xref: /openbmc/linux/lib/iov_iter.c (revision 4b7444ff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
21 	size_t __maybe_unused off = 0;				\
22 	len = n;						\
23 	base = __p + i->iov_offset;				\
24 	len -= (STEP);						\
25 	i->iov_offset += len;					\
26 	n = len;						\
27 }
28 
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
31 	size_t off = 0;						\
32 	size_t skip = i->iov_offset;				\
33 	do {							\
34 		len = min(n, __p->iov_len - skip);		\
35 		if (likely(len)) {				\
36 			base = __p->iov_base + skip;		\
37 			len -= (STEP);				\
38 			off += len;				\
39 			skip += len;				\
40 			n -= len;				\
41 			if (skip < __p->iov_len)		\
42 				break;				\
43 		}						\
44 		__p++;						\
45 		skip = 0;					\
46 	} while (n);						\
47 	i->iov_offset = skip;					\
48 	n = off;						\
49 }
50 
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
52 	size_t off = 0;						\
53 	unsigned skip = i->iov_offset;				\
54 	while (n) {						\
55 		unsigned offset = p->bv_offset + skip;		\
56 		unsigned left;					\
57 		void *kaddr = kmap_local_page(p->bv_page +	\
58 					offset / PAGE_SIZE);	\
59 		base = kaddr + offset % PAGE_SIZE;		\
60 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
61 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
62 		left = (STEP);					\
63 		kunmap_local(kaddr);				\
64 		len -= left;					\
65 		off += len;					\
66 		skip += len;					\
67 		if (skip == p->bv_len) {			\
68 			skip = 0;				\
69 			p++;					\
70 		}						\
71 		n -= len;					\
72 		if (left)					\
73 			break;					\
74 	}							\
75 	i->iov_offset = skip;					\
76 	n = off;						\
77 }
78 
79 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
80 	__label__ __out;					\
81 	size_t __off = 0;					\
82 	struct folio *folio;					\
83 	loff_t start = i->xarray_start + i->iov_offset;		\
84 	pgoff_t index = start / PAGE_SIZE;			\
85 	XA_STATE(xas, i->xarray, index);			\
86 								\
87 	len = PAGE_SIZE - offset_in_page(start);		\
88 	rcu_read_lock();					\
89 	xas_for_each(&xas, folio, ULONG_MAX) {			\
90 		unsigned left;					\
91 		size_t offset;					\
92 		if (xas_retry(&xas, folio))			\
93 			continue;				\
94 		if (WARN_ON(xa_is_value(folio)))		\
95 			break;					\
96 		if (WARN_ON(folio_test_hugetlb(folio)))		\
97 			break;					\
98 		offset = offset_in_folio(folio, start + __off);	\
99 		while (offset < folio_size(folio)) {		\
100 			base = kmap_local_folio(folio, offset);	\
101 			len = min(n, len);			\
102 			left = (STEP);				\
103 			kunmap_local(base);			\
104 			len -= left;				\
105 			__off += len;				\
106 			n -= len;				\
107 			if (left || n == 0)			\
108 				goto __out;			\
109 			offset += len;				\
110 			len = PAGE_SIZE;			\
111 		}						\
112 	}							\
113 __out:								\
114 	rcu_read_unlock();					\
115 	i->iov_offset += __off;					\
116 	n = __off;						\
117 }
118 
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
120 	if (unlikely(i->count < n))				\
121 		n = i->count;					\
122 	if (likely(n)) {					\
123 		if (likely(iter_is_ubuf(i))) {			\
124 			void __user *base;			\
125 			size_t len;				\
126 			iterate_buf(i, n, base, len, off,	\
127 						i->ubuf, (I)) 	\
128 		} else if (likely(iter_is_iovec(i))) {		\
129 			const struct iovec *iov = i->iov;	\
130 			void __user *base;			\
131 			size_t len;				\
132 			iterate_iovec(i, n, base, len, off,	\
133 						iov, (I))	\
134 			i->nr_segs -= iov - i->iov;		\
135 			i->iov = iov;				\
136 		} else if (iov_iter_is_bvec(i)) {		\
137 			const struct bio_vec *bvec = i->bvec;	\
138 			void *base;				\
139 			size_t len;				\
140 			iterate_bvec(i, n, base, len, off,	\
141 						bvec, (K))	\
142 			i->nr_segs -= bvec - i->bvec;		\
143 			i->bvec = bvec;				\
144 		} else if (iov_iter_is_kvec(i)) {		\
145 			const struct kvec *kvec = i->kvec;	\
146 			void *base;				\
147 			size_t len;				\
148 			iterate_iovec(i, n, base, len, off,	\
149 						kvec, (K))	\
150 			i->nr_segs -= kvec - i->kvec;		\
151 			i->kvec = kvec;				\
152 		} else if (iov_iter_is_xarray(i)) {		\
153 			void *base;				\
154 			size_t len;				\
155 			iterate_xarray(i, n, base, len, off,	\
156 							(K))	\
157 		}						\
158 		i->count -= n;					\
159 	}							\
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163 
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166 	if (should_fail_usercopy())
167 		return n;
168 	if (access_ok(to, n)) {
169 		instrument_copy_to_user(to, from, n);
170 		n = raw_copy_to_user(to, from, n);
171 	}
172 	return n;
173 }
174 
175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177 	if (should_fail_usercopy())
178 		return n;
179 	if (access_ok(from, n)) {
180 		instrument_copy_from_user(to, from, n);
181 		n = raw_copy_from_user(to, from, n);
182 	}
183 	return n;
184 }
185 
186 static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
187 					   unsigned int slot)
188 {
189 	return &pipe->bufs[slot & (pipe->ring_size - 1)];
190 }
191 
192 #ifdef PIPE_PARANOIA
193 static bool sanity(const struct iov_iter *i)
194 {
195 	struct pipe_inode_info *pipe = i->pipe;
196 	unsigned int p_head = pipe->head;
197 	unsigned int p_tail = pipe->tail;
198 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
199 	unsigned int i_head = i->head;
200 	unsigned int idx;
201 
202 	if (i->last_offset) {
203 		struct pipe_buffer *p;
204 		if (unlikely(p_occupancy == 0))
205 			goto Bad;	// pipe must be non-empty
206 		if (unlikely(i_head != p_head - 1))
207 			goto Bad;	// must be at the last buffer...
