xref: /openbmc/linux/lib/iov_iter.c (revision 3098f5eb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/uio.h>
5 #include <linux/pagemap.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/splice.h>
9 #include <net/checksum.h>
10 #include <linux/scatterlist.h>
11 
12 #define PIPE_PARANOIA /* for now */
13 
14 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
15 	size_t left;					\
16 	size_t wanted = n;				\
17 	__p = i->iov;					\
18 	__v.iov_len = min(n, __p->iov_len - skip);	\
19 	if (likely(__v.iov_len)) {			\
20 		__v.iov_base = __p->iov_base + skip;	\
21 		left = (STEP);				\
22 		__v.iov_len -= left;			\
23 		skip += __v.iov_len;			\
24 		n -= __v.iov_len;			\
25 	} else {					\
26 		left = 0;				\
27 	}						\
28 	while (unlikely(!left && n)) {			\
29 		__p++;					\
30 		__v.iov_len = min(n, __p->iov_len);	\
31 		if (unlikely(!__v.iov_len))		\
32 			continue;			\
33 		__v.iov_base = __p->iov_base;		\
34 		left = (STEP);				\
35 		__v.iov_len -= left;			\
36 		skip = __v.iov_len;			\
37 		n -= __v.iov_len;			\
38 	}						\
39 	n = wanted - n;					\
40 }
41 
42 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
43 	size_t wanted = n;				\
44 	__p = i->kvec;					\
45 	__v.iov_len = min(n, __p->iov_len - skip);	\
46 	if (likely(__v.iov_len)) {			\
47 		__v.iov_base = __p->iov_base + skip;	\
48 		(void)(STEP);				\
49 		skip += __v.iov_len;			\
50 		n -= __v.iov_len;			\
51 	}						\
52 	while (unlikely(n)) {				\
53 		__p++;					\
54 		__v.iov_len = min(n, __p->iov_len);	\
55 		if (unlikely(!__v.iov_len))		\
56 			continue;			\
57 		__v.iov_base = __p->iov_base;		\
58 		(void)(STEP);				\
59 		skip = __v.iov_len;			\
60 		n -= __v.iov_len;			\
61 	}						\
62 	n = wanted;					\
63 }
64 
65 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
66 	struct bvec_iter __start;			\
67 	__start.bi_size = n;				\
68 	__start.bi_bvec_done = skip;			\
69 	__start.bi_idx = 0;				\
70 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
71 		if (!__v.bv_len)			\
72 			continue;			\
73 		(void)(STEP);				\
74 	}						\
75 }
76 
77 #define iterate_all_kinds(i, n, v, I, B, K) {			\
78 	if (likely(n)) {					\
79 		size_t skip = i->iov_offset;			\
80 		if (unlikely(i->type & ITER_BVEC)) {		\
81 			struct bio_vec v;			\
82 			struct bvec_iter __bi;			\
83 			iterate_bvec(i, n, v, __bi, skip, (B))	\
84 		} else if (unlikely(i->type & ITER_KVEC)) {	\
85 			const struct kvec *kvec;		\
86 			struct kvec v;				\
87 			iterate_kvec(i, n, v, kvec, skip, (K))	\
88 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
89 		} else {					\
90 			const struct iovec *iov;		\
91 			struct iovec v;				\
92 			iterate_iovec(i, n, v, iov, skip, (I))	\
93 		}						\
94 	}							\
95 }
96 
97 #define iterate_and_advance(i, n, v, I, B, K) {			\
98 	if (unlikely(i->count < n))				\
99 		n = i->count;					\
100 	if (i->count) {						\
101 		size_t skip = i->iov_offset;			\
102 		if (unlikely(i->type & ITER_BVEC)) {		\
103 			const struct bio_vec *bvec = i->bvec;	\
104 			struct bio_vec v;			\
105 			struct bvec_iter __bi;			\
106 			iterate_bvec(i, n, v, __bi, skip, (B))	\
107 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
108 			i->nr_segs -= i->bvec - bvec;		\
109 			skip = __bi.bi_bvec_done;		\
110 		} else if (unlikely(i->type & ITER_KVEC)) {	\
111 			const struct kvec *kvec;		\
112 			struct kvec v;				\
113 			iterate_kvec(i, n, v, kvec, skip, (K))	\
114 			if (skip == kvec->iov_len) {		\
115 				kvec++;				\
116 				skip = 0;			\
117 			}					\
118 			i->nr_segs -= kvec - i->kvec;		\
119 			i->kvec = kvec;				\
120 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
121 			skip += n;				\
122 		} else {					\
123 			const struct iovec *iov;		\
124 			struct iovec v;				\
125 			iterate_iovec(i, n, v, iov, skip, (I))	\
126 			if (skip == iov->iov_len) {		\
127 				iov++;				\
128 				skip = 0;			\
129 			}					\
130 			i->nr_segs -= iov - i->iov;		\
131 			i->iov = iov;				\
132 		}						\
133 		i->count -= n;					\
134 		i->iov_offset = skip;				\
135 	}							\
136 }
137 
138 static int copyout(void __user *to, const void *from, size_t n)
139 {
140 	if (access_ok(to, n)) {
141 		kasan_check_read(from, n);
142 		n = raw_copy_to_user(to, from, n);
143 	}
144 	return n;
145 }
146 
147 static int copyin(void *to, const void __user *from, size_t n)
148 {
149 	if (access_ok(from, n)) {
150 		kasan_check_write(to, n);
151 		n = raw_copy_from_user(to, from, n);
152 	}
153 	return n;
154 }
155 
156 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
157 			 struct iov_iter *i)
158 {
159 	size_t skip, copy, left, wanted;
160 	const struct iovec *iov;
161 	char __user *buf;
162 	void *kaddr, *from;
163 
164 	if (unlikely(bytes > i->count))
165 		bytes = i->count;
166 
167 	if (unlikely(!bytes))
168 		return 0;
169 
170 	might_fault();
171 	wanted = bytes;
172 	iov = i->iov;
173 	skip = i->iov_offset;
174 	buf = iov->iov_base + skip;
175 	copy = min(bytes, iov->iov_len - skip);
176 
177 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
178 		kaddr = kmap_atomic(page);
179 		from = kaddr + offset;
180 
181 		/* first chunk, usually the only one */
182 		left = copyout(buf, from, copy);
183 		copy -= left;
184 		skip += copy;
185 		from += copy;
186 		bytes -= copy;
187 
188 		while (unlikely(!left && bytes)) {
189 			iov++;
190 			buf = iov->iov_base;
191 			copy = min(bytes, iov->iov_len);
192 			left = copyout(buf, from, copy);
193 			copy -= left;
194 			skip = copy;
195 			from += copy;
196 			bytes -= copy;
197 		}
198 		if (likely(!bytes)) {
199 			kunmap_atomic(kaddr);
