xref: /openbmc/linux/lib/iov_iter.c (revision 34facb04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/uio.h>
5 #include <linux/pagemap.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/splice.h>
9 #include <net/checksum.h>
10 #include <linux/scatterlist.h>
11 #include <linux/instrumented.h>
12 
13 #define PIPE_PARANOIA /* for now */
14 
15 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
16 	size_t left;					\
17 	size_t wanted = n;				\
18 	__p = i->iov;					\
19 	__v.iov_len = min(n, __p->iov_len - skip);	\
20 	if (likely(__v.iov_len)) {			\
21 		__v.iov_base = __p->iov_base + skip;	\
22 		left = (STEP);				\
23 		__v.iov_len -= left;			\
24 		skip += __v.iov_len;			\
25 		n -= __v.iov_len;			\
26 	} else {					\
27 		left = 0;				\
28 	}						\
29 	while (unlikely(!left && n)) {			\
30 		__p++;					\
31 		__v.iov_len = min(n, __p->iov_len);	\
32 		if (unlikely(!__v.iov_len))		\
33 			continue;			\
34 		__v.iov_base = __p->iov_base;		\
35 		left = (STEP);				\
36 		__v.iov_len -= left;			\
37 		skip = __v.iov_len;			\
38 		n -= __v.iov_len;			\
39 	}						\
40 	n = wanted - n;					\
41 }
42 
43 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
44 	size_t wanted = n;				\
45 	__p = i->kvec;					\
46 	__v.iov_len = min(n, __p->iov_len - skip);	\
47 	if (likely(__v.iov_len)) {			\
48 		__v.iov_base = __p->iov_base + skip;	\
49 		(void)(STEP);				\
50 		skip += __v.iov_len;			\
51 		n -= __v.iov_len;			\
52 	}						\
53 	while (unlikely(n)) {				\
54 		__p++;					\
55 		__v.iov_len = min(n, __p->iov_len);	\
56 		if (unlikely(!__v.iov_len))		\
57 			continue;			\
58 		__v.iov_base = __p->iov_base;		\
59 		(void)(STEP);				\
60 		skip = __v.iov_len;			\
61 		n -= __v.iov_len;			\
62 	}						\
63 	n = wanted;					\
64 }
65 
66 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
67 	struct bvec_iter __start;			\
68 	__start.bi_size = n;				\
69 	__start.bi_bvec_done = skip;			\
70 	__start.bi_idx = 0;				\
71 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
72 		if (!__v.bv_len)			\
73 			continue;			\
74 		(void)(STEP);				\
75 	}						\
76 }
77 
78 #define iterate_all_kinds(i, n, v, I, B, K) {			\
79 	if (likely(n)) {					\
80 		size_t skip = i->iov_offset;			\
81 		if (unlikely(i->type & ITER_BVEC)) {		\
82 			struct bio_vec v;			\
83 			struct bvec_iter __bi;			\
84 			iterate_bvec(i, n, v, __bi, skip, (B))	\
85 		} else if (unlikely(i->type & ITER_KVEC)) {	\
86 			const struct kvec *kvec;		\
87 			struct kvec v;				\
88 			iterate_kvec(i, n, v, kvec, skip, (K))	\
89 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
90 		} else {					\
91 			const struct iovec *iov;		\
92 			struct iovec v;				\
93 			iterate_iovec(i, n, v, iov, skip, (I))	\
94 		}						\
95 	}							\
96 }
97 
98 #define iterate_and_advance(i, n, v, I, B, K) {			\
99 	if (unlikely(i->count < n))				\
100 		n = i->count;					\
101 	if (i->count) {						\
102 		size_t skip = i->iov_offset;			\
103 		if (unlikely(i->type & ITER_BVEC)) {		\
104 			const struct bio_vec *bvec = i->bvec;	\
105 			struct bio_vec v;			\
106 			struct bvec_iter __bi;			\
107 			iterate_bvec(i, n, v, __bi, skip, (B))	\
108 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
109 			i->nr_segs -= i->bvec - bvec;		\
110 			skip = __bi.bi_bvec_done;		\
111 		} else if (unlikely(i->type & ITER_KVEC)) {	\
112 			const struct kvec *kvec;		\
113 			struct kvec v;				\
114 			iterate_kvec(i, n, v, kvec, skip, (K))	\
115 			if (skip == kvec->iov_len) {		\
116 				kvec++;				\
117 				skip = 0;			\
118 			}					\
119 			i->nr_segs -= kvec - i->kvec;		\
120 			i->kvec = kvec;				\
121 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
122 			skip += n;				\
123 		} else {					\
124 			const struct iovec *iov;		\
125 			struct iovec v;				\
126 			iterate_iovec(i, n, v, iov, skip, (I))	\
127 			if (skip == iov->iov_len) {		\
128 				iov++;				\
129 				skip = 0;			\
130 			}					\
131 			i->nr_segs -= iov - i->iov;		\
132 			i->iov = iov;				\
133 		}						\
134 		i->count -= n;					\
135 		i->iov_offset = skip;				\
136 	}							\
137 }
138 
139 static int copyout(void __user *to, const void *from, size_t n)
140 {
141 	if (access_ok(to, n)) {
142 		instrument_copy_to_user(to, from, n);
143 		n = raw_copy_to_user(to, from, n);
144 	}
145 	return n;
146 }
147 
148 static int copyin(void *to, const void __user *from, size_t n)
149 {
150 	if (access_ok(from, n)) {
151 		instrument_copy_from_user(to, from, n);
152 		n = raw_copy_from_user(to, from, n);
153 	}
154 	return n;
155 }
156 
157 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
158 			 struct iov_iter *i)
159 {
160 	size_t skip, copy, left, wanted;
161 	const struct iovec *iov;
162 	char __user *buf;
163 	void *kaddr, *from;
164 
165 	if (unlikely(bytes > i->count))
166 		bytes = i->count;
167 
168 	if (unlikely(!bytes))
169 		return 0;
170 
171 	might_fault();
172 	wanted = bytes;
173 	iov = i->iov;
174 	skip = i->iov_offset;
175 	buf = iov->iov_base + skip;
176 	copy = min(bytes, iov->iov_len - skip);
177 
178 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
179 		kaddr = kmap_atomic(page);
180 		from = kaddr + offset;
181 
182 		/* first chunk, usually the only one */
183 		left = copyout(buf, from, copy);
184 		copy -= left;
185 		skip += copy;
186 		from += copy;
187 		bytes -= copy;
188 
189 		while (unlikely(!left && bytes)) {
190 			iov++;
191 			buf = iov->iov_base;
192 			copy = min(bytes, iov->iov_len);
193 			left = copyout(buf, from, copy);
194 			copy -= left;
195 			skip = copy;
196 			from += copy;
197 			bytes -= copy;
198 		}
199 		if (likely(!bytes)) {
