xref: /openbmc/linux/lib/iov_iter.c (revision 30e66b1d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
21 	size_t off = 0;						\
22 	size_t skip = i->iov_offset;				\
23 	do {							\
24 		len = min(n, __p->iov_len - skip);		\
25 		if (likely(len)) {				\
26 			base = __p->iov_base + skip;		\
27 			len -= (STEP);				\
28 			off += len;				\
29 			skip += len;				\
30 			n -= len;				\
31 			if (skip < __p->iov_len)		\
32 				break;				\
33 		}						\
34 		__p++;						\
35 		skip = 0;					\
36 	} while (n);						\
37 	i->iov_offset = skip;					\
38 	n = off;						\
39 }
40 
41 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
42 	size_t off = 0;						\
43 	unsigned skip = i->iov_offset;				\
44 	while (n) {						\
45 		unsigned offset = p->bv_offset + skip;		\
46 		unsigned left;					\
47 		void *kaddr = kmap_local_page(p->bv_page +	\
48 					offset / PAGE_SIZE);	\
49 		base = kaddr + offset % PAGE_SIZE;		\
50 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
51 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
52 		left = (STEP);					\
53 		kunmap_local(kaddr);				\
54 		len -= left;					\
55 		off += len;					\
56 		skip += len;					\
57 		if (skip == p->bv_len) {			\
58 			skip = 0;				\
59 			p++;					\
60 		}						\
61 		n -= len;					\
62 		if (left)					\
63 			break;					\
64 	}							\
65 	i->iov_offset = skip;					\
66 	n = off;						\
67 }
68 
69 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
70 	__label__ __out;					\
71 	size_t __off = 0;					\
72 	struct page *head = NULL;				\
73 	loff_t start = i->xarray_start + i->iov_offset;		\
74 	unsigned offset = start % PAGE_SIZE;			\
75 	pgoff_t index = start / PAGE_SIZE;			\
76 	int j;							\
77 								\
78 	XA_STATE(xas, i->xarray, index);			\
79 								\
80 	rcu_read_lock();					\
81 	xas_for_each(&xas, head, ULONG_MAX) {			\
82 		unsigned left;					\
83 		if (xas_retry(&xas, head))			\
84 			continue;				\
85 		if (WARN_ON(xa_is_value(head)))			\
86 			break;					\
87 		if (WARN_ON(PageHuge(head)))			\
88 			break;					\
89 		for (j = (head->index < index) ? index - head->index : 0; \
90 		     j < thp_nr_pages(head); j++) {		\
91 			void *kaddr = kmap_local_page(head + j);	\
92 			base = kaddr + offset;			\
93 			len = PAGE_SIZE - offset;		\
94 			len = min(n, len);			\
95 			left = (STEP);				\
96 			kunmap_local(kaddr);			\
97 			len -= left;				\
98 			__off += len;				\
99 			n -= len;				\
100 			if (left || n == 0)			\
101 				goto __out;			\
102 			offset = 0;				\
103 		}						\
104 	}							\
105 __out:								\
106 	rcu_read_unlock();					\
107 	i->iov_offset += __off;						\
108 	n = __off;						\
109 }
110 
111 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
112 	if (unlikely(i->count < n))				\
113 		n = i->count;					\
114 	if (likely(n)) {					\
115 		if (likely(iter_is_iovec(i))) {			\
116 			const struct iovec *iov = i->iov;	\
117 			void __user *base;			\
118 			size_t len;				\
119 			iterate_iovec(i, n, base, len, off,	\
120 						iov, (I))	\
121 			i->nr_segs -= iov - i->iov;		\
122 			i->iov = iov;				\
123 		} else if (iov_iter_is_bvec(i)) {		\
124 			const struct bio_vec *bvec = i->bvec;	\
125 			void *base;				\
126 			size_t len;				\
127 			iterate_bvec(i, n, base, len, off,	\
128 						bvec, (K))	\
129 			i->nr_segs -= bvec - i->bvec;		\
130 			i->bvec = bvec;				\
131 		} else if (iov_iter_is_kvec(i)) {		\
132 			const struct kvec *kvec = i->kvec;	\
133 			void *base;				\
134 			size_t len;				\
135 			iterate_iovec(i, n, base, len, off,	\
136 						kvec, (K))	\
137 			i->nr_segs -= kvec - i->kvec;		\
138 			i->kvec = kvec;				\
139 		} else if (iov_iter_is_xarray(i)) {		\
140 			void *base;				\
141 			size_t len;				\
142 			iterate_xarray(i, n, base, len, off,	\
143 							(K))	\
144 		}						\
145 		i->count -= n;					\
146 	}							\
147 }
148 #define iterate_and_advance(i, n, base, len, off, I, K) \
149 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
150 
151 static int copyout(void __user *to, const void *from, size_t n)
152 {
153 	if (should_fail_usercopy())
154 		return n;
155 	if (access_ok(to, n)) {
156 		instrument_copy_to_user(to, from, n);
157 		n = raw_copy_to_user(to, from, n);
158 	}
159 	return n;
160 }
161 
162 static int copyin(void *to, const void __user *from, size_t n)
163 {
164 	if (should_fail_usercopy())
165 		return n;
166 	if (access_ok(from, n)) {
167 		instrument_copy_from_user(to, from, n);
168 		n = raw_copy_from_user(to, from, n);
169 	}
170 	return n;
171 }
172 
173 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
174 			 struct iov_iter *i)
175 {
176 	size_t skip, copy, left, wanted;
177 	const struct iovec *iov;
178 	char __user *buf;
179 	void *kaddr, *from;
180 
181 	if (unlikely(bytes > i->count))
182 		bytes = i->count;
183 
184 	if (unlikely(!bytes))
185 		return 0;
186 
187 	might_fault();
188 	wanted = bytes;
189 	iov = i->iov;
190 	skip = i->iov_offset;
191 	buf = iov->iov_base + skip;
192 	copy = min(bytes, iov->iov_len - skip);
193 
194 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_writeable(buf, copy)) {
195 		kaddr = kmap_atomic(page);
196 		from = kaddr + offset;
197 
198 		/* first chunk, usually the only one */
199 		left = copyout(buf, from, copy);
200 		copy -= left;
201 		skip += copy;
202 		from += copy;
203 		bytes -= copy;
204 
205 		while (unlikely(!left && bytes)) {
206 			iov++;
207 			buf = iov->iov_base;
208 			copy = min(bytes, iov->iov_len);
209 			left = copyout(buf, from, copy);
210 			copy -= left;
211 			skip = copy;
212 			from += copy;
213 			bytes -= copy;
214 		}
215 		if (likely(!bytes)) {
216 			kunmap_atomic(kaddr);
217 			goto done;
218 		}
219 		offset = from - kaddr;
220 		buf += copy;
