1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bvec.h> 4 #include <linux/uio.h> 5 #include <linux/pagemap.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/splice.h> 9 #include <net/checksum.h> 10 #include <linux/scatterlist.h> 11 12 #define PIPE_PARANOIA /* for now */ 13 14 #define iterate_iovec(i, n, __v, __p, skip, STEP) { \ 15 size_t left; \ 16 size_t wanted = n; \ 17 __p = i->iov; \ 18 __v.iov_len = min(n, __p->iov_len - skip); \ 19 if (likely(__v.iov_len)) { \ 20 __v.iov_base = __p->iov_base + skip; \ 21 left = (STEP); \ 22 __v.iov_len -= left; \ 23 skip += __v.iov_len; \ 24 n -= __v.iov_len; \ 25 } else { \ 26 left = 0; \ 27 } \ 28 while (unlikely(!left && n)) { \ 29 __p++; \ 30 __v.iov_len = min(n, __p->iov_len); \ 31 if (unlikely(!__v.iov_len)) \ 32 continue; \ 33 __v.iov_base = __p->iov_base; \ 34 left = (STEP); \ 35 __v.iov_len -= left; \ 36 skip = __v.iov_len; \ 37 n -= __v.iov_len; \ 38 } \ 39 n = wanted - n; \ 40 } 41 42 #define iterate_kvec(i, n, __v, __p, skip, STEP) { \ 43 size_t wanted = n; \ 44 __p = i->kvec; \ 45 __v.iov_len = min(n, __p->iov_len - skip); \ 46 if (likely(__v.iov_len)) { \ 47 __v.iov_base = __p->iov_base + skip; \ 48 (void)(STEP); \ 49 skip += __v.iov_len; \ 50 n -= __v.iov_len; \ 51 } \ 52 while (unlikely(n)) { \ 53 __p++; \ 54 __v.iov_len = min(n, __p->iov_len); \ 55 if (unlikely(!__v.iov_len)) \ 56 continue; \ 57 __v.iov_base = __p->iov_base; \ 58 (void)(STEP); \ 59 skip = __v.iov_len; \ 60 n -= __v.iov_len; \ 61 } \ 62 n = wanted; \ 63 } 64 65 #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \ 66 struct bvec_iter __start; \ 67 __start.bi_size = n; \ 68 __start.bi_bvec_done = skip; \ 69 __start.bi_idx = 0; \ 70 for_each_bvec(__v, i->bvec, __bi, __start) { \ 71 if (!__v.bv_len) \ 72 continue; \ 73 (void)(STEP); \ 74 } \ 75 } 76 77 #define iterate_all_kinds(i, n, v, I, B, K) { \ 78 if (likely(n)) { \ 79 size_t skip = i->iov_offset; \ 80 if (unlikely(i->type & ITER_BVEC)) { \ 81 struct bio_vec v; \ 82 struct bvec_iter __bi; \ 83 iterate_bvec(i, n, v, __bi, skip, (B)) \ 84 } else if (unlikely(i->type & ITER_KVEC)) { \ 85 const struct kvec *kvec; \ 86 struct kvec v; \ 87 iterate_kvec(i, n, v, kvec, skip, (K)) \ 88 } else if (unlikely(i->type & ITER_DISCARD)) { \ 89 } else { \ 90 const struct iovec *iov; \ 91 struct iovec v; \ 92 iterate_iovec(i, n, v, iov, skip, (I)) \ 93 } \ 94 } \ 95 } 96 97 #define iterate_and_advance(i, n, v, I, B, K) { \ 98 if (unlikely(i->count < n)) \ 99 n = i->count; \ 100 if (i->count) { \ 101 size_t skip = i->iov_offset; \ 102 if (unlikely(i->type & ITER_BVEC)) { \ 103 const struct bio_vec *bvec = i->bvec; \ 104 struct bio_vec v; \ 105 struct bvec_iter __bi; \ 106 iterate_bvec(i, n, v, __bi, skip, (B)) \ 107 i->bvec = __bvec_iter_bvec(i->bvec, __bi); \ 108 i->nr_segs -= i->bvec - bvec; \ 109 skip = __bi.bi_bvec_done; \ 110 } else if (unlikely(i->type & ITER_KVEC)) { \ 111 const struct kvec *kvec; \ 112 struct kvec v; \ 113 iterate_kvec(i, n, v, kvec, skip, (K)) \ 114 if (skip == kvec->iov_len) { \ 115 kvec++; \ 116 skip = 0; \ 117 } \ 118 i->nr_segs -= kvec - i->kvec; \ 119 i->kvec = kvec; \ 120 } else if (unlikely(i->type & ITER_DISCARD)) { \ 121 skip += n; \ 122 } else { \ 123 const struct iovec *iov; \ 124 struct iovec v; \ 125 iterate_iovec(i, n, v, iov, skip, (I)) \ 126 if (skip == iov->iov_len) { \ 127 iov++; \ 128 skip = 0; \ 129 } \ 130 i->nr_segs -= iov - i->iov; \ 131 i->iov = iov; \ 132 } \ 133 i->count -= n; \ 134 i->iov_offset = skip; \ 135 } \ 136 } 137 138 static int copyout(void __user *to, const void *from, size_t n) 139 { 140 if (access_ok(to, n)) { 141 kasan_check_read(from, n); 142 n = raw_copy_to_user(to, from, n); 143 } 144 return n; 145 } 146 147 static int copyin(void *to, const void __user *from, size_t n) 148 { 149 if (access_ok(from, n)) { 150 kasan_check_write(to, n); 151 n = raw_copy_from_user(to, from, n); 152 } 153 return n; 154 } 155 156 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes, 157 struct iov_iter *i) 158 { 159 size_t skip, copy, left, wanted; 160 const struct iovec *iov; 161 char __user *buf; 162 void *kaddr, *from; 163 164 if (unlikely(bytes > i->count)) 165 bytes = i->count; 166 167 if (unlikely(!bytes)) 168 return 0; 169 170 might_fault(); 171 wanted = bytes; 172 iov = i->iov; 173 skip = i->iov_offset; 174 buf = iov->iov_base + skip; 175 copy = min(bytes, iov->iov_len - skip); 176 177 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) { 178 kaddr = kmap_atomic(page); 179 from = kaddr + offset; 180 181 /* first chunk, usually the only one */ 182 left = copyout(buf, from, copy); 183 copy -= left; 184 skip += copy; 185 from += copy; 186 bytes -= copy; 187 188 while (unlikely(!left && bytes)) { 189 iov++; 190 buf = iov->iov_base; 191 copy = min(bytes, iov->iov_len); 192 left = copyout(buf, from, copy); 193 copy -= left; 194 skip = copy; 195 from += copy; 196 bytes -= copy; 197 } 198 if (likely(!bytes)) { 199 kunmap_atomic(kaddr); 200 goto done; 201 } 202 offset = from - kaddr; 203 buf += copy; 204 kunmap_atomic(kaddr); 205 copy = min(bytes, iov->iov_len - skip); 206 } 207 /* Too bad - revert to non-atomic kmap */ 208 209 kaddr = kmap(page); 210 from = kaddr + offset; 211 left = copyout(buf, from, copy); 212 copy -= left; 213 skip += copy; 214 from += copy; 215 bytes -= copy; 216 while (unlikely(!left && bytes)) { 217 iov++; 218 buf = iov->iov_base; 219 copy = min(bytes, iov->iov_len); 220 left = copyout(buf, from, copy); 221 copy -= left; 222 skip = copy; 223 from += copy; 224 bytes -= copy; 225 } 226 kunmap(page); 227 228 done: 229 if (skip == iov->iov_len) { 230 iov++; 231 skip = 0; 232 } 233 i->count -= wanted - bytes; 234 i->nr_segs -= iov - i->iov; 