200 			kunmap_atomic(kaddr);
201 			goto done;
202 		}
203 		offset = from - kaddr;
204 		buf += copy;
205 		kunmap_atomic(kaddr);
206 		copy = min(bytes, iov->iov_len - skip);
207 	}
208 	/* Too bad - revert to non-atomic kmap */
209 
210 	kaddr = kmap(page);
211 	from = kaddr + offset;
212 	left = copyout(buf, from, copy);
213 	copy -= left;
214 	skip += copy;
215 	from += copy;
216 	bytes -= copy;
217 	while (unlikely(!left && bytes)) {
218 		iov++;
219 		buf = iov->iov_base;
220 		copy = min(bytes, iov->iov_len);
221 		left = copyout(buf, from, copy);
222 		copy -= left;
223 		skip = copy;
224 		from += copy;
225 		bytes -= copy;
226 	}
227 	kunmap(page);
228 
229 done:
230 	if (skip == iov->iov_len) {
231 		iov++;
232 		skip = 0;
233 	}
234 	i->count -= wanted - bytes;
235 	i->nr_segs -= iov - i->iov;
236 	i->iov = iov;
237 	i->iov_offset = skip;
238 	return wanted - bytes;
239 }
240 
241 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
242 			 struct iov_iter *i)
243 {
244 	size_t skip, copy, left, wanted;
245 	const struct iovec *iov;
246 	char __user *buf;
247 	void *kaddr, *to;
248 
249 	if (unlikely(bytes > i->count))
250 		bytes = i->count;
251 
252 	if (unlikely(!bytes))
253 		return 0;
254 
255 	might_fault();
256 	wanted = bytes;
257 	iov = i->iov;
258 	skip = i->iov_offset;
259 	buf = iov->iov_base + skip;
260 	copy = min(bytes, iov->iov_len - skip);
261 
262 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
263 		kaddr = kmap_atomic(page);
264 		to = kaddr + offset;
265 
266 		/* first chunk, usually the only one */
267 		left = copyin(to, buf, copy);
268 		copy -= left;
269 		skip += copy;
270 		to += copy;
271 		bytes -= copy;
272 
273 		while (unlikely(!left && bytes)) {
274 			iov++;
275 			buf = iov->iov_base;
276 			copy = min(bytes, iov->iov_len);
277 			left = copyin(to, buf, copy);
278 			copy -= left;
279 			skip = copy;
280 			to += copy;
281 			bytes -= copy;
282 		}
283 		if (likely(!bytes)) {
284 			kunmap_atomic(kaddr);
285 			goto done;
286 		}
287 		offset = to - kaddr;
288 		buf += copy;
289 		kunmap_atomic(kaddr);
290 		copy = min(bytes, iov->iov_len - skip);
291 	}
292 	/* Too bad - revert to non-atomic kmap */
293 
294 	kaddr = kmap(page);
295 	to = kaddr + offset;
296 	left = copyin(to, buf, copy);
297 	copy -= left;
298 	skip += copy;
299 	to += copy;
300 	bytes -= copy;
301 	while (unlikely(!left && bytes)) {
302 		iov++;
303 		buf = iov->iov_base;
304 		copy = min(bytes, iov->iov_len);
305 		left = copyin(to, buf, copy);
306 		copy -= left;
307 		skip = copy;
308 		to += copy;
309 		bytes -= copy;
310 	}
311 	kunmap(page);
312 
313 done:
314 	if (skip == iov->iov_len) {
315 		iov++;
316 		skip = 0;
317 	}
318 	i->count -= wanted - bytes;
319 	i->nr_segs -= iov - i->iov;
320 	i->iov = iov;
321 	i->iov_offset = skip;
322 	return wanted - bytes;
323 }
324 
325 #ifdef PIPE_PARANOIA
326 static bool sanity(const struct iov_iter *i)
327 {
328 	struct pipe_inode_info *pipe = i->pipe;
329 	unsigned int p_head = pipe->head;
330 	unsigned int p_tail = pipe->tail;
331 	unsigned int p_mask = pipe->ring_size - 1;
332 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
333 	unsigned int i_head = i->head;
334 	unsigned int idx;
335 
336 	if (i->iov_offset) {
337 		struct pipe_buffer *p;
338 		if (unlikely(p_occupancy == 0))
339 			goto Bad;	// pipe must be non-empty
340 		if (unlikely(i_head != p_head - 1))
341 			goto Bad;	// must be at the last buffer...
342 
343 		p = &pipe->bufs[i_head & p_mask];
344 		if (unlikely(p->offset + p->len != i->iov_offset))
345 			goto Bad;	// ... at the end of segment
346 	} else {
347 		if (i_head != p_head)
348 			goto Bad;	// must be right after the last buffer
349 	}
350 	return true;
351 Bad:
352 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
353 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
354 			p_head, p_tail, pipe->ring_size);
355 	for (idx = 0; idx < pipe->ring_size; idx++)
356 		printk(KERN_ERR "[%p %p %d %d]\n",
357 			pipe->bufs[idx].ops,
358 			pipe->bufs[idx].page,
359 			pipe->bufs[idx].offset,
360 			pipe->bufs[idx].len);
361 	WARN_ON(1);
362 	return false;
363 }
364 #else
365 #define sanity(i) true
366 #endif
367 
368 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
369 			 struct iov_iter *i)
370 {
371 	struct pipe_inode_info *pipe = i->pipe;
372 	struct pipe_buffer *buf;
373 	unsigned int p_tail = pipe->tail;
374 	unsigned int p_mask = pipe->ring_size - 1;
375 	unsigned int i_head = i->head;
376 	size_t off;
377 
378 	if (unlikely(bytes > i->count))
379 		bytes = i->count;
380 
381 	if (unlikely(!bytes))
382 		return 0;
383 
384 	if (!sanity(i))
385 		return 0;
386 
387 	off = i->iov_offset;
388 	buf = &pipe->bufs[i_head & p_mask];
389 	if (off) {
390 		if (offset == off && buf->page == page) {
391 			/* merge with the last one */
392 			buf->len += bytes;
393 			i->iov_offset += bytes;
394 			goto out;
395 		}
396 		i_head++;
397 		buf = &pipe->bufs[i_head & p_mask];
398 	}
399 	if (pipe_full(i_head, p_tail, pipe->max_usage))
400 		return 0;
401 
402 	buf->ops = &page_cache_pipe_buf_ops;
403 	get_page(page);
404 	buf->page = page;
405 	buf->offset = offset;
406 	buf->len = bytes;
407 
408 	pipe->head = i_head + 1;
409 	i->iov_offset = offset + bytes;
410 	i->head = i_head;
411 out:
412 	i->count -= bytes;
413 	return bytes;
414 }
415 
416 /*
417  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
418  * bytes.  For each iovec, fault in each page that constitutes the iovec.
419  *
420  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
421  * because it is an invalid address).
