xref: /openbmc/linux/lib/iov_iter.c (revision 622838f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, __v, __off, __p, skip, STEP) {	\
21 	size_t __off = 0;					\
22 	do {							\
23 		__v.iov_len = min(n, __p->iov_len - skip);	\
24 		if (likely(__v.iov_len)) {			\
25 			__v.iov_base = __p->iov_base + skip;	\
26 			__v.iov_len -= (STEP);			\
27 			__off += __v.iov_len;			\
28 			skip += __v.iov_len;			\
29 			n -= __v.iov_len;			\
30 			if (skip < __p->iov_len)		\
31 				break;				\
32 		}						\
33 		__p++;						\
34 		skip = 0;					\
35 	} while (n);						\
36 	n = __off;						\
37 }
38 
39 #define iterate_bvec(i, n, __v, __off, p, skip, STEP) {		\
40 	size_t __off = 0;					\
41 	while (n) {						\
42 		unsigned offset = p->bv_offset + skip;		\
43 		unsigned left;					\
44 		void *kaddr = kmap_local_page(p->bv_page +	\
45 					offset / PAGE_SIZE);	\
46 		__v.iov_base = kaddr + offset % PAGE_SIZE;	\
47 		__v.iov_len = min(min(n, p->bv_len - skip),	\
48 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
49 		left = (STEP);					\
50 		kunmap_local(kaddr);				\
51 		__v.iov_len -= left;				\
52 		__off += __v.iov_len;				\
53 		skip += __v.iov_len;				\
54 		if (skip == p->bv_len) {			\
55 			skip = 0;				\
56 			p++;					\
57 		}						\
58 		n -= __v.iov_len;				\
59 		if (left)					\
60 			break;					\
61 	}							\
62 	n = __off;						\
63 }
64 
65 #define iterate_xarray(i, n, __v, __off, skip, STEP) {		\
66 	__label__ __out;					\
67 	size_t __off = 0;					\
68 	struct page *head = NULL;				\
69 	size_t seg, offset;					\
70 	loff_t start = i->xarray_start + skip;			\
71 	pgoff_t index = start >> PAGE_SHIFT;			\
72 	int j;							\
73 								\
74 	XA_STATE(xas, i->xarray, index);			\
75 								\
76 	rcu_read_lock();						\
77 	xas_for_each(&xas, head, ULONG_MAX) {				\
78 		unsigned left;						\
79 		if (xas_retry(&xas, head))				\
80 			continue;					\
81 		if (WARN_ON(xa_is_value(head)))				\
82 			break;						\
83 		if (WARN_ON(PageHuge(head)))				\
84 			break;						\
85 		for (j = (head->index < index) ? index - head->index : 0; \
86 		     j < thp_nr_pages(head); j++) {			\
87 			void *kaddr = kmap_local_page(head + j);	\
88 			offset = (start + __off) % PAGE_SIZE;		\
89 			__v.iov_base = kaddr + offset;			\
90 			seg = PAGE_SIZE - offset;			\
91 			__v.iov_len = min(n, seg);			\
92 			left = (STEP);					\
93 			kunmap_local(kaddr);				\
94 			__v.iov_len -= left;				\
95 			__off += __v.iov_len;				\
96 			n -= __v.iov_len;				\
97 			if (left || n == 0)				\
98 				goto __out;				\
99 		}							\
100 	}							\
101 __out:								\
102 	rcu_read_unlock();					\
103 	skip += __off;						\
104 	n = __off;						\
105 }
106 
107 #define __iterate_and_advance(i, n, v, off, I, K) {		\
108 	if (unlikely(i->count < n))				\
109 		n = i->count;					\
110 	if (likely(n)) {					\
111 		size_t skip = i->iov_offset;			\
112 		if (likely(iter_is_iovec(i))) {			\
113 			const struct iovec *iov = i->iov;	\
114 			struct iovec v;				\
115 			iterate_iovec(i, n, v, off, iov, skip, (I))	\
116 			i->nr_segs -= iov - i->iov;		\
117 			i->iov = iov;				\
118 		} else if (iov_iter_is_bvec(i)) {		\
119 			const struct bio_vec *bvec = i->bvec;	\
120 			struct kvec v;				\
121 			iterate_bvec(i, n, v, off, bvec, skip, (K))	\
122 			i->nr_segs -= bvec - i->bvec;		\
123 			i->bvec = bvec;				\
124 		} else if (iov_iter_is_kvec(i)) {		\
125 			const struct kvec *kvec = i->kvec;	\
126 			struct kvec v;				\
127 			iterate_iovec(i, n, v, off, kvec, skip, (K))	\
128 			i->nr_segs -= kvec - i->kvec;		\
129 			i->kvec = kvec;				\
130 		} else if (iov_iter_is_xarray(i)) {		\
131 			struct kvec v;				\
132 			iterate_xarray(i, n, v, off, skip, (K))	\
133 		}						\
134 		i->count -= n;					\
135 		i->iov_offset = skip;				\
136 	}							\
137 }
138 #define iterate_and_advance(i, n, v, off, I, K) \
139 	__iterate_and_advance(i, n, v, off, I, ((void)(K),0))
140 
141 static int copyout(void __user *to, const void *from, size_t n)
142 {
143 	if (should_fail_usercopy())
144 		return n;
145 	if (access_ok(to, n)) {
146 		instrument_copy_to_user(to, from, n);
147 		n = raw_copy_to_user(to, from, n);
148 	}
149 	return n;
150 }
151 
152 static int copyin(void *to, const void __user *from, size_t n)
153 {
154 	if (should_fail_usercopy())
155 		return n;
156 	if (access_ok(from, n)) {
157 		instrument_copy_from_user(to, from, n);
158 		n = raw_copy_from_user(to, from, n);
159 	}
160 	return n;
161 }
162 
163 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
164 			 struct iov_iter *i)
165 {
166 	size_t skip, copy, left, wanted;
167 	const struct iovec *iov;
168 	char __user *buf;
169 	void *kaddr, *from;
170 
171 	if (unlikely(bytes > i->count))
172 		bytes = i->count;
173 
174 	if (unlikely(!bytes))
175 		return 0;
176 
177 	might_fault();
178 	wanted = bytes;
179 	iov = i->iov;
180 	skip = i->iov_offset;
181 	buf = iov->iov_base + skip;
182 	copy = min(bytes, iov->iov_len - skip);
183 
184 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
185 		kaddr = kmap_atomic(page);
186 		from = kaddr + offset;
187 
188 		/* first chunk, usually the only one */
189 		left = copyout(buf, from, copy);
190 		copy -= left;
191 		skip += copy;
192 		from += copy;
193 		bytes -= copy;
194 
195 		while (unlikely(!left && bytes)) {
196 			iov++;
197 			buf = iov->iov_base;
198 			copy = min(bytes, iov->iov_len);
199 			left = copyout(buf, from, copy);
200 			copy -= left;
201 			skip = copy;
202 			from += copy;
203 			bytes -= copy;
204 		}
205 		if (likely(!bytes)) {
206 			kunmap_atomic(kaddr);
