xref: /openbmc/linux/lib/iov_iter.c (revision 4b6c132b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
20 	size_t left;					\
21 	size_t wanted = n;				\
22 	__p = i->iov;					\
23 	__v.iov_len = min(n, __p->iov_len - skip);	\
24 	if (likely(__v.iov_len)) {			\
25 		__v.iov_base = __p->iov_base + skip;	\
26 		left = (STEP);				\
27 		__v.iov_len -= left;			\
28 		skip += __v.iov_len;			\
29 		n -= __v.iov_len;			\
30 	} else {					\
31 		left = 0;				\
32 	}						\
33 	while (unlikely(!left && n)) {			\
34 		__p++;					\
35 		__v.iov_len = min(n, __p->iov_len);	\
36 		if (unlikely(!__v.iov_len))		\
37 			continue;			\
38 		__v.iov_base = __p->iov_base;		\
39 		left = (STEP);				\
40 		__v.iov_len -= left;			\
41 		skip = __v.iov_len;			\
42 		n -= __v.iov_len;			\
43 	}						\
44 	n = wanted - n;					\
45 }
46 
47 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
48 	size_t wanted = n;				\
49 	__p = i->kvec;					\
50 	__v.iov_len = min(n, __p->iov_len - skip);	\
51 	if (likely(__v.iov_len)) {			\
52 		__v.iov_base = __p->iov_base + skip;	\
53 		(void)(STEP);				\
54 		skip += __v.iov_len;			\
55 		n -= __v.iov_len;			\
56 	}						\
57 	while (unlikely(n)) {				\
58 		__p++;					\
59 		__v.iov_len = min(n, __p->iov_len);	\
60 		if (unlikely(!__v.iov_len))		\
61 			continue;			\
62 		__v.iov_base = __p->iov_base;		\
63 		(void)(STEP);				\
64 		skip = __v.iov_len;			\
65 		n -= __v.iov_len;			\
66 	}						\
67 	n = wanted;					\
68 }
69 
70 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
71 	struct bvec_iter __start;			\
72 	__start.bi_size = n;				\
73 	__start.bi_bvec_done = skip;			\
74 	__start.bi_idx = 0;				\
75 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
76 		(void)(STEP);				\
77 	}						\
78 }
79 
80 #define iterate_xarray(i, n, __v, skip, STEP) {		\
81 	struct page *head = NULL;				\
82 	size_t wanted = n, seg, offset;				\
83 	loff_t start = i->xarray_start + skip;			\
84 	pgoff_t index = start >> PAGE_SHIFT;			\
85 	int j;							\
86 								\
87 	XA_STATE(xas, i->xarray, index);			\
88 								\
89 	rcu_read_lock();						\
90 	xas_for_each(&xas, head, ULONG_MAX) {				\
91 		if (xas_retry(&xas, head))				\
92 			continue;					\
93 		if (WARN_ON(xa_is_value(head)))				\
94 			break;						\
95 		if (WARN_ON(PageHuge(head)))				\
96 			break;						\
97 		for (j = (head->index < index) ? index - head->index : 0; \
98 		     j < thp_nr_pages(head); j++) {			\
99 			__v.bv_page = head + j;				\
100 			offset = (i->xarray_start + skip) & ~PAGE_MASK;	\
101 			seg = PAGE_SIZE - offset;			\
102 			__v.bv_offset = offset;				\
103 			__v.bv_len = min(n, seg);			\
104 			(void)(STEP);					\
105 			n -= __v.bv_len;				\
106 			skip += __v.bv_len;				\
107 			if (n == 0)					\
108 				break;					\
109 		}							\
110 		if (n == 0)						\
111 			break;						\
112 	}							\
113 	rcu_read_unlock();					\
114 	n = wanted - n;						\
115 }
116 
117 #define iterate_all_kinds(i, n, v, I, B, K, X) {		\
118 	if (likely(n)) {					\
119 		size_t skip = i->iov_offset;			\
120 		if (unlikely(i->type & ITER_BVEC)) {		\
121 			struct bio_vec v;			\
122 			struct bvec_iter __bi;			\
123 			iterate_bvec(i, n, v, __bi, skip, (B))	\
124 		} else if (unlikely(i->type & ITER_KVEC)) {	\
125 			const struct kvec *kvec;		\
126 			struct kvec v;				\
127 			iterate_kvec(i, n, v, kvec, skip, (K))	\
128 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
129 		} else if (unlikely(i->type & ITER_XARRAY)) {	\
130 			struct bio_vec v;			\
131 			iterate_xarray(i, n, v, skip, (X));	\
132 		} else {					\
133 			const struct iovec *iov;		\
134 			struct iovec v;				\
135 			iterate_iovec(i, n, v, iov, skip, (I))	\
136 		}						\
137 	}							\
138 }
139 
140 #define iterate_and_advance(i, n, v, I, B, K, X) {		\
141 	if (unlikely(i->count < n))				\
142 		n = i->count;					\
143 	if (i->count) {						\
144 		size_t skip = i->iov_offset;			\
145 		if (unlikely(i->type & ITER_BVEC)) {		\
146 			const struct bio_vec *bvec = i->bvec;	\
147 			struct bio_vec v;			\
148 			struct bvec_iter __bi;			\
149 			iterate_bvec(i, n, v, __bi, skip, (B))	\
150 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
151 			i->nr_segs -= i->bvec - bvec;		\
152 			skip = __bi.bi_bvec_done;		\
153 		} else if (unlikely(i->type & ITER_KVEC)) {	\
154 			const struct kvec *kvec;		\
155 			struct kvec v;				\
156 			iterate_kvec(i, n, v, kvec, skip, (K))	\
157 			if (skip == kvec->iov_len) {		\
158 				kvec++;				\
159 				skip = 0;			\
160 			}					\
161 			i->nr_segs -= kvec - i->kvec;		\
162 			i->kvec = kvec;				\
163 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
164 			skip += n;				\
165 		} else if (unlikely(i->type & ITER_XARRAY)) {	\
166 			struct bio_vec v;			\
167 			iterate_xarray(i, n, v, skip, (X))	\
168 		} else {					\
169 			const struct iovec *iov;		\
170 			struct iovec v;				\
171 			iterate_iovec(i, n, v, iov, skip, (I))	\
172 			if (skip == iov->iov_len) {		\
173 				iov++;				\
174 				skip = 0;			\
175 			}					\
176 			i->nr_segs -= iov - i->iov;		\
177 			i->iov = iov;				\
178 		}						\
179 		i->count -= n;					\
180 		i->iov_offset = skip;				\
181 	}							\
182 }
183 
184 static int copyout(void __user *to, const void *from, size_t n)
185 {
186 	if (should_fail_usercopy())
187 		return n;
188 	if (access_ok(to, n)) {
189 		instrument_copy_to_user(to, from, n);
190 		n = raw_copy_to_user(to, from, n);
191 	}
192 	return n;
193 }
194 
195 static int copyin(void *to, const void __user *from, size_t n)
196 {
197 	if (should_fail_usercopy())
198 		return n;
199 	if (access_ok(from, n)) {
200 		instrument_copy_from_user(to, from, n);
201 		n = raw_copy_from_user(to, from, n);
202 	}
203 	return n;
204 }
205 
206 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
207 			 struct iov_iter *i)
208 {
209 	size_t skip, copy, left, wanted;
210 	const struct iovec *iov;
211 	char __user *buf;
212 	void *kaddr, *from;
213 
214 	if (unlikely(bytes > i->count))
215 		bytes = i->count;
216 
217 	if (unlikely(!bytes))
218 		return 0;
219 
220 	might_fault();
221 	wanted = bytes;
222 	iov = i->iov;
223 	skip = i->iov_offset;
224 	buf = iov->iov_base + skip;
225 	copy = min(bytes, iov->iov_len - skip);