422  */
423 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
424 {
425 	size_t skip = i->iov_offset;
426 	const struct iovec *iov;
427 	int err;
428 	struct iovec v;
429 
430 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
431 		iterate_iovec(i, bytes, v, iov, skip, ({
432 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
433 			if (unlikely(err))
434 			return err;
435 		0;}))
436 	}
437 	return 0;
438 }
439 EXPORT_SYMBOL(iov_iter_fault_in_readable);
440 
441 void iov_iter_init(struct iov_iter *i, unsigned int direction,
442 			const struct iovec *iov, unsigned long nr_segs,
443 			size_t count)
444 {
445 	WARN_ON(direction & ~(READ | WRITE));
446 	direction &= READ | WRITE;
447 
448 	/* It will get better.  Eventually... */
449 	if (uaccess_kernel()) {
450 		i->type = ITER_KVEC | direction;
451 		i->kvec = (struct kvec *)iov;
452 	} else {
453 		i->type = ITER_IOVEC | direction;
454 		i->iov = iov;
455 	}
456 	i->nr_segs = nr_segs;
457 	i->iov_offset = 0;
458 	i->count = count;
459 }
460 EXPORT_SYMBOL(iov_iter_init);
461 
462 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
463 {
464 	char *from = kmap_atomic(page);
465 	memcpy(to, from + offset, len);
466 	kunmap_atomic(from);
467 }
468 
469 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
470 {
471 	char *to = kmap_atomic(page);
472 	memcpy(to + offset, from, len);
473 	kunmap_atomic(to);
474 }
475 
476 static void memzero_page(struct page *page, size_t offset, size_t len)
477 {
478 	char *addr = kmap_atomic(page);
479 	memset(addr + offset, 0, len);
480 	kunmap_atomic(addr);
481 }
482 
483 static inline bool allocated(struct pipe_buffer *buf)
484 {
485 	return buf->ops == &default_pipe_buf_ops;
486 }
487 
488 static inline void data_start(const struct iov_iter *i,
489 			      unsigned int *iter_headp, size_t *offp)
490 {
491 	unsigned int p_mask = i->pipe->ring_size - 1;
492 	unsigned int iter_head = i->head;
493 	size_t off = i->iov_offset;
494 
495 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
496 		    off == PAGE_SIZE)) {
497 		iter_head++;
498 		off = 0;
499 	}
500 	*iter_headp = iter_head;
501 	*offp = off;
502 }
503 
504 static size_t push_pipe(struct iov_iter *i, size_t size,
505 			int *iter_headp, size_t *offp)
506 {
507 	struct pipe_inode_info *pipe = i->pipe;
508 	unsigned int p_tail = pipe->tail;
509 	unsigned int p_mask = pipe->ring_size - 1;
510 	unsigned int iter_head;
511 	size_t off;
512 	ssize_t left;
513 
514 	if (unlikely(size > i->count))
515 		size = i->count;
516 	if (unlikely(!size))
517 		return 0;
518 
519 	left = size;
520 	data_start(i, &iter_head, &off);
521 	*iter_headp = iter_head;
522 	*offp = off;
523 	if (off) {
524 		left -= PAGE_SIZE - off;
525 		if (left <= 0) {
526 			pipe->bufs[iter_head & p_mask].len += size;
527 			return size;
528 		}
529 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
530 		iter_head++;
531 	}
532 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
533 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
534 		struct page *page = alloc_page(GFP_USER);
535 		if (!page)
536 			break;
537 
538 		buf->ops = &default_pipe_buf_ops;
539 		buf->page = page;
540 		buf->offset = 0;
541 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
542 		left -= buf->len;
543 		iter_head++;
544 		pipe->head = iter_head;
545 
546 		if (left == 0)
547 			return size;
548 	}
549 	return size - left;
550 }
551 
552 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
553 				struct iov_iter *i)
554 {
555 	struct pipe_inode_info *pipe = i->pipe;
556 	unsigned int p_mask = pipe->ring_size - 1;
557 	unsigned int i_head;
558 	size_t n, off;
559 
560 	if (!sanity(i))
561 		return 0;
562 
563 	bytes = n = push_pipe(i, bytes, &i_head, &off);
564 	if (unlikely(!n))
565 		return 0;
566 	do {
567 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
568 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
569 		i->head = i_head;
570 		i->iov_offset = off + chunk;
571 		n -= chunk;
572 		addr += chunk;
573 		off = 0;
574 		i_head++;
575 	} while (n);
576 	i->count -= bytes;
577 	return bytes;
578 }
579 
580 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
581 			      __wsum sum, size_t off)
582 {
583 	__wsum next = csum_partial_copy_nocheck(from, to, len, 0);
584 	return csum_block_add(sum, next, off);
585 }
586 
587 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
588 				__wsum *csum, struct iov_iter *i)
589 {
590 	struct pipe_inode_info *pipe = i->pipe;
591 	unsigned int p_mask = pipe->ring_size - 1;
592 	unsigned int i_head;
593 	size_t n, r;
594 	size_t off = 0;
595 	__wsum sum = *csum;
596 
597 	if (!sanity(i))
598 		return 0;
599 
600 	bytes = n = push_pipe(i, bytes, &i_head, &r);
601 	if (unlikely(!n))
602 		return 0;
603 	do {
604 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
605 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
606 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
607 		kunmap_atomic(p);
608 		i->head = i_head;
609 		i->iov_offset = r + chunk;
610 		n -= chunk;
611 		off += chunk;
612 		addr += chunk;
613 		r = 0;
614 		i_head++;
615 	} while (n);
616 	i->count -= bytes;
617 	*csum = sum;
618 	return bytes;
619 }
620 
621 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
622 {
623 	const char *from = addr;
624 	if (unlikely(iov_iter_is_pipe(i)))
625 		return copy_pipe_to_iter(addr, bytes, i);
626 	if (iter_is_iovec(i))
627 		might_fault();
628 	iterate_and_advance(i, bytes, v,
629 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
630 		memcpy_to_page(v.bv_page, v.bv_offset,
631 			       (from += v.bv_len) - v.bv_len, v.bv_len),
632 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
633 	)
634 
635 	return bytes;
636 }
637 EXPORT_SYMBOL(_copy_to_iter);
638 
639 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
640 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
641 {
642 	if (access_ok(to, n)) {
643 		instrument_copy_to_user(to, from, n);
644 		n = copy_to_user_mcsafe((__force void *) to, from, n);
645 	}
646 	return n;
647 }
648 
649 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
650 		const char *from, size_t len)
651 {
652 	unsigned long ret;
653 	char *to;
654 
655 	to = kmap_atomic(page);
656 	ret = memcpy_mcsafe(to + offset, from, len);
657 	kunmap_atomic(to);
658 
659 	return ret;
660 }
661 
662 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
663 				struct iov_iter *i)
664 {
665 	struct pipe_inode_info *pipe = i->pipe;
666 	unsigned int p_mask = pipe->ring_size - 1;
667 	unsigned int i_head;
668 	size_t n, off, xfer = 0;
669 
670 	if (!sanity(i))
671 		return 0;
672 
673 	bytes = n = push_pipe(i, bytes, &i_head, &off);
674 	if (unlikely(!n))
675 		return 0;
676 	do {
677 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
678 		unsigned long rem;
679 
680 		rem = memcpy_mcsafe_to_page(pipe->bufs[i_head & p_mask].page,
681 					    off, addr, chunk);
682 		i->head = i_head;
683 		i->iov_offset = off + chunk - rem;
684 		xfer += chunk - rem;
685 		if (rem)
686 			break;
687 		n -= chunk;
688 		addr += chunk;
689 		off = 0;
690 		i_head++;
691 	} while (n);
692 	i->count -= xfer;
693 	return xfer;
694 }
695 
696 /**
697  * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
698  * @addr: source kernel address
699  * @bytes: total transfer length
700  * @iter: destination iterator
701  *
702  * The pmem driver arranges for filesystem-dax to use this facility via
703  * dax_copy_to_iter() for protecting read/write to persistent memory.
