xref: /openbmc/linux/lib/iov_iter.c (revision 47b7fcae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
21 	size_t __maybe_unused off = 0;				\
22 	len = n;						\
23 	base = __p + i->iov_offset;				\
24 	len -= (STEP);						\
25 	i->iov_offset += len;					\
26 	n = len;						\
27 }
28 
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
31 	size_t off = 0;						\
32 	size_t skip = i->iov_offset;				\
33 	do {							\
34 		len = min(n, __p->iov_len - skip);		\
35 		if (likely(len)) {				\
36 			base = __p->iov_base + skip;		\
37 			len -= (STEP);				\
38 			off += len;				\
39 			skip += len;				\
40 			n -= len;				\
41 			if (skip < __p->iov_len)		\
42 				break;				\
43 		}						\
44 		__p++;						\
45 		skip = 0;					\
46 	} while (n);						\
47 	i->iov_offset = skip;					\
48 	n = off;						\
49 }
50 
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
52 	size_t off = 0;						\
53 	unsigned skip = i->iov_offset;				\
54 	while (n) {						\
55 		unsigned offset = p->bv_offset + skip;		\
56 		unsigned left;					\
57 		void *kaddr = kmap_local_page(p->bv_page +	\
58 					offset / PAGE_SIZE);	\
59 		base = kaddr + offset % PAGE_SIZE;		\
60 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
61 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
62 		left = (STEP);					\
63 		kunmap_local(kaddr);				\
64 		len -= left;					\
65 		off += len;					\
66 		skip += len;					\
67 		if (skip == p->bv_len) {			\
68 			skip = 0;				\
69 			p++;					\
70 		}						\
71 		n -= len;					\
72 		if (left)					\
73 			break;					\
74 	}							\
75 	i->iov_offset = skip;					\
76 	n = off;						\
77 }
78 
79 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
80 	__label__ __out;					\
81 	size_t __off = 0;					\
82 	struct folio *folio;					\
83 	loff_t start = i->xarray_start + i->iov_offset;		\
84 	pgoff_t index = start / PAGE_SIZE;			\
85 	XA_STATE(xas, i->xarray, index);			\
86 								\
87 	len = PAGE_SIZE - offset_in_page(start);		\
88 	rcu_read_lock();					\
89 	xas_for_each(&xas, folio, ULONG_MAX) {			\
90 		unsigned left;					\
91 		size_t offset;					\
92 		if (xas_retry(&xas, folio))			\
93 			continue;				\
94 		if (WARN_ON(xa_is_value(folio)))		\
95 			break;					\
96 		if (WARN_ON(folio_test_hugetlb(folio)))		\
97 			break;					\
98 		offset = offset_in_folio(folio, start + __off);	\
99 		while (offset < folio_size(folio)) {		\
100 			base = kmap_local_folio(folio, offset);	\
101 			len = min(n, len);			\
102 			left = (STEP);				\
103 			kunmap_local(base);			\
104 			len -= left;				\
105 			__off += len;				\
106 			n -= len;				\
107 			if (left || n == 0)			\
108 				goto __out;			\
109 			offset += len;				\
110 			len = PAGE_SIZE;			\
111 		}						\
112 	}							\
113 __out:								\
114 	rcu_read_unlock();					\
115 	i->iov_offset += __off;					\
116 	n = __off;						\
117 }
118 
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
120 	if (unlikely(i->count < n))				\
121 		n = i->count;					\
122 	if (likely(n)) {					\
123 		if (likely(iter_is_ubuf(i))) {			\
124 			void __user *base;			\
125 			size_t len;				\
126 			iterate_buf(i, n, base, len, off,	\
127 						i->ubuf, (I)) 	\
128 		} else if (likely(iter_is_iovec(i))) {		\
129 			const struct iovec *iov = i->iov;	\
130 			void __user *base;			\
131 			size_t len;				\
132 			iterate_iovec(i, n, base, len, off,	\
133 						iov, (I))	\
134 			i->nr_segs -= iov - i->iov;		\
135 			i->iov = iov;				\
136 		} else if (iov_iter_is_bvec(i)) {		\
137 			const struct bio_vec *bvec = i->bvec;	\
138 			void *base;				\
139 			size_t len;				\
140 			iterate_bvec(i, n, base, len, off,	\
141 						bvec, (K))	\
142 			i->nr_segs -= bvec - i->bvec;		\
143 			i->bvec = bvec;				\
144 		} else if (iov_iter_is_kvec(i)) {		\
145 			const struct kvec *kvec = i->kvec;	\
146 			void *base;				\
147 			size_t len;				\
148 			iterate_iovec(i, n, base, len, off,	\
149 						kvec, (K))	\
150 			i->nr_segs -= kvec - i->kvec;		\
151 			i->kvec = kvec;				\
152 		} else if (iov_iter_is_xarray(i)) {		\
153 			void *base;				\
154 			size_t len;				\
155 			iterate_xarray(i, n, base, len, off,	\
156 							(K))	\
157 		}						\
158 		i->count -= n;					\
159 	}							\
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163 
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166 	if (should_fail_usercopy())
167 		return n;
168 	if (access_ok(to, n)) {
169 		instrument_copy_to_user(to, from, n);
170 		n = raw_copy_to_user(to, from, n);
171 	}
172 	return n;
173 }
174 
175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177 	if (should_fail_usercopy())
178 		return n;
179 	if (access_ok(from, n)) {
180 		instrument_copy_from_user(to, from, n);
181 		n = raw_copy_from_user(to, from, n);
182 	}
183 	return n;
184 }
185 
186 static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
187 					   unsigned int slot)
188 {
189 	return &pipe->bufs[slot & (pipe->ring_size - 1)];
190 }
191 
192 #ifdef PIPE_PARANOIA
193 static bool sanity(const struct iov_iter *i)
194 {
195 	struct pipe_inode_info *pipe = i->pipe;
196 	unsigned int p_head = pipe->head;
197 	unsigned int p_tail = pipe->tail;
198 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
199 	unsigned int i_head = i->head;
200 	unsigned int idx;
201 
202 	if (i->iov_offset) {
203 		struct pipe_buffer *p;
204 		if (unlikely(p_occupancy == 0))
205 			goto Bad;	// pipe must be non-empty
206 		if (unlikely(i_head != p_head - 1))
207 			goto Bad;	// must be at the last buffer...
208 
209 		p = pipe_buf(pipe, i_head);
210 		if (unlikely(p->offset + p->len != i->iov_offset))
211 			goto Bad;	// ... at the end of segment
212 	} else {
213 		if (i_head != p_head)
214 			goto Bad;	// must be right after the last buffer
215 	}
216 	return true;
217 Bad:
218 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
219 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
220 			p_head, p_tail, pipe->ring_size);
221 	for (idx = 0; idx < pipe->ring_size; idx++)
222 		printk(KERN_ERR "[%p %p %d %d]\n",
223 			pipe->bufs[idx].ops,
224 			pipe->bufs[idx].page,
225 			pipe->bufs[idx].offset,
226 			pipe->bufs[idx].len);
227 	WARN_ON(1);
228 	return false;
229 }
230 #else
231 #define sanity(i) true
232 #endif
233 
234 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
235 {
236 	struct page *page = alloc_page(GFP_USER);
237 	if (page) {
238 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
239 		*buf = (struct pipe_buffer) {
240 			.ops = &default_pipe_buf_ops,
241 			.page = page,
242 			.offset = 0,
243 			.len = size
244 		};
245 	}
246 	return page;
247 }
248 
249 static void push_page(struct pipe_inode_info *pipe, struct page *page,
250 			unsigned int offset, unsigned int size)
251 {
252 	struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
253 	*buf = (struct pipe_buffer) {
254 		.ops = &page_cache_pipe_buf_ops,
255 		.page = page,
256 		.offset = offset,
257 		.len = size
258 	};
259 	get_page(page);
260 }
261 
262 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
263 			 struct iov_iter *i)
264 {
265 	struct pipe_inode_info *pipe = i->pipe;
266 	unsigned int head = pipe->head;
267 
268 	if (unlikely(bytes > i->count))
269 		bytes = i->count;
270 
271 	if (unlikely(!bytes))
272 		return 0;
273 
274 	if (!sanity(i))
275 		return 0;
276 
277 	if (offset && i->iov_offset == offset) { // could we merge it?