208 
209 		p = pipe_buf(pipe, i_head);
210 		if (unlikely(p->offset + p->len != abs(i->last_offset)))
211 			goto Bad;	// ... at the end of segment
212 	} else {
213 		if (i_head != p_head)
214 			goto Bad;	// must be right after the last buffer
215 	}
216 	return true;
217 Bad:
218 	printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
219 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
220 			p_head, p_tail, pipe->ring_size);
221 	for (idx = 0; idx < pipe->ring_size; idx++)
222 		printk(KERN_ERR "[%p %p %d %d]\n",
223 			pipe->bufs[idx].ops,
224 			pipe->bufs[idx].page,
225 			pipe->bufs[idx].offset,
226 			pipe->bufs[idx].len);
227 	WARN_ON(1);
228 	return false;
229 }
230 #else
231 #define sanity(i) true
232 #endif
233 
234 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
235 {
236 	struct page *page = alloc_page(GFP_USER);
237 	if (page) {
238 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
239 		*buf = (struct pipe_buffer) {
240 			.ops = &default_pipe_buf_ops,
241 			.page = page,
242 			.offset = 0,
243 			.len = size
244 		};
245 	}
246 	return page;
247 }
248 
249 static void push_page(struct pipe_inode_info *pipe, struct page *page,
250 			unsigned int offset, unsigned int size)
251 {
252 	struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
253 	*buf = (struct pipe_buffer) {
254 		.ops = &page_cache_pipe_buf_ops,
255 		.page = page,
256 		.offset = offset,
257 		.len = size
258 	};
259 	get_page(page);
260 }
261 
262 static inline int last_offset(const struct pipe_buffer *buf)
263 {
264 	if (buf->ops == &default_pipe_buf_ops)
265 		return buf->len;	// buf->offset is 0 for those
266 	else
267 		return -(buf->offset + buf->len);
268 }
269 
270 static struct page *append_pipe(struct iov_iter *i, size_t size,
271 				unsigned int *off)
272 {
273 	struct pipe_inode_info *pipe = i->pipe;
274 	int offset = i->last_offset;
275 	struct pipe_buffer *buf;
276 	struct page *page;
277 
278 	if (offset > 0 && offset < PAGE_SIZE) {
279 		// some space in the last buffer; add to it
280 		buf = pipe_buf(pipe, pipe->head - 1);
281 		size = min_t(size_t, size, PAGE_SIZE - offset);
282 		buf->len += size;
283 		i->last_offset += size;
284 		i->count -= size;
285 		*off = offset;
286 		return buf->page;
287 	}
288 	// OK, we need a new buffer
289 	*off = 0;
290 	size = min_t(size_t, size, PAGE_SIZE);
291 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
292 		return NULL;
293 	page = push_anon(pipe, size);
294 	if (!page)
295 		return NULL;
296 	i->head = pipe->head - 1;
297 	i->last_offset = size;
298 	i->count -= size;
299 	return page;
300 }
301 
302 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
303 			 struct iov_iter *i)
304 {
305 	struct pipe_inode_info *pipe = i->pipe;
306 	unsigned int head = pipe->head;
307 
308 	if (unlikely(bytes > i->count))
309 		bytes = i->count;
310 
311 	if (unlikely(!bytes))
312 		return 0;
313 
314 	if (!sanity(i))
315 		return 0;
316 
317 	if (offset && i->last_offset == -offset) { // could we merge it?
318 		struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
319 		if (buf->page == page) {
320 			buf->len += bytes;
321 			i->last_offset -= bytes;
322 			i->count -= bytes;
323 			return bytes;
324 		}
325 	}
326 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
327 		return 0;
328 
329 	push_page(pipe, page, offset, bytes);
330 	i->last_offset = -(offset + bytes);
331 	i->head = head;
332 	i->count -= bytes;
333 	return bytes;
334 }
335 
336 /*
337  * fault_in_iov_iter_readable - fault in iov iterator for reading
338  * @i: iterator
339  * @size: maximum length
340  *
341  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
342  * @size.  For each iovec, fault in each page that constitutes the iovec.
343  *
344  * Returns the number of bytes not faulted in (like copy_to_user() and
345  * copy_from_user()).
346  *
347  * Always returns 0 for non-userspace iterators.
348  */
349 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
350 {
351 	if (iter_is_ubuf(i)) {
352 		size_t n = min(size, iov_iter_count(i));
353 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
354 		return size - n;
355 	} else if (iter_is_iovec(i)) {
356 		size_t count = min(size, iov_iter_count(i));
357 		const struct iovec *p;
358 		size_t skip;
359 
360 		size -= count;
361 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
362 			size_t len = min(count, p->iov_len - skip);
363 			size_t ret;
364 
365 			if (unlikely(!len))
366 				continue;
367 			ret = fault_in_readable(p->iov_base + skip, len);
368 			count -= len - ret;
369 			if (ret)
370 				break;
371 		}
372 		return count + size;
373 	}
374 	return 0;
375 }
376 EXPORT_SYMBOL(fault_in_iov_iter_readable);
377 
378 /*
379  * fault_in_iov_iter_writeable - fault in iov iterator for writing
380  * @i: iterator
381  * @size: maximum length
382  *
383  * Faults in the iterator using get_user_pages(), i.e., without triggering
384  * hardware page faults.  This is primarily useful when we already know that
385  * some or all of the pages in @i aren't in memory.
386  *
387  * Returns the number of bytes not faulted in, like copy_to_user() and
388  * copy_from_user().
389  *
390  * Always returns 0 for non-user-space iterators.
391  */
392 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
393 {
394 	if (iter_is_ubuf(i)) {
395 		size_t n = min(size, iov_iter_count(i));
396 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
397 		return size - n;
398 	} else if (iter_is_iovec(i)) {
399 		size_t count = min(size, iov_iter_count(i));
400 		const struct iovec *p;
401 		size_t skip;
402 
403 		size -= count;
404 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
405 			size_t len = min(count, p->iov_len - skip);
406 			size_t ret;
407 
408 			if (unlikely(!len))
409 				continue;
410 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
411 			count -= len - ret;
412 			if (ret)
413 				break;
414 		}
415 		return count + size;
416 	}
417 	return 0;
418 }
419 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
420 
421 void iov_iter_init(struct iov_iter *i, unsigned int direction,
422 			const struct iovec *iov, unsigned long nr_segs,
423 			size_t count)
424 {
425 	WARN_ON(direction & ~(READ | WRITE));
426 	*i = (struct iov_iter) {
427 		.iter_type = ITER_IOVEC,
428 		.nofault = false,
429 		.user_backed = true,
430 		.data_source = direction,
431 		.iov = iov,
432 		.nr_segs = nr_segs,
433 		.iov_offset = 0,
434 		.count = count
435 	};
436 }
437 EXPORT_SYMBOL(iov_iter_init);
438 
439 // returns the offset in partial buffer (if any)
440 static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
441 {
442 	struct pipe_inode_info *pipe = i->pipe;
443 	int used = pipe->head - pipe->tail;
444 	int off = i->last_offset;
445 
446 	*npages = max((int)pipe->max_usage - used, 0);
447 
448 	if (off > 0 && off < PAGE_SIZE) { // anon and not full
449 		(*npages)++;
450 		return off;
