xref: /openbmc/linux/lib/iov_iter.c (revision 612cf4d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
21 	size_t __maybe_unused off = 0;				\
22 	len = n;						\
23 	base = __p + i->iov_offset;				\
24 	len -= (STEP);						\
25 	i->iov_offset += len;					\
26 	n = len;						\
27 }
28 
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
31 	size_t off = 0;						\
32 	size_t skip = i->iov_offset;				\
33 	do {							\
34 		len = min(n, __p->iov_len - skip);		\
35 		if (likely(len)) {				\
36 			base = __p->iov_base + skip;		\
37 			len -= (STEP);				\
38 			off += len;				\
39 			skip += len;				\
40 			n -= len;				\
41 			if (skip < __p->iov_len)		\
42 				break;				\
43 		}						\
44 		__p++;						\
45 		skip = 0;					\
46 	} while (n);						\
47 	i->iov_offset = skip;					\
48 	n = off;						\
49 }
50 
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
52 	size_t off = 0;						\
53 	unsigned skip = i->iov_offset;				\
54 	while (n) {						\
55 		unsigned offset = p->bv_offset + skip;		\
56 		unsigned left;					\
57 		void *kaddr = kmap_local_page(p->bv_page +	\
58 					offset / PAGE_SIZE);	\
59 		base = kaddr + offset % PAGE_SIZE;		\
60 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
61 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
62 		left = (STEP);					\
63 		kunmap_local(kaddr);				\
64 		len -= left;					\
65 		off += len;					\
66 		skip += len;					\
67 		if (skip == p->bv_len) {			\
68 			skip = 0;				\
69 			p++;					\
70 		}						\
71 		n -= len;					\
72 		if (left)					\
73 			break;					\
74 	}							\
75 	i->iov_offset = skip;					\
76 	n = off;						\
77 }
78 
79 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
80 	__label__ __out;					\
81 	size_t __off = 0;					\
82 	struct folio *folio;					\
83 	loff_t start = i->xarray_start + i->iov_offset;		\
84 	pgoff_t index = start / PAGE_SIZE;			\
85 	XA_STATE(xas, i->xarray, index);			\
86 								\
87 	len = PAGE_SIZE - offset_in_page(start);		\
88 	rcu_read_lock();					\
89 	xas_for_each(&xas, folio, ULONG_MAX) {			\
90 		unsigned left;					\
91 		size_t offset;					\
92 		if (xas_retry(&xas, folio))			\
93 			continue;				\
94 		if (WARN_ON(xa_is_value(folio)))		\
95 			break;					\
96 		if (WARN_ON(folio_test_hugetlb(folio)))		\
97 			break;					\
98 		offset = offset_in_folio(folio, start + __off);	\
99 		while (offset < folio_size(folio)) {		\
100 			base = kmap_local_folio(folio, offset);	\
101 			len = min(n, len);			\
102 			left = (STEP);				\
103 			kunmap_local(base);			\
104 			len -= left;				\
105 			__off += len;				\
106 			n -= len;				\
107 			if (left || n == 0)			\
108 				goto __out;			\
109 			offset += len;				\
110 			len = PAGE_SIZE;			\
111 		}						\
112 	}							\
113 __out:								\
114 	rcu_read_unlock();					\
115 	i->iov_offset += __off;					\
116 	n = __off;						\
117 }
118 
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
120 	if (unlikely(i->count < n))				\
121 		n = i->count;					\
122 	if (likely(n)) {					\
123 		if (likely(iter_is_ubuf(i))) {			\
124 			void __user *base;			\
125 			size_t len;				\
126 			iterate_buf(i, n, base, len, off,	\
127 						i->ubuf, (I)) 	\
128 		} else if (likely(iter_is_iovec(i))) {		\
129 			const struct iovec *iov = i->iov;	\
130 			void __user *base;			\
131 			size_t len;				\
132 			iterate_iovec(i, n, base, len, off,	\
133 						iov, (I))	\
134 			i->nr_segs -= iov - i->iov;		\
135 			i->iov = iov;				\
136 		} else if (iov_iter_is_bvec(i)) {		\
137 			const struct bio_vec *bvec = i->bvec;	\
138 			void *base;				\
139 			size_t len;				\
140 			iterate_bvec(i, n, base, len, off,	\
141 						bvec, (K))	\
142 			i->nr_segs -= bvec - i->bvec;		\
143 			i->bvec = bvec;				\
144 		} else if (iov_iter_is_kvec(i)) {		\
145 			const struct kvec *kvec = i->kvec;	\
146 			void *base;				\
147 			size_t len;				\
148 			iterate_iovec(i, n, base, len, off,	\
149 						kvec, (K))	\
150 			i->nr_segs -= kvec - i->kvec;		\
151 			i->kvec = kvec;				\
152 		} else if (iov_iter_is_xarray(i)) {		\
153 			void *base;				\
154 			size_t len;				\
155 			iterate_xarray(i, n, base, len, off,	\
156 							(K))	\
157 		}						\
158 		i->count -= n;					\
159 	}							\
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163 
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166 	if (should_fail_usercopy())
167 		return n;
168 	if (access_ok(to, n)) {
169 		instrument_copy_to_user(to, from, n);
170 		n = raw_copy_to_user(to, from, n);
171 	}
172 	return n;
173 }
174 
175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177 	size_t res = n;
178 
179 	if (should_fail_usercopy())
180 		return n;
181 	if (access_ok(from, n)) {
182 		instrument_copy_from_user_before(to, from, n);
183 		res = raw_copy_from_user(to, from, n);
184 		instrument_copy_from_user_after(to, from, n, res);
185 	}
186 	return res;
187 }
188 
189 static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
190 					   unsigned int slot)
191 {
192 	return &pipe->bufs[slot & (pipe->ring_size - 1)];
193 }
194 
195 #ifdef PIPE_PARANOIA
196 static bool sanity(const struct iov_iter *i)
197 {
198 	struct pipe_inode_info *pipe = i->pipe;
199 	unsigned int p_head = pipe->head;
200 	unsigned int p_tail = pipe->tail;
201 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
202 	unsigned int i_head = i->head;
203 	unsigned int idx;
204 
205 	if (i->last_offset) {
206 		struct pipe_buffer *p;
207 		if (unlikely(p_occupancy == 0))
208 			goto Bad;	// pipe must be non-empty
209 		if (unlikely(i_head != p_head - 1))
210 			goto Bad;	// must be at the last buffer...