221 		kunmap_atomic(kaddr);
222 		copy = min(bytes, iov->iov_len - skip);
223 	}
224 	/* Too bad - revert to non-atomic kmap */
225 
226 	kaddr = kmap(page);
227 	from = kaddr + offset;
228 	left = copyout(buf, from, copy);
229 	copy -= left;
230 	skip += copy;
231 	from += copy;
232 	bytes -= copy;
233 	while (unlikely(!left && bytes)) {
234 		iov++;
235 		buf = iov->iov_base;
236 		copy = min(bytes, iov->iov_len);
237 		left = copyout(buf, from, copy);
238 		copy -= left;
239 		skip = copy;
240 		from += copy;
241 		bytes -= copy;
242 	}
243 	kunmap(page);
244 
245 done:
246 	if (skip == iov->iov_len) {
247 		iov++;
248 		skip = 0;
249 	}
250 	i->count -= wanted - bytes;
251 	i->nr_segs -= iov - i->iov;
252 	i->iov = iov;
253 	i->iov_offset = skip;
254 	return wanted - bytes;
255 }
256 
257 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
258 			 struct iov_iter *i)
259 {
260 	size_t skip, copy, left, wanted;
261 	const struct iovec *iov;
262 	char __user *buf;
263 	void *kaddr, *to;
264 
265 	if (unlikely(bytes > i->count))
266 		bytes = i->count;
267 
268 	if (unlikely(!bytes))
269 		return 0;
270 
271 	might_fault();
272 	wanted = bytes;
273 	iov = i->iov;
274 	skip = i->iov_offset;
275 	buf = iov->iov_base + skip;
276 	copy = min(bytes, iov->iov_len - skip);
277 
278 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_readable(buf, copy)) {
279 		kaddr = kmap_atomic(page);
280 		to = kaddr + offset;
281 
282 		/* first chunk, usually the only one */
283 		left = copyin(to, buf, copy);
284 		copy -= left;
285 		skip += copy;
286 		to += copy;
287 		bytes -= copy;
288 
289 		while (unlikely(!left && bytes)) {
290 			iov++;
291 			buf = iov->iov_base;
292 			copy = min(bytes, iov->iov_len);
293 			left = copyin(to, buf, copy);
294 			copy -= left;
295 			skip = copy;
296 			to += copy;
297 			bytes -= copy;
298 		}
299 		if (likely(!bytes)) {
300 			kunmap_atomic(kaddr);
301 			goto done;
302 		}
303 		offset = to - kaddr;
304 		buf += copy;
305 		kunmap_atomic(kaddr);
306 		copy = min(bytes, iov->iov_len - skip);
307 	}
308 	/* Too bad - revert to non-atomic kmap */
309 
310 	kaddr = kmap(page);
311 	to = kaddr + offset;
312 	left = copyin(to, buf, copy);
313 	copy -= left;
314 	skip += copy;
315 	to += copy;
316 	bytes -= copy;
317 	while (unlikely(!left && bytes)) {
318 		iov++;
319 		buf = iov->iov_base;
320 		copy = min(bytes, iov->iov_len);
321 		left = copyin(to, buf, copy);
322 		copy -= left;
323 		skip = copy;
324 		to += copy;
325 		bytes -= copy;
326 	}
327 	kunmap(page);
328 
329 done:
330 	if (skip == iov->iov_len) {
331 		iov++;
332 		skip = 0;
333 	}
334 	i->count -= wanted - bytes;
335 	i->nr_segs -= iov - i->iov;
336 	i->iov = iov;
337 	i->iov_offset = skip;
338 	return wanted - bytes;
339 }
340 
341 #ifdef PIPE_PARANOIA
342 static bool sanity(const struct iov_iter *i)
343 {
344 	struct pipe_inode_info *pipe = i->pipe;
345 	unsigned int p_head = pipe->head;
346 	unsigned int p_tail = pipe->tail;
347 	unsigned int p_mask = pipe->ring_size - 1;
348 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
349 	unsigned int i_head = i->head;
350 	unsigned int idx;
351 
352 	if (i->iov_offset) {
353 		struct pipe_buffer *p;
354 		if (unlikely(p_occupancy == 0))
355 			goto Bad;	// pipe must be non-empty
356 		if (unlikely(i_head != p_head - 1))
357 			goto Bad;	// must be at the last buffer...
358 
359 		p = &pipe->bufs[i_head & p_mask];
360 		if (unlikely(p->offset + p->len != i->iov_offset))
361 			goto Bad;	// ... at the end of segment
362 	} else {
363 		if (i_head != p_head)
364 			goto Bad;	// must be right after the last buffer
365 	}
366 	return true;
367 Bad:
368 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
369 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
370 			p_head, p_tail, pipe->ring_size);
371 	for (idx = 0; idx < pipe->ring_size; idx++)
372 		printk(KERN_ERR "[%p %p %d %d]\n",
373 			pipe->bufs[idx].ops,
374 			pipe->bufs[idx].page,
375 			pipe->bufs[idx].offset,
376 			pipe->bufs[idx].len);
377 	WARN_ON(1);
378 	return false;
379 }
380 #else
381 #define sanity(i) true
382 #endif
383 
384 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
385 			 struct iov_iter *i)
386 {
387 	struct pipe_inode_info *pipe = i->pipe;
388 	struct pipe_buffer *buf;
389 	unsigned int p_tail = pipe->tail;
390 	unsigned int p_mask = pipe->ring_size - 1;
391 	unsigned int i_head = i->head;
392 	size_t off;
393 
394 	if (unlikely(bytes > i->count))
395 		bytes = i->count;
396 
397 	if (unlikely(!bytes))
398 		return 0;
399 
400 	if (!sanity(i))
401 		return 0;
402 
403 	off = i->iov_offset;
404 	buf = &pipe->bufs[i_head & p_mask];
405 	if (off) {
406 		if (offset == off && buf->page == page) {
407 			/* merge with the last one */
408 			buf->len += bytes;
409 			i->iov_offset += bytes;
410 			goto out;
411 		}
412 		i_head++;
413 		buf = &pipe->bufs[i_head & p_mask];
414 	}
415 	if (pipe_full(i_head, p_tail, pipe->max_usage))
416 		return 0;
417 
418 	buf->ops = &page_cache_pipe_buf_ops;
419 	buf->flags = 0;
420 	get_page(page);
421 	buf->page = page;
422 	buf->offset = offset;
423 	buf->len = bytes;
424 
425 	pipe->head = i_head + 1;
426 	i->iov_offset = offset + bytes;
427 	i->head = i_head;
428 out:
429 	i->count -= bytes;
430 	return bytes;
431 }
432 
433 /*
434  * fault_in_iov_iter_readable - fault in iov iterator for reading
435  * @i: iterator
436  * @size: maximum length
437  *
438  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
439  * @size.  For each iovec, fault in each page that constitutes the iovec.
440  *
441  * Returns the number of bytes not faulted in (like copy_to_user() and
442  * copy_from_user()).
443  *
444  * Always returns 0 for non-userspace iterators.