226 
227 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
228 		kaddr = kmap_atomic(page);
229 		from = kaddr + offset;
230 
231 		/* first chunk, usually the only one */
232 		left = copyout(buf, from, copy);
233 		copy -= left;
234 		skip += copy;
235 		from += copy;
236 		bytes -= copy;
237 
238 		while (unlikely(!left && bytes)) {
239 			iov++;
240 			buf = iov->iov_base;
241 			copy = min(bytes, iov->iov_len);
242 			left = copyout(buf, from, copy);
243 			copy -= left;
244 			skip = copy;
245 			from += copy;
246 			bytes -= copy;
247 		}
248 		if (likely(!bytes)) {
249 			kunmap_atomic(kaddr);
250 			goto done;
251 		}
252 		offset = from - kaddr;
253 		buf += copy;
254 		kunmap_atomic(kaddr);
255 		copy = min(bytes, iov->iov_len - skip);
256 	}
257 	/* Too bad - revert to non-atomic kmap */
258 
259 	kaddr = kmap(page);
260 	from = kaddr + offset;
261 	left = copyout(buf, from, copy);
262 	copy -= left;
263 	skip += copy;
264 	from += copy;
265 	bytes -= copy;
266 	while (unlikely(!left && bytes)) {
267 		iov++;
268 		buf = iov->iov_base;
269 		copy = min(bytes, iov->iov_len);
270 		left = copyout(buf, from, copy);
271 		copy -= left;
272 		skip = copy;
273 		from += copy;
274 		bytes -= copy;
275 	}
276 	kunmap(page);
277 
278 done:
279 	if (skip == iov->iov_len) {
280 		iov++;
281 		skip = 0;
282 	}
283 	i->count -= wanted - bytes;
284 	i->nr_segs -= iov - i->iov;
285 	i->iov = iov;
286 	i->iov_offset = skip;
287 	return wanted - bytes;
288 }
289 
290 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
291 			 struct iov_iter *i)
292 {
293 	size_t skip, copy, left, wanted;
294 	const struct iovec *iov;
295 	char __user *buf;
296 	void *kaddr, *to;
297 
298 	if (unlikely(bytes > i->count))
299 		bytes = i->count;
300 
301 	if (unlikely(!bytes))
302 		return 0;
303 
304 	might_fault();
305 	wanted = bytes;
306 	iov = i->iov;
307 	skip = i->iov_offset;
308 	buf = iov->iov_base + skip;
309 	copy = min(bytes, iov->iov_len - skip);
310 
311 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
312 		kaddr = kmap_atomic(page);
313 		to = kaddr + offset;
314 
315 		/* first chunk, usually the only one */
316 		left = copyin(to, buf, copy);
317 		copy -= left;
318 		skip += copy;
319 		to += copy;
320 		bytes -= copy;
321 
322 		while (unlikely(!left && bytes)) {
323 			iov++;
324 			buf = iov->iov_base;
325 			copy = min(bytes, iov->iov_len);
326 			left = copyin(to, buf, copy);
327 			copy -= left;
328 			skip = copy;
329 			to += copy;
330 			bytes -= copy;
331 		}
332 		if (likely(!bytes)) {
333 			kunmap_atomic(kaddr);
334 			goto done;
335 		}
336 		offset = to - kaddr;
337 		buf += copy;
338 		kunmap_atomic(kaddr);
339 		copy = min(bytes, iov->iov_len - skip);
340 	}
341 	/* Too bad - revert to non-atomic kmap */
342 
343 	kaddr = kmap(page);
344 	to = kaddr + offset;
345 	left = copyin(to, buf, copy);
346 	copy -= left;
347 	skip += copy;
348 	to += copy;
349 	bytes -= copy;
350 	while (unlikely(!left && bytes)) {
351 		iov++;
352 		buf = iov->iov_base;
353 		copy = min(bytes, iov->iov_len);
354 		left = copyin(to, buf, copy);
355 		copy -= left;
356 		skip = copy;
357 		to += copy;
358 		bytes -= copy;
359 	}
360 	kunmap(page);
361 
362 done:
363 	if (skip == iov->iov_len) {
364 		iov++;
365 		skip = 0;
366 	}
367 	i->count -= wanted - bytes;
368 	i->nr_segs -= iov - i->iov;
369 	i->iov = iov;
370 	i->iov_offset = skip;
371 	return wanted - bytes;
372 }
373 
374 #ifdef PIPE_PARANOIA
375 static bool sanity(const struct iov_iter *i)
376 {
377 	struct pipe_inode_info *pipe = i->pipe;
378 	unsigned int p_head = pipe->head;
379 	unsigned int p_tail = pipe->tail;
380 	unsigned int p_mask = pipe->ring_size - 1;
381 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
382 	unsigned int i_head = i->head;
383 	unsigned int idx;
384 
385 	if (i->iov_offset) {
386 		struct pipe_buffer *p;
387 		if (unlikely(p_occupancy == 0))
388 			goto Bad;	// pipe must be non-empty
389 		if (unlikely(i_head != p_head - 1))
390 			goto Bad;	// must be at the last buffer...
391 
392 		p = &pipe->bufs[i_head & p_mask];
393 		if (unlikely(p->offset + p->len != i->iov_offset))
394 			goto Bad;	// ... at the end of segment
395 	} else {
396 		if (i_head != p_head)
397 			goto Bad;	// must be right after the last buffer
398 	}
399 	return true;
400 Bad:
401 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
402 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
403 			p_head, p_tail, pipe->ring_size);
404 	for (idx = 0; idx < pipe->ring_size; idx++)
405 		printk(KERN_ERR "[%p %p %d %d]\n",
406 			pipe->bufs[idx].ops,
407 			pipe->bufs[idx].page,
408 			pipe->bufs[idx].offset,
409 			pipe->bufs[idx].len);
410 	WARN_ON(1);
411 	return false;
412 }
413 #else
414 #define sanity(i) true
415 #endif
416 
417 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
418 			 struct iov_iter *i)
419 {
420 	struct pipe_inode_info *pipe = i->pipe;
421 	struct pipe_buffer *buf;
422 	unsigned int p_tail = pipe->tail;
423 	unsigned int p_mask = pipe->ring_size - 1;
424 	unsigned int i_head = i->head;
425 	size_t off;
426 
427 	if (unlikely(bytes > i->count))
428 		bytes = i->count;
429 
430 	if (unlikely(!bytes))
431 		return 0;
432 
433 	if (!sanity(i))
434 		return 0;
435 
436 	off = i->iov_offset;
437 	buf = &pipe->bufs[i_head & p_mask];
438 	if (off) {
439 		if (offset == off && buf->page == page) {
440 			/* merge with the last one */
441 			buf->len += bytes;
442 			i->iov_offset += bytes;
443 			goto out;
444 		}
445 		i_head++;
446 		buf = &pipe->bufs[i_head & p_mask];
447 	}
448 	if (pipe_full(i_head, p_tail, pipe->max_usage))
449 		return 0;
450 
451 	buf->ops = &page_cache_pipe_buf_ops;
452 	get_page(page);
453 	buf->page = page;
454 	buf->offset = offset;
455 	buf->len = bytes;
456 
457 	pipe->head = i_head + 1;
458 	i->iov_offset = offset + bytes;
459 	i->head = i_head;
460 out:
461 	i->count -= bytes;
462 	return bytes;
463 }
464 
465 /*
466  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
467  * bytes.  For each iovec, fault in each page that constitutes the iovec.
468  *
469  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
470  * because it is an invalid address).