211 
212 		p = pipe_buf(pipe, i_head);
213 		if (unlikely(p->offset + p->len != abs(i->last_offset)))
214 			goto Bad;	// ... at the end of segment
215 	} else {
216 		if (i_head != p_head)
217 			goto Bad;	// must be right after the last buffer
218 	}
219 	return true;
220 Bad:
221 	printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
222 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
223 			p_head, p_tail, pipe->ring_size);
224 	for (idx = 0; idx < pipe->ring_size; idx++)
225 		printk(KERN_ERR "[%p %p %d %d]\n",
226 			pipe->bufs[idx].ops,
227 			pipe->bufs[idx].page,
228 			pipe->bufs[idx].offset,
229 			pipe->bufs[idx].len);
230 	WARN_ON(1);
231 	return false;
232 }
233 #else
234 #define sanity(i) true
235 #endif
236 
237 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
238 {
239 	struct page *page = alloc_page(GFP_USER);
240 	if (page) {
241 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
242 		*buf = (struct pipe_buffer) {
243 			.ops = &default_pipe_buf_ops,
244 			.page = page,
245 			.offset = 0,
246 			.len = size
247 		};
248 	}
249 	return page;
250 }
251 
252 static void push_page(struct pipe_inode_info *pipe, struct page *page,
253 			unsigned int offset, unsigned int size)
254 {
255 	struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
256 	*buf = (struct pipe_buffer) {
257 		.ops = &page_cache_pipe_buf_ops,
258 		.page = page,
259 		.offset = offset,
260 		.len = size
261 	};
262 	get_page(page);
263 }
264 
265 static inline int last_offset(const struct pipe_buffer *buf)
266 {
267 	if (buf->ops == &default_pipe_buf_ops)
268 		return buf->len;	// buf->offset is 0 for those
269 	else
270 		return -(buf->offset + buf->len);
271 }
272 
273 static struct page *append_pipe(struct iov_iter *i, size_t size,
274 				unsigned int *off)
275 {
276 	struct pipe_inode_info *pipe = i->pipe;
277 	int offset = i->last_offset;
278 	struct pipe_buffer *buf;
279 	struct page *page;
280 
281 	if (offset > 0 && offset < PAGE_SIZE) {
282 		// some space in the last buffer; add to it
283 		buf = pipe_buf(pipe, pipe->head - 1);
284 		size = min_t(size_t, size, PAGE_SIZE - offset);
285 		buf->len += size;
286 		i->last_offset += size;
287 		i->count -= size;
288 		*off = offset;
289 		return buf->page;
290 	}
291 	// OK, we need a new buffer
292 	*off = 0;
293 	size = min_t(size_t, size, PAGE_SIZE);
294 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
295 		return NULL;
296 	page = push_anon(pipe, size);
297 	if (!page)
298 		return NULL;
299 	i->head = pipe->head - 1;
300 	i->last_offset = size;
301 	i->count -= size;
302 	return page;
303 }
304 
305 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
306 			 struct iov_iter *i)
307 {
308 	struct pipe_inode_info *pipe = i->pipe;
309 	unsigned int head = pipe->head;
310 
311 	if (unlikely(bytes > i->count))
312 		bytes = i->count;
313 
314 	if (unlikely(!bytes))
315 		return 0;
316 
317 	if (!sanity(i))
318 		return 0;
319 
320 	if (offset && i->last_offset == -offset) { // could we merge it?
321 		struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
322 		if (buf->page == page) {
323 			buf->len += bytes;
324 			i->last_offset -= bytes;
325 			i->count -= bytes;
326 			return bytes;
327 		}
328 	}
329 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
330 		return 0;
331 
332 	push_page(pipe, page, offset, bytes);
333 	i->last_offset = -(offset + bytes);
334 	i->head = head;
335 	i->count -= bytes;
336 	return bytes;
337 }
338 
339 /*
340  * fault_in_iov_iter_readable - fault in iov iterator for reading
341  * @i: iterator
342  * @size: maximum length
343  *
344  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
345  * @size.  For each iovec, fault in each page that constitutes the iovec.
346  *
347  * Returns the number of bytes not faulted in (like copy_to_user() and
348  * copy_from_user()).
349  *
350  * Always returns 0 for non-userspace iterators.
351  */
352 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
353 {
354 	if (iter_is_ubuf(i)) {
355 		size_t n = min(size, iov_iter_count(i));
356 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
357 		return size - n;
358 	} else if (iter_is_iovec(i)) {
359 		size_t count = min(size, iov_iter_count(i));
360 		const struct iovec *p;
361 		size_t skip;
362 
363 		size -= count;
364 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
365 			size_t len = min(count, p->iov_len - skip);
366 			size_t ret;
367 
368 			if (unlikely(!len))
369 				continue;
370 			ret = fault_in_readable(p->iov_base + skip, len);
371 			count -= len - ret;
372 			if (ret)
373 				break;
374 		}
375 		return count + size;
376 	}
377 	return 0;
378 }
379 EXPORT_SYMBOL(fault_in_iov_iter_readable);
380 
381 /*
382  * fault_in_iov_iter_writeable - fault in iov iterator for writing
383  * @i: iterator
384  * @size: maximum length
385  *
386  * Faults in the iterator using get_user_pages(), i.e., without triggering
387  * hardware page faults.  This is primarily useful when we already know that
388  * some or all of the pages in @i aren't in memory.
389  *
390  * Returns the number of bytes not faulted in, like copy_to_user() and
391  * copy_from_user().
392  *
393  * Always returns 0 for non-user-space iterators.
394  */
395 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
396 {
397 	if (iter_is_ubuf(i)) {
398 		size_t n = min(size, iov_iter_count(i));
399 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
400 		return size - n;
401 	} else if (iter_is_iovec(i)) {
402 		size_t count = min(size, iov_iter_count(i));
403 		const struct iovec *p;
404 		size_t skip;
405 
406 		size -= count;
407 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
408 			size_t len = min(count, p->iov_len - skip);
409 			size_t ret;
410 
411 			if (unlikely(!len))
412 				continue;
413 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
414 			count -= len - ret;
415 			if (ret)
416 				break;
417 		}
418 		return count + size;
419 	}
420 	return 0;
421 }
422 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
423 
424 void iov_iter_init(struct iov_iter *i, unsigned int direction,
425 			const struct iovec *iov, unsigned long nr_segs,
426 			size_t count)
427 {
428 	WARN_ON(direction & ~(READ | WRITE));
429 	*i = (struct iov_iter) {
430 		.iter_type = ITER_IOVEC,
431 		.nofault = false,
432 		.user_backed = true,
433 		.data_source = direction,
434 		.iov = iov,
435 		.nr_segs = nr_segs,
436 		.iov_offset = 0,
437 		.count = count
438 	};
439 }
440 EXPORT_SYMBOL(iov_iter_init);
441 
442 // returns the offset in partial buffer (if any)
443 static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
444 {
445 	struct pipe_inode_info *pipe = i->pipe;
446 	int used = pipe->head - pipe->tail;
447 	int off = i->last_offset;
448 
449 	*npages = max((int)pipe->max_usage - used, 0);
450 
451 	if (off > 0 && off < PAGE_SIZE) { // anon and not full
452 		(*npages)++;
453 		return off;
454 	}
455 	return 0;