704  * Unless / until an architecture can guarantee identical performance
705  * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
706  * performance regression to switch more users to the mcsafe version.
707  *
708  * Otherwise, the main differences between this and typical _copy_to_iter().
709  *
710  * * Typical tail/residue handling after a fault retries the copy
711  *   byte-by-byte until the fault happens again. Re-triggering machine
712  *   checks is potentially fatal so the implementation uses source
713  *   alignment and poison alignment assumptions to avoid re-triggering
714  *   hardware exceptions.
715  *
716  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
717  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
718  *   a short copy.
719  *
720  * See MCSAFE_TEST for self-test.
721  */
722 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
723 {
724 	const char *from = addr;
725 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
726 
727 	if (unlikely(iov_iter_is_pipe(i)))
728 		return copy_pipe_to_iter_mcsafe(addr, bytes, i);
729 	if (iter_is_iovec(i))
730 		might_fault();
731 	iterate_and_advance(i, bytes, v,
732 		copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
733 		({
734 		rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
735                                (from += v.bv_len) - v.bv_len, v.bv_len);
736 		if (rem) {
737 			curr_addr = (unsigned long) from;
738 			bytes = curr_addr - s_addr - rem;
739 			return bytes;
740 		}
741 		}),
742 		({
743 		rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
744 				v.iov_len);
745 		if (rem) {
746 			curr_addr = (unsigned long) from;
747 			bytes = curr_addr - s_addr - rem;
748 			return bytes;
749 		}
750 		})
751 	)
752 
753 	return bytes;
754 }
755 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
756 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
757 
758 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
759 {
760 	char *to = addr;
761 	if (unlikely(iov_iter_is_pipe(i))) {
762 		WARN_ON(1);
763 		return 0;
764 	}
765 	if (iter_is_iovec(i))
766 		might_fault();
767 	iterate_and_advance(i, bytes, v,
768 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
769 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
770 				 v.bv_offset, v.bv_len),
771 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
772 	)
773 
774 	return bytes;
775 }
776 EXPORT_SYMBOL(_copy_from_iter);
777 
778 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
779 {
780 	char *to = addr;
781 	if (unlikely(iov_iter_is_pipe(i))) {
782 		WARN_ON(1);
783 		return false;
784 	}
785 	if (unlikely(i->count < bytes))
786 		return false;
787 
788 	if (iter_is_iovec(i))
789 		might_fault();
790 	iterate_all_kinds(i, bytes, v, ({
791 		if (copyin((to += v.iov_len) - v.iov_len,
792 				      v.iov_base, v.iov_len))
793 			return false;
794 		0;}),
795 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
796 				 v.bv_offset, v.bv_len),
797 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
798 	)
799 
800 	iov_iter_advance(i, bytes);
801 	return true;
802 }
803 EXPORT_SYMBOL(_copy_from_iter_full);
804 
805 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
806 {
807 	char *to = addr;
808 	if (unlikely(iov_iter_is_pipe(i))) {
809 		WARN_ON(1);
810 		return 0;
811 	}
812 	iterate_and_advance(i, bytes, v,
813 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
814 					 v.iov_base, v.iov_len),
815 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
816 				 v.bv_offset, v.bv_len),
817 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
818 	)
819 
820 	return bytes;
821 }
822 EXPORT_SYMBOL(_copy_from_iter_nocache);
823 
824 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
825 /**
826  * _copy_from_iter_flushcache - write destination through cpu cache
827  * @addr: destination kernel address
828  * @bytes: total transfer length
829  * @iter: source iterator
830  *
831  * The pmem driver arranges for filesystem-dax to use this facility via
832  * dax_copy_from_iter() for ensuring that writes to persistent memory
833  * are flushed through the CPU cache. It is differentiated from
834  * _copy_from_iter_nocache() in that guarantees all data is flushed for
835  * all iterator types. The _copy_from_iter_nocache() only attempts to
836  * bypass the cache for the ITER_IOVEC case, and on some archs may use
837  * instructions that strand dirty-data in the cache.
838  */
839 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
840 {
841 	char *to = addr;
842 	if (unlikely(iov_iter_is_pipe(i))) {
843 		WARN_ON(1);
844 		return 0;
845 	}
846 	iterate_and_advance(i, bytes, v,
847 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
848 					 v.iov_base, v.iov_len),
849 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
850 				 v.bv_offset, v.bv_len),
851 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
852 			v.iov_len)
853 	)
854 
855 	return bytes;
856 }
857 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
858 #endif
859 
860 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
861 {
862 	char *to = addr;
863 	if (unlikely(iov_iter_is_pipe(i))) {
864 		WARN_ON(1);
865 		return false;
866 	}
867 	if (unlikely(i->count < bytes))
868 		return false;
869 	iterate_all_kinds(i, bytes, v, ({
870 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
871 					     v.iov_base, v.iov_len))
872 			return false;
873 		0;}),
874 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
875 				 v.bv_offset, v.bv_len),
876 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
877 	)
878 
879 	iov_iter_advance(i, bytes);
880 	return true;
881 }
882 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
883 
884 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
885 {
886 	struct page *head;
887 	size_t v = n + offset;
888 
889 	/*
890 	 * The general case needs to access the page order in order
891 	 * to compute the page size.
892 	 * However, we mostly deal with order-0 pages and thus can
893 	 * avoid a possible cache line miss for requests that fit all
894 	 * page orders.