207 			goto done;
208 		}
209 		offset = from - kaddr;
210 		buf += copy;
211 		kunmap_atomic(kaddr);
212 		copy = min(bytes, iov->iov_len - skip);
213 	}
214 	/* Too bad - revert to non-atomic kmap */
215 
216 	kaddr = kmap(page);
217 	from = kaddr + offset;
218 	left = copyout(buf, from, copy);
219 	copy -= left;
220 	skip += copy;
221 	from += copy;
222 	bytes -= copy;
223 	while (unlikely(!left && bytes)) {
224 		iov++;
225 		buf = iov->iov_base;
226 		copy = min(bytes, iov->iov_len);
227 		left = copyout(buf, from, copy);
228 		copy -= left;
229 		skip = copy;
230 		from += copy;
231 		bytes -= copy;
232 	}
233 	kunmap(page);
234 
235 done:
236 	if (skip == iov->iov_len) {
237 		iov++;
238 		skip = 0;
239 	}
240 	i->count -= wanted - bytes;
241 	i->nr_segs -= iov - i->iov;
242 	i->iov = iov;
243 	i->iov_offset = skip;
244 	return wanted - bytes;
245 }
246 
247 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
248 			 struct iov_iter *i)
249 {
250 	size_t skip, copy, left, wanted;
251 	const struct iovec *iov;
252 	char __user *buf;
253 	void *kaddr, *to;
254 
255 	if (unlikely(bytes > i->count))
256 		bytes = i->count;
257 
258 	if (unlikely(!bytes))
259 		return 0;
260 
261 	might_fault();
262 	wanted = bytes;
263 	iov = i->iov;
264 	skip = i->iov_offset;
265 	buf = iov->iov_base + skip;
266 	copy = min(bytes, iov->iov_len - skip);
267 
268 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
269 		kaddr = kmap_atomic(page);
270 		to = kaddr + offset;
271 
272 		/* first chunk, usually the only one */
273 		left = copyin(to, buf, copy);
274 		copy -= left;
275 		skip += copy;
276 		to += copy;
277 		bytes -= copy;
278 
279 		while (unlikely(!left && bytes)) {
280 			iov++;
281 			buf = iov->iov_base;
282 			copy = min(bytes, iov->iov_len);
283 			left = copyin(to, buf, copy);
284 			copy -= left;
285 			skip = copy;
286 			to += copy;
287 			bytes -= copy;
288 		}
289 		if (likely(!bytes)) {
290 			kunmap_atomic(kaddr);
291 			goto done;
292 		}
293 		offset = to - kaddr;
294 		buf += copy;
295 		kunmap_atomic(kaddr);
296 		copy = min(bytes, iov->iov_len - skip);
297 	}
298 	/* Too bad - revert to non-atomic kmap */
299 
300 	kaddr = kmap(page);
301 	to = kaddr + offset;
302 	left = copyin(to, buf, copy);
303 	copy -= left;
304 	skip += copy;
305 	to += copy;
306 	bytes -= copy;
307 	while (unlikely(!left && bytes)) {
308 		iov++;
309 		buf = iov->iov_base;
310 		copy = min(bytes, iov->iov_len);
311 		left = copyin(to, buf, copy);
312 		copy -= left;
313 		skip = copy;
314 		to += copy;
315 		bytes -= copy;
316 	}
317 	kunmap(page);
318 
319 done:
320 	if (skip == iov->iov_len) {
321 		iov++;
322 		skip = 0;
323 	}
324 	i->count -= wanted - bytes;
325 	i->nr_segs -= iov - i->iov;
326 	i->iov = iov;
327 	i->iov_offset = skip;
328 	return wanted - bytes;
329 }
330 
331 #ifdef PIPE_PARANOIA
332 static bool sanity(const struct iov_iter *i)
333 {
334 	struct pipe_inode_info *pipe = i->pipe;
335 	unsigned int p_head = pipe->head;
336 	unsigned int p_tail = pipe->tail;
337 	unsigned int p_mask = pipe->ring_size - 1;
338 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
339 	unsigned int i_head = i->head;
340 	unsigned int idx;
341 
342 	if (i->iov_offset) {
343 		struct pipe_buffer *p;
344 		if (unlikely(p_occupancy == 0))
345 			goto Bad;	// pipe must be non-empty
346 		if (unlikely(i_head != p_head - 1))
347 			goto Bad;	// must be at the last buffer...
348 
349 		p = &pipe->bufs[i_head & p_mask];
350 		if (unlikely(p->offset + p->len != i->iov_offset))
351 			goto Bad;	// ... at the end of segment
352 	} else {
353 		if (i_head != p_head)
354 			goto Bad;	// must be right after the last buffer
355 	}
356 	return true;
357 Bad:
358 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
359 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
360 			p_head, p_tail, pipe->ring_size);
361 	for (idx = 0; idx < pipe->ring_size; idx++)
362 		printk(KERN_ERR "[%p %p %d %d]\n",
363 			pipe->bufs[idx].ops,
364 			pipe->bufs[idx].page,
365 			pipe->bufs[idx].offset,
366 			pipe->bufs[idx].len);
367 	WARN_ON(1);
368 	return false;
369 }
370 #else
371 #define sanity(i) true
372 #endif
373 
374 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
375 			 struct iov_iter *i)
376 {
377 	struct pipe_inode_info *pipe = i->pipe;
378 	struct pipe_buffer *buf;
379 	unsigned int p_tail = pipe->tail;
380 	unsigned int p_mask = pipe->ring_size - 1;
381 	unsigned int i_head = i->head;
382 	size_t off;
383 
384 	if (unlikely(bytes > i->count))
385 		bytes = i->count;
386 
387 	if (unlikely(!bytes))
388 		return 0;
389 
390 	if (!sanity(i))
391 		return 0;
392 
393 	off = i->iov_offset;
394 	buf = &pipe->bufs[i_head & p_mask];
395 	if (off) {
396 		if (offset == off && buf->page == page) {
397 			/* merge with the last one */
398 			buf->len += bytes;
399 			i->iov_offset += bytes;
400 			goto out;
401 		}
402 		i_head++;
403 		buf = &pipe->bufs[i_head & p_mask];
404 	}
405 	if (pipe_full(i_head, p_tail, pipe->max_usage))
406 		return 0;
407 
408 	buf->ops = &page_cache_pipe_buf_ops;
409 	get_page(page);
410 	buf->page = page;
411 	buf->offset = offset;
412 	buf->len = bytes;
413 
414 	pipe->head = i_head + 1;
415 	i->iov_offset = offset + bytes;
416 	i->head = i_head;
417 out:
418 	i->count -= bytes;
419 	return bytes;
420 }
421 
422 /*
423  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
424  * bytes.  For each iovec, fault in each page that constitutes the iovec.
425  *
426  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
427  * because it is an invalid address).