456 }
457 
458 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
459 				struct iov_iter *i)
460 {
461 	unsigned int off, chunk;
462 
463 	if (unlikely(bytes > i->count))
464 		bytes = i->count;
465 	if (unlikely(!bytes))
466 		return 0;
467 
468 	if (!sanity(i))
469 		return 0;
470 
471 	for (size_t n = bytes; n; n -= chunk) {
472 		struct page *page = append_pipe(i, n, &off);
473 		chunk = min_t(size_t, n, PAGE_SIZE - off);
474 		if (!page)
475 			return bytes - n;
476 		memcpy_to_page(page, off, addr, chunk);
477 		addr += chunk;
478 	}
479 	return bytes;
480 }
481 
482 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
483 			      __wsum sum, size_t off)
484 {
485 	__wsum next = csum_partial_copy_nocheck(from, to, len);
486 	return csum_block_add(sum, next, off);
487 }
488 
489 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
490 					 struct iov_iter *i, __wsum *sump)
491 {
492 	__wsum sum = *sump;
493 	size_t off = 0;
494 	unsigned int chunk, r;
495 
496 	if (unlikely(bytes > i->count))
497 		bytes = i->count;
498 	if (unlikely(!bytes))
499 		return 0;
500 
501 	if (!sanity(i))
502 		return 0;
503 
504 	while (bytes) {
505 		struct page *page = append_pipe(i, bytes, &r);
506 		char *p;
507 
508 		if (!page)
509 			break;
510 		chunk = min_t(size_t, bytes, PAGE_SIZE - r);
511 		p = kmap_local_page(page);
512 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
513 		kunmap_local(p);
514 		off += chunk;
515 		bytes -= chunk;
516 	}
517 	*sump = sum;
518 	return off;
519 }
520 
521 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
522 {
523 	if (WARN_ON_ONCE(i->data_source))
524 		return 0;
525 	if (unlikely(iov_iter_is_pipe(i)))
526 		return copy_pipe_to_iter(addr, bytes, i);
527 	if (user_backed_iter(i))
528 		might_fault();
529 	iterate_and_advance(i, bytes, base, len, off,
530 		copyout(base, addr + off, len),
531 		memcpy(base, addr + off, len)
532 	)
533 
534 	return bytes;
535 }
536 EXPORT_SYMBOL(_copy_to_iter);
537 
538 #ifdef CONFIG_ARCH_HAS_COPY_MC
539 static int copyout_mc(void __user *to, const void *from, size_t n)
540 {
541 	if (access_ok(to, n)) {
542 		instrument_copy_to_user(to, from, n);
543 		n = copy_mc_to_user((__force void *) to, from, n);
544 	}
545 	return n;
546 }
547 
548 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
549 				struct iov_iter *i)
550 {
551 	size_t xfer = 0;
552 	unsigned int off, chunk;
553 
554 	if (unlikely(bytes > i->count))
555 		bytes = i->count;
556 	if (unlikely(!bytes))
557 		return 0;
558 
559 	if (!sanity(i))
560 		return 0;
561 
562 	while (bytes) {
563 		struct page *page = append_pipe(i, bytes, &off);
564 		unsigned long rem;
565 		char *p;
566 
567 		if (!page)
568 			break;
569 		chunk = min_t(size_t, bytes, PAGE_SIZE - off);
570 		p = kmap_local_page(page);
571 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
572 		chunk -= rem;
573 		kunmap_local(p);
574 		xfer += chunk;
575 		bytes -= chunk;
576 		if (rem) {
577 			iov_iter_revert(i, rem);
578 			break;
579 		}
580 	}
581 	return xfer;
582 }
583 
584 /**
585  * _copy_mc_to_iter - copy to iter with source memory error exception handling
586  * @addr: source kernel address
587  * @bytes: total transfer length
588  * @i: destination iterator
589  *
590  * The pmem driver deploys this for the dax operation
591  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
592  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
593  * successfully copied.
594  *
595  * The main differences between this and typical _copy_to_iter().
596  *
597  * * Typical tail/residue handling after a fault retries the copy
598  *   byte-by-byte until the fault happens again. Re-triggering machine
599  *   checks is potentially fatal so the implementation uses source
600  *   alignment and poison alignment assumptions to avoid re-triggering
601  *   hardware exceptions.
602  *
603  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
604  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
605  *   a short copy.
606  *
607  * Return: number of bytes copied (may be %0)
608  */
609 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
610 {
611 	if (WARN_ON_ONCE(i->data_source))
612 		return 0;
613 	if (unlikely(iov_iter_is_pipe(i)))
614 		return copy_mc_pipe_to_iter(addr, bytes, i);
615 	if (user_backed_iter(i))
616 		might_fault();
617 	__iterate_and_advance(i, bytes, base, len, off,
618 		copyout_mc(base, addr + off, len),
619 		copy_mc_to_kernel(base, addr + off, len)
620 	)
621 
622 	return bytes;
623 }
624 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
625 #endif /* CONFIG_ARCH_HAS_COPY_MC */
626 
627 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
628 {
629 	if (WARN_ON_ONCE(!i->data_source))
630 		return 0;
631 
632 	if (user_backed_iter(i))
633 		might_fault();
634 	iterate_and_advance(i, bytes, base, len, off,
635 		copyin(addr + off, base, len),
636 		memcpy(addr + off, base, len)
637 	)
638 
639 	return bytes;
640 }
641 EXPORT_SYMBOL(_copy_from_iter);
642 
643 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
644 {
645 	if (WARN_ON_ONCE(!i->data_source))
646 		return 0;
647 
648 	iterate_and_advance(i, bytes, base, len, off,
649 		__copy_from_user_inatomic_nocache(addr + off, base, len),
650 		memcpy(addr + off, base, len)
651 	)
652 
653 	return bytes;
654 }
655 EXPORT_SYMBOL(_copy_from_iter_nocache);
656 
657 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
658 /**
659  * _copy_from_iter_flushcache - write destination through cpu cache
660  * @addr: destination kernel address
661  * @bytes: total transfer length
662  * @i: source iterator
663  *
664  * The pmem driver arranges for filesystem-dax to use this facility via
665  * dax_copy_from_iter() for ensuring that writes to persistent memory
666  * are flushed through the CPU cache. It is differentiated from
667  * _copy_from_iter_nocache() in that guarantees all data is flushed for
668  * all iterator types. The _copy_from_iter_nocache() only attempts to
669  * bypass the cache for the ITER_IOVEC case, and on some archs may use
670  * instructions that strand dirty-data in the cache.
671  *
672  * Return: number of bytes copied (may be %0)
673  */
674 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
675 {
676 	if (WARN_ON_ONCE(!i->data_source))
677 		return 0;
678 
679 	iterate_and_advance(i, bytes, base, len, off,
680 		__copy_from_user_flushcache(addr + off, base, len),
681 		memcpy_flushcache(addr + off, base, len)
682 	)
683 
684 	return bytes;
685 }
686 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
687 #endif
688 
689 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
690 {
691 	struct page *head;
692 	size_t v = n + offset;
693 
694 	/*
695 	 * The general case needs to access the page order in order
696 	 * to compute the page size.
697 	 * However, we mostly deal with order-0 pages and thus can
698 	 * avoid a possible cache line miss for requests that fit all
699 	 * page orders.