445  */
446 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
447 {
448 	if (iter_is_iovec(i)) {
449 		size_t count = min(size, iov_iter_count(i));
450 		const struct iovec *p;
451 		size_t skip;
452 
453 		size -= count;
454 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
455 			size_t len = min(count, p->iov_len - skip);
456 			size_t ret;
457 
458 			if (unlikely(!len))
459 				continue;
460 			ret = fault_in_readable(p->iov_base + skip, len);
461 			count -= len - ret;
462 			if (ret)
463 				break;
464 		}
465 		return count + size;
466 	}
467 	return 0;
468 }
469 EXPORT_SYMBOL(fault_in_iov_iter_readable);
470 
471 void iov_iter_init(struct iov_iter *i, unsigned int direction,
472 			const struct iovec *iov, unsigned long nr_segs,
473 			size_t count)
474 {
475 	WARN_ON(direction & ~(READ | WRITE));
476 	*i = (struct iov_iter) {
477 		.iter_type = ITER_IOVEC,
478 		.data_source = direction,
479 		.iov = iov,
480 		.nr_segs = nr_segs,
481 		.iov_offset = 0,
482 		.count = count
483 	};
484 }
485 EXPORT_SYMBOL(iov_iter_init);
486 
487 static inline bool allocated(struct pipe_buffer *buf)
488 {
489 	return buf->ops == &default_pipe_buf_ops;
490 }
491 
492 static inline void data_start(const struct iov_iter *i,
493 			      unsigned int *iter_headp, size_t *offp)
494 {
495 	unsigned int p_mask = i->pipe->ring_size - 1;
496 	unsigned int iter_head = i->head;
497 	size_t off = i->iov_offset;
498 
499 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
500 		    off == PAGE_SIZE)) {
501 		iter_head++;
502 		off = 0;
503 	}
504 	*iter_headp = iter_head;
505 	*offp = off;
506 }
507 
508 static size_t push_pipe(struct iov_iter *i, size_t size,
509 			int *iter_headp, size_t *offp)
510 {
511 	struct pipe_inode_info *pipe = i->pipe;
512 	unsigned int p_tail = pipe->tail;
513 	unsigned int p_mask = pipe->ring_size - 1;
514 	unsigned int iter_head;
515 	size_t off;
516 	ssize_t left;
517 
518 	if (unlikely(size > i->count))
519 		size = i->count;
520 	if (unlikely(!size))
521 		return 0;
522 
523 	left = size;
524 	data_start(i, &iter_head, &off);
525 	*iter_headp = iter_head;
526 	*offp = off;
527 	if (off) {
528 		left -= PAGE_SIZE - off;
529 		if (left <= 0) {
530 			pipe->bufs[iter_head & p_mask].len += size;
531 			return size;
532 		}
533 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
534 		iter_head++;
535 	}
536 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
537 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
538 		struct page *page = alloc_page(GFP_USER);
539 		if (!page)
540 			break;
541 
542 		buf->ops = &default_pipe_buf_ops;
543 		buf->flags = 0;
544 		buf->page = page;
545 		buf->offset = 0;
546 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
547 		left -= buf->len;
548 		iter_head++;
549 		pipe->head = iter_head;
550 
551 		if (left == 0)
552 			return size;
553 	}
554 	return size - left;
555 }
556 
557 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
558 				struct iov_iter *i)
559 {
560 	struct pipe_inode_info *pipe = i->pipe;
561 	unsigned int p_mask = pipe->ring_size - 1;
562 	unsigned int i_head;
563 	size_t n, off;
564 
565 	if (!sanity(i))
566 		return 0;
567 
568 	bytes = n = push_pipe(i, bytes, &i_head, &off);
569 	if (unlikely(!n))
570 		return 0;
571 	do {
572 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
573 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
574 		i->head = i_head;
575 		i->iov_offset = off + chunk;
576 		n -= chunk;
577 		addr += chunk;
578 		off = 0;
579 		i_head++;
580 	} while (n);
581 	i->count -= bytes;
582 	return bytes;
583 }
584 
585 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
586 			      __wsum sum, size_t off)
587 {
588 	__wsum next = csum_partial_copy_nocheck(from, to, len);
589 	return csum_block_add(sum, next, off);
590 }
591 
592 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
593 					 struct iov_iter *i, __wsum *sump)
594 {
595 	struct pipe_inode_info *pipe = i->pipe;
596 	unsigned int p_mask = pipe->ring_size - 1;
597 	__wsum sum = *sump;
598 	size_t off = 0;
599 	unsigned int i_head;
600 	size_t r;
601 
602 	if (!sanity(i))
603 		return 0;
604 
605 	bytes = push_pipe(i, bytes, &i_head, &r);
606 	while (bytes) {
607 		size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
608 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
609 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
610 		kunmap_local(p);
611 		i->head = i_head;
612 		i->iov_offset = r + chunk;
613 		bytes -= chunk;
614 		off += chunk;
615 		r = 0;
616 		i_head++;
617 	}
618 	*sump = sum;
619 	i->count -= off;
620 	return off;
621 }
622 
623 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
624 {
625 	if (unlikely(iov_iter_is_pipe(i)))
626 		return copy_pipe_to_iter(addr, bytes, i);
627 	if (iter_is_iovec(i))
628 		might_fault();
629 	iterate_and_advance(i, bytes, base, len, off,
630 		copyout(base, addr + off, len),
631 		memcpy(base, addr + off, len)
632 	)
633 
634 	return bytes;
635 }
636 EXPORT_SYMBOL(_copy_to_iter);
637 
638 #ifdef CONFIG_ARCH_HAS_COPY_MC
639 static int copyout_mc(void __user *to, const void *from, size_t n)
640 {
641 	if (access_ok(to, n)) {
642 		instrument_copy_to_user(to, from, n);
643 		n = copy_mc_to_user((__force void *) to, from, n);
644 	}
645 	return n;
646 }
647 
648 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
649 				struct iov_iter *i)
650 {
651 	struct pipe_inode_info *pipe = i->pipe;
652 	unsigned int p_mask = pipe->ring_size - 1;
653 	unsigned int i_head;
654 	size_t n, off, xfer = 0;
655 
656 	if (!sanity(i))
657 		return 0;
658 
659 	n = push_pipe(i, bytes, &i_head, &off);
660 	while (n) {
661 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
662 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
663 		unsigned long rem;
664 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
665 		chunk -= rem;
666 		kunmap_local(p);
667 		i->head = i_head;
668 		i->iov_offset = off + chunk;
669 		xfer += chunk;
670 		if (rem)
671 			break;
672 		n -= chunk;
673 		off = 0;
674 		i_head++;
675 	}
676 	i->count -= xfer;
677 	return xfer;
678 }
679 
680 /**
681  * _copy_mc_to_iter - copy to iter with source memory error exception handling
682  * @addr: source kernel address
683  * @bytes: total transfer length
684  * @i: destination iterator
685  *
686  * The pmem driver deploys this for the dax operation
687  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
688  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
689  * successfully copied.
690  *
691  * The main differences between this and typical _copy_to_iter().
692  *
693  * * Typical tail/residue handling after a fault retries the copy
694  *   byte-by-byte until the fault happens again. Re-triggering machine
695  *   checks is potentially fatal so the implementation uses source
696  *   alignment and poison alignment assumptions to avoid re-triggering
697  *   hardware exceptions.
698  *
699  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
700  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
701  *   a short copy.
702  *
703  * Return: number of bytes copied (may be %0)
704  */
705 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
706 {
707 	if (unlikely(iov_iter_is_pipe(i)))
708 		return copy_mc_pipe_to_iter(addr, bytes, i);
709 	if (iter_is_iovec(i))
710 		might_fault();
711 	__iterate_and_advance(i, bytes, base, len, off,
712 		copyout_mc(base, addr + off, len),
713 		copy_mc_to_kernel(base, addr + off, len)
714 	)
715 
716 	return bytes;
717 }
718 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
719 #endif /* CONFIG_ARCH_HAS_COPY_MC */
720 
721 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
722 {
723 	if (unlikely(iov_iter_is_pipe(i))) {
724 		WARN_ON(1);
725 		return 0;
726 	}
727 	if (iter_is_iovec(i))
728 		might_fault();
729 	iterate_and_advance(i, bytes, base, len, off,
730 		copyin(addr + off, base, len),
731 		memcpy(addr + off, base, len)
732 	)
733 
734 	return bytes;
735 }
736 EXPORT_SYMBOL(_copy_from_iter);
737 
738 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
739 {
740 	if (unlikely(iov_iter_is_pipe(i))) {
741 		WARN_ON(1);
742 		return 0;
743 	}
744 	iterate_and_advance(i, bytes, base, len, off,
745 		__copy_from_user_inatomic_nocache(addr + off, base, len),
746 		memcpy(addr + off, base, len)
747 	)
748 
749 	return bytes;
750 }
751 EXPORT_SYMBOL(_copy_from_iter_nocache);
752 
753 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
754 /**
755  * _copy_from_iter_flushcache - write destination through cpu cache
756  * @addr: destination kernel address
757  * @bytes: total transfer length
758  * @i: source iterator
759  *
760  * The pmem driver arranges for filesystem-dax to use this facility via
761  * dax_copy_from_iter() for ensuring that writes to persistent memory
762  * are flushed through the CPU cache. It is differentiated from
763  * _copy_from_iter_nocache() in that guarantees all data is flushed for
764  * all iterator types. The _copy_from_iter_nocache() only attempts to
765  * bypass the cache for the ITER_IOVEC case, and on some archs may use
766  * instructions that strand dirty-data in the cache.
