->iov; \ 129 i->iov = iov; \ 130 } \ 131 i->count -= n; \ 132 i->iov_offset = skip; \ 133 } \ 134 } 135 136 static int copyout(void __user *to, const void *from, size_t n) 137 { 138 if (access_ok(VERIFY_WRITE, to, n)) { 139 kasan_check_read(from, n); 140 n = raw_copy_to_user(to, from, n); 141 } 142 return n; 143 } 144 145 static int copyin(void *to, const void __user *from, size_t n) 146 { 147 if (access_ok(VERIFY_READ, from, n)) { 148 kasan_check_write(to, n); 149 n = raw_copy_from_user(to, from, n); 150 } 151 return n; 152 } 153 154 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes, 155 struct iov_iter *i) 156 { 157 size_t skip, copy, left, wanted; 158 const struct iovec *iov; 159 char __user *buf; 160 void *kaddr, *from; 161 162 if (unlikely(bytes > i->count)) 163 bytes = i->count; 164 165 if (unlikely(!bytes)) 166 return 0; 167 168 might_fault(); 169 wanted = bytes; 170 iov = i->iov; 171 skip = i->iov_offset; 172 buf = iov->iov_base + skip; 173 copy = min(bytes, iov->iov_len - skip); 174 175 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) { 176 kaddr = kmap_atomic(page); 177 from = kaddr + offset; 178 179 /* first chunk, usually the only one */ 180 left = copyout(buf, from, copy); 181 copy -= left; 182 skip += copy; 183 from += copy; 184 bytes -= copy; 185 186 while (unlikely(!left && bytes)) { 187 iov++; 188 buf = iov->iov_base; 189 copy = min(bytes, iov->iov_len); 190 left = copyout(buf, from, copy); 191 copy -= left; 192 skip = copy; 193 from += copy; 194 bytes -= copy; 195 } 196 if (likely(!bytes)) { 197 kunmap_atomic(kaddr); 198 goto done; 199 } 200 offset = from - kaddr; 201 buf += copy; 202 kunmap_atomic(kaddr); 203 copy = min(bytes, iov->iov_len - skip); 204 } 205 /* Too bad - revert to non-atomic kmap */ 206 207 kaddr = kmap(page); 208 from = kaddr + offset; 209 left = copyout(buf, from, copy); 210 copy -= left; 211 skip += copy; 212 from += copy; 213 bytes -= copy; 214 while (unlikely(!left && bytes)) { 215 iov++; 216 buf = iov->iov_base; 217 copy = min(bytes, iov->iov_len); 218 left = copyout(buf, from, copy); 219 copy -= left; 220 skip = copy; 221 from += copy; 222 bytes -= copy; 223 } 224 kunmap(page); 225 226 done: 227 if (skip == iov->iov_len) { 228 iov++; 229 skip = 0; 230 } 231 i->count -= wanted - bytes; 232 i->nr_segs -= iov - i->iov; 233 i->iov = iov; 234 i->iov_offset = skip; 235 return wanted - bytes; 236 } 237 238 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes, 239 struct iov_iter *i) 240 { 241 size_t skip, copy, left, wanted; 242 const struct iovec *iov; 243 char __user *buf; 244 void *kaddr, *to; 245 246 if (unlikely(bytes > i->count)) 247 bytes = i->count; 248 249 if (unlikely(!bytes)) 250 return 0; 251 252 might_fault(); 253 wanted = bytes; 254 iov = i->iov; 255 skip = i->iov_offset; 256 buf = iov->iov_base + skip; 257 copy = min(bytes, iov->iov_len - skip); 258 259 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) { 260 kaddr = kmap_atomic(page); 261 to = kaddr + offset; 262 263 /* first chunk, usually the only one */ 264 left = copyin(to, buf, copy); 265 copy -= left; 266 skip += copy; 267 to += copy; 268 bytes -= copy; 269 270 while (unlikely(!left && bytes)) { 271 iov++; 272 buf = iov->iov_base; 273 copy = min(bytes, iov->iov_len); 274 left = copyin(to, buf, copy); 275 copy -= left; 276 skip = copy; 277 to += copy; 278 bytes -= copy; 279 } 280 if (likely(!bytes)) { 281 kunmap_atomic(kaddr); 282 goto done; 283 } 284 offset = to - kaddr; 285 buf += copy; 286 kunmap_atomic(kaddr); 287 copy = min(bytes, iov->iov_len - skip); 288 } 289 /* Too bad - revert to non-atomic kmap */ 290 291 kaddr = kmap(page); 292 to = kaddr + offset; 293 left = copyin(to, buf, copy); 294 copy -= left; 295 skip += copy; 296 to += copy; 297 bytes -= copy; 298 while (unlikely(!left && bytes)) { 299 iov++; 300 buf = iov->iov_base; 301 copy = min(bytes, iov->iov_len); 302 left = copyin(to, buf, copy); 303 copy -= left; 304 skip = copy; 305 to += copy; 306 bytes -= copy; 307 } 308 kunmap(page); 309 310 done: 311 if (skip == iov->iov_len) { 312 iov++; 313 skip = 0; 314 } 315 i->count -= wanted - bytes; 316 i->nr_segs -= iov - i->iov; 317 i->iov = iov; 318 i->iov_offset = skip; 319 return wanted - bytes; 320 } 321 322 #ifdef PIPE_PARANOIA 323 static bool sanity(const struct iov_iter *i) 324 { 325 struct pipe_inode_info *pipe = i->pipe; 326 int idx = i->idx; 327 int next = pipe->curbuf + pipe->nrbufs; 328 if (i->iov_offset) { 329 struct pipe_buffer *p; 330 if (unlikely(!pipe->nrbufs)) 331 goto Bad; // pipe must be non-empty 332 if (unlikely(idx != ((next - 1) & (pipe->buffers - 1)))) 333 goto Bad; // must be at the last buffer... 