895 	 */
896 	if (n <= v && v <= PAGE_SIZE)
897 		return true;
898 
899 	head = compound_head(page);
900 	v += (page - head) << PAGE_SHIFT;
901 
902 	if (likely(n <= v && v <= (page_size(head))))
903 		return true;
904 	WARN_ON(1);
905 	return false;
906 }
907 
908 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
909 			 struct iov_iter *i)
910 {
911 	if (unlikely(!page_copy_sane(page, offset, bytes)))
912 		return 0;
913 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
914 		void *kaddr = kmap_atomic(page);
915 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
916 		kunmap_atomic(kaddr);
917 		return wanted;
918 	} else if (unlikely(iov_iter_is_discard(i)))
919 		return bytes;
920 	else if (likely(!iov_iter_is_pipe(i)))
921 		return copy_page_to_iter_iovec(page, offset, bytes, i);
922 	else
923 		return copy_page_to_iter_pipe(page, offset, bytes, i);
924 }
925 EXPORT_SYMBOL(copy_page_to_iter);
926 
927 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
928 			 struct iov_iter *i)
929 {
930 	if (unlikely(!page_copy_sane(page, offset, bytes)))
931 		return 0;
932 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
933 		WARN_ON(1);
934 		return 0;
935 	}
936 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
937 		void *kaddr = kmap_atomic(page);
938 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
939 		kunmap_atomic(kaddr);
940 		return wanted;
941 	} else
942 		return copy_page_from_iter_iovec(page, offset, bytes, i);
943 }
944 EXPORT_SYMBOL(copy_page_from_iter);
945 
946 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
947 {
948 	struct pipe_inode_info *pipe = i->pipe;
949 	unsigned int p_mask = pipe->ring_size - 1;
950 	unsigned int i_head;
951 	size_t n, off;
952 
953 	if (!sanity(i))
954 		return 0;
955 
956 	bytes = n = push_pipe(i, bytes, &i_head, &off);
957 	if (unlikely(!n))
958 		return 0;
959 
960 	do {
961 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
962 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
963 		i->head = i_head;
964 		i->iov_offset = off + chunk;
965 		n -= chunk;
966 		off = 0;
967 		i_head++;
968 	} while (n);
969 	i->count -= bytes;
970 	return bytes;
971 }
972 
973 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
974 {
975 	if (unlikely(iov_iter_is_pipe(i)))
976 		return pipe_zero(bytes, i);
977 	iterate_and_advance(i, bytes, v,
978 		clear_user(v.iov_base, v.iov_len),
979 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
980 		memset(v.iov_base, 0, v.iov_len)
981 	)
982 
983 	return bytes;
984 }
985 EXPORT_SYMBOL(iov_iter_zero);
986 
987 size_t iov_iter_copy_from_user_atomic(struct page *page,
988 		struct iov_iter *i, unsigned long offset, size_t bytes)
989 {
990 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
991 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
992 		kunmap_atomic(kaddr);
993 		return 0;
994 	}
995 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
996 		kunmap_atomic(kaddr);
997 		WARN_ON(1);
998 		return 0;
999 	}
1000 	iterate_all_kinds(i, bytes, v,
1001 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1002 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1003 				 v.bv_offset, v.bv_len),
1004 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1005 	)
1006 	kunmap_atomic(kaddr);
1007 	return bytes;
1008 }
1009 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1010 
1011 static inline void pipe_truncate(struct iov_iter *i)
1012 {
1013 	struct pipe_inode_info *pipe = i->pipe;
1014 	unsigned int p_tail = pipe->tail;
1015 	unsigned int p_head = pipe->head;
1016 	unsigned int p_mask = pipe->ring_size - 1;
1017 
1018 	if (!pipe_empty(p_head, p_tail)) {
1019 		struct pipe_buffer *buf;
1020 		unsigned int i_head = i->head;
1021 		size_t off = i->iov_offset;
1022 
1023 		if (off) {
1024 			buf = &pipe->bufs[i_head & p_mask];
1025 			buf->len = off - buf->offset;
1026 			i_head++;
1027 		}
1028 		while (p_head != i_head) {
1029 			p_head--;
1030 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1031 		}
1032 
1033 		pipe->head = p_head;
1034 	}
1035 }
1036 
1037 static void pipe_advance(struct iov_iter *i, size_t size)
1038 {
1039 	struct pipe_inode_info *pipe = i->pipe;
1040 	if (unlikely(i->count < size))
1041 		size = i->count;
1042 	if (size) {
1043 		struct pipe_buffer *buf;
1044 		unsigned int p_mask = pipe->ring_size - 1;
1045 		unsigned int i_head = i->head;
1046 		size_t off = i->iov_offset, left = size;
1047 
1048 		if (off) /* make it relative to the beginning of buffer */
1049 			left += off - pipe->bufs[i_head & p_mask].offset;
1050 		while (1) {
1051 			buf = &pipe->bufs[i_head & p_mask];
1052 			if (left <= buf->len)
1053 				break;
1054 			left -= buf->len;
1055 			i_head++;
1056 		}
1057 		i->head = i_head;
1058 		i->iov_offset = buf->offset + left;
1059 	}
1060 	i->count -= size;
1061 	/* ... and discard everything past that point */
1062 	pipe_truncate(i);
1063 }
1064 
1065 void iov_iter_advance(struct iov_iter *i, size_t size)
1066 {
1067 	if (unlikely(iov_iter_is_pipe(i))) {
1068 		pipe_advance(i, size);
1069 		return;
1070 	}
1071 	if (unlikely(iov_iter_is_discard(i))) {
1072 		i->count -= size;
1073 		return;
1074 	}
1075 	iterate_and_advance(i, size, v, 0, 0, 0)
1076 }
1077 EXPORT_SYMBOL(iov_iter_advance);
1078 
1079 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1080 {
1081 	if (!unroll)
1082 		return;
1083 	if (WARN_ON(unroll > MAX_RW_COUNT))
1084 		return;
1085 	i->count += unroll;
1086 	if (unlikely(iov_iter_is_pipe(i))) {
1087 		struct pipe_inode_info *pipe = i->pipe;
1088 		unsigned int p_mask = pipe->ring_size - 1;
1089 		unsigned int i_head = i->head;
1090 		size_t off = i->iov_offset;
1091 		while (1) {
1092 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1093 			size_t n = off - b->offset;
1094 			if (unroll < n) {
1095 				off -= unroll;
1096 				break;
1097 			}
1098 			unroll -= n;
1099 			if (!unroll && i_head == i->start_head) {
1100 				off = 0;
1101 				break;
1102 			}
1103 			i_head--;
1104 			b = &pipe->bufs[i_head & p_mask];
1105 			off = b->offset + b->len;
1106 		}
1107 		i->iov_offset = off;
1108 		i->head = i_head;
1109 		pipe_truncate(i);
1110 		return;
1111 	}
1112 	if (unlikely(iov_iter_is_discard(i)))
1113 		return;
1114 	if (unroll <= i->iov_offset) {
1115 		i->iov_offset -= unroll;
1116 		return;
1117 	}
1118 	unroll -= i->iov_offset;
1119 	if (iov_iter_is_bvec(i)) {
1120 		const struct bio_vec *bvec = i->bvec;
1121 		while (1) {
1122 			size_t n = (--bvec)->bv_len;
1123 			i->nr_segs++;
1124 			if (unroll <= n) {
1125 				i->bvec = bvec;
1126 				i->iov_offset = n - unroll;
1127 				return;
1128 			}
1129 			unroll -= n;
1130 		}
1131 	} else { /* same logics for iovec and kvec */
1132 		const struct iovec *iov = i->iov;
1133 		while (1) {
1134 			size_t n = (--iov)->iov_len;
1135 			i->nr_segs++;
1136 			if (unroll <= n) {
1137 				i->iov = iov;
1138 				i->iov_offset = n - unroll;
1139 				return;
1140 			}
1141 			unroll -= n;
1142 		}
1143 	}
1144 }
1145 EXPORT_SYMBOL(iov_iter_revert);
1146 
1147 /*
1148  * Return the count of just the current iov_iter segment.