451 	}
452 	return 0;
453 }
454 
455 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
456 				struct iov_iter *i)
457 {
458 	unsigned int off, chunk;
459 
460 	if (unlikely(bytes > i->count))
461 		bytes = i->count;
462 	if (unlikely(!bytes))
463 		return 0;
464 
465 	if (!sanity(i))
466 		return 0;
467 
468 	for (size_t n = bytes; n; n -= chunk) {
469 		struct page *page = append_pipe(i, n, &off);
470 		chunk = min_t(size_t, n, PAGE_SIZE - off);
471 		if (!page)
472 			return bytes - n;
473 		memcpy_to_page(page, off, addr, chunk);
474 		addr += chunk;
475 	}
476 	return bytes;
477 }
478 
479 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
480 			      __wsum sum, size_t off)
481 {
482 	__wsum next = csum_partial_copy_nocheck(from, to, len);
483 	return csum_block_add(sum, next, off);
484 }
485 
486 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
487 					 struct iov_iter *i, __wsum *sump)
488 {
489 	__wsum sum = *sump;
490 	size_t off = 0;
491 	unsigned int chunk, r;
492 
493 	if (unlikely(bytes > i->count))
494 		bytes = i->count;
495 	if (unlikely(!bytes))
496 		return 0;
497 
498 	if (!sanity(i))
499 		return 0;
500 
501 	while (bytes) {
502 		struct page *page = append_pipe(i, bytes, &r);
503 		char *p;
504 
505 		if (!page)
506 			break;
507 		chunk = min_t(size_t, bytes, PAGE_SIZE - r);
508 		p = kmap_local_page(page);
509 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
510 		kunmap_local(p);
511 		off += chunk;
512 		bytes -= chunk;
513 	}
514 	*sump = sum;
515 	return off;
516 }
517 
518 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
519 {
520 	if (unlikely(iov_iter_is_pipe(i)))
521 		return copy_pipe_to_iter(addr, bytes, i);
522 	if (user_backed_iter(i))
523 		might_fault();
524 	iterate_and_advance(i, bytes, base, len, off,
525 		copyout(base, addr + off, len),
526 		memcpy(base, addr + off, len)
527 	)
528 
529 	return bytes;
530 }
531 EXPORT_SYMBOL(_copy_to_iter);
532 
533 #ifdef CONFIG_ARCH_HAS_COPY_MC
534 static int copyout_mc(void __user *to, const void *from, size_t n)
535 {
536 	if (access_ok(to, n)) {
537 		instrument_copy_to_user(to, from, n);
538 		n = copy_mc_to_user((__force void *) to, from, n);
539 	}
540 	return n;
541 }
542 
543 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
544 				struct iov_iter *i)
545 {
546 	size_t xfer = 0;
547 	unsigned int off, chunk;
548 
549 	if (unlikely(bytes > i->count))
550 		bytes = i->count;
551 	if (unlikely(!bytes))
552 		return 0;
553 
554 	if (!sanity(i))
555 		return 0;
556 
557 	while (bytes) {
558 		struct page *page = append_pipe(i, bytes, &off);
559 		unsigned long rem;
560 		char *p;
561 
562 		if (!page)
563 			break;
564 		chunk = min_t(size_t, bytes, PAGE_SIZE - off);
565 		p = kmap_local_page(page);
566 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
567 		chunk -= rem;
568 		kunmap_local(p);
569 		xfer += chunk;
570 		bytes -= chunk;
571 		if (rem) {
572 			iov_iter_revert(i, rem);
573 			break;
574 		}
575 	}
576 	return xfer;
577 }
578 
579 /**
580  * _copy_mc_to_iter - copy to iter with source memory error exception handling
581  * @addr: source kernel address
582  * @bytes: total transfer length
583  * @i: destination iterator
584  *
585  * The pmem driver deploys this for the dax operation
586  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
587  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
588  * successfully copied.
589  *
590  * The main differences between this and typical _copy_to_iter().
591  *
592  * * Typical tail/residue handling after a fault retries the copy
593  *   byte-by-byte until the fault happens again. Re-triggering machine
594  *   checks is potentially fatal so the implementation uses source
595  *   alignment and poison alignment assumptions to avoid re-triggering
596  *   hardware exceptions.
597  *
598  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
599  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
600  *   a short copy.
601  *
602  * Return: number of bytes copied (may be %0)
603  */
604 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
605 {
606 	if (unlikely(iov_iter_is_pipe(i)))
607 		return copy_mc_pipe_to_iter(addr, bytes, i);
608 	if (user_backed_iter(i))
609 		might_fault();
610 	__iterate_and_advance(i, bytes, base, len, off,
611 		copyout_mc(base, addr + off, len),
612 		copy_mc_to_kernel(base, addr + off, len)
613 	)
614 
615 	return bytes;
616 }
617 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
618 #endif /* CONFIG_ARCH_HAS_COPY_MC */
619 
620 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
621 {
622 	if (unlikely(iov_iter_is_pipe(i))) {
623 		WARN_ON(1);
624 		return 0;
625 	}
626 	if (user_backed_iter(i))
627 		might_fault();
628 	iterate_and_advance(i, bytes, base, len, off,
629 		copyin(addr + off, base, len),
630 		memcpy(addr + off, base, len)
631 	)
632 
633 	return bytes;
634 }
635 EXPORT_SYMBOL(_copy_from_iter);
636 
637 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
638 {
639 	if (unlikely(iov_iter_is_pipe(i))) {
640 		WARN_ON(1);
641 		return 0;
642 	}
643 	iterate_and_advance(i, bytes, base, len, off,
644 		__copy_from_user_inatomic_nocache(addr + off, base, len),
645 		memcpy(addr + off, base, len)
646 	)
647 
648 	return bytes;
649 }
650 EXPORT_SYMBOL(_copy_from_iter_nocache);
651 
652 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
653 /**
654  * _copy_from_iter_flushcache - write destination through cpu cache
655  * @addr: destination kernel address
656  * @bytes: total transfer length
657  * @i: source iterator
658  *
659  * The pmem driver arranges for filesystem-dax to use this facility via
660  * dax_copy_from_iter() for ensuring that writes to persistent memory
661  * are flushed through the CPU cache. It is differentiated from
662  * _copy_from_iter_nocache() in that guarantees all data is flushed for
663  * all iterator types. The _copy_from_iter_nocache() only attempts to
664  * bypass the cache for the ITER_IOVEC case, and on some archs may use
665  * instructions that strand dirty-data in the cache.
666  *
667  * Return: number of bytes copied (may be %0)
668  */
669 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
670 {
671 	if (unlikely(iov_iter_is_pipe(i))) {
672 		WARN_ON(1);
673 		return 0;
674 	}
675 	iterate_and_advance(i, bytes, base, len, off,
676 		__copy_from_user_flushcache(addr + off, base, len),
677 		memcpy_flushcache(addr + off, base, len)
678 	)
679 
680 	return bytes;
681 }
682 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
683 #endif
684 
685 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
686 {
687 	struct page *head;
688 	size_t v = n + offset;
689 
690 	/*
691 	 * The general case needs to access the page order in order
692 	 * to compute the page size.
693 	 * However, we mostly deal with order-0 pages and thus can
694 	 * avoid a possible cache line miss for requests that fit all
695 	 * page orders.