428  */
429 int iov_iter_fault_in_readable(const struct iov_iter *i, size_t bytes)
430 {
431 	if (iter_is_iovec(i)) {
432 		const struct iovec *p;
433 		size_t skip;
434 
435 		if (bytes > i->count)
436 			bytes = i->count;
437 		for (p = i->iov, skip = i->iov_offset; bytes; p++, skip = 0) {
438 			size_t len = min(bytes, p->iov_len - skip);
439 			int err;
440 
441 			if (unlikely(!len))
442 				continue;
443 			err = fault_in_pages_readable(p->iov_base + skip, len);
444 			if (unlikely(err))
445 				return err;
446 			bytes -= len;
447 		}
448 	}
449 	return 0;
450 }
451 EXPORT_SYMBOL(iov_iter_fault_in_readable);
452 
453 void iov_iter_init(struct iov_iter *i, unsigned int direction,
454 			const struct iovec *iov, unsigned long nr_segs,
455 			size_t count)
456 {
457 	WARN_ON(direction & ~(READ | WRITE));
458 	WARN_ON_ONCE(uaccess_kernel());
459 	*i = (struct iov_iter) {
460 		.iter_type = ITER_IOVEC,
461 		.data_source = direction,
462 		.iov = iov,
463 		.nr_segs = nr_segs,
464 		.iov_offset = 0,
465 		.count = count
466 	};
467 }
468 EXPORT_SYMBOL(iov_iter_init);
469 
470 static inline bool allocated(struct pipe_buffer *buf)
471 {
472 	return buf->ops == &default_pipe_buf_ops;
473 }
474 
475 static inline void data_start(const struct iov_iter *i,
476 			      unsigned int *iter_headp, size_t *offp)
477 {
478 	unsigned int p_mask = i->pipe->ring_size - 1;
479 	unsigned int iter_head = i->head;
480 	size_t off = i->iov_offset;
481 
482 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
483 		    off == PAGE_SIZE)) {
484 		iter_head++;
485 		off = 0;
486 	}
487 	*iter_headp = iter_head;
488 	*offp = off;
489 }
490 
491 static size_t push_pipe(struct iov_iter *i, size_t size,
492 			int *iter_headp, size_t *offp)
493 {
494 	struct pipe_inode_info *pipe = i->pipe;
495 	unsigned int p_tail = pipe->tail;
496 	unsigned int p_mask = pipe->ring_size - 1;
497 	unsigned int iter_head;
498 	size_t off;
499 	ssize_t left;
500 
501 	if (unlikely(size > i->count))
502 		size = i->count;
503 	if (unlikely(!size))
504 		return 0;
505 
506 	left = size;
507 	data_start(i, &iter_head, &off);
508 	*iter_headp = iter_head;
509 	*offp = off;
510 	if (off) {
511 		left -= PAGE_SIZE - off;
512 		if (left <= 0) {
513 			pipe->bufs[iter_head & p_mask].len += size;
514 			return size;
515 		}
516 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
517 		iter_head++;
518 	}
519 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
520 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
521 		struct page *page = alloc_page(GFP_USER);
522 		if (!page)
523 			break;
524 
525 		buf->ops = &default_pipe_buf_ops;
526 		buf->page = page;
527 		buf->offset = 0;
528 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
529 		left -= buf->len;
530 		iter_head++;
531 		pipe->head = iter_head;
532 
533 		if (left == 0)
534 			return size;
535 	}
536 	return size - left;
537 }
538 
539 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
540 				struct iov_iter *i)
541 {
542 	struct pipe_inode_info *pipe = i->pipe;
543 	unsigned int p_mask = pipe->ring_size - 1;
544 	unsigned int i_head;
545 	size_t n, off;
546 
547 	if (!sanity(i))
548 		return 0;
549 
550 	bytes = n = push_pipe(i, bytes, &i_head, &off);
551 	if (unlikely(!n))
552 		return 0;
553 	do {
554 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
555 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
556 		i->head = i_head;
557 		i->iov_offset = off + chunk;
558 		n -= chunk;
559 		addr += chunk;
560 		off = 0;
561 		i_head++;
562 	} while (n);
563 	i->count -= bytes;
564 	return bytes;
565 }
566 
567 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
568 			      __wsum sum, size_t off)
569 {
570 	__wsum next = csum_partial_copy_nocheck(from, to, len);
571 	return csum_block_add(sum, next, off);
572 }
573 
574 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
575 					 struct csum_state *csstate,
576 					 struct iov_iter *i)
577 {
578 	struct pipe_inode_info *pipe = i->pipe;
579 	unsigned int p_mask = pipe->ring_size - 1;
580 	__wsum sum = csstate->csum;
581 	size_t off = csstate->off;
582 	unsigned int i_head;
583 	size_t n, r;
584 
585 	if (!sanity(i))
586 		return 0;
587 
588 	bytes = n = push_pipe(i, bytes, &i_head, &r);
589 	if (unlikely(!n))
590 		return 0;
591 	do {
592 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
593 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
594 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
595 		kunmap_atomic(p);
596 		i->head = i_head;
597 		i->iov_offset = r + chunk;
598 		n -= chunk;
599 		off += chunk;
600 		addr += chunk;
601 		r = 0;
602 		i_head++;
603 	} while (n);
604 	i->count -= bytes;
605 	csstate->csum = sum;
606 	csstate->off = off;
607 	return bytes;
608 }
609 
610 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
611 {
612 	if (unlikely(iov_iter_is_pipe(i)))
613 		return copy_pipe_to_iter(addr, bytes, i);
614 	if (iter_is_iovec(i))
615 		might_fault();
616 	iterate_and_advance(i, bytes, v, off,
617 		copyout(v.iov_base, addr + off, v.iov_len),
618 		memcpy(v.iov_base, addr + off, v.iov_len)
619 	)
620 
621 	return bytes;
622 }
623 EXPORT_SYMBOL(_copy_to_iter);
624 
625 #ifdef CONFIG_ARCH_HAS_COPY_MC
626 static int copyout_mc(void __user *to, const void *from, size_t n)
627 {
628 	if (access_ok(to, n)) {
629 		instrument_copy_to_user(to, from, n);
630 		n = copy_mc_to_user((__force void *) to, from, n);
631 	}
632 	return n;
633 }
634 
635 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
636 		const char *from, size_t len)
637 {
638 	unsigned long ret;
639 	char *to;
640 
641 	to = kmap_atomic(page);
642 	ret = copy_mc_to_kernel(to + offset, from, len);
643 	kunmap_atomic(to);
644 
645 	return ret;
646 }
647 
648 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
649 				struct iov_iter *i)
650 {
651 	struct pipe_inode_info *pipe = i->pipe;
652 	unsigned int p_mask = pipe->ring_size - 1;
653 	unsigned int i_head;
654 	size_t n, off, xfer = 0;
655 
656 	if (!sanity(i))
657 		return 0;
658 
659 	bytes = n = push_pipe(i, bytes, &i_head, &off);
660 	if (unlikely(!n))
661 		return 0;
662 	do {
663 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
664 		unsigned long rem;
665 
666 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
667 					    off, addr, chunk);
668 		i->head = i_head;
669 		i->iov_offset = off + chunk - rem;
670 		xfer += chunk - rem;
671 		if (rem)
672 			break;
673 		n -= chunk;
674 		addr += chunk;
675 		off = 0;
676 		i_head++;
677 	} while (n);
678 	i->count -= xfer;
679 	return xfer;
680 }
681 
682 /**
683  * _copy_mc_to_iter - copy to iter with source memory error exception handling
684  * @addr: source kernel address
685  * @bytes: total transfer length
686  * @iter: destination iterator
687  *
688  * The pmem driver deploys this for the dax operation
689  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
690  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
691  * successfully copied.
692  *
693  * The main differences between this and typical _copy_to_iter().
694  *
695  * * Typical tail/residue handling after a fault retries the copy
696  *   byte-by-byte until the fault happens again. Re-triggering machine
697  *   checks is potentially fatal so the implementation uses source
698  *   alignment and poison alignment assumptions to avoid re-triggering
699  *   hardware exceptions.
700  *
701  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
702  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
703  *   a short copy.
704  */
705 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
706 {
707 	if (unlikely(iov_iter_is_pipe(i)))
708 		return copy_mc_pipe_to_iter(addr, bytes, i);
709 	if (iter_is_iovec(i))
710 		might_fault();
711 	__iterate_and_advance(i, bytes, v, off,
712 		copyout_mc(v.iov_base, addr + off, v.iov_len),
713 		copy_mc_to_kernel(v.iov_base, addr + off, v.iov_len)
714 	)
715 
716 	return bytes;
717 }
718 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
719 #endif /* CONFIG_ARCH_HAS_COPY_MC */
720 
721 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
722 {
723 	if (unlikely(iov_iter_is_pipe(i))) {
724 		WARN_ON(1);
725 		return 0;
726 	}
727 	if (iter_is_iovec(i))
728 		might_fault();
729 	iterate_and_advance(i, bytes, v, off,
730 		copyin(addr + off, v.iov_base, v.iov_len),
731 		memcpy(addr + off, v.iov_base, v.iov_len)
732 	)
733 
734 	return bytes;
735 }
736 EXPORT_SYMBOL(_copy_from_iter);
737 
738 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
739 {
740 	if (unlikely(iov_iter_is_pipe(i))) {
741 		WARN_ON(1);
742 		return 0;
743 	}
744 	iterate_and_advance(i, bytes, v, off,
745 		__copy_from_user_inatomic_nocache(addr + off,
746 					 v.iov_base, v.iov_len),
747 		memcpy(addr + off, v.iov_base, v.iov_len)
748 	)
749 
750 	return bytes;
751 }
752 EXPORT_SYMBOL(_copy_from_iter_nocache);
753 
754 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
755 /**
756  * _copy_from_iter_flushcache - write destination through cpu cache
757  * @addr: destination kernel address
758  * @bytes: total transfer length
759  * @iter: source iterator
760  *
761  * The pmem driver arranges for filesystem-dax to use this facility via
762  * dax_copy_from_iter() for ensuring that writes to persistent memory
763  * are flushed through the CPU cache. It is differentiated from
764  * _copy_from_iter_nocache() in that guarantees all data is flushed for
765  * all iterator types. The _copy_from_iter_nocache() only attempts to
766  * bypass the cache for the ITER_IOVEC case, and on some archs may use
767  * instructions that strand dirty-data in the cache.