700 	 */
701 	if (n <= v && v <= PAGE_SIZE)
702 		return true;
703 
704 	head = compound_head(page);
705 	v += (page - head) << PAGE_SHIFT;
706 
707 	if (WARN_ON(n > v || v > page_size(head)))
708 		return false;
709 	return true;
710 }
711 
712 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
713 			 struct iov_iter *i)
714 {
715 	size_t res = 0;
716 	if (!page_copy_sane(page, offset, bytes))
717 		return 0;
718 	if (WARN_ON_ONCE(i->data_source))
719 		return 0;
720 	if (unlikely(iov_iter_is_pipe(i)))
721 		return copy_page_to_iter_pipe(page, offset, bytes, i);
722 	page += offset / PAGE_SIZE; // first subpage
723 	offset %= PAGE_SIZE;
724 	while (1) {
725 		void *kaddr = kmap_local_page(page);
726 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
727 		n = _copy_to_iter(kaddr + offset, n, i);
728 		kunmap_local(kaddr);
729 		res += n;
730 		bytes -= n;
731 		if (!bytes || !n)
732 			break;
733 		offset += n;
734 		if (offset == PAGE_SIZE) {
735 			page++;
736 			offset = 0;
737 		}
738 	}
739 	return res;
740 }
741 EXPORT_SYMBOL(copy_page_to_iter);
742 
743 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
744 			 struct iov_iter *i)
745 {
746 	size_t res = 0;
747 	if (!page_copy_sane(page, offset, bytes))
748 		return 0;
749 	page += offset / PAGE_SIZE; // first subpage
750 	offset %= PAGE_SIZE;
751 	while (1) {
752 		void *kaddr = kmap_local_page(page);
753 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
754 		n = _copy_from_iter(kaddr + offset, n, i);
755 		kunmap_local(kaddr);
756 		res += n;
757 		bytes -= n;
758 		if (!bytes || !n)
759 			break;
760 		offset += n;
761 		if (offset == PAGE_SIZE) {
762 			page++;
763 			offset = 0;
764 		}
765 	}
766 	return res;
767 }
768 EXPORT_SYMBOL(copy_page_from_iter);
769 
770 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
771 {
772 	unsigned int chunk, off;
773 
774 	if (unlikely(bytes > i->count))
775 		bytes = i->count;
776 	if (unlikely(!bytes))
777 		return 0;
778 
779 	if (!sanity(i))
780 		return 0;
781 
782 	for (size_t n = bytes; n; n -= chunk) {
783 		struct page *page = append_pipe(i, n, &off);
784 		char *p;
785 
786 		if (!page)
787 			return bytes - n;
788 		chunk = min_t(size_t, n, PAGE_SIZE - off);
789 		p = kmap_local_page(page);
790 		memset(p + off, 0, chunk);
791 		kunmap_local(p);
792 	}
793 	return bytes;
794 }
795 
796 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
797 {
798 	if (unlikely(iov_iter_is_pipe(i)))
799 		return pipe_zero(bytes, i);
800 	iterate_and_advance(i, bytes, base, len, count,
801 		clear_user(base, len),
802 		memset(base, 0, len)
803 	)
804 
805 	return bytes;
806 }
807 EXPORT_SYMBOL(iov_iter_zero);
808 
809 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
810 				  struct iov_iter *i)
811 {
812 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
813 	if (!page_copy_sane(page, offset, bytes)) {
814 		kunmap_atomic(kaddr);
815 		return 0;
816 	}
817 	if (WARN_ON_ONCE(!i->data_source)) {
818 		kunmap_atomic(kaddr);
819 		return 0;
820 	}
821 	iterate_and_advance(i, bytes, base, len, off,
822 		copyin(p + off, base, len),
823 		memcpy(p + off, base, len)
824 	)
825 	kunmap_atomic(kaddr);
826 	return bytes;
827 }
828 EXPORT_SYMBOL(copy_page_from_iter_atomic);
829 
830 static void pipe_advance(struct iov_iter *i, size_t size)
831 {
832 	struct pipe_inode_info *pipe = i->pipe;
833 	int off = i->last_offset;
834 
835 	if (!off && !size) {
836 		pipe_discard_from(pipe, i->start_head); // discard everything
837 		return;
838 	}
839 	i->count -= size;
840 	while (1) {
841 		struct pipe_buffer *buf = pipe_buf(pipe, i->head);
842 		if (off) /* make it relative to the beginning of buffer */
843 			size += abs(off) - buf->offset;
844 		if (size <= buf->len) {
845 			buf->len = size;
846 			i->last_offset = last_offset(buf);
847 			break;
848 		}
849 		size -= buf->len;
850 		i->head++;
851 		off = 0;
852 	}
853 	pipe_discard_from(pipe, i->head + 1); // discard everything past this one
854 }
855 
856 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
857 {
858 	const struct bio_vec *bvec, *end;
859 
860 	if (!i->count)
861 		return;
862 	i->count -= size;
863 
864 	size += i->iov_offset;
865 
866 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
867 		if (likely(size < bvec->bv_len))
868 			break;
869 		size -= bvec->bv_len;
870 	}
871 	i->iov_offset = size;
872 	i->nr_segs -= bvec - i->bvec;
873 	i->bvec = bvec;
874 }
875 
876 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
877 {
878 	const struct iovec *iov, *end;
879 
880 	if (!i->count)
881 		return;
882 	i->count -= size;
883 
884 	size += i->iov_offset; // from beginning of current segment
885 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
886 		if (likely(size < iov->iov_len))
887 			break;
888 		size -= iov->iov_len;
889 	}
890 	i->iov_offset = size;
891 	i->nr_segs -= iov - i->iov;
892 	i->iov = iov;
893 }
894 
895 void iov_iter_advance(struct iov_iter *i, size_t size)
896 {
897 	if (unlikely(i->count < size))
898 		size = i->count;
899 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
900 		i->iov_offset += size;
901 		i->count -= size;
902 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
903 		/* iovec and kvec have identical layouts */
904 		iov_iter_iovec_advance(i, size);
905 	} else if (iov_iter_is_bvec(i)) {
906 		iov_iter_bvec_advance(i, size);
907 	} else if (iov_iter_is_pipe(i)) {
908 		pipe_advance(i, size);
909 	} else if (iov_iter_is_discard(i)) {
910 		i->count -= size;
911 	}
912 }
913 EXPORT_SYMBOL(iov_iter_advance);
914 
915 void iov_iter_revert(struct iov_iter *i, size_t unroll)
916 {
917 	if (!unroll)
918 		return;
919 	if (WARN_ON(unroll > MAX_RW_COUNT))
920 		return;
921 	i->count += unroll;
922 	if (unlikely(iov_iter_is_pipe(i))) {
923 		struct pipe_inode_info *pipe = i->pipe;
924 		unsigned int head = pipe->head;
925 
926 		while (head > i->start_head) {
927 			struct pipe_buffer *b = pipe_buf(pipe, --head);
928 			if (unroll < b->len) {
929 				b->len -= unroll;
930 				i->last_offset = last_offset(b);
931 				i->head = head;
932 				return;
933 			}
934 			unroll -= b->len;
935 			pipe_buf_release(pipe, b);
936 			pipe->head--;
937 		}
938 		i->last_offset = 0;
939 		i->head = head;
940 		return;
941 	}
942 	if (unlikely(iov_iter_is_discard(i)))
943 		return;
944 	if (unroll <= i->iov_offset) {
945 		i->iov_offset -= unroll;
946 		return;
947 	}
948 	unroll -= i->iov_offset;
949 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
950 		BUG(); /* We should never go beyond the start of the specified
951 			* range since we might then be straying into pages that
952 			* aren't pinned.
953 			*/
954 	} else if (iov_iter_is_bvec(i)) {
955 		const struct bio_vec *bvec = i->bvec;
956 		while (1) {
957 			size_t n = (--bvec)->bv_len;
958 			i->nr_segs++;
959 			if (unroll <= n) {
960 				i->bvec = bvec;
961 				i->iov_offset = n - unroll;
962 				return;
963 			}
964 			unroll -= n;
965 		}
966 	} else { /* same logics for iovec and kvec */
967 		const struct iovec *iov = i->iov;
968 		while (1) {
969 			size_t n = (--iov)->iov_len;
970 			i->nr_segs++;
971 			if (unroll <= n) {
972 				i->iov = iov;
973 				i->iov_offset = n - unroll;
974 				return;
975 			}
976 			unroll -= n;
977 		}
978 	}
979 }
980 EXPORT_SYMBOL(iov_iter_revert);
981 
982 /*
983  * Return the count of just the current iov_iter segment.