278 		struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
279 		if (buf->page == page) {
280 			buf->len += bytes;
281 			i->iov_offset += bytes;
282 			i->count -= bytes;
283 			return bytes;
284 		}
285 	}
286 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
287 		return 0;
288 
289 	push_page(pipe, page, offset, bytes);
290 	i->iov_offset = offset + bytes;
291 	i->head = head;
292 	i->count -= bytes;
293 	return bytes;
294 }
295 
296 /*
297  * fault_in_iov_iter_readable - fault in iov iterator for reading
298  * @i: iterator
299  * @size: maximum length
300  *
301  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
302  * @size.  For each iovec, fault in each page that constitutes the iovec.
303  *
304  * Returns the number of bytes not faulted in (like copy_to_user() and
305  * copy_from_user()).
306  *
307  * Always returns 0 for non-userspace iterators.
308  */
309 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
310 {
311 	if (iter_is_ubuf(i)) {
312 		size_t n = min(size, iov_iter_count(i));
313 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
314 		return size - n;
315 	} else if (iter_is_iovec(i)) {
316 		size_t count = min(size, iov_iter_count(i));
317 		const struct iovec *p;
318 		size_t skip;
319 
320 		size -= count;
321 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
322 			size_t len = min(count, p->iov_len - skip);
323 			size_t ret;
324 
325 			if (unlikely(!len))
326 				continue;
327 			ret = fault_in_readable(p->iov_base + skip, len);
328 			count -= len - ret;
329 			if (ret)
330 				break;
331 		}
332 		return count + size;
333 	}
334 	return 0;
335 }
336 EXPORT_SYMBOL(fault_in_iov_iter_readable);
337 
338 /*
339  * fault_in_iov_iter_writeable - fault in iov iterator for writing
340  * @i: iterator
341  * @size: maximum length
342  *
343  * Faults in the iterator using get_user_pages(), i.e., without triggering
344  * hardware page faults.  This is primarily useful when we already know that
345  * some or all of the pages in @i aren't in memory.
346  *
347  * Returns the number of bytes not faulted in, like copy_to_user() and
348  * copy_from_user().
349  *
350  * Always returns 0 for non-user-space iterators.
351  */
352 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
353 {
354 	if (iter_is_ubuf(i)) {
355 		size_t n = min(size, iov_iter_count(i));
356 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
357 		return size - n;
358 	} else if (iter_is_iovec(i)) {
359 		size_t count = min(size, iov_iter_count(i));
360 		const struct iovec *p;
361 		size_t skip;
362 
363 		size -= count;
364 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
365 			size_t len = min(count, p->iov_len - skip);
366 			size_t ret;
367 
368 			if (unlikely(!len))
369 				continue;
370 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
371 			count -= len - ret;
372 			if (ret)
373 				break;
374 		}
375 		return count + size;
376 	}
377 	return 0;
378 }
379 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
380 
381 void iov_iter_init(struct iov_iter *i, unsigned int direction,
382 			const struct iovec *iov, unsigned long nr_segs,
383 			size_t count)
384 {
385 	WARN_ON(direction & ~(READ | WRITE));
386 	*i = (struct iov_iter) {
387 		.iter_type = ITER_IOVEC,
388 		.nofault = false,
389 		.user_backed = true,
390 		.data_source = direction,
391 		.iov = iov,
392 		.nr_segs = nr_segs,
393 		.iov_offset = 0,
394 		.count = count
395 	};
396 }
397 EXPORT_SYMBOL(iov_iter_init);
398 
399 static inline bool allocated(struct pipe_buffer *buf)
400 {
401 	return buf->ops == &default_pipe_buf_ops;
402 }
403 
404 static inline void data_start(const struct iov_iter *i,
405 			      unsigned int *iter_headp, size_t *offp)
406 {
407 	unsigned int iter_head = i->head;
408 	size_t off = i->iov_offset;
409 
410 	if (off && (!allocated(pipe_buf(i->pipe, iter_head)) ||
411 		    off == PAGE_SIZE)) {
412 		iter_head++;
413 		off = 0;
414 	}
415 	*iter_headp = iter_head;
416 	*offp = off;
417 }
418 
419 static size_t push_pipe(struct iov_iter *i, size_t size,
420 			int *iter_headp, size_t *offp)
421 {
422 	struct pipe_inode_info *pipe = i->pipe;
423 	unsigned int iter_head;
424 	size_t off;
425 	ssize_t left;
426 
427 	if (unlikely(size > i->count))
428 		size = i->count;
429 	if (unlikely(!size))
430 		return 0;
431 
432 	left = size;
433 	data_start(i, &iter_head, &off);
434 	*iter_headp = iter_head;
435 	*offp = off;
436 	if (off) {
437 		struct pipe_buffer *buf = pipe_buf(pipe, iter_head);
438 
439 		left -= PAGE_SIZE - off;
440 		if (left <= 0) {
441 			buf->len += size;
442 			return size;
443 		}
444 		buf->len = PAGE_SIZE;
445 	}
446 	while (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
447 		struct page *page = push_anon(pipe,
448 					      min_t(ssize_t, left, PAGE_SIZE));
449 		if (!page)
450 			break;
451 
452 		left -= PAGE_SIZE;
453 		if (left <= 0)
454 			return size;
455 	}
456 	return size - left;
457 }
458 
459 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
460 				struct iov_iter *i)
461 {
462 	struct pipe_inode_info *pipe = i->pipe;
463 	unsigned int p_mask = pipe->ring_size - 1;
464 	unsigned int i_head;
465 	size_t n, off;
466 
467 	if (!sanity(i))
468 		return 0;
469 
470 	bytes = n = push_pipe(i, bytes, &i_head, &off);
471 	if (unlikely(!n))
472 		return 0;
473 	do {
474 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
475 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
476 		i->head = i_head;
477 		i->iov_offset = off + chunk;
478 		n -= chunk;
479 		addr += chunk;
480 		off = 0;
481 		i_head++;
482 	} while (n);
483 	i->count -= bytes;
484 	return bytes;
485 }
486 
487 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
488 			      __wsum sum, size_t off)
489 {
490 	__wsum next = csum_partial_copy_nocheck(from, to, len);
491 	return csum_block_add(sum, next, off);
492 }
493 
494 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
495 					 struct iov_iter *i, __wsum *sump)
496 {
497 	struct pipe_inode_info *pipe = i->pipe;
498 	unsigned int p_mask = pipe->ring_size - 1;
499 	__wsum sum = *sump;
500 	size_t off = 0;
501 	unsigned int i_head;
502 	size_t r;
503 
504 	if (!sanity(i))
505 		return 0;
506 
507 	bytes = push_pipe(i, bytes, &i_head, &r);
508 	while (bytes) {
509 		size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
510 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
511 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
512 		kunmap_local(p);
513 		i->head = i_head;
514 		i->iov_offset = r + chunk;
515 		bytes -= chunk;
516 		off += chunk;
517 		r = 0;
518 		i_head++;
519 	}
520 	*sump = sum;
521 	i->count -= off;
522 	return off;
523 }
524 
525 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
526 {
527 	if (unlikely(iov_iter_is_pipe(i)))
528 		return copy_pipe_to_iter(addr, bytes, i);
529 	if (user_backed_iter(i))
530 		might_fault();
531 	iterate_and_advance(i, bytes, base, len, off,
532 		copyout(base, addr + off, len),
533 		memcpy(base, addr + off, len)
534 	)
535 
536 	return bytes;
537 }
538 EXPORT_SYMBOL(_copy_to_iter);
539 
540 #ifdef CONFIG_ARCH_HAS_COPY_MC
541 static int copyout_mc(void __user *to, const void *from, size_t n)
542 {
543 	if (access_ok(to, n)) {
544 		instrument_copy_to_user(to, from, n);
545 		n = copy_mc_to_user((__force void *) to, from, n);
546 	}
547 	return n;
548 }
549 
550 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
551 				struct iov_iter *i)
552 {
553 	struct pipe_inode_info *pipe = i->pipe;
554 	unsigned int p_mask = pipe->ring_size - 1;
555 	unsigned int i_head;
556 	unsigned int valid = pipe->head;
557 	size_t n, off, xfer = 0;
558 
559 	if (!sanity(i))
560 		return 0;
561 
562 	n = push_pipe(i, bytes, &i_head, &off);
563 	while (n) {
564 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
565 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
566 		unsigned long rem;
567 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
568 		chunk -= rem;
569 		kunmap_local(p);
570 		if (chunk) {
571 			i->head = i_head;
572 			i->iov_offset = off + chunk;
573 			xfer += chunk;
574 			valid = i_head + 1;
575 		}
576 		if (rem) {
577 			pipe->bufs[i_head & p_mask].len -= rem;
578 			pipe_discard_from(pipe, valid);
579 			break;
580 		}
581 		n -= chunk;
582 		off = 0;
583 		i_head++;
584 	}
585 	i->count -= xfer;
586 	return xfer;
587 }
588 
589 /**
590  * _copy_mc_to_iter - copy to iter with source memory error exception handling
591  * @addr: source kernel address
592  * @bytes: total transfer length
593  * @i: destination iterator
594  *
595  * The pmem driver deploys this for the dax operation
596  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
597  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
598  * successfully copied.