471  */
472 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
473 {
474 	size_t skip = i->iov_offset;
475 	const struct iovec *iov;
476 	int err;
477 	struct iovec v;
478 
479 	if (iter_is_iovec(i)) {
480 		iterate_iovec(i, bytes, v, iov, skip, ({
481 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
482 			if (unlikely(err))
483 			return err;
484 		0;}))
485 	}
486 	return 0;
487 }
488 EXPORT_SYMBOL(iov_iter_fault_in_readable);
489 
490 void iov_iter_init(struct iov_iter *i, unsigned int direction,
491 			const struct iovec *iov, unsigned long nr_segs,
492 			size_t count)
493 {
494 	WARN_ON(direction & ~(READ | WRITE));
495 	direction &= READ | WRITE;
496 
497 	/* It will get better.  Eventually... */
498 	if (uaccess_kernel()) {
499 		i->type = ITER_KVEC | direction;
500 		i->kvec = (struct kvec *)iov;
501 	} else {
502 		i->type = ITER_IOVEC | direction;
503 		i->iov = iov;
504 	}
505 	i->nr_segs = nr_segs;
506 	i->iov_offset = 0;
507 	i->count = count;
508 }
509 EXPORT_SYMBOL(iov_iter_init);
510 
511 static inline bool allocated(struct pipe_buffer *buf)
512 {
513 	return buf->ops == &default_pipe_buf_ops;
514 }
515 
516 static inline void data_start(const struct iov_iter *i,
517 			      unsigned int *iter_headp, size_t *offp)
518 {
519 	unsigned int p_mask = i->pipe->ring_size - 1;
520 	unsigned int iter_head = i->head;
521 	size_t off = i->iov_offset;
522 
523 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
524 		    off == PAGE_SIZE)) {
525 		iter_head++;
526 		off = 0;
527 	}
528 	*iter_headp = iter_head;
529 	*offp = off;
530 }
531 
532 static size_t push_pipe(struct iov_iter *i, size_t size,
533 			int *iter_headp, size_t *offp)
534 {
535 	struct pipe_inode_info *pipe = i->pipe;
536 	unsigned int p_tail = pipe->tail;
537 	unsigned int p_mask = pipe->ring_size - 1;
538 	unsigned int iter_head;
539 	size_t off;
540 	ssize_t left;
541 
542 	if (unlikely(size > i->count))
543 		size = i->count;
544 	if (unlikely(!size))
545 		return 0;
546 
547 	left = size;
548 	data_start(i, &iter_head, &off);
549 	*iter_headp = iter_head;
550 	*offp = off;
551 	if (off) {
552 		left -= PAGE_SIZE - off;
553 		if (left <= 0) {
554 			pipe->bufs[iter_head & p_mask].len += size;
555 			return size;
556 		}
557 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
558 		iter_head++;
559 	}
560 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
561 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
562 		struct page *page = alloc_page(GFP_USER);
563 		if (!page)
564 			break;
565 
566 		buf->ops = &default_pipe_buf_ops;
567 		buf->page = page;
568 		buf->offset = 0;
569 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
570 		left -= buf->len;
571 		iter_head++;
572 		pipe->head = iter_head;
573 
574 		if (left == 0)
575 			return size;
576 	}
577 	return size - left;
578 }
579 
580 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
581 				struct iov_iter *i)
582 {
583 	struct pipe_inode_info *pipe = i->pipe;
584 	unsigned int p_mask = pipe->ring_size - 1;
585 	unsigned int i_head;
586 	size_t n, off;
587 
588 	if (!sanity(i))
589 		return 0;
590 
591 	bytes = n = push_pipe(i, bytes, &i_head, &off);
592 	if (unlikely(!n))
593 		return 0;
594 	do {
595 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
596 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
597 		i->head = i_head;
598 		i->iov_offset = off + chunk;
599 		n -= chunk;
600 		addr += chunk;
601 		off = 0;
602 		i_head++;
603 	} while (n);
604 	i->count -= bytes;
605 	return bytes;
606 }
607 
608 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
609 			      __wsum sum, size_t off)
610 {
611 	__wsum next = csum_partial_copy_nocheck(from, to, len);
612 	return csum_block_add(sum, next, off);
613 }
614 
615 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
616 					 struct csum_state *csstate,
617 					 struct iov_iter *i)
618 {
619 	struct pipe_inode_info *pipe = i->pipe;
620 	unsigned int p_mask = pipe->ring_size - 1;
621 	__wsum sum = csstate->csum;
622 	size_t off = csstate->off;
623 	unsigned int i_head;
624 	size_t n, r;
625 
626 	if (!sanity(i))
627 		return 0;
628 
629 	bytes = n = push_pipe(i, bytes, &i_head, &r);
630 	if (unlikely(!n))
631 		return 0;
632 	do {
633 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
634 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
635 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
636 		kunmap_atomic(p);
637 		i->head = i_head;
638 		i->iov_offset = r + chunk;
639 		n -= chunk;
640 		off += chunk;
641 		addr += chunk;
642 		r = 0;
643 		i_head++;
644 	} while (n);
645 	i->count -= bytes;
646 	csstate->csum = sum;
647 	csstate->off = off;
648 	return bytes;
649 }
650 
651 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
652 {
653 	const char *from = addr;
654 	if (unlikely(iov_iter_is_pipe(i)))
655 		return copy_pipe_to_iter(addr, bytes, i);
656 	if (iter_is_iovec(i))
657 		might_fault();
658 	iterate_and_advance(i, bytes, v,
659 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
660 		memcpy_to_page(v.bv_page, v.bv_offset,
661 			       (from += v.bv_len) - v.bv_len, v.bv_len),
662 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
663 		memcpy_to_page(v.bv_page, v.bv_offset,
664 			       (from += v.bv_len) - v.bv_len, v.bv_len)
665 	)
666 
667 	return bytes;
668 }
669 EXPORT_SYMBOL(_copy_to_iter);
670 
671 #ifdef CONFIG_ARCH_HAS_COPY_MC
672 static int copyout_mc(void __user *to, const void *from, size_t n)
673 {
674 	if (access_ok(to, n)) {
675 		instrument_copy_to_user(to, from, n);
676 		n = copy_mc_to_user((__force void *) to, from, n);
677 	}
678 	return n;
679 }
680 
681 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
682 		const char *from, size_t len)
683 {
684 	unsigned long ret;
685 	char *to;
686 
687 	to = kmap_atomic(page);
688 	ret = copy_mc_to_kernel(to + offset, from, len);
689 	kunmap_atomic(to);
690 
691 	return ret;
692 }
693 
694 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
695 				struct iov_iter *i)
696 {
697 	struct pipe_inode_info *pipe = i->pipe;
698 	unsigned int p_mask = pipe->ring_size - 1;
699 	unsigned int i_head;
700 	size_t n, off, xfer = 0;
701 
702 	if (!sanity(i))
703 		return 0;
704 
705 	bytes = n = push_pipe(i, bytes, &i_head, &off);
706 	if (unlikely(!n))
707 		return 0;
708 	do {
709 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
710 		unsigned long rem;
711 
712 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
713 					    off, addr, chunk);
714 		i->head = i_head;
715 		i->iov_offset = off + chunk - rem;
716 		xfer += chunk - rem;
717 		if (rem)
718 			break;
719 		n -= chunk;
720 		addr += chunk;
721 		off = 0;
722 		i_head++;
723 	} while (n);
724 	i->count -= xfer;
725 	return xfer;
726 }
727 
728 /**
729  * _copy_mc_to_iter - copy to iter with source memory error exception handling
730  * @addr: source kernel address
731  * @bytes: total transfer length
732  * @iter: destination iterator
733  *
734  * The pmem driver deploys this for the dax operation
735  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
736  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
737  * successfully copied.
738  *
739  * The main differences between this and typical _copy_to_iter().
740  *
741  * * Typical tail/residue handling after a fault retries the copy
742  *   byte-by-byte until the fault happens again. Re-triggering machine
743  *   checks is potentially fatal so the implementation uses source
744  *   alignment and poison alignment assumptions to avoid re-triggering
745  *   hardware exceptions.
746  *
747  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
748  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
749  *   a short copy.