767  *
768  * Return: number of bytes copied (may be %0)
769  */
770 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
771 {
772 	if (unlikely(iov_iter_is_pipe(i))) {
773 		WARN_ON(1);
774 		return 0;
775 	}
776 	iterate_and_advance(i, bytes, base, len, off,
777 		__copy_from_user_flushcache(addr + off, base, len),
778 		memcpy_flushcache(addr + off, base, len)
779 	)
780 
781 	return bytes;
782 }
783 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
784 #endif
785 
786 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
787 {
788 	struct page *head;
789 	size_t v = n + offset;
790 
791 	/*
792 	 * The general case needs to access the page order in order
793 	 * to compute the page size.
794 	 * However, we mostly deal with order-0 pages and thus can
795 	 * avoid a possible cache line miss for requests that fit all
796 	 * page orders.
797 	 */
798 	if (n <= v && v <= PAGE_SIZE)
799 		return true;
800 
801 	head = compound_head(page);
802 	v += (page - head) << PAGE_SHIFT;
803 
804 	if (likely(n <= v && v <= (page_size(head))))
805 		return true;
806 	WARN_ON(1);
807 	return false;
808 }
809 
810 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
811 			 struct iov_iter *i)
812 {
813 	if (likely(iter_is_iovec(i)))
814 		return copy_page_to_iter_iovec(page, offset, bytes, i);
815 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
816 		void *kaddr = kmap_local_page(page);
817 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
818 		kunmap_local(kaddr);
819 		return wanted;
820 	}
821 	if (iov_iter_is_pipe(i))
822 		return copy_page_to_iter_pipe(page, offset, bytes, i);
823 	if (unlikely(iov_iter_is_discard(i))) {
824 		if (unlikely(i->count < bytes))
825 			bytes = i->count;
826 		i->count -= bytes;
827 		return bytes;
828 	}
829 	WARN_ON(1);
830 	return 0;
831 }
832 
833 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
834 			 struct iov_iter *i)
835 {
836 	size_t res = 0;
837 	if (unlikely(!page_copy_sane(page, offset, bytes)))
838 		return 0;
839 	page += offset / PAGE_SIZE; // first subpage
840 	offset %= PAGE_SIZE;
841 	while (1) {
842 		size_t n = __copy_page_to_iter(page, offset,
843 				min(bytes, (size_t)PAGE_SIZE - offset), i);
844 		res += n;
845 		bytes -= n;
846 		if (!bytes || !n)
847 			break;
848 		offset += n;
849 		if (offset == PAGE_SIZE) {
850 			page++;
851 			offset = 0;
852 		}
853 	}
854 	return res;
855 }
856 EXPORT_SYMBOL(copy_page_to_iter);
857 
858 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
859 			 struct iov_iter *i)
860 {
861 	if (unlikely(!page_copy_sane(page, offset, bytes)))
862 		return 0;
863 	if (likely(iter_is_iovec(i)))
864 		return copy_page_from_iter_iovec(page, offset, bytes, i);
865 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
866 		void *kaddr = kmap_local_page(page);
867 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
868 		kunmap_local(kaddr);
869 		return wanted;
870 	}
871 	WARN_ON(1);
872 	return 0;
873 }
874 EXPORT_SYMBOL(copy_page_from_iter);
875 
876 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
877 {
878 	struct pipe_inode_info *pipe = i->pipe;
879 	unsigned int p_mask = pipe->ring_size - 1;
880 	unsigned int i_head;
881 	size_t n, off;
882 
883 	if (!sanity(i))
884 		return 0;
885 
886 	bytes = n = push_pipe(i, bytes, &i_head, &off);
887 	if (unlikely(!n))
888 		return 0;
889 
890 	do {
891 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
892 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
893 		memset(p + off, 0, chunk);
894 		kunmap_local(p);
895 		i->head = i_head;
896 		i->iov_offset = off + chunk;
897 		n -= chunk;
898 		off = 0;
899 		i_head++;
900 	} while (n);
901 	i->count -= bytes;
902 	return bytes;
903 }
904 
905 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
906 {
907 	if (unlikely(iov_iter_is_pipe(i)))
908 		return pipe_zero(bytes, i);
909 	iterate_and_advance(i, bytes, base, len, count,
910 		clear_user(base, len),
911 		memset(base, 0, len)
912 	)
913 
914 	return bytes;
915 }
916 EXPORT_SYMBOL(iov_iter_zero);
917 
918 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
919 				  struct iov_iter *i)
920 {
921 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
922 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
923 		kunmap_atomic(kaddr);
924 		return 0;
925 	}
926 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
927 		kunmap_atomic(kaddr);
928 		WARN_ON(1);
929 		return 0;
930 	}
931 	iterate_and_advance(i, bytes, base, len, off,
932 		copyin(p + off, base, len),
933 		memcpy(p + off, base, len)
934 	)
935 	kunmap_atomic(kaddr);
936 	return bytes;
937 }
938 EXPORT_SYMBOL(copy_page_from_iter_atomic);
939 
940 static inline void pipe_truncate(struct iov_iter *i)
941 {
942 	struct pipe_inode_info *pipe = i->pipe;
943 	unsigned int p_tail = pipe->tail;
944 	unsigned int p_head = pipe->head;
945 	unsigned int p_mask = pipe->ring_size - 1;
946 
947 	if (!pipe_empty(p_head, p_tail)) {
948 		struct pipe_buffer *buf;
949 		unsigned int i_head = i->head;
950 		size_t off = i->iov_offset;
951 
952 		if (off) {
953 			buf = &pipe->bufs[i_head & p_mask];
954 			buf->len = off - buf->offset;
955 			i_head++;
956 		}
957 		while (p_head != i_head) {
958 			p_head--;
959 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
960 		}
961 
962 		pipe->head = p_head;
963 	}
964 }
965 
966 static void pipe_advance(struct iov_iter *i, size_t size)
967 {
968 	struct pipe_inode_info *pipe = i->pipe;
969 	if (size) {
970 		struct pipe_buffer *buf;
971 		unsigned int p_mask = pipe->ring_size - 1;
972 		unsigned int i_head = i->head;
973 		size_t off = i->iov_offset, left = size;
974 
975 		if (off) /* make it relative to the beginning of buffer */
976 			left += off - pipe->bufs[i_head & p_mask].offset;
977 		while (1) {
978 			buf = &pipe->bufs[i_head & p_mask];
979 			if (left <= buf->len)
980 				break;
981 			left -= buf->len;
982 			i_head++;
983 		}
984 		i->head = i_head;
985 		i->iov_offset = buf->offset + left;
986 	}
987 	i->count -= size;
988 	/* ... and discard everything past that point */
989 	pipe_truncate(i);
990 }
991 
992 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
993 {
994 	struct bvec_iter bi;
995 
996 	bi.bi_size = i->count;
997 	bi.bi_bvec_done = i->iov_offset;
998 	bi.bi_idx = 0;
999 	bvec_iter_advance(i->bvec, &bi, size);
1000 
1001 	i->bvec += bi.bi_idx;
1002 	i->nr_segs -= bi.bi_idx;
1003 	i->count = bi.bi_size;
1004 	i->iov_offset = bi.bi_bvec_done;
1005 }
1006 
1007 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
1008 {
1009 	const struct iovec *iov, *end;
1010 
1011 	if (!i->count)
1012 		return;
1013 	i->count -= size;
1014 
1015 	size += i->iov_offset; // from beginning of current segment
1016 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1017 		if (likely(size < iov->iov_len))
1018 			break;
1019 		size -= iov->iov_len;
1020 	}
1021 	i->iov_offset = size;
1022 	i->nr_segs -= iov - i->iov;
1023 	i->iov = iov;
1024 }
1025 
1026 void iov_iter_advance(struct iov_iter *i, size_t size)
1027 {
1028 	if (unlikely(i->count < size))
1029 		size = i->count;
1030 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1031 		/* iovec and kvec have identical layouts */
1032 		iov_iter_iovec_advance(i, size);
1033 	} else if (iov_iter_is_bvec(i)) {
1034 		iov_iter_bvec_advance(i, size);
1035 	} else if (iov_iter_is_pipe(i)) {
1036 		pipe_advance(i, size);
1037 	} else if (unlikely(iov_iter_is_xarray(i))) {
1038 		i->iov_offset += size;
1039 		i->count -= size;
1040 	} else if (iov_iter_is_discard(i)) {
1041 		i->count -= size;
1042 	}
1043 }
1044 EXPORT_SYMBOL(iov_iter_advance);
1045 
1046 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1047 {
1048 	if (!unroll)
1049 		return;
1050 	if (WARN_ON(unroll > MAX_RW_COUNT))
1051 		return;
1052 	i->count += unroll;
1053 	if (unlikely(iov_iter_is_pipe(i))) {
1054 		struct pipe_inode_info *pipe = i->pipe;
1055 		unsigned int p_mask = pipe->ring_size - 1;
1056 		unsigned int i_head = i->head;
1057 		size_t off = i->iov_offset;
1058 		while (1) {
1059 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1060 			size_t n = off - b->offset;
1061 			if (unroll < n) {
1062 				off -= unroll;
1063 				break;
1064 			}
1065 			unroll -= n;
1066 			if (!unroll && i_head == i->start_head) {
1067 				off = 0;
1068 				break;
1069 			}
1070 			i_head--;
1071 			b = &pipe->bufs[i_head & p_mask];
1072 			off = b->offset + b->len;
1073 		}
1074 		i->iov_offset = off;
1075 		i->head = i_head;
1076 		pipe_truncate(i);
1077 		return;
1078 	}
1079 	if (unlikely(iov_iter_is_discard(i)))
1080 		return;
1081 	if (unroll <= i->iov_offset) {
1082 		i->iov_offset -= unroll;
1083 		return;
1084 	}
1085 	unroll -= i->iov_offset;
1086 	if (iov_iter_is_xarray(i)) {
1087 		BUG(); /* We should never go beyond the start of the specified
1088 			* range since we might then be straying into pages that
1089 			* aren't pinned.
