xref: /openbmc/linux/lib/iov_iter.c (revision 4228c037)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
21 	size_t off = 0;						\
22 	size_t skip = i->iov_offset;				\
23 	do {							\
24 		len = min(n, __p->iov_len - skip);		\
25 		if (likely(len)) {				\
26 			base = __p->iov_base + skip;		\
27 			len -= (STEP);				\
28 			off += len;				\
29 			skip += len;				\
30 			n -= len;				\
31 			if (skip < __p->iov_len)		\
32 				break;				\
33 		}						\
34 		__p++;						\
35 		skip = 0;					\
36 	} while (n);						\
37 	i->iov_offset = skip;					\
38 	n = off;						\
39 }
40 
41 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
42 	size_t off = 0;						\
43 	unsigned skip = i->iov_offset;				\
44 	while (n) {						\
45 		unsigned offset = p->bv_offset + skip;		\
46 		unsigned left;					\
47 		void *kaddr = kmap_local_page(p->bv_page +	\
48 					offset / PAGE_SIZE);	\
49 		base = kaddr + offset % PAGE_SIZE;		\
50 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
51 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
52 		left = (STEP);					\
53 		kunmap_local(kaddr);				\
54 		len -= left;					\
55 		off += len;					\
56 		skip += len;					\
57 		if (skip == p->bv_len) {			\
58 			skip = 0;				\
59 			p++;					\
60 		}						\
61 		n -= len;					\
62 		if (left)					\
63 			break;					\
64 	}							\
65 	i->iov_offset = skip;					\
66 	n = off;						\
67 }
68 
69 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
70 	__label__ __out;					\
71 	size_t __off = 0;					\
72 	struct page *head = NULL;				\
73 	loff_t start = i->xarray_start + i->iov_offset;		\
74 	unsigned offset = start % PAGE_SIZE;			\
75 	pgoff_t index = start / PAGE_SIZE;			\
76 	int j;							\
77 								\
78 	XA_STATE(xas, i->xarray, index);			\
79 								\
80 	rcu_read_lock();					\
81 	xas_for_each(&xas, head, ULONG_MAX) {			\
82 		unsigned left;					\
83 		if (xas_retry(&xas, head))			\
84 			continue;				\
85 		if (WARN_ON(xa_is_value(head)))			\
86 			break;					\
87 		if (WARN_ON(PageHuge(head)))			\
88 			break;					\
89 		for (j = (head->index < index) ? index - head->index : 0; \
90 		     j < thp_nr_pages(head); j++) {		\
91 			void *kaddr = kmap_local_page(head + j);	\
92 			base = kaddr + offset;			\
93 			len = PAGE_SIZE - offset;		\
94 			len = min(n, len);			\
95 			left = (STEP);				\
96 			kunmap_local(kaddr);			\
97 			len -= left;				\
98 			__off += len;				\
99 			n -= len;				\
100 			if (left || n == 0)			\
101 				goto __out;			\
102 			offset = 0;				\
103 		}						\
104 	}							\
105 __out:								\
106 	rcu_read_unlock();					\
107 	i->iov_offset += __off;						\
108 	n = __off;						\
109 }
110 
111 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
112 	if (unlikely(i->count < n))				\
113 		n = i->count;					\
114 	if (likely(n)) {					\
115 		if (likely(iter_is_iovec(i))) {			\
116 			const struct iovec *iov = i->iov;	\
117 			void __user *base;			\
118 			size_t len;				\
119 			iterate_iovec(i, n, base, len, off,	\
120 						iov, (I))	\
121 			i->nr_segs -= iov - i->iov;		\
122 			i->iov = iov;				\
123 		} else if (iov_iter_is_bvec(i)) {		\
124 			const struct bio_vec *bvec = i->bvec;	\
125 			void *base;				\
126 			size_t len;				\
127 			iterate_bvec(i, n, base, len, off,	\
128 						bvec, (K))	\
129 			i->nr_segs -= bvec - i->bvec;		\
130 			i->bvec = bvec;				\
131 		} else if (iov_iter_is_kvec(i)) {		\
132 			const struct kvec *kvec = i->kvec;	\
133 			void *base;				\
134 			size_t len;				\
135 			iterate_iovec(i, n, base, len, off,	\
136 						kvec, (K))	\
137 			i->nr_segs -= kvec - i->kvec;		\
138 			i->kvec = kvec;				\
139 		} else if (iov_iter_is_xarray(i)) {		\
140 			void *base;				\
141 			size_t len;				\
142 			iterate_xarray(i, n, base, len, off,	\
143 							(K))	\
144 		}						\
145 		i->count -= n;					\
146 	}							\
147 }
148 #define iterate_and_advance(i, n, base, len, off, I, K) \
149 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
150 
151 static int copyout(void __user *to, const void *from, size_t n)
152 {
153 	if (should_fail_usercopy())
154 		return n;
155 	if (access_ok(to, n)) {
156 		instrument_copy_to_user(to, from, n);
157 		n = raw_copy_to_user(to, from, n);
158 	}
159 	return n;
160 }
161 
162 static int copyin(void *to, const void __user *from, size_t n)
163 {
164 	if (should_fail_usercopy())
165 		return n;
166 	if (access_ok(from, n)) {
167 		instrument_copy_from_user(to, from, n);
168 		n = raw_copy_from_user(to, from, n);
169 	}
170 	return n;
171 }
172 
173 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
174 			 struct iov_iter *i)
175 {
176 	size_t skip, copy, left, wanted;
177 	const struct iovec *iov;
178 	char __user *buf;
179 	void *kaddr, *from;
180 
181 	if (unlikely(bytes > i->count))
182 		bytes = i->count;
183 
184 	if (unlikely(!bytes))
185 		return 0;
186 
187 	might_fault();
188 	wanted = bytes;
189 	iov = i->iov;
190 	skip = i->iov_offset;
191 	buf = iov->iov_base + skip;
192 	copy = min(bytes, iov->iov_len - skip);
193 
194 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_writeable(buf, copy)) {
195 		kaddr = kmap_atomic(page);
196 		from = kaddr + offset;
197 
198 		/* first chunk, usually the only one */
199 		left = copyout(buf, from, copy);
200 		copy -= left;
201 		skip += copy;
202 		from += copy;
203 		bytes -= copy;
204 
205 		while (unlikely(!left && bytes)) {
206 			iov++;
207 			buf = iov->iov_base;
208 			copy = min(bytes, iov->iov_len);
209 			left = copyout(buf, from, copy);
210 			copy -= left;
211 			skip = copy;
212 			from += copy;
213 			bytes -= copy;
214 		}
215 		if (likely(!bytes)) {
216 			kunmap_atomic(kaddr);
217 			goto done;
218 		}
219 		offset = from - kaddr;
220 		buf += copy;
221 		kunmap_atomic(kaddr);
222 		copy = min(bytes, iov->iov_len - skip);
223 	}
224 	/* Too bad - revert to non-atomic kmap */
225 
226 	kaddr = kmap(page);
227 	from = kaddr + offset;
228 	left = copyout(buf, from, copy);
229 	copy -= left;
230 	skip += copy;
231 	from += copy;
232 	bytes -= copy;
233 	while (unlikely(!left && bytes)) {
234 		iov++;
235 		buf = iov->iov_base;
236 		copy = min(bytes, iov->iov_len);
237 		left = copyout(buf, from, copy);
238 		copy -= left;
239 		skip = copy;
240 		from += copy;
241 		bytes -= copy;
242 	}
243 	kunmap(page);
244 
245 done:
246 	if (skip == iov->iov_len) {
247 		iov++;
248 		skip = 0;
249 	}
250 	i->count -= wanted - bytes;
251 	i->nr_segs -= iov - i->iov;
252 	i->iov = iov;
253 	i->iov_offset = skip;
254 	return wanted - bytes;
255 }
256 
257 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
258 			 struct iov_iter *i)
259 {
260 	size_t skip, copy, left, wanted;
261 	const struct iovec *iov;
262 	char __user *buf;
263 	void *kaddr, *to;
264 
265 	if (unlikely(bytes > i->count))
266 		bytes = i->count;
267 
268 	if (unlikely(!bytes))
269 		return 0;
270 
271 	might_fault();
272 	wanted = bytes;
273 	iov = i->iov;
274 	skip = i->iov_offset;
275 	buf = iov->iov_base + skip;
276 	copy = min(bytes, iov->iov_len - skip);
277 
278 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_readable(buf, copy)) {
279 		kaddr = kmap_atomic(page);
280 		to = kaddr + offset;
281 
282 		/* first chunk, usually the only one */
283 		left = copyin(to, buf, copy);
284 		copy -= left;
285 		skip += copy;
286 		to += copy;
287 		bytes -= copy;
288 
289 		while (unlikely(!left && bytes)) {
290 			iov++;
291 			buf = iov->iov_base;
292 			copy = min(bytes, iov->iov_len);
293 			left = copyin(to, buf, copy);
294 			copy -= left;
295 			skip = copy;
296 			to += copy;
297 			bytes -= copy;
298 		}
299 		if (likely(!bytes)) {
300 			kunmap_atomic(kaddr);
301 			goto done;
302 		}
303 		offset = to - kaddr;
304 		buf += copy;
305 		kunmap_atomic(kaddr);
306 		copy = min(bytes, iov->iov_len - skip);
307 	}
308 	/* Too bad - revert to non-atomic kmap */
309 
310 	kaddr = kmap(page);
311 	to = kaddr + offset;
312 	left = copyin(to, buf, copy);
313 	copy -= left;
314 	skip += copy;
315 	to += copy;
316 	bytes -= copy;
317 	while (unlikely(!left && bytes)) {
318 		iov++;
319 		buf = iov->iov_base;
320 		copy = min(bytes, iov->iov_len);
321 		left = copyin(to, buf, copy);
322 		copy -= left;
323 		skip = copy;
324 		to += copy;
325 		bytes -= copy;
326 	}
327 	kunmap(page);
328 
329 done:
330 	if (skip == iov->iov_len) {
331 		iov++;
332 		skip = 0;
333 	}
334 	i->count -= wanted - bytes;
335 	i->nr_segs -= iov - i->iov;
336 	i->iov = iov;
337 	i->iov_offset = skip;
338 	return wanted - bytes;
339 }
340 
341 #ifdef PIPE_PARANOIA
342 static bool sanity(const struct iov_iter *i)
343 {
344 	struct pipe_inode_info *pipe = i->pipe;
345 	unsigned int p_head = pipe->head;
346 	unsigned int p_tail = pipe->tail;
347 	unsigned int p_mask = pipe->ring_size - 1;
348 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
349 	unsigned int i_head = i->head;
350 	unsigned int idx;
351 
352 	if (i->iov_offset) {
353 		struct pipe_buffer *p;
354 		if (unlikely(p_occupancy == 0))
355 			goto Bad;	// pipe must be non-empty
356 		if (unlikely(i_head != p_head - 1))
357 			goto Bad;	// must be at the last buffer...
358 
359 		p = &pipe->bufs[i_head & p_mask];
360 		if (unlikely(p->offset + p->len != i->iov_offset))
361 			goto Bad;	// ... at the end of segment
362 	} else {
363 		if (i_head != p_head)
364 			goto Bad;	// must be right after the last buffer
365 	}
366 	return true;
367 Bad:
368 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
369 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
370 			p_head, p_tail, pipe->ring_size);
371 	for (idx = 0; idx < pipe->ring_size; idx++)
372 		printk(KERN_ERR "[%p %p %d %d]\n",
373 			pipe->bufs[idx].ops,
374 			pipe->bufs[idx].page,
375 			pipe->bufs[idx].offset,
376 			pipe->bufs[idx].len);
377 	WARN_ON(1);
378 	return false;
379 }
380 #else
381 #define sanity(i) true
382 #endif
383 
384 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
385 			 struct iov_iter *i)
386 {
387 	struct pipe_inode_info *pipe = i->pipe;
388 	struct pipe_buffer *buf;
389 	unsigned int p_tail = pipe->tail;
390 	unsigned int p_mask = pipe->ring_size - 1;
391 	unsigned int i_head = i->head;
392 	size_t off;
393 
394 	if (unlikely(bytes > i->count))
395 		bytes = i->count;
396 
397 	if (unlikely(!bytes))
398 		return 0;
399 
400 	if (!sanity(i))
401 		return 0;
402 
403 	off = i->iov_offset;
404 	buf = &pipe->bufs[i_head & p_mask];
405 	if (off) {
406 		if (offset == off && buf->page == page) {
407 			/* merge with the last one */
408 			buf->len += bytes;
409 			i->iov_offset += bytes;
410 			goto out;
411 		}
412 		i_head++;
413 		buf = &pipe->bufs[i_head & p_mask];
414 	}
415 	if (pipe_full(i_head, p_tail, pipe->max_usage))
416 		return 0;
417 
418 	buf->ops = &page_cache_pipe_buf_ops;
419 	buf->flags = 0;
420 	get_page(page);
421 	buf->page = page;
422 	buf->offset = offset;
423 	buf->len = bytes;
424 
425 	pipe->head = i_head + 1;
426 	i->iov_offset = offset + bytes;
427 	i->head = i_head;
428 out:
429 	i->count -= bytes;
430 	return bytes;
431 }
432 
433 /*
434  * fault_in_iov_iter_readable - fault in iov iterator for reading
435  * @i: iterator
436  * @size: maximum length
437  *
438  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
439  * @size.  For each iovec, fault in each page that constitutes the iovec.
440  *
441  * Returns the number of bytes not faulted in (like copy_to_user() and
442  * copy_from_user()).
443  *
444  * Always returns 0 for non-userspace iterators.
445  */
446 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
447 {
448 	if (iter_is_iovec(i)) {
449 		size_t count = min(size, iov_iter_count(i));
450 		const struct iovec *p;
451 		size_t skip;
452 
453 		size -= count;
454 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
455 			size_t len = min(count, p->iov_len - skip);
456 			size_t ret;
457 
458 			if (unlikely(!len))
459 				continue;
460 			ret = fault_in_readable(p->iov_base + skip, len);
461 			count -= len - ret;
462 			if (ret)
463 				break;
464 		}
465 		return count + size;
466 	}
467 	return 0;
468 }
469 EXPORT_SYMBOL(fault_in_iov_iter_readable);
470 
471 /*
472  * fault_in_iov_iter_writeable - fault in iov iterator for writing
473  * @i: iterator
474  * @size: maximum length
475  *
476  * Faults in the iterator using get_user_pages(), i.e., without triggering
477  * hardware page faults.  This is primarily useful when we already know that
478  * some or all of the pages in @i aren't in memory.
479  *
480  * Returns the number of bytes not faulted in, like copy_to_user() and
481  * copy_from_user().
482  *
483  * Always returns 0 for non-user-space iterators.