696 	 */
697 	if (n <= v && v <= PAGE_SIZE)
698 		return true;
699 
700 	head = compound_head(page);
701 	v += (page - head) << PAGE_SHIFT;
702 
703 	if (likely(n <= v && v <= (page_size(head))))
704 		return true;
705 	WARN_ON(1);
706 	return false;
707 }
708 
709 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
710 			 struct iov_iter *i)
711 {
712 	size_t res = 0;
713 	if (unlikely(!page_copy_sane(page, offset, bytes)))
714 		return 0;
715 	if (unlikely(iov_iter_is_pipe(i)))
716 		return copy_page_to_iter_pipe(page, offset, bytes, i);
717 	page += offset / PAGE_SIZE; // first subpage
718 	offset %= PAGE_SIZE;
719 	while (1) {
720 		void *kaddr = kmap_local_page(page);
721 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
722 		n = _copy_to_iter(kaddr + offset, n, i);
723 		kunmap_local(kaddr);
724 		res += n;
725 		bytes -= n;
726 		if (!bytes || !n)
727 			break;
728 		offset += n;
729 		if (offset == PAGE_SIZE) {
730 			page++;
731 			offset = 0;
732 		}
733 	}
734 	return res;
735 }
736 EXPORT_SYMBOL(copy_page_to_iter);
737 
738 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
739 			 struct iov_iter *i)
740 {
741 	size_t res = 0;
742 	if (!page_copy_sane(page, offset, bytes))
743 		return 0;
744 	page += offset / PAGE_SIZE; // first subpage
745 	offset %= PAGE_SIZE;
746 	while (1) {
747 		void *kaddr = kmap_local_page(page);
748 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
749 		n = _copy_from_iter(kaddr + offset, n, i);
750 		kunmap_local(kaddr);
751 		res += n;
752 		bytes -= n;
753 		if (!bytes || !n)
754 			break;
755 		offset += n;
756 		if (offset == PAGE_SIZE) {
757 			page++;
758 			offset = 0;
759 		}
760 	}
761 	return res;
762 }
763 EXPORT_SYMBOL(copy_page_from_iter);
764 
765 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
766 {
767 	unsigned int chunk, off;
768 
769 	if (unlikely(bytes > i->count))
770 		bytes = i->count;
771 	if (unlikely(!bytes))
772 		return 0;
773 
774 	if (!sanity(i))
775 		return 0;
776 
777 	for (size_t n = bytes; n; n -= chunk) {
778 		struct page *page = append_pipe(i, n, &off);
779 		char *p;
780 
781 		if (!page)
782 			return bytes - n;
783 		chunk = min_t(size_t, n, PAGE_SIZE - off);
784 		p = kmap_local_page(page);
785 		memset(p + off, 0, chunk);
786 		kunmap_local(p);
787 	}
788 	return bytes;
789 }
790 
791 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
792 {
793 	if (unlikely(iov_iter_is_pipe(i)))
794 		return pipe_zero(bytes, i);
795 	iterate_and_advance(i, bytes, base, len, count,
796 		clear_user(base, len),
797 		memset(base, 0, len)
798 	)
799 
800 	return bytes;
801 }
802 EXPORT_SYMBOL(iov_iter_zero);
803 
804 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
805 				  struct iov_iter *i)
806 {
807 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
808 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
809 		kunmap_atomic(kaddr);
810 		return 0;
811 	}
812 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
813 		kunmap_atomic(kaddr);
814 		WARN_ON(1);
815 		return 0;
816 	}
817 	iterate_and_advance(i, bytes, base, len, off,
818 		copyin(p + off, base, len),
819 		memcpy(p + off, base, len)
820 	)
821 	kunmap_atomic(kaddr);
822 	return bytes;
823 }
824 EXPORT_SYMBOL(copy_page_from_iter_atomic);
825 
826 static void pipe_advance(struct iov_iter *i, size_t size)
827 {
828 	struct pipe_inode_info *pipe = i->pipe;
829 	int off = i->last_offset;
830 
831 	if (!off && !size) {
832 		pipe_discard_from(pipe, i->start_head); // discard everything
833 		return;
834 	}
835 	i->count -= size;
836 	while (1) {
837 		struct pipe_buffer *buf = pipe_buf(pipe, i->head);
838 		if (off) /* make it relative to the beginning of buffer */
839 			size += abs(off) - buf->offset;
840 		if (size <= buf->len) {
841 			buf->len = size;
842 			i->last_offset = last_offset(buf);
843 			break;
844 		}
845 		size -= buf->len;
846 		i->head++;
847 		off = 0;
848 	}
849 	pipe_discard_from(pipe, i->head + 1); // discard everything past this one
850 }
851 
852 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
853 {
854 	const struct bio_vec *bvec, *end;
855 
856 	if (!i->count)
857 		return;
858 	i->count -= size;
859 
860 	size += i->iov_offset;
861 
862 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
863 		if (likely(size < bvec->bv_len))
864 			break;
865 		size -= bvec->bv_len;
866 	}
867 	i->iov_offset = size;
868 	i->nr_segs -= bvec - i->bvec;
869 	i->bvec = bvec;
870 }
871 
872 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
873 {
874 	const struct iovec *iov, *end;
875 
876 	if (!i->count)
877 		return;
878 	i->count -= size;
879 
880 	size += i->iov_offset; // from beginning of current segment
881 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
882 		if (likely(size < iov->iov_len))
883 			break;
884 		size -= iov->iov_len;
885 	}
886 	i->iov_offset = size;
887 	i->nr_segs -= iov - i->iov;
888 	i->iov = iov;
889 }
890 
891 void iov_iter_advance(struct iov_iter *i, size_t size)
892 {
893 	if (unlikely(i->count < size))
894 		size = i->count;
895 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
896 		i->iov_offset += size;
897 		i->count -= size;
898 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
899 		/* iovec and kvec have identical layouts */
900 		iov_iter_iovec_advance(i, size);
901 	} else if (iov_iter_is_bvec(i)) {
902 		iov_iter_bvec_advance(i, size);
903 	} else if (iov_iter_is_pipe(i)) {
904 		pipe_advance(i, size);
905 	} else if (iov_iter_is_discard(i)) {
906 		i->count -= size;
907 	}
908 }
909 EXPORT_SYMBOL(iov_iter_advance);
910 
911 void iov_iter_revert(struct iov_iter *i, size_t unroll)
912 {
913 	if (!unroll)
914 		return;
915 	if (WARN_ON(unroll > MAX_RW_COUNT))
916 		return;
917 	i->count += unroll;
918 	if (unlikely(iov_iter_is_pipe(i))) {
919 		struct pipe_inode_info *pipe = i->pipe;
920 		unsigned int head = pipe->head;
921 
922 		while (head > i->start_head) {
923 			struct pipe_buffer *b = pipe_buf(pipe, --head);
924 			if (unroll < b->len) {
925 				b->len -= unroll;
926 				i->last_offset = last_offset(b);
927 				i->head = head;
928 				return;
929 			}
930 			unroll -= b->len;
931 			pipe_buf_release(pipe, b);
932 			pipe->head--;
933 		}
934 		i->last_offset = 0;
935 		i->head = head;
936 		return;
937 	}
938 	if (unlikely(iov_iter_is_discard(i)))
939 		return;
940 	if (unroll <= i->iov_offset) {
941 		i->iov_offset -= unroll;
942 		return;
943 	}
944 	unroll -= i->iov_offset;
945 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
946 		BUG(); /* We should never go beyond the start of the specified
947 			* range since we might then be straying into pages that
948 			* aren't pinned.