599  *
600  * The main differences between this and typical _copy_to_iter().
601  *
602  * * Typical tail/residue handling after a fault retries the copy
603  *   byte-by-byte until the fault happens again. Re-triggering machine
604  *   checks is potentially fatal so the implementation uses source
605  *   alignment and poison alignment assumptions to avoid re-triggering
606  *   hardware exceptions.
607  *
608  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
609  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
610  *   a short copy.
611  *
612  * Return: number of bytes copied (may be %0)
613  */
614 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
615 {
616 	if (unlikely(iov_iter_is_pipe(i)))
617 		return copy_mc_pipe_to_iter(addr, bytes, i);
618 	if (user_backed_iter(i))
619 		might_fault();
620 	__iterate_and_advance(i, bytes, base, len, off,
621 		copyout_mc(base, addr + off, len),
622 		copy_mc_to_kernel(base, addr + off, len)
623 	)
624 
625 	return bytes;
626 }
627 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
628 #endif /* CONFIG_ARCH_HAS_COPY_MC */
629 
630 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
631 {
632 	if (unlikely(iov_iter_is_pipe(i))) {
633 		WARN_ON(1);
634 		return 0;
635 	}
636 	if (user_backed_iter(i))
637 		might_fault();
638 	iterate_and_advance(i, bytes, base, len, off,
639 		copyin(addr + off, base, len),
640 		memcpy(addr + off, base, len)
641 	)
642 
643 	return bytes;
644 }
645 EXPORT_SYMBOL(_copy_from_iter);
646 
647 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
648 {
649 	if (unlikely(iov_iter_is_pipe(i))) {
650 		WARN_ON(1);
651 		return 0;
652 	}
653 	iterate_and_advance(i, bytes, base, len, off,
654 		__copy_from_user_inatomic_nocache(addr + off, base, len),
655 		memcpy(addr + off, base, len)
656 	)
657 
658 	return bytes;
659 }
660 EXPORT_SYMBOL(_copy_from_iter_nocache);
661 
662 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
663 /**
664  * _copy_from_iter_flushcache - write destination through cpu cache
665  * @addr: destination kernel address
666  * @bytes: total transfer length
667  * @i: source iterator
668  *
669  * The pmem driver arranges for filesystem-dax to use this facility via
670  * dax_copy_from_iter() for ensuring that writes to persistent memory
671  * are flushed through the CPU cache. It is differentiated from
672  * _copy_from_iter_nocache() in that guarantees all data is flushed for
673  * all iterator types. The _copy_from_iter_nocache() only attempts to
674  * bypass the cache for the ITER_IOVEC case, and on some archs may use
675  * instructions that strand dirty-data in the cache.
676  *
677  * Return: number of bytes copied (may be %0)
678  */
679 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
680 {
681 	if (unlikely(iov_iter_is_pipe(i))) {
682 		WARN_ON(1);
683 		return 0;
684 	}
685 	iterate_and_advance(i, bytes, base, len, off,
686 		__copy_from_user_flushcache(addr + off, base, len),
687 		memcpy_flushcache(addr + off, base, len)
688 	)
689 
690 	return bytes;
691 }
692 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
693 #endif
694 
695 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
696 {
697 	struct page *head;
698 	size_t v = n + offset;
699 
700 	/*
701 	 * The general case needs to access the page order in order
702 	 * to compute the page size.
703 	 * However, we mostly deal with order-0 pages and thus can
704 	 * avoid a possible cache line miss for requests that fit all
705 	 * page orders.