484  */
485 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
486 {
487 	if (iter_is_iovec(i)) {
488 		size_t count = min(size, iov_iter_count(i));
489 		const struct iovec *p;
490 		size_t skip;
491 
492 		size -= count;
493 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
494 			size_t len = min(count, p->iov_len - skip);
495 			size_t ret;
496 
497 			if (unlikely(!len))
498 				continue;
499 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
500 			count -= len - ret;
501 			if (ret)
502 				break;
503 		}
504 		return count + size;
505 	}
506 	return 0;
507 }
508 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
509 
510 void iov_iter_init(struct iov_iter *i, unsigned int direction,
511 			const struct iovec *iov, unsigned long nr_segs,
512 			size_t count)
513 {
514 	WARN_ON(direction & ~(READ | WRITE));
515 	*i = (struct iov_iter) {
516 		.iter_type = ITER_IOVEC,
517 		.nofault = false,
518 		.data_source = direction,
519 		.iov = iov,
520 		.nr_segs = nr_segs,
521 		.iov_offset = 0,
522 		.count = count
523 	};
524 }
525 EXPORT_SYMBOL(iov_iter_init);
526 
527 static inline bool allocated(struct pipe_buffer *buf)
528 {
529 	return buf->ops == &default_pipe_buf_ops;
530 }
531 
532 static inline void data_start(const struct iov_iter *i,
533 			      unsigned int *iter_headp, size_t *offp)
534 {
535 	unsigned int p_mask = i->pipe->ring_size - 1;
536 	unsigned int iter_head = i->head;
537 	size_t off = i->iov_offset;
538 
539 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
540 		    off == PAGE_SIZE)) {
541 		iter_head++;
542 		off = 0;
543 	}
544 	*iter_headp = iter_head;
545 	*offp = off;
546 }
547 
548 static size_t push_pipe(struct iov_iter *i, size_t size,
549 			int *iter_headp, size_t *offp)
550 {
551 	struct pipe_inode_info *pipe = i->pipe;
552 	unsigned int p_tail = pipe->tail;
553 	unsigned int p_mask = pipe->ring_size - 1;
554 	unsigned int iter_head;
555 	size_t off;
556 	ssize_t left;
557 
558 	if (unlikely(size > i->count))
559 		size = i->count;
560 	if (unlikely(!size))
561 		return 0;
562 
563 	left = size;
564 	data_start(i, &iter_head, &off);
565 	*iter_headp = iter_head;
566 	*offp = off;
567 	if (off) {
568 		left -= PAGE_SIZE - off;
569 		if (left <= 0) {
570 			pipe->bufs[iter_head & p_mask].len += size;
571 			return size;
572 		}
573 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
574 		iter_head++;
575 	}
576 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
577 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
578 		struct page *page = alloc_page(GFP_USER);
579 		if (!page)
580 			break;
581 
582 		buf->ops = &default_pipe_buf_ops;
583 		buf->flags = 0;
584 		buf->page = page;
585 		buf->offset = 0;
586 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
587 		left -= buf->len;
588 		iter_head++;
589 		pipe->head = iter_head;
590 
591 		if (left == 0)
592 			return size;
593 	}
594 	return size - left;
595 }
596 
597 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
598 				struct iov_iter *i)
599 {
600 	struct pipe_inode_info *pipe = i->pipe;
601 	unsigned int p_mask = pipe->ring_size - 1;
602 	unsigned int i_head;
603 	size_t n, off;
604 
605 	if (!sanity(i))
606 		return 0;
607 
608 	bytes = n = push_pipe(i, bytes, &i_head, &off);
609 	if (unlikely(!n))
610 		return 0;
611 	do {
612 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
613 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
614 		i->head = i_head;
615 		i->iov_offset = off + chunk;
616 		n -= chunk;
617 		addr += chunk;
618 		off = 0;
619 		i_head++;
620 	} while (n);
621 	i->count -= bytes;
622 	return bytes;
623 }
624 
625 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
626 			      __wsum sum, size_t off)
627 {
628 	__wsum next = csum_partial_copy_nocheck(from, to, len);
629 	return csum_block_add(sum, next, off);
630 }
631 
632 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
633 					 struct iov_iter *i, __wsum *sump)
634 {
635 	struct pipe_inode_info *pipe = i->pipe;
636 	unsigned int p_mask = pipe->ring_size - 1;
637 	__wsum sum = *sump;
638 	size_t off = 0;
639 	unsigned int i_head;
640 	size_t r;
641 
642 	if (!sanity(i))
643 		return 0;
644 
645 	bytes = push_pipe(i, bytes, &i_head, &r);
646 	while (bytes) {
647 		size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
648 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
649 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
650 		kunmap_local(p);
651 		i->head = i_head;
652 		i->iov_offset = r + chunk;
653 		bytes -= chunk;
654 		off += chunk;
655 		r = 0;
656 		i_head++;
657 	}
658 	*sump = sum;
659 	i->count -= off;
660 	return off;
661 }
662 
663 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
664 {
665 	if (unlikely(iov_iter_is_pipe(i)))
666 		return copy_pipe_to_iter(addr, bytes, i);
667 	if (iter_is_iovec(i))
668 		might_fault();
669 	iterate_and_advance(i, bytes, base, len, off,
670 		copyout(base, addr + off, len),
671 		memcpy(base, addr + off, len)
672 	)
673 
674 	return bytes;
675 }
676 EXPORT_SYMBOL(_copy_to_iter);
677 
678 #ifdef CONFIG_ARCH_HAS_COPY_MC
679 static int copyout_mc(void __user *to, const void *from, size_t n)
680 {
681 	if (access_ok(to, n)) {
682 		instrument_copy_to_user(to, from, n);
683 		n = copy_mc_to_user((__force void *) to, from, n);
684 	}
685 	return n;
686 }
687 
688 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
689 				struct iov_iter *i)
690 {
691 	struct pipe_inode_info *pipe = i->pipe;
692 	unsigned int p_mask = pipe->ring_size - 1;
693 	unsigned int i_head;
694 	unsigned int valid = pipe->head;
695 	size_t n, off, xfer = 0;
696 
697 	if (!sanity(i))
698 		return 0;
699 
700 	n = push_pipe(i, bytes, &i_head, &off);
701 	while (n) {
702 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
703 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
704 		unsigned long rem;
705 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
706 		chunk -= rem;
707 		kunmap_local(p);
708 		if (chunk) {
709 			i->head = i_head;
710 			i->iov_offset = off + chunk;
711 			xfer += chunk;
712 			valid = i_head + 1;
713 		}
714 		if (rem) {
715 			pipe->bufs[i_head & p_mask].len -= rem;
716 			pipe_discard_from(pipe, valid);
717 			break;
718 		}
719 		n -= chunk;
720 		off = 0;
721 		i_head++;
722 	}
723 	i->count -= xfer;
724 	return xfer;
725 }
726 
727 /**
728  * _copy_mc_to_iter - copy to iter with source memory error exception handling
729  * @addr: source kernel address
730  * @bytes: total transfer length
731  * @i: destination iterator
732  *
733  * The pmem driver deploys this for the dax operation
734  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
735  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
736  * successfully copied.
737  *
738  * The main differences between this and typical _copy_to_iter().
739  *
740  * * Typical tail/residue handling after a fault retries the copy
741  *   byte-by-byte until the fault happens again. Re-triggering machine
742  *   checks is potentially fatal so the implementation uses source
743  *   alignment and poison alignment assumptions to avoid re-triggering
744  *   hardware exceptions.
745  *
746  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
747  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
748  *   a short copy.
749  *
750  * Return: number of bytes copied (may be %0)
751  */
752 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
753 {
754 	if (unlikely(iov_iter_is_pipe(i)))
755 		return copy_mc_pipe_to_iter(addr, bytes, i);
756 	if (iter_is_iovec(i))
757 		might_fault();
758 	__iterate_and_advance(i, bytes, base, len, off,
759 		copyout_mc(base, addr + off, len),
760 		copy_mc_to_kernel(base, addr + off, len)
761 	)
762 
763 	return bytes;
764 }
765 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
766 #endif /* CONFIG_ARCH_HAS_COPY_MC */
767 
768 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
769 {
770 	if (unlikely(iov_iter_is_pipe(i))) {
771 		WARN_ON(1);
772 		return 0;
773 	}
774 	if (iter_is_iovec(i))
775 		might_fault();
776 	iterate_and_advance(i, bytes, base, len, off,
777 		copyin(addr + off, base, len),
778 		memcpy(addr + off, base, len)
779 	)
780 
781 	return bytes;
782 }
783 EXPORT_SYMBOL(_copy_from_iter);
784 
785 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
786 {
787 	if (unlikely(iov_iter_is_pipe(i))) {
788 		WARN_ON(1);
789 		return 0;
790 	}
791 	iterate_and_advance(i, bytes, base, len, off,
792 		__copy_from_user_inatomic_nocache(addr + off, base, len),
793 		memcpy(addr + off, base, len)
794 	)
795 
796 	return bytes;
797 }
798 EXPORT_SYMBOL(_copy_from_iter_nocache);
799 
800 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
801 /**
802  * _copy_from_iter_flushcache - write destination through cpu cache
803  * @addr: destination kernel address
804  * @bytes: total transfer length
805  * @i: source iterator
806  *
807  * The pmem driver arranges for filesystem-dax to use this facility via
808  * dax_copy_from_iter() for ensuring that writes to persistent memory
809  * are flushed through the CPU cache. It is differentiated from
810  * _copy_from_iter_nocache() in that guarantees all data is flushed for
811  * all iterator types. The _copy_from_iter_nocache() only attempts to
812  * bypass the cache for the ITER_IOVEC case, and on some archs may use
813  * instructions that strand dirty-data in the cache.