949 			*/
950 	} else if (iov_iter_is_bvec(i)) {
951 		const struct bio_vec *bvec = i->bvec;
952 		while (1) {
953 			size_t n = (--bvec)->bv_len;
954 			i->nr_segs++;
955 			if (unroll <= n) {
956 				i->bvec = bvec;
957 				i->iov_offset = n - unroll;
958 				return;
959 			}
960 			unroll -= n;
961 		}
962 	} else { /* same logics for iovec and kvec */
963 		const struct iovec *iov = i->iov;
964 		while (1) {
965 			size_t n = (--iov)->iov_len;
966 			i->nr_segs++;
967 			if (unroll <= n) {
968 				i->iov = iov;
969 				i->iov_offset = n - unroll;
970 				return;
971 			}
972 			unroll -= n;
973 		}
974 	}
975 }
976 EXPORT_SYMBOL(iov_iter_revert);
977 
978 /*
979  * Return the count of just the current iov_iter segment.
980  */
981 size_t iov_iter_single_seg_count(const struct iov_iter *i)
982 {
983 	if (i->nr_segs > 1) {
984 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
985 			return min(i->count, i->iov->iov_len - i->iov_offset);
986 		if (iov_iter_is_bvec(i))
987 			return min(i->count, i->bvec->bv_len - i->iov_offset);
988 	}
989 	return i->count;
990 }
991 EXPORT_SYMBOL(iov_iter_single_seg_count);
992 
993 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
994 			const struct kvec *kvec, unsigned long nr_segs,
995 			size_t count)
996 {
997 	WARN_ON(direction & ~(READ | WRITE));
998 	*i = (struct iov_iter){
999 		.iter_type = ITER_KVEC,
1000 		.data_source = direction,
1001 		.kvec = kvec,
1002 		.nr_segs = nr_segs,
1003 		.iov_offset = 0,
1004 		.count = count
1005 	};
1006 }
1007 EXPORT_SYMBOL(iov_iter_kvec);
1008 
1009 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1010 			const struct bio_vec *bvec, unsigned long nr_segs,
1011 			size_t count)
1012 {
1013 	WARN_ON(direction & ~(READ | WRITE));
1014 	*i = (struct iov_iter){
1015 		.iter_type = ITER_BVEC,
1016 		.data_source = direction,
1017 		.bvec = bvec,
1018 		.nr_segs = nr_segs,
1019 		.iov_offset = 0,
1020 		.count = count
1021 	};
1022 }
1023 EXPORT_SYMBOL(iov_iter_bvec);
1024 
1025 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1026 			struct pipe_inode_info *pipe,
1027 			size_t count)
1028 {
1029 	BUG_ON(direction != READ);
1030 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1031 	*i = (struct iov_iter){
1032 		.iter_type = ITER_PIPE,
1033 		.data_source = false,
1034 		.pipe = pipe,
1035 		.head = pipe->head,
1036 		.start_head = pipe->head,
1037 		.last_offset = 0,
1038 		.count = count
1039 	};
1040 }
1041 EXPORT_SYMBOL(iov_iter_pipe);
1042 
1043 /**
1044  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1045  * @i: The iterator to initialise.
1046  * @direction: The direction of the transfer.
1047  * @xarray: The xarray to access.
1048  * @start: The start file position.
1049  * @count: The size of the I/O buffer in bytes.
1050  *
1051  * Set up an I/O iterator to either draw data out of the pages attached to an
1052  * inode or to inject data into those pages.  The pages *must* be prevented
1053  * from evaporation, either by taking a ref on them or locking them by the
1054  * caller.
1055  */
1056 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1057 		     struct xarray *xarray, loff_t start, size_t count)
1058 {
1059 	BUG_ON(direction & ~1);
1060 	*i = (struct iov_iter) {
1061 		.iter_type = ITER_XARRAY,
1062 		.data_source = direction,
1063 		.xarray = xarray,
1064 		.xarray_start = start,
1065 		.count = count,
1066 		.iov_offset = 0
1067 	};
1068 }
1069 EXPORT_SYMBOL(iov_iter_xarray);
1070 
1071 /**
1072  * iov_iter_discard - Initialise an I/O iterator that discards data
1073  * @i: The iterator to initialise.
1074  * @direction: The direction of the transfer.
1075  * @count: The size of the I/O buffer in bytes.
1076  *
1077  * Set up an I/O iterator that just discards everything that's written to it.
1078  * It's only available as a READ iterator.
1079  */
1080 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1081 {
1082 	BUG_ON(direction != READ);
1083 	*i = (struct iov_iter){
1084 		.iter_type = ITER_DISCARD,
1085 		.data_source = false,
1086 		.count = count,
1087 		.iov_offset = 0
1088 	};
1089 }
1090 EXPORT_SYMBOL(iov_iter_discard);
1091 
1092 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1093 				   unsigned len_mask)
1094 {
1095 	size_t size = i->count;
1096 	size_t skip = i->iov_offset;
1097 	unsigned k;
1098 
1099 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1100 		size_t len = i->iov[k].iov_len - skip;
1101 
1102 		if (len > size)
1103 			len = size;
1104 		if (len & len_mask)
1105 			return false;
1106 		if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1107 			return false;
1108 
1109 		size -= len;
1110 		if (!size)
1111 			break;
1112 	}
1113 	return true;
1114 }
1115 
1116 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1117 				  unsigned len_mask)
1118 {
1119 	size_t size = i->count;
1120 	unsigned skip = i->iov_offset;
1121 	unsigned k;
1122 
1123 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1124 		size_t len = i->bvec[k].bv_len - skip;
1125 
1126 		if (len > size)
1127 			len = size;
1128 		if (len & len_mask)
1129 			return false;
1130 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1131 			return false;
1132 
1133 		size -= len;
1134 		if (!size)
1135 			break;
1136 	}
1137 	return true;
1138 }
1139 
1140 /**
1141  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1142  * 	are aligned to the parameters.