984  */
985 size_t iov_iter_single_seg_count(const struct iov_iter *i)
986 {
987 	if (i->nr_segs > 1) {
988 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
989 			return min(i->count, i->iov->iov_len - i->iov_offset);
990 		if (iov_iter_is_bvec(i))
991 			return min(i->count, i->bvec->bv_len - i->iov_offset);
992 	}
993 	return i->count;
994 }
995 EXPORT_SYMBOL(iov_iter_single_seg_count);
996 
997 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
998 			const struct kvec *kvec, unsigned long nr_segs,
999 			size_t count)
1000 {
1001 	WARN_ON(direction & ~(READ | WRITE));
1002 	*i = (struct iov_iter){
1003 		.iter_type = ITER_KVEC,
1004 		.data_source = direction,
1005 		.kvec = kvec,
1006 		.nr_segs = nr_segs,
1007 		.iov_offset = 0,
1008 		.count = count
1009 	};
1010 }
1011 EXPORT_SYMBOL(iov_iter_kvec);
1012 
1013 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1014 			const struct bio_vec *bvec, unsigned long nr_segs,
1015 			size_t count)
1016 {
1017 	WARN_ON(direction & ~(READ | WRITE));
1018 	*i = (struct iov_iter){
1019 		.iter_type = ITER_BVEC,
1020 		.data_source = direction,
1021 		.bvec = bvec,
1022 		.nr_segs = nr_segs,
1023 		.iov_offset = 0,
1024 		.count = count
1025 	};
1026 }
1027 EXPORT_SYMBOL(iov_iter_bvec);
1028 
1029 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1030 			struct pipe_inode_info *pipe,
1031 			size_t count)
1032 {
1033 	BUG_ON(direction != READ);
1034 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1035 	*i = (struct iov_iter){
1036 		.iter_type = ITER_PIPE,
1037 		.data_source = false,
1038 		.pipe = pipe,
1039 		.head = pipe->head,
1040 		.start_head = pipe->head,
1041 		.last_offset = 0,
1042 		.count = count
1043 	};
1044 }
1045 EXPORT_SYMBOL(iov_iter_pipe);
1046 
1047 /**
1048  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1049  * @i: The iterator to initialise.
1050  * @direction: The direction of the transfer.
1051  * @xarray: The xarray to access.
1052  * @start: The start file position.
1053  * @count: The size of the I/O buffer in bytes.
1054  *
1055  * Set up an I/O iterator to either draw data out of the pages attached to an
1056  * inode or to inject data into those pages.  The pages *must* be prevented
1057  * from evaporation, either by taking a ref on them or locking them by the
1058  * caller.
1059  */
1060 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1061 		     struct xarray *xarray, loff_t start, size_t count)
1062 {
1063 	BUG_ON(direction & ~1);
1064 	*i = (struct iov_iter) {
1065 		.iter_type = ITER_XARRAY,
1066 		.data_source = direction,
1067 		.xarray = xarray,
1068 		.xarray_start = start,
1069 		.count = count,
1070 		.iov_offset = 0
1071 	};
1072 }
1073 EXPORT_SYMBOL(iov_iter_xarray);
1074 
1075 /**
1076  * iov_iter_discard - Initialise an I/O iterator that discards data
1077  * @i: The iterator to initialise.
1078  * @direction: The direction of the transfer.
1079  * @count: The size of the I/O buffer in bytes.
1080  *
1081  * Set up an I/O iterator that just discards everything that's written to it.
1082  * It's only available as a READ iterator.
1083  */
1084 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1085 {
1086 	BUG_ON(direction != READ);
1087 	*i = (struct iov_iter){
1088 		.iter_type = ITER_DISCARD,
1089 		.data_source = false,
1090 		.count = count,
1091 		.iov_offset = 0
1092 	};
1093 }
1094 EXPORT_SYMBOL(iov_iter_discard);
1095 
1096 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1097 				   unsigned len_mask)
1098 {
1099 	size_t size = i->count;
1100 	size_t skip = i->iov_offset;
1101 	unsigned k;
1102 
1103 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1104 		size_t len = i->iov[k].iov_len - skip;
1105 
1106 		if (len > size)
1107 			len = size;
1108 		if (len & len_mask)
1109 			return false;
1110 		if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1111 			return false;
1112 
1113 		size -= len;
1114 		if (!size)
1115 			break;
1116 	}
1117 	return true;
1118 }
1119 
1120 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1121 				  unsigned len_mask)
1122 {
1123 	size_t size = i->count;
1124 	unsigned skip = i->iov_offset;
1125 	unsigned k;
1126 
1127 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1128 		size_t len = i->bvec[k].bv_len - skip;
1129 
1130 		if (len > size)
1131 			len = size;
1132 		if (len & len_mask)
1133 			return false;
1134 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1135 			return false;
1136 
1137 		size -= len;
1138 		if (!size)
1139 			break;
1140 	}
1141 	return true;
1142 }
1143 
1144 /**
1145  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1146  * 	are aligned to the parameters.