768  */
769 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
770 {
771 	if (unlikely(iov_iter_is_pipe(i))) {
772 		WARN_ON(1);
773 		return 0;
774 	}
775 	iterate_and_advance(i, bytes, v, off,
776 		__copy_from_user_flushcache(addr + off, v.iov_base, v.iov_len),
777 		memcpy_flushcache(addr + off, v.iov_base, v.iov_len)
778 	)
779 
780 	return bytes;
781 }
782 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
783 #endif
784 
785 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
786 {
787 	struct page *head;
788 	size_t v = n + offset;
789 
790 	/*
791 	 * The general case needs to access the page order in order
792 	 * to compute the page size.
793 	 * However, we mostly deal with order-0 pages and thus can
794 	 * avoid a possible cache line miss for requests that fit all
795 	 * page orders.
796 	 */
797 	if (n <= v && v <= PAGE_SIZE)
798 		return true;
799 
800 	head = compound_head(page);
801 	v += (page - head) << PAGE_SHIFT;
802 
803 	if (likely(n <= v && v <= (page_size(head))))
804 		return true;
805 	WARN_ON(1);
806 	return false;
807 }
808 
809 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
810 			 struct iov_iter *i)
811 {
812 	if (likely(iter_is_iovec(i)))
813 		return copy_page_to_iter_iovec(page, offset, bytes, i);
814 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
815 		void *kaddr = kmap_atomic(page);
816 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
817 		kunmap_atomic(kaddr);
818 		return wanted;
819 	}
820 	if (iov_iter_is_pipe(i))
821 		return copy_page_to_iter_pipe(page, offset, bytes, i);
822 	if (unlikely(iov_iter_is_discard(i))) {
823 		if (unlikely(i->count < bytes))
824 			bytes = i->count;
825 		i->count -= bytes;
826 		return bytes;
827 	}
828 	WARN_ON(1);
829 	return 0;
830 }
831 
832 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
833 			 struct iov_iter *i)
834 {
835 	size_t res = 0;
836 	if (unlikely(!page_copy_sane(page, offset, bytes)))
837 		return 0;
838 	page += offset / PAGE_SIZE; // first subpage
839 	offset %= PAGE_SIZE;
840 	while (1) {
841 		size_t n = __copy_page_to_iter(page, offset,
842 				min(bytes, (size_t)PAGE_SIZE - offset), i);
843 		res += n;
844 		bytes -= n;
845 		if (!bytes || !n)
846 			break;
847 		offset += n;
848 		if (offset == PAGE_SIZE) {
849 			page++;
850 			offset = 0;
851 		}
852 	}
853 	return res;
854 }
855 EXPORT_SYMBOL(copy_page_to_iter);
856 
857 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
858 			 struct iov_iter *i)
859 {
860 	if (unlikely(!page_copy_sane(page, offset, bytes)))
861 		return 0;
862 	if (likely(iter_is_iovec(i)))
863 		return copy_page_from_iter_iovec(page, offset, bytes, i);
864 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
865 		void *kaddr = kmap_atomic(page);
866 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
867 		kunmap_atomic(kaddr);
868 		return wanted;
869 	}
870 	WARN_ON(1);
871 	return 0;
872 }
873 EXPORT_SYMBOL(copy_page_from_iter);
874 
875 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
876 {
877 	struct pipe_inode_info *pipe = i->pipe;
878 	unsigned int p_mask = pipe->ring_size - 1;
879 	unsigned int i_head;
880 	size_t n, off;
881 
882 	if (!sanity(i))
883 		return 0;
884 
885 	bytes = n = push_pipe(i, bytes, &i_head, &off);
886 	if (unlikely(!n))
887 		return 0;
888 
889 	do {
890 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
891 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
892 		i->head = i_head;
893 		i->iov_offset = off + chunk;
894 		n -= chunk;
895 		off = 0;
896 		i_head++;
897 	} while (n);
898 	i->count -= bytes;
899 	return bytes;
900 }
901 
902 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
903 {
904 	if (unlikely(iov_iter_is_pipe(i)))
905 		return pipe_zero(bytes, i);
906 	iterate_and_advance(i, bytes, v, count,
907 		clear_user(v.iov_base, v.iov_len),
908 		memset(v.iov_base, 0, v.iov_len)
909 	)
910 
911 	return bytes;
912 }
913 EXPORT_SYMBOL(iov_iter_zero);
914 
915 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
916 				  struct iov_iter *i)
917 {
918 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
919 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
920 		kunmap_atomic(kaddr);
921 		return 0;
922 	}
923 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
924 		kunmap_atomic(kaddr);
925 		WARN_ON(1);
926 		return 0;
927 	}
928 	iterate_and_advance(i, bytes, v, off,
929 		copyin(p + off, v.iov_base, v.iov_len),
930 		memcpy(p + off, v.iov_base, v.iov_len)
931 	)
932 	kunmap_atomic(kaddr);
933 	return bytes;
934 }
935 EXPORT_SYMBOL(copy_page_from_iter_atomic);
936 
937 static inline void pipe_truncate(struct iov_iter *i)
938 {
939 	struct pipe_inode_info *pipe = i->pipe;
940 	unsigned int p_tail = pipe->tail;
941 	unsigned int p_head = pipe->head;
942 	unsigned int p_mask = pipe->ring_size - 1;
943 
944 	if (!pipe_empty(p_head, p_tail)) {
945 		struct pipe_buffer *buf;
946 		unsigned int i_head = i->head;
947 		size_t off = i->iov_offset;
948 
949 		if (off) {
950 			buf = &pipe->bufs[i_head & p_mask];
951 			buf->len = off - buf->offset;
952 			i_head++;
953 		}
954 		while (p_head != i_head) {
955 			p_head--;
956 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
957 		}
958 
959 		pipe->head = p_head;
960 	}
961 }
962 
963 static void pipe_advance(struct iov_iter *i, size_t size)
964 {
965 	struct pipe_inode_info *pipe = i->pipe;
966 	if (size) {
967 		struct pipe_buffer *buf;
968 		unsigned int p_mask = pipe->ring_size - 1;
969 		unsigned int i_head = i->head;
970 		size_t off = i->iov_offset, left = size;
971 
972 		if (off) /* make it relative to the beginning of buffer */
973 			left += off - pipe->bufs[i_head & p_mask].offset;
974 		while (1) {
975 			buf = &pipe->bufs[i_head & p_mask];
976 			if (left <= buf->len)
977 				break;
978 			left -= buf->len;
979 			i_head++;
980 		}
981 		i->head = i_head;
982 		i->iov_offset = buf->offset + left;
983 	}
984 	i->count -= size;
985 	/* ... and discard everything past that point */
986 	pipe_truncate(i);
987 }
988 
989 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
990 {
991 	struct bvec_iter bi;
992 
993 	bi.bi_size = i->count;
994 	bi.bi_bvec_done = i->iov_offset;
995 	bi.bi_idx = 0;
996 	bvec_iter_advance(i->bvec, &bi, size);
997 
998 	i->bvec += bi.bi_idx;
999 	i->nr_segs -= bi.bi_idx;
1000 	i->count = bi.bi_size;