706 	 */
707 	if (n <= v && v <= PAGE_SIZE)
708 		return true;
709 
710 	head = compound_head(page);
711 	v += (page - head) << PAGE_SHIFT;
712 
713 	if (likely(n <= v && v <= (page_size(head))))
714 		return true;
715 	WARN_ON(1);
716 	return false;
717 }
718 
719 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
720 			 struct iov_iter *i)
721 {
722 	if (unlikely(iov_iter_is_pipe(i))) {
723 		return copy_page_to_iter_pipe(page, offset, bytes, i);
724 	} else {
725 		void *kaddr = kmap_local_page(page);
726 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
727 		kunmap_local(kaddr);
728 		return wanted;
729 	}
730 }
731 
732 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
733 			 struct iov_iter *i)
734 {
735 	size_t res = 0;
736 	if (unlikely(!page_copy_sane(page, offset, bytes)))
737 		return 0;
738 	page += offset / PAGE_SIZE; // first subpage
739 	offset %= PAGE_SIZE;
740 	while (1) {
741 		size_t n = __copy_page_to_iter(page, offset,
742 				min(bytes, (size_t)PAGE_SIZE - offset), i);
743 		res += n;
744 		bytes -= n;
745 		if (!bytes || !n)
746 			break;
747 		offset += n;
748 		if (offset == PAGE_SIZE) {
749 			page++;
750 			offset = 0;
751 		}
752 	}
753 	return res;
754 }
755 EXPORT_SYMBOL(copy_page_to_iter);
756 
757 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
758 			 struct iov_iter *i)
759 {
760 	if (page_copy_sane(page, offset, bytes)) {
761 		void *kaddr = kmap_local_page(page);
762 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
763 		kunmap_local(kaddr);
764 		return wanted;
765 	}
766 	return 0;
767 }
768 EXPORT_SYMBOL(copy_page_from_iter);
769 
770 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
771 {
772 	struct pipe_inode_info *pipe = i->pipe;
773 	unsigned int p_mask = pipe->ring_size - 1;
774 	unsigned int i_head;
775 	size_t n, off;
776 
777 	if (!sanity(i))
778 		return 0;
779 
780 	bytes = n = push_pipe(i, bytes, &i_head, &off);
781 	if (unlikely(!n))
782 		return 0;
783 
784 	do {
785 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
786 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
787 		memset(p + off, 0, chunk);
788 		kunmap_local(p);
789 		i->head = i_head;
790 		i->iov_offset = off + chunk;
791 		n -= chunk;
792 		off = 0;
793 		i_head++;
794 	} while (n);
795 	i->count -= bytes;
796 	return bytes;
797 }
798 
799 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
800 {
801 	if (unlikely(iov_iter_is_pipe(i)))
802 		return pipe_zero(bytes, i);
803 	iterate_and_advance(i, bytes, base, len, count,
804 		clear_user(base, len),
805 		memset(base, 0, len)
806 	)
807 
808 	return bytes;
809 }
810 EXPORT_SYMBOL(iov_iter_zero);
811 
812 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
813 				  struct iov_iter *i)
814 {
815 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
816 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
817 		kunmap_atomic(kaddr);
818 		return 0;
819 	}
820 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
821 		kunmap_atomic(kaddr);
822 		WARN_ON(1);
823 		return 0;
824 	}
825 	iterate_and_advance(i, bytes, base, len, off,
826 		copyin(p + off, base, len),
827 		memcpy(p + off, base, len)
828 	)
829 	kunmap_atomic(kaddr);
830 	return bytes;
831 }
832 EXPORT_SYMBOL(copy_page_from_iter_atomic);
833 
834 static inline void pipe_truncate(struct iov_iter *i)
835 {
836 	struct pipe_inode_info *pipe = i->pipe;
837 	unsigned int p_tail = pipe->tail;
838 	unsigned int p_head = pipe->head;
839 	unsigned int p_mask = pipe->ring_size - 1;
840 
841 	if (!pipe_empty(p_head, p_tail)) {
842 		struct pipe_buffer *buf;
843 		unsigned int i_head = i->head;
844 		size_t off = i->iov_offset;
845 
846 		if (off) {
847 			buf = &pipe->bufs[i_head & p_mask];
848 			buf->len = off - buf->offset;
849 			i_head++;
850 		}
851 		while (p_head != i_head) {
852 			p_head--;
853 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
854 		}
855 
856 		pipe->head = p_head;
857 	}
858 }
859 
860 static void pipe_advance(struct iov_iter *i, size_t size)
861 {
862 	struct pipe_inode_info *pipe = i->pipe;
863 	if (size) {
864 		struct pipe_buffer *buf;
865 		unsigned int p_mask = pipe->ring_size - 1;
866 		unsigned int i_head = i->head;
867 		size_t off = i->iov_offset, left = size;
868 
869 		if (off) /* make it relative to the beginning of buffer */
870 			left += off - pipe->bufs[i_head & p_mask].offset;
871 		while (1) {
872 			buf = &pipe->bufs[i_head & p_mask];
873 			if (left <= buf->len)
874 				break;
875 			left -= buf->len;
876 			i_head++;
877 		}
878 		i->head = i_head;
879 		i->iov_offset = buf->offset + left;
880 	}
881 	i->count -= size;
882 	/* ... and discard everything past that point */
883 	pipe_truncate(i);
884 }
885 
886 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
887 {
888 	const struct bio_vec *bvec, *end;
889 
890 	if (!i->count)
891 		return;
892 	i->count -= size;
893 
894 	size += i->iov_offset;
895 
896 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
897 		if (likely(size < bvec->bv_len))
898 			break;
899 		size -= bvec->bv_len;
900 	}
901 	i->iov_offset = size;
902 	i->nr_segs -= bvec - i->bvec;
903 	i->bvec = bvec;
904 }
905 
906 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
907 {
908 	const struct iovec *iov, *end;
909 
910 	if (!i->count)
911 		return;
912 	i->count -= size;
913 
914 	size += i->iov_offset; // from beginning of current segment
915 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
916 		if (likely(size < iov->iov_len))
917 			break;
918 		size -= iov->iov_len;
919 	}
920 	i->iov_offset = size;
921 	i->nr_segs -= iov - i->iov;
922 	i->iov = iov;
923 }
924 
925 void iov_iter_advance(struct iov_iter *i, size_t size)
926 {
927 	if (unlikely(i->count < size))
928 		size = i->count;
929 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
930 		i->iov_offset += size;
931 		i->count -= size;
932 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
933 		/* iovec and kvec have identical layouts */
934 		iov_iter_iovec_advance(i, size);
935 	} else if (iov_iter_is_bvec(i)) {
936 		iov_iter_bvec_advance(i, size);
937 	} else if (iov_iter_is_pipe(i)) {
938 		pipe_advance(i, size);
939 	} else if (iov_iter_is_discard(i)) {
940 		i->count -= size;
941 	}
942 }
943 EXPORT_SYMBOL(iov_iter_advance);
944 
945 void iov_iter_revert(struct iov_iter *i, size_t unroll)
946 {
947 	if (!unroll)
948 		return;
949 	if (WARN_ON(unroll > MAX_RW_COUNT))
950 		return;
951 	i->count += unroll;
952 	if (unlikely(iov_iter_is_pipe(i))) {
953 		struct pipe_inode_info *pipe = i->pipe;
954 		unsigned int p_mask = pipe->ring_size - 1;
955 		unsigned int i_head = i->head;
956 		size_t off = i->iov_offset;
957 		while (1) {
958 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
959 			size_t n = off - b->offset;
960 			if (unroll < n) {
961 				off -= unroll;
962 				break;
963 			}
964 			unroll -= n;
965 			if (!unroll && i_head == i->start_head) {
966 				off = 0;
967 				break;
968 			}
969 			i_head--;
970 			b = &pipe->bufs[i_head & p_mask];
971 			off = b->offset + b->len;
972 		}
973 		i->iov_offset = off;
974 		i->head = i_head;
975 		pipe_truncate(i);
976 		return;
977 	}
978 	if (unlikely(iov_iter_is_discard(i)))
979 		return;
980 	if (unroll <= i->iov_offset) {
981 		i->iov_offset -= unroll;
982 		return;
983 	}
984 	unroll -= i->iov_offset;
985 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
986 		BUG(); /* We should never go beyond the start of the specified
987 			* range since we might then be straying into pages that
988 			* aren't pinned.
989 			*/
990 	} else if (iov_iter_is_bvec(i)) {
991 		const struct bio_vec *bvec = i->bvec;
992 		while (1) {
993 			size_t n = (--bvec)->bv_len;
994 			i->nr_segs++;
995 			if (unroll <= n) {
996 				i->bvec = bvec;
997 				i->iov_offset = n - unroll;
998 				return;
999 			}
1000 			unroll -= n;
1001 		}
1002 	} else { /* same logics for iovec and kvec */
1003 		const struct iovec *iov = i->iov;
1004 		while (1) {
1005 			size_t n = (--iov)->iov_len;
1006 			i->nr_segs++;
1007 			if (unroll <= n) {
1008 				i->iov = iov;
1009 				i->iov_offset = n - unroll;
1010 				return;
1011 			}
1012 			unroll -= n;
1013 		}
1014 	}
1015 }
1016 EXPORT_SYMBOL(iov_iter_revert);
1017 
1018 /*
1019  * Return the count of just the current iov_iter segment.