750  */
751 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
752 {
753 	const char *from = addr;
754 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
755 
756 	if (unlikely(iov_iter_is_pipe(i)))
757 		return copy_mc_pipe_to_iter(addr, bytes, i);
758 	if (iter_is_iovec(i))
759 		might_fault();
760 	iterate_and_advance(i, bytes, v,
761 		copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
762 			   v.iov_len),
763 		({
764 		rem = copy_mc_to_page(v.bv_page, v.bv_offset,
765 				      (from += v.bv_len) - v.bv_len, v.bv_len);
766 		if (rem) {
767 			curr_addr = (unsigned long) from;
768 			bytes = curr_addr - s_addr - rem;
769 			return bytes;
770 		}
771 		}),
772 		({
773 		rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
774 					- v.iov_len, v.iov_len);
775 		if (rem) {
776 			curr_addr = (unsigned long) from;
777 			bytes = curr_addr - s_addr - rem;
778 			return bytes;
779 		}
780 		}),
781 		({
782 		rem = copy_mc_to_page(v.bv_page, v.bv_offset,
783 				      (from += v.bv_len) - v.bv_len, v.bv_len);
784 		if (rem) {
785 			curr_addr = (unsigned long) from;
786 			bytes = curr_addr - s_addr - rem;
787 			rcu_read_unlock();
788 			i->iov_offset += bytes;
789 			i->count -= bytes;
790 			return bytes;
791 		}
792 		})
793 	)
794 
795 	return bytes;
796 }
797 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
798 #endif /* CONFIG_ARCH_HAS_COPY_MC */
799 
800 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
801 {
802 	char *to = addr;
803 	if (unlikely(iov_iter_is_pipe(i))) {
804 		WARN_ON(1);
805 		return 0;
806 	}
807 	if (iter_is_iovec(i))
808 		might_fault();
809 	iterate_and_advance(i, bytes, v,
810 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
811 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
812 				 v.bv_offset, v.bv_len),
813 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
814 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
815 				 v.bv_offset, v.bv_len)
816 	)
817 
818 	return bytes;
819 }
820 EXPORT_SYMBOL(_copy_from_iter);
821 
822 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
823 {
824 	char *to = addr;
825 	if (unlikely(iov_iter_is_pipe(i))) {
826 		WARN_ON(1);
827 		return 0;
828 	}
829 	iterate_and_advance(i, bytes, v,
830 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
831 					 v.iov_base, v.iov_len),
832 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
833 				 v.bv_offset, v.bv_len),
834 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
835 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
836 				 v.bv_offset, v.bv_len)
837 	)
838 
839 	return bytes;
840 }
841 EXPORT_SYMBOL(_copy_from_iter_nocache);
842 
843 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
844 /**
845  * _copy_from_iter_flushcache - write destination through cpu cache
846  * @addr: destination kernel address
847  * @bytes: total transfer length
848  * @iter: source iterator
849  *
850  * The pmem driver arranges for filesystem-dax to use this facility via
851  * dax_copy_from_iter() for ensuring that writes to persistent memory
852  * are flushed through the CPU cache. It is differentiated from
853  * _copy_from_iter_nocache() in that guarantees all data is flushed for
854  * all iterator types. The _copy_from_iter_nocache() only attempts to
855  * bypass the cache for the ITER_IOVEC case, and on some archs may use
856  * instructions that strand dirty-data in the cache.
857  */
858 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
859 {
860 	char *to = addr;
861 	if (unlikely(iov_iter_is_pipe(i))) {
862 		WARN_ON(1);
863 		return 0;
864 	}
865 	iterate_and_advance(i, bytes, v,
866 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
867 					 v.iov_base, v.iov_len),
868 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
869 				 v.bv_offset, v.bv_len),
870 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
871 			v.iov_len),
872 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
873 				 v.bv_offset, v.bv_len)
874 	)
875 
876 	return bytes;
877 }
878 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
879 #endif
880 
881 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
882 {
883 	struct page *head;
884 	size_t v = n + offset;
885 
886 	/*
887 	 * The general case needs to access the page order in order
888 	 * to compute the page size.
889 	 * However, we mostly deal with order-0 pages and thus can
890 	 * avoid a possible cache line miss for requests that fit all
891 	 * page orders.
892 	 */
893 	if (n <= v && v <= PAGE_SIZE)
894 		return true;
895 
896 	head = compound_head(page);
897 	v += (page - head) << PAGE_SHIFT;
898 
899 	if (likely(n <= v && v <= (page_size(head))))
900 		return true;
901 	WARN_ON(1);
902 	return false;
903 }
904 
905 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
906 			 struct iov_iter *i)
907 {
908 	if (i->type & (ITER_BVEC | ITER_KVEC | ITER_XARRAY)) {
909 		void *kaddr = kmap_atomic(page);
910 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
911 		kunmap_atomic(kaddr);
912 		return wanted;
913 	} else if (unlikely(iov_iter_is_discard(i))) {
914 		if (unlikely(i->count < bytes))
915 			bytes = i->count;
916 		i->count -= bytes;
917 		return bytes;
918 	} else if (likely(!iov_iter_is_pipe(i)))
919 		return copy_page_to_iter_iovec(page, offset, bytes, i);
920 	else
921 		return copy_page_to_iter_pipe(page, offset, bytes, i);
922 }
923 
924 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
925 			 struct iov_iter *i)
926 {
927 	size_t res = 0;
928 	if (unlikely(!page_copy_sane(page, offset, bytes)))
929 		return 0;
930 	page += offset / PAGE_SIZE; // first subpage
931 	offset %= PAGE_SIZE;
932 	while (1) {
933 		size_t n = __copy_page_to_iter(page, offset,
934 				min(bytes, (size_t)PAGE_SIZE - offset), i);
935 		res += n;
936 		bytes -= n;
937 		if (!bytes || !n)
938 			break;
939 		offset += n;
940 		if (offset == PAGE_SIZE) {
941 			page++;
942 			offset = 0;
943 		}
944 	}
945 	return res;
946 }
947 EXPORT_SYMBOL(copy_page_to_iter);
948 
949 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
950 			 struct iov_iter *i)
951 {
952 	if (unlikely(!page_copy_sane(page, offset, bytes)))
953 		return 0;
954 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
955 		WARN_ON(1);
956 		return 0;
957 	}
958 	if (i->type & (ITER_BVEC | ITER_KVEC | ITER_XARRAY)) {
959 		void *kaddr = kmap_atomic(page);
960 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
961 		kunmap_atomic(kaddr);
962 		return wanted;
963 	} else
964 		return copy_page_from_iter_iovec(page, offset, bytes, i);
965 }
966 EXPORT_SYMBOL(copy_page_from_iter);
967 
968 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
969 {
970 	struct pipe_inode_info *pipe = i->pipe;
971 	unsigned int p_mask = pipe->ring_size - 1;
972 	unsigned int i_head;
973 	size_t n, off;
974 
975 	if (!sanity(i))
976 		return 0;
977 
978 	bytes = n = push_pipe(i, bytes, &i_head, &off);
979 	if (unlikely(!n))
980 		return 0;
981 
982 	do {
983 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
984 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
985 		i->head = i_head;
986 		i->iov_offset = off + chunk;
987 		n -= chunk;
988 		off = 0;
989 		i_head++;
990 	} while (n);
991 	i->count -= bytes;
992 	return bytes;
993 }
994 
995 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
996 {
997 	if (unlikely(iov_iter_is_pipe(i)))
998 		return pipe_zero(bytes, i);
999 	iterate_and_advance(i, bytes, v,
1000 		clear_user(v.iov_base, v.iov_len),
1001 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
1002 		memset(v.iov_base, 0, v.iov_len),
1003 		memzero_page(v.bv_page, v.bv_offset, v.bv_len)