1090 			*/
1091 	} else if (iov_iter_is_bvec(i)) {
1092 		const struct bio_vec *bvec = i->bvec;
1093 		while (1) {
1094 			size_t n = (--bvec)->bv_len;
1095 			i->nr_segs++;
1096 			if (unroll <= n) {
1097 				i->bvec = bvec;
1098 				i->iov_offset = n - unroll;
1099 				return;
1100 			}
1101 			unroll -= n;
1102 		}
1103 	} else { /* same logics for iovec and kvec */
1104 		const struct iovec *iov = i->iov;
1105 		while (1) {
1106 			size_t n = (--iov)->iov_len;
1107 			i->nr_segs++;
1108 			if (unroll <= n) {
1109 				i->iov = iov;
1110 				i->iov_offset = n - unroll;
1111 				return;
1112 			}
1113 			unroll -= n;
1114 		}
1115 	}
1116 }
1117 EXPORT_SYMBOL(iov_iter_revert);
1118 
1119 /*
1120  * Return the count of just the current iov_iter segment.
1121  */
1122 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1123 {
1124 	if (i->nr_segs > 1) {
1125 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1126 			return min(i->count, i->iov->iov_len - i->iov_offset);
1127 		if (iov_iter_is_bvec(i))
1128 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1129 	}
1130 	return i->count;
1131 }
1132 EXPORT_SYMBOL(iov_iter_single_seg_count);
1133 
1134 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1135 			const struct kvec *kvec, unsigned long nr_segs,
1136 			size_t count)
1137 {
1138 	WARN_ON(direction & ~(READ | WRITE));
1139 	*i = (struct iov_iter){
1140 		.iter_type = ITER_KVEC,
1141 		.data_source = direction,
1142 		.kvec = kvec,
1143 		.nr_segs = nr_segs,
1144 		.iov_offset = 0,
1145 		.count = count
1146 	};
1147 }
1148 EXPORT_SYMBOL(iov_iter_kvec);
1149 
1150 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1151 			const struct bio_vec *bvec, unsigned long nr_segs,
1152 			size_t count)
1153 {
1154 	WARN_ON(direction & ~(READ | WRITE));
1155 	*i = (struct iov_iter){
1156 		.iter_type = ITER_BVEC,
1157 		.data_source = direction,
1158 		.bvec = bvec,
1159 		.nr_segs = nr_segs,
1160 		.iov_offset = 0,
1161 		.count = count
1162 	};
1163 }
1164 EXPORT_SYMBOL(iov_iter_bvec);
1165 
1166 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1167 			struct pipe_inode_info *pipe,
1168 			size_t count)
1169 {
1170 	BUG_ON(direction != READ);
1171 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1172 	*i = (struct iov_iter){
1173 		.iter_type = ITER_PIPE,
1174 		.data_source = false,
1175 		.pipe = pipe,
1176 		.head = pipe->head,
1177 		.start_head = pipe->head,
1178 		.iov_offset = 0,
1179 		.count = count
1180 	};
1181 }
1182 EXPORT_SYMBOL(iov_iter_pipe);
1183 
1184 /**
1185  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1186  * @i: The iterator to initialise.
1187  * @direction: The direction of the transfer.
1188  * @xarray: The xarray to access.
1189  * @start: The start file position.
1190  * @count: The size of the I/O buffer in bytes.
1191  *
1192  * Set up an I/O iterator to either draw data out of the pages attached to an
1193  * inode or to inject data into those pages.  The pages *must* be prevented
1194  * from evaporation, either by taking a ref on them or locking them by the
1195  * caller.
1196  */
1197 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1198 		     struct xarray *xarray, loff_t start, size_t count)
1199 {
1200 	BUG_ON(direction & ~1);
1201 	*i = (struct iov_iter) {
1202 		.iter_type = ITER_XARRAY,
1203 		.data_source = direction,
1204 		.xarray = xarray,
1205 		.xarray_start = start,
1206 		.count = count,
1207 		.iov_offset = 0
1208 	};
1209 }
1210 EXPORT_SYMBOL(iov_iter_xarray);
1211 
1212 /**
1213  * iov_iter_discard - Initialise an I/O iterator that discards data
1214  * @i: The iterator to initialise.
1215  * @direction: The direction of the transfer.
1216  * @count: The size of the I/O buffer in bytes.
1217  *
1218  * Set up an I/O iterator that just discards everything that's written to it.
1219  * It's only available as a READ iterator.