1020  */
1021 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1022 {
1023 	if (i->nr_segs > 1) {
1024 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1025 			return min(i->count, i->iov->iov_len - i->iov_offset);
1026 		if (iov_iter_is_bvec(i))
1027 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1028 	}
1029 	return i->count;
1030 }
1031 EXPORT_SYMBOL(iov_iter_single_seg_count);
1032 
1033 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1034 			const struct kvec *kvec, unsigned long nr_segs,
1035 			size_t count)
1036 {
1037 	WARN_ON(direction & ~(READ | WRITE));
1038 	*i = (struct iov_iter){
1039 		.iter_type = ITER_KVEC,
1040 		.data_source = direction,
1041 		.kvec = kvec,
1042 		.nr_segs = nr_segs,
1043 		.iov_offset = 0,
1044 		.count = count
1045 	};
1046 }
1047 EXPORT_SYMBOL(iov_iter_kvec);
1048 
1049 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1050 			const struct bio_vec *bvec, unsigned long nr_segs,
1051 			size_t count)
1052 {
1053 	WARN_ON(direction & ~(READ | WRITE));
1054 	*i = (struct iov_iter){
1055 		.iter_type = ITER_BVEC,
1056 		.data_source = direction,
1057 		.bvec = bvec,
1058 		.nr_segs = nr_segs,
1059 		.iov_offset = 0,
1060 		.count = count
1061 	};
1062 }
1063 EXPORT_SYMBOL(iov_iter_bvec);
1064 
1065 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1066 			struct pipe_inode_info *pipe,
1067 			size_t count)
1068 {
1069 	BUG_ON(direction != READ);
1070 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1071 	*i = (struct iov_iter){
1072 		.iter_type = ITER_PIPE,
1073 		.data_source = false,
1074 		.pipe = pipe,
1075 		.head = pipe->head,
1076 		.start_head = pipe->head,
1077 		.iov_offset = 0,
1078 		.count = count
1079 	};
1080 }
1081 EXPORT_SYMBOL(iov_iter_pipe);
1082 
1083 /**
1084  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1085  * @i: The iterator to initialise.
1086  * @direction: The direction of the transfer.
1087  * @xarray: The xarray to access.
1088  * @start: The start file position.
1089  * @count: The size of the I/O buffer in bytes.
1090  *
1091  * Set up an I/O iterator to either draw data out of the pages attached to an
1092  * inode or to inject data into those pages.  The pages *must* be prevented
1093  * from evaporation, either by taking a ref on them or locking them by the
1094  * caller.
1095  */
1096 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1097 		     struct xarray *xarray, loff_t start, size_t count)
1098 {
1099 	BUG_ON(direction & ~1);
1100 	*i = (struct iov_iter) {
1101 		.iter_type = ITER_XARRAY,
1102 		.data_source = direction,
1103 		.xarray = xarray,
1104 		.xarray_start = start,
1105 		.count = count,
1106 		.iov_offset = 0
1107 	};
1108 }
1109 EXPORT_SYMBOL(iov_iter_xarray);
1110 
1111 /**
1112  * iov_iter_discard - Initialise an I/O iterator that discards data
1113  * @i: The iterator to initialise.
1114  * @direction: The direction of the transfer.
1115  * @count: The size of the I/O buffer in bytes.
1116  *
1117  * Set up an I/O iterator that just discards everything that's written to it.
1118  * It's only available as a READ iterator.
1119  */
1120 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1121 {
1122 	BUG_ON(direction != READ);
1123 	*i = (struct iov_iter){
1124 		.iter_type = ITER_DISCARD,
1125 		.data_source = false,
1126 		.count = count,
1127 		.iov_offset = 0
1128 	};
1129 }
1130 EXPORT_SYMBOL(iov_iter_discard);
1131 
1132 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1133 				   unsigned len_mask)
1134 {
1135 	size_t size = i->count;
1136 	size_t skip = i->iov_offset;
1137 	unsigned k;
1138 
1139 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1140 		size_t len = i->iov[k].iov_len - skip;
1141 
1142 		if (len > size)
1143 			len = size;
1144 		if (len & len_mask)
1145 			return false;
1146 		if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1147 			return false;
1148 
1149 		size -= len;
1150 		if (!size)
1151 			break;
1152 	}
1153 	return true;
1154 }
1155 
1156 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1157 				  unsigned len_mask)
1158 {
1159 	size_t size = i->count;
1160 	unsigned skip = i->iov_offset;
1161 	unsigned k;
1162 
1163 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1164 		size_t len = i->bvec[k].bv_len - skip;
1165 
1166 		if (len > size)
1167 			len = size;
1168 		if (len & len_mask)
1169 			return false;
1170 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1171 			return false;
1172 
1173 		size -= len;
1174 		if (!size)
1175 			break;
1176 	}
1177 	return true;
1178 }
1179 
1180 /**
1181  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1182  * 	are aligned to the parameters.
1183  *
1184  * @i: &struct iov_iter to restore
1185  * @addr_mask: bit mask to check against the iov element's addresses
1186  * @len_mask: bit mask to check against the iov element's lengths
1187  *
1188  * Return: false if any addresses or lengths intersect with the provided masks
1189  */
1190 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1191 			 unsigned len_mask)
1192 {
1193 	if (likely(iter_is_ubuf(i))) {
1194 		if (i->count & len_mask)
1195 			return false;
1196 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1197 			return false;
1198 		return true;
1199 	}
1200 
1201 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1202 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1203 
1204 	if (iov_iter_is_bvec(i))
1205 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1206 
1207 	if (iov_iter_is_pipe(i)) {
1208 		unsigned int p_mask = i->pipe->ring_size - 1;
1209 		size_t size = i->count;
1210 
1211 		if (size & len_mask)
1212 			return false;
1213 		if (size && allocated(&i->pipe->bufs[i->head & p_mask])) {
1214 			if (i->iov_offset & addr_mask)
1215 				return false;
1216 		}
1217 
1218 		return true;
1219 	}
1220 
1221 	if (iov_iter_is_xarray(i)) {
1222 		if (i->count & len_mask)
1223 			return false;
1224 		if ((i->xarray_start + i->iov_offset) & addr_mask)
1225 			return false;
1226 	}
1227 
1228 	return true;
1229 }
1230 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1231 
1232 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1233 {
1234 	unsigned long res = 0;
1235 	size_t size = i->count;
1236 	size_t skip = i->iov_offset;
1237 	unsigned k;
1238 
1239 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1240 		size_t len = i->iov[k].iov_len - skip;
1241 		if (len) {
1242 			res |= (unsigned long)i->iov[k].iov_base + skip;
1243 			if (len > size)
1244 				len = size;
1245 			res |= len;
1246 			size -= len;
1247 			if (!size)
1248 				break;
1249 		}
1250 	}
1251 	return res;
1252 }
1253 
1254 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1255 {
1256 	unsigned res = 0;
1257 	size_t size = i->count;
1258 	unsigned skip = i->iov_offset;
1259 	unsigned k;
1260 
1261 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1262 		size_t len = i->bvec[k].bv_len - skip;
1263 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1264 		if (len > size)
1265 			len = size;
1266 		res |= len;
1267 		size -= len;
1268 		if (!size)
1269 			break;
1270 	}
1271 	return res;
1272 }
1273 
1274 unsigned long iov_iter_alignment(const struct iov_iter *i)
1275 {
1276 	if (likely(iter_is_ubuf(i))) {
1277 		size_t size = i->count;
1278 		if (size)
1279 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