1001 	i->iov_offset = bi.bi_bvec_done;
1002 }
1003 
1004 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
1005 {
1006 	const struct iovec *iov, *end;
1007 
1008 	if (!i->count)
1009 		return;
1010 	i->count -= size;
1011 
1012 	size += i->iov_offset; // from beginning of current segment
1013 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1014 		if (likely(size < iov->iov_len))
1015 			break;
1016 		size -= iov->iov_len;
1017 	}
1018 	i->iov_offset = size;
1019 	i->nr_segs -= iov - i->iov;
1020 	i->iov = iov;
1021 }
1022 
1023 void iov_iter_advance(struct iov_iter *i, size_t size)
1024 {
1025 	if (unlikely(i->count < size))
1026 		size = i->count;
1027 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1028 		/* iovec and kvec have identical layouts */
1029 		iov_iter_iovec_advance(i, size);
1030 	} else if (iov_iter_is_bvec(i)) {
1031 		iov_iter_bvec_advance(i, size);
1032 	} else if (iov_iter_is_pipe(i)) {
1033 		pipe_advance(i, size);
1034 	} else if (unlikely(iov_iter_is_xarray(i))) {
1035 		i->iov_offset += size;
1036 		i->count -= size;
1037 	} else if (iov_iter_is_discard(i)) {
1038 		i->count -= size;
1039 	}
1040 }
1041 EXPORT_SYMBOL(iov_iter_advance);
1042 
1043 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1044 {
1045 	if (!unroll)
1046 		return;
1047 	if (WARN_ON(unroll > MAX_RW_COUNT))
1048 		return;
1049 	i->count += unroll;
1050 	if (unlikely(iov_iter_is_pipe(i))) {
1051 		struct pipe_inode_info *pipe = i->pipe;
1052 		unsigned int p_mask = pipe->ring_size - 1;
1053 		unsigned int i_head = i->head;
1054 		size_t off = i->iov_offset;
1055 		while (1) {
1056 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1057 			size_t n = off - b->offset;
1058 			if (unroll < n) {
1059 				off -= unroll;
1060 				break;
1061 			}
1062 			unroll -= n;
1063 			if (!unroll && i_head == i->start_head) {
1064 				off = 0;
1065 				break;
1066 			}
1067 			i_head--;
1068 			b = &pipe->bufs[i_head & p_mask];
1069 			off = b->offset + b->len;
1070 		}
1071 		i->iov_offset = off;
1072 		i->head = i_head;
1073 		pipe_truncate(i);
1074 		return;
1075 	}
1076 	if (unlikely(iov_iter_is_discard(i)))
1077 		return;
1078 	if (unroll <= i->iov_offset) {
1079 		i->iov_offset -= unroll;
1080 		return;
1081 	}
1082 	unroll -= i->iov_offset;
1083 	if (iov_iter_is_xarray(i)) {
1084 		BUG(); /* We should never go beyond the start of the specified
1085 			* range since we might then be straying into pages that
1086 			* aren't pinned.
1087 			*/
1088 	} else if (iov_iter_is_bvec(i)) {
1089 		const struct bio_vec *bvec = i->bvec;
1090 		while (1) {
1091 			size_t n = (--bvec)->bv_len;
1092 			i->nr_segs++;
1093 			if (unroll <= n) {
1094 				i->bvec = bvec;
1095 				i->iov_offset = n - unroll;
1096 				return;
1097 			}
1098 			unroll -= n;
1099 		}
1100 	} else { /* same logics for iovec and kvec */
1101 		const struct iovec *iov = i->iov;
1102 		while (1) {
1103 			size_t n = (--iov)->iov_len;
1104 			i->nr_segs++;
1105 			if (unroll <= n) {
1106 				i->iov = iov;
1107 				i->iov_offset = n - unroll;
1108 				return;
1109 			}
1110 			unroll -= n;
1111 		}
1112 	}
1113 }
1114 EXPORT_SYMBOL(iov_iter_revert);
1115 
1116 /*
1117  * Return the count of just the current iov_iter segment.
1118  */
1119 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1120 {
1121 	if (i->nr_segs > 1) {
1122 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1123 			return min(i->count, i->iov->iov_len - i->iov_offset);
1124 		if (iov_iter_is_bvec(i))
1125 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1126 	}
1127 	return i->count;
1128 }
1129 EXPORT_SYMBOL(iov_iter_single_seg_count);
1130 
1131 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1132 			const struct kvec *kvec, unsigned long nr_segs,
1133 			size_t count)
1134 {
1135 	WARN_ON(direction & ~(READ | WRITE));
1136 	*i = (struct iov_iter){
1137 		.iter_type = ITER_KVEC,
1138 		.data_source = direction,
1139 		.kvec = kvec,
1140 		.nr_segs = nr_segs,
1141 		.iov_offset = 0,
1142 		.count = count
1143 	};
1144 }
1145 EXPORT_SYMBOL(iov_iter_kvec);
1146 
1147 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1148 			const struct bio_vec *bvec, unsigned long nr_segs,
1149 			size_t count)
1150 {
1151 	WARN_ON(direction & ~(READ | WRITE));
1152 	*i = (struct iov_iter){
1153 		.iter_type = ITER_BVEC,
1154 		.data_source = direction,
1155 		.bvec = bvec,
1156 		.nr_segs = nr_segs,
1157 		.iov_offset = 0,
1158 		.count = count
1159 	};
1160 }
1161 EXPORT_SYMBOL(iov_iter_bvec);
1162 
1163 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1164 			struct pipe_inode_info *pipe,
1165 			size_t count)
1166 {
1167 	BUG_ON(direction != READ);
1168 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1169 	*i = (struct iov_iter){
1170 		.iter_type = ITER_PIPE,
1171 		.data_source = false,
1172 		.pipe = pipe,
1173 		.head = pipe->head,
1174 		.start_head = pipe->head,
1175 		.iov_offset = 0,
1176 		.count = count
1177 	};
1178 }
1179 EXPORT_SYMBOL(iov_iter_pipe);
1180 
1181 /**
1182  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1183  * @i: The iterator to initialise.
1184  * @direction: The direction of the transfer.
1185  * @xarray: The xarray to access.
1186  * @start: The start file position.
1187  * @count: The size of the I/O buffer in bytes.
1188  *
1189  * Set up an I/O iterator to either draw data out of the pages attached to an
1190  * inode or to inject data into those pages.  The pages *must* be prevented
1191  * from evaporation, either by taking a ref on them or locking them by the
1192  * caller.
1193  */
1194 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1195 		     struct xarray *xarray, loff_t start, size_t count)
1196 {
1197 	BUG_ON(direction & ~1);
1198 	*i = (struct iov_iter) {
1199 		.iter_type = ITER_XARRAY,
1200 		.data_source = direction,
1201 		.xarray = xarray,
1202 		.xarray_start = start,
1203 		.count = count,
1204 		.iov_offset = 0
1205 	};
1206 }
1207 EXPORT_SYMBOL(iov_iter_xarray);
1208 
1209 /**
1210  * iov_iter_discard - Initialise an I/O iterator that discards data
1211  * @i: The iterator to initialise.
1212  * @direction: The direction of the transfer.
1213  * @count: The size of the I/O buffer in bytes.
1214  *
1215  * Set up an I/O iterator that just discards everything that's written to it.
1216  * It's only available as a READ iterator.