814  *
815  * Return: number of bytes copied (may be %0)
816  */
817 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
818 {
819 	if (unlikely(iov_iter_is_pipe(i))) {
820 		WARN_ON(1);
821 		return 0;
822 	}
823 	iterate_and_advance(i, bytes, base, len, off,
824 		__copy_from_user_flushcache(addr + off, base, len),
825 		memcpy_flushcache(addr + off, base, len)
826 	)
827 
828 	return bytes;
829 }
830 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
831 #endif
832 
833 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
834 {
835 	struct page *head;
836 	size_t v = n + offset;
837 
838 	/*
839 	 * The general case needs to access the page order in order
840 	 * to compute the page size.
841 	 * However, we mostly deal with order-0 pages and thus can
842 	 * avoid a possible cache line miss for requests that fit all
843 	 * page orders.
844 	 */
845 	if (n <= v && v <= PAGE_SIZE)
846 		return true;
847 
848 	head = compound_head(page);
849 	v += (page - head) << PAGE_SHIFT;
850 
851 	if (likely(n <= v && v <= (page_size(head))))
852 		return true;
853 	WARN_ON(1);
854 	return false;
855 }
856 
857 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
858 			 struct iov_iter *i)
859 {
860 	if (likely(iter_is_iovec(i)))
861 		return copy_page_to_iter_iovec(page, offset, bytes, i);
862 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
863 		void *kaddr = kmap_local_page(page);
864 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
865 		kunmap_local(kaddr);
866 		return wanted;
867 	}
868 	if (iov_iter_is_pipe(i))
869 		return copy_page_to_iter_pipe(page, offset, bytes, i);
870 	if (unlikely(iov_iter_is_discard(i))) {
871 		if (unlikely(i->count < bytes))
872 			bytes = i->count;
873 		i->count -= bytes;
874 		return bytes;
875 	}
876 	WARN_ON(1);
877 	return 0;
878 }
879 
880 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
881 			 struct iov_iter *i)
882 {
883 	size_t res = 0;
884 	if (unlikely(!page_copy_sane(page, offset, bytes)))
885 		return 0;
886 	page += offset / PAGE_SIZE; // first subpage
887 	offset %= PAGE_SIZE;
888 	while (1) {
889 		size_t n = __copy_page_to_iter(page, offset,
890 				min(bytes, (size_t)PAGE_SIZE - offset), i);
891 		res += n;
892 		bytes -= n;
893 		if (!bytes || !n)
894 			break;
895 		offset += n;
896 		if (offset == PAGE_SIZE) {
897 			page++;
898 			offset = 0;
899 		}
900 	}
901 	return res;
902 }
903 EXPORT_SYMBOL(copy_page_to_iter);
904 
905 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
906 			 struct iov_iter *i)
907 {
908 	if (unlikely(!page_copy_sane(page, offset, bytes)))
909 		return 0;
910 	if (likely(iter_is_iovec(i)))
911 		return copy_page_from_iter_iovec(page, offset, bytes, i);
912 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
913 		void *kaddr = kmap_local_page(page);
914 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
915 		kunmap_local(kaddr);
916 		return wanted;
917 	}
918 	WARN_ON(1);
919 	return 0;
920 }
921 EXPORT_SYMBOL(copy_page_from_iter);
922 
923 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
924 {
925 	struct pipe_inode_info *pipe = i->pipe;
926 	unsigned int p_mask = pipe->ring_size - 1;
927 	unsigned int i_head;
928 	size_t n, off;
929 
930 	if (!sanity(i))
931 		return 0;
932 
933 	bytes = n = push_pipe(i, bytes, &i_head, &off);
934 	if (unlikely(!n))
935 		return 0;
936 
937 	do {
938 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
939 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
940 		memset(p + off, 0, chunk);
941 		kunmap_local(p);
942 		i->head = i_head;
943 		i->iov_offset = off + chunk;
944 		n -= chunk;
945 		off = 0;
946 		i_head++;
947 	} while (n);
948 	i->count -= bytes;
949 	return bytes;
950 }
951 
952 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
953 {
954 	if (unlikely(iov_iter_is_pipe(i)))
955 		return pipe_zero(bytes, i);
956 	iterate_and_advance(i, bytes, base, len, count,
957 		clear_user(base, len),
958 		memset(base, 0, len)
959 	)
960 
961 	return bytes;
962 }
963 EXPORT_SYMBOL(iov_iter_zero);
964 
965 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
966 				  struct iov_iter *i)
967 {
968 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
969 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
970 		kunmap_atomic(kaddr);
971 		return 0;
972 	}
973 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
974 		kunmap_atomic(kaddr);
975 		WARN_ON(1);
976 		return 0;
977 	}
978 	iterate_and_advance(i, bytes, base, len, off,
979 		copyin(p + off, base, len),
980 		memcpy(p + off, base, len)
981 	)
982 	kunmap_atomic(kaddr);
983 	return bytes;
984 }
985 EXPORT_SYMBOL(copy_page_from_iter_atomic);
986 
987 static inline void pipe_truncate(struct iov_iter *i)
988 {
989 	struct pipe_inode_info *pipe = i->pipe;
990 	unsigned int p_tail = pipe->tail;
991 	unsigned int p_head = pipe->head;
992 	unsigned int p_mask = pipe->ring_size - 1;
993 
994 	if (!pipe_empty(p_head, p_tail)) {
995 		struct pipe_buffer *buf;
996 		unsigned int i_head = i->head;
997 		size_t off = i->iov_offset;
998 
999 		if (off) {
1000 			buf = &pipe->bufs[i_head & p_mask];
1001 			buf->len = off - buf->offset;
1002 			i_head++;
1003 		}
1004 		while (p_head != i_head) {
1005 			p_head--;
1006 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1007 		}
1008 
1009 		pipe->head = p_head;
1010 	}
1011 }
1012 
1013 static void pipe_advance(struct iov_iter *i, size_t size)
1014 {
1015 	struct pipe_inode_info *pipe = i->pipe;
1016 	if (size) {
1017 		struct pipe_buffer *buf;
1018 		unsigned int p_mask = pipe->ring_size - 1;
1019 		unsigned int i_head = i->head;
1020 		size_t off = i->iov_offset, left = size;
1021 
1022 		if (off) /* make it relative to the beginning of buffer */
1023 			left += off - pipe->bufs[i_head & p_mask].offset;
1024 		while (1) {
1025 			buf = &pipe->bufs[i_head & p_mask];
1026 			if (left <= buf->len)
1027 				break;
1028 			left -= buf->len;
1029 			i_head++;
1030 		}
1031 		i->head = i_head;
1032 		i->iov_offset = buf->offset + left;
1033 	}
1034 	i->count -= size;
1035 	/* ... and discard everything past that point */
1036 	pipe_truncate(i);
1037 }
1038 
1039 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
1040 {
1041 	struct bvec_iter bi;
1042 
1043 	bi.bi_size = i->count;
1044 	bi.bi_bvec_done = i->iov_offset;
1045 	bi.bi_idx = 0;
1046 	bvec_iter_advance(i->bvec, &bi, size);
1047 
1048 	i->bvec += bi.bi_idx;