1147  *
1148  * @i: &struct iov_iter to restore
1149  * @addr_mask: bit mask to check against the iov element's addresses
1150  * @len_mask: bit mask to check against the iov element's lengths
1151  *
1152  * Return: false if any addresses or lengths intersect with the provided masks
1153  */
1154 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1155 			 unsigned len_mask)
1156 {
1157 	if (likely(iter_is_ubuf(i))) {
1158 		if (i->count & len_mask)
1159 			return false;
1160 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1161 			return false;
1162 		return true;
1163 	}
1164 
1165 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1166 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1167 
1168 	if (iov_iter_is_bvec(i))
1169 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1170 
1171 	if (iov_iter_is_pipe(i)) {
1172 		size_t size = i->count;
1173 
1174 		if (size & len_mask)
1175 			return false;
1176 		if (size && i->last_offset > 0) {
1177 			if (i->last_offset & addr_mask)
1178 				return false;
1179 		}
1180 
1181 		return true;
1182 	}
1183 
1184 	if (iov_iter_is_xarray(i)) {
1185 		if (i->count & len_mask)
1186 			return false;
1187 		if ((i->xarray_start + i->iov_offset) & addr_mask)
1188 			return false;
1189 	}
1190 
1191 	return true;
1192 }
1193 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1194 
1195 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1196 {
1197 	unsigned long res = 0;
1198 	size_t size = i->count;
1199 	size_t skip = i->iov_offset;
1200 	unsigned k;
1201 
1202 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1203 		size_t len = i->iov[k].iov_len - skip;
1204 		if (len) {
1205 			res |= (unsigned long)i->iov[k].iov_base + skip;
1206 			if (len > size)
1207 				len = size;
1208 			res |= len;
1209 			size -= len;
1210 			if (!size)
1211 				break;
1212 		}
1213 	}
1214 	return res;
1215 }
1216 
1217 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1218 {
1219 	unsigned res = 0;
1220 	size_t size = i->count;
1221 	unsigned skip = i->iov_offset;
1222 	unsigned k;
1223 
1224 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1225 		size_t len = i->bvec[k].bv_len - skip;
1226 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1227 		if (len > size)
1228 			len = size;
1229 		res |= len;
1230 		size -= len;
1231 		if (!size)
1232 			break;
1233 	}
1234 	return res;
1235 }
1236 
1237 unsigned long iov_iter_alignment(const struct iov_iter *i)
1238 {
1239 	if (likely(iter_is_ubuf(i))) {
1240 		size_t size = i->count;
1241 		if (size)
1242 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
1243 		return 0;
1244 	}
1245 
1246 	/* iovec and kvec have identical layouts */
1247 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1248 		return iov_iter_alignment_iovec(i);
1249 
1250 	if (iov_iter_is_bvec(i))
1251 		return iov_iter_alignment_bvec(i);
1252 
1253 	if (iov_iter_is_pipe(i)) {
1254 		size_t size = i->count;
1255 
1256 		if (size && i->last_offset > 0)
1257 			return size | i->last_offset;
1258 		return size;
1259 	}
1260 
1261 	if (iov_iter_is_xarray(i))
1262 		return (i->xarray_start + i->iov_offset) | i->count;
1263 
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL(iov_iter_alignment);
1267 
1268 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1269 {
1270 	unsigned long res = 0;
1271 	unsigned long v = 0;
1272 	size_t size = i->count;
1273 	unsigned k;
1274 
1275 	if (iter_is_ubuf(i))
1276 		return 0;
1277 
1278 	if (WARN_ON(!iter_is_iovec(i)))
1279 		return ~0U;
1280 
1281 	for (k = 0; k < i->nr_segs; k++) {
1282 		if (i->iov[k].iov_len) {
1283 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1284 			if (v) // if not the first one
1285 				res |= base | v; // this start | previous end
1286 			v = base + i->iov[k].iov_len;
1287 			if (size <= i->iov[k].iov_len)
1288 				break;
1289 			size -= i->iov[k].iov_len;
1290 		}
1291 	}
1292 	return res;
1293 }
1294 EXPORT_SYMBOL(iov_iter_gap_alignment);
1295 
1296 static int want_pages_array(struct page ***res, size_t size,
1297 			    size_t start, unsigned int maxpages)
1298 {
1299 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
1300 
1301 	if (count > maxpages)
1302 		count = maxpages;
1303 	WARN_ON(!count);	// caller should've prevented that
1304 	if (!*res) {
1305 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1306 		if (!*res)
1307 			return 0;
1308 	}
1309 	return count;
1310 }
1311 
1312 static ssize_t pipe_get_pages(struct iov_iter *i,
1313 		   struct page ***pages, size_t maxsize, unsigned maxpages,
1314 		   size_t *start)
1315 {
1316 	unsigned int npages, count, off, chunk;
1317 	struct page **p;
1318 	size_t left;
1319 
1320 	if (!sanity(i))
1321 		return -EFAULT;
1322 
1323 	*start = off = pipe_npages(i, &npages);
1324 	if (!npages)
1325 		return -EFAULT;
1326 	count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
1327 	if (!count)
1328 		return -ENOMEM;
1329 	p = *pages;
1330 	for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
1331 		struct page *page = append_pipe(i, left, &off);
1332 		if (!page)
1333 			break;
1334 		chunk = min_t(size_t, left, PAGE_SIZE - off);
1335 		get_page(*p++ = page);
1336 	}
1337 	if (!npages)
1338 		return -EFAULT;
1339 	return maxsize - left;
1340 }
1341 
1342 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1343 					  pgoff_t index, unsigned int nr_pages)
1344 {
1345 	XA_STATE(xas, xa, index);
1346 	struct page *page;
1347 	unsigned int ret = 0;
1348 
1349 	rcu_read_lock();
1350 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1351 		if (xas_retry(&xas, page))
1352 			continue;
1353 
1354 		/* Has the page moved or been split? */
1355 		if (unlikely(page != xas_reload(&xas))) {
1356 			xas_reset(&xas);
1357 			continue;
1358 		}
1359 
1360 		pages[ret] = find_subpage(page, xas.xa_index);
1361 		get_page(pages[ret]);
1362 		if (++ret == nr_pages)
1363 			break;
1364 	}
1365 	rcu_read_unlock();
1366 	return ret;
1367 }
1368 
1369 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1370 				     struct page ***pages, size_t maxsize,
1371 				     unsigned maxpages, size_t *_start_offset)
1372 {
1373 	unsigned nr, offset, count;
1374 	pgoff_t index;
1375 	loff_t pos;
1376 
1377 	pos = i->xarray_start + i->iov_offset;
1378 	index = pos >> PAGE_SHIFT;
1379 	offset = pos & ~PAGE_MASK;
1380 	*_start_offset = offset;
1381 
1382 	count = want_pages_array(pages, maxsize, offset, maxpages);
1383 	if (!count)
1384 		return -ENOMEM;
1385 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1386 	if (nr == 0)
1387 		return 0;
1388 
1389 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1390 	i->iov_offset += maxsize;
1391 	i->count -= maxsize;
1392 	return maxsize;
1393 }
1394 
1395 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1396 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1397 {
1398 	size_t skip;
1399 	long k;
1400 
1401 	if (iter_is_ubuf(i))
1402 		return (unsigned long)i->ubuf + i->iov_offset;
1403 
1404 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1405 		size_t len = i->iov[k].iov_len - skip;
1406 
1407 		if (unlikely(!len))
1408 			continue;
1409 		if (*size > len)
1410 			*size = len;
1411 		return (unsigned long)i->iov[k].iov_base + skip;
1412 	}
1413 	BUG(); // if it had been empty, we wouldn't get called
1414 }
1415 
1416 /* must be done on non-empty ITER_BVEC one */
1417 static struct page *first_bvec_segment(const struct iov_iter *i,
1418 				       size_t *size, size_t *start)
1419 {
1420 	struct page *page;
1421 	size_t skip = i->iov_offset, len;
1422 