1220  */
1221 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1222 {
1223 	BUG_ON(direction != READ);
1224 	*i = (struct iov_iter){
1225 		.iter_type = ITER_DISCARD,
1226 		.data_source = false,
1227 		.count = count,
1228 		.iov_offset = 0
1229 	};
1230 }
1231 EXPORT_SYMBOL(iov_iter_discard);
1232 
1233 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1234 {
1235 	unsigned long res = 0;
1236 	size_t size = i->count;
1237 	size_t skip = i->iov_offset;
1238 	unsigned k;
1239 
1240 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1241 		size_t len = i->iov[k].iov_len - skip;
1242 		if (len) {
1243 			res |= (unsigned long)i->iov[k].iov_base + skip;
1244 			if (len > size)
1245 				len = size;
1246 			res |= len;
1247 			size -= len;
1248 			if (!size)
1249 				break;
1250 		}
1251 	}
1252 	return res;
1253 }
1254 
1255 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1256 {
1257 	unsigned res = 0;
1258 	size_t size = i->count;
1259 	unsigned skip = i->iov_offset;
1260 	unsigned k;
1261 
1262 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1263 		size_t len = i->bvec[k].bv_len - skip;
1264 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1265 		if (len > size)
1266 			len = size;
1267 		res |= len;
1268 		size -= len;
1269 		if (!size)
1270 			break;
1271 	}
1272 	return res;
1273 }
1274 
1275 unsigned long iov_iter_alignment(const struct iov_iter *i)
1276 {
1277 	/* iovec and kvec have identical layouts */
1278 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1279 		return iov_iter_alignment_iovec(i);
1280 
1281 	if (iov_iter_is_bvec(i))
1282 		return iov_iter_alignment_bvec(i);
1283 
1284 	if (iov_iter_is_pipe(i)) {
1285 		unsigned int p_mask = i->pipe->ring_size - 1;
1286 		size_t size = i->count;
1287 
1288 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1289 			return size | i->iov_offset;
1290 		return size;
1291 	}
1292 
1293 	if (iov_iter_is_xarray(i))
1294 		return (i->xarray_start + i->iov_offset) | i->count;
1295 
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL(iov_iter_alignment);
1299 
1300 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1301 {
1302 	unsigned long res = 0;
1303 	unsigned long v = 0;
1304 	size_t size = i->count;
1305 	unsigned k;
1306 
1307 	if (WARN_ON(!iter_is_iovec(i)))
1308 		return ~0U;
1309 
1310 	for (k = 0; k < i->nr_segs; k++) {
1311 		if (i->iov[k].iov_len) {
1312 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1313 			if (v) // if not the first one
1314 				res |= base | v; // this start | previous end
1315 			v = base + i->iov[k].iov_len;
1316 			if (size <= i->iov[k].iov_len)
1317 				break;
1318 			size -= i->iov[k].iov_len;
1319 		}
1320 	}
1321 	return res;
1322 }
1323 EXPORT_SYMBOL(iov_iter_gap_alignment);
1324 
1325 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1326 				size_t maxsize,
1327 				struct page **pages,
1328 				int iter_head,
1329 				size_t *start)
1330 {
1331 	struct pipe_inode_info *pipe = i->pipe;
1332 	unsigned int p_mask = pipe->ring_size - 1;
1333 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1334 	if (!n)
1335 		return -EFAULT;
1336 
1337 	maxsize = n;
1338 	n += *start;
1339 	while (n > 0) {
1340 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1341 		iter_head++;
1342 		n -= PAGE_SIZE;
1343 	}
1344 
1345 	return maxsize;
1346 }
1347 
1348 static ssize_t pipe_get_pages(struct iov_iter *i,
1349 		   struct page **pages, size_t maxsize, unsigned maxpages,
1350 		   size_t *start)
1351 {
1352 	unsigned int iter_head, npages;
1353 	size_t capacity;
1354 
1355 	if (!sanity(i))
1356 		return -EFAULT;
1357 
1358 	data_start(i, &iter_head, start);
1359 	/* Amount of free space: some of this one + all after this one */
1360 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1361 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1362 
1363 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1364 }
1365 
1366 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1367 					  pgoff_t index, unsigned int nr_pages)
1368 {
1369 	XA_STATE(xas, xa, index);
1370 	struct page *page;
1371 	unsigned int ret = 0;
1372 
1373 	rcu_read_lock();
1374 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1375 		if (xas_retry(&xas, page))
1376 			continue;
1377 
1378 		/* Has the page moved or been split? */
1379 		if (unlikely(page != xas_reload(&xas))) {
1380 			xas_reset(&xas);
1381 			continue;
1382 		}
1383 
1384 		pages[ret] = find_subpage(page, xas.xa_index);
1385 		get_page(pages[ret]);
1386 		if (++ret == nr_pages)
1387 			break;
1388 	}
1389 	rcu_read_unlock();
1390 	return ret;
1391 }
1392 
1393 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1394 				     struct page **pages, size_t maxsize,
1395 				     unsigned maxpages, size_t *_start_offset)
1396 {
1397 	unsigned nr, offset;
1398 	pgoff_t index, count;
1399 	size_t size = maxsize, actual;
1400 	loff_t pos;
1401 
1402 	if (!size || !maxpages)
1403 		return 0;
1404 
1405 	pos = i->xarray_start + i->iov_offset;
1406 	index = pos >> PAGE_SHIFT;
1407 	offset = pos & ~PAGE_MASK;
1408 	*_start_offset = offset;
1409 
1410 	count = 1;
1411 	if (size > PAGE_SIZE - offset) {
1412 		size -= PAGE_SIZE - offset;
1413 		count += size >> PAGE_SHIFT;
1414 		size &= ~PAGE_MASK;
1415 		if (size)
1416 			count++;
1417 	}
1418 
1419 	if (count > maxpages)
1420 		count = maxpages;
1421 
1422 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1423 	if (nr == 0)
1424 		return 0;
1425 
1426 	actual = PAGE_SIZE * nr;
1427 	actual -= offset;
1428 	if (nr == count && size > 0) {
1429 		unsigned last_offset = (nr > 1) ? 0 : offset;
1430 		actual -= PAGE_SIZE - (last_offset + size);
1431 	}
1432 	return actual;
1433 }
1434 
1435 /* must be done on non-empty ITER_IOVEC one */
1436 static unsigned long first_iovec_segment(const struct iov_iter *i,
1437 					 size_t *size, size_t *start,
1438 					 size_t maxsize, unsigned maxpages)
1439 {
1440 	size_t skip;
1441 	long k;
1442 
1443 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1444 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1445 		size_t len = i->iov[k].iov_len - skip;
1446 
1447 		if (unlikely(!len))
1448 			continue;
1449 		if (len > maxsize)
1450 			len = maxsize;
1451 		len += (*start = addr % PAGE_SIZE);
1452 		if (len > maxpages * PAGE_SIZE)
1453 			len = maxpages * PAGE_SIZE;
1454 		*size = len;
1455 		return addr & PAGE_MASK;
1456 	}
1457 	BUG(); // if it had been empty, we wouldn't get called
1458 }
1459 
1460 /* must be done on non-empty ITER_BVEC one */
1461 static struct page *first_bvec_segment(const struct iov_iter *i,
1462 				       size_t *size, size_t *start,
1463 				       size_t maxsize, unsigned maxpages)
1464 {
1465 	struct page *page;
1466 	size_t skip = i->iov_offset, len;
1467 
1468 	len = i->bvec->bv_len - skip;
1469 	if (len > maxsize)
1470 		len = maxsize;
1471 	skip += i->bvec->bv_offset;
1472 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1473 	len += (*start = skip % PAGE_SIZE);
1474 	if (len > maxpages * PAGE_SIZE)
1475 		len = maxpages * PAGE_SIZE;
1476 	*size = len;
1477 	return page;
1478 }
1479 
1480 ssize_t iov_iter_get_pages(struct iov_iter *i,
1481 		   struct page **pages, size_t maxsize, unsigned maxpages,
1482 		   size_t *start)
1483 {
1484 	size_t len;
1485 	int n, res;
1486 
1487 	if (maxsize > i->count)
1488 		maxsize = i->count;
1489 	if (!maxsize)
1490 		return 0;
1491 
1492 	if (likely(iter_is_iovec(i))) {
1493 		unsigned long addr;
1494 
1495 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1496 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1497 		res = get_user_pages_fast(addr, n,
1498 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1499 				pages);
1500 		if (unlikely(res <= 0))