200 			goto done;
201 		}
202 		offset = from - kaddr;
203 		buf += copy;
204 		kunmap_atomic(kaddr);
205 		copy = min(bytes, iov->iov_len - skip);
206 	}
207 	/* Too bad - revert to non-atomic kmap */
208 
209 	kaddr = kmap(page);
210 	from = kaddr + offset;
211 	left = copyout(buf, from, copy);
212 	copy -= left;
213 	skip += copy;
214 	from += copy;
215 	bytes -= copy;
216 	while (unlikely(!left && bytes)) {
217 		iov++;
218 		buf = iov->iov_base;
219 		copy = min(bytes, iov->iov_len);
220 		left = copyout(buf, from, copy);
221 		copy -= left;
222 		skip = copy;
223 		from += copy;
224 		bytes -= copy;
225 	}
226 	kunmap(page);
227 
228 done:
229 	if (skip == iov->iov_len) {
230 		iov++;
231 		skip = 0;
232 	}
233 	i->count -= wanted - bytes;
234 	i->nr_segs -= iov - i->iov;
235 	i->iov = iov;
236 	i->iov_offset = skip;
237 	return wanted - bytes;
238 }
239 
240 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
241 			 struct iov_iter *i)
242 {
243 	size_t skip, copy, left, wanted;
244 	const struct iovec *iov;
245 	char __user *buf;
246 	void *kaddr, *to;
247 
248 	if (unlikely(bytes > i->count))
249 		bytes = i->count;
250 
251 	if (unlikely(!bytes))
252 		return 0;
253 
254 	might_fault();
255 	wanted = bytes;
256 	iov = i->iov;
257 	skip = i->iov_offset;
258 	buf = iov->iov_base + skip;
259 	copy = min(bytes, iov->iov_len - skip);
260 
261 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
262 		kaddr = kmap_atomic(page);
263 		to = kaddr + offset;
264 
265 		/* first chunk, usually the only one */
266 		left = copyin(to, buf, copy);
267 		copy -= left;
268 		skip += copy;
269 		to += copy;
270 		bytes -= copy;
271 
272 		while (unlikely(!left && bytes)) {
273 			iov++;
274 			buf = iov->iov_base;
275 			copy = min(bytes, iov->iov_len);
276 			left = copyin(to, buf, copy);
277 			copy -= left;
278 			skip = copy;
279 			to += copy;
280 			bytes -= copy;
281 		}
282 		if (likely(!bytes)) {
283 			kunmap_atomic(kaddr);
284 			goto done;
285 		}
286 		offset = to - kaddr;
287 		buf += copy;
288 		kunmap_atomic(kaddr);
289 		copy = min(bytes, iov->iov_len - skip);
290 	}
291 	/* Too bad - revert to non-atomic kmap */
292 
293 	kaddr = kmap(page);
294 	to = kaddr + offset;
295 	left = copyin(to, buf, copy);
296 	copy -= left;
297 	skip += copy;
298 	to += copy;
299 	bytes -= copy;
300 	while (unlikely(!left && bytes)) {
301 		iov++;
302 		buf = iov->iov_base;
303 		copy = min(bytes, iov->iov_len);
304 		left = copyin(to, buf, copy);
305 		copy -= left;
306 		skip = copy;
307 		to += copy;
308 		bytes -= copy;
309 	}
310 	kunmap(page);
311 
312 done:
313 	if (skip == iov->iov_len) {
314 		iov++;
315 		skip = 0;
316 	}
317 	i->count -= wanted - bytes;
318 	i->nr_segs -= iov - i->iov;
319 	i->iov = iov;
320 	i->iov_offset = skip;
321 	return wanted - bytes;
322 }
323 
324 #ifdef PIPE_PARANOIA
325 static bool sanity(const struct iov_iter *i)
326 {
327 	struct pipe_inode_info *pipe = i->pipe;
328 	unsigned int p_head = pipe->head;
329 	unsigned int p_tail = pipe->tail;
330 	unsigned int p_mask = pipe->ring_size - 1;
331 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
332 	unsigned int i_head = i->head;
333 	unsigned int idx;
334 
335 	if (i->iov_offset) {
336 		struct pipe_buffer *p;
337 		if (unlikely(p_occupancy == 0))
338 			goto Bad;	// pipe must be non-empty
339 		if (unlikely(i_head != p_head - 1))
340 			goto Bad;	// must be at the last buffer...
341 
342 		p = &pipe->bufs[i_head & p_mask];
343 		if (unlikely(p->offset + p->len != i->iov_offset))
344 			goto Bad;	// ... at the end of segment
345 	} else {
346 		if (i_head != p_head)
347 			goto Bad;	// must be right after the last buffer
348 	}
349 	return true;
350 Bad:
351 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
352 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
353 			p_head, p_tail, pipe->ring_size);
354 	for (idx = 0; idx < pipe->ring_size; idx++)
355 		printk(KERN_ERR "[%p %p %d %d]\n",
356 			pipe->bufs[idx].ops,
357 			pipe->bufs[idx].page,
358 			pipe->bufs[idx].offset,
359 			pipe->bufs[idx].len);
360 	WARN_ON(1);
361 	return false;
362 }
363 #else
364 #define sanity(i) true
365 #endif
366 
367 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
368 			 struct iov_iter *i)
369 {
370 	struct pipe_inode_info *pipe = i->pipe;
371 	struct pipe_buffer *buf;
372 	unsigned int p_tail = pipe->tail;
373 	unsigned int p_mask = pipe->ring_size - 1;
374 	unsigned int i_head = i->head;
375 	size_t off;
376 
377 	if (unlikely(bytes > i->count))
378 		bytes = i->count;
379 
380 	if (unlikely(!bytes))
381 		return 0;
382 
383 	if (!sanity(i))
384 		return 0;
385 
386 	off = i->iov_offset;
387 	buf = &pipe->bufs[i_head & p_mask];
388 	if (off) {
389 		if (offset == off && buf->page == page) {
390 			/* merge with the last one */
391 			buf->len += bytes;
392 			i->iov_offset += bytes;
393 			goto out;
394 		}
395 		i_head++;
396 		buf = &pipe->bufs[i_head & p_mask];
397 	}
398 	if (pipe_full(i_head, p_tail, pipe->max_usage))
399 		return 0;
400 
401 	buf->ops = &page_cache_pipe_buf_ops;
402 	get_page(page);
403 	buf->page = page;
404 	buf->offset = offset;
405 	buf->len = bytes;
406 
407 	pipe->head = i_head + 1;
408 	i->iov_offset = offset + bytes;
409 	i->head = i_head;
410 out:
411 	i->count -= bytes;
412 	return bytes;
413 }
414 
415 /*
416  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
417  * bytes.  For each iovec, fault in each page that constitutes the iovec.
418  *
419  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
420  * because it is an invalid address).