1049 	i->nr_segs -= bi.bi_idx;
1050 	i->count = bi.bi_size;
1051 	i->iov_offset = bi.bi_bvec_done;
1052 }
1053 
1054 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
1055 {
1056 	const struct iovec *iov, *end;
1057 
1058 	if (!i->count)
1059 		return;
1060 	i->count -= size;
1061 
1062 	size += i->iov_offset; // from beginning of current segment
1063 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1064 		if (likely(size < iov->iov_len))
1065 			break;
1066 		size -= iov->iov_len;
1067 	}
1068 	i->iov_offset = size;
1069 	i->nr_segs -= iov - i->iov;
1070 	i->iov = iov;
1071 }
1072 
1073 void iov_iter_advance(struct iov_iter *i, size_t size)
1074 {
1075 	if (unlikely(i->count < size))
1076 		size = i->count;
1077 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1078 		/* iovec and kvec have identical layouts */
1079 		iov_iter_iovec_advance(i, size);
1080 	} else if (iov_iter_is_bvec(i)) {
1081 		iov_iter_bvec_advance(i, size);
1082 	} else if (iov_iter_is_pipe(i)) {
1083 		pipe_advance(i, size);
1084 	} else if (unlikely(iov_iter_is_xarray(i))) {
1085 		i->iov_offset += size;
1086 		i->count -= size;
1087 	} else if (iov_iter_is_discard(i)) {
1088 		i->count -= size;
1089 	}
1090 }
1091 EXPORT_SYMBOL(iov_iter_advance);
1092 
1093 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1094 {
1095 	if (!unroll)
1096 		return;
1097 	if (WARN_ON(unroll > MAX_RW_COUNT))
1098 		return;
1099 	i->count += unroll;
1100 	if (unlikely(iov_iter_is_pipe(i))) {
1101 		struct pipe_inode_info *pipe = i->pipe;
1102 		unsigned int p_mask = pipe->ring_size - 1;
1103 		unsigned int i_head = i->head;
1104 		size_t off = i->iov_offset;
1105 		while (1) {
1106 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1107 			size_t n = off - b->offset;
1108 			if (unroll < n) {
1109 				off -= unroll;
1110 				break;
1111 			}
1112 			unroll -= n;
1113 			if (!unroll && i_head == i->start_head) {
1114 				off = 0;
1115 				break;
1116 			}
1117 			i_head--;
1118 			b = &pipe->bufs[i_head & p_mask];
1119 			off = b->offset + b->len;
1120 		}
1121 		i->iov_offset = off;
1122 		i->head = i_head;
1123 		pipe_truncate(i);
1124 		return;
1125 	}
1126 	if (unlikely(iov_iter_is_discard(i)))
1127 		return;
1128 	if (unroll <= i->iov_offset) {
1129 		i->iov_offset -= unroll;
1130 		return;
1131 	}
1132 	unroll -= i->iov_offset;
1133 	if (iov_iter_is_xarray(i)) {
1134 		BUG(); /* We should never go beyond the start of the specified
1135 			* range since we might then be straying into pages that
1136 			* aren't pinned.
1137 			*/
1138 	} else if (iov_iter_is_bvec(i)) {
1139 		const struct bio_vec *bvec = i->bvec;
1140 		while (1) {
1141 			size_t n = (--bvec)->bv_len;
1142 			i->nr_segs++;
1143 			if (unroll <= n) {
1144 				i->bvec = bvec;
1145 				i->iov_offset = n - unroll;
1146 				return;
1147 			}
1148 			unroll -= n;
1149 		}
1150 	} else { /* same logics for iovec and kvec */
1151 		const struct iovec *iov = i->iov;
1152 		while (1) {
1153 			size_t n = (--iov)->iov_len;
1154 			i->nr_segs++;
1155 			if (unroll <= n) {
1156 				i->iov = iov;
1157 				i->iov_offset = n - unroll;
1158 				return;
1159 			}
1160 			unroll -= n;
1161 		}
1162 	}
1163 }
1164 EXPORT_SYMBOL(iov_iter_revert);
1165 
1166 /*
1167  * Return the count of just the current iov_iter segment.
1168  */
1169 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1170 {
1171 	if (i->nr_segs > 1) {
1172 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1173 			return min(i->count, i->iov->iov_len - i->iov_offset);
1174 		if (iov_iter_is_bvec(i))
1175 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1176 	}
1177 	return i->count;
1178 }
1179 EXPORT_SYMBOL(iov_iter_single_seg_count);
1180 
1181 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1182 			const struct kvec *kvec, unsigned long nr_segs,
1183 			size_t count)
1184 {
1185 	WARN_ON(direction & ~(READ | WRITE));
1186 	*i = (struct iov_iter){
1187 		.iter_type = ITER_KVEC,
1188 		.data_source = direction,
1189 		.kvec = kvec,
1190 		.nr_segs = nr_segs,
1191 		.iov_offset = 0,
1192 		.count = count
1193 	};
1194 }
1195 EXPORT_SYMBOL(iov_iter_kvec);
1196 
1197 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1198 			const struct bio_vec *bvec, unsigned long nr_segs,
1199 			size_t count)
1200 {
1201 	WARN_ON(direction & ~(READ | WRITE));
1202 	*i = (struct iov_iter){
1203 		.iter_type = ITER_BVEC,
1204 		.data_source = direction,
1205 		.bvec = bvec,
1206 		.nr_segs = nr_segs,
1207 		.iov_offset = 0,
1208 		.count = count
1209 	};
1210 }
1211 EXPORT_SYMBOL(iov_iter_bvec);
1212 
1213 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1214 			struct pipe_inode_info *pipe,
1215 			size_t count)
1216 {
1217 	BUG_ON(direction != READ);
1218 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1219 	*i = (struct iov_iter){
1220 		.iter_type = ITER_PIPE,
1221 		.data_source = false,
1222 		.pipe = pipe,
1223 		.head = pipe->head,
1224 		.start_head = pipe->head,
1225 		.iov_offset = 0,
1226 		.count = count
1227 	};
1228 }
1229 EXPORT_SYMBOL(iov_iter_pipe);
1230 
1231 /**
1232  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1233  * @i: The iterator to initialise.
1234  * @direction: The direction of the transfer.
1235  * @xarray: The xarray to access.
1236  * @start: The start file position.
1237  * @count: The size of the I/O buffer in bytes.
1238  *
1239  * Set up an I/O iterator to either draw data out of the pages attached to an
1240  * inode or to inject data into those pages.  The pages *must* be prevented
1241  * from evaporation, either by taking a ref on them or locking them by the
1242  * caller.
1243  */
1244 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1245 		     struct xarray *xarray, loff_t start, size_t count)
1246 {
1247 	BUG_ON(direction & ~1);
1248 	*i = (struct iov_iter) {
1249 		.iter_type = ITER_XARRAY,
1250 		.data_source = direction,
1251 		.xarray = xarray,
1252 		.xarray_start = start,
1253 		.count = count,
1254 		.iov_offset = 0
1255 	};
1256 }
1257 EXPORT_SYMBOL(iov_iter_xarray);
1258 
1259 /**
1260  * iov_iter_discard - Initialise an I/O iterator that discards data
1261  * @i: The iterator to initialise.
1262  * @direction: The direction of the transfer.
1263  * @count: The size of the I/O buffer in bytes.
1264  *
1265  * Set up an I/O iterator that just discards everything that's written to it.
1266  * It's only available as a READ iterator.