1149  */
1150 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1151 {
1152 	if (unlikely(iov_iter_is_pipe(i)))
1153 		return i->count;	// it is a silly place, anyway
1154 	if (i->nr_segs == 1)
1155 		return i->count;
1156 	if (unlikely(iov_iter_is_discard(i)))
1157 		return i->count;
1158 	else if (iov_iter_is_bvec(i))
1159 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1160 	else
1161 		return min(i->count, i->iov->iov_len - i->iov_offset);
1162 }
1163 EXPORT_SYMBOL(iov_iter_single_seg_count);
1164 
1165 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1166 			const struct kvec *kvec, unsigned long nr_segs,
1167 			size_t count)
1168 {
1169 	WARN_ON(direction & ~(READ | WRITE));
1170 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1171 	i->kvec = kvec;
1172 	i->nr_segs = nr_segs;
1173 	i->iov_offset = 0;
1174 	i->count = count;
1175 }
1176 EXPORT_SYMBOL(iov_iter_kvec);
1177 
1178 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1179 			const struct bio_vec *bvec, unsigned long nr_segs,
1180 			size_t count)
1181 {
1182 	WARN_ON(direction & ~(READ | WRITE));
1183 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1184 	i->bvec = bvec;
1185 	i->nr_segs = nr_segs;
1186 	i->iov_offset = 0;
1187 	i->count = count;
1188 }
1189 EXPORT_SYMBOL(iov_iter_bvec);
1190 
1191 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1192 			struct pipe_inode_info *pipe,
1193 			size_t count)
1194 {
1195 	BUG_ON(direction != READ);
1196 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1197 	i->type = ITER_PIPE | READ;
1198 	i->pipe = pipe;
1199 	i->head = pipe->head;
1200 	i->iov_offset = 0;
1201 	i->count = count;
1202 	i->start_head = i->head;
1203 }
1204 EXPORT_SYMBOL(iov_iter_pipe);
1205 
1206 /**
1207  * iov_iter_discard - Initialise an I/O iterator that discards data
1208  * @i: The iterator to initialise.
1209  * @direction: The direction of the transfer.
1210  * @count: The size of the I/O buffer in bytes.
1211  *
1212  * Set up an I/O iterator that just discards everything that's written to it.
1213  * It's only available as a READ iterator.
1214  */
1215 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1216 {
1217 	BUG_ON(direction != READ);
1218 	i->type = ITER_DISCARD | READ;
1219 	i->count = count;
1220 	i->iov_offset = 0;
1221 }
1222 EXPORT_SYMBOL(iov_iter_discard);
1223 
1224 unsigned long iov_iter_alignment(const struct iov_iter *i)
1225 {
1226 	unsigned long res = 0;
1227 	size_t size = i->count;
1228 
1229 	if (unlikely(iov_iter_is_pipe(i))) {
1230 		unsigned int p_mask = i->pipe->ring_size - 1;
1231 
1232 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1233 			return size | i->iov_offset;
1234 		return size;
1235 	}
1236 	iterate_all_kinds(i, size, v,
1237 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1238 		res |= v.bv_offset | v.bv_len,
1239 		res |= (unsigned long)v.iov_base | v.iov_len
1240 	)
1241 	return res;
1242 }
1243 EXPORT_SYMBOL(iov_iter_alignment);
1244 
1245 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1246 {
1247 	unsigned long res = 0;
1248 	size_t size = i->count;
1249 
1250 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1251 		WARN_ON(1);
1252 		return ~0U;
1253 	}
1254 
1255 	iterate_all_kinds(i, size, v,
1256 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1257 			(size != v.iov_len ? size : 0), 0),
1258 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1259 			(size != v.bv_len ? size : 0)),
1260 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1261 			(size != v.iov_len ? size : 0))
1262 		);
1263 	return res;
1264 }
1265 EXPORT_SYMBOL(iov_iter_gap_alignment);
1266 
1267 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1268 				size_t maxsize,
1269 				struct page **pages,
1270 				int iter_head,
1271 				size_t *start)
1272 {
1273 	struct pipe_inode_info *pipe = i->pipe;
1274 	unsigned int p_mask = pipe->ring_size - 1;
1275 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1276 	if (!n)
1277 		return -EFAULT;
1278 
1279 	maxsize = n;
1280 	n += *start;
1281 	while (n > 0) {
1282 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1283 		iter_head++;
1284 		n -= PAGE_SIZE;
1285 	}
1286 
1287 	return maxsize;
1288 }
1289 
1290 static ssize_t pipe_get_pages(struct iov_iter *i,
1291 		   struct page **pages, size_t maxsize, unsigned maxpages,
1292 		   size_t *start)
1293 {
1294 	unsigned int iter_head, npages;
1295 	size_t capacity;
1296 
1297 	if (!maxsize)
1298 		return 0;
1299 
1300 	if (!sanity(i))
1301 		return -EFAULT;
1302 
1303 	data_start(i, &iter_head, start);
1304 	/* Amount of free space: some of this one + all after this one */
1305 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1306 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1307 
1308 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1309 }
1310 
1311 ssize_t iov_iter_get_pages(struct iov_iter *i,
1312 		   struct page **pages, size_t maxsize, unsigned maxpages,
1313 		   size_t *start)
1314 {
1315 	if (maxsize > i->count)
1316 		maxsize = i->count;
1317 
1318 	if (unlikely(iov_iter_is_pipe(i)))
1319 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1320 	if (unlikely(iov_iter_is_discard(i)))
1321 		return -EFAULT;
1322 
1323 	iterate_all_kinds(i, maxsize, v, ({
1324 		unsigned long addr = (unsigned long)v.iov_base;
1325 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1326 		int n;
1327 		int res;
1328 
1329 		if (len > maxpages * PAGE_SIZE)
1330 			len = maxpages * PAGE_SIZE;
1331 		addr &= ~(PAGE_SIZE - 1);
1332 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1333 		res = get_user_pages_fast(addr, n,
1334 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1335 				pages);
1336 		if (unlikely(res < 0))
1337 			return res;
1338 		return (res == n ? len : res * PAGE_SIZE) - *start;
1339 	0;}),({
1340 		/* can't be more than PAGE_SIZE */
1341 		*start = v.bv_offset;