421  */
422 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
423 {
424 	size_t skip = i->iov_offset;
425 	const struct iovec *iov;
426 	int err;
427 	struct iovec v;
428 
429 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
430 		iterate_iovec(i, bytes, v, iov, skip, ({
431 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
432 			if (unlikely(err))
433 			return err;
434 		0;}))
435 	}
436 	return 0;
437 }
438 EXPORT_SYMBOL(iov_iter_fault_in_readable);
439 
440 void iov_iter_init(struct iov_iter *i, unsigned int direction,
441 			const struct iovec *iov, unsigned long nr_segs,
442 			size_t count)
443 {
444 	WARN_ON(direction & ~(READ | WRITE));
445 	direction &= READ | WRITE;
446 
447 	/* It will get better.  Eventually... */
448 	if (uaccess_kernel()) {
449 		i->type = ITER_KVEC | direction;
450 		i->kvec = (struct kvec *)iov;
451 	} else {
452 		i->type = ITER_IOVEC | direction;
453 		i->iov = iov;
454 	}
455 	i->nr_segs = nr_segs;
456 	i->iov_offset = 0;
457 	i->count = count;
458 }
459 EXPORT_SYMBOL(iov_iter_init);
460 
461 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
462 {
463 	char *from = kmap_atomic(page);
464 	memcpy(to, from + offset, len);
465 	kunmap_atomic(from);
466 }
467 
468 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
469 {
470 	char *to = kmap_atomic(page);
471 	memcpy(to + offset, from, len);
472 	kunmap_atomic(to);
473 }
474 
475 static void memzero_page(struct page *page, size_t offset, size_t len)
476 {
477 	char *addr = kmap_atomic(page);
478 	memset(addr + offset, 0, len);
479 	kunmap_atomic(addr);
480 }
481 
482 static inline bool allocated(struct pipe_buffer *buf)
483 {
484 	return buf->ops == &default_pipe_buf_ops;
485 }
486 
487 static inline void data_start(const struct iov_iter *i,
488 			      unsigned int *iter_headp, size_t *offp)
489 {
490 	unsigned int p_mask = i->pipe->ring_size - 1;
491 	unsigned int iter_head = i->head;
492 	size_t off = i->iov_offset;
493 
494 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
495 		    off == PAGE_SIZE)) {
496 		iter_head++;
497 		off = 0;
498 	}
499 	*iter_headp = iter_head;
500 	*offp = off;
501 }
502 
503 static size_t push_pipe(struct iov_iter *i, size_t size,
504 			int *iter_headp, size_t *offp)
505 {
506 	struct pipe_inode_info *pipe = i->pipe;
507 	unsigned int p_tail = pipe->tail;
508 	unsigned int p_mask = pipe->ring_size - 1;
509 	unsigned int iter_head;
510 	size_t off;
511 	ssize_t left;
512 
513 	if (unlikely(size > i->count))
514 		size = i->count;
515 	if (unlikely(!size))
516 		return 0;
517 
518 	left = size;
519 	data_start(i, &iter_head, &off);
520 	*iter_headp = iter_head;
521 	*offp = off;
522 	if (off) {
523 		left -= PAGE_SIZE - off;
524 		if (left <= 0) {
525 			pipe->bufs[iter_head & p_mask].len += size;
526 			return size;
527 		}
528 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
529 		iter_head++;
530 	}
531 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
532 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
533 		struct page *page = alloc_page(GFP_USER);
534 		if (!page)
535 			break;
536 
537 		buf->ops = &default_pipe_buf_ops;
538 		buf->page = page;
539 		buf->offset = 0;
540 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
541 		left -= buf->len;
542 		iter_head++;
543 		pipe->head = iter_head;
544 
545 		if (left == 0)
546 			return size;
547 	}
548 	return size - left;
549 }
550 
551 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
552 				struct iov_iter *i)
553 {
554 	struct pipe_inode_info *pipe = i->pipe;
555 	unsigned int p_mask = pipe->ring_size - 1;
556 	unsigned int i_head;
557 	size_t n, off;
558 
559 	if (!sanity(i))
560 		return 0;
561 
562 	bytes = n = push_pipe(i, bytes, &i_head, &off);
563 	if (unlikely(!n))
564 		return 0;
565 	do {
566 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
567 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
568 		i->head = i_head;
569 		i->iov_offset = off + chunk;
570 		n -= chunk;
571 		addr += chunk;
572 		off = 0;
573 		i_head++;
574 	} while (n);
575 	i->count -= bytes;
576 	return bytes;
577 }
578 
579 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
580 			      __wsum sum, size_t off)
581 {
582 	__wsum next = csum_partial_copy_nocheck(from, to, len, 0);
583 	return csum_block_add(sum, next, off);
584 }
585 
586 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
587 				__wsum *csum, struct iov_iter *i)
588 {
589 	struct pipe_inode_info *pipe = i->pipe;
590 	unsigned int p_mask = pipe->ring_size - 1;
591 	unsigned int i_head;
592 	size_t n, r;
593 	size_t off = 0;
594 	__wsum sum = *csum;
595 
596 	if (!sanity(i))
597 		return 0;
598 
599 	bytes = n = push_pipe(i, bytes, &i_head, &r);
600 	if (unlikely(!n))
601 		return 0;
602 	do {
603 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
604 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
605 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
606 		kunmap_atomic(p);
607 		i->head = i_head;
608 		i->iov_offset = r + chunk;
609 		n -= chunk;
610 		off += chunk;
611 		addr += chunk;
612 		r = 0;
613 		i_head++;
614 	} while (n);
615 	i->count -= bytes;
616 	*csum = sum;
617 	return bytes;
618 }
619 
620 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
621 {
622 	const char *from = addr;
623 	if (unlikely(iov_iter_is_pipe(i)))
624 		return copy_pipe_to_iter(addr, bytes, i);
625 	if (iter_is_iovec(i))
626 		might_fault();
627 	iterate_and_advance(i, bytes, v,
628 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
629 		memcpy_to_page(v.bv_page, v.bv_offset,
630 			       (from += v.bv_len) - v.bv_len, v.bv_len),
631 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
632 	)
633 
634 	return bytes;
635 }
636 EXPORT_SYMBOL(_copy_to_iter);
637 
638 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
639 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
640 {
641 	if (access_ok(to, n)) {
642 		kasan_check_read(from, n);
643 		n = copy_to_user_mcsafe((__force void *) to, from, n);
644 	}
645 	return n;
646 }
647 
648 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
649 		const char *from, size_t len)
650 {
651 	unsigned long ret;
652 	char *to;
653 
654 	to = kmap_atomic(page);
655 	ret = memcpy_mcsafe(to + offset, from, len);
656 	kunmap_atomic(to);
657 
658 	return ret;
659 }
660 
661 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
662 				struct iov_iter *i)
663 {
664 	struct pipe_inode_info *pipe = i->pipe;
665 	unsigned int p_mask = pipe->ring_size - 1;
666 	unsigned int i_head;
667 	size_t n, off, xfer = 0;
668 
669 	if (!sanity(i))
670 		return 0;
671 
672 	bytes = n = push_pipe(i, bytes, &i_head, &off);
673 	if (unlikely(!n))
674 		return 0;
675 	do {
676 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
677 		unsigned long rem;
678 
679 		rem = memcpy_mcsafe_to_page(pipe->bufs[i_head & p_mask].page,
680 					    off, addr, chunk);
681 		i->head = i_head;
682 		i->iov_offset = off + chunk - rem;
683 		xfer += chunk - rem;
684 		if (rem)
685 			break;
686 		n -= chunk;
687 		addr += chunk;
688 		off = 0;
689 		i_head++;
690 	} while (n);
691 	i->count -= xfer;
692 	return xfer;
693 }
694 
695 /**
696  * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
697  * @addr: source kernel address
698  * @bytes: total transfer length
699  * @iter: destination iterator
700  *
701  * The pmem driver arranges for filesystem-dax to use this facility via
702  * dax_copy_to_iter() for protecting read/write to persistent memory.