1267  */
1268 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1269 {
1270 	BUG_ON(direction != READ);
1271 	*i = (struct iov_iter){
1272 		.iter_type = ITER_DISCARD,
1273 		.data_source = false,
1274 		.count = count,
1275 		.iov_offset = 0
1276 	};
1277 }
1278 EXPORT_SYMBOL(iov_iter_discard);
1279 
1280 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1281 {
1282 	unsigned long res = 0;
1283 	size_t size = i->count;
1284 	size_t skip = i->iov_offset;
1285 	unsigned k;
1286 
1287 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1288 		size_t len = i->iov[k].iov_len - skip;
1289 		if (len) {
1290 			res |= (unsigned long)i->iov[k].iov_base + skip;
1291 			if (len > size)
1292 				len = size;
1293 			res |= len;
1294 			size -= len;
1295 			if (!size)
1296 				break;
1297 		}
1298 	}
1299 	return res;
1300 }
1301 
1302 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1303 {
1304 	unsigned res = 0;
1305 	size_t size = i->count;
1306 	unsigned skip = i->iov_offset;
1307 	unsigned k;
1308 
1309 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1310 		size_t len = i->bvec[k].bv_len - skip;
1311 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1312 		if (len > size)
1313 			len = size;
1314 		res |= len;
1315 		size -= len;
1316 		if (!size)
1317 			break;
1318 	}
1319 	return res;
1320 }
1321 
1322 unsigned long iov_iter_alignment(const struct iov_iter *i)
1323 {
1324 	/* iovec and kvec have identical layouts */
1325 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1326 		return iov_iter_alignment_iovec(i);
1327 
1328 	if (iov_iter_is_bvec(i))
1329 		return iov_iter_alignment_bvec(i);
1330 
1331 	if (iov_iter_is_pipe(i)) {
1332 		unsigned int p_mask = i->pipe->ring_size - 1;
1333 		size_t size = i->count;
1334 
1335 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1336 			return size | i->iov_offset;
1337 		return size;
1338 	}
1339 
1340 	if (iov_iter_is_xarray(i))
1341 		return (i->xarray_start + i->iov_offset) | i->count;
1342 
1343 	return 0;
1344 }
1345 EXPORT_SYMBOL(iov_iter_alignment);
1346 
1347 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1348 {
1349 	unsigned long res = 0;
1350 	unsigned long v = 0;
1351 	size_t size = i->count;
1352 	unsigned k;
1353 
1354 	if (WARN_ON(!iter_is_iovec(i)))
1355 		return ~0U;
1356 
1357 	for (k = 0; k < i->nr_segs; k++) {
1358 		if (i->iov[k].iov_len) {
1359 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1360 			if (v) // if not the first one
1361 				res |= base | v; // this start | previous end
1362 			v = base + i->iov[k].iov_len;
1363 			if (size <= i->iov[k].iov_len)
1364 				break;
1365 			size -= i->iov[k].iov_len;
1366 		}
1367 	}
1368 	return res;
1369 }
1370 EXPORT_SYMBOL(iov_iter_gap_alignment);
1371 
1372 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1373 				size_t maxsize,
1374 				struct page **pages,
1375 				int iter_head,
1376 				size_t *start)
1377 {
1378 	struct pipe_inode_info *pipe = i->pipe;
1379 	unsigned int p_mask = pipe->ring_size - 1;
1380 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1381 	if (!n)
1382 		return -EFAULT;
1383 
1384 	maxsize = n;
1385 	n += *start;
1386 	while (n > 0) {
1387 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1388 		iter_head++;
1389 		n -= PAGE_SIZE;
1390 	}
1391 
1392 	return maxsize;
1393 }
1394 
1395 static ssize_t pipe_get_pages(struct iov_iter *i,
1396 		   struct page **pages, size_t maxsize, unsigned maxpages,
1397 		   size_t *start)
1398 {
1399 	unsigned int iter_head, npages;
1400 	size_t capacity;
1401 
1402 	if (!sanity(i))
1403 		return -EFAULT;
1404 
1405 	data_start(i, &iter_head, start);
1406 	/* Amount of free space: some of this one + all after this one */
1407 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1408 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1409 
1410 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1411 }
1412 
1413 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1414 					  pgoff_t index, unsigned int nr_pages)
1415 {
1416 	XA_STATE(xas, xa, index);
1417 	struct page *page;
1418 	unsigned int ret = 0;
1419 
1420 	rcu_read_lock();
1421 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1422 		if (xas_retry(&xas, page))
1423 			continue;
1424 
1425 		/* Has the page moved or been split? */
1426 		if (unlikely(page != xas_reload(&xas))) {
1427 			xas_reset(&xas);
1428 			continue;
1429 		}
1430 
1431 		pages[ret] = find_subpage(page, xas.xa_index);
1432 		get_page(pages[ret]);
1433 		if (++ret == nr_pages)
1434 			break;
1435 	}
1436 	rcu_read_unlock();
1437 	return ret;
1438 }
1439 
1440 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1441 				     struct page **pages, size_t maxsize,
1442 				     unsigned maxpages, size_t *_start_offset)
1443 {
1444 	unsigned nr, offset;
1445 	pgoff_t index, count;
1446 	size_t size = maxsize;
1447 	loff_t pos;
1448 
1449 	if (!size || !maxpages)
1450 		return 0;
1451 
1452 	pos = i->xarray_start + i->iov_offset;
1453 	index = pos >> PAGE_SHIFT;
1454 	offset = pos & ~PAGE_MASK;
1455 	*_start_offset = offset;
1456 
1457 	count = 1;
1458 	if (size > PAGE_SIZE - offset) {
1459 		size -= PAGE_SIZE - offset;
1460 		count += size >> PAGE_SHIFT;
1461 		size &= ~PAGE_MASK;
1462 		if (size)
1463 			count++;
1464 	}
1465 
1466 	if (count > maxpages)
1467 		count = maxpages;
1468 
1469 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1470 	if (nr == 0)
1471 		return 0;
1472 
1473 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1474 }
1475 
1476 /* must be done on non-empty ITER_IOVEC one */
1477 static unsigned long first_iovec_segment(const struct iov_iter *i,
1478 					 size_t *size, size_t *start,
1479 					 size_t maxsize, unsigned maxpages)
1480 {
1481 	size_t skip;
1482 	long k;
1483 
1484 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1485 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1486 		size_t len = i->iov[k].iov_len - skip;
1487 
1488 		if (unlikely(!len))
1489 			continue;
1490 		if (len > maxsize)
1491 			len = maxsize;
1492 		len += (*start = addr % PAGE_SIZE);
1493 		if (len > maxpages * PAGE_SIZE)
1494 			len = maxpages * PAGE_SIZE;
1495 		*size = len;
1496 		return addr & PAGE_MASK;
1497 	}
1498 	BUG(); // if it had been empty, we wouldn't get called
1499 }
1500 
1501 /* must be done on non-empty ITER_BVEC one */
1502 static struct page *first_bvec_segment(const struct iov_iter *i,
1503 				       size_t *size, size_t *start,
1504 				       size_t maxsize, unsigned maxpages)
1505 {
1506 	struct page *page;
1507 	size_t skip = i->iov_offset, len;
1508 
1509 	len = i->bvec->bv_len - skip;
1510 	if (len > maxsize)
1511 		len = maxsize;
1512 	skip += i->bvec->bv_offset;
1513 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1514 	len += (*start = skip % PAGE_SIZE);
1515 	if (len > maxpages * PAGE_SIZE)
1516 		len = maxpages * PAGE_SIZE;
1517 	*size = len;
1518 	return page;
1519 }
1520 
1521 ssize_t iov_iter_get_pages(struct iov_iter *i,
1522 		   struct page **pages, size_t maxsize, unsigned maxpages,
1523 		   size_t *start)
1524 {
1525 	size_t len;
1526 	int n, res;
1527 
1528 	if (maxsize > i->count)
1529 		maxsize = i->count;
1530 	if (!maxsize)
1531 		return 0;
1532 
1533 	if (likely(iter_is_iovec(i))) {
1534 		unsigned int gup_flags = 0;
1535 		unsigned long addr;
1536 
1537 		if (iov_iter_rw(i) != WRITE)
1538 			gup_flags |= FOLL_WRITE;
1539 		if (i->nofault)
1540 			gup_flags |= FOLL_NOFAULT;
1541 
1542 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1543 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1544 		res = get_user_pages_fast(addr, n, gup_flags, pages);
1545 		if (unlikely(res <= 0))
1546 			return res;