1501 			return res;
1502 		return (res == n ? len : res * PAGE_SIZE) - *start;
1503 	}
1504 	if (iov_iter_is_bvec(i)) {
1505 		struct page *page;
1506 
1507 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1508 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1509 		while (n--)
1510 			get_page(*pages++ = page++);
1511 		return len - *start;
1512 	}
1513 	if (iov_iter_is_pipe(i))
1514 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1515 	if (iov_iter_is_xarray(i))
1516 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1517 	return -EFAULT;
1518 }
1519 EXPORT_SYMBOL(iov_iter_get_pages);
1520 
1521 static struct page **get_pages_array(size_t n)
1522 {
1523 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1524 }
1525 
1526 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1527 		   struct page ***pages, size_t maxsize,
1528 		   size_t *start)
1529 {
1530 	struct page **p;
1531 	unsigned int iter_head, npages;
1532 	ssize_t n;
1533 
1534 	if (!sanity(i))
1535 		return -EFAULT;
1536 
1537 	data_start(i, &iter_head, start);
1538 	/* Amount of free space: some of this one + all after this one */
1539 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1540 	n = npages * PAGE_SIZE - *start;
1541 	if (maxsize > n)
1542 		maxsize = n;
1543 	else
1544 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1545 	p = get_pages_array(npages);
1546 	if (!p)
1547 		return -ENOMEM;
1548 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1549 	if (n > 0)
1550 		*pages = p;
1551 	else
1552 		kvfree(p);
1553 	return n;
1554 }
1555 
1556 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1557 					   struct page ***pages, size_t maxsize,
1558 					   size_t *_start_offset)
1559 {
1560 	struct page **p;
1561 	unsigned nr, offset;
1562 	pgoff_t index, count;
1563 	size_t size = maxsize, actual;
1564 	loff_t pos;
1565 
1566 	if (!size)
1567 		return 0;
1568 
1569 	pos = i->xarray_start + i->iov_offset;
1570 	index = pos >> PAGE_SHIFT;
1571 	offset = pos & ~PAGE_MASK;
1572 	*_start_offset = offset;
1573 
1574 	count = 1;
1575 	if (size > PAGE_SIZE - offset) {
1576 		size -= PAGE_SIZE - offset;
1577 		count += size >> PAGE_SHIFT;
1578 		size &= ~PAGE_MASK;
1579 		if (size)
1580 			count++;
1581 	}
1582 
1583 	p = get_pages_array(count);
1584 	if (!p)
1585 		return -ENOMEM;
1586 	*pages = p;
1587 
1588 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1589 	if (nr == 0)
1590 		return 0;
1591 
1592 	actual = PAGE_SIZE * nr;
1593 	actual -= offset;
1594 	if (nr == count && size > 0) {
1595 		unsigned last_offset = (nr > 1) ? 0 : offset;
1596 		actual -= PAGE_SIZE - (last_offset + size);
1597 	}
1598 	return actual;
1599 }
1600 
1601 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1602 		   struct page ***pages, size_t maxsize,
1603 		   size_t *start)
1604 {
1605 	struct page **p;
1606 	size_t len;
1607 	int n, res;
1608 
1609 	if (maxsize > i->count)
1610 		maxsize = i->count;
1611 	if (!maxsize)
1612 		return 0;
1613 
1614 	if (likely(iter_is_iovec(i))) {
1615 		unsigned long addr;
1616 
1617 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1618 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1619 		p = get_pages_array(n);
1620 		if (!p)
1621 			return -ENOMEM;
1622 		res = get_user_pages_fast(addr, n,
1623 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1624 		if (unlikely(res <= 0)) {
1625 			kvfree(p);
1626 			*pages = NULL;
1627 			return res;
1628 		}
1629 		*pages = p;
1630 		return (res == n ? len : res * PAGE_SIZE) - *start;
1631 	}
1632 	if (iov_iter_is_bvec(i)) {
1633 		struct page *page;
1634 
1635 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1636 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1637 		*pages = p = get_pages_array(n);
1638 		if (!p)
1639 			return -ENOMEM;
1640 		while (n--)
1641 			get_page(*p++ = page++);
1642 		return len - *start;
1643 	}
1644 	if (iov_iter_is_pipe(i))
1645 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1646 	if (iov_iter_is_xarray(i))
1647 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1648 	return -EFAULT;
1649 }
1650 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1651 
1652 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1653 			       struct iov_iter *i)
1654 {
1655 	__wsum sum, next;
1656 	sum = *csum;
1657 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1658 		WARN_ON(1);
1659 		return 0;
1660 	}
1661 	iterate_and_advance(i, bytes, base, len, off, ({
1662 		next = csum_and_copy_from_user(base, addr + off, len);
1663 		sum = csum_block_add(sum, next, off);
1664 		next ? 0 : len;
1665 	}), ({
1666 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1667 	})
1668 	)
1669 	*csum = sum;
1670 	return bytes;
1671 }
1672 EXPORT_SYMBOL(csum_and_copy_from_iter);
1673 
1674 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1675 			     struct iov_iter *i)
1676 {
1677 	struct csum_state *csstate = _csstate;
1678 	__wsum sum, next;
1679 
1680 	if (unlikely(iov_iter_is_discard(i))) {
1681 		WARN_ON(1);	/* for now */
1682 		return 0;
1683 	}
1684 
1685 	sum = csum_shift(csstate->csum, csstate->off);
1686 	if (unlikely(iov_iter_is_pipe(i)))
1687 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1688 	else iterate_and_advance(i, bytes, base, len, off, ({
1689 		next = csum_and_copy_to_user(addr + off, base, len);
1690 		sum = csum_block_add(sum, next, off);
1691 		next ? 0 : len;
1692 	}), ({
1693 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1694 	})
1695 	)
1696 	csstate->csum = csum_shift(sum, csstate->off);
1697 	csstate->off += bytes;
1698 	return bytes;
1699 }
1700 EXPORT_SYMBOL(csum_and_copy_to_iter);
1701 
1702 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1703 		struct iov_iter *i)
1704 {
1705 #ifdef CONFIG_CRYPTO_HASH
1706 	struct ahash_request *hash = hashp;
1707 	struct scatterlist sg;
1708 	size_t copied;
1709 
1710 	copied = copy_to_iter(addr, bytes, i);
1711 	sg_init_one(&sg, addr, copied);
1712 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1713 	crypto_ahash_update(hash);
1714 	return copied;
1715 #else
1716 	return 0;
1717 #endif
1718 }
1719 EXPORT_SYMBOL(hash_and_copy_to_iter);
1720 
1721 static int iov_npages(const struct iov_iter *i, int maxpages)
1722 {
1723 	size_t skip = i->iov_offset, size = i->count;
1724 	const struct iovec *p;
1725 	int npages = 0;
1726 
1727 	for (p = i->iov; size; skip = 0, p++) {
1728 		unsigned offs = offset_in_page(p->iov_base + skip);
1729 		size_t len = min(p->iov_len - skip, size);
1730 
1731 		if (len) {
1732 			size -= len;
1733 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1734 			if (unlikely(npages > maxpages))
1735 				return maxpages;
1736 		}
1737 	}
1738 	return npages;
1739 }
1740 
1741 static int bvec_npages(const struct iov_iter *i, int maxpages)
1742 {
1743 	size_t skip = i->iov_offset, size = i->count;
1744 	const struct bio_vec *p;
1745 	int npages = 0;
1746 
1747 	for (p = i->bvec; size; skip = 0, p++) {
1748 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1749 		size_t len = min(p->bv_len - skip, size);
1750 
1751 		size -= len;
1752 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1753 		if (unlikely(npages > maxpages))
1754 			return maxpages;
1755 	}
1756 	return npages;
1757 }
1758 
1759 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1760 {
1761 	if (unlikely(!i->count))
1762 		return 0;
1763 	/* iovec and kvec have identical layouts */
1764 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1765 		return iov_npages(i, maxpages);
1766 	if (iov_iter_is_bvec(i))
1767 		return bvec_npages(i, maxpages);
1768 	if (iov_iter_is_pipe(i)) {
1769 		unsigned int iter_head;
1770 		int npages;
1771 		size_t off;
1772 
1773 		if (!sanity(i))
1774 			return 0;
1775 