703  * Unless / until an architecture can guarantee identical performance
704  * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
705  * performance regression to switch more users to the mcsafe version.
706  *
707  * Otherwise, the main differences between this and typical _copy_to_iter().
708  *
709  * * Typical tail/residue handling after a fault retries the copy
710  *   byte-by-byte until the fault happens again. Re-triggering machine
711  *   checks is potentially fatal so the implementation uses source
712  *   alignment and poison alignment assumptions to avoid re-triggering
713  *   hardware exceptions.
714  *
715  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
716  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
717  *   a short copy.
718  *
719  * See MCSAFE_TEST for self-test.
720  */
721 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
722 {
723 	const char *from = addr;
724 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
725 
726 	if (unlikely(iov_iter_is_pipe(i)))
727 		return copy_pipe_to_iter_mcsafe(addr, bytes, i);
728 	if (iter_is_iovec(i))
729 		might_fault();
730 	iterate_and_advance(i, bytes, v,
731 		copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
732 		({
733 		rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
734                                (from += v.bv_len) - v.bv_len, v.bv_len);
735 		if (rem) {
736 			curr_addr = (unsigned long) from;
737 			bytes = curr_addr - s_addr - rem;
738 			return bytes;
739 		}
740 		}),
741 		({
742 		rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
743 				v.iov_len);
744 		if (rem) {
745 			curr_addr = (unsigned long) from;
746 			bytes = curr_addr - s_addr - rem;
747 			return bytes;
748 		}
749 		})
750 	)
751 
752 	return bytes;
753 }
754 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
755 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
756 
757 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
758 {
759 	char *to = addr;
760 	if (unlikely(iov_iter_is_pipe(i))) {
761 		WARN_ON(1);
762 		return 0;
763 	}
764 	if (iter_is_iovec(i))
765 		might_fault();
766 	iterate_and_advance(i, bytes, v,
767 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
768 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
769 				 v.bv_offset, v.bv_len),
770 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
771 	)
772 
773 	return bytes;
774 }
775 EXPORT_SYMBOL(_copy_from_iter);
776 
777 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
778 {
779 	char *to = addr;
780 	if (unlikely(iov_iter_is_pipe(i))) {
781 		WARN_ON(1);
782 		return false;
783 	}
784 	if (unlikely(i->count < bytes))
785 		return false;
786 
787 	if (iter_is_iovec(i))
788 		might_fault();
789 	iterate_all_kinds(i, bytes, v, ({
790 		if (copyin((to += v.iov_len) - v.iov_len,
791 				      v.iov_base, v.iov_len))
792 			return false;
793 		0;}),
794 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
795 				 v.bv_offset, v.bv_len),
796 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
797 	)
798 
799 	iov_iter_advance(i, bytes);
800 	return true;
801 }
802 EXPORT_SYMBOL(_copy_from_iter_full);
803 
804 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
805 {
806 	char *to = addr;
807 	if (unlikely(iov_iter_is_pipe(i))) {
808 		WARN_ON(1);
809 		return 0;
810 	}
811 	iterate_and_advance(i, bytes, v,
812 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
813 					 v.iov_base, v.iov_len),
814 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
815 				 v.bv_offset, v.bv_len),
816 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
817 	)
818 
819 	return bytes;
820 }
821 EXPORT_SYMBOL(_copy_from_iter_nocache);
822 
823 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
824 /**
825  * _copy_from_iter_flushcache - write destination through cpu cache
826  * @addr: destination kernel address
827  * @bytes: total transfer length
828  * @iter: source iterator
829  *
830  * The pmem driver arranges for filesystem-dax to use this facility via
831  * dax_copy_from_iter() for ensuring that writes to persistent memory
832  * are flushed through the CPU cache. It is differentiated from
833  * _copy_from_iter_nocache() in that guarantees all data is flushed for
834  * all iterator types. The _copy_from_iter_nocache() only attempts to
835  * bypass the cache for the ITER_IOVEC case, and on some archs may use
836  * instructions that strand dirty-data in the cache.
837  */
838 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
839 {
840 	char *to = addr;
841 	if (unlikely(iov_iter_is_pipe(i))) {
842 		WARN_ON(1);
843 		return 0;
844 	}
845 	iterate_and_advance(i, bytes, v,
846 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
847 					 v.iov_base, v.iov_len),
848 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
849 				 v.bv_offset, v.bv_len),
850 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
851 			v.iov_len)
852 	)
853 
854 	return bytes;
855 }
856 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
857 #endif
858 
859 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
860 {
861 	char *to = addr;
862 	if (unlikely(iov_iter_is_pipe(i))) {
863 		WARN_ON(1);
864 		return false;
865 	}
866 	if (unlikely(i->count < bytes))
867 		return false;
868 	iterate_all_kinds(i, bytes, v, ({
869 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
870 					     v.iov_base, v.iov_len))
871 			return false;
872 		0;}),
873 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
874 				 v.bv_offset, v.bv_len),
875 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
876 	)
877 
878 	iov_iter_advance(i, bytes);
879 	return true;
880 }
881 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
882 
883 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
884 {
885 	struct page *head;
886 	size_t v = n + offset;
887 
888 	/*
889 	 * The general case needs to access the page order in order
890 	 * to compute the page size.
891 	 * However, we mostly deal with order-0 pages and thus can
892 	 * avoid a possible cache line miss for requests that fit all
893 	 * page orders.