1280 		return 0;
1281 	}
1282 
1283 	/* iovec and kvec have identical layouts */
1284 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1285 		return iov_iter_alignment_iovec(i);
1286 
1287 	if (iov_iter_is_bvec(i))
1288 		return iov_iter_alignment_bvec(i);
1289 
1290 	if (iov_iter_is_pipe(i)) {
1291 		size_t size = i->count;
1292 
1293 		if (size && i->iov_offset && allocated(pipe_buf(i->pipe, i->head)))
1294 			return size | i->iov_offset;
1295 		return size;
1296 	}
1297 
1298 	if (iov_iter_is_xarray(i))
1299 		return (i->xarray_start + i->iov_offset) | i->count;
1300 
1301 	return 0;
1302 }
1303 EXPORT_SYMBOL(iov_iter_alignment);
1304 
1305 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1306 {
1307 	unsigned long res = 0;
1308 	unsigned long v = 0;
1309 	size_t size = i->count;
1310 	unsigned k;
1311 
1312 	if (iter_is_ubuf(i))
1313 		return 0;
1314 
1315 	if (WARN_ON(!iter_is_iovec(i)))
1316 		return ~0U;
1317 
1318 	for (k = 0; k < i->nr_segs; k++) {
1319 		if (i->iov[k].iov_len) {
1320 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1321 			if (v) // if not the first one
1322 				res |= base | v; // this start | previous end
1323 			v = base + i->iov[k].iov_len;
1324 			if (size <= i->iov[k].iov_len)
1325 				break;
1326 			size -= i->iov[k].iov_len;
1327 		}
1328 	}
1329 	return res;
1330 }
1331 EXPORT_SYMBOL(iov_iter_gap_alignment);
1332 
1333 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1334 				size_t maxsize,
1335 				struct page **pages,
1336 				int iter_head,
1337 				size_t *start)
1338 {
1339 	struct pipe_inode_info *pipe = i->pipe;
1340 	unsigned int p_mask = pipe->ring_size - 1;
1341 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1342 	if (!n)
1343 		return -EFAULT;
1344 
1345 	maxsize = n;
1346 	n += *start;
1347 	while (n > 0) {
1348 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1349 		iter_head++;
1350 		n -= PAGE_SIZE;
1351 	}
1352 
1353 	return maxsize;
1354 }
1355 
1356 static ssize_t pipe_get_pages(struct iov_iter *i,
1357 		   struct page **pages, size_t maxsize, unsigned maxpages,
1358 		   size_t *start)
1359 {
1360 	unsigned int iter_head, npages;
1361 	size_t capacity;
1362 
1363 	if (!sanity(i))
1364 		return -EFAULT;
1365 
1366 	data_start(i, &iter_head, start);
1367 	/* Amount of free space: some of this one + all after this one */
1368 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1369 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1370 
1371 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1372 }
1373 
1374 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1375 					  pgoff_t index, unsigned int nr_pages)
1376 {
1377 	XA_STATE(xas, xa, index);
1378 	struct page *page;
1379 	unsigned int ret = 0;
1380 
1381 	rcu_read_lock();
1382 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1383 		if (xas_retry(&xas, page))
1384 			continue;
1385 
1386 		/* Has the page moved or been split? */
1387 		if (unlikely(page != xas_reload(&xas))) {
1388 			xas_reset(&xas);
1389 			continue;
1390 		}
1391 
1392 		pages[ret] = find_subpage(page, xas.xa_index);
1393 		get_page(pages[ret]);
1394 		if (++ret == nr_pages)
1395 			break;
1396 	}
1397 	rcu_read_unlock();
1398 	return ret;
1399 }
1400 
1401 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1402 				     struct page **pages, size_t maxsize,
1403 				     unsigned maxpages, size_t *_start_offset)
1404 {
1405 	unsigned nr, offset;
1406 	pgoff_t index, count;
1407 	size_t size = maxsize;
1408 	loff_t pos;
1409 
1410 	if (!size || !maxpages)
1411 		return 0;
1412 
1413 	pos = i->xarray_start + i->iov_offset;
1414 	index = pos >> PAGE_SHIFT;
1415 	offset = pos & ~PAGE_MASK;
1416 	*_start_offset = offset;
1417 
1418 	count = 1;
1419 	if (size > PAGE_SIZE - offset) {
1420 		size -= PAGE_SIZE - offset;
1421 		count += size >> PAGE_SHIFT;
1422 		size &= ~PAGE_MASK;
1423 		if (size)
1424 			count++;
1425 	}
1426 
1427 	if (count > maxpages)
1428 		count = maxpages;
1429 
1430 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1431 	if (nr == 0)
1432 		return 0;
1433 
1434 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1435 }
1436 
1437 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1438 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1439 {
1440 	size_t skip;
1441 	long k;
1442 
1443 	if (iter_is_ubuf(i))
1444 		return (unsigned long)i->ubuf + i->iov_offset;
1445 
1446 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1447 		size_t len = i->iov[k].iov_len - skip;
1448 
1449 		if (unlikely(!len))
1450 			continue;
1451 		if (*size > len)
1452 			*size = len;
1453 		return (unsigned long)i->iov[k].iov_base + skip;
1454 	}
1455 	BUG(); // if it had been empty, we wouldn't get called
1456 }
1457 
1458 /* must be done on non-empty ITER_BVEC one */
1459 static struct page *first_bvec_segment(const struct iov_iter *i,
1460 				       size_t *size, size_t *start)
1461 {
1462 	struct page *page;
1463 	size_t skip = i->iov_offset, len;
1464 
1465 	len = i->bvec->bv_len - skip;
1466 	if (*size > len)
1467 		*size = len;
1468 	skip += i->bvec->bv_offset;
1469 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1470 	*start = skip % PAGE_SIZE;
1471 	return page;
1472 }
1473 
1474 ssize_t iov_iter_get_pages(struct iov_iter *i,
1475 		   struct page **pages, size_t maxsize, unsigned maxpages,
1476 		   size_t *start)
1477 {
1478 	int n, res;
1479 
1480 	if (maxsize > i->count)
1481 		maxsize = i->count;
1482 	if (!maxsize)
1483 		return 0;
1484 	if (maxsize > MAX_RW_COUNT)
1485 		maxsize = MAX_RW_COUNT;
1486 
1487 	if (likely(user_backed_iter(i))) {
1488 		unsigned int gup_flags = 0;
1489 		unsigned long addr;
1490 
1491 		if (iov_iter_rw(i) != WRITE)
1492 			gup_flags |= FOLL_WRITE;
1493 		if (i->nofault)
1494 			gup_flags |= FOLL_NOFAULT;
1495 
1496 		addr = first_iovec_segment(i, &maxsize);
1497 		*start = addr % PAGE_SIZE;
1498 		addr &= PAGE_MASK;
1499 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1500 		if (n > maxpages)
1501 			n = maxpages;
1502 		res = get_user_pages_fast(addr, n, gup_flags, pages);
1503 		if (unlikely(res <= 0))
1504 			return res;
1505 		return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1506 	}
1507 	if (iov_iter_is_bvec(i)) {
1508 		struct page *page;
1509 
1510 		page = first_bvec_segment(i, &maxsize, start);
1511 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1512 		if (n > maxpages)
1513 			n = maxpages;
1514 		for (int k = 0; k < n; k++)
1515 			get_page(*pages++ = page++);
1516 		return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1517 	}
1518 	if (iov_iter_is_pipe(i))
1519 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1520 	if (iov_iter_is_xarray(i))
1521 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1522 	return -EFAULT;
1523 }
1524 EXPORT_SYMBOL(iov_iter_get_pages);
1525 
1526 static struct page **get_pages_array(size_t n)
1527 {
1528 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1529 }
1530 
1531 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1532 		   struct page ***pages, size_t maxsize,
1533 		   size_t *start)
1534 {
1535 	struct page **p;
1536 	unsigned int iter_head, npages;
1537 	ssize_t n;
1538 
1539 	if (!sanity(i))
1540 		return -EFAULT;
1541 
1542 	data_start(i, &iter_head, start);
1543 	/* Amount of free space: some of this one + all after this one */