235 i->iov = iov; 236 i->iov_offset = skip; 237 return wanted - bytes; 238 } 239 240 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes, 241 struct iov_iter *i) 242 { 243 size_t skip, copy, left, wanted; 244 const struct iovec *iov; 245 char __user *buf; 246 void *kaddr, *to; 247 248 if (unlikely(bytes > i->count)) 249 bytes = i->count; 250 251 if (unlikely(!bytes)) 252 return 0; 253 254 might_fault(); 255 wanted = bytes; 256 iov = i->iov; 257 skip = i->iov_offset; 258 buf = iov->iov_base + skip; 259 copy = min(bytes, iov->iov_len - skip); 260 261 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) { 262 kaddr = kmap_atomic(page); 263 to = kaddr + offset; 264 265 /* first chunk, usually the only one */ 266 left = copyin(to, buf, copy); 267 copy -= left; 268 skip += copy; 269 to += copy; 270 bytes -= copy; 271 272 while (unlikely(!left && bytes)) { 273 iov++; 274 buf = iov->iov_base; 275 copy = min(bytes, iov->iov_len); 276 left = copyin(to, buf, copy); 277 copy -= left; 278 skip = copy; 279 to += copy; 280 bytes -= copy; 281 } 282 if (likely(!bytes)) { 283 kunmap_atomic(kaddr); 284 goto done; 285 } 286 offset = to - kaddr; 287 buf += copy; 288 kunmap_atomic(kaddr); 289 copy = min(bytes, iov->iov_len - skip); 290 } 291 /* Too bad - revert to non-atomic kmap */ 292 293 kaddr = kmap(page); 294 to = kaddr + offset; 295 left = copyin(to, buf, copy); 296 copy -= left; 297 skip += copy; 298 to += copy; 299 bytes -= copy; 300 while (unlikely(!left && bytes)) { 301 iov++; 302 buf = iov->iov_base; 303 copy = min(bytes, iov->iov_len); 304 left = copyin(to, buf, copy); 305 copy -= left; 306 skip = copy; 307 to += copy; 308 bytes -= copy; 309 } 310 kunmap(page); 311 312 done: 313 if (skip == iov->iov_len) { 314 iov++; 315 skip = 0; 316 } 317 i->count -= wanted - bytes; 318 i->nr_segs -= iov - i->iov; 319 i->iov = iov; 320 i->iov_offset = skip; 321 return wanted - bytes; 322 } 323 324 #ifdef PIPE_PARANOIA 325 static bool sanity(const struct iov_iter *i) 326 { 327 struct pipe_inode_info *pipe = i->pipe; 328 int idx = i->idx; 329 int next = pipe->curbuf + pipe->nrbufs; 330 if (i->iov_offset) { 331 struct pipe_buffer *p; 332 if (unlikely(!pipe->nrbufs)) 333 goto Bad; // pipe must be non-empty 334 if (unlikely(idx != ((next - 1) & (pipe->buffers - 1)))) 335 goto Bad; // must be at the last buffer... 336 337 p = &pipe->bufs[idx]; 338 if (unlikely(p->offset + p->len != i->iov_offset)) 339 goto Bad; // ... at the end of segment 340 } else { 341 if (idx != (next & (pipe->buffers - 1))) 342 goto Bad; // must be right after the last buffer 343 } 344 return true; 345 Bad: 346 printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset); 347 printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n", 348 pipe->curbuf, pipe->nrbufs, pipe->buffers); 349 for (idx = 0; idx < pipe->buffers; idx++) 350 printk(KERN_ERR "[%p %p %d %d]\n", 351 pipe->bufs[idx].ops, 352 pipe->bufs[idx].page, 353 pipe->bufs[idx].offset, 354 pipe->bufs[idx].len); 355 WARN_ON(1); 356 return false; 357 } 358 #else 359 #define sanity(i) true 360 #endif 361 362 static inline int next_idx(int idx, struct pipe_inode_info *pipe) 363 { 364 return (idx + 1) & (pipe->buffers - 1); 365 } 366 367 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, 368 struct iov_iter *i) 369 { 370 struct pipe_inode_info *pipe = i->pipe; 371 struct pipe_buffer *buf; 372 size_t off; 373 int idx; 374 375 if (unlikely(bytes > i->count)) 376 bytes = i->count; 377 378 if (unlikely(!bytes)) 379 return 0; 380 381 if (!sanity(i)) 382 return 0; 383 384 off = i->iov_offset; 385 idx = i->idx; 386 buf = &pipe->bufs[idx]; 387 if (off) { 388 if (offset == off && buf->page == page) { 389 /* merge with the last one */ 390 buf->len += bytes; 391 i->iov_offset += bytes; 392 goto out; 393 } 394 idx = next_idx(idx, pipe); 395 buf = &pipe->bufs[idx]; 396 } 397 if (idx == pipe->curbuf && pipe->nrbufs) 398 return 0; 399 pipe->nrbufs++; 400 buf->ops = &page_cache_pipe_buf_ops; 401 get_page(buf->page = page); 402 buf->offset = offset; 403 buf->len = bytes; 404 i->iov_offset = offset + bytes; 405 i->idx = idx; 406 out: 407 i->count -= bytes; 408 return bytes; 409 } 410 411 /* 412 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 413 * bytes. For each iovec, fault in each page that constitutes the iovec. 414 * 415 * Return 0 on success, or non-zero if the memory could not be accessed (i.e. 416 * because it is an invalid address). 417 */ 418 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 419 { 420 size_t skip = i->iov_offset; 421 const struct iovec *iov; 422 int err; 423 struct iovec v; 424 425 if (!(i->type & (ITER_BVEC|ITER_KVEC))) { 426 iterate_iovec(i, bytes, v, iov, skip, ({ 427 err = fault_in_pages_readable(v.iov_base, v.iov_len); 428 if (unlikely(err)) 429 return err; 430 0;})) 431 } 432 return 0; 433 } 434 EXPORT_SYMBOL(iov_iter_fault_in_readable); 435 436 void iov_iter_init(struct iov_iter *i, unsigned int direction, 437 const struct iovec *iov, unsigned long nr_segs, 438 size_t count) 439 { 440 WARN_ON(direction & ~(READ | WRITE)); 441 direction &= READ | WRITE; 442 443 /* It will get better. Eventually... */ 444 if (uaccess_kernel()) { 445 i->type = ITER_KVEC | direction; 446 i->kvec = (struct kvec *)iov; 447 } else { 448 i->type = ITER_IOVEC | direction; 449 i->iov = iov; 450 } 451 i->nr_segs = nr_segs; 452 i->iov_offset = 0; 453 i->count = count; 454 } 455 EXPORT_SYMBOL(iov_iter_init); 456 457 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len) 458 { 459 char *from = kmap_atomic(page); 460 memcpy(to, from + offset, len); 461 kunmap_atomic(from); 462 } 463 464 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len) 465 { 466 char *to = kmap_atomic(page); 467 memcpy(to + offset, from, len); 468 kunmap_atomic(to); 469 } 470 471 static void memzero_page(struct page *page, size_t offset, size_t len) 472 { 473 char *addr = kmap_atomic(page); 474 memset(addr + offset, 0, len); 475 kunmap_atomic(addr); 476 } 477 478 static inline bool allocated(struct pipe_buffer *buf) 479 { 480 return buf->ops == &default_pipe_buf_ops; 481 } 482 483 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp) 484 { 485 size_t off = i->iov_offset; 486 int idx = i->idx; 487 if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) { 488 idx = next_idx(idx, i->pipe); 489 off = 0; 490 } 491 *idxp = idx; 492 *offp = off; 493 } 494 495 static size_t push_pipe(struct iov_iter *i, size_t size, 496 int *idxp, size_t *offp) 497 { 498 struct pipe_inode_info *pipe = i->pipe; 499 size_t off; 500 int idx; 501 ssize_t left; 502 503 if (unlikely(size > i->count)) 504 size = i->count; 505 if (unlikely(!size)) 506 return 0; 507 508 left = size; 509 data_start(i, &idx, &off); 510 *idxp = idx; 511 *offp = off; 512 if (off) { 513 left -= PAGE_SIZE - off; 514 if (left <= 0) { 515 pipe->bufs[idx].len += size; 516 return size; 517 } 518 pipe->bufs[idx].len = PAGE_SIZE; 519 idx = next_idx(idx, pipe); 520 } 521 while (idx != pipe->curbuf || !pipe->nrbufs) { 522 struct page *page = alloc_page(GFP_USER); 523 if (!page) 524 break; 525 pipe->nrbufs++; 526 pipe->bufs[idx].ops = &default_pipe_buf_ops; 527 pipe->bufs[idx].page = page; 528 pipe->bufs[idx].offset = 0; 529 if (left <= PAGE_SIZE) { 530 pipe->bufs[idx].len = left; 531 return size; 532 } 533 pipe->bufs[idx].len = PAGE_SIZE; 534 left -= PAGE_SIZE; 535 idx = next_idx(idx, pipe); 536 } 537 return size - left; 538 } 539 540 static size_t copy_pipe_to_iter(const void *addr, size_t bytes, 541 struct iov_iter *i) 542 { 543 struct pipe_inode_info *pipe = i->pipe; 544 size_t n, off; 545 int idx; 546 547 if (!sanity(i)) 548 return 0; 549 550 bytes = n = push_pipe(i, bytes, &idx, &off); 551 if (unlikely(!n)) 552 return 0; 553 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 554 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 555 memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk); 556 i->idx = idx; 557 i->iov_offset = off + chunk; 558 n -= chunk; 559 addr += chunk; 560 } 561 i->count -= bytes; 562 return bytes; 563 } 564 565 static __wsum csum_and_memcpy(void *to, const void *from, size_t len, 566 __wsum sum, size_t off) 567 { 568 __wsum next = csum_partial_copy_nocheck(from, to, len, 0); 569 return csum_block_add(sum, next, off); 570 } 571 572 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes, 573 __wsum *csum, struct iov_iter *i) 574 { 575 struct pipe_inode_info *pipe = i->pipe; 576 size_t n, r; 577 size_t off = 0; 578 __wsum sum = *csum; 579 int idx; 580 581 if (!sanity(i)) 582 return 0; 583 584 bytes = n = push_pipe(i, bytes, &idx, &r); 585 if (unlikely(!n)) 586 return 0; 587 for ( ; n; idx = next_idx(idx, pipe), r = 0) { 588 size_t chunk = min_t(size_t, n, PAGE_SIZE - r); 589 char *p = kmap_atomic(pipe->bufs[idx].page); 590 sum = csum_and_memcpy(p + r, addr, chunk, sum, off); 591 kunmap_atomic(p); 592 i->idx = idx; 593 i->iov_offset = r + chunk; 594 n -= chunk; 595 off += chunk; 596 addr += chunk; 597 } 598 i->count -= bytes; 599 *csum = sum; 600 return bytes; 601 } 602 603 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 604 { 605 const char *from = addr; 606 if (unlikely(iov_iter_is_pipe(i))) 607 return copy_pipe_to_iter(addr, bytes, i); 608 if (iter_is_iovec(i)) 609 might_fault(); 610 iterate_and_advance(i, bytes, v, 611 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 612 memcpy_to_page(v.bv_page, v.bv_offset, 613 (from += v.bv_len) - v.bv_len, v.bv_len), 614 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len) 615 ) 616 617 return bytes; 618 } 619 EXPORT_SYMBOL(_copy_to_iter); 620 621 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE 622 static int copyout_mcsafe(void __user *to, const void *from, size_t n) 623 { 624 if (access_ok(to, n)) { 625 kasan_check_read(from, n); 626 n = copy_to_user_mcsafe((__force void *) to, from, n); 627 } 628 return n; 629 } 630 631 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset, 632 const char *from, size_t len) 633 { 634 unsigned long ret; 635 char *to; 636 637 to = kmap_atomic(page); 638 ret = memcpy_mcsafe(to + offset, from, len); 639 kunmap_atomic(to); 640 641 return ret; 642 } 643 644 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes, 645 struct iov_iter *i) 646 { 647 struct pipe_inode_info *pipe = i->pipe; 648 size_t n, off, xfer = 0; 649 int idx; 650 651 if (!sanity(i)) 652 return 0; 653 654 bytes = n = push_pipe(i, bytes, &idx, &off); 655 if (unlikely(!n)) 656 return 0; 657 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 658 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 659 unsigned long rem; 660 661 rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr, 662 chunk); 663 i->idx = idx; 664 i->iov_offset = off + chunk - rem; 665 xfer += chunk - rem; 666 if (rem) 667 break; 668 n -= chunk; 669 addr += chunk; 670 } 671 i->count -= xfer; 672 return xfer; 673 } 674 675 /** 676 * _copy_to_iter_mcsafe - copy to user with source-read error exception handling 677 * @addr: source kernel address 678 * @bytes: total transfer length 679 * @iter: destination iterator 680 * 681 * The pmem driver arranges for filesystem-dax to use this facility via 682 * dax_copy_to_iter() for protecting read/write to persistent memory. 683 * Unless / until an architecture can guarantee identical performance 684 * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a 685 * performance regression to switch more users to the mcsafe version. 