1423 	len = i->bvec->bv_len - skip;
1424 	if (*size > len)
1425 		*size = len;
1426 	skip += i->bvec->bv_offset;
1427 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1428 	*start = skip % PAGE_SIZE;
1429 	return page;
1430 }
1431 
1432 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1433 		   struct page ***pages, size_t maxsize,
1434 		   unsigned int maxpages, size_t *start,
1435 		   unsigned int gup_flags)
1436 {
1437 	unsigned int n;
1438 
1439 	if (maxsize > i->count)
1440 		maxsize = i->count;
1441 	if (!maxsize)
1442 		return 0;
1443 	if (maxsize > MAX_RW_COUNT)
1444 		maxsize = MAX_RW_COUNT;
1445 
1446 	if (likely(user_backed_iter(i))) {
1447 		unsigned long addr;
1448 		int res;
1449 
1450 		if (iov_iter_rw(i) != WRITE)
1451 			gup_flags |= FOLL_WRITE;
1452 		if (i->nofault)
1453 			gup_flags |= FOLL_NOFAULT;
1454 
1455 		addr = first_iovec_segment(i, &maxsize);
1456 		*start = addr % PAGE_SIZE;
1457 		addr &= PAGE_MASK;
1458 		n = want_pages_array(pages, maxsize, *start, maxpages);
1459 		if (!n)
1460 			return -ENOMEM;
1461 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1462 		if (unlikely(res <= 0))
1463 			return res;
1464 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1465 		iov_iter_advance(i, maxsize);
1466 		return maxsize;
1467 	}
1468 	if (iov_iter_is_bvec(i)) {
1469 		struct page **p;
1470 		struct page *page;
1471 
1472 		page = first_bvec_segment(i, &maxsize, start);
1473 		n = want_pages_array(pages, maxsize, *start, maxpages);
1474 		if (!n)
1475 			return -ENOMEM;
1476 		p = *pages;
1477 		for (int k = 0; k < n; k++)
1478 			get_page(p[k] = page + k);
1479 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1480 		i->count -= maxsize;
1481 		i->iov_offset += maxsize;
1482 		if (i->iov_offset == i->bvec->bv_len) {
1483 			i->iov_offset = 0;
1484 			i->bvec++;
1485 			i->nr_segs--;
1486 		}
1487 		return maxsize;
1488 	}
1489 	if (iov_iter_is_pipe(i))
1490 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1491 	if (iov_iter_is_xarray(i))
1492 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1493 	return -EFAULT;
1494 }
1495 
1496 ssize_t iov_iter_get_pages(struct iov_iter *i,
1497 		   struct page **pages, size_t maxsize, unsigned maxpages,
1498 		   size_t *start, unsigned gup_flags)
1499 {
1500 	if (!maxpages)
1501 		return 0;
1502 	BUG_ON(!pages);
1503 
1504 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages,
1505 					  start, gup_flags);
1506 }
1507 EXPORT_SYMBOL_GPL(iov_iter_get_pages);
1508 
1509 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1510 		size_t maxsize, unsigned maxpages, size_t *start)
1511 {
1512 	return iov_iter_get_pages(i, pages, maxsize, maxpages, start, 0);
1513 }
1514 EXPORT_SYMBOL(iov_iter_get_pages2);
1515 
1516 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1517 		   struct page ***pages, size_t maxsize,
1518 		   size_t *start, unsigned gup_flags)
1519 {
1520 	ssize_t len;
1521 
1522 	*pages = NULL;
1523 
1524 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start,
1525 					 gup_flags);
1526 	if (len <= 0) {
1527 		kvfree(*pages);
1528 		*pages = NULL;
1529 	}
1530 	return len;
1531 }
1532 EXPORT_SYMBOL_GPL(iov_iter_get_pages_alloc);
1533 
1534 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1535 		struct page ***pages, size_t maxsize, size_t *start)
1536 {
1537 	return iov_iter_get_pages_alloc(i, pages, maxsize, start, 0);
1538 }
1539 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1540 
1541 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1542 			       struct iov_iter *i)
1543 {
1544 	__wsum sum, next;
1545 	sum = *csum;
1546 	if (WARN_ON_ONCE(!i->data_source))
1547 		return 0;
1548 
1549 	iterate_and_advance(i, bytes, base, len, off, ({
1550 		next = csum_and_copy_from_user(base, addr + off, len);
1551 		sum = csum_block_add(sum, next, off);
1552 		next ? 0 : len;
1553 	}), ({
1554 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1555 	})
1556 	)
1557 	*csum = sum;
1558 	return bytes;
1559 }
1560 EXPORT_SYMBOL(csum_and_copy_from_iter);
1561 
1562 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1563 			     struct iov_iter *i)
1564 {
1565 	struct csum_state *csstate = _csstate;
1566 	__wsum sum, next;
1567 
1568 	if (WARN_ON_ONCE(i->data_source))
1569 		return 0;
1570 	if (unlikely(iov_iter_is_discard(i))) {
1571 		// can't use csum_memcpy() for that one - data is not copied
1572 		csstate->csum = csum_block_add(csstate->csum,
1573 					       csum_partial(addr, bytes, 0),
1574 					       csstate->off);
1575 		csstate->off += bytes;
1576 		return bytes;
1577 	}
1578 
1579 	sum = csum_shift(csstate->csum, csstate->off);
1580 	if (unlikely(iov_iter_is_pipe(i)))
1581 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1582 	else iterate_and_advance(i, bytes, base, len, off, ({
1583 		next = csum_and_copy_to_user(addr + off, base, len);
1584 		sum = csum_block_add(sum, next, off);
1585 		next ? 0 : len;
1586 	}), ({
1587 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1588 	})
1589 	)
1590 	csstate->csum = csum_shift(sum, csstate->off);
1591 	csstate->off += bytes;
1592 	return bytes;
1593 }
1594 EXPORT_SYMBOL(csum_and_copy_to_iter);
1595 
1596 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1597 		struct iov_iter *i)
1598 {
1599 #ifdef CONFIG_CRYPTO_HASH
1600 	struct ahash_request *hash = hashp;
1601 	struct scatterlist sg;
1602 	size_t copied;
1603 
1604 	copied = copy_to_iter(addr, bytes, i);
1605 	sg_init_one(&sg, addr, copied);
1606 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1607 	crypto_ahash_update(hash);
1608 	return copied;
1609 #else
1610 	return 0;
1611 #endif
1612 }
1613 EXPORT_SYMBOL(hash_and_copy_to_iter);
1614 
1615 static int iov_npages(const struct iov_iter *i, int maxpages)
1616 {
1617 	size_t skip = i->iov_offset, size = i->count;
1618 	const struct iovec *p;
1619 	int npages = 0;
1620 
1621 	for (p = i->iov; size; skip = 0, p++) {
1622 		unsigned offs = offset_in_page(p->iov_base + skip);
1623 		size_t len = min(p->iov_len - skip, size);
1624 
1625 		if (len) {
1626 			size -= len;
1627 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1628 			if (unlikely(npages > maxpages))
1629 				return maxpages;
1630 		}
1631 	}
1632 	return npages;
1633 }
1634 
1635 static int bvec_npages(const struct iov_iter *i, int maxpages)
1636 {
1637 	size_t skip = i->iov_offset, size = i->count;
1638 	const struct bio_vec *p;
1639 	int npages = 0;
1640 
1641 	for (p = i->bvec; size; skip = 0, p++) {
1642 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1643 		size_t len = min(p->bv_len - skip, size);
1644 
1645 		size -= len;
1646 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1647 		if (unlikely(npages > maxpages))
1648 			return maxpages;
1649 	}
1650 	return npages;
1651 }
1652 
1653 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1654 {
1655 	if (unlikely(!i->count))
1656 		return 0;
1657 	if (likely(iter_is_ubuf(i))) {
1658 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1659 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1660 		return min(npages, maxpages);
1661 	}
1662 	/* iovec and kvec have identical layouts */
1663 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1664 		return iov_npages(i, maxpages);
1665 	if (iov_iter_is_bvec(i))
1666 		return bvec_npages(i, maxpages);
1667 	if (iov_iter_is_pipe(i)) {
1668 		int npages;
1669 
1670 		if (!sanity(i))
1671 			return 0;
1672 
1673 		pipe_npages(i, &npages);
1674 		return min(npages, maxpages);
1675 	}
1676 	if (iov_iter_is_xarray(i)) {