894 	 */
895 	if (n <= v && v <= PAGE_SIZE)
896 		return true;
897 
898 	head = compound_head(page);
899 	v += (page - head) << PAGE_SHIFT;
900 
901 	if (likely(n <= v && v <= (page_size(head))))
902 		return true;
903 	WARN_ON(1);
904 	return false;
905 }
906 
907 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
908 			 struct iov_iter *i)
909 {
910 	if (unlikely(!page_copy_sane(page, offset, bytes)))
911 		return 0;
912 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
913 		void *kaddr = kmap_atomic(page);
914 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
915 		kunmap_atomic(kaddr);
916 		return wanted;
917 	} else if (unlikely(iov_iter_is_discard(i)))
918 		return bytes;
919 	else if (likely(!iov_iter_is_pipe(i)))
920 		return copy_page_to_iter_iovec(page, offset, bytes, i);
921 	else
922 		return copy_page_to_iter_pipe(page, offset, bytes, i);
923 }
924 EXPORT_SYMBOL(copy_page_to_iter);
925 
926 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
927 			 struct iov_iter *i)
928 {
929 	if (unlikely(!page_copy_sane(page, offset, bytes)))
930 		return 0;
931 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
932 		WARN_ON(1);
933 		return 0;
934 	}
935 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
936 		void *kaddr = kmap_atomic(page);
937 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
938 		kunmap_atomic(kaddr);
939 		return wanted;
940 	} else
941 		return copy_page_from_iter_iovec(page, offset, bytes, i);
942 }
943 EXPORT_SYMBOL(copy_page_from_iter);
944 
945 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
946 {
947 	struct pipe_inode_info *pipe = i->pipe;
948 	unsigned int p_mask = pipe->ring_size - 1;
949 	unsigned int i_head;
950 	size_t n, off;
951 
952 	if (!sanity(i))
953 		return 0;
954 
955 	bytes = n = push_pipe(i, bytes, &i_head, &off);
956 	if (unlikely(!n))
957 		return 0;
958 
959 	do {
960 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
961 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
962 		i->head = i_head;
963 		i->iov_offset = off + chunk;
964 		n -= chunk;
965 		off = 0;
966 		i_head++;
967 	} while (n);
968 	i->count -= bytes;
969 	return bytes;
970 }
971 
972 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
973 {
974 	if (unlikely(iov_iter_is_pipe(i)))
975 		return pipe_zero(bytes, i);
976 	iterate_and_advance(i, bytes, v,
977 		clear_user(v.iov_base, v.iov_len),
978 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
979 		memset(v.iov_base, 0, v.iov_len)
980 	)
981 
982 	return bytes;
983 }
984 EXPORT_SYMBOL(iov_iter_zero);
985 
986 size_t iov_iter_copy_from_user_atomic(struct page *page,
987 		struct iov_iter *i, unsigned long offset, size_t bytes)
988 {
989 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
990 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
991 		kunmap_atomic(kaddr);
992 		return 0;
993 	}
994 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
995 		kunmap_atomic(kaddr);
996 		WARN_ON(1);
997 		return 0;
998 	}
999 	iterate_all_kinds(i, bytes, v,
1000 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1001 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1002 				 v.bv_offset, v.bv_len),
1003 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1004 	)
1005 	kunmap_atomic(kaddr);
1006 	return bytes;
1007 }
1008 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1009 
1010 static inline void pipe_truncate(struct iov_iter *i)
1011 {
1012 	struct pipe_inode_info *pipe = i->pipe;
1013 	unsigned int p_tail = pipe->tail;
1014 	unsigned int p_head = pipe->head;
1015 	unsigned int p_mask = pipe->ring_size - 1;
1016 
1017 	if (!pipe_empty(p_head, p_tail)) {
1018 		struct pipe_buffer *buf;
1019 		unsigned int i_head = i->head;
1020 		size_t off = i->iov_offset;
1021 
1022 		if (off) {
1023 			buf = &pipe->bufs[i_head & p_mask];
1024 			buf->len = off - buf->offset;
1025 			i_head++;
1026 		}
1027 		while (p_head != i_head) {
1028 			p_head--;
1029 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1030 		}
1031 
1032 		pipe->head = p_head;
1033 	}
1034 }
1035 
1036 static void pipe_advance(struct iov_iter *i, size_t size)
1037 {
1038 	struct pipe_inode_info *pipe = i->pipe;
1039 	if (unlikely(i->count < size))
1040 		size = i->count;
1041 	if (size) {
1042 		struct pipe_buffer *buf;
1043 		unsigned int p_mask = pipe->ring_size - 1;
1044 		unsigned int i_head = i->head;
1045 		size_t off = i->iov_offset, left = size;
1046 
1047 		if (off) /* make it relative to the beginning of buffer */
1048 			left += off - pipe->bufs[i_head & p_mask].offset;
1049 		while (1) {
1050 			buf = &pipe->bufs[i_head & p_mask];
1051 			if (left <= buf->len)
1052 				break;
1053 			left -= buf->len;
1054 			i_head++;
1055 		}
1056 		i->head = i_head;
1057 		i->iov_offset = buf->offset + left;
1058 	}
1059 	i->count -= size;
1060 	/* ... and discard everything past that point */
1061 	pipe_truncate(i);
1062 }
1063 
1064 void iov_iter_advance(struct iov_iter *i, size_t size)
1065 {
1066 	if (unlikely(iov_iter_is_pipe(i))) {
1067 		pipe_advance(i, size);
1068 		return;
1069 	}
1070 	if (unlikely(iov_iter_is_discard(i))) {
1071 		i->count -= size;
1072 		return;
1073 	}
1074 	iterate_and_advance(i, size, v, 0, 0, 0)
1075 }
1076 EXPORT_SYMBOL(iov_iter_advance);
1077 
1078 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1079 {
1080 	if (!unroll)
1081 		return;
1082 	if (WARN_ON(unroll > MAX_RW_COUNT))
1083 		return;
1084 	i->count += unroll;
1085 	if (unlikely(iov_iter_is_pipe(i))) {
1086 		struct pipe_inode_info *pipe = i->pipe;
1087 		unsigned int p_mask = pipe->ring_size - 1;
1088 		unsigned int i_head = i->head;
1089 		size_t off = i->iov_offset;
1090 		while (1) {
1091 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1092 			size_t n = off - b->offset;
1093 			if (unroll < n) {
1094 				off -= unroll;
1095 				break;
1096 			}
1097 			unroll -= n;
1098 			if (!unroll && i_head == i->start_head) {
1099 				off = 0;
1100 				break;
1101 			}
1102 			i_head--;
1103 			b = &pipe->bufs[i_head & p_mask];
1104 			off = b->offset + b->len;
1105 		}
1106 		i->iov_offset = off;
1107 		i->head = i_head;
1108 		pipe_truncate(i);
1109 		return;
1110 	}
1111 	if (unlikely(iov_iter_is_discard(i)))
1112 		return;
1113 	if (unroll <= i->iov_offset) {
1114 		i->iov_offset -= unroll;
1115 		return;
1116 	}
1117 	unroll -= i->iov_offset;
1118 	if (iov_iter_is_bvec(i)) {
1119 		const struct bio_vec *bvec = i->bvec;
1120 		while (1) {
1121 			size_t n = (--bvec)->bv_len;
1122 			i->nr_segs++;
1123 			if (unroll <= n) {
1124 				i->bvec = bvec;
1125 				i->iov_offset = n - unroll;
1126 				return;
1127 			}
1128 			unroll -= n;
1129 		}
1130 	} else { /* same logics for iovec and kvec */
1131 		const struct iovec *iov = i->iov;
1132 		while (1) {
1133 			size_t n = (--iov)->iov_len;
1134 			i->nr_segs++;
1135 			if (unroll <= n) {
1136 				i->iov = iov;
1137 				i->iov_offset = n - unroll;
1138 				return;
1139 			}
1140 			unroll -= n;
1141 		}
1142 	}
1143 }
1144 EXPORT_SYMBOL(iov_iter_revert);
1145 
1146 /*
1147  * Return the count of just the current iov_iter segment.