334 335 p = &pipe->bufs[idx]; 336 if (unlikely(p->offset + p->len != i->iov_offset)) 337 goto Bad; // ... at the end of segment 338 } else { 339 if (idx != (next & (pipe->buffers - 1))) 340 goto Bad; // must be right after the last buffer 341 } 342 return true; 343 Bad: 344 printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset); 345 printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n", 346 pipe->curbuf, pipe->nrbufs, pipe->buffers); 347 for (idx = 0; idx < pipe->buffers; idx++) 348 printk(KERN_ERR "[%p %p %d %d]\n", 349 pipe->bufs[idx].ops, 350 pipe->bufs[idx].page, 351 pipe->bufs[idx].offset, 352 pipe->bufs[idx].len); 353 WARN_ON(1); 354 return false; 355 } 356 #else 357 #define sanity(i) true 358 #endif 359 360 static inline int next_idx(int idx, struct pipe_inode_info *pipe) 361 { 362 return (idx + 1) & (pipe->buffers - 1); 363 } 364 365 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, 366 struct iov_iter *i) 367 { 368 struct pipe_inode_info *pipe = i->pipe; 369 struct pipe_buffer *buf; 370 size_t off; 371 int idx; 372 373 if (unlikely(bytes > i->count)) 374 bytes = i->count; 375 376 if (unlikely(!bytes)) 377 return 0; 378 379 if (!sanity(i)) 380 return 0; 381 382 off = i->iov_offset; 383 idx = i->idx; 384 buf = &pipe->bufs[idx]; 385 if (off) { 386 if (offset == off && buf->page == page) { 387 /* merge with the last one */ 388 buf->len += bytes; 389 i->iov_offset += bytes; 390 goto out; 391 } 392 idx = next_idx(idx, pipe); 393 buf = &pipe->bufs[idx]; 394 } 395 if (idx == pipe->curbuf && pipe->nrbufs) 396 return 0; 397 pipe->nrbufs++; 398 buf->ops = &page_cache_pipe_buf_ops; 399 get_page(buf->page = page); 400 buf->offset = offset; 401 buf->len = bytes; 402 i->iov_offset = offset + bytes; 403 i->idx = idx; 404 out: 405 i->count -= bytes; 406 return bytes; 407 } 408 409 /* 410 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 411 * bytes. For each iovec, fault in each page that constitutes the iovec. 412 * 413 * Return 0 on success, or non-zero if the memory could not be accessed (i.e. 414 * because it is an invalid address). 415 */ 416 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 417 { 418 size_t skip = i->iov_offset; 419 const struct iovec *iov; 420 int err; 421 struct iovec v; 422 423 if (!(i->type & (ITER_BVEC|ITER_KVEC))) { 424 iterate_iovec(i, bytes, v, iov, skip, ({ 425 err = fault_in_pages_readable(v.iov_base, v.iov_len); 426 if (unlikely(err)) 427 return err; 428 0;})) 429 } 430 return 0; 431 } 432 EXPORT_SYMBOL(iov_iter_fault_in_readable); 433 434 void iov_iter_init(struct iov_iter *i, unsigned int direction, 435 const struct iovec *iov, unsigned long nr_segs, 436 size_t count) 437 { 438 WARN_ON(direction & ~(READ | WRITE)); 439 direction &= READ | WRITE; 440 441 /* It will get better. Eventually... */ 442 if (uaccess_kernel()) { 443 i->type = ITER_KVEC | direction; 444 i->kvec = (struct kvec *)iov; 445 } else { 446 i->type = ITER_IOVEC | direction; 447 i->iov = iov; 448 } 449 i->nr_segs = nr_segs; 450 i->iov_offset = 0; 451 i->count = count; 452 } 453 EXPORT_SYMBOL(iov_iter_init); 454 455 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len) 456 { 457 char *from = kmap_atomic(page); 458 memcpy(to, from + offset, len); 459 kunmap_atomic(from); 460 } 461 462 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len) 463 { 464 char *to = kmap_atomic(page); 465 memcpy(to + offset, from, len); 466 kunmap_atomic(to); 467 } 468 469 static void memzero_page(struct page *page, size_t offset, size_t len) 470 { 471 char *addr = kmap_atomic(page); 472 memset(addr + offset, 0, len); 473 kunmap_atomic(addr); 474 } 475 476 static inline bool allocated(struct pipe_buffer *buf) 477 { 478 return buf->ops == &default_pipe_buf_ops; 479 } 480 481 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp) 482 { 483 size_t off = i->iov_offset; 484 int idx = i->idx; 485 if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) { 486 idx = next_idx(idx, i->pipe); 487 off = 0; 488 } 489 *idxp = idx; 490 *offp = off; 491 } 492 493 static size_t push_pipe(struct iov_iter *i, size_t size, 494 int *idxp, size_t *offp) 495 { 496 struct pipe_inode_info *pipe = i->pipe; 497 size_t off; 498 int idx; 499 ssize_t left; 500 501 if (unlikely(size > i->count)) 502 size = i->count; 503 if (unlikely(!size)) 504 return 0; 505 506 left = size; 507 data_start(i, &idx, &off); 508 *idxp = idx; 509 *offp = off; 510 if (off) { 511 left -= PAGE_SIZE - off; 512 if (left <= 0) { 513 pipe->bufs[idx].len += size; 514 return size; 515 } 516 pipe->bufs[idx].len = PAGE_SIZE; 517 idx = next_idx(idx, pipe); 518 } 519 while (idx != pipe->curbuf || !pipe->nrbufs) { 520 struct page *page = alloc_page(GFP_USER); 521 if (!page) 522 break; 523 pipe->nrbufs++; 524 pipe->bufs[idx].ops = &default_pipe_buf_ops; 525 pipe->bufs[idx].page = page; 526 pipe->bufs[idx].offset = 0; 527 if (left <= PAGE_SIZE) { 528 pipe->bufs[idx].len = left; 529 return size; 530 } 531 pipe->bufs[idx].len = PAGE_SIZE; 532 left -= PAGE_SIZE; 533 idx = next_idx(idx, pipe); 534 } 535 return size - left; 536 } 537 538 static size_t copy_pipe_to_iter(const void *addr, size_t bytes, 539 struct iov_iter *i) 540 { 541 struct pipe_inode_info *pipe = i->pipe; 542 size_t n, off; 543 int idx; 544 545 if (!sanity(i)) 546 return 0; 547 548 bytes = n = push_pipe(i, bytes, &idx, &off); 549 if (unlikely(!n)) 550 return 0; 551 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 552 