1217  */
1218 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1219 {
1220 	BUG_ON(direction != READ);
1221 	*i = (struct iov_iter){
1222 		.iter_type = ITER_DISCARD,
1223 		.data_source = false,
1224 		.count = count,
1225 		.iov_offset = 0
1226 	};
1227 }
1228 EXPORT_SYMBOL(iov_iter_discard);
1229 
1230 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1231 {
1232 	unsigned long res = 0;
1233 	size_t size = i->count;
1234 	size_t skip = i->iov_offset;
1235 	unsigned k;
1236 
1237 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1238 		size_t len = i->iov[k].iov_len - skip;
1239 		if (len) {
1240 			res |= (unsigned long)i->iov[k].iov_base + skip;
1241 			if (len > size)
1242 				len = size;
1243 			res |= len;
1244 			size -= len;
1245 			if (!size)
1246 				break;
1247 		}
1248 	}
1249 	return res;
1250 }
1251 
1252 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1253 {
1254 	unsigned res = 0;
1255 	size_t size = i->count;
1256 	unsigned skip = i->iov_offset;
1257 	unsigned k;
1258 
1259 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1260 		size_t len = i->bvec[k].bv_len - skip;
1261 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1262 		if (len > size)
1263 			len = size;
1264 		res |= len;
1265 		size -= len;
1266 		if (!size)
1267 			break;
1268 	}
1269 	return res;
1270 }
1271 
1272 unsigned long iov_iter_alignment(const struct iov_iter *i)
1273 {
1274 	/* iovec and kvec have identical layouts */
1275 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1276 		return iov_iter_alignment_iovec(i);
1277 
1278 	if (iov_iter_is_bvec(i))
1279 		return iov_iter_alignment_bvec(i);
1280 
1281 	if (iov_iter_is_pipe(i)) {
1282 		unsigned int p_mask = i->pipe->ring_size - 1;
1283 		size_t size = i->count;
1284 
1285 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1286 			return size | i->iov_offset;
1287 		return size;
1288 	}
1289 
1290 	if (iov_iter_is_xarray(i))
1291 		return (i->xarray_start + i->iov_offset) | i->count;
1292 
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL(iov_iter_alignment);
1296 
1297 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1298 {
1299 	unsigned long res = 0;
1300 	unsigned long v = 0;
1301 	size_t size = i->count;
1302 	unsigned k;
1303 
1304 	if (WARN_ON(!iter_is_iovec(i)))
1305 		return ~0U;
1306 
1307 	for (k = 0; k < i->nr_segs; k++) {
1308 		if (i->iov[k].iov_len) {
1309 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1310 			if (v) // if not the first one
1311 				res |= base | v; // this start | previous end
1312 			v = base + i->iov[k].iov_len;
1313 			if (size <= i->iov[k].iov_len)
1314 				break;
1315 			size -= i->iov[k].iov_len;
1316 		}
1317 	}
1318 	return res;
1319 }
1320 EXPORT_SYMBOL(iov_iter_gap_alignment);
1321 
1322 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1323 				size_t maxsize,
1324 				struct page **pages,
1325 				int iter_head,
1326 				size_t *start)
1327 {
1328 	struct pipe_inode_info *pipe = i->pipe;
1329 	unsigned int p_mask = pipe->ring_size - 1;
1330 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1331 	if (!n)
1332 		return -EFAULT;
1333 
1334 	maxsize = n;
1335 	n += *start;
1336 	while (n > 0) {
1337 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1338 		iter_head++;
1339 		n -= PAGE_SIZE;
1340 	}
1341 
1342 	return maxsize;
1343 }
1344 
1345 static ssize_t pipe_get_pages(struct iov_iter *i,
1346 		   struct page **pages, size_t maxsize, unsigned maxpages,
1347 		   size_t *start)
1348 {
1349 	unsigned int iter_head, npages;
1350 	size_t capacity;
1351 
1352 	if (!sanity(i))
1353 		return -EFAULT;
1354 
1355 	data_start(i, &iter_head, start);
1356 	/* Amount of free space: some of this one + all after this one */
1357 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1358 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1359 
1360 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1361 }
1362 
1363 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1364 					  pgoff_t index, unsigned int nr_pages)
1365 {
1366 	XA_STATE(xas, xa, index);
1367 	struct page *page;
1368 	unsigned int ret = 0;
1369 
1370 	rcu_read_lock();
1371 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1372 		if (xas_retry(&xas, page))
1373 			continue;
1374 
1375 		/* Has the page moved or been split? */
1376 		if (unlikely(page != xas_reload(&xas))) {
1377 			xas_reset(&xas);
1378 			continue;
1379 		}
1380 
1381 		pages[ret] = find_subpage(page, xas.xa_index);
1382 		get_page(pages[ret]);
1383 		if (++ret == nr_pages)
1384 			break;
1385 	}
1386 	rcu_read_unlock();
1387 	return ret;
1388 }
1389 
1390 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1391 				     struct page **pages, size_t maxsize,
1392 				     unsigned maxpages, size_t *_start_offset)
1393 {
1394 	unsigned nr, offset;
1395 	pgoff_t index, count;
1396 	size_t size = maxsize, actual;
1397 	loff_t pos;
1398 
1399 	if (!size || !maxpages)
1400 		return 0;
1401 
1402 	pos = i->xarray_start + i->iov_offset;
1403 	index = pos >> PAGE_SHIFT;
1404 	offset = pos & ~PAGE_MASK;
1405 	*_start_offset = offset;
1406 
1407 	count = 1;
1408 	if (size > PAGE_SIZE - offset) {
1409 		size -= PAGE_SIZE - offset;
1410 		count += size >> PAGE_SHIFT;
1411 		size &= ~PAGE_MASK;
1412 		if (size)
1413 			count++;
1414 	}
1415 
1416 	if (count > maxpages)
1417 		count = maxpages;
1418 
1419 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1420 	if (nr == 0)
1421 		return 0;
1422 
1423 	actual = PAGE_SIZE * nr;
1424 	actual -= offset;
1425 	if (nr == count && size > 0) {
1426 		unsigned last_offset = (nr > 1) ? 0 : offset;
1427 		actual -= PAGE_SIZE - (last_offset + size);
1428 	}
1429 	return actual;
1430 }
1431 
1432 /* must be done on non-empty ITER_IOVEC one */
1433 static unsigned long first_iovec_segment(const struct iov_iter *i,
1434 					 size_t *size, size_t *start,
1435 					 size_t maxsize, unsigned maxpages)
1436 {
1437 	size_t skip;
1438 	long k;
1439 
1440 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1441 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1442 		size_t len = i->iov[k].iov_len - skip;
1443 
1444 		if (unlikely(!len))
1445 			continue;
1446 		if (len > maxsize)
1447 			len = maxsize;
1448 		len += (*start = addr % PAGE_SIZE);
1449 		if (len > maxpages * PAGE_SIZE)
1450 			len = maxpages * PAGE_SIZE;
1451 		*size = len;
1452 		return addr & PAGE_MASK;
1453 	}
1454 	BUG(); // if it had been empty, we wouldn't get called
1455 }
1456 
1457 /* must be done on non-empty ITER_BVEC one */
1458 static struct page *first_bvec_segment(const struct iov_iter *i,
1459 				       size_t *size, size_t *start,
1460 				       size_t maxsize, unsigned maxpages)
1461 {
1462 	struct page *page;
1463 	size_t skip = i->iov_offset, len;
1464 
1465 	len = i->bvec->bv_len - skip;
1466 	if (len > maxsize)
1467 		len = maxsize;
1468 	skip += i->bvec->bv_offset;
1469 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1470 	len += (*start = skip % PAGE_SIZE);
1471 	if (len > maxpages * PAGE_SIZE)
1472 		len = maxpages * PAGE_SIZE;
1473 	*size = len;
1474 	return page;
1475 }
1476 
1477 ssize_t iov_iter_get_pages(struct iov_iter *i,
1478 		   struct page **pages, size_t maxsize, unsigned maxpages,
1479 		   size_t *start)
1480 {
1481 	size_t len;
1482 	int n, res;
1483 
1484 	if (maxsize > i->count)
1485 		maxsize = i->count;