1544 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1545 	n = npages * PAGE_SIZE - *start;
1546 	if (maxsize > n)
1547 		maxsize = n;
1548 	else
1549 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1550 	p = get_pages_array(npages);
1551 	if (!p)
1552 		return -ENOMEM;
1553 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1554 	if (n > 0)
1555 		*pages = p;
1556 	else
1557 		kvfree(p);
1558 	return n;
1559 }
1560 
1561 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1562 					   struct page ***pages, size_t maxsize,
1563 					   size_t *_start_offset)
1564 {
1565 	struct page **p;
1566 	unsigned nr, offset;
1567 	pgoff_t index, count;
1568 	size_t size = maxsize;
1569 	loff_t pos;
1570 
1571 	if (!size)
1572 		return 0;
1573 
1574 	pos = i->xarray_start + i->iov_offset;
1575 	index = pos >> PAGE_SHIFT;
1576 	offset = pos & ~PAGE_MASK;
1577 	*_start_offset = offset;
1578 
1579 	count = 1;
1580 	if (size > PAGE_SIZE - offset) {
1581 		size -= PAGE_SIZE - offset;
1582 		count += size >> PAGE_SHIFT;
1583 		size &= ~PAGE_MASK;
1584 		if (size)
1585 			count++;
1586 	}
1587 
1588 	p = get_pages_array(count);
1589 	if (!p)
1590 		return -ENOMEM;
1591 	*pages = p;
1592 
1593 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1594 	if (nr == 0)
1595 		return 0;
1596 
1597 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1598 }
1599 
1600 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1601 		   struct page ***pages, size_t maxsize,
1602 		   size_t *start)
1603 {
1604 	struct page **p;
1605 	int n, res;
1606 
1607 	if (maxsize > i->count)
1608 		maxsize = i->count;
1609 	if (!maxsize)
1610 		return 0;
1611 	if (maxsize > MAX_RW_COUNT)
1612 		maxsize = MAX_RW_COUNT;
1613 
1614 	if (likely(user_backed_iter(i))) {
1615 		unsigned int gup_flags = 0;
1616 		unsigned long addr;
1617 
1618 		if (iov_iter_rw(i) != WRITE)
1619 			gup_flags |= FOLL_WRITE;
1620 		if (i->nofault)
1621 			gup_flags |= FOLL_NOFAULT;
1622 
1623 		addr = first_iovec_segment(i, &maxsize);
1624 		*start = addr % PAGE_SIZE;
1625 		addr &= PAGE_MASK;
1626 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1627 		p = get_pages_array(n);
1628 		if (!p)
1629 			return -ENOMEM;
1630 		res = get_user_pages_fast(addr, n, gup_flags, p);
1631 		if (unlikely(res <= 0)) {
1632 			kvfree(p);
1633 			*pages = NULL;
1634 			return res;
1635 		}
1636 		*pages = p;
1637 		return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1638 	}
1639 	if (iov_iter_is_bvec(i)) {
1640 		struct page *page;
1641 
1642 		page = first_bvec_segment(i, &maxsize, start);
1643 		n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1644 		*pages = p = get_pages_array(n);
1645 		if (!p)
1646 			return -ENOMEM;
1647 		for (int k = 0; k < n; k++)
1648 			get_page(*p++ = page++);
1649 		return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1650 	}
1651 	if (iov_iter_is_pipe(i))
1652 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1653 	if (iov_iter_is_xarray(i))
1654 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1655 	return -EFAULT;
1656 }
1657 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1658 
1659 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1660 			       struct iov_iter *i)
1661 {
1662 	__wsum sum, next;
1663 	sum = *csum;
1664 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1665 		WARN_ON(1);
1666 		return 0;
1667 	}
1668 	iterate_and_advance(i, bytes, base, len, off, ({
1669 		next = csum_and_copy_from_user(base, addr + off, len);
1670 		sum = csum_block_add(sum, next, off);
1671 		next ? 0 : len;
1672 	}), ({
1673 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1674 	})
1675 	)
1676 	*csum = sum;
1677 	return bytes;
1678 }
1679 EXPORT_SYMBOL(csum_and_copy_from_iter);
1680 
1681 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1682 			     struct iov_iter *i)
1683 {
1684 	struct csum_state *csstate = _csstate;
1685 	__wsum sum, next;
1686 
1687 	if (unlikely(iov_iter_is_discard(i))) {
1688 		WARN_ON(1);	/* for now */
1689 		return 0;
1690 	}
1691 
1692 	sum = csum_shift(csstate->csum, csstate->off);
1693 	if (unlikely(iov_iter_is_pipe(i)))
1694 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1695 	else iterate_and_advance(i, bytes, base, len, off, ({
1696 		next = csum_and_copy_to_user(addr + off, base, len);
1697 		sum = csum_block_add(sum, next, off);
1698 		next ? 0 : len;
1699 	}), ({
1700 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1701 	})
1702 	)
1703 	csstate->csum = csum_shift(sum, csstate->off);
1704 	csstate->off += bytes;
1705 	return bytes;
1706 }
1707 EXPORT_SYMBOL(csum_and_copy_to_iter);
1708 
1709 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1710 		struct iov_iter *i)
1711 {
1712 #ifdef CONFIG_CRYPTO_HASH
1713 	struct ahash_request *hash = hashp;
1714 	struct scatterlist sg;
1715 	size_t copied;
1716 
1717 	copied = copy_to_iter(addr, bytes, i);
1718 	sg_init_one(&sg, addr, copied);
1719 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1720 	crypto_ahash_update(hash);
1721 	return copied;
1722 #else
1723 	return 0;
1724 #endif
1725 }
1726 EXPORT_SYMBOL(hash_and_copy_to_iter);
1727 
1728 static int iov_npages(const struct iov_iter *i, int maxpages)
1729 {
1730 	size_t skip = i->iov_offset, size = i->count;
1731 	const struct iovec *p;
1732 	int npages = 0;
1733 
1734 	for (p = i->iov; size; skip = 0, p++) {
1735 		unsigned offs = offset_in_page(p->iov_base + skip);
1736 		size_t len = min(p->iov_len - skip, size);
1737 
1738 		if (len) {
1739 			size -= len;
1740 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1741 			if (unlikely(npages > maxpages))
1742 				return maxpages;
1743 		}
1744 	}
1745 	return npages;
1746 }
1747 
1748 static int bvec_npages(const struct iov_iter *i, int maxpages)
1749 {
1750 	size_t skip = i->iov_offset, size = i->count;
1751 	const struct bio_vec *p;
1752 	int npages = 0;
1753 
1754 	for (p = i->bvec; size; skip = 0, p++) {
1755 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1756 		size_t len = min(p->bv_len - skip, size);
1757 
1758 		size -= len;
1759 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1760 		if (unlikely(npages > maxpages))
1761 			return maxpages;
1762 	}
1763 	return npages;
1764 }
1765 
1766 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1767 {
1768 	if (unlikely(!i->count))
1769 		return 0;
1770 	if (likely(iter_is_ubuf(i))) {
1771 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1772 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1773 		return min(npages, maxpages);
1774 	}
1775 	/* iovec and kvec have identical layouts */
1776 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1777 		return iov_npages(i, maxpages);
1778 	if (iov_iter_is_bvec(i))
1779 		return bvec_npages(i, maxpages);
1780 	if (iov_iter_is_pipe(i)) {
1781 		unsigned int iter_head;
1782 		int npages;
1783 		size_t off;
1784 
1785 		if (!sanity(i))
1786 			return 0;
1787 
1788 		data_start(i, &iter_head, &off);
1789 		/* some of this one + all after this one */
1790 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1791 		return min(npages, maxpages);
1792 	}
1793 	if (iov_iter_is_xarray(i)) {
1794 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1795 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1796 		return min(npages, maxpages);
1797 	}
1798 	return 0;
1799 }
1800 EXPORT_SYMBOL(iov_iter_npages);
1801 