1677 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1678 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1679 		return min(npages, maxpages);
1680 	}
1681 	return 0;
1682 }
1683 EXPORT_SYMBOL(iov_iter_npages);
1684 
1685 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1686 {
1687 	*new = *old;
1688 	if (unlikely(iov_iter_is_pipe(new))) {
1689 		WARN_ON(1);
1690 		return NULL;
1691 	}
1692 	if (iov_iter_is_bvec(new))
1693 		return new->bvec = kmemdup(new->bvec,
1694 				    new->nr_segs * sizeof(struct bio_vec),
1695 				    flags);
1696 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1697 		/* iovec and kvec have identical layout */
1698 		return new->iov = kmemdup(new->iov,
1699 				   new->nr_segs * sizeof(struct iovec),
1700 				   flags);
1701 	return NULL;
1702 }
1703 EXPORT_SYMBOL(dup_iter);
1704 
1705 static int copy_compat_iovec_from_user(struct iovec *iov,
1706 		const struct iovec __user *uvec, unsigned long nr_segs)
1707 {
1708 	const struct compat_iovec __user *uiov =
1709 		(const struct compat_iovec __user *)uvec;
1710 	int ret = -EFAULT, i;
1711 
1712 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1713 		return -EFAULT;
1714 
1715 	for (i = 0; i < nr_segs; i++) {
1716 		compat_uptr_t buf;
1717 		compat_ssize_t len;
1718 
1719 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1720 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1721 
1722 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1723 		if (len < 0) {
1724 			ret = -EINVAL;
1725 			goto uaccess_end;
1726 		}
1727 		iov[i].iov_base = compat_ptr(buf);
1728 		iov[i].iov_len = len;
1729 	}
1730 
1731 	ret = 0;
1732 uaccess_end:
1733 	user_access_end();
1734 	return ret;
1735 }
1736 
1737 static int copy_iovec_from_user(struct iovec *iov,
1738 		const struct iovec __user *uvec, unsigned long nr_segs)
1739 {
1740 	unsigned long seg;
1741 
1742 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1743 		return -EFAULT;
1744 	for (seg = 0; seg < nr_segs; seg++) {
1745 		if ((ssize_t)iov[seg].iov_len < 0)
1746 			return -EINVAL;
1747 	}
1748 
1749 	return 0;
1750 }
1751 
1752 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1753 		unsigned long nr_segs, unsigned long fast_segs,
1754 		struct iovec *fast_iov, bool compat)
1755 {
1756 	struct iovec *iov = fast_iov;
1757 	int ret;
1758 
1759 	/*
1760 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1761 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1762 	 * traditionally returned zero for zero segments, so...
1763 	 */
1764 	if (nr_segs == 0)
1765 		return iov;
1766 	if (nr_segs > UIO_MAXIOV)
1767 		return ERR_PTR(-EINVAL);
1768 	if (nr_segs > fast_segs) {
1769 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1770 		if (!iov)
1771 			return ERR_PTR(-ENOMEM);
1772 	}
1773 
1774 	if (compat)
1775 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1776 	else
1777 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1778 	if (ret) {
1779 		if (iov != fast_iov)
1780 			kfree(iov);
1781 		return ERR_PTR(ret);
1782 	}
1783 
1784 	return iov;
1785 }
1786 
1787 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1788 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1789 		 struct iov_iter *i, bool compat)
1790 {
1791 	ssize_t total_len = 0;
1792 	unsigned long seg;
1793 	struct iovec *iov;
1794 
1795 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1796 	if (IS_ERR(iov)) {
1797 		*iovp = NULL;
1798 		return PTR_ERR(iov);
1799 	}
1800 
1801 	/*
1802 	 * According to the Single Unix Specification we should return EINVAL if
1803 	 * an element length is < 0 when cast to ssize_t or if the total length
1804 	 * would overflow the ssize_t return value of the system call.
1805 	 *
1806 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1807 	 * overflow case.
1808 	 */
1809 	for (seg = 0; seg < nr_segs; seg++) {
1810 		ssize_t len = (ssize_t)iov[seg].iov_len;
1811 
1812 		if (!access_ok(iov[seg].iov_base, len)) {
1813 			if (iov != *iovp)
1814 				kfree(iov);
1815 			*iovp = NULL;
1816 			return -EFAULT;
1817 		}
1818 
1819 		if (len > MAX_RW_COUNT - total_len) {
1820 			len = MAX_RW_COUNT - total_len;
1821 			iov[seg].iov_len = len;
1822 		}
1823 		total_len += len;
1824 	}
1825 
1826 	iov_iter_init(i, type, iov, nr_segs, total_len);
1827 	if (iov == *iovp)
1828 		*iovp = NULL;
1829 	else
1830 		*iovp = iov;
1831 	return total_len;
1832 }
1833 
1834 /**
1835  * import_iovec() - Copy an array of &struct iovec from userspace
1836  *     into the kernel, check that it is valid, and initialize a new
1837  *     &struct iov_iter iterator to access it.
1838  *
1839  * @type: One of %READ or %WRITE.
1840  * @uvec: Pointer to the userspace array.
1841  * @nr_segs: Number of elements in userspace array.
1842  * @fast_segs: Number of elements in @iov.
1843  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1844  *     on-stack) kernel array.
1845  * @i: Pointer to iterator that will be initialized on success.
1846  *
1847  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1848  * then this function places %NULL in *@iov on return. Otherwise, a new
1849  * array will be allocated and the result placed in *@iov. This means that
1850  * the caller may call kfree() on *@iov regardless of whether the small
1851  * on-stack array was used or not (and regardless of whether this function
1852  * returns an error or not).
1853  *
1854  * Return: Negative error code on error, bytes imported on success
1855  */
1856 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1857 		 unsigned nr_segs, unsigned fast_segs,
1858 		 struct iovec **iovp, struct iov_iter *i)
1859 {
1860 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1861 			      in_compat_syscall());
1862 }
1863 EXPORT_SYMBOL(import_iovec);
1864 
1865 int import_single_range(int rw, void __user *buf, size_t len,
1866 		 struct iovec *iov, struct iov_iter *i)
1867 {
1868 	if (len > MAX_RW_COUNT)
1869 		len = MAX_RW_COUNT;
1870 	if (unlikely(!access_ok(buf, len)))
1871 		return -EFAULT;
1872 
1873 	iov->iov_base = buf;
1874 	iov->iov_len = len;
1875 	iov_iter_init(i, rw, iov, 1, len);
1876 	return 0;
1877 }
1878 EXPORT_SYMBOL(import_single_range);
1879 
1880 /**
1881  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1882  *     iov_iter_save_state() was called.
1883  *
1884  * @i: &struct iov_iter to restore
1885  * @state: state to restore from
1886  *
1887  * Used after iov_iter_save_state() to bring restore @i, if operations may
1888  * have advanced it.
1889  *
1890  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1891  */
1892 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1893 {
1894 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1895 			 !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
1896 		return;
1897 	i->iov_offset = state->iov_offset;
1898 	i->count = state->count;
1899 	if (iter_is_ubuf(i))
1900 		return;
1901 	/*
1902 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1903 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1904 	 * need to track both of these, just one is enough and we can deduct
1905 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1906 	 * size, so we can just increment the iov pointer as they are unionzed.
1907 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1908 	 * not. Be safe and handle it separately.
1909 	 */
1910 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1911 	if (iov_iter_is_bvec(i))
1912 		i->bvec -= state->nr_segs - i->nr_segs;
1913 	else
1914 		i->iov -= state->nr_segs - i->nr_segs;
1915 	i->nr_segs = state->nr_segs;
1916 }
1917