1776 		data_start(i, &iter_head, &off);
1777 		/* some of this one + all after this one */
1778 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1779 		return min(npages, maxpages);
1780 	}
1781 	if (iov_iter_is_xarray(i)) {
1782 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1783 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1784 		return min(npages, maxpages);
1785 	}
1786 	return 0;
1787 }
1788 EXPORT_SYMBOL(iov_iter_npages);
1789 
1790 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1791 {
1792 	*new = *old;
1793 	if (unlikely(iov_iter_is_pipe(new))) {
1794 		WARN_ON(1);
1795 		return NULL;
1796 	}
1797 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1798 		return NULL;
1799 	if (iov_iter_is_bvec(new))
1800 		return new->bvec = kmemdup(new->bvec,
1801 				    new->nr_segs * sizeof(struct bio_vec),
1802 				    flags);
1803 	else
1804 		/* iovec and kvec have identical layout */
1805 		return new->iov = kmemdup(new->iov,
1806 				   new->nr_segs * sizeof(struct iovec),
1807 				   flags);
1808 }
1809 EXPORT_SYMBOL(dup_iter);
1810 
1811 static int copy_compat_iovec_from_user(struct iovec *iov,
1812 		const struct iovec __user *uvec, unsigned long nr_segs)
1813 {
1814 	const struct compat_iovec __user *uiov =
1815 		(const struct compat_iovec __user *)uvec;
1816 	int ret = -EFAULT, i;
1817 
1818 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1819 		return -EFAULT;
1820 
1821 	for (i = 0; i < nr_segs; i++) {
1822 		compat_uptr_t buf;
1823 		compat_ssize_t len;
1824 
1825 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1826 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1827 
1828 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1829 		if (len < 0) {
1830 			ret = -EINVAL;
1831 			goto uaccess_end;
1832 		}
1833 		iov[i].iov_base = compat_ptr(buf);
1834 		iov[i].iov_len = len;
1835 	}
1836 
1837 	ret = 0;
1838 uaccess_end:
1839 	user_access_end();
1840 	return ret;
1841 }
1842 
1843 static int copy_iovec_from_user(struct iovec *iov,
1844 		const struct iovec __user *uvec, unsigned long nr_segs)
1845 {
1846 	unsigned long seg;
1847 
1848 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1849 		return -EFAULT;
1850 	for (seg = 0; seg < nr_segs; seg++) {
1851 		if ((ssize_t)iov[seg].iov_len < 0)
1852 			return -EINVAL;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1859 		unsigned long nr_segs, unsigned long fast_segs,
1860 		struct iovec *fast_iov, bool compat)
1861 {
1862 	struct iovec *iov = fast_iov;
1863 	int ret;
1864 
1865 	/*
1866 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1867 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1868 	 * traditionally returned zero for zero segments, so...
1869 	 */
1870 	if (nr_segs == 0)
1871 		return iov;
1872 	if (nr_segs > UIO_MAXIOV)
1873 		return ERR_PTR(-EINVAL);
1874 	if (nr_segs > fast_segs) {
1875 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1876 		if (!iov)
1877 			return ERR_PTR(-ENOMEM);
1878 	}
1879 
1880 	if (compat)
1881 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1882 	else
1883 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1884 	if (ret) {
1885 		if (iov != fast_iov)
1886 			kfree(iov);
1887 		return ERR_PTR(ret);
1888 	}
1889 
1890 	return iov;
1891 }
1892 
1893 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1894 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1895 		 struct iov_iter *i, bool compat)
1896 {
1897 	ssize_t total_len = 0;
1898 	unsigned long seg;
1899 	struct iovec *iov;
1900 
1901 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1902 	if (IS_ERR(iov)) {
1903 		*iovp = NULL;
1904 		return PTR_ERR(iov);
1905 	}
1906 
1907 	/*
1908 	 * According to the Single Unix Specification we should return EINVAL if
1909 	 * an element length is < 0 when cast to ssize_t or if the total length
1910 	 * would overflow the ssize_t return value of the system call.
1911 	 *
1912 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1913 	 * overflow case.
1914 	 */
1915 	for (seg = 0; seg < nr_segs; seg++) {
1916 		ssize_t len = (ssize_t)iov[seg].iov_len;
1917 
1918 		if (!access_ok(iov[seg].iov_base, len)) {
1919 			if (iov != *iovp)
1920 				kfree(iov);
1921 			*iovp = NULL;
1922 			return -EFAULT;
1923 		}
1924 
1925 		if (len > MAX_RW_COUNT - total_len) {
1926 			len = MAX_RW_COUNT - total_len;
1927 			iov[seg].iov_len = len;
1928 		}
1929 		total_len += len;
1930 	}
1931 
1932 	iov_iter_init(i, type, iov, nr_segs, total_len);
1933 	if (iov == *iovp)
1934 		*iovp = NULL;
1935 	else
1936 		*iovp = iov;
1937 	return total_len;
1938 }
1939 
1940 /**
1941  * import_iovec() - Copy an array of &struct iovec from userspace
1942  *     into the kernel, check that it is valid, and initialize a new
1943  *     &struct iov_iter iterator to access it.
1944  *
1945  * @type: One of %READ or %WRITE.
1946  * @uvec: Pointer to the userspace array.
1947  * @nr_segs: Number of elements in userspace array.
1948  * @fast_segs: Number of elements in @iov.
1949  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1950  *     on-stack) kernel array.
1951  * @i: Pointer to iterator that will be initialized on success.
1952  *
1953  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1954  * then this function places %NULL in *@iov on return. Otherwise, a new
1955  * array will be allocated and the result placed in *@iov. This means that
1956  * the caller may call kfree() on *@iov regardless of whether the small
1957  * on-stack array was used or not (and regardless of whether this function
1958  * returns an error or not).
1959  *
1960  * Return: Negative error code on error, bytes imported on success
1961  */
1962 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1963 		 unsigned nr_segs, unsigned fast_segs,
1964 		 struct iovec **iovp, struct iov_iter *i)
1965 {
1966 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1967 			      in_compat_syscall());
1968 }
1969 EXPORT_SYMBOL(import_iovec);
1970 
1971 int import_single_range(int rw, void __user *buf, size_t len,
1972 		 struct iovec *iov, struct iov_iter *i)
1973 {
1974 	if (len > MAX_RW_COUNT)
1975 		len = MAX_RW_COUNT;
1976 	if (unlikely(!access_ok(buf, len)))
1977 		return -EFAULT;
1978 
1979 	iov->iov_base = buf;
1980 	iov->iov_len = len;
1981 	iov_iter_init(i, rw, iov, 1, len);
1982 	return 0;
1983 }
1984 EXPORT_SYMBOL(import_single_range);
1985 
1986 /**
1987  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1988  *     iov_iter_save_state() was called.
1989  *
1990  * @i: &struct iov_iter to restore
1991  * @state: state to restore from
1992  *
1993  * Used after iov_iter_save_state() to bring restore @i, if operations may
1994  * have advanced it.
1995  *
1996  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1997  */
1998 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1999 {
2000 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
2001 			 !iov_iter_is_kvec(i))
2002 		return;
2003 	i->iov_offset = state->iov_offset;
2004 	i->count = state->count;
2005 	/*
2006 	 * For the *vec iters, nr_segs + iov is constant - if we increment
2007 	 * the vec, then we also decrement the nr_segs count. Hence we don't
2008 	 * need to track both of these, just one is enough and we can deduct
2009 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
2010 	 * size, so we can just increment the iov pointer as they are unionzed.
2011 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
2012 	 * not. Be safe and handle it separately.
2013 	 */
2014 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
2015 	if (iov_iter_is_bvec(i))
2016 		i->bvec -= state->nr_segs - i->nr_segs;
2017 	else
2018 		i->iov -= state->nr_segs - i->nr_segs;
2019 	i->nr_segs = state->nr_segs;
2020 }
2021