1004 	)
1005 
1006 	return bytes;
1007 }
1008 EXPORT_SYMBOL(iov_iter_zero);
1009 
1010 size_t iov_iter_copy_from_user_atomic(struct page *page,
1011 		struct iov_iter *i, unsigned long offset, size_t bytes)
1012 {
1013 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
1014 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
1015 		kunmap_atomic(kaddr);
1016 		return 0;
1017 	}
1018 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1019 		kunmap_atomic(kaddr);
1020 		WARN_ON(1);
1021 		return 0;
1022 	}
1023 	iterate_all_kinds(i, bytes, v,
1024 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1025 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1026 				 v.bv_offset, v.bv_len),
1027 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1028 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1029 				 v.bv_offset, v.bv_len)
1030 	)
1031 	kunmap_atomic(kaddr);
1032 	return bytes;
1033 }
1034 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1035 
1036 static inline void pipe_truncate(struct iov_iter *i)
1037 {
1038 	struct pipe_inode_info *pipe = i->pipe;
1039 	unsigned int p_tail = pipe->tail;
1040 	unsigned int p_head = pipe->head;
1041 	unsigned int p_mask = pipe->ring_size - 1;
1042 
1043 	if (!pipe_empty(p_head, p_tail)) {
1044 		struct pipe_buffer *buf;
1045 		unsigned int i_head = i->head;
1046 		size_t off = i->iov_offset;
1047 
1048 		if (off) {
1049 			buf = &pipe->bufs[i_head & p_mask];
1050 			buf->len = off - buf->offset;
1051 			i_head++;
1052 		}
1053 		while (p_head != i_head) {
1054 			p_head--;
1055 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1056 		}
1057 
1058 		pipe->head = p_head;
1059 	}
1060 }
1061 
1062 static void pipe_advance(struct iov_iter *i, size_t size)
1063 {
1064 	struct pipe_inode_info *pipe = i->pipe;
1065 	if (size) {
1066 		struct pipe_buffer *buf;
1067 		unsigned int p_mask = pipe->ring_size - 1;
1068 		unsigned int i_head = i->head;
1069 		size_t off = i->iov_offset, left = size;
1070 
1071 		if (off) /* make it relative to the beginning of buffer */
1072 			left += off - pipe->bufs[i_head & p_mask].offset;
1073 		while (1) {
1074 			buf = &pipe->bufs[i_head & p_mask];
1075 			if (left <= buf->len)
1076 				break;
1077 			left -= buf->len;
1078 			i_head++;
1079 		}
1080 		i->head = i_head;
1081 		i->iov_offset = buf->offset + left;
1082 	}
1083 	i->count -= size;
1084 	/* ... and discard everything past that point */
1085 	pipe_truncate(i);
1086 }
1087 
1088 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
1089 {
1090 	struct bvec_iter bi;
1091 
1092 	bi.bi_size = i->count;
1093 	bi.bi_bvec_done = i->iov_offset;
1094 	bi.bi_idx = 0;
1095 	bvec_iter_advance(i->bvec, &bi, size);
1096 
1097 	i->bvec += bi.bi_idx;
1098 	i->nr_segs -= bi.bi_idx;
1099 	i->count = bi.bi_size;
1100 	i->iov_offset = bi.bi_bvec_done;
1101 }
1102 
1103 void iov_iter_advance(struct iov_iter *i, size_t size)
1104 {
1105 	if (unlikely(i->count < size))
1106 		size = i->count;
1107 	if (unlikely(iov_iter_is_pipe(i))) {
1108 		pipe_advance(i, size);
1109 		return;
1110 	}
1111 	if (unlikely(iov_iter_is_discard(i))) {
1112 		i->count -= size;
1113 		return;
1114 	}
1115 	if (unlikely(iov_iter_is_xarray(i))) {
1116 		i->iov_offset += size;
1117 		i->count -= size;
1118 		return;
1119 	}
1120 	if (iov_iter_is_bvec(i)) {
1121 		iov_iter_bvec_advance(i, size);
1122 		return;
1123 	}
1124 	iterate_and_advance(i, size, v, 0, 0, 0, 0)
1125 }
1126 EXPORT_SYMBOL(iov_iter_advance);
1127 
1128 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1129 {
1130 	if (!unroll)
1131 		return;
1132 	if (WARN_ON(unroll > MAX_RW_COUNT))
1133 		return;
1134 	i->count += unroll;
1135 	if (unlikely(iov_iter_is_pipe(i))) {
1136 		struct pipe_inode_info *pipe = i->pipe;
1137 		unsigned int p_mask = pipe->ring_size - 1;
1138 		unsigned int i_head = i->head;
1139 		size_t off = i->iov_offset;
1140 		while (1) {
1141 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1142 			size_t n = off - b->offset;
1143 			if (unroll < n) {
1144 				off -= unroll;
1145 				break;
1146 			}
1147 			unroll -= n;
1148 			if (!unroll && i_head == i->start_head) {
1149 				off = 0;
1150 				break;
1151 			}
1152 			i_head--;
1153 			b = &pipe->bufs[i_head & p_mask];
1154 			off = b->offset + b->len;
1155 		}
1156 		i->iov_offset = off;
1157 		i->head = i_head;
1158 		pipe_truncate(i);
1159 		return;
1160 	}
1161 	if (unlikely(iov_iter_is_discard(i)))
1162 		return;
1163 	if (unroll <= i->iov_offset) {
1164 		i->iov_offset -= unroll;
1165 		return;
1166 	}
1167 	unroll -= i->iov_offset;
1168 	if (iov_iter_is_xarray(i)) {
1169 		BUG(); /* We should never go beyond the start of the specified
1170 			* range since we might then be straying into pages that
1171 			* aren't pinned.
1172 			*/
1173 	} else if (iov_iter_is_bvec(i)) {
1174 		const struct bio_vec *bvec = i->bvec;
1175 		while (1) {
1176 			size_t n = (--bvec)->bv_len;
1177 			i->nr_segs++;
1178 			if (unroll <= n) {
1179 				i->bvec = bvec;
1180 				i->iov_offset = n - unroll;
1181 				return;
1182 			}
1183 			unroll -= n;
1184 		}
1185 	} else { /* same logics for iovec and kvec */
1186 		const struct iovec *iov = i->iov;
1187 		while (1) {
1188 			size_t n = (--iov)->iov_len;
1189 			i->nr_segs++;
1190 			if (unroll <= n) {
1191 				i->iov = iov;
1192 				i->iov_offset = n - unroll;
1193 				return;
1194 			}
1195 			unroll -= n;
1196 		}
1197 	}
1198 }
1199 EXPORT_SYMBOL(iov_iter_revert);
1200 
1201 /*
1202  * Return the count of just the current iov_iter segment.
1203  */
1204 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1205 {
1206 	if (unlikely(iov_iter_is_pipe(i)))
1207 		return i->count;	// it is a silly place, anyway
1208 	if (i->nr_segs == 1)
1209 		return i->count;
1210 	if (unlikely(iov_iter_is_discard(i) || iov_iter_is_xarray(i)))
1211 		return i->count;
1212 	if (iov_iter_is_bvec(i))
1213 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1214 	else
1215 		return min(i->count, i->iov->iov_len - i->iov_offset);
1216 }
1217 EXPORT_SYMBOL(iov_iter_single_seg_count);
1218 
1219 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1220 			const struct kvec *kvec, unsigned long nr_segs,
1221 			size_t count)
1222 {
1223 	WARN_ON(direction & ~(READ | WRITE));
1224 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1225 	i->kvec = kvec;
1226 	i->nr_segs = nr_segs;
1227 	i->iov_offset = 0;
1228 	i->count = count;
1229 }
1230 EXPORT_SYMBOL(iov_iter_kvec);
1231 
1232 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1233 			const struct bio_vec *bvec, unsigned long nr_segs,
1234 			size_t count)
1235 {
1236 	WARN_ON(direction & ~(READ | WRITE));
1237 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1238 	i->bvec = bvec;
1239 	i->nr_segs = nr_segs;
1240 	i->iov_offset = 0;
1241 	i->count = count;
1242 }
1243 EXPORT_SYMBOL(iov_iter_bvec);
1244 
1245 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1246 			struct pipe_inode_info *pipe,
1247 			size_t count)
1248 {
1249 	BUG_ON(direction != READ);
1250 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1251 	i->type = ITER_PIPE | READ;
1252 	i->pipe = pipe;
1253 	i->head = pipe->head;
1254 	i->iov_offset = 0;
1255 	i->count = count;
1256 	i->start_head = i->head;
1257 }
1258 EXPORT_SYMBOL(iov_iter_pipe);
1259 
1260 /**
1261  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1262  * @i: The iterator to initialise.
1263  * @direction: The direction of the transfer.
1264  * @xarray: The xarray to access.
1265  * @start: The start file position.
1266  * @count: The size of the I/O buffer in bytes.