1148  */
1149 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1150 {
1151 	if (unlikely(iov_iter_is_pipe(i)))
1152 		return i->count;	// it is a silly place, anyway
1153 	if (i->nr_segs == 1)
1154 		return i->count;
1155 	if (unlikely(iov_iter_is_discard(i)))
1156 		return i->count;
1157 	else if (iov_iter_is_bvec(i))
1158 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1159 	else
1160 		return min(i->count, i->iov->iov_len - i->iov_offset);
1161 }
1162 EXPORT_SYMBOL(iov_iter_single_seg_count);
1163 
1164 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1165 			const struct kvec *kvec, unsigned long nr_segs,
1166 			size_t count)
1167 {
1168 	WARN_ON(direction & ~(READ | WRITE));
1169 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1170 	i->kvec = kvec;
1171 	i->nr_segs = nr_segs;
1172 	i->iov_offset = 0;
1173 	i->count = count;
1174 }
1175 EXPORT_SYMBOL(iov_iter_kvec);
1176 
1177 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1178 			const struct bio_vec *bvec, unsigned long nr_segs,
1179 			size_t count)
1180 {
1181 	WARN_ON(direction & ~(READ | WRITE));
1182 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1183 	i->bvec = bvec;
1184 	i->nr_segs = nr_segs;
1185 	i->iov_offset = 0;
1186 	i->count = count;
1187 }
1188 EXPORT_SYMBOL(iov_iter_bvec);
1189 
1190 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1191 			struct pipe_inode_info *pipe,
1192 			size_t count)
1193 {
1194 	BUG_ON(direction != READ);
1195 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1196 	i->type = ITER_PIPE | READ;
1197 	i->pipe = pipe;
1198 	i->head = pipe->head;
1199 	i->iov_offset = 0;
1200 	i->count = count;
1201 	i->start_head = i->head;
1202 }
1203 EXPORT_SYMBOL(iov_iter_pipe);
1204 
1205 /**
1206  * iov_iter_discard - Initialise an I/O iterator that discards data
1207  * @i: The iterator to initialise.
1208  * @direction: The direction of the transfer.
1209  * @count: The size of the I/O buffer in bytes.
1210  *
1211  * Set up an I/O iterator that just discards everything that's written to it.
1212  * It's only available as a READ iterator.
1213  */
1214 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1215 {
1216 	BUG_ON(direction != READ);
1217 	i->type = ITER_DISCARD | READ;
1218 	i->count = count;
1219 	i->iov_offset = 0;
1220 }
1221 EXPORT_SYMBOL(iov_iter_discard);
1222 
1223 unsigned long iov_iter_alignment(const struct iov_iter *i)
1224 {
1225 	unsigned int p_mask = i->pipe->ring_size - 1;
1226 	unsigned long res = 0;
1227 	size_t size = i->count;
1228 
1229 	if (unlikely(iov_iter_is_pipe(i))) {
1230 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1231 			return size | i->iov_offset;
1232 		return size;
1233 	}
1234 	iterate_all_kinds(i, size, v,
1235 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1236 		res |= v.bv_offset | v.bv_len,
1237 		res |= (unsigned long)v.iov_base | v.iov_len
1238 	)
1239 	return res;
1240 }
1241 EXPORT_SYMBOL(iov_iter_alignment);
1242 
1243 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1244 {
1245 	unsigned long res = 0;
1246 	size_t size = i->count;
1247 
1248 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1249 		WARN_ON(1);
1250 		return ~0U;
1251 	}
1252 
1253 	iterate_all_kinds(i, size, v,
1254 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1255 			(size != v.iov_len ? size : 0), 0),
1256 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1257 			(size != v.bv_len ? size : 0)),
1258 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1259 			(size != v.iov_len ? size : 0))
1260 		);
1261 	return res;
1262 }
1263 EXPORT_SYMBOL(iov_iter_gap_alignment);
1264 
1265 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1266 				size_t maxsize,
1267 				struct page **pages,
1268 				int iter_head,
1269 				size_t *start)
1270 {
1271 	struct pipe_inode_info *pipe = i->pipe;
1272 	unsigned int p_mask = pipe->ring_size - 1;
1273 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1274 	if (!n)
1275 		return -EFAULT;
1276 
1277 	maxsize = n;
1278 	n += *start;
1279 	while (n > 0) {
1280 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1281 		iter_head++;
1282 		n -= PAGE_SIZE;
1283 	}
1284 
1285 	return maxsize;
1286 }
1287 
1288 static ssize_t pipe_get_pages(struct iov_iter *i,
1289 		   struct page **pages, size_t maxsize, unsigned maxpages,
1290 		   size_t *start)
1291 {
1292 	unsigned int iter_head, npages;
1293 	size_t capacity;
1294 
1295 	if (!maxsize)
1296 		return 0;
1297 
1298 	if (!sanity(i))
1299 		return -EFAULT;
1300 
1301 	data_start(i, &iter_head, start);
1302 	/* Amount of free space: some of this one + all after this one */
1303 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1304 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1305 
1306 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1307 }
1308 
1309 ssize_t iov_iter_get_pages(struct iov_iter *i,
1310 		   struct page **pages, size_t maxsize, unsigned maxpages,
1311 		   size_t *start)
1312 {
1313 	if (maxsize > i->count)
1314 		maxsize = i->count;
1315 
1316 	if (unlikely(iov_iter_is_pipe(i)))
1317 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1318 	if (unlikely(iov_iter_is_discard(i)))
1319 		return -EFAULT;
1320 
1321 	iterate_all_kinds(i, maxsize, v, ({
1322 		unsigned long addr = (unsigned long)v.iov_base;
1323 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1324 		int n;
1325 		int res;
1326 
1327 		if (len > maxpages * PAGE_SIZE)
1328 			len = maxpages * PAGE_SIZE;
1329 		addr &= ~(PAGE_SIZE - 1);
1330 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1331 		res = get_user_pages_fast(addr, n,
1332 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1333 				pages);
1334 		if (unlikely(res < 0))
1335 			return res;
1336 		return (res == n ? len : res * PAGE_SIZE) - *start;
1337 	0;}),({
1338 		/* can't be more than PAGE_SIZE */
1339 		*start = v.bv_offset;