1143  *
1144  * @i: &struct iov_iter to restore
1145  * @addr_mask: bit mask to check against the iov element's addresses
1146  * @len_mask: bit mask to check against the iov element's lengths
1147  *
1148  * Return: false if any addresses or lengths intersect with the provided masks
1149  */
1150 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1151 			 unsigned len_mask)
1152 {
1153 	if (likely(iter_is_ubuf(i))) {
1154 		if (i->count & len_mask)
1155 			return false;
1156 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1157 			return false;
1158 		return true;
1159 	}
1160 
1161 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1162 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1163 
1164 	if (iov_iter_is_bvec(i))
1165 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1166 
1167 	if (iov_iter_is_pipe(i)) {
1168 		size_t size = i->count;
1169 
1170 		if (size & len_mask)
1171 			return false;
1172 		if (size && i->last_offset > 0) {
1173 			if (i->last_offset & addr_mask)
1174 				return false;
1175 		}
1176 
1177 		return true;
1178 	}
1179 
1180 	if (iov_iter_is_xarray(i)) {
1181 		if (i->count & len_mask)
1182 			return false;
1183 		if ((i->xarray_start + i->iov_offset) & addr_mask)
1184 			return false;
1185 	}
1186 
1187 	return true;
1188 }
1189 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1190 
1191 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1192 {
1193 	unsigned long res = 0;
1194 	size_t size = i->count;
1195 	size_t skip = i->iov_offset;
1196 	unsigned k;
1197 
1198 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1199 		size_t len = i->iov[k].iov_len - skip;
1200 		if (len) {
1201 			res |= (unsigned long)i->iov[k].iov_base + skip;
1202 			if (len > size)
1203 				len = size;
1204 			res |= len;
1205 			size -= len;
1206 			if (!size)
1207 				break;
1208 		}
1209 	}
1210 	return res;
1211 }
1212 
1213 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1214 {
1215 	unsigned res = 0;
1216 	size_t size = i->count;
1217 	unsigned skip = i->iov_offset;
1218 	unsigned k;
1219 
1220 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1221 		size_t len = i->bvec[k].bv_len - skip;
1222 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1223 		if (len > size)
1224 			len = size;
1225 		res |= len;
1226 		size -= len;
1227 		if (!size)
1228 			break;
1229 	}
1230 	return res;
1231 }
1232 
1233 unsigned long iov_iter_alignment(const struct iov_iter *i)
1234 {
1235 	if (likely(iter_is_ubuf(i))) {
1236 		size_t size = i->count;
1237 		if (size)
1238 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
1239 		return 0;
1240 	}
1241 
1242 	/* iovec and kvec have identical layouts */
1243 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1244 		return iov_iter_alignment_iovec(i);
1245 
1246 	if (iov_iter_is_bvec(i))
1247 		return iov_iter_alignment_bvec(i);
1248 
1249 	if (iov_iter_is_pipe(i)) {
1250 		size_t size = i->count;
1251 
1252 		if (size && i->last_offset > 0)
1253 			return size | i->last_offset;
1254 		return size;
1255 	}
1256 
1257 	if (iov_iter_is_xarray(i))
1258 		return (i->xarray_start + i->iov_offset) | i->count;
1259 
1260 	return 0;
1261 }
1262 EXPORT_SYMBOL(iov_iter_alignment);
1263 
1264 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1265 {
1266 	unsigned long res = 0;
1267 	unsigned long v = 0;
1268 	size_t size = i->count;
1269 	unsigned k;
1270 
1271 	if (iter_is_ubuf(i))
1272 		return 0;
1273 
1274 	if (WARN_ON(!iter_is_iovec(i)))
1275 		return ~0U;
1276 
1277 	for (k = 0; k < i->nr_segs; k++) {
1278 		if (i->iov[k].iov_len) {
1279 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1280 			if (v) // if not the first one
1281 				res |= base | v; // this start | previous end
1282 			v = base + i->iov[k].iov_len;
1283 			if (size <= i->iov[k].iov_len)
1284 				break;
1285 			size -= i->iov[k].iov_len;
1286 		}
1287 	}
1288 	return res;
1289 }
1290 EXPORT_SYMBOL(iov_iter_gap_alignment);
1291 
1292 static int want_pages_array(struct page ***res, size_t size,
1293 			    size_t start, unsigned int maxpages)
1294 {
1295 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
1296 
1297 	if (count > maxpages)
1298 		count = maxpages;
1299 	WARN_ON(!count);	// caller should've prevented that
1300 	if (!*res) {
1301 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1302 		if (!*res)
1303 			return 0;
1304 	}
1305 	return count;
1306 }
1307 
1308 static ssize_t pipe_get_pages(struct iov_iter *i,
1309 		   struct page ***pages, size_t maxsize, unsigned maxpages,
1310 		   size_t *start)
1311 {
1312 	unsigned int npages, count, off, chunk;
1313 	struct page **p;
1314 	size_t left;
1315 
1316 	if (!sanity(i))
1317 		return -EFAULT;
1318 
1319 	*start = off = pipe_npages(i, &npages);
1320 	if (!npages)
1321 		return -EFAULT;
1322 	count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
1323 	if (!count)
1324 		return -ENOMEM;
1325 	p = *pages;
1326 	for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
1327 		struct page *page = append_pipe(i, left, &off);
1328 		if (!page)
1329 			break;
1330 		chunk = min_t(size_t, left, PAGE_SIZE - off);
1331 		get_page(*p++ = page);
1332 	}
1333 	if (!npages)
1334 		return -EFAULT;
1335 	return maxsize - left;
1336 }
1337 
1338 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1339 					  pgoff_t index, unsigned int nr_pages)
1340 {
1341 	XA_STATE(xas, xa, index);
1342 	struct page *page;
1343 	unsigned int ret = 0;
1344 
1345 	rcu_read_lock();
1346 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1347 		if (xas_retry(&xas, page))
1348 			continue;
1349 
1350 		/* Has the page moved or been split? */
1351 		if (unlikely(page != xas_reload(&xas))) {
1352 			xas_reset(&xas);
1353 			continue;
1354 		}
1355 
1356 		pages[ret] = find_subpage(page, xas.xa_index);
1357 		get_page(pages[ret]);
1358 		if (++ret == nr_pages)
1359 			break;
1360 	}
1361 	rcu_read_unlock();
1362 	return ret;
1363 }
1364 
1365 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1366 				     struct page ***pages, size_t maxsize,
1367 				     unsigned maxpages, size_t *_start_offset)
1368 {
1369 	unsigned nr, offset, count;
1370 	pgoff_t index;
1371 	loff_t pos;
1372 
1373 	pos = i->xarray_start + i->iov_offset;
1374 	index = pos >> PAGE_SHIFT;
1375 	offset = pos & ~PAGE_MASK;
1376 	*_start_offset = offset;
1377 
1378 	count = want_pages_array(pages, maxsize, offset, maxpages);
1379 	if (!count)
1380 		return -ENOMEM;
1381 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1382 	if (nr == 0)
1383 		return 0;
1384 
1385 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1386 	i->iov_offset += maxsize;
1387 	i->count -= maxsize;
1388 	return maxsize;
1389 }
1390 
1391 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1392 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1393 {
1394 	size_t skip;
1395 	long k;
1396 
1397 	if (iter_is_ubuf(i))
1398 		return (unsigned long)i->ubuf + i->iov_offset;
1399 
1400 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1401 		size_t len = i->iov[k].iov_len - skip;
1402 
1403 		if (unlikely(!len))
1404 			continue;
1405 		if (*size > len)
1406 			*size = len;
1407 		return (unsigned long)i->iov[k].iov_base + skip;
1408 	}
1409 	BUG(); // if it had been empty, we wouldn't get called