1267  *
1268  * Set up an I/O iterator to either draw data out of the pages attached to an
1269  * inode or to inject data into those pages.  The pages *must* be prevented
1270  * from evaporation, either by taking a ref on them or locking them by the
1271  * caller.
1272  */
1273 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1274 		     struct xarray *xarray, loff_t start, size_t count)
1275 {
1276 	BUG_ON(direction & ~1);
1277 	i->type = ITER_XARRAY | (direction & (READ | WRITE));
1278 	i->xarray = xarray;
1279 	i->xarray_start = start;
1280 	i->count = count;
1281 	i->iov_offset = 0;
1282 }
1283 EXPORT_SYMBOL(iov_iter_xarray);
1284 
1285 /**
1286  * iov_iter_discard - Initialise an I/O iterator that discards data
1287  * @i: The iterator to initialise.
1288  * @direction: The direction of the transfer.
1289  * @count: The size of the I/O buffer in bytes.
1290  *
1291  * Set up an I/O iterator that just discards everything that's written to it.
1292  * It's only available as a READ iterator.
1293  */
1294 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1295 {
1296 	BUG_ON(direction != READ);
1297 	i->type = ITER_DISCARD | READ;
1298 	i->count = count;
1299 	i->iov_offset = 0;
1300 }
1301 EXPORT_SYMBOL(iov_iter_discard);
1302 
1303 unsigned long iov_iter_alignment(const struct iov_iter *i)
1304 {
1305 	unsigned long res = 0;
1306 	size_t size = i->count;
1307 
1308 	if (unlikely(iov_iter_is_pipe(i))) {
1309 		unsigned int p_mask = i->pipe->ring_size - 1;
1310 
1311 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1312 			return size | i->iov_offset;
1313 		return size;
1314 	}
1315 	if (unlikely(iov_iter_is_xarray(i)))
1316 		return (i->xarray_start + i->iov_offset) | i->count;
1317 	iterate_all_kinds(i, size, v,
1318 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1319 		res |= v.bv_offset | v.bv_len,
1320 		res |= (unsigned long)v.iov_base | v.iov_len,
1321 		res |= v.bv_offset | v.bv_len
1322 	)
1323 	return res;
1324 }
1325 EXPORT_SYMBOL(iov_iter_alignment);
1326 
1327 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1328 {
1329 	unsigned long res = 0;
1330 	size_t size = i->count;
1331 
1332 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1333 		WARN_ON(1);
1334 		return ~0U;
1335 	}
1336 
1337 	iterate_all_kinds(i, size, v,
1338 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1339 			(size != v.iov_len ? size : 0), 0),
1340 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1341 			(size != v.bv_len ? size : 0)),
1342 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1343 			(size != v.iov_len ? size : 0)),
1344 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1345 			(size != v.bv_len ? size : 0))
1346 		);
1347 	return res;
1348 }
1349 EXPORT_SYMBOL(iov_iter_gap_alignment);
1350 
1351 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1352 				size_t maxsize,
1353 				struct page **pages,
1354 				int iter_head,
1355 				size_t *start)
1356 {
1357 	struct pipe_inode_info *pipe = i->pipe;
1358 	unsigned int p_mask = pipe->ring_size - 1;
1359 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1360 	if (!n)
1361 		return -EFAULT;
1362 
1363 	maxsize = n;
1364 	n += *start;
1365 	while (n > 0) {
1366 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1367 		iter_head++;
1368 		n -= PAGE_SIZE;
1369 	}
1370 
1371 	return maxsize;
1372 }
1373 
1374 static ssize_t pipe_get_pages(struct iov_iter *i,
1375 		   struct page **pages, size_t maxsize, unsigned maxpages,
1376 		   size_t *start)
1377 {
1378 	unsigned int iter_head, npages;
1379 	size_t capacity;
1380 
1381 	if (!maxsize)
1382 		return 0;
1383 
1384 	if (!sanity(i))
1385 		return -EFAULT;
1386 
1387 	data_start(i, &iter_head, start);
1388 	/* Amount of free space: some of this one + all after this one */
1389 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1390 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1391 
1392 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1393 }
1394 
1395 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1396 					  pgoff_t index, unsigned int nr_pages)
1397 {
1398 	XA_STATE(xas, xa, index);
1399 	struct page *page;
1400 	unsigned int ret = 0;
1401 
1402 	rcu_read_lock();
1403 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1404 		if (xas_retry(&xas, page))
1405 			continue;
1406 
1407 		/* Has the page moved or been split? */
1408 		if (unlikely(page != xas_reload(&xas))) {
1409 			xas_reset(&xas);
1410 			continue;
1411 		}
1412 
1413 		pages[ret] = find_subpage(page, xas.xa_index);
1414 		get_page(pages[ret]);
1415 		if (++ret == nr_pages)
1416 			break;
1417 	}
1418 	rcu_read_unlock();
1419 	return ret;
1420 }
1421 
1422 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1423 				     struct page **pages, size_t maxsize,
1424 				     unsigned maxpages, size_t *_start_offset)
1425 {
1426 	unsigned nr, offset;
1427 	pgoff_t index, count;
1428 	size_t size = maxsize, actual;
1429 	loff_t pos;
1430 
1431 	if (!size || !maxpages)
1432 		return 0;
1433 
1434 	pos = i->xarray_start + i->iov_offset;
1435 	index = pos >> PAGE_SHIFT;
1436 	offset = pos & ~PAGE_MASK;
1437 	*_start_offset = offset;
1438 
1439 	count = 1;
1440 	if (size > PAGE_SIZE - offset) {
1441 		size -= PAGE_SIZE - offset;
1442 		count += size >> PAGE_SHIFT;
1443 		size &= ~PAGE_MASK;
1444 		if (size)
1445 			count++;
1446 	}
1447 
1448 	if (count > maxpages)
1449 		count = maxpages;
1450 
1451 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1452 	if (nr == 0)
1453 		return 0;
1454 
1455 	actual = PAGE_SIZE * nr;
1456 	actual -= offset;
1457 	if (nr == count && size > 0) {
1458 		unsigned last_offset = (nr > 1) ? 0 : offset;
1459 		actual -= PAGE_SIZE - (last_offset + size);
1460 	}
1461 	return actual;
1462 }
1463 
1464 ssize_t iov_iter_get_pages(struct iov_iter *i,
1465 		   struct page **pages, size_t maxsize, unsigned maxpages,
1466 		   size_t *start)
1467 {
1468 	if (maxsize > i->count)
1469 		maxsize = i->count;
1470 
1471 	if (unlikely(iov_iter_is_pipe(i)))
1472 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1473 	if (unlikely(iov_iter_is_xarray(i)))
1474 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1475 	if (unlikely(iov_iter_is_discard(i)))
1476 		return -EFAULT;
1477 
1478 	iterate_all_kinds(i, maxsize, v, ({
1479 		unsigned long addr = (unsigned long)v.iov_base;
1480 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1481 		int n;
1482 		int res;
1483 
1484 		if (len > maxpages * PAGE_SIZE)
1485 			len = maxpages * PAGE_SIZE;
1486 		addr &= ~(PAGE_SIZE - 1);
1487 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1488 		res = get_user_pages_fast(addr, n,
1489 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1490 				pages);
1491 		if (unlikely(res < 0))
1492 			return res;
1493 		return (res == n ? len : res * PAGE_SIZE) - *start;
1494 	0;}),({
1495 		/* can't be more than PAGE_SIZE */
1496 		*start = v.bv_offset;
1497 		get_page(*pages = v.bv_page);
1498 		return v.bv_len;
1499 	}),({
1500 		return -EFAULT;
1501 	}),
1502 	0
1503 	)
1504 	return 0;
1505 }
1506 EXPORT_SYMBOL(iov_iter_get_pages);
1507 
1508 static struct page **get_pages_array(size_t n)
1509 {
1510 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1511 }