1342 		get_page(*pages = v.bv_page);
1343 		return v.bv_len;
1344 	}),({
1345 		return -EFAULT;
1346 	})
1347 	)
1348 	return 0;
1349 }
1350 EXPORT_SYMBOL(iov_iter_get_pages);
1351 
1352 static struct page **get_pages_array(size_t n)
1353 {
1354 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1355 }
1356 
1357 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1358 		   struct page ***pages, size_t maxsize,
1359 		   size_t *start)
1360 {
1361 	struct page **p;
1362 	unsigned int iter_head, npages;
1363 	ssize_t n;
1364 
1365 	if (!maxsize)
1366 		return 0;
1367 
1368 	if (!sanity(i))
1369 		return -EFAULT;
1370 
1371 	data_start(i, &iter_head, start);
1372 	/* Amount of free space: some of this one + all after this one */
1373 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1374 	n = npages * PAGE_SIZE - *start;
1375 	if (maxsize > n)
1376 		maxsize = n;
1377 	else
1378 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1379 	p = get_pages_array(npages);
1380 	if (!p)
1381 		return -ENOMEM;
1382 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1383 	if (n > 0)
1384 		*pages = p;
1385 	else
1386 		kvfree(p);
1387 	return n;
1388 }
1389 
1390 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1391 		   struct page ***pages, size_t maxsize,
1392 		   size_t *start)
1393 {
1394 	struct page **p;
1395 
1396 	if (maxsize > i->count)
1397 		maxsize = i->count;
1398 
1399 	if (unlikely(iov_iter_is_pipe(i)))
1400 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1401 	if (unlikely(iov_iter_is_discard(i)))
1402 		return -EFAULT;
1403 
1404 	iterate_all_kinds(i, maxsize, v, ({
1405 		unsigned long addr = (unsigned long)v.iov_base;
1406 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1407 		int n;
1408 		int res;
1409 
1410 		addr &= ~(PAGE_SIZE - 1);
1411 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1412 		p = get_pages_array(n);
1413 		if (!p)
1414 			return -ENOMEM;
1415 		res = get_user_pages_fast(addr, n,
1416 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1417 		if (unlikely(res < 0)) {
1418 			kvfree(p);
1419 			return res;
1420 		}
1421 		*pages = p;
1422 		return (res == n ? len : res * PAGE_SIZE) - *start;
1423 	0;}),({
1424 		/* can't be more than PAGE_SIZE */
1425 		*start = v.bv_offset;
1426 		*pages = p = get_pages_array(1);
1427 		if (!p)
1428 			return -ENOMEM;
1429 		get_page(*p = v.bv_page);
1430 		return v.bv_len;
1431 	}),({
1432 		return -EFAULT;
1433 	})
1434 	)
1435 	return 0;
1436 }
1437 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1438 
1439 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1440 			       struct iov_iter *i)
1441 {
1442 	char *to = addr;
1443 	__wsum sum, next;
1444 	size_t off = 0;
1445 	sum = *csum;
1446 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1447 		WARN_ON(1);
1448 		return 0;
1449 	}
1450 	iterate_and_advance(i, bytes, v, ({
1451 		int err = 0;
1452 		next = csum_and_copy_from_user(v.iov_base,
1453 					       (to += v.iov_len) - v.iov_len,
1454 					       v.iov_len, 0, &err);
1455 		if (!err) {
1456 			sum = csum_block_add(sum, next, off);
1457 			off += v.iov_len;
1458 		}
1459 		err ? v.iov_len : 0;
1460 	}), ({
1461 		char *p = kmap_atomic(v.bv_page);
1462 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1463 				      p + v.bv_offset, v.bv_len,
1464 				      sum, off);
1465 		kunmap_atomic(p);
1466 		off += v.bv_len;
1467 	}),({
1468 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1469 				      v.iov_base, v.iov_len,
1470 				      sum, off);
1471 		off += v.iov_len;
1472 	})
1473 	)
1474 	*csum = sum;
1475 	return bytes;
1476 }
1477 EXPORT_SYMBOL(csum_and_copy_from_iter);
1478 
1479 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1480 			       struct iov_iter *i)
1481 {
1482 	char *to = addr;
1483 	__wsum sum, next;
1484 	size_t off = 0;
1485 	sum = *csum;
1486 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1487 		WARN_ON(1);
1488 		return false;
1489 	}
1490 	if (unlikely(i->count < bytes))
1491 		return false;
1492 	iterate_all_kinds(i, bytes, v, ({
1493 		int err = 0;
1494 		next = csum_and_copy_from_user(v.iov_base,
1495 					       (to += v.iov_len) - v.iov_len,
1496 					       v.iov_len, 0, &err);
1497 		if (err)
1498 			return false;
1499 		sum = csum_block_add(sum, next, off);
1500 		off += v.iov_len;
1501 		0;
1502 	}), ({
1503 		char *p = kmap_atomic(v.bv_page);
1504 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1505 				      p + v.bv_offset, v.bv_len,
1506 				      sum, off);
1507 		kunmap_atomic(p);
1508 		off += v.bv_len;
1509 	}),({
1510 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1511 				      v.iov_base, v.iov_len,
1512 				      sum, off);
1513 		off += v.iov_len;
1514 	})
1515 	)
1516 	*csum = sum;
1517 	iov_iter_advance(i, bytes);
1518 	return true;
1519 }
1520 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1521 
1522 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1523 			     struct iov_iter *i)
1524 {
1525 	const char *from = addr;
1526 	__wsum *csum = csump;
1527 	__wsum sum, next;
1528 	size_t off = 0;
1529 
1530 	if (unlikely(iov_iter_is_pipe(i)))
1531 		return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1532 
1533 	sum = *csum;
1534 	if (unlikely(iov_iter_is_discard(i))) {
1535 		WARN_ON(1);	/* for now */
1536 		return 0;
1537 	}
1538 	iterate_and_advance(i, bytes, v, ({
1539 		int err = 0;
1540 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1541 					     v.iov_base,
1542 					     v.iov_len, 0, &err);
1543 		if (!err) {
1544 			sum = csum_block_add(sum, next, off);
1545 			off += v.iov_len;
1546 		}
1547 		err ? v.iov_len : 0;
1548 	}), ({
1549 		char *p = kmap_atomic(v.bv_page);
1550 		sum = csum_and_memcpy(p + v.bv_offset,
1551 				      (from += v.bv_len) - v.bv_len,
1552 				      v.bv_len, sum, off);
1553 		kunmap_atomic(p);
1554 		off += v.bv_len;
1555 	}),({