1410 }
1411 
1412 /* must be done on non-empty ITER_BVEC one */
1413 static struct page *first_bvec_segment(const struct iov_iter *i,
1414 				       size_t *size, size_t *start)
1415 {
1416 	struct page *page;
1417 	size_t skip = i->iov_offset, len;
1418 
1419 	len = i->bvec->bv_len - skip;
1420 	if (*size > len)
1421 		*size = len;
1422 	skip += i->bvec->bv_offset;
1423 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1424 	*start = skip % PAGE_SIZE;
1425 	return page;
1426 }
1427 
1428 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1429 		   struct page ***pages, size_t maxsize,
1430 		   unsigned int maxpages, size_t *start)
1431 {
1432 	unsigned int n;
1433 
1434 	if (maxsize > i->count)
1435 		maxsize = i->count;
1436 	if (!maxsize)
1437 		return 0;
1438 	if (maxsize > MAX_RW_COUNT)
1439 		maxsize = MAX_RW_COUNT;
1440 
1441 	if (likely(user_backed_iter(i))) {
1442 		unsigned int gup_flags = 0;
1443 		unsigned long addr;
1444 		int res;
1445 
1446 		if (iov_iter_rw(i) != WRITE)
1447 			gup_flags |= FOLL_WRITE;
1448 		if (i->nofault)
1449 			gup_flags |= FOLL_NOFAULT;
1450 
1451 		addr = first_iovec_segment(i, &maxsize);
1452 		*start = addr % PAGE_SIZE;
1453 		addr &= PAGE_MASK;
1454 		n = want_pages_array(pages, maxsize, *start, maxpages);
1455 		if (!n)
1456 			return -ENOMEM;
1457 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1458 		if (unlikely(res <= 0))
1459 			return res;
1460 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1461 		iov_iter_advance(i, maxsize);
1462 		return maxsize;
1463 	}
1464 	if (iov_iter_is_bvec(i)) {
1465 		struct page **p;
1466 		struct page *page;
1467 
1468 		page = first_bvec_segment(i, &maxsize, start);
1469 		n = want_pages_array(pages, maxsize, *start, maxpages);
1470 		if (!n)
1471 			return -ENOMEM;
1472 		p = *pages;
1473 		for (int k = 0; k < n; k++)
1474 			get_page(p[k] = page + k);
1475 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1476 		i->count -= maxsize;
1477 		i->iov_offset += maxsize;
1478 		if (i->iov_offset == i->bvec->bv_len) {
1479 			i->iov_offset = 0;
1480 			i->bvec++;
1481 			i->nr_segs--;
1482 		}
1483 		return maxsize;
1484 	}
1485 	if (iov_iter_is_pipe(i))
1486 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1487 	if (iov_iter_is_xarray(i))
1488 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1489 	return -EFAULT;
1490 }
1491 
1492 ssize_t iov_iter_get_pages2(struct iov_iter *i,
1493 		   struct page **pages, size_t maxsize, unsigned maxpages,
1494 		   size_t *start)
1495 {
1496 	if (!maxpages)
1497 		return 0;
1498 	BUG_ON(!pages);
1499 
1500 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1501 }
1502 EXPORT_SYMBOL(iov_iter_get_pages2);
1503 
1504 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1505 		   struct page ***pages, size_t maxsize,
1506 		   size_t *start)
1507 {
1508 	ssize_t len;
1509 
1510 	*pages = NULL;
1511 
1512 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1513 	if (len <= 0) {
1514 		kvfree(*pages);
1515 		*pages = NULL;
1516 	}
1517 	return len;
1518 }
1519 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1520 
1521 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1522 			       struct iov_iter *i)
1523 {
1524 	__wsum sum, next;
1525 	sum = *csum;
1526 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1527 		WARN_ON(1);
1528 		return 0;
1529 	}
1530 	iterate_and_advance(i, bytes, base, len, off, ({
1531 		next = csum_and_copy_from_user(base, addr + off, len);
1532 		sum = csum_block_add(sum, next, off);
1533 		next ? 0 : len;
1534 	}), ({
1535 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1536 	})
1537 	)
1538 	*csum = sum;
1539 	return bytes;
1540 }
1541 EXPORT_SYMBOL(csum_and_copy_from_iter);
1542 
1543 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1544 			     struct iov_iter *i)
1545 {
1546 	struct csum_state *csstate = _csstate;
1547 	__wsum sum, next;
1548 
1549 	if (unlikely(iov_iter_is_discard(i))) {
1550 		WARN_ON(1);	/* for now */
1551 		return 0;
1552 	}
1553 
1554 	sum = csum_shift(csstate->csum, csstate->off);
1555 	if (unlikely(iov_iter_is_pipe(i)))
1556 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1557 	else iterate_and_advance(i, bytes, base, len, off, ({
1558 		next = csum_and_copy_to_user(addr + off, base, len);
1559 		sum = csum_block_add(sum, next, off);
1560 		next ? 0 : len;
1561 	}), ({
1562 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1563 	})
1564 	)
1565 	csstate->csum = csum_shift(sum, csstate->off);
1566 	csstate->off += bytes;
1567 	return bytes;
1568 }
1569 EXPORT_SYMBOL(csum_and_copy_to_iter);
1570 
1571 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1572 		struct iov_iter *i)
1573 {
1574 #ifdef CONFIG_CRYPTO_HASH
1575 	struct ahash_request *hash = hashp;
1576 	struct scatterlist sg;
1577 	size_t copied;
1578 
1579 	copied = copy_to_iter(addr, bytes, i);
1580 	sg_init_one(&sg, addr, copied);
1581 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1582 	crypto_ahash_update(hash);
1583 	return copied;
1584 #else
1585 	return 0;
1586 #endif
1587 }
1588 EXPORT_SYMBOL(hash_and_copy_to_iter);
1589 
1590 static int iov_npages(const struct iov_iter *i, int maxpages)
1591 {
1592 	size_t skip = i->iov_offset, size = i->count;
1593 	const struct iovec *p;
1594 	int npages = 0;
1595 
1596 	for (p = i->iov; size; skip = 0, p++) {
1597 		unsigned offs = offset_in_page(p->iov_base + skip);
1598 		size_t len = min(p->iov_len - skip, size);
1599 
1600 		if (len) {
1601 			size -= len;
1602 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1603 			if (unlikely(npages > maxpages))
1604 				return maxpages;
1605 		}
1606 	}
1607 	return npages;
1608 }
1609 
1610 static int bvec_npages(const struct iov_iter *i, int maxpages)
1611 {
1612 	size_t skip = i->iov_offset, size = i->count;
1613 	const struct bio_vec *p;
1614 	int npages = 0;
1615 
1616 	for (p = i->bvec; size; skip = 0, p++) {
1617 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1618 		size_t len = min(p->bv_len - skip, size);
1619 
1620 		size -= len;
1621 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1622 		if (unlikely(npages > maxpages))
1623 			return maxpages;
1624 	}
1625 	return npages;
1626 }
1627 
1628 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1629 {
1630 	if (unlikely(!i->count))
1631 		return 0;
1632 	if (likely(iter_is_ubuf(i))) {
1633 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1634 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1635 		return min(npages, maxpages);
1636 	}
1637 	/* iovec and kvec have identical layouts */
1638 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1639 		return iov_npages(i, maxpages);
1640 	if (iov_iter_is_bvec(i))
1641 		return bvec_npages(i, maxpages);
1642 	if (iov_iter_is_pipe(i)) {
1643 		int npages;
1644 
1645 		if (!sanity(i))
1646 			return 0;
1647 
1648 		pipe_npages(i, &npages);
1649 		return min(npages, maxpages);
1650 	}
1651 	if (iov_iter_is_xarray(i)) {
1652 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1653 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1654 		return min(npages, maxpages);
1655 	}
1656 	return 0;
1657 }
1658 EXPORT_SYMBOL(iov_iter_npages);
1659 
1660 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1661 {