686 * 687 * Otherwise, the main differences between this and typical _copy_to_iter(). 688 * 689 * * Typical tail/residue handling after a fault retries the copy 690 * byte-by-byte until the fault happens again. Re-triggering machine 691 * checks is potentially fatal so the implementation uses source 692 * alignment and poison alignment assumptions to avoid re-triggering 693 * hardware exceptions. 694 * 695 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. 696 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return 697 * a short copy. 698 * 699 * See MCSAFE_TEST for self-test. 700 */ 701 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i) 702 { 703 const char *from = addr; 704 unsigned long rem, curr_addr, s_addr = (unsigned long) addr; 705 706 if (unlikely(iov_iter_is_pipe(i))) 707 return copy_pipe_to_iter_mcsafe(addr, bytes, i); 708 if (iter_is_iovec(i)) 709 might_fault(); 710 iterate_and_advance(i, bytes, v, 711 copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 712 ({ 713 rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset, 714 (from += v.bv_len) - v.bv_len, v.bv_len); 715 if (rem) { 716 curr_addr = (unsigned long) from; 717 bytes = curr_addr - s_addr - rem; 718 return bytes; 719 } 720 }), 721 ({ 722 rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, 723 v.iov_len); 724 if (rem) { 725 curr_addr = (unsigned long) from; 726 bytes = curr_addr - s_addr - rem; 727 return bytes; 728 } 729 }) 730 ) 731 732 return bytes; 733 } 734 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe); 735 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */ 736 737 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 738 { 739 char *to = addr; 740 if (unlikely(iov_iter_is_pipe(i))) { 741 WARN_ON(1); 742 return 0; 743 } 744 if (iter_is_iovec(i)) 745 might_fault(); 746 iterate_and_advance(i, bytes, v, 747 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 748 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 749 v.bv_offset, v.bv_len), 750 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 751 ) 752 753 return bytes; 754 } 755 EXPORT_SYMBOL(_copy_from_iter); 756 757 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) 758 { 759 char *to = addr; 760 if (unlikely(iov_iter_is_pipe(i))) { 761 WARN_ON(1); 762 return false; 763 } 764 if (unlikely(i->count < bytes)) 765 return false; 766 767 if (iter_is_iovec(i)) 768 might_fault(); 769 iterate_all_kinds(i, bytes, v, ({ 770 if (copyin((to += v.iov_len) - v.iov_len, 771 v.iov_base, v.iov_len)) 772 return false; 773 0;}), 774 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 775 v.bv_offset, v.bv_len), 776 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 777 ) 778 779 iov_iter_advance(i, bytes); 780 return true; 781 } 782 EXPORT_SYMBOL(_copy_from_iter_full); 783 784 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 785 { 786 char *to = addr; 787 if (unlikely(iov_iter_is_pipe(i))) { 788 WARN_ON(1); 789 return 0; 790 } 791 iterate_and_advance(i, bytes, v, 792 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 793 v.iov_base, v.iov_len), 794 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 795 v.bv_offset, v.bv_len), 796 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 797 ) 798 799 return bytes; 800 } 801 EXPORT_SYMBOL(_copy_from_iter_nocache); 802 803 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 804 /** 805 * _copy_from_iter_flushcache - write destination through cpu cache 806 * @addr: destination kernel address 807 * @bytes: total transfer length 808 * @iter: source iterator 809 * 810 * The pmem driver arranges for filesystem-dax to use this facility via 811 * dax_copy_from_iter() for ensuring that writes to persistent memory 812 * are flushed through the CPU cache. It is differentiated from 813 * _copy_from_iter_nocache() in that guarantees all data is flushed for 814 * all iterator types. The _copy_from_iter_nocache() only attempts to 815 * bypass the cache for the ITER_IOVEC case, and on some archs may use 816 * instructions that strand dirty-data in the cache. 817 */ 818 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 819 { 820 char *to = addr; 821 if (unlikely(iov_iter_is_pipe(i))) { 822 WARN_ON(1); 823 return 0; 824 } 825 iterate_and_advance(i, bytes, v, 826 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len, 827 v.iov_base, v.iov_len), 828 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page, 829 v.bv_offset, v.bv_len), 830 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, 831 v.iov_len) 832 ) 833 834 return bytes; 835 } 836 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 837 #endif 838 839 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) 840 { 841 char *to = addr; 842 if (unlikely(iov_iter_is_pipe(i))) { 843 WARN_ON(1); 844 return false; 845 } 846 if (unlikely(i->count < bytes)) 847 return false; 848 iterate_all_kinds(i, bytes, v, ({ 849 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 850 v.iov_base, v.iov_len)) 851 return false; 852 0;}), 853 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 854 v.bv_offset, v.bv_len), 855 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 856 ) 857 858 iov_iter_advance(i, bytes); 859 return true; 860 } 861 EXPORT_SYMBOL(_copy_from_iter_full_nocache); 862 863 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 864 { 865 struct page *head; 866 size_t v = n + offset; 867 868 /* 869 * The general case needs to access the page order in order 870 * to compute the page size. 871 * However, we mostly deal with order-0 pages and thus can 872 * avoid a possible cache line miss for requests that fit all 873 * page orders. 