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 553 memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk); 554 i->idx = idx; 555 i->iov_offset = off + chunk; 556 n -= chunk; 557 addr += chunk; 558 } 559 i->count -= bytes; 560 return bytes; 561 } 562 563 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 564 { 565 const char *from = addr; 566 if (unlikely(iov_iter_is_pipe(i))) 567 return copy_pipe_to_iter(addr, bytes, i); 568 if (iter_is_iovec(i)) 569 might_fault(); 570 iterate_and_advance(i, bytes, v, 571 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 572 memcpy_to_page(v.bv_page, v.bv_offset, 573 (from += v.bv_len) - v.bv_len, v.bv_len), 574 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len) 575 ) 576 577 return bytes; 578 } 579 EXPORT_SYMBOL(_copy_to_iter); 580 581 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE 582 static int copyout_mcsafe(void __user *to, const void *from, size_t n) 583 { 584 if (access_ok(VERIFY_WRITE, to, n)) { 585 kasan_check_read(from, n); 586 n = copy_to_user_mcsafe((__force void *) to, from, n); 587 } 588 return n; 589 } 590 591 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset, 592 const char *from, size_t len) 593 { 594 unsigned long ret; 595 char *to; 596 597 to = kmap_atomic(page); 598 ret = memcpy_mcsafe(to + offset, from, len); 599 kunmap_atomic(to); 600 601 return ret; 602 } 603 604 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes, 605 struct iov_iter *i) 606 { 607 struct pipe_inode_info *pipe = i->pipe; 608 size_t n, off, xfer = 0; 609 int idx; 610 611 if (!sanity(i)) 612 return 0; 613 614 bytes = n = push_pipe(i, bytes, &idx, &off); 615 if (unlikely(!n)) 616 return 0; 617 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 618 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 619 unsigned long rem; 620 621 rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr, 622 chunk); 623 i->idx = idx; 624 i->iov_offset = off + chunk - rem; 625 xfer += chunk - rem; 626 if (rem) 627 break; 628 n -= chunk; 629 addr += chunk; 630 } 631 i->count -= xfer; 632 return xfer; 633 } 634 635 /** 636 * _copy_to_iter_mcsafe - copy to user with source-read error exception handling 637 * @addr: source kernel address 638 * @bytes: total transfer length 639 * @iter: destination iterator 640 * 641 * The pmem driver arranges for filesystem-dax to use this facility via 642 * dax_copy_to_iter() for protecting read/write to persistent memory. 643 * Unless / until an architecture can guarantee identical performance 644 * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a 645 * performance regression to switch more users to the mcsafe version. 646 * 647 * Otherwise, the main differences between this and typical _copy_to_iter(). 648 * 649 * * Typical tail/residue handling after a fault retries the copy 650 * byte-by-byte until the fault happens again. Re-triggering machine 651 * checks is potentially fatal so the implementation uses source 652 * alignment and poison alignment assumptions to avoid re-triggering 653 * hardware exceptions. 654 * 655 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. 656 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return 657 * a short copy. 658 * 659 * See MCSAFE_TEST for self-test. 660 */ 661 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i) 662 { 663 const char *from = addr; 664 unsigned long rem, curr_addr, s_addr = (unsigned long) addr; 665 666 if (unlikely(iov_iter_is_pipe(i))) 667 return copy_pipe_to_iter_mcsafe(addr, bytes, i); 668 if (iter_is_iovec(i)) 669 might_fault(); 670 iterate_and_advance(i, bytes, v, 671 copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 672 ({ 673 rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset, 674 (from += v.bv_len) - v.bv_len, v.bv_len); 675 if (rem) { 676 curr_addr = (unsigned long) from; 677 bytes = curr_addr - s_addr - rem; 678 return bytes; 679 } 680 }), 681 ({ 682 rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, 683 v.iov_len); 684 if (rem) { 685 curr_addr = (unsigned long) from; 686 bytes = curr_addr - s_addr - rem; 687 return bytes; 688 } 689 }) 690 ) 691 692 return bytes; 693 } 694 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe); 695 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */ 696 697 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 698 { 699 char *to = addr; 700 if (unlikely(iov_iter_is_pipe(i))) { 701 WARN_ON(1); 702 return 0; 703 } 704 if (iter_is_iovec(i)) 705 might_fault(); 706 iterate_and_advance(i, bytes, v, 707 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 708 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 709 v.bv_offset, v.bv_len), 710 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 711 ) 712 713 return bytes; 714 } 715 EXPORT_SYMBOL(_copy_from_iter); 716 717 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) 718 { 719 char *to = addr; 720 if (unlikely(iov_iter_is_pipe(i))) { 721 WARN_ON(1); 722 return false; 723 } 724 if (unlikely(i->count < bytes)) 725 return false; 726 727 if (iter_is_iovec(i)) 728 might_fault(); 729 