1340 		get_page(*pages = v.bv_page);
1341 		return v.bv_len;
1342 	}),({
1343 		return -EFAULT;
1344 	})
1345 	)
1346 	return 0;
1347 }
1348 EXPORT_SYMBOL(iov_iter_get_pages);
1349 
1350 static struct page **get_pages_array(size_t n)
1351 {
1352 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1353 }
1354 
1355 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1356 		   struct page ***pages, size_t maxsize,
1357 		   size_t *start)
1358 {
1359 	struct page **p;
1360 	unsigned int iter_head, npages;
1361 	ssize_t n;
1362 
1363 	if (!maxsize)
1364 		return 0;
1365 
1366 	if (!sanity(i))
1367 		return -EFAULT;
1368 
1369 	data_start(i, &iter_head, start);
1370 	/* Amount of free space: some of this one + all after this one */
1371 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1372 	n = npages * PAGE_SIZE - *start;
1373 	if (maxsize > n)
1374 		maxsize = n;
1375 	else
1376 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1377 	p = get_pages_array(npages);
1378 	if (!p)
1379 		return -ENOMEM;
1380 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1381 	if (n > 0)
1382 		*pages = p;
1383 	else
1384 		kvfree(p);
1385 	return n;
1386 }
1387 
1388 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1389 		   struct page ***pages, size_t maxsize,
1390 		   size_t *start)
1391 {
1392 	struct page **p;
1393 
1394 	if (maxsize > i->count)
1395 		maxsize = i->count;
1396 
1397 	if (unlikely(iov_iter_is_pipe(i)))
1398 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1399 	if (unlikely(iov_iter_is_discard(i)))
1400 		return -EFAULT;
1401 
1402 	iterate_all_kinds(i, maxsize, v, ({
1403 		unsigned long addr = (unsigned long)v.iov_base;
1404 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1405 		int n;
1406 		int res;
1407 
1408 		addr &= ~(PAGE_SIZE - 1);
1409 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1410 		p = get_pages_array(n);
1411 		if (!p)
1412 			return -ENOMEM;
1413 		res = get_user_pages_fast(addr, n,
1414 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1415 		if (unlikely(res < 0)) {
1416 			kvfree(p);
1417 			return res;
1418 		}
1419 		*pages = p;
1420 		return (res == n ? len : res * PAGE_SIZE) - *start;
1421 	0;}),({
1422 		/* can't be more than PAGE_SIZE */
1423 		*start = v.bv_offset;
1424 		*pages = p = get_pages_array(1);
1425 		if (!p)
1426 			return -ENOMEM;
1427 		get_page(*p = v.bv_page);
1428 		return v.bv_len;
1429 	}),({
1430 		return -EFAULT;
1431 	})
1432 	)
1433 	return 0;
1434 }
1435 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1436 
1437 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1438 			       struct iov_iter *i)
1439 {
1440 	char *to = addr;
1441 	__wsum sum, next;
1442 	size_t off = 0;
1443 	sum = *csum;
1444 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1445 		WARN_ON(1);
1446 		return 0;
1447 	}
1448 	iterate_and_advance(i, bytes, v, ({
1449 		int err = 0;
1450 		next = csum_and_copy_from_user(v.iov_base,
1451 					       (to += v.iov_len) - v.iov_len,
1452 					       v.iov_len, 0, &err);
1453 		if (!err) {
1454 			sum = csum_block_add(sum, next, off);
1455 			off += v.iov_len;
1456 		}
1457 		err ? v.iov_len : 0;
1458 	}), ({
1459 		char *p = kmap_atomic(v.bv_page);
1460 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1461 				      p + v.bv_offset, v.bv_len,
1462 				      sum, off);
1463 		kunmap_atomic(p);
1464 		off += v.bv_len;
1465 	}),({
1466 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1467 				      v.iov_base, v.iov_len,
1468 				      sum, off);
1469 		off += v.iov_len;
1470 	})
1471 	)
1472 	*csum = sum;
1473 	return bytes;
1474 }
1475 EXPORT_SYMBOL(csum_and_copy_from_iter);
1476 
1477 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1478 			       struct iov_iter *i)
1479 {
1480 	char *to = addr;
1481 	__wsum sum, next;
1482 	size_t off = 0;
1483 	sum = *csum;
1484 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1485 		WARN_ON(1);
1486 		return false;
1487 	}
1488 	if (unlikely(i->count < bytes))
1489 		return false;
1490 	iterate_all_kinds(i, bytes, v, ({
1491 		int err = 0;
1492 		next = csum_and_copy_from_user(v.iov_base,
1493 					       (to += v.iov_len) - v.iov_len,
1494 					       v.iov_len, 0, &err);
1495 		if (err)
1496 			return false;
1497 		sum = csum_block_add(sum, next, off);
1498 		off += v.iov_len;
1499 		0;
1500 	}), ({
1501 		char *p = kmap_atomic(v.bv_page);
1502 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1503 				      p + v.bv_offset, v.bv_len,
1504 				      sum, off);
1505 		kunmap_atomic(p);
1506 		off += v.bv_len;
1507 	}),({
1508 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1509 				      v.iov_base, v.iov_len,
1510 				      sum, off);
1511 		off += v.iov_len;
1512 	})
1513 	)
1514 	*csum = sum;
1515 	iov_iter_advance(i, bytes);
1516 	return true;
1517 }
1518 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1519 
1520 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1521 			     struct iov_iter *i)
1522 {
1523 	const char *from = addr;
1524 	__wsum *csum = csump;
1525 	__wsum sum, next;
1526 	size_t off = 0;
1527 
1528 	if (unlikely(iov_iter_is_pipe(i)))
1529 		return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1530 
1531 	sum = *csum;
1532 	if (unlikely(iov_iter_is_discard(i))) {
1533 		WARN_ON(1);	/* for now */
1534 		return 0;
1535 	}
1536 	iterate_and_advance(i, bytes, v, ({
1537 		int err = 0;
1538 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1539 					     v.iov_base,
1540 					     v.iov_len, 0, &err);
1541 		if (!err) {
1542 			sum = csum_block_add(sum, next, off);
1543 			off += v.iov_len;
1544 		}
1545 		err ? v.iov_len : 0;
1546 	}), ({
1547 		char *p = kmap_atomic(v.bv_page);
1548 		sum = csum_and_memcpy(p + v.bv_offset,
1549 				      (from += v.bv_len) - v.bv_len,
1550 				      v.bv_len, sum, off);
1551 		kunmap_atomic(p);
1552 		off += v.bv_len;
1553 	}),({