1556 		sum = csum_and_memcpy(v.iov_base,
1557 				     (from += v.iov_len) - v.iov_len,
1558 				     v.iov_len, sum, off);
1559 		off += v.iov_len;
1560 	})
1561 	)
1562 	*csum = sum;
1563 	return bytes;
1564 }
1565 EXPORT_SYMBOL(csum_and_copy_to_iter);
1566 
1567 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1568 		struct iov_iter *i)
1569 {
1570 #ifdef CONFIG_CRYPTO
1571 	struct ahash_request *hash = hashp;
1572 	struct scatterlist sg;
1573 	size_t copied;
1574 
1575 	copied = copy_to_iter(addr, bytes, i);
1576 	sg_init_one(&sg, addr, copied);
1577 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1578 	crypto_ahash_update(hash);
1579 	return copied;
1580 #else
1581 	return 0;
1582 #endif
1583 }
1584 EXPORT_SYMBOL(hash_and_copy_to_iter);
1585 
1586 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1587 {
1588 	size_t size = i->count;
1589 	int npages = 0;
1590 
1591 	if (!size)
1592 		return 0;
1593 	if (unlikely(iov_iter_is_discard(i)))
1594 		return 0;
1595 
1596 	if (unlikely(iov_iter_is_pipe(i))) {
1597 		struct pipe_inode_info *pipe = i->pipe;
1598 		unsigned int iter_head;
1599 		size_t off;
1600 
1601 		if (!sanity(i))
1602 			return 0;
1603 
1604 		data_start(i, &iter_head, &off);
1605 		/* some of this one + all after this one */
1606 		npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1607 		if (npages >= maxpages)
1608 			return maxpages;
1609 	} else iterate_all_kinds(i, size, v, ({
1610 		unsigned long p = (unsigned long)v.iov_base;
1611 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1612 			- p / PAGE_SIZE;
1613 		if (npages >= maxpages)
1614 			return maxpages;
1615 	0;}),({
1616 		npages++;
1617 		if (npages >= maxpages)
1618 			return maxpages;
1619 	}),({
1620 		unsigned long p = (unsigned long)v.iov_base;
1621 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1622 			- p / PAGE_SIZE;
1623 		if (npages >= maxpages)
1624 			return maxpages;
1625 	})
1626 	)
1627 	return npages;
1628 }
1629 EXPORT_SYMBOL(iov_iter_npages);
1630 
1631 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1632 {
1633 	*new = *old;
1634 	if (unlikely(iov_iter_is_pipe(new))) {
1635 		WARN_ON(1);
1636 		return NULL;
1637 	}
1638 	if (unlikely(iov_iter_is_discard(new)))
1639 		return NULL;
1640 	if (iov_iter_is_bvec(new))
1641 		return new->bvec = kmemdup(new->bvec,
1642 				    new->nr_segs * sizeof(struct bio_vec),
1643 				    flags);
1644 	else
1645 		/* iovec and kvec have identical layout */
1646 		return new->iov = kmemdup(new->iov,
1647 				   new->nr_segs * sizeof(struct iovec),
1648 				   flags);
1649 }
1650 EXPORT_SYMBOL(dup_iter);
1651 
1652 /**
1653  * import_iovec() - Copy an array of &struct iovec from userspace
1654  *     into the kernel, check that it is valid, and initialize a new
1655  *     &struct iov_iter iterator to access it.
1656  *
1657  * @type: One of %READ or %WRITE.
1658  * @uvector: Pointer to the userspace array.
1659  * @nr_segs: Number of elements in userspace array.
1660  * @fast_segs: Number of elements in @iov.
1661  * @iov: (input and output parameter) Pointer to pointer to (usually small
1662  *     on-stack) kernel array.
1663  * @i: Pointer to iterator that will be initialized on success.
1664  *
1665  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1666  * then this function places %NULL in *@iov on return. Otherwise, a new
1667  * array will be allocated and the result placed in *@iov. This means that
1668  * the caller may call kfree() on *@iov regardless of whether the small
1669  * on-stack array was used or not (and regardless of whether this function
1670  * returns an error or not).
1671  *
1672  * Return: Negative error code on error, bytes imported on success
1673  */
1674 ssize_t import_iovec(int type, const struct iovec __user * uvector,
1675 		 unsigned nr_segs, unsigned fast_segs,
1676 		 struct iovec **iov, struct iov_iter *i)
1677 {
1678 	ssize_t n;
1679 	struct iovec *p;
1680 	n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1681 				  *iov, &p);
1682 	if (n < 0) {
1683 		if (p != *iov)
1684 			kfree(p);
1685 		*iov = NULL;
1686 		return n;
1687 	}
1688 	iov_iter_init(i, type, p, nr_segs, n);
1689 	*iov = p == *iov ? NULL : p;
1690 	return n;
1691 }
1692 EXPORT_SYMBOL(import_iovec);
1693 
1694 #ifdef CONFIG_COMPAT
1695 #include <linux/compat.h>
1696 
1697 ssize_t compat_import_iovec(int type,
1698 		const struct compat_iovec __user * uvector,
1699 		unsigned nr_segs, unsigned fast_segs,
1700 		struct iovec **iov, struct iov_iter *i)
1701 {
1702 	ssize_t n;
1703 	struct iovec *p;
1704 	n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1705 				  *iov, &p);
1706 	if (n < 0) {
1707 		if (p != *iov)
1708 			kfree(p);
1709 		*iov = NULL;
1710 		return n;
1711 	}
1712 	iov_iter_init(i, type, p, nr_segs, n);
1713 	*iov = p == *iov ? NULL : p;
1714 	return n;
1715 }
1716 EXPORT_SYMBOL(compat_import_iovec);
1717 #endif
1718 
1719 int import_single_range(int rw, void __user *buf, size_t len,
1720 		 struct iovec *iov, struct iov_iter *i)
1721 {
1722 	if (len > MAX_RW_COUNT)
1723 		len = MAX_RW_COUNT;
1724 	if (unlikely(!access_ok(buf, len)))
1725 		return -EFAULT;
1726 
1727 	iov->iov_base = buf;
1728 	iov->iov_len = len;
1729 	iov_iter_init(i, rw, iov, 1, len);
1730 	return 0;
1731 }
1732 EXPORT_SYMBOL(import_single_range);
1733 
1734 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1735 			    int (*f)(struct kvec *vec, void *context),
1736 			    void *context)
1737 {
1738 	struct kvec w;
1739 	int err = -EINVAL;
1740 	if (!bytes)
1741 		return 0;
1742 
1743 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1744 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1745 		w.iov_len = v.bv_len;
1746 		err = f(&w, context);
1747 		kunmap(v.bv_page);
1748 		err;}), ({
1749 		w = v;
1750 		err = f(&w, context);})
1751 	)
1752 	return err;
1753 }
1754 EXPORT_SYMBOL(iov_iter_for_each_range);
1755