iterate_all_kinds(i, bytes, v, ({ 730 if (copyin((to += v.iov_len) - v.iov_len, 731 v.iov_base, v.iov_len)) 732 return false; 733 0;}), 734 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 735 v.bv_offset, v.bv_len), 736 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 737 ) 738 739 iov_iter_advance(i, bytes); 740 return true; 741 } 742 EXPORT_SYMBOL(_copy_from_iter_full); 743 744 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 745 { 746 char *to = addr; 747 if (unlikely(iov_iter_is_pipe(i))) { 748 WARN_ON(1); 749 return 0; 750 } 751 iterate_and_advance(i, bytes, v, 752 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 753 v.iov_base, v.iov_len), 754 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 755 v.bv_offset, v.bv_len), 756 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 757 ) 758 759 return bytes; 760 } 761 EXPORT_SYMBOL(_copy_from_iter_nocache); 762 763 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 764 /** 765 * _copy_from_iter_flushcache - write destination through cpu cache 766 * @addr: destination kernel address 767 * @bytes: total transfer length 768 * @iter: source iterator 769 * 770 * The pmem driver arranges for filesystem-dax to use this facility via 771 * dax_copy_from_iter() for ensuring that writes to persistent memory 772 * are flushed through the CPU cache. It is differentiated from 773 * _copy_from_iter_nocache() in that guarantees all data is flushed for 774 * all iterator types. The _copy_from_iter_nocache() only attempts to 775 * bypass the cache for the ITER_IOVEC case, and on some archs may use 776 * instructions that strand dirty-data in the cache. 777 */ 778 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 779 { 780 char *to = addr; 781 if (unlikely(iov_iter_is_pipe(i))) { 782 WARN_ON(1); 783 return 0; 784 } 785 iterate_and_advance(i, bytes, v, 786 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len, 787 v.iov_base, v.iov_len), 788 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page, 789 v.bv_offset, v.bv_len), 790 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, 791 v.iov_len) 792 ) 793 794 return bytes; 795 } 796 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 797 #endif 798 799 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) 800 { 801 char *to = addr; 802 if (unlikely(iov_iter_is_pipe(i))) { 803 WARN_ON(1); 804 return false; 805 } 806 if (unlikely(i->count < bytes)) 807 return false; 808 iterate_all_kinds(i, bytes, v, ({ 809 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 810 v.iov_base, v.iov_len)) 811 return false; 812 0;}), 813 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 814 v.bv_offset, v.bv_len), 815 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 816 ) 817 818 iov_iter_advance(i, bytes); 819 return true; 820 } 821 EXPORT_SYMBOL(_copy_from_iter_full_nocache); 822 823 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 824 { 825 struct page *head = compound_head(page); 826 size_t v = n + offset + page_address(page) - page_address(head); 827 828 if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head)))) 829 return true; 830 WARN_ON(1); 831 return false; 832 } 833 834 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 835 struct iov_iter *i) 836 { 837 if (unlikely(!page_copy_sane(page, offset, bytes))) 838 return 0; 839 if (i->type & (ITER_BVEC|ITER_KVEC)) { 840 void *kaddr = kmap_atomic(page); 841 size_t wanted = copy_to_iter(kaddr + offset, bytes, i); 842 kunmap_atomic(kaddr); 843 return wanted; 844 } else if (unlikely(iov_iter_is_discard(i))) 845 return bytes; 846 else if (likely(!iov_iter_is_pipe(i))) 847 return copy_page_to_iter_iovec(page, offset, bytes, i); 848 else 849 return copy_page_to_iter_pipe(page, offset, bytes, i); 850 } 851 EXPORT_SYMBOL(copy_page_to_iter); 852 853 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 854 struct iov_iter *i) 855 { 856 if (unlikely(!page_copy_sane(page, offset, bytes))) 857 return 0; 858 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 859 WARN_ON(1); 860 return 0; 861 } 862 if (i->type & (ITER_BVEC|ITER_KVEC)) { 863 void *kaddr = kmap_atomic(page); 864 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i); 865 kunmap_atomic(kaddr); 866 return wanted; 867 } else 868 return copy_page_from_iter_iovec(page, offset, bytes, i); 869 } 870 EXPORT_SYMBOL(copy_page_from_iter); 871 872 static size_t pipe_zero(size_t bytes, struct iov_iter *i) 873 { 874 struct pipe_inode_info *pipe = i->pipe; 875 size_t n, off; 876 int idx; 877 878 if (!sanity(i)) 879 return 0; 880 881 bytes = n = push_pipe(i, bytes, &idx, &off); 882 if (unlikely(!n)) 883 return 0; 884 885 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 886 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 887 memzero_page(pipe->bufs[idx].page, off, chunk); 888 i->idx = idx; 889 i->iov_offset = off + chunk; 890 n -= chunk; 891 } 892 i->count -= bytes; 893 return bytes; 894 } 895 896 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 897 { 898 if (unlikely(iov_iter_is_pipe(i))) 899 return pipe_zero(bytes, i); 900 