1554 		sum = csum_and_memcpy(v.iov_base,
1555 				     (from += v.iov_len) - v.iov_len,
1556 				     v.iov_len, sum, off);
1557 		off += v.iov_len;
1558 	})
1559 	)
1560 	*csum = sum;
1561 	return bytes;
1562 }
1563 EXPORT_SYMBOL(csum_and_copy_to_iter);
1564 
1565 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1566 		struct iov_iter *i)
1567 {
1568 #ifdef CONFIG_CRYPTO
1569 	struct ahash_request *hash = hashp;
1570 	struct scatterlist sg;
1571 	size_t copied;
1572 
1573 	copied = copy_to_iter(addr, bytes, i);
1574 	sg_init_one(&sg, addr, copied);
1575 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1576 	crypto_ahash_update(hash);
1577 	return copied;
1578 #else
1579 	return 0;
1580 #endif
1581 }
1582 EXPORT_SYMBOL(hash_and_copy_to_iter);
1583 
1584 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1585 {
1586 	size_t size = i->count;
1587 	int npages = 0;
1588 
1589 	if (!size)
1590 		return 0;
1591 	if (unlikely(iov_iter_is_discard(i)))
1592 		return 0;
1593 
1594 	if (unlikely(iov_iter_is_pipe(i))) {
1595 		struct pipe_inode_info *pipe = i->pipe;
1596 		unsigned int iter_head;
1597 		size_t off;
1598 
1599 		if (!sanity(i))
1600 			return 0;
1601 
1602 		data_start(i, &iter_head, &off);
1603 		/* some of this one + all after this one */
1604 		npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1605 		if (npages >= maxpages)
1606 			return maxpages;
1607 	} else iterate_all_kinds(i, size, v, ({
1608 		unsigned long p = (unsigned long)v.iov_base;
1609 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1610 			- p / PAGE_SIZE;
1611 		if (npages >= maxpages)
1612 			return maxpages;
1613 	0;}),({
1614 		npages++;
1615 		if (npages >= maxpages)
1616 			return maxpages;
1617 	}),({
1618 		unsigned long p = (unsigned long)v.iov_base;
1619 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1620 			- p / PAGE_SIZE;
1621 		if (npages >= maxpages)
1622 			return maxpages;
1623 	})
1624 	)
1625 	return npages;
1626 }
1627 EXPORT_SYMBOL(iov_iter_npages);
1628 
1629 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1630 {
1631 	*new = *old;
1632 	if (unlikely(iov_iter_is_pipe(new))) {
1633 		WARN_ON(1);
1634 		return NULL;
1635 	}
1636 	if (unlikely(iov_iter_is_discard(new)))
1637 		return NULL;
1638 	if (iov_iter_is_bvec(new))
1639 		return new->bvec = kmemdup(new->bvec,
1640 				    new->nr_segs * sizeof(struct bio_vec),
1641 				    flags);
1642 	else
1643 		/* iovec and kvec have identical layout */
1644 		return new->iov = kmemdup(new->iov,
1645 				   new->nr_segs * sizeof(struct iovec),
1646 				   flags);
1647 }
1648 EXPORT_SYMBOL(dup_iter);
1649 
1650 /**
1651  * import_iovec() - Copy an array of &struct iovec from userspace
1652  *     into the kernel, check that it is valid, and initialize a new
1653  *     &struct iov_iter iterator to access it.
1654  *
1655  * @type: One of %READ or %WRITE.
1656  * @uvector: Pointer to the userspace array.
1657  * @nr_segs: Number of elements in userspace array.
1658  * @fast_segs: Number of elements in @iov.
1659  * @iov: (input and output parameter) Pointer to pointer to (usually small
1660  *     on-stack) kernel array.
1661  * @i: Pointer to iterator that will be initialized on success.
1662  *
1663  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1664  * then this function places %NULL in *@iov on return. Otherwise, a new
1665  * array will be allocated and the result placed in *@iov. This means that
1666  * the caller may call kfree() on *@iov regardless of whether the small
1667  * on-stack array was used or not (and regardless of whether this function
1668  * returns an error or not).
1669  *
1670  * Return: Negative error code on error, bytes imported on success
1671  */
1672 ssize_t import_iovec(int type, const struct iovec __user * uvector,
1673 		 unsigned nr_segs, unsigned fast_segs,
1674 		 struct iovec **iov, struct iov_iter *i)
1675 {
1676 	ssize_t n;
1677 	struct iovec *p;
1678 	n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1679 				  *iov, &p);
1680 	if (n < 0) {
1681 		if (p != *iov)
1682 			kfree(p);
1683 		*iov = NULL;
1684 		return n;
1685 	}
1686 	iov_iter_init(i, type, p, nr_segs, n);
1687 	*iov = p == *iov ? NULL : p;
1688 	return n;
1689 }
1690 EXPORT_SYMBOL(import_iovec);
1691 
1692 #ifdef CONFIG_COMPAT
1693 #include <linux/compat.h>
1694 
1695 ssize_t compat_import_iovec(int type,
1696 		const struct compat_iovec __user * uvector,
1697 		unsigned nr_segs, unsigned fast_segs,
1698 		struct iovec **iov, struct iov_iter *i)
1699 {
1700 	ssize_t n;
1701 	struct iovec *p;
1702 	n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1703 				  *iov, &p);
1704 	if (n < 0) {
1705 		if (p != *iov)
1706 			kfree(p);
1707 		*iov = NULL;
1708 		return n;
1709 	}
1710 	iov_iter_init(i, type, p, nr_segs, n);
1711 	*iov = p == *iov ? NULL : p;
1712 	return n;
1713 }
1714 EXPORT_SYMBOL(compat_import_iovec);
1715 #endif
1716 
1717 int import_single_range(int rw, void __user *buf, size_t len,
1718 		 struct iovec *iov, struct iov_iter *i)
1719 {
1720 	if (len > MAX_RW_COUNT)
1721 		len = MAX_RW_COUNT;
1722 	if (unlikely(!access_ok(buf, len)))
1723 		return -EFAULT;
1724 
1725 	iov->iov_base = buf;
1726 	iov->iov_len = len;
1727 	iov_iter_init(i, rw, iov, 1, len);
1728 	return 0;
1729 }
1730 EXPORT_SYMBOL(import_single_range);
1731 
1732 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1733 			    int (*f)(struct kvec *vec, void *context),
1734 			    void *context)
1735 {
1736 	struct kvec w;
1737 	int err = -EINVAL;
1738 	if (!bytes)
1739 		return 0;
1740 
1741 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1742 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1743 		w.iov_len = v.bv_len;
1744 		err = f(&w, context);
1745 		kunmap(v.bv_page);
1746 		err;}), ({
1747 		w = v;
1748 		err = f(&w, context);})
1749 	)
1750 	return err;
1751 }
1752 EXPORT_SYMBOL(iov_iter_for_each_range);
1753