874 */ 875 if (n <= v && v <= PAGE_SIZE) 876 return true; 877 878 head = compound_head(page); 879 v += (page - head) << PAGE_SHIFT; 880 881 if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head)))) 882 return true; 883 WARN_ON(1); 884 return false; 885 } 886 887 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 888 struct iov_iter *i) 889 { 890 if (unlikely(!page_copy_sane(page, offset, bytes))) 891 return 0; 892 if (i->type & (ITER_BVEC|ITER_KVEC)) { 893 void *kaddr = kmap_atomic(page); 894 size_t wanted = copy_to_iter(kaddr + offset, bytes, i); 895 kunmap_atomic(kaddr); 896 return wanted; 897 } else if (unlikely(iov_iter_is_discard(i))) 898 return bytes; 899 else if (likely(!iov_iter_is_pipe(i))) 900 return copy_page_to_iter_iovec(page, offset, bytes, i); 901 else 902 return copy_page_to_iter_pipe(page, offset, bytes, i); 903 } 904 EXPORT_SYMBOL(copy_page_to_iter); 905 906 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 907 struct iov_iter *i) 908 { 909 if (unlikely(!page_copy_sane(page, offset, bytes))) 910 return 0; 911 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 912 WARN_ON(1); 913 return 0; 914 } 915 if (i->type & (ITER_BVEC|ITER_KVEC)) { 916 void *kaddr = kmap_atomic(page); 917 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i); 918 kunmap_atomic(kaddr); 919 return wanted; 920 } else 921 return copy_page_from_iter_iovec(page, offset, bytes, i); 922 } 923 EXPORT_SYMBOL(copy_page_from_iter); 924 925 static size_t pipe_zero(size_t bytes, struct iov_iter *i) 926 { 927 struct pipe_inode_info *pipe = i->pipe; 928 size_t n, off; 929 int idx; 930 931 if (!sanity(i)) 932 return 0; 933 934 bytes = n = push_pipe(i, bytes, &idx, &off); 935 if (unlikely(!n)) 936 return 0; 937 938 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 939 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 940 memzero_page(pipe->bufs[idx].page, off, chunk); 941 i->idx = idx; 942 i->iov_offset = off + chunk; 943 n -= chunk; 944 } 945 i->count -= bytes; 946 return bytes; 947 } 948 949 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 950 { 951 if (unlikely(iov_iter_is_pipe(i))) 952 return pipe_zero(bytes, i); 953 iterate_and_advance(i, bytes, v, 954 clear_user(v.iov_base, v.iov_len), 955 memzero_page(v.bv_page, v.bv_offset, v.bv_len), 956 memset(v.iov_base, 0, v.iov_len) 957 ) 958 959 return bytes; 960 } 961 EXPORT_SYMBOL(iov_iter_zero); 962 963 size_t iov_iter_copy_from_user_atomic(struct page *page, 964 struct iov_iter *i, unsigned long offset, size_t bytes) 965 { 966 char *kaddr = kmap_atomic(page), *p = kaddr + offset; 967 if (unlikely(!page_copy_sane(page, offset, bytes))) { 968 kunmap_atomic(kaddr); 969 return 0; 970 } 971 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 972 kunmap_atomic(kaddr); 973 WARN_ON(1); 974 return 0; 975 } 976 iterate_all_kinds(i, bytes, v, 977 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 978 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page, 979 v.bv_offset, v.bv_len), 980 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 981 ) 982 kunmap_atomic(kaddr); 983 return bytes; 984 } 985 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 986 987 static inline void pipe_truncate(struct iov_iter *i) 988 { 989 struct pipe_inode_info *pipe = i->pipe; 990 if (pipe->nrbufs) { 991 size_t off = i->iov_offset; 992 int idx = i->idx; 993 int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1); 994 if (off) { 995 pipe->bufs[idx].len = off - pipe->bufs[idx].offset; 996 idx = next_idx(idx, pipe); 997 nrbufs++; 998 } 999 while (pipe->nrbufs > nrbufs) { 1000 pipe_buf_release(pipe, &pipe->bufs[idx]); 1001 idx = next_idx(idx, pipe); 1002 pipe->nrbufs--; 1003 } 1004 } 1005 } 1006 1007 static void pipe_advance(struct iov_iter *i, size_t size) 1008 { 1009 struct pipe_inode_info *pipe = i->pipe; 1010 if (unlikely(i->count < size)) 1011 size = i->count; 1012 if (size) { 1013 struct pipe_buffer *buf; 1014 size_t off = i->iov_offset, left = size; 1015 int idx = i->idx; 1016 if (off) /* make it relative to the beginning of buffer */ 1017 left += off - pipe->bufs[idx].offset; 1018 while (1) { 1019 buf = &pipe->bufs[idx]; 1020 if (left <= buf->len) 1021 break; 1022 left -= buf->len; 1023 idx = next_idx(idx, pipe); 1024 } 1025 i->idx = idx; 1026 i->iov_offset = buf->offset + left; 1027 } 1028 i->count -= size; 1029 /* ... and discard everything past that point */ 1030 pipe_truncate(i); 1031 } 1032 1033 void iov_iter_advance(struct iov_iter *i, size_t size) 1034 { 1035 if (unlikely(iov_iter_is_pipe(i))) { 1036 pipe_advance(i, size); 1037 return; 1038 } 1039 if (unlikely(iov_iter_is_discard(i))) { 1040 i->count -= size; 1041 return; 1042 } 1043 iterate_and_advance(i, size, v, 0, 0, 0) 1044 } 1045 EXPORT_SYMBOL(iov_iter_advance); 1046 1047 void iov_iter_revert(struct iov_iter *i, size_t unroll) 1048 { 1049 if (!unroll) 1050 return; 1051 if (WARN_ON(unroll > MAX_RW_COUNT)) 1052 return; 1053 i->count += unroll; 1054 if (unlikely(iov_iter_is_pipe(i))) { 1055 struct pipe_inode_info *pipe = i->pipe; 1056 int idx = i->idx; 1057 size_t off = i->iov_offset; 1058 while (1) { 1059 size_t n = off - pipe->bufs[idx].offset; 1060 if (unroll < n) { 1061 off -= unroll; 1062 break; 1063 } 1064 unroll -= n; 1065 if (!unroll && idx == i->start_idx) { 1066 off = 0; 1067 break; 1068 } 1069 if (!idx--) 1070 idx = pipe->buffers - 1; 1071 off = pipe->bufs[idx].offset + pipe->bufs[idx].len; 1072 } 1073 i->iov_offset = off; 1074 i->idx = idx; 1075 pipe_truncate(i); 1076 return; 1077 } 1078 if (unlikely(iov_iter_is_discard(i))) 1079 return; 1080 if (unroll <= i->iov_offset) { 1081 i->iov_offset -= unroll; 1082 return; 1083 } 1084 unroll -= i->iov_offset; 1085 if (iov_iter_is_bvec(i)) { 1086 const struct bio_vec *bvec = i->bvec; 1087 while (1) { 1088 size_t n = (--bvec)->bv_len; 1089 i->nr_segs++; 1090 if (unroll <= n) { 1091 i->bvec = bvec; 1092 i->iov_offset = n - unroll; 1093 return; 1094 } 1095 unroll -= n; 1096 } 1097 } else { /* same logics for iovec and kvec */ 1098 const struct iovec *iov = i->iov; 1099 while (1) { 1100 size_t n = (--iov)->iov_len; 1101 i->nr_segs++; 1102 if (unroll <= n) { 1103 i->iov = iov; 1104 i->iov_offset = n - unroll; 1105 return; 1106 } 1107 unroll -= n; 1108 } 1109 } 1110 } 1111 EXPORT_SYMBOL(iov_iter_revert); 1112 1113 /* 1114 * Return the count of just the current iov_iter segment. 