iterate_and_advance(i, bytes, v, 901 clear_user(v.iov_base, v.iov_len), 902 memzero_page(v.bv_page, v.bv_offset, v.bv_len), 903 memset(v.iov_base, 0, v.iov_len) 904 ) 905 906 return bytes; 907 } 908 EXPORT_SYMBOL(iov_iter_zero); 909 910 size_t iov_iter_copy_from_user_atomic(struct page *page, 911 struct iov_iter *i, unsigned long offset, size_t bytes) 912 { 913 char *kaddr = kmap_atomic(page), *p = kaddr + offset; 914 if (unlikely(!page_copy_sane(page, offset, bytes))) { 915 kunmap_atomic(kaddr); 916 return 0; 917 } 918 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 919 kunmap_atomic(kaddr); 920 WARN_ON(1); 921 return 0; 922 } 923 iterate_all_kinds(i, bytes, v, 924 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 925 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page, 926 v.bv_offset, v.bv_len), 927 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 928 ) 929 kunmap_atomic(kaddr); 930 return bytes; 931 } 932 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 933 934 static inline void pipe_truncate(struct iov_iter *i) 935 { 936 struct pipe_inode_info *pipe = i->pipe; 937 if (pipe->nrbufs) { 938 size_t off = i->iov_offset; 939 int idx = i->idx; 940 int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1); 941 if (off) { 942 pipe->bufs[idx].len = off - pipe->bufs[idx].offset; 943 idx = next_idx(idx, pipe); 944 nrbufs++; 945 } 946 while (pipe->nrbufs > nrbufs) { 947 pipe_buf_release(pipe, &pipe->bufs[idx]); 948 idx = next_idx(idx, pipe); 949 pipe->nrbufs--; 950 } 951 } 952 } 953 954 static void pipe_advance(struct iov_iter *i, size_t size) 955 { 956 struct pipe_inode_info *pipe = i->pipe; 957 if (unlikely(i->count < size)) 958 size = i->count; 959 if (size) { 960 struct pipe_buffer *buf; 961 size_t off = i->iov_offset, left = size; 962 int idx = i->idx; 963 if (off) /* make it relative to the beginning of buffer */ 964 left += off - pipe->bufs[idx].offset; 965 while (1) { 966 buf = &pipe->bufs[idx]; 967 if (left <= buf->len) 968 break; 969 left -= buf->len; 970 idx = next_idx(idx, pipe); 971 } 972 i->idx = idx; 973 i->iov_offset = buf->offset + left; 974 } 975 i->count -= size; 976 /* ... and discard everything past that point */ 977 pipe_truncate(i); 978 } 979 980 void iov_iter_advance(struct iov_iter *i, size_t size) 981 { 982 if (unlikely(iov_iter_is_pipe(i))) { 983 pipe_advance(i, size); 984 return; 985 } 986 if (unlikely(iov_iter_is_discard(i))) { 987 i->count -= size; 988 return; 989 } 990 iterate_and_advance(i, size, v, 0, 0, 0) 991 } 992 EXPORT_SYMBOL(iov_iter_advance); 993 994 void iov_iter_revert(struct iov_iter *i, size_t unroll) 995 { 996 if (!unroll) 997 return; 998 if (WARN_ON(unroll > MAX_RW_COUNT)) 999 return; 1000 i->count += unroll; 1001 if (unlikely(iov_iter_is_pipe(i))) { 1002 struct pipe_inode_info *pipe = i->pipe; 1003 int idx = i->idx; 1004 size_t off = i->iov_offset; 1005 while (1) { 1006 size_t n = off - pipe->bufs[idx].offset; 1007 if (unroll < n) { 1008 off -= unroll; 1009 break; 1010 } 1011 unroll -= n; 1012 if (!unroll && idx == i->start_idx) { 1013 off = 0; 1014 break; 1015 } 1016 if (!idx--) 1017 idx = pipe->buffers - 1; 1018 off = pipe->bufs[idx].offset + pipe->bufs[idx].len; 1019 } 1020 i->iov_offset = off; 1021 i->idx = idx; 1022 pipe_truncate(i); 1023 return; 1024 } 1025 if (unlikely(iov_iter_is_discard(i))) 1026 return; 1027 if (unroll <= i->iov_offset) { 1028 i->iov_offset -= unroll; 1029 return; 1030 } 1031 unroll -= i->iov_offset; 1032 if (iov_iter_is_bvec(i)) { 1033 const struct bio_vec *bvec = i->bvec; 1034 while (1) { 1035 size_t n = (--bvec)->bv_len; 1036 i->nr_segs++; 1037 if (unroll <= n) { 1038 i->bvec = bvec; 1039 i->iov_offset = n - unroll; 1040 return; 1041 } 1042 unroll -= n; 1043 } 1044 } else { /* same logics for iovec and kvec */ 1045 const struct iovec *iov = i->iov; 1046 while (1) { 1047 size_t n = (--iov)->iov_len; 1048 i->nr_segs++; 1049 if (unroll <= n) { 1050 i->iov = iov; 1051 i->iov_offset = n - unroll; 1052 return; 1053 } 1054 unroll -= n; 1055 } 1056 } 1057 } 1058 EXPORT_SYMBOL(iov_iter_revert); 1059 1060 /* 1061 * Return the count of just the current iov_iter segment. 1062 */ 1063 size_t iov_iter_single_seg_count(const struct iov_iter *i) 1064 { 1065 if (unlikely(iov_iter_is_pipe(i))) 1066 return i->count; // it is a silly place, anyway 1067 if (i->nr_segs == 1) 1068 return i->count; 1069 if (unlikely(iov_iter_is_discard(i))) 1070 return i->count; 1071 else if (iov_iter_is_bvec(i)) 1072 return min(i->count, i->bvec->bv_len - i->iov_offset); 1073 else 1074 return min(i->count, i->iov->iov_len - i->iov_offset); 1075 } 1076 EXPORT_SYMBOL(iov_iter_single_seg_count); 1077 1078 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 1079 const struct kvec *kvec, unsigned long nr_segs, 1080 size_t count) 1081 { 1082 WARN_ON(direction & ~(READ | WRITE)); 1083 i->type = ITER_KVEC | (direction & (READ | WRITE)); 1084 i->kvec = kvec; 1085 i->nr_segs = nr_segs; 1086 i->iov_offset = 0; 1087 i->count = count; 1088 } 1089 EXPORT_SYMBOL(iov_iter_kvec); 1090 1091 