1486 	if (!maxsize)
1487 		return 0;
1488 
1489 	if (likely(iter_is_iovec(i))) {
1490 		unsigned long addr;
1491 
1492 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1493 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1494 		res = get_user_pages_fast(addr, n,
1495 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1496 				pages);
1497 		if (unlikely(res < 0))
1498 			return res;
1499 		return (res == n ? len : res * PAGE_SIZE) - *start;
1500 	}
1501 	if (iov_iter_is_bvec(i)) {
1502 		struct page *page;
1503 
1504 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1505 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1506 		while (n--)
1507 			get_page(*pages++ = page++);
1508 		return len - *start;
1509 	}
1510 	if (iov_iter_is_pipe(i))
1511 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1512 	if (iov_iter_is_xarray(i))
1513 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1514 	return -EFAULT;
1515 }
1516 EXPORT_SYMBOL(iov_iter_get_pages);
1517 
1518 static struct page **get_pages_array(size_t n)
1519 {
1520 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1521 }
1522 
1523 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1524 		   struct page ***pages, size_t maxsize,
1525 		   size_t *start)
1526 {
1527 	struct page **p;
1528 	unsigned int iter_head, npages;
1529 	ssize_t n;
1530 
1531 	if (!sanity(i))
1532 		return -EFAULT;
1533 
1534 	data_start(i, &iter_head, start);
1535 	/* Amount of free space: some of this one + all after this one */
1536 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1537 	n = npages * PAGE_SIZE - *start;
1538 	if (maxsize > n)
1539 		maxsize = n;
1540 	else
1541 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1542 	p = get_pages_array(npages);
1543 	if (!p)
1544 		return -ENOMEM;
1545 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1546 	if (n > 0)
1547 		*pages = p;
1548 	else
1549 		kvfree(p);
1550 	return n;
1551 }
1552 
1553 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1554 					   struct page ***pages, size_t maxsize,
1555 					   size_t *_start_offset)
1556 {
1557 	struct page **p;
1558 	unsigned nr, offset;
1559 	pgoff_t index, count;
1560 	size_t size = maxsize, actual;
1561 	loff_t pos;
1562 
1563 	if (!size)
1564 		return 0;
1565 
1566 	pos = i->xarray_start + i->iov_offset;
1567 	index = pos >> PAGE_SHIFT;
1568 	offset = pos & ~PAGE_MASK;
1569 	*_start_offset = offset;
1570 
1571 	count = 1;
1572 	if (size > PAGE_SIZE - offset) {
1573 		size -= PAGE_SIZE - offset;
1574 		count += size >> PAGE_SHIFT;
1575 		size &= ~PAGE_MASK;
1576 		if (size)
1577 			count++;
1578 	}
1579 
1580 	p = get_pages_array(count);
1581 	if (!p)
1582 		return -ENOMEM;
1583 	*pages = p;
1584 
1585 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1586 	if (nr == 0)
1587 		return 0;
1588 
1589 	actual = PAGE_SIZE * nr;
1590 	actual -= offset;
1591 	if (nr == count && size > 0) {
1592 		unsigned last_offset = (nr > 1) ? 0 : offset;
1593 		actual -= PAGE_SIZE - (last_offset + size);
1594 	}
1595 	return actual;
1596 }
1597 
1598 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1599 		   struct page ***pages, size_t maxsize,
1600 		   size_t *start)
1601 {
1602 	struct page **p;
1603 	size_t len;
1604 	int n, res;
1605 
1606 	if (maxsize > i->count)
1607 		maxsize = i->count;
1608 	if (!maxsize)
1609 		return 0;
1610 
1611 	if (likely(iter_is_iovec(i))) {
1612 		unsigned long addr;
1613 
1614 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1615 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1616 		p = get_pages_array(n);
1617 		if (!p)
1618 			return -ENOMEM;
1619 		res = get_user_pages_fast(addr, n,
1620 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1621 		if (unlikely(res < 0)) {
1622 			kvfree(p);
1623 			return res;
1624 		}
1625 		*pages = p;
1626 		return (res == n ? len : res * PAGE_SIZE) - *start;
1627 	}
1628 	if (iov_iter_is_bvec(i)) {
1629 		struct page *page;
1630 
1631 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1632 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1633 		*pages = p = get_pages_array(n);
1634 		if (!p)
1635 			return -ENOMEM;
1636 		while (n--)
1637 			get_page(*p++ = page++);
1638 		return len - *start;
1639 	}
1640 	if (iov_iter_is_pipe(i))
1641 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1642 	if (iov_iter_is_xarray(i))
1643 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1644 	return -EFAULT;
1645 }
1646 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1647 
1648 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1649 			       struct iov_iter *i)
1650 {
1651 	__wsum sum, next;
1652 	sum = *csum;
1653 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1654 		WARN_ON(1);
1655 		return 0;
1656 	}
1657 	iterate_and_advance(i, bytes, v, off, ({
1658 		next = csum_and_copy_from_user(v.iov_base,
1659 					       addr + off,
1660 					       v.iov_len);
1661 		if (next)
1662 			sum = csum_block_add(sum, next, off);
1663 		next ? 0 : v.iov_len;
1664 	}), ({
1665 		sum = csum_and_memcpy(addr + off, v.iov_base, v.iov_len,
1666 				      sum, off);
1667 	})
1668 	)
1669 	*csum = sum;
1670 	return bytes;
1671 }
1672 EXPORT_SYMBOL(csum_and_copy_from_iter);
1673 
1674 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1675 			     struct iov_iter *i)
1676 {
1677 	struct csum_state *csstate = _csstate;
1678 	__wsum sum, next;
1679 
1680 	if (unlikely(iov_iter_is_pipe(i)))
1681 		return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1682 
1683 	sum = csum_shift(csstate->csum, csstate->off);
1684 	if (unlikely(iov_iter_is_discard(i))) {
1685 		WARN_ON(1);	/* for now */
1686 		return 0;
1687 	}
1688 	iterate_and_advance(i, bytes, v, off, ({
1689 		next = csum_and_copy_to_user(addr + off,
1690 					     v.iov_base,
1691 					     v.iov_len);
1692 		if (next)
1693 			sum = csum_block_add(sum, next, off);
1694 		next ? 0 : v.iov_len;
1695 	}), ({
1696 		sum = csum_and_memcpy(v.iov_base,
1697 				     addr + off,
1698 				     v.iov_len, sum, off);
1699 	})
1700 	)
1701 	csstate->csum = csum_shift(sum, csstate->off);
1702 	csstate->off += bytes;
1703 	return bytes;
1704 }
1705 EXPORT_SYMBOL(csum_and_copy_to_iter);
1706 
1707 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1708 		struct iov_iter *i)
1709 {
1710 #ifdef CONFIG_CRYPTO_HASH
1711 	struct ahash_request *hash = hashp;
1712 	struct scatterlist sg;
1713 	size_t copied;
1714 
1715 	copied = copy_to_iter(addr, bytes, i);
1716 	sg_init_one(&sg, addr, copied);
1717 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1718 	crypto_ahash_update(hash);
1719 	return copied;
1720 #else
1721 	return 0;
1722 #endif
1723 }
1724 EXPORT_SYMBOL(hash_and_copy_to_iter);
1725 
1726 static int iov_npages(const struct iov_iter *i, int maxpages)
1727 {
1728 	size_t skip = i->iov_offset, size = i->count;
1729 	const struct iovec *p;
1730 	int npages = 0;
1731 
1732 	for (p = i->iov; size; skip = 0, p++) {
1733 		unsigned offs = offset_in_page(p->iov_base + skip);
1734 		size_t len = min(p->iov_len - skip, size);
1735 
1736 		if (len) {
1737 			size -= len;
1738 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1739 			if (unlikely(npages > maxpages))
1740 				return maxpages;
1741 		}
1742 	}
1743 	return npages;
1744 }
1745 
1746 static int bvec_npages(const struct iov_iter *i, int maxpages)