1115 */ 1116 size_t iov_iter_single_seg_count(const struct iov_iter *i) 1117 { 1118 if (unlikely(iov_iter_is_pipe(i))) 1119 return i->count; // it is a silly place, anyway 1120 if (i->nr_segs == 1) 1121 return i->count; 1122 if (unlikely(iov_iter_is_discard(i))) 1123 return i->count; 1124 else if (iov_iter_is_bvec(i)) 1125 return min(i->count, i->bvec->bv_len - i->iov_offset); 1126 else 1127 return min(i->count, i->iov->iov_len - i->iov_offset); 1128 } 1129 EXPORT_SYMBOL(iov_iter_single_seg_count); 1130 1131 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 1132 const struct kvec *kvec, unsigned long nr_segs, 1133 size_t count) 1134 { 1135 WARN_ON(direction & ~(READ | WRITE)); 1136 i->type = ITER_KVEC | (direction & (READ | WRITE)); 1137 i->kvec = kvec; 1138 i->nr_segs = nr_segs; 1139 i->iov_offset = 0; 1140 i->count = count; 1141 } 1142 EXPORT_SYMBOL(iov_iter_kvec); 1143 1144 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 1145 const struct bio_vec *bvec, unsigned long nr_segs, 1146 size_t count) 1147 { 1148 WARN_ON(direction & ~(READ | WRITE)); 1149 i->type = ITER_BVEC | (direction & (READ | WRITE)); 1150 i->bvec = bvec; 1151 i->nr_segs = nr_segs; 1152 i->iov_offset = 0; 1153 i->count = count; 1154 } 1155 EXPORT_SYMBOL(iov_iter_bvec); 1156 1157 void iov_iter_pipe(struct iov_iter *i, unsigned int direction, 1158 struct pipe_inode_info *pipe, 1159 size_t count) 1160 { 1161 BUG_ON(direction != READ); 1162 WARN_ON(pipe->nrbufs == pipe->buffers); 1163 i->type = ITER_PIPE | READ; 1164 i->pipe = pipe; 1165 i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 1166 i->iov_offset = 0; 1167 i->count = count; 1168 i->start_idx = i->idx; 1169 } 1170 EXPORT_SYMBOL(iov_iter_pipe); 1171 1172 /** 1173 * iov_iter_discard - Initialise an I/O iterator that discards data 1174 * @i: The iterator to initialise. 1175 * @direction: The direction of the transfer. 1176 * @count: The size of the I/O buffer in bytes. 1177 * 1178 * Set up an I/O iterator that just discards everything that's written to it. 1179 * It's only available as a READ iterator. 1180 */ 1181 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 1182 { 1183 BUG_ON(direction != READ); 1184 i->type = ITER_DISCARD | READ; 1185 i->count = count; 1186 i->iov_offset = 0; 1187 } 1188 EXPORT_SYMBOL(iov_iter_discard); 1189 1190 unsigned long iov_iter_alignment(const struct iov_iter *i) 1191 { 1192 unsigned long res = 0; 1193 size_t size = i->count; 1194 1195 if (unlikely(iov_iter_is_pipe(i))) { 1196 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx])) 1197 return size | i->iov_offset; 1198 return size; 1199 } 1200 iterate_all_kinds(i, size, v, 1201 (res |= (unsigned long)v.iov_base | v.iov_len, 0), 1202 res |= v.bv_offset | v.bv_len, 1203 res |= (unsigned long)v.iov_base | v.iov_len 1204 ) 1205 return res; 1206 } 1207 EXPORT_SYMBOL(iov_iter_alignment); 1208 1209 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 1210 { 1211 unsigned long res = 0; 1212 size_t size = i->count; 1213 1214 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1215 WARN_ON(1); 1216 return ~0U; 1217 } 1218 1219 iterate_all_kinds(i, size, v, 1220 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1221 (size != v.iov_len ? size : 0), 0), 1222 (res |= (!res ? 0 : (unsigned long)v.bv_offset) | 1223 (size != v.bv_len ? size : 0)), 1224 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1225 (size != v.iov_len ? size : 0)) 1226 ); 1227 return res; 1228 } 1229 EXPORT_SYMBOL(iov_iter_gap_alignment); 1230 1231 static inline ssize_t __pipe_get_pages(struct iov_iter *i, 1232 size_t maxsize, 1233 struct page **pages, 1234 int idx, 1235 size_t *start) 1236 { 1237 struct pipe_inode_info *pipe = i->pipe; 1238 ssize_t n = push_pipe(i, maxsize, &idx, start); 1239 if (!n) 1240 return -EFAULT; 1241 1242 maxsize = n; 1243 n += *start; 1244 while (n > 0) { 1245 get_page(*pages++ = pipe->bufs[idx].page); 1246 idx = next_idx(idx, pipe); 1247 n -= PAGE_SIZE; 1248 } 1249 1250 return maxsize; 1251 } 1252 1253 static ssize_t pipe_get_pages(struct iov_iter *i, 1254 struct page **pages, size_t maxsize, unsigned maxpages, 1255 size_t *start) 1256 { 1257 unsigned npages; 1258 size_t capacity; 1259 int idx; 1260 1261 if (!maxsize) 1262 return 0; 1263 1264 if (!sanity(i)) 1265 return -EFAULT; 1266 1267 data_start(i, &idx, start); 1268 /* some of this one + all after this one */ 1269 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; 1270 capacity = min(npages,maxpages) * PAGE_SIZE - *start; 1271 1272 return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start); 1273 } 1274 1275 ssize_t iov_iter_get_pages(struct iov_iter *i, 1276 struct page **pages, size_t maxsize, unsigned maxpages, 1277 size_t *start) 1278 { 1279 if (maxsize > i->count) 1280 maxsize = i->count; 1281 1282 if (unlikely(iov_iter_is_pipe(i))) 1283 return pipe_get_pages(i, pages, maxsize, maxpages, start); 1284 if (unlikely(iov_iter_is_discard(i))) 1285 return -EFAULT; 1286 1287 iterate_all_kinds(i, maxsize, v, ({ 1288 unsigned long addr = (unsigned long)v.iov_base; 1289 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1290 int n; 1291 int res; 1292 1293 if (len > maxpages * PAGE_SIZE) 1294 len = maxpages * PAGE_SIZE; 1295 addr &= ~(PAGE_SIZE - 1); 1296 n = DIV_ROUND_UP(len, PAGE_SIZE); 1297 res = get_user_pages_fast(addr, n, 1298 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, 1299 pages); 1300 if (unlikely(res < 0)) 1301 return res; 1302 return (res == n ? len : res * PAGE_SIZE) - *start; 1303 0;}),({ 1304 /* can't be more than PAGE_SIZE */ 1305 *start = v.bv_offset; 1306 get_page(*pages = v.bv_page); 1307 return v.bv_len; 1308 }),({ 1309 return -EFAULT; 1310 }) 1311 ) 1312 return 0; 1313 } 1314 EXPORT_SYMBOL(iov_iter_get_pages); 1315 1316 static struct page **get_pages_array(size_t n) 1317 { 1318 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL); 1319 } 1320 1321 static ssize_t pipe_get_pages_alloc(struct iov_iter *i, 1322 struct page ***pages, size_t maxsize, 1323 size_t *start) 1324 { 1325 struct page **p; 1326 ssize_t n; 1327 int idx; 1328 int npages; 1329 1330 if (!maxsize) 1331 return 0; 1332 1333 if (!sanity(i)) 1334 return -EFAULT; 1335 1336 data_start(i, &idx, start); 1337 /* some of this one + all after this one */ 1338 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; 1339 n = npages * PAGE_SIZE - *start; 1340 if (maxsize > n) 1341 maxsize = n; 1342 else 1343 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE); 1344 p = get_pages_array(npages); 1345 if (!p) 1346 return -ENOMEM; 1347 n = __pipe_get_pages(i, maxsize, p, idx, start); 1348 if (n > 0) 1349 *pages = p; 1350 else 1351 kvfree(p); 1352 return n; 1353 } 1354 1355 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, 1356 struct page ***pages, size_t maxsize, 1357 size_t *start) 1358 { 1359 struct page **p; 1360 1361 if (maxsize > i->count) 1362 maxsize = i->count; 1363 1364 if (unlikely(iov_iter_is_pipe(i))) 1365 return pipe_get_pages_alloc(i, pages, maxsize, start); 1366 if (unlikely(iov_iter_is_discard(i))) 1367 return -EFAULT; 1368 1369 iterate_all_kinds(i, maxsize, v, ({ 1370 unsigned long addr = (unsigned long)v.iov_base; 1371 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1372 int n; 1373 int res; 1374 1375 addr &= ~(PAGE_SIZE - 1); 1376 n = DIV_ROUND_UP(len, PAGE_SIZE); 1377 p = get_pages_array(n); 1378 if (!p) 1379 return -ENOMEM; 1380 res = get_user_pages_fast(addr, n, 1381 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p); 1382 if (unlikely(res < 0)) { 1383 kvfree(p); 1384 return res; 1385 } 1386 *pages = p; 1387 return (res == n ? len : res * PAGE_SIZE) - *start; 1388 0;}),({ 1389 /* can't be more than PAGE_SIZE */ 1390 *start = v.bv_offset; 1391 *pages = p = get_pages_array(1); 1392 if (!p) 1393 return -ENOMEM; 1394 get_page(*p = v.bv_page); 1395 return v.bv_len; 1396 }),({ 1397 return -EFAULT; 1398 }) 1399 ) 1400 return 0; 1401 } 1402 EXPORT_SYMBOL(iov_iter_get_pages_alloc); 1403 1404 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, 1405 struct iov_iter *i) 1406 { 1407 char *to = addr; 1408 __wsum sum, next; 1409 size_t off = 0; 1410 sum = *csum; 1411 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1412 WARN_ON(1); 1413 return 0; 1414 } 1415 iterate_and_advance(i, bytes, v, ({ 1416 int err = 0; 1417 next = csum_and_copy_from_user(v.iov_base, 1418 (to += v.iov_len) - v.iov_len, 1419 v.iov_len, 0, &err); 1420 if (!err) { 1421 sum = csum_block_add(sum, next, off); 1422 off += v.iov_len; 1423 } 1424 err ? v.iov_len : 0; 1425 }), ({ 1426 char *p = kmap_atomic(v.bv_page); 1427 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, 1428 p + v.bv_offset, v.bv_len, 1429 sum, off); 1430 kunmap_atomic(p); 1431 off += v.bv_len; 1432 }),({ 1433 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, 1434 v.iov_base, v.iov_len, 1435 sum, off); 1436 off += v.iov_len; 1437 }) 1438 ) 1439 *csum = sum; 1440 return bytes; 1441 } 1442 EXPORT_SYMBOL(csum_and_copy_from_iter); 1443 1444 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, 1445 struct iov_iter *i) 1446 { 1447 char *to = addr; 1448 __wsum sum, next; 1449 size_t off = 0; 1450 sum = *csum; 1451 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1452 WARN_ON(1); 1453 return false; 1454 } 1455 if (unlikely(i->count < bytes)) 1456 return false; 1457 iterate_all_kinds(i, bytes, v, ({ 1458 int err = 0; 1459 next = csum_and_copy_from_user(v.iov_base, 1460 (to += v.iov_len) - v.iov_len, 1461 v.iov_len, 0, &err); 1462 if (err) 1463 return false; 1464 sum = csum_block_add(sum, next, off); 1465 off += v.iov_len; 1466 0; 1467 }), ({ 1468 char *p = kmap_atomic(v.bv_page); 1469 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, 1470 p + v.bv_offset, v.bv_len, 1471 sum, off); 1472 kunmap_atomic(p); 1473 off += v.bv_len; 1474 }),({ 1475 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, 1476 v.iov_base, v.iov_len, 1477 sum, off); 1478 off += v.iov_len; 1479 }) 1480 ) 1481 *csum = sum; 1482 iov_iter_advance(i, bytes); 1483 return true; 1484 } 1485 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 1486 1487 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump, 1488 struct iov_iter *i) 1489 { 1490 const char *from = addr; 1491 __wsum *csum = csump; 1492 __wsum sum, next; 1493 size_t off = 0; 1494 1495 if (unlikely(iov_iter_is_pipe(i))) 1496 return csum_and_copy_to_pipe_iter(addr, bytes, csum, i); 1497 1498 sum = *csum; 1499 if (unlikely(iov_iter_is_discard(i))) { 1500 WARN_ON(1); /* for now */ 1501 return 0; 1502 } 1503 iterate_and_advance(i, bytes, v, ({ 1504 int err = 0; 1505 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len, 1506 v.iov_base, 1507 v.iov_len, 0, &err); 1508 if (!err) { 1509 sum = csum_block_add(sum, next, off); 1510 off += v.iov_len; 1511 } 1512 err ? v.iov_len : 0; 1513 }), ({ 1514 char *p = kmap_atomic(v.bv_page); 1515 sum = csum_and_memcpy(p + v.bv_offset, 1516 (from += v.bv_len) - v.bv_len, 1517 v.bv_len, sum, off); 1518 kunmap_atomic(p); 1519 off += v.bv_len; 1520 }),({ 1521 sum = csum_and_memcpy(v.iov_base, 1522 (from += v.iov_len) - v.iov_len, 1523 v.iov_len, sum, off); 1524 off += v.iov_len; 1525 }) 1526 ) 1527 *csum = sum; 1528 return bytes; 1529 } 1530 EXPORT_SYMBOL(csum_and_copy_to_iter); 1531 1532 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, 1533 struct iov_iter *i) 1534 { 1535 #ifdef CONFIG_CRYPTO 1536 struct ahash_request *hash = hashp; 1537 struct scatterlist sg; 1538 size_t copied; 1539 1540 copied = copy_to_iter(addr, bytes, i); 1541 sg_init_one(&sg, addr, copied); 1542 ahash_request_set_crypt(hash, &sg, NULL, copied); 1543 crypto_ahash_update(hash); 1544 return copied; 1545 #else 1546 return 0; 1547 #endif 1548 } 1549 EXPORT_SYMBOL(hash_and_copy_to_iter); 1550 1551 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1552 { 1553 size_t size = i->count; 1554 int npages = 0; 1555 1556 if (!size) 1557 return 0; 1558 if (unlikely(iov_iter_is_discard(i))) 1559 return 0; 1560 1561 if (unlikely(iov_iter_is_pipe(i))) { 1562 struct pipe_inode_info *pipe = i->pipe; 1563 size_t off; 1564 int idx; 1565 1566 if (!sanity(i)) 1567 return 0; 1568 1569 data_start(i, &idx, &off); 1570 /* some of this one + all after this one */ 1571 npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1; 1572 if (npages >= maxpages) 1573 return maxpages; 1574 } else iterate_all_kinds(i, size, v, ({ 1575 unsigned long p = (unsigned long)v.iov_base; 1576 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1577 - p / PAGE_SIZE; 1578 if (npages >= maxpages) 1579 return maxpages; 1580 0;}),({ 1581 npages++; 1582 if (npages >= maxpages) 1583 return maxpages; 1584 }),({ 1585 unsigned long p = (unsigned long)v.iov_base; 1586 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1587 - p / PAGE_SIZE; 1588 if (npages >= maxpages) 1589 return maxpages; 1590 }) 1591 ) 1592 return npages; 1593 } 1594 EXPORT_SYMBOL(iov_iter_npages); 1595 1596 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1597 { 1598 *new = *old; 1599 if (unlikely(iov_iter_is_pipe(new))) { 1600 WARN_ON(1); 1601 return NULL; 1602 } 1603 if (unlikely(iov_iter_is_discard(new))) 1604 return NULL; 1605 if (iov_iter_is_bvec(new)) 1606 return new->bvec = kmemdup(new->bvec, 1607 new->nr_segs * sizeof(struct bio_vec), 1608 flags); 1609 else 1610 /* iovec and kvec have identical layout */ 1611 return new->iov = kmemdup(new->iov, 1612 new->nr_segs * sizeof(struct iovec), 1613 flags); 1614 } 1615 EXPORT_SYMBOL(dup_iter); 1616 1617 /** 1618 * import_iovec() - Copy an array of &struct iovec from userspace 1619 * into the kernel, check that it is valid, and initialize a new 1620 * &struct iov_iter iterator to access it. 1621 * 1622 * @type: One of %READ or %WRITE. 1623 * @uvector: Pointer to the userspace array. 1624 * @nr_segs: Number of elements in userspace array. 1625 * @fast_segs: Number of elements in @iov. 1626 * @iov: (input and output parameter) Pointer to pointer to (usually small 1627 * on-stack) kernel array. 1628 * @i: Pointer to iterator that will be initialized on success. 1629 * 1630 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1631 * then this function places %NULL in *@iov on return. Otherwise, a new 1632 * array will be allocated and the result placed in *@iov. This means that 1633 * the caller may call kfree() on *@iov regardless of whether the small 1634 * on-stack array was used or not (and regardless of whether this function 1635 * returns an error or not). 1636 * 1637 * Return: 0 on success or negative error code on error. 1638 */ 1639 int import_iovec(int type, const struct iovec __user * uvector, 1640 unsigned nr_segs, unsigned fast_segs, 1641 struct iovec **iov, struct iov_iter *i) 1642 { 1643 ssize_t n; 1644 struct iovec *p; 1645 n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1646 *iov, &p); 1647 if (n < 0) { 1648 if (p != *iov) 1649 kfree(p); 1650 *iov = NULL; 1651 return n; 1652 } 1653 iov_iter_init(i, type, p, nr_segs, n); 1654 *iov = p == *iov ? NULL : p; 1655 return 0; 1656 } 1657 EXPORT_SYMBOL(import_iovec); 1658 1659 #ifdef CONFIG_COMPAT 1660 #include <linux/compat.h> 1661 1662 int compat_import_iovec(int type, const struct compat_iovec __user * uvector, 1663 unsigned nr_segs, unsigned fast_segs, 1664 struct iovec **iov, struct iov_iter *i) 1665 { 1666 ssize_t n; 1667 struct iovec *p; 1668 n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1669 *iov, &p); 1670 if (n < 0) { 1671 if (p != *iov) 1672 kfree(p); 1673 *iov = NULL; 1674 return n; 1675 } 1676 iov_iter_init(i, type, p, nr_segs, n); 1677 *iov = p == *iov ? NULL : p; 1678 return 0; 1679 } 1680 #endif 1681 1682 int import_single_range(int rw, void __user *buf, size_t len, 1683 struct iovec *iov, struct iov_iter *i) 1684 { 1685 if (len > MAX_RW_COUNT) 1686 len = MAX_RW_COUNT; 1687 if (unlikely(!access_ok(buf, len))) 1688 return -EFAULT; 1689 1690 iov->iov_base = buf; 1691 iov->iov_len = len; 1692 iov_iter_init(i, rw, iov, 1, len); 1693 return 0; 1694 } 1695 EXPORT_SYMBOL(import_single_range); 1696 1697 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes, 1698 int (*f)(struct kvec *vec, void *context), 1699 void *context) 1700 { 1701 struct kvec w; 1702 int err = -EINVAL; 1703 if (!bytes) 1704 return 0; 1705 1706 iterate_all_kinds(i, bytes, v, -EINVAL, ({ 1707 w.iov_base = kmap(v.bv_page) + v.bv_offset; 1708 w.iov_len = v.bv_len; 1709 err = f(&w, context); 1710 kunmap(v.bv_page); 1711 err;}), ({ 1712 w = v; 1713 err = f(&w, context);}) 1714 ) 1715 return err; 1716 } 1717 EXPORT_SYMBOL(iov_iter_for_each_range); 1718