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 1092 const struct bio_vec *bvec, unsigned long nr_segs, 1093 size_t count) 1094 { 1095 WARN_ON(direction & ~(READ | WRITE)); 1096 i->type = ITER_BVEC | (direction & (READ | WRITE)); 1097 i->bvec = bvec; 1098 i->nr_segs = nr_segs; 1099 i->iov_offset = 0; 1100 i->count = count; 1101 } 1102 EXPORT_SYMBOL(iov_iter_bvec); 1103 1104 void iov_iter_pipe(struct iov_iter *i, unsigned int direction, 1105 struct pipe_inode_info *pipe, 1106 size_t count) 1107 { 1108 BUG_ON(direction != READ); 1109 WARN_ON(pipe->nrbufs == pipe->buffers); 1110 i->type = ITER_PIPE | READ; 1111 i->pipe = pipe; 1112 i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 1113 i->iov_offset = 0; 1114 i->count = count; 1115 i->start_idx = i->idx; 1116 } 1117 EXPORT_SYMBOL(iov_iter_pipe); 1118 1119 /** 1120 * iov_iter_discard - Initialise an I/O iterator that discards data 1121 * @i: The iterator to initialise. 1122 * @direction: The direction of the transfer. 1123 * @count: The size of the I/O buffer in bytes. 1124 * 1125 * Set up an I/O iterator that just discards everything that's written to it. 1126 * It's only available as a READ iterator. 1127 */ 1128 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 1129 { 1130 BUG_ON(direction != READ); 1131 i->type = ITER_DISCARD | READ; 1132 i->count = count; 1133 i->iov_offset = 0; 1134 } 1135 EXPORT_SYMBOL(iov_iter_discard); 1136 1137 unsigned long iov_iter_alignment(const struct iov_iter *i) 1138 { 1139 unsigned long res = 0; 1140 size_t size = i->count; 1141 1142 if (unlikely(iov_iter_is_pipe(i))) { 1143 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx])) 1144 return size | i->iov_offset; 1145 return size; 1146 } 1147 iterate_all_kinds(i, size, v, 1148 (res |= (unsigned long)v.iov_base | v.iov_len, 0), 1149 res |= v.bv_offset | v.bv_len, 1150 res |= (unsigned long)v.iov_base | v.iov_len 1151 ) 1152 return res; 1153 } 1154 EXPORT_SYMBOL(iov_iter_alignment); 1155 1156 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 1157 { 1158 unsigned long res = 0; 1159 size_t size = i->count; 1160 1161 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1162 WARN_ON(1); 1163 return ~0U; 1164 } 1165 1166 iterate_all_kinds(i, size, v, 1167 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1168 (size != v.iov_len ? size : 0), 0), 1169 (res |= (!res ? 0 : (unsigned long)v.bv_offset) | 1170 (size != v.bv_len ? size : 0)), 1171 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1172 (size != v.iov_len ? size : 0)) 1173 ); 1174 return res; 1175 } 1176 EXPORT_SYMBOL(iov_iter_gap_alignment); 1177 1178 static inline ssize_t __pipe_get_pages(struct iov_iter *i, 1179 size_t maxsize, 1180 struct page **pages, 1181 int idx, 1182 size_t *start) 1183 { 1184 struct pipe_inode_info *pipe = i->pipe; 1185 ssize_t n = push_pipe(i, maxsize, &idx, start); 1186 if (!n) 1187 return -EFAULT; 1188 1189 maxsize = n; 1190 n += *start; 1191 while (n > 0) { 1192 get_page(*pages++ = pipe->bufs[idx].page); 1193 idx = next_idx(idx, pipe); 1194 n -= PAGE_SIZE; 1195 } 1196 1197 return maxsize; 1198 } 1199 1200 static ssize_t pipe_get_pages(struct iov_iter *i, 1201 struct page **pages, size_t maxsize, unsigned maxpages, 1202 size_t *start) 1203 { 1204 unsigned npages; 1205 size_t capacity; 1206 int idx; 1207 1208 if (!maxsize) 1209 return 0; 1210 1211 if (!sanity(i)) 1212 return -EFAULT; 1213 1214 data_start(i, &idx, start); 1215 /* some of this one + all after this one */ 1216 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; 1217 capacity = min(npages,maxpages) * PAGE_SIZE - *start; 1218 1219 return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start); 1220 } 1221 1222 ssize_t iov_iter_get_pages(struct iov_iter *i, 1223 struct page **pages, size_t maxsize, unsigned maxpages, 1224 size_t *start) 1225 { 1226 if (maxsize > i->count) 1227 maxsize = i->count; 1228 1229 if (unlikely(iov_iter_is_pipe(i))) 1230 return pipe_get_pages(i, pages, maxsize, maxpages, start); 1231 if (unlikely(iov_iter_is_discard(i))) 1232 return -EFAULT; 1233 1234 iterate_all_kinds(i, maxsize, v, ({ 1235 unsigned long addr = (unsigned long)v.iov_base; 1236 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1237 int n; 1238 int res; 1239 1240 if (len > maxpages * PAGE_SIZE) 1241 len = maxpages * PAGE_SIZE; 1242 addr &= ~(PAGE_SIZE - 1); 1243 n = DIV_ROUND_UP(len, PAGE_SIZE); 1244 res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, pages); 1245 if (unlikely(res < 0)) 1246 return res; 1247 return (res == n ? len : res * PAGE_SIZE) - *start; 1248 0;}),({ 1249 /* can't be more than PAGE_SIZE */ 1250 *start = v.bv_offset; 1251 get_page(*pages = v.bv_page); 1252 return v.bv_len; 1253 }),({ 1254 return -EFAULT; 1255 }) 1256 ) 1257 return 0; 1258 } 1259 EXPORT_SYMBOL(iov_iter_get_pages); 1260 1261 static struct page **get_pages_array(size_t n) 1262 { 1263 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL); 1264 } 1265 1266 static ssize_t pipe_get_pages_alloc(struct iov_iter *i, 1267 struct page ***pages, size_t maxsize, 1268 size_t *start) 1269 { 1270 