1747 {
1748 	size_t skip = i->iov_offset, size = i->count;
1749 	const struct bio_vec *p;
1750 	int npages = 0;
1751 
1752 	for (p = i->bvec; size; skip = 0, p++) {
1753 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1754 		size_t len = min(p->bv_len - skip, size);
1755 
1756 		size -= len;
1757 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1758 		if (unlikely(npages > maxpages))
1759 			return maxpages;
1760 	}
1761 	return npages;
1762 }
1763 
1764 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1765 {
1766 	if (unlikely(!i->count))
1767 		return 0;
1768 	/* iovec and kvec have identical layouts */
1769 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1770 		return iov_npages(i, maxpages);
1771 	if (iov_iter_is_bvec(i))
1772 		return bvec_npages(i, maxpages);
1773 	if (iov_iter_is_pipe(i)) {
1774 		unsigned int iter_head;
1775 		int npages;
1776 		size_t off;
1777 
1778 		if (!sanity(i))
1779 			return 0;
1780 
1781 		data_start(i, &iter_head, &off);
1782 		/* some of this one + all after this one */
1783 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1784 		return min(npages, maxpages);
1785 	}
1786 	if (iov_iter_is_xarray(i)) {
1787 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1788 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1789 		return min(npages, maxpages);
1790 	}
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL(iov_iter_npages);
1794 
1795 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1796 {
1797 	*new = *old;
1798 	if (unlikely(iov_iter_is_pipe(new))) {
1799 		WARN_ON(1);
1800 		return NULL;
1801 	}
1802 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1803 		return NULL;
1804 	if (iov_iter_is_bvec(new))
1805 		return new->bvec = kmemdup(new->bvec,
1806 				    new->nr_segs * sizeof(struct bio_vec),
1807 				    flags);
1808 	else
1809 		/* iovec and kvec have identical layout */
1810 		return new->iov = kmemdup(new->iov,
1811 				   new->nr_segs * sizeof(struct iovec),
1812 				   flags);
1813 }
1814 EXPORT_SYMBOL(dup_iter);
1815 
1816 static int copy_compat_iovec_from_user(struct iovec *iov,
1817 		const struct iovec __user *uvec, unsigned long nr_segs)
1818 {
1819 	const struct compat_iovec __user *uiov =
1820 		(const struct compat_iovec __user *)uvec;
1821 	int ret = -EFAULT, i;
1822 
1823 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1824 		return -EFAULT;
1825 
1826 	for (i = 0; i < nr_segs; i++) {
1827 		compat_uptr_t buf;
1828 		compat_ssize_t len;
1829 
1830 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1831 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1832 
1833 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1834 		if (len < 0) {
1835 			ret = -EINVAL;
1836 			goto uaccess_end;
1837 		}
1838 		iov[i].iov_base = compat_ptr(buf);
1839 		iov[i].iov_len = len;
1840 	}
1841 
1842 	ret = 0;
1843 uaccess_end:
1844 	user_access_end();
1845 	return ret;
1846 }
1847 
1848 static int copy_iovec_from_user(struct iovec *iov,
1849 		const struct iovec __user *uvec, unsigned long nr_segs)
1850 {
1851 	unsigned long seg;
1852 
1853 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1854 		return -EFAULT;
1855 	for (seg = 0; seg < nr_segs; seg++) {
1856 		if ((ssize_t)iov[seg].iov_len < 0)
1857 			return -EINVAL;
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1864 		unsigned long nr_segs, unsigned long fast_segs,
1865 		struct iovec *fast_iov, bool compat)
1866 {
1867 	struct iovec *iov = fast_iov;
1868 	int ret;
1869 
1870 	/*
1871 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1872 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1873 	 * traditionally returned zero for zero segments, so...
1874 	 */
1875 	if (nr_segs == 0)
1876 		return iov;
1877 	if (nr_segs > UIO_MAXIOV)
1878 		return ERR_PTR(-EINVAL);
1879 	if (nr_segs > fast_segs) {
1880 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1881 		if (!iov)
1882 			return ERR_PTR(-ENOMEM);
1883 	}
1884 
1885 	if (compat)
1886 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1887 	else
1888 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1889 	if (ret) {
1890 		if (iov != fast_iov)
1891 			kfree(iov);
1892 		return ERR_PTR(ret);
1893 	}
1894 
1895 	return iov;
1896 }
1897 
1898 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1899 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1900 		 struct iov_iter *i, bool compat)
1901 {
1902 	ssize_t total_len = 0;
1903 	unsigned long seg;
1904 	struct iovec *iov;
1905 
1906 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1907 	if (IS_ERR(iov)) {
1908 		*iovp = NULL;
1909 		return PTR_ERR(iov);
1910 	}
1911 
1912 	/*
1913 	 * According to the Single Unix Specification we should return EINVAL if
1914 	 * an element length is < 0 when cast to ssize_t or if the total length
1915 	 * would overflow the ssize_t return value of the system call.
1916 	 *
1917 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1918 	 * overflow case.
1919 	 */
1920 	for (seg = 0; seg < nr_segs; seg++) {
1921 		ssize_t len = (ssize_t)iov[seg].iov_len;
1922 
1923 		if (!access_ok(iov[seg].iov_base, len)) {
1924 			if (iov != *iovp)
1925 				kfree(iov);
1926 			*iovp = NULL;
1927 			return -EFAULT;
1928 		}
1929 
1930 		if (len > MAX_RW_COUNT - total_len) {
1931 			len = MAX_RW_COUNT - total_len;
1932 			iov[seg].iov_len = len;
1933 		}
1934 		total_len += len;
1935 	}
1936 
1937 	iov_iter_init(i, type, iov, nr_segs, total_len);
1938 	if (iov == *iovp)
1939 		*iovp = NULL;
1940 	else
1941 		*iovp = iov;
1942 	return total_len;
1943 }
1944 
1945 /**
1946  * import_iovec() - Copy an array of &struct iovec from userspace
1947  *     into the kernel, check that it is valid, and initialize a new
1948  *     &struct iov_iter iterator to access it.
1949  *
1950  * @type: One of %READ or %WRITE.
1951  * @uvec: Pointer to the userspace array.
1952  * @nr_segs: Number of elements in userspace array.
1953  * @fast_segs: Number of elements in @iov.
1954  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1955  *     on-stack) kernel array.
1956  * @i: Pointer to iterator that will be initialized on success.
1957  *
1958  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1959  * then this function places %NULL in *@iov on return. Otherwise, a new
1960  * array will be allocated and the result placed in *@iov. This means that
1961  * the caller may call kfree() on *@iov regardless of whether the small
1962  * on-stack array was used or not (and regardless of whether this function
1963  * returns an error or not).
1964  *
1965  * Return: Negative error code on error, bytes imported on success
1966  */
1967 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1968 		 unsigned nr_segs, unsigned fast_segs,
1969 		 struct iovec **iovp, struct iov_iter *i)
1970 {
1971 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1972 			      in_compat_syscall());
1973 }
1974 EXPORT_SYMBOL(import_iovec);
1975 
1976 int import_single_range(int rw, void __user *buf, size_t len,
1977 		 struct iovec *iov, struct iov_iter *i)
1978 {
1979 	if (len > MAX_RW_COUNT)
1980 		len = MAX_RW_COUNT;
1981 	if (unlikely(!access_ok(buf, len)))
1982 		return -EFAULT;
1983 
1984 	iov->iov_base = buf;
1985 	iov->iov_len = len;
1986 	iov_iter_init(i, rw, iov, 1, len);
1987 	return 0;
1988 }
1989 EXPORT_SYMBOL(import_single_range);
1990