1512 
1513 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1514 		   struct page ***pages, size_t maxsize,
1515 		   size_t *start)
1516 {
1517 	struct page **p;
1518 	unsigned int iter_head, npages;
1519 	ssize_t n;
1520 
1521 	if (!maxsize)
1522 		return 0;
1523 
1524 	if (!sanity(i))
1525 		return -EFAULT;
1526 
1527 	data_start(i, &iter_head, start);
1528 	/* Amount of free space: some of this one + all after this one */
1529 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1530 	n = npages * PAGE_SIZE - *start;
1531 	if (maxsize > n)
1532 		maxsize = n;
1533 	else
1534 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1535 	p = get_pages_array(npages);
1536 	if (!p)
1537 		return -ENOMEM;
1538 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1539 	if (n > 0)
1540 		*pages = p;
1541 	else
1542 		kvfree(p);
1543 	return n;
1544 }
1545 
1546 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1547 					   struct page ***pages, size_t maxsize,
1548 					   size_t *_start_offset)
1549 {
1550 	struct page **p;
1551 	unsigned nr, offset;
1552 	pgoff_t index, count;
1553 	size_t size = maxsize, actual;
1554 	loff_t pos;
1555 
1556 	if (!size)
1557 		return 0;
1558 
1559 	pos = i->xarray_start + i->iov_offset;
1560 	index = pos >> PAGE_SHIFT;
1561 	offset = pos & ~PAGE_MASK;
1562 	*_start_offset = offset;
1563 
1564 	count = 1;
1565 	if (size > PAGE_SIZE - offset) {
1566 		size -= PAGE_SIZE - offset;
1567 		count += size >> PAGE_SHIFT;
1568 		size &= ~PAGE_MASK;
1569 		if (size)
1570 			count++;
1571 	}
1572 
1573 	p = get_pages_array(count);
1574 	if (!p)
1575 		return -ENOMEM;
1576 	*pages = p;
1577 
1578 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1579 	if (nr == 0)
1580 		return 0;
1581 
1582 	actual = PAGE_SIZE * nr;
1583 	actual -= offset;
1584 	if (nr == count && size > 0) {
1585 		unsigned last_offset = (nr > 1) ? 0 : offset;
1586 		actual -= PAGE_SIZE - (last_offset + size);
1587 	}
1588 	return actual;
1589 }
1590 
1591 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1592 		   struct page ***pages, size_t maxsize,
1593 		   size_t *start)
1594 {
1595 	struct page **p;
1596 
1597 	if (maxsize > i->count)
1598 		maxsize = i->count;
1599 
1600 	if (unlikely(iov_iter_is_pipe(i)))
1601 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1602 	if (unlikely(iov_iter_is_xarray(i)))
1603 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1604 	if (unlikely(iov_iter_is_discard(i)))
1605 		return -EFAULT;
1606 
1607 	iterate_all_kinds(i, maxsize, v, ({
1608 		unsigned long addr = (unsigned long)v.iov_base;
1609 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1610 		int n;
1611 		int res;
1612 
1613 		addr &= ~(PAGE_SIZE - 1);
1614 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1615 		p = get_pages_array(n);
1616 		if (!p)
1617 			return -ENOMEM;
1618 		res = get_user_pages_fast(addr, n,
1619 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1620 		if (unlikely(res < 0)) {
1621 			kvfree(p);
1622 			return res;
1623 		}
1624 		*pages = p;
1625 		return (res == n ? len : res * PAGE_SIZE) - *start;
1626 	0;}),({
1627 		/* can't be more than PAGE_SIZE */
1628 		*start = v.bv_offset;
1629 		*pages = p = get_pages_array(1);
1630 		if (!p)
1631 			return -ENOMEM;
1632 		get_page(*p = v.bv_page);
1633 		return v.bv_len;
1634 	}),({
1635 		return -EFAULT;
1636 	}), 0
1637 	)
1638 	return 0;
1639 }
1640 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1641 
1642 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1643 			       struct iov_iter *i)
1644 {
1645 	char *to = addr;
1646 	__wsum sum, next;
1647 	size_t off = 0;
1648 	sum = *csum;
1649 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1650 		WARN_ON(1);
1651 		return 0;
1652 	}
1653 	iterate_and_advance(i, bytes, v, ({
1654 		next = csum_and_copy_from_user(v.iov_base,
1655 					       (to += v.iov_len) - v.iov_len,
1656 					       v.iov_len);
1657 		if (next) {
1658 			sum = csum_block_add(sum, next, off);
1659 			off += v.iov_len;
1660 		}
1661 		next ? 0 : v.iov_len;
1662 	}), ({
1663 		char *p = kmap_atomic(v.bv_page);
1664 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1665 				      p + v.bv_offset, v.bv_len,
1666 				      sum, off);
1667 		kunmap_atomic(p);
1668 		off += v.bv_len;
1669 	}),({
1670 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1671 				      v.iov_base, v.iov_len,
1672 				      sum, off);
1673 		off += v.iov_len;
1674 	}), ({
1675 		char *p = kmap_atomic(v.bv_page);
1676 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1677 				      p + v.bv_offset, v.bv_len,
1678 				      sum, off);
1679 		kunmap_atomic(p);
1680 		off += v.bv_len;
1681 	})
1682 	)
1683 	*csum = sum;
1684 	return bytes;
1685 }
1686 EXPORT_SYMBOL(csum_and_copy_from_iter);
1687 
1688 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1689 			     struct iov_iter *i)
1690 {
1691 	struct csum_state *csstate = _csstate;
1692 	const char *from = addr;
1693 	__wsum sum, next;
1694 	size_t off;
1695 
1696 	if (unlikely(iov_iter_is_pipe(i)))
1697 		return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1698 
1699 	sum = csstate->csum;
1700 	off = csstate->off;
1701 	if (unlikely(iov_iter_is_discard(i))) {
1702 		WARN_ON(1);	/* for now */
1703 		return 0;
1704 	}
1705 	iterate_and_advance(i, bytes, v, ({
1706 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1707 					     v.iov_base,
1708 					     v.iov_len);
1709 		if (next) {
1710 			sum = csum_block_add(sum, next, off);
1711 			off += v.iov_len;
1712 		}
1713 		next ? 0 : v.iov_len;
1714 	}), ({
1715 		char *p = kmap_atomic(v.bv_page);
1716 		sum = csum_and_memcpy(p + v.bv_offset,
1717 				      (from += v.bv_len) - v.bv_len,
1718 				      v.bv_len, sum, off);
1719 		kunmap_atomic(p);
1720 		off += v.bv_len;
1721 	}),({
1722 		sum = csum_and_memcpy(v.iov_base,
1723 				     (from += v.iov_len) - v.iov_len,
1724 				     v.iov_len, sum, off);
1725 		off += v.iov_len;
1726 	}), ({
1727 		char *p = kmap_atomic(v.bv_page);
1728 		sum = csum_and_memcpy(p + v.bv_offset,
1729 				      (from += v.bv_len) - v.bv_len,
1730 				      v.bv_len, sum, off);
1731 		kunmap_atomic(p);
1732 		off += v.bv_len;
1733 	})
1734 	)
1735 	csstate->csum = sum;
1736 	csstate->off = off;
1737 	return bytes;
1738 }
1739 EXPORT_SYMBOL(csum_and_copy_to_iter);
1740 
1741 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1742 		struct iov_iter *i)
1743 {
1744 #ifdef CONFIG_CRYPTO_HASH
1745 	struct ahash_request *hash = hashp;
1746 	struct scatterlist sg;
1747 	size_t copied;
1748 
1749 	copied = copy_to_iter(addr, bytes, i);
1750 	sg_init_one(&sg, addr, copied);
1751 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1752 	crypto_ahash_update(hash);
1753 	return copied;
1754 #else
1755 	return 0;
1756 #endif
1757 }
1758 EXPORT_SYMBOL(hash_and_copy_to_iter);
1759 
1760 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1761 {
1762 	size_t size = i->count;
1763 	int npages = 0;
1764 
1765 	if (!size)
1766 		return 0;
1767 	if (unlikely(iov_iter_is_discard(i)))
1768 		return 0;
1769 
1770 	if (unlikely(iov_iter_is_pipe(i))) {
1771 		struct pipe_inode_info *pipe = i->pipe;
1772 		unsigned int iter_head;
1773 		size_t off;