struct page **p; 1271 ssize_t n; 1272 int idx; 1273 int npages; 1274 1275 if (!maxsize) 1276 return 0; 1277 1278 if (!sanity(i)) 1279 return -EFAULT; 1280 1281 data_start(i, &idx, start); 1282 /* some of this one + all after this one */ 1283 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; 1284 n = npages * PAGE_SIZE - *start; 1285 if (maxsize > n) 1286 maxsize = n; 1287 else 1288 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE); 1289 p = get_pages_array(npages); 1290 if (!p) 1291 return -ENOMEM; 1292 n = __pipe_get_pages(i, maxsize, p, idx, start); 1293 if (n > 0) 1294 *pages = p; 1295 else 1296 kvfree(p); 1297 return n; 1298 } 1299 1300 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, 1301 struct page ***pages, size_t maxsize, 1302 size_t *start) 1303 { 1304 struct page **p; 1305 1306 if (maxsize > i->count) 1307 maxsize = i->count; 1308 1309 if (unlikely(iov_iter_is_pipe(i))) 1310 return pipe_get_pages_alloc(i, pages, maxsize, start); 1311 if (unlikely(iov_iter_is_discard(i))) 1312 return -EFAULT; 1313 1314 iterate_all_kinds(i, maxsize, v, ({ 1315 unsigned long addr = (unsigned long)v.iov_base; 1316 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1317 int n; 1318 int res; 1319 1320 addr &= ~(PAGE_SIZE - 1); 1321 n = DIV_ROUND_UP(len, PAGE_SIZE); 1322 p = get_pages_array(n); 1323 if (!p) 1324 return -ENOMEM; 1325 res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, p); 1326 if (unlikely(res < 0)) { 1327 kvfree(p); 1328 return res; 1329 } 1330 *pages = p; 1331 return (res == n ? len : res * PAGE_SIZE) - *start; 1332 0;}),({ 1333 /* can't be more than PAGE_SIZE */ 1334 *start = v.bv_offset; 1335 *pages = p = get_pages_array(1); 1336 if (!p) 1337 return -ENOMEM; 1338 get_page(*p = v.bv_page); 1339 return v.bv_len; 1340 }),({ 1341 return -EFAULT; 1342 }) 1343 ) 1344 return 0; 1345 } 1346 EXPORT_SYMBOL(iov_iter_get_pages_alloc); 1347 1348 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, 1349 struct iov_iter *i) 1350 { 1351 char *to = addr; 1352 __wsum sum, next; 1353 size_t off = 0; 1354 sum = *csum; 1355 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1356 WARN_ON(1); 1357 return 0; 1358 } 1359 iterate_and_advance(i, bytes, v, ({ 1360 int err = 0; 1361 next = csum_and_copy_from_user(v.iov_base, 1362 (to += v.iov_len) - v.iov_len, 1363 v.iov_len, 0, &err); 1364 if (!err) { 1365 sum = csum_block_add(sum, next, off); 1366 off += v.iov_len; 1367 } 1368 err ? v.iov_len : 0; 1369 }), ({ 1370 char *p = kmap_atomic(v.bv_page); 1371 next = csum_partial_copy_nocheck(p + v.bv_offset, 1372 (to += v.bv_len) - v.bv_len, 1373 v.bv_len, 0); 1374 kunmap_atomic(p); 1375 sum = csum_block_add(sum, next, off); 1376 off += v.bv_len; 1377 }),({ 1378 next = csum_partial_copy_nocheck(v.iov_base, 1379 (to += v.iov_len) - v.iov_len, 1380 v.iov_len, 0); 1381 sum = csum_block_add(sum, next, off); 1382 off += v.iov_len; 1383 }) 1384 ) 1385 *csum = sum; 1386 return bytes; 1387 } 1388 EXPORT_SYMBOL(csum_and_copy_from_iter); 1389 1390 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, 1391 struct iov_iter *i) 1392 { 1393 char *to = addr; 1394 __wsum sum, next; 1395 size_t off = 0; 1396 sum = *csum; 1397 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1398 WARN_ON(1); 1399 return false; 1400 } 1401 if (unlikely(i->count < bytes)) 1402 return false; 1403 iterate_all_kinds(i, bytes, v, ({ 1404 int err = 0; 1405 next = csum_and_copy_from_user(v.iov_base, 1406 (to += v.iov_len) - v.iov_len, 1407 v.iov_len, 0, &err); 1408 if (err) 1409 return false; 1410 sum = csum_block_add(sum, next, off); 1411 off += v.iov_len; 1412 0; 1413 }), ({ 1414 char *p = kmap_atomic(v.bv_page); 1415 next = csum_partial_copy_nocheck(p + v.bv_offset, 1416 (to += v.bv_len) - v.bv_len, 1417 v.bv_len, 0); 1418 kunmap_atomic(p); 1419 sum = csum_block_add(sum, next, off); 1420 off += v.bv_len; 1421 }),({ 1422 next = csum_partial_copy_nocheck(v.iov_base, 1423 (to += v.iov_len) - v.iov_len, 1424 v.iov_len, 0); 1425 sum = csum_block_add(sum, next, off); 1426 off += v.iov_len; 1427 }) 1428 ) 1429 *csum = sum; 1430 iov_iter_advance(i, bytes); 1431 return true; 1432 } 1433 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 1434 1435 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, __wsum *csum, 1436 struct iov_iter *i) 1437 { 1438 const char *from = addr; 1439 __wsum sum, next; 1440 size_t off = 0; 1441 sum = *csum; 1442 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1443 WARN_ON(1); /* for now */ 1444 return 0; 1445 } 1446 iterate_and_advance(i, bytes, v, ({ 1447 int err = 0; 1448 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len, 1449 v.iov_base, 1450 v.iov_len, 0, &err); 1451 if (!err) { 1452 sum = csum_block_add(sum, next, off); 1453 off += v.iov_len; 1454 } 1455 err ? v.iov_len : 0; 1456 }), ({ 1457 char *p = kmap_atomic(v.bv_page); 1458 next = csum_partial_copy_nocheck((from += v.bv_len) - v.bv_len, 1459 p + v.bv_offset, 1460 v.bv_len, 0); 1461 kunmap_atomic(p); 1462 sum = csum_block_add(sum, next, off); 1463 off += v.bv_len; 1464 }),({ 1465 next = csum_partial_copy_nocheck((from += v.iov_len) - v.iov_len, 1466 v.iov_base, 1467 v.iov_len, 0); 1468 sum = csum_block_add(sum, next, off); 1469 off += v.iov_len; 1470 }) 1471 ) 1472 *csum = sum; 1473 return bytes; 1474 } 1475 EXPORT_SYMBOL(csum_and_copy_to_iter); 1476 1477 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1478 { 1479 size_t size = i->count; 1480 int npages = 0; 1481 1482 if (!size) 1483 return 0; 1484 if (unlikely(iov_iter_is_discard(i))) 1485 return 0; 1486 1487 if (unlikely(iov_iter_is_pipe(i))) { 1488 struct pipe_inode_info *pipe = i->pipe; 1489 size_t off; 1490 int idx; 1491 1492 if (!sanity(i)) 1493 return 0; 1494 1495 data_start(i, &idx, &off); 1496 /* some of this one + all after this one */ 1497 npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1; 1498 if (npages >= maxpages) 1499 return maxpages; 1500 } else iterate_all_kinds(i, size, v, ({ 1501 unsigned long p = (unsigned long)v.iov_base; 1502 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1503 - p / PAGE_SIZE; 1504 if (npages >= maxpages) 1505 return maxpages; 1506 0;}),({ 1507 npages++; 1508 if (npages >= maxpages) 1509 return maxpages; 1510 }),({ 1511 unsigned long p = (unsigned long)v.iov_base; 1512 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1513 - p / PAGE_SIZE; 1514 if (npages >= maxpages) 1515 return maxpages; 1516 }) 1517 ) 1518 return npages; 1519 } 1520 EXPORT_SYMBOL(iov_iter_npages); 1521 1522 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1523 { 1524 *new = *old; 1525 if (unlikely(iov_iter_is_pipe(new))) { 1526 WARN_ON(1); 1527 return NULL; 1528 } 1529 if (unlikely(iov_iter_is_discard(new))) 1530 return NULL; 1531 if (iov_iter_is_bvec(new)) 1532 return new->bvec = kmemdup(new->bvec, 1533 new->nr_segs * sizeof(struct bio_vec), 1534 flags); 1535 else 1536 /* iovec and kvec have identical layout */ 1537 return new->iov = kmemdup(new->iov, 1538 new->nr_segs * sizeof(struct iovec), 1539 flags); 1540 } 1541 EXPORT_SYMBOL(dup_iter); 1542 1543 /** 1544 * import_iovec() - Copy an array of &struct iovec from userspace 1545 * into the kernel, check that it is valid, and initialize a new 1546 * &struct iov_iter iterator to access it. 1547 * 1548 * @type: One of %READ or %WRITE. 1549 * @uvector: Pointer to the userspace array. 1550 * @nr_segs: Number of elements in userspace array. 1551 * @fast_segs: Number of elements in @iov. 1552 * @iov: (input and output parameter) Pointer to pointer to (usually small 1553 * on-stack) kernel array. 1554 * @i: Pointer to iterator that will be initialized on success. 1555 * 1556 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1557 * then this function places %NULL in *@iov on return. Otherwise, a new 1558 * array will be allocated and the result placed in *@iov. This means that 1559 * the caller may call kfree() on *@iov regardless of whether the small 1560 * on-stack array was used or not (and regardless of whether this function 1561 * returns an error or not). 1562 * 1563 * Return: 0 on success or negative error code on error. 1564 */ 1565 int import_iovec(int type, const struct iovec __user * uvector, 1566 unsigned nr_segs, unsigned fast_segs, 1567 struct iovec **iov, struct iov_iter *i) 1568 { 1569 ssize_t n; 1570 struct iovec *p; 1571 n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1572 *iov, &p); 1573 if (n < 0) { 1574 if (p != *iov) 1575 kfree(p); 1576 *iov = NULL; 1577 return n; 1578 } 1579 iov_iter_init(i, type, p, nr_segs, n); 1580 *iov = p == *iov ? NULL : p; 1581 return 0; 1582 } 1583 EXPORT_SYMBOL(import_iovec); 1584 1585 #ifdef CONFIG_COMPAT 1586 #include <linux/compat.h> 1587 1588 int compat_import_iovec(int type, const struct compat_iovec __user * uvector, 1589 unsigned nr_segs, unsigned fast_segs, 1590 struct iovec **iov, struct iov_iter *i) 1591 { 1592 ssize_t n; 1593 struct iovec *p; 1594 n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1595 *iov, &p); 1596 if (n < 0) { 1597 if (p != *iov) 1598 kfree(p); 1599 *iov = NULL; 1600 return n; 1601 } 1602 iov_iter_init(i, type, p, nr_segs, n); 1603 *iov = p == *iov ? NULL : p; 1604 return 0; 1605 } 1606 #endif 1607 1608 int import_single_range(int rw, void __user *buf, size_t len, 1609 struct iovec *iov, struct iov_iter *i) 1610 { 1611 if (len > MAX_RW_COUNT) 1612 len = MAX_RW_COUNT; 1613 if (unlikely(!access_ok(!rw, buf, len))) 1614 return -EFAULT; 1615 1616 iov->iov_base = buf; 1617 iov->iov_len = len; 1618 iov_iter_init(i, rw, iov, 1, len); 1619 return 0; 1620 } 1621 EXPORT_SYMBOL(import_single_range); 1622 1623 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes, 1624 int (*f)(struct kvec *vec, void *context), 1625 void *context) 1626 { 1627 struct kvec w; 1628 int err = -EINVAL; 1629 if (!bytes) 1630 return 0; 1631 1632 iterate_all_kinds(i, bytes, v, -EINVAL, ({ 1633 w.iov_base = kmap(v.bv_page) + v.bv_offset; 1634 w.iov_len = v.bv_len; 1635 err = f(&w, context); 1636 kunmap(v.bv_page); 1637 err;}), ({ 1638 w = v; 1639 err = f(&w, context);}) 1640 ) 1641 return err; 1642 } 1643 EXPORT_SYMBOL(iov_iter_for_each_range); 1644