1802 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1803 {
1804 	*new = *old;
1805 	if (unlikely(iov_iter_is_pipe(new))) {
1806 		WARN_ON(1);
1807 		return NULL;
1808 	}
1809 	if (iov_iter_is_bvec(new))
1810 		return new->bvec = kmemdup(new->bvec,
1811 				    new->nr_segs * sizeof(struct bio_vec),
1812 				    flags);
1813 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1814 		/* iovec and kvec have identical layout */
1815 		return new->iov = kmemdup(new->iov,
1816 				   new->nr_segs * sizeof(struct iovec),
1817 				   flags);
1818 	return NULL;
1819 }
1820 EXPORT_SYMBOL(dup_iter);
1821 
1822 static int copy_compat_iovec_from_user(struct iovec *iov,
1823 		const struct iovec __user *uvec, unsigned long nr_segs)
1824 {
1825 	const struct compat_iovec __user *uiov =
1826 		(const struct compat_iovec __user *)uvec;
1827 	int ret = -EFAULT, i;
1828 
1829 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1830 		return -EFAULT;
1831 
1832 	for (i = 0; i < nr_segs; i++) {
1833 		compat_uptr_t buf;
1834 		compat_ssize_t len;
1835 
1836 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1837 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1838 
1839 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1840 		if (len < 0) {
1841 			ret = -EINVAL;
1842 			goto uaccess_end;
1843 		}
1844 		iov[i].iov_base = compat_ptr(buf);
1845 		iov[i].iov_len = len;
1846 	}
1847 
1848 	ret = 0;
1849 uaccess_end:
1850 	user_access_end();
1851 	return ret;
1852 }
1853 
1854 static int copy_iovec_from_user(struct iovec *iov,
1855 		const struct iovec __user *uvec, unsigned long nr_segs)
1856 {
1857 	unsigned long seg;
1858 
1859 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1860 		return -EFAULT;
1861 	for (seg = 0; seg < nr_segs; seg++) {
1862 		if ((ssize_t)iov[seg].iov_len < 0)
1863 			return -EINVAL;
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1870 		unsigned long nr_segs, unsigned long fast_segs,
1871 		struct iovec *fast_iov, bool compat)
1872 {
1873 	struct iovec *iov = fast_iov;
1874 	int ret;
1875 
1876 	/*
1877 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1878 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1879 	 * traditionally returned zero for zero segments, so...
1880 	 */
1881 	if (nr_segs == 0)
1882 		return iov;
1883 	if (nr_segs > UIO_MAXIOV)
1884 		return ERR_PTR(-EINVAL);
1885 	if (nr_segs > fast_segs) {
1886 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1887 		if (!iov)
1888 			return ERR_PTR(-ENOMEM);
1889 	}
1890 
1891 	if (compat)
1892 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1893 	else
1894 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1895 	if (ret) {
1896 		if (iov != fast_iov)
1897 			kfree(iov);
1898 		return ERR_PTR(ret);
1899 	}
1900 
1901 	return iov;
1902 }
1903 
1904 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1905 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1906 		 struct iov_iter *i, bool compat)
1907 {
1908 	ssize_t total_len = 0;
1909 	unsigned long seg;
1910 	struct iovec *iov;
1911 
1912 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1913 	if (IS_ERR(iov)) {
1914 		*iovp = NULL;
1915 		return PTR_ERR(iov);
1916 	}
1917 
1918 	/*
1919 	 * According to the Single Unix Specification we should return EINVAL if
1920 	 * an element length is < 0 when cast to ssize_t or if the total length
1921 	 * would overflow the ssize_t return value of the system call.
1922 	 *
1923 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1924 	 * overflow case.
1925 	 */
1926 	for (seg = 0; seg < nr_segs; seg++) {
1927 		ssize_t len = (ssize_t)iov[seg].iov_len;
1928 
1929 		if (!access_ok(iov[seg].iov_base, len)) {
1930 			if (iov != *iovp)
1931 				kfree(iov);
1932 			*iovp = NULL;
1933 			return -EFAULT;
1934 		}
1935 
1936 		if (len > MAX_RW_COUNT - total_len) {
1937 			len = MAX_RW_COUNT - total_len;
1938 			iov[seg].iov_len = len;
1939 		}
1940 		total_len += len;
1941 	}
1942 
1943 	iov_iter_init(i, type, iov, nr_segs, total_len);
1944 	if (iov == *iovp)
1945 		*iovp = NULL;
1946 	else
1947 		*iovp = iov;
1948 	return total_len;
1949 }
1950 
1951 /**
1952  * import_iovec() - Copy an array of &struct iovec from userspace
1953  *     into the kernel, check that it is valid, and initialize a new
1954  *     &struct iov_iter iterator to access it.
1955  *
1956  * @type: One of %READ or %WRITE.
1957  * @uvec: Pointer to the userspace array.
1958  * @nr_segs: Number of elements in userspace array.
1959  * @fast_segs: Number of elements in @iov.
1960  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1961  *     on-stack) kernel array.
1962  * @i: Pointer to iterator that will be initialized on success.
1963  *
1964  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1965  * then this function places %NULL in *@iov on return. Otherwise, a new
1966  * array will be allocated and the result placed in *@iov. This means that
1967  * the caller may call kfree() on *@iov regardless of whether the small
1968  * on-stack array was used or not (and regardless of whether this function
1969  * returns an error or not).
1970  *
1971  * Return: Negative error code on error, bytes imported on success
1972  */
1973 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1974 		 unsigned nr_segs, unsigned fast_segs,
1975 		 struct iovec **iovp, struct iov_iter *i)
1976 {
1977 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1978 			      in_compat_syscall());
1979 }
1980 EXPORT_SYMBOL(import_iovec);
1981 
1982 int import_single_range(int rw, void __user *buf, size_t len,
1983 		 struct iovec *iov, struct iov_iter *i)
1984 {
1985 	if (len > MAX_RW_COUNT)
1986 		len = MAX_RW_COUNT;
1987 	if (unlikely(!access_ok(buf, len)))
1988 		return -EFAULT;
1989 
1990 	iov->iov_base = buf;
1991 	iov->iov_len = len;
1992 	iov_iter_init(i, rw, iov, 1, len);
1993 	return 0;
1994 }
1995 EXPORT_SYMBOL(import_single_range);
1996 
1997 /**
1998  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1999  *     iov_iter_save_state() was called.
2000  *
2001  * @i: &struct iov_iter to restore
2002  * @state: state to restore from
2003  *
2004  * Used after iov_iter_save_state() to bring restore @i, if operations may
2005  * have advanced it.
2006  *
2007  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
2008  */
2009 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
2010 {
2011 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
2012 			 !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
2013 		return;
2014 	i->iov_offset = state->iov_offset;
2015 	i->count = state->count;
2016 	if (iter_is_ubuf(i))
2017 		return;
2018 	/*
2019 	 * For the *vec iters, nr_segs + iov is constant - if we increment
2020 	 * the vec, then we also decrement the nr_segs count. Hence we don't
2021 	 * need to track both of these, just one is enough and we can deduct
2022 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
2023 	 * size, so we can just increment the iov pointer as they are unionzed.
2024 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
2025 	 * not. Be safe and handle it separately.
2026 	 */
2027 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
2028 	if (iov_iter_is_bvec(i))
2029 		i->bvec -= state->nr_segs - i->nr_segs;
2030 	else
2031 		i->iov -= state->nr_segs - i->nr_segs;
2032 	i->nr_segs = state->nr_segs;
2033 }
2034