1774 
1775 		if (!sanity(i))
1776 			return 0;
1777 
1778 		data_start(i, &iter_head, &off);
1779 		/* some of this one + all after this one */
1780 		npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1781 		if (npages >= maxpages)
1782 			return maxpages;
1783 	} else if (unlikely(iov_iter_is_xarray(i))) {
1784 		unsigned offset;
1785 
1786 		offset = (i->xarray_start + i->iov_offset) & ~PAGE_MASK;
1787 
1788 		npages = 1;
1789 		if (size > PAGE_SIZE - offset) {
1790 			size -= PAGE_SIZE - offset;
1791 			npages += size >> PAGE_SHIFT;
1792 			size &= ~PAGE_MASK;
1793 			if (size)
1794 				npages++;
1795 		}
1796 		if (npages >= maxpages)
1797 			return maxpages;
1798 	} else iterate_all_kinds(i, size, v, ({
1799 		unsigned long p = (unsigned long)v.iov_base;
1800 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1801 			- p / PAGE_SIZE;
1802 		if (npages >= maxpages)
1803 			return maxpages;
1804 	0;}),({
1805 		npages++;
1806 		if (npages >= maxpages)
1807 			return maxpages;
1808 	}),({
1809 		unsigned long p = (unsigned long)v.iov_base;
1810 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1811 			- p / PAGE_SIZE;
1812 		if (npages >= maxpages)
1813 			return maxpages;
1814 	}),
1815 	0
1816 	)
1817 	return npages;
1818 }
1819 EXPORT_SYMBOL(iov_iter_npages);
1820 
1821 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1822 {
1823 	*new = *old;
1824 	if (unlikely(iov_iter_is_pipe(new))) {
1825 		WARN_ON(1);
1826 		return NULL;
1827 	}
1828 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1829 		return NULL;
1830 	if (iov_iter_is_bvec(new))
1831 		return new->bvec = kmemdup(new->bvec,
1832 				    new->nr_segs * sizeof(struct bio_vec),
1833 				    flags);
1834 	else
1835 		/* iovec and kvec have identical layout */
1836 		return new->iov = kmemdup(new->iov,
1837 				   new->nr_segs * sizeof(struct iovec),
1838 				   flags);
1839 }
1840 EXPORT_SYMBOL(dup_iter);
1841 
1842 static int copy_compat_iovec_from_user(struct iovec *iov,
1843 		const struct iovec __user *uvec, unsigned long nr_segs)
1844 {
1845 	const struct compat_iovec __user *uiov =
1846 		(const struct compat_iovec __user *)uvec;
1847 	int ret = -EFAULT, i;
1848 
1849 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1850 		return -EFAULT;
1851 
1852 	for (i = 0; i < nr_segs; i++) {
1853 		compat_uptr_t buf;
1854 		compat_ssize_t len;
1855 
1856 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1857 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1858 
1859 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1860 		if (len < 0) {
1861 			ret = -EINVAL;
1862 			goto uaccess_end;
1863 		}
1864 		iov[i].iov_base = compat_ptr(buf);
1865 		iov[i].iov_len = len;
1866 	}
1867 
1868 	ret = 0;
1869 uaccess_end:
1870 	user_access_end();
1871 	return ret;
1872 }
1873 
1874 static int copy_iovec_from_user(struct iovec *iov,
1875 		const struct iovec __user *uvec, unsigned long nr_segs)
1876 {
1877 	unsigned long seg;
1878 
1879 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1880 		return -EFAULT;
1881 	for (seg = 0; seg < nr_segs; seg++) {
1882 		if ((ssize_t)iov[seg].iov_len < 0)
1883 			return -EINVAL;
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1890 		unsigned long nr_segs, unsigned long fast_segs,
1891 		struct iovec *fast_iov, bool compat)
1892 {
1893 	struct iovec *iov = fast_iov;
1894 	int ret;
1895 
1896 	/*
1897 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1898 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1899 	 * traditionally returned zero for zero segments, so...
1900 	 */
1901 	if (nr_segs == 0)
1902 		return iov;
1903 	if (nr_segs > UIO_MAXIOV)
1904 		return ERR_PTR(-EINVAL);
1905 	if (nr_segs > fast_segs) {
1906 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1907 		if (!iov)
1908 			return ERR_PTR(-ENOMEM);
1909 	}
1910 
1911 	if (compat)
1912 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1913 	else
1914 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1915 	if (ret) {
1916 		if (iov != fast_iov)
1917 			kfree(iov);
1918 		return ERR_PTR(ret);
1919 	}
1920 
1921 	return iov;
1922 }
1923 
1924 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1925 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1926 		 struct iov_iter *i, bool compat)
1927 {
1928 	ssize_t total_len = 0;
1929 	unsigned long seg;
1930 	struct iovec *iov;
1931 
1932 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1933 	if (IS_ERR(iov)) {
1934 		*iovp = NULL;
1935 		return PTR_ERR(iov);
1936 	}
1937 
1938 	/*
1939 	 * According to the Single Unix Specification we should return EINVAL if
1940 	 * an element length is < 0 when cast to ssize_t or if the total length
1941 	 * would overflow the ssize_t return value of the system call.
1942 	 *
1943 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1944 	 * overflow case.
1945 	 */
1946 	for (seg = 0; seg < nr_segs; seg++) {
1947 		ssize_t len = (ssize_t)iov[seg].iov_len;
1948 
1949 		if (!access_ok(iov[seg].iov_base, len)) {
1950 			if (iov != *iovp)
1951 				kfree(iov);
1952 			*iovp = NULL;
1953 			return -EFAULT;
1954 		}
1955 
1956 		if (len > MAX_RW_COUNT - total_len) {
1957 			len = MAX_RW_COUNT - total_len;
1958 			iov[seg].iov_len = len;
1959 		}
1960 		total_len += len;
1961 	}
1962 
1963 	iov_iter_init(i, type, iov, nr_segs, total_len);
1964 	if (iov == *iovp)
1965 		*iovp = NULL;
1966 	else
1967 		*iovp = iov;
1968 	return total_len;
1969 }
1970 
1971 /**
1972  * import_iovec() - Copy an array of &struct iovec from userspace
1973  *     into the kernel, check that it is valid, and initialize a new
1974  *     &struct iov_iter iterator to access it.
1975  *
1976  * @type: One of %READ or %WRITE.
1977  * @uvec: Pointer to the userspace array.
1978  * @nr_segs: Number of elements in userspace array.
1979  * @fast_segs: Number of elements in @iov.
1980  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1981  *     on-stack) kernel array.
1982  * @i: Pointer to iterator that will be initialized on success.
1983  *
1984  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1985  * then this function places %NULL in *@iov on return. Otherwise, a new
1986  * array will be allocated and the result placed in *@iov. This means that
1987  * the caller may call kfree() on *@iov regardless of whether the small
1988  * on-stack array was used or not (and regardless of whether this function
1989  * returns an error or not).
1990  *
1991  * Return: Negative error code on error, bytes imported on success
1992  */
1993 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1994 		 unsigned nr_segs, unsigned fast_segs,
1995 		 struct iovec **iovp, struct iov_iter *i)
1996 {
1997 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1998 			      in_compat_syscall());
1999 }
2000 EXPORT_SYMBOL(import_iovec);
2001 
2002 int import_single_range(int rw, void __user *buf, size_t len,
2003 		 struct iovec *iov, struct iov_iter *i)
2004 {
2005 	if (len > MAX_RW_COUNT)
2006 		len = MAX_RW_COUNT;
2007 	if (unlikely(!access_ok(buf, len)))
2008 		return -EFAULT;
2009 
2010 	iov->iov_base = buf;
2011 	iov->iov_len = len;
2012 	iov_iter_init(i, rw, iov, 1, len);
2013 	return 0;
2014 }
2015 EXPORT_SYMBOL(import_single_range);
2016