1662 	*new = *old;
1663 	if (unlikely(iov_iter_is_pipe(new))) {
1664 		WARN_ON(1);
1665 		return NULL;
1666 	}
1667 	if (iov_iter_is_bvec(new))
1668 		return new->bvec = kmemdup(new->bvec,
1669 				    new->nr_segs * sizeof(struct bio_vec),
1670 				    flags);
1671 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1672 		/* iovec and kvec have identical layout */
1673 		return new->iov = kmemdup(new->iov,
1674 				   new->nr_segs * sizeof(struct iovec),
1675 				   flags);
1676 	return NULL;
1677 }
1678 EXPORT_SYMBOL(dup_iter);
1679 
1680 static int copy_compat_iovec_from_user(struct iovec *iov,
1681 		const struct iovec __user *uvec, unsigned long nr_segs)
1682 {
1683 	const struct compat_iovec __user *uiov =
1684 		(const struct compat_iovec __user *)uvec;
1685 	int ret = -EFAULT, i;
1686 
1687 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1688 		return -EFAULT;
1689 
1690 	for (i = 0; i < nr_segs; i++) {
1691 		compat_uptr_t buf;
1692 		compat_ssize_t len;
1693 
1694 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1695 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1696 
1697 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1698 		if (len < 0) {
1699 			ret = -EINVAL;
1700 			goto uaccess_end;
1701 		}
1702 		iov[i].iov_base = compat_ptr(buf);
1703 		iov[i].iov_len = len;
1704 	}
1705 
1706 	ret = 0;
1707 uaccess_end:
1708 	user_access_end();
1709 	return ret;
1710 }
1711 
1712 static int copy_iovec_from_user(struct iovec *iov,
1713 		const struct iovec __user *uvec, unsigned long nr_segs)
1714 {
1715 	unsigned long seg;
1716 
1717 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1718 		return -EFAULT;
1719 	for (seg = 0; seg < nr_segs; seg++) {
1720 		if ((ssize_t)iov[seg].iov_len < 0)
1721 			return -EINVAL;
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1728 		unsigned long nr_segs, unsigned long fast_segs,
1729 		struct iovec *fast_iov, bool compat)
1730 {
1731 	struct iovec *iov = fast_iov;
1732 	int ret;
1733 
1734 	/*
1735 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1736 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1737 	 * traditionally returned zero for zero segments, so...
1738 	 */
1739 	if (nr_segs == 0)
1740 		return iov;
1741 	if (nr_segs > UIO_MAXIOV)
1742 		return ERR_PTR(-EINVAL);
1743 	if (nr_segs > fast_segs) {
1744 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1745 		if (!iov)
1746 			return ERR_PTR(-ENOMEM);
1747 	}
1748 
1749 	if (compat)
1750 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1751 	else
1752 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1753 	if (ret) {
1754 		if (iov != fast_iov)
1755 			kfree(iov);
1756 		return ERR_PTR(ret);
1757 	}
1758 
1759 	return iov;
1760 }
1761 
1762 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1763 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1764 		 struct iov_iter *i, bool compat)
1765 {
1766 	ssize_t total_len = 0;
1767 	unsigned long seg;
1768 	struct iovec *iov;
1769 
1770 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1771 	if (IS_ERR(iov)) {
1772 		*iovp = NULL;
1773 		return PTR_ERR(iov);
1774 	}
1775 
1776 	/*
1777 	 * According to the Single Unix Specification we should return EINVAL if
1778 	 * an element length is < 0 when cast to ssize_t or if the total length
1779 	 * would overflow the ssize_t return value of the system call.
1780 	 *
1781 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1782 	 * overflow case.
1783 	 */
1784 	for (seg = 0; seg < nr_segs; seg++) {
1785 		ssize_t len = (ssize_t)iov[seg].iov_len;
1786 
1787 		if (!access_ok(iov[seg].iov_base, len)) {
1788 			if (iov != *iovp)
1789 				kfree(iov);
1790 			*iovp = NULL;
1791 			return -EFAULT;
1792 		}
1793 
1794 		if (len > MAX_RW_COUNT - total_len) {
1795 			len = MAX_RW_COUNT - total_len;
1796 			iov[seg].iov_len = len;
1797 		}
1798 		total_len += len;
1799 	}
1800 
1801 	iov_iter_init(i, type, iov, nr_segs, total_len);
1802 	if (iov == *iovp)
1803 		*iovp = NULL;
1804 	else
1805 		*iovp = iov;
1806 	return total_len;
1807 }
1808 
1809 /**
1810  * import_iovec() - Copy an array of &struct iovec from userspace
1811  *     into the kernel, check that it is valid, and initialize a new
1812  *     &struct iov_iter iterator to access it.
1813  *
1814  * @type: One of %READ or %WRITE.
1815  * @uvec: Pointer to the userspace array.
1816  * @nr_segs: Number of elements in userspace array.
1817  * @fast_segs: Number of elements in @iov.
1818  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1819  *     on-stack) kernel array.
1820  * @i: Pointer to iterator that will be initialized on success.
1821  *
1822  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1823  * then this function places %NULL in *@iov on return. Otherwise, a new
1824  * array will be allocated and the result placed in *@iov. This means that
1825  * the caller may call kfree() on *@iov regardless of whether the small
1826  * on-stack array was used or not (and regardless of whether this function
1827  * returns an error or not).
1828  *
1829  * Return: Negative error code on error, bytes imported on success
1830  */
1831 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1832 		 unsigned nr_segs, unsigned fast_segs,
1833 		 struct iovec **iovp, struct iov_iter *i)
1834 {
1835 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1836 			      in_compat_syscall());
1837 }
1838 EXPORT_SYMBOL(import_iovec);
1839 
1840 int import_single_range(int rw, void __user *buf, size_t len,
1841 		 struct iovec *iov, struct iov_iter *i)
1842 {
1843 	if (len > MAX_RW_COUNT)
1844 		len = MAX_RW_COUNT;
1845 	if (unlikely(!access_ok(buf, len)))
1846 		return -EFAULT;
1847 
1848 	iov->iov_base = buf;
1849 	iov->iov_len = len;
1850 	iov_iter_init(i, rw, iov, 1, len);
1851 	return 0;
1852 }
1853 EXPORT_SYMBOL(import_single_range);
1854 
1855 /**
1856  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1857  *     iov_iter_save_state() was called.
1858  *
1859  * @i: &struct iov_iter to restore
1860  * @state: state to restore from
1861  *
1862  * Used after iov_iter_save_state() to bring restore @i, if operations may
1863  * have advanced it.
1864  *
1865  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1866  */
1867 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1868 {
1869 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1870 			 !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
1871 		return;
1872 	i->iov_offset = state->iov_offset;
1873 	i->count = state->count;
1874 	if (iter_is_ubuf(i))
1875 		return;
1876 	/*
1877 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1878 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1879 	 * need to track both of these, just one is enough and we can deduct
1880 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1881 	 * size, so we can just increment the iov pointer as they are unionzed.
1882 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1883 	 * not. Be safe and handle it separately.
1884 	 */
1885 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1886 	if (iov_iter_is_bvec(i))
1887 		i->bvec -= state->nr_segs - i->nr_segs;
1888 	else
1889 		i->iov -= state->nr_segs - i->nr_segs;
1890 	i->nr_segs = state->nr_segs;
1891 }
1892