1547 		return (res == n ? len : res * PAGE_SIZE) - *start;
1548 	}
1549 	if (iov_iter_is_bvec(i)) {
1550 		struct page *page;
1551 
1552 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1553 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1554 		while (n--)
1555 			get_page(*pages++ = page++);
1556 		return len - *start;
1557 	}
1558 	if (iov_iter_is_pipe(i))
1559 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1560 	if (iov_iter_is_xarray(i))
1561 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1562 	return -EFAULT;
1563 }
1564 EXPORT_SYMBOL(iov_iter_get_pages);
1565 
1566 static struct page **get_pages_array(size_t n)
1567 {
1568 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1569 }
1570 
1571 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1572 		   struct page ***pages, size_t maxsize,
1573 		   size_t *start)
1574 {
1575 	struct page **p;
1576 	unsigned int iter_head, npages;
1577 	ssize_t n;
1578 
1579 	if (!sanity(i))
1580 		return -EFAULT;
1581 
1582 	data_start(i, &iter_head, start);
1583 	/* Amount of free space: some of this one + all after this one */
1584 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1585 	n = npages * PAGE_SIZE - *start;
1586 	if (maxsize > n)
1587 		maxsize = n;
1588 	else
1589 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1590 	p = get_pages_array(npages);
1591 	if (!p)
1592 		return -ENOMEM;
1593 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1594 	if (n > 0)
1595 		*pages = p;
1596 	else
1597 		kvfree(p);
1598 	return n;
1599 }
1600 
1601 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1602 					   struct page ***pages, size_t maxsize,
1603 					   size_t *_start_offset)
1604 {
1605 	struct page **p;
1606 	unsigned nr, offset;
1607 	pgoff_t index, count;
1608 	size_t size = maxsize;
1609 	loff_t pos;
1610 
1611 	if (!size)
1612 		return 0;
1613 
1614 	pos = i->xarray_start + i->iov_offset;
1615 	index = pos >> PAGE_SHIFT;
1616 	offset = pos & ~PAGE_MASK;
1617 	*_start_offset = offset;
1618 
1619 	count = 1;
1620 	if (size > PAGE_SIZE - offset) {
1621 		size -= PAGE_SIZE - offset;
1622 		count += size >> PAGE_SHIFT;
1623 		size &= ~PAGE_MASK;
1624 		if (size)
1625 			count++;
1626 	}
1627 
1628 	p = get_pages_array(count);
1629 	if (!p)
1630 		return -ENOMEM;
1631 	*pages = p;
1632 
1633 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1634 	if (nr == 0)
1635 		return 0;
1636 
1637 	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1638 }
1639 
1640 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1641 		   struct page ***pages, size_t maxsize,
1642 		   size_t *start)
1643 {
1644 	struct page **p;
1645 	size_t len;
1646 	int n, res;
1647 
1648 	if (maxsize > i->count)
1649 		maxsize = i->count;
1650 	if (!maxsize)
1651 		return 0;
1652 
1653 	if (likely(iter_is_iovec(i))) {
1654 		unsigned int gup_flags = 0;
1655 		unsigned long addr;
1656 
1657 		if (iov_iter_rw(i) != WRITE)
1658 			gup_flags |= FOLL_WRITE;
1659 		if (i->nofault)
1660 			gup_flags |= FOLL_NOFAULT;
1661 
1662 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1663 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1664 		p = get_pages_array(n);
1665 		if (!p)
1666 			return -ENOMEM;
1667 		res = get_user_pages_fast(addr, n, gup_flags, p);
1668 		if (unlikely(res <= 0)) {
1669 			kvfree(p);
1670 			*pages = NULL;
1671 			return res;
1672 		}
1673 		*pages = p;
1674 		return (res == n ? len : res * PAGE_SIZE) - *start;
1675 	}
1676 	if (iov_iter_is_bvec(i)) {
1677 		struct page *page;
1678 
1679 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1680 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1681 		*pages = p = get_pages_array(n);
1682 		if (!p)
1683 			return -ENOMEM;
1684 		while (n--)
1685 			get_page(*p++ = page++);
1686 		return len - *start;
1687 	}
1688 	if (iov_iter_is_pipe(i))
1689 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1690 	if (iov_iter_is_xarray(i))
1691 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1692 	return -EFAULT;
1693 }
1694 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1695 
1696 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1697 			       struct iov_iter *i)
1698 {
1699 	__wsum sum, next;
1700 	sum = *csum;
1701 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1702 		WARN_ON(1);
1703 		return 0;
1704 	}
1705 	iterate_and_advance(i, bytes, base, len, off, ({
1706 		next = csum_and_copy_from_user(base, addr + off, len);
1707 		sum = csum_block_add(sum, next, off);
1708 		next ? 0 : len;
1709 	}), ({
1710 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1711 	})
1712 	)
1713 	*csum = sum;
1714 	return bytes;
1715 }
1716 EXPORT_SYMBOL(csum_and_copy_from_iter);
1717 
1718 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1719 			     struct iov_iter *i)
1720 {
1721 	struct csum_state *csstate = _csstate;
1722 	__wsum sum, next;
1723 
1724 	if (unlikely(iov_iter_is_discard(i))) {
1725 		WARN_ON(1);	/* for now */
1726 		return 0;
1727 	}
1728 
1729 	sum = csum_shift(csstate->csum, csstate->off);
1730 	if (unlikely(iov_iter_is_pipe(i)))
1731 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1732 	else iterate_and_advance(i, bytes, base, len, off, ({
1733 		next = csum_and_copy_to_user(addr + off, base, len);
1734 		sum = csum_block_add(sum, next, off);
1735 		next ? 0 : len;
1736 	}), ({
1737 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1738 	})
1739 	)
1740 	csstate->csum = csum_shift(sum, csstate->off);
1741 	csstate->off += bytes;
1742 	return bytes;
1743 }
1744 EXPORT_SYMBOL(csum_and_copy_to_iter);
1745 
1746 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1747 		struct iov_iter *i)
1748 {
1749 #ifdef CONFIG_CRYPTO_HASH
1750 	struct ahash_request *hash = hashp;
1751 	struct scatterlist sg;
1752 	size_t copied;
1753 
1754 	copied = copy_to_iter(addr, bytes, i);
1755 	sg_init_one(&sg, addr, copied);
1756 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1757 	crypto_ahash_update(hash);
1758 	return copied;
1759 #else
1760 	return 0;
1761 #endif
1762 }
1763 EXPORT_SYMBOL(hash_and_copy_to_iter);
1764 
1765 static int iov_npages(const struct iov_iter *i, int maxpages)
1766 {
1767 	size_t skip = i->iov_offset, size = i->count;
1768 	const struct iovec *p;
1769 	int npages = 0;
1770 
1771 	for (p = i->iov; size; skip = 0, p++) {
1772 		unsigned offs = offset_in_page(p->iov_base + skip);
1773 		size_t len = min(p->iov_len - skip, size);
1774 
1775 		if (len) {
1776 			size -= len;
1777 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1778 			if (unlikely(npages > maxpages))
1779 				return maxpages;
1780 		}
1781 	}
1782 	return npages;
1783 }
1784 
1785 static int bvec_npages(const struct iov_iter *i, int maxpages)
1786 {
1787 	size_t skip = i->iov_offset, size = i->count;
1788 	const struct bio_vec *p;
1789 	int npages = 0;
1790 
1791 	for (p = i->bvec; size; skip = 0, p++) {
1792 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1793 		size_t len = min(p->bv_len - skip, size);
1794 
1795 		size -= len;
1796 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1797 		if (unlikely(npages > maxpages))
1798 			return maxpages;
1799 	}
1800 	return npages;
1801 }
1802 
1803 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1804 {
1805 	if (unlikely(!i->count))
1806 		return 0;
1807 	/* iovec and kvec have identical layouts */
1808 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1809 		return iov_npages(i, maxpages);
1810 	if (iov_iter_is_bvec(i))
1811 		return bvec_npages(i, maxpages);
1812 	if (iov_iter_is_pipe(i)) {
1813 		unsigned int iter_head;
1814 		int npages;
1815 		size_t off;
1816 
1817 		if (!sanity(i))
1818 			return 0;
1819 
1820 		data_start(i, &iter_head, &off);
1821 		/* some of this one + all after this one */
1822 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1823 		return min(npages, maxpages);
1824 	}
1825 	if (iov_iter_is_xarray(i)) {
1826 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1827 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1828 		return min(npages, maxpages);
1829 	}
1830 	return 0;
1831 }
1832 EXPORT_SYMBOL(iov_iter_npages);
1833 
1834 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1835 {
1836 	*new = *old;
1837 	if (unlikely(iov_iter_is_pipe(new))) {
1838 		WARN_ON(1);
1839 		return NULL;
1840 	}
1841 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1842 		return NULL;
1843 	if (iov_iter_is_bvec(new))
1844 		return new->bvec = kmemdup(new->bvec,
1845 				    new->nr_segs * sizeof(struct bio_vec),
1846 				    flags);
1847 	else
1848 		/* iovec and kvec have identical layout */
1849 		return new->iov = kmemdup(new->iov,
1850 				   new->nr_segs * sizeof(struct iovec),
1851 				   flags);
1852 }
1853 EXPORT_SYMBOL(dup_iter);
1854 
1855 static int copy_compat_iovec_from_user(struct iovec *iov,
1856 		const struct iovec __user *uvec, unsigned long nr_segs)
1857 {
1858 	const struct compat_iovec __user *uiov =
1859 		(const struct compat_iovec __user *)uvec;
1860 	int ret = -EFAULT, i;
1861 
1862 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1863 		return -EFAULT;
1864 
1865 	for (i = 0; i < nr_segs; i++) {
1866 		compat_uptr_t buf;
1867 		compat_ssize_t len;
1868 
1869 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1870 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1871 
1872 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1873 		if (len < 0) {
1874 			ret = -EINVAL;
1875 			goto uaccess_end;
1876 		}
1877 		iov[i].iov_base = compat_ptr(buf);
1878 		iov[i].iov_len = len;
1879 	}
1880 
1881 	ret = 0;
1882 uaccess_end:
1883 	user_access_end();
1884 	return ret;
1885 }
1886 
1887 static int copy_iovec_from_user(struct iovec *iov,
1888 		const struct iovec __user *uvec, unsigned long nr_segs)
1889 {
1890 	unsigned long seg;
1891 
1892 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1893 		return -EFAULT;
1894 	for (seg = 0; seg < nr_segs; seg++) {
1895 		if ((ssize_t)iov[seg].iov_len < 0)
1896 			return -EINVAL;
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1903 		unsigned long nr_segs, unsigned long fast_segs,
1904 		struct iovec *fast_iov, bool compat)
1905 {
1906 	struct iovec *iov = fast_iov;
1907 	int ret;
1908 
1909 	/*
1910 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1911 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1912 	 * traditionally returned zero for zero segments, so...
1913 	 */
1914 	if (nr_segs == 0)
1915 		return iov;
1916 	if (nr_segs > UIO_MAXIOV)
1917 		return ERR_PTR(-EINVAL);
1918 	if (nr_segs > fast_segs) {
1919 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1920 		if (!iov)
1921 			return ERR_PTR(-ENOMEM);
1922 	}
1923 
1924 	if (compat)
1925 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1926 	else
1927 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1928 	if (ret) {
1929 		if (iov != fast_iov)
1930 			kfree(iov);
1931 		return ERR_PTR(ret);
1932 	}
1933 
1934 	return iov;
1935 }
1936 
1937 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1938 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1939 		 struct iov_iter *i, bool compat)
1940 {
1941 	ssize_t total_len = 0;
1942 	unsigned long seg;
1943 	struct iovec *iov;
1944 
1945 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1946 	if (IS_ERR(iov)) {
1947 		*iovp = NULL;
1948 		return PTR_ERR(iov);
1949 	}
1950 
1951 	/*
1952 	 * According to the Single Unix Specification we should return EINVAL if
1953 	 * an element length is < 0 when cast to ssize_t or if the total length
1954 	 * would overflow the ssize_t return value of the system call.
1955 	 *
1956 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1957 	 * overflow case.
1958 	 */
1959 	for (seg = 0; seg < nr_segs; seg++) {
1960 		ssize_t len = (ssize_t)iov[seg].iov_len;
1961 
1962 		if (!access_ok(iov[seg].iov_base, len)) {
1963 			if (iov != *iovp)
1964 				kfree(iov);
1965 			*iovp = NULL;
1966 			return -EFAULT;
1967 		}
1968 
1969 		if (len > MAX_RW_COUNT - total_len) {
1970 			len = MAX_RW_COUNT - total_len;
1971 			iov[seg].iov_len = len;
1972 		}
1973 		total_len += len;
1974 	}
1975 
1976 	iov_iter_init(i, type, iov, nr_segs, total_len);
1977 	if (iov == *iovp)
1978 		*iovp = NULL;
1979 	else
1980 		*iovp = iov;
1981 	return total_len;
1982 }
1983 
1984 /**
1985  * import_iovec() - Copy an array of &struct iovec from userspace
1986  *     into the kernel, check that it is valid, and initialize a new
1987  *     &struct iov_iter iterator to access it.
1988  *
1989  * @type: One of %READ or %WRITE.
1990  * @uvec: Pointer to the userspace array.
1991  * @nr_segs: Number of elements in userspace array.
1992  * @fast_segs: Number of elements in @iov.
1993  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1994  *     on-stack) kernel array.
1995  * @i: Pointer to iterator that will be initialized on success.
1996  *
1997  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1998  * then this function places %NULL in *@iov on return. Otherwise, a new
1999  * array will be allocated and the result placed in *@iov. This means that
2000  * the caller may call kfree() on *@iov regardless of whether the small
2001  * on-stack array was used or not (and regardless of whether this function
2002  * returns an error or not).
2003  *
2004  * Return: Negative error code on error, bytes imported on success
2005  */
2006 ssize_t import_iovec(int type, const struct iovec __user *uvec,
2007 		 unsigned nr_segs, unsigned fast_segs,
2008 		 struct iovec **iovp, struct iov_iter *i)
2009 {
2010 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
2011 			      in_compat_syscall());
2012 }
2013 EXPORT_SYMBOL(import_iovec);
2014 
2015 int import_single_range(int rw, void __user *buf, size_t len,
2016 		 struct iovec *iov, struct iov_iter *i)
2017 {
2018 	if (len > MAX_RW_COUNT)
2019 		len = MAX_RW_COUNT;
2020 	if (unlikely(!access_ok(buf, len)))
2021 		return -EFAULT;
2022 
2023 	iov->iov_base = buf;
2024 	iov->iov_len = len;
2025 	iov_iter_init(i, rw, iov, 1, len);
2026 	return 0;
2027 }
2028 EXPORT_SYMBOL(import_single_range);
2029 
2030 /**
2031  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
2032  *     iov_iter_save_state() was called.
2033  *
2034  * @i: &struct iov_iter to restore
2035  * @state: state to restore from
2036  *
2037  * Used after iov_iter_save_state() to bring restore @i, if operations may
2038  * have advanced it.
2039  *
2040  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
2041  */
2042 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
2043 {
2044 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
2045 			 !iov_iter_is_kvec(i))
2046 		return;
2047 	i->iov_offset = state->iov_offset;
2048 	i->count = state->count;
2049 	/*
2050 	 * For the *vec iters, nr_segs + iov is constant - if we increment
2051 	 * the vec, then we also decrement the nr_segs count. Hence we don't
2052 	 * need to track both of these, just one is enough and we can deduct
2053 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
2054 	 * size, so we can just increment the iov pointer as they are unionzed.
2055 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
2056 	 * not. Be safe and handle it separately.
2057 	 */
2058 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
2059 	if (iov_iter_is_bvec(i))
2060 		i->bvec -= state->nr_segs - i->nr_segs;
2061 	else
2062 		i->iov -= state->nr_segs - i->nr_segs;
2063 	i->nr